## 多項式的除法原理

## **Division Algorithm for Polynomials**

| Material                                                                                                                                        | Note                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 甲 多項式的基本概念                                                                                                                                      | Vocabulary: Polynomial (多項式), Nonnegative                                   |
| 在顧中時・我們學過:只是形如<br>$a_s x^n + a_{s-1} x^{s-1} + \dots + a_s x + a_0$<br>のービス、報知、の名では、また教育の研究の、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、                 | Integer (非負整數), Subscript (下標), Superscript (上                              |
| ロスパブ 物地点 KU シジセス、 ストール ルビニ酸 (A, $\phi = (a_1, a_{n-1}, \cdots, a_1, a_0)$ )の目前 (K)、 $g(x)$ 等符號 米代表 x 的多項式 。 我們以多項式 $f(x) = Sx^3 + x^2 - 2x + 4$ | 標), Ellipsis (刪節號 informally as dot dot dot ).                              |
| 為例:《當一些古詞::<br>(1)]項:f(x)的3次預:2次項,1次項,與常數項分別為5x <sup>2</sup> ,x <sup>2</sup> ,−2x與4。                                                            | Translations:                                                               |
|                                                                                                                                                 | In junior high school, we have learned that the                             |
|                                                                                                                                                 | expressions like $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ (a sub n |
|                                                                                                                                                 | times x to the power of n plus a sub n minus 1 times x                      |
|                                                                                                                                                 | to the power of n minus 1 plus dot dot dot a sub 1                          |
|                                                                                                                                                 | times x plus a sub 0. ) are called polynomials in x.                        |
|                                                                                                                                                 | Where n is a positive integer or a zero (nonnegative                        |
|                                                                                                                                                 | integer) and $a_n, a_{n-1}, \dots, a_1, a_0$ are real numbers. A            |
|                                                                                                                                                 | polynomial in x is generally represented as f(x) or                         |
|                                                                                                                                                 | g(x).                                                                       |
|                                                                                                                                                 | x 3 superscript<br>subscript<br>"x-sub-n cubed"                             |
|                                                                                                                                                 | Illustrations                                                               |

Vocabulary: Term (項), Namely (亦即), Coefficient (係數), Constant Polynomial (常數多項式), Zero Polynomial (零多項式), Exponent (指數), Variable (變數), Degree of the Polynomial (多項 式的次數).

In the polynomial  $x^2 + 2x$ , the expressions  $x^2$  and 2x are called the terms of the polynomials. Similarly, the polynomial  $3y^2 + 5y + 7$  has three terms, namely,  $3y^2$ , 5y and 7.

在多項式 x<sup>2</sup> + 2x 中, x<sup>2</sup> 及 2x 稱為多項式的項。同樣的,多項式 3y<sup>2</sup> + 5y + 7 有三項,亦 即 3y<sup>2</sup>、5y 及 7。

Each term of a polynomial has a coefficient. So, in  $-x^3 + 4x^2 + 7x - 2$ , the coefficient of  $x^3$  is

-1, the coefficient of  $x^2$  is 4, the coefficient of x is 7 and -2 is the coefficient of  $x^0$ .

多項式的每項都有係數。在多項式 $-x^3 + 4x^2 + 7x - 2$ 裡,三次項 $x^3$ 的係數是-1,二次項 $x^2$ 的係數是4,一次項x的係數是2,最後常數項 $x^0$ 的係數是-2。

2 is also a polynomial. 2, -5, 7, etc. are examples of constant polynomials. The constant polynomial 0 is called the zero polynomial.

2 也是多項式, 2、-5、7 都稱為常數多項式。而0 則稱為零多項式。

In the polynomial  $p(x) = 3x^7 - 4x^6 + x - 9$ , the term with highest power of x is  $3x^7$ . The exponent of x in this term is 7. We call the highest power of the variable in a polynomial as the degree of the polynomial. Particualry, **the degree of a non-zero constant polynomial is zero**.

多項式p(x)=3x<sup>7</sup>-4x<sup>6</sup>+x-9中,x的最高次項為3x<sup>7</sup>,其指數為7。我們稱最高次數為 多項式的次數。特別地,非零的常數多項式稱為零次多項式。

Vocabulary: Operation (運算), Monomial (單項式), Classify (分類), According to (根據), Binomial (二項式), Trinomial (三項式)

A polynomial is defined as an expression which is composed of variables, constants and exponents that are combined using mathematical operations such as addition, subtraction, multiplication and division (No division operation by a variable).

多項式由變數、常數、指數組成,以四則運算如加減乘除(惟除法不能使用在變數相除)結合。

The expressions with one term are called monomials and the expressions with more than one term are called polynomials.

只有一項的式子稱為單項式,超過一項的式子則稱多項式。

Polynomials are classified according to the number of terms; for instance, a binomial has two terms and a trinomial has three terms.

多項式可以依據項數分類,舉例來說,二項式只有二項而三項式只有三項。

| Material                                                                                                                                          | Note                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| (二) 陳法<br>山田町町以外名田市今恋時生び範囲認近今七日15日,前401                                                                                                           | <b>Vocabulary:</b> Numerical (數值), Distributive Property       |  |
| 兩個面平如09步項式之來輕加為除數相無加入方相加, "對如1<br>(2x <sup>3</sup> )(3x <sup>4</sup> ) = (2 × 3)x <sup>3+4</sup> = 6x <sup>9</sup> 。<br>而兩多項式相乘,可以利用乘法對加法的分配律來計算。 | (分配律), Descending Order (降冪).                                  |  |
|                                                                                                                                                   | Translations:                                                  |  |
|                                                                                                                                                   | 1. To multiply two monomials, multiply their                   |  |
|                                                                                                                                                   | numerical coefficients and find the product of the             |  |
|                                                                                                                                                   | variable factors according to the laws of                      |  |
|                                                                                                                                                   | exponents. (兩個單項的多項式之乘積為係數相                                    |  |
|                                                                                                                                                   | 乘而次方相加。)                                                       |  |
|                                                                                                                                                   | 2. For example $(2x^5)(3x^4) = (2 \times 3)x^{5+4} = 6x^9$ (2) |  |
|                                                                                                                                                   | times x to the fifth, times 3 times x to the forth             |  |
|                                                                                                                                                   | equals 2 times 3 times x to the power of 5 plus 4,             |  |
|                                                                                                                                                   | which equals 6 times x to the ninth.) (例如,                     |  |
|                                                                                                                                                   | $(2x^{5})(3x^{4}) = (2 \times 3)x^{5+4} = 6x^{9} \circ )$      |  |
|                                                                                                                                                   | 3. To multiply two polynomials, use the distributive           |  |
|                                                                                                                                                   | property of multiplication over addition. (兩多項                 |  |
|                                                                                                                                                   | 式相乘,可以利用乘法對加法的分配律來計                                            |  |
|                                                                                                                                                   | <u> </u> ( )                                                   |  |
|                                                                                                                                                   | Note:                                                          |  |
|                                                                                                                                                   | The answer is often written in descending order of             |  |
|                                                                                                                                                   | the exponents, ending with the constant term.                  |  |
|                                                                                                                                                   | Summaries                                                      |  |

Vocabulary: Standard Form (標準式), Parentheses (圓括號:()).

1. A polynomial in x is said to be in standard form if :

- I. All parentheses are removed.
- II. Like terms are combined.
- III. The terms are arranged in order of descending powers of x.

多項式的一般式應符合:

- 所有括號都應該被消除。
- Ⅱ. 相同項應合併。

Ⅲ. 以降冪排列。

2. The degree of polynomial in x is the greatest power of x.

多項式的次數為X最高次方。

| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| (三)除法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vocabulary: Dividend (被除式), Divisor (除式),                           |
| 我們仿照整數的除法,進行多項式的除法運算,以2x <sup>3</sup> +3x <sup>2</sup> +8x+5除以<br>x <sup>2</sup> +x+3勐例(前者稱為 <b>接除式</b> ,後者稱為 <b>除式</b> ),計算如下:<br>(四 <u>5</u> 0,2x <sup>3</sup> +x <sup>2</sup> =2x,所以約2x,。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quotient (商式), Remainder (餘式).                                      |
| $\frac{2x}{2x^{2}+x+3} \frac{ \xi _{2x}^{2}}{2x^{3}+3x^{2}+8x} + 5 \frac{ \xi _{2x}^{2}+x^{2}=1+\beta f(\xi) \xi(x)+\beta f(\xi) - \beta f(\xi) \xi(x)+\beta f(\xi) - \beta f(\xi)$ | Translations:                                                       |
| $\frac{2x^3 + 2x^2 + 6x}{x^2 + 2x + 5}$<br><u>x^2 + x + 3</u><br><u>x + 2</u> ←次數小於餘式的次數,停止計算。<br>得舊式為2x+1,餘式為x+2。這種演算法稱為多項式的最除法。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The process of dividing a polynomial is                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | essentially the same as dividing an integer. To show                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | how it works, let's divide $2x^3 + 3x^2 + 8x + 5$ by                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x^{2} + x + 3$ . (The former is called the dividend. The           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | latter is called the divisor.)                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Put 2x on the top, because $2x^3 \div x^2 = 2x$ .                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Put +1 on the top, because $x^2 \div x^2 = 1$ .                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop when the degree of remainder is less than                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | divisor.                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | We say the quotient is $2x + 1$ , remainder is                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{x} + 2$ . This result is called the Division Algorithm for |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | polynomials.                                                        |
| Illustrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |

Because  $x^2 \times 2x = 2x^3$ . The goal is to match  $2x^3$  and we have  $(x^2 + x + 3) \times 2x = 2x^3 + 2x^3 + 6x$ .

We put this part below the dividend.

Finally, we subtract each element. We bring down the 5.

|                 | 2x              |                         |     |    |   |
|-----------------|-----------------|-------------------------|-----|----|---|
| $x^{2} + x + 3$ | 2x <sup>3</sup> | <b>3</b> x <sup>2</sup> | +8x | +5 | - |
|                 | 2x <sup>3</sup> | 2x <sup>2</sup>         | +6x |    | _ |
|                 |                 | <b>x</b> <sup>2</sup>   | +2x | +5 | - |

How many times dose  $x^2 + x + 3$  go into  $x^2$ ? 1 times. Our goal at each step is to get the same exponent and the same coefficient as the term with the highest power. We put the +1 up top and  $(+1) \times (x^2 + x + 3) = x^2 + x + 3$  on the bottom.

As the second step that we subtract each term, we get x + 2 at the end.

|                 | 2x              | +1                      |            |    |  |
|-----------------|-----------------|-------------------------|------------|----|--|
| $x^{2} + x + 3$ | 2x <sup>3</sup> | <b>3</b> x <sup>2</sup> | +8x        | +5 |  |
|                 | 2x <sup>3</sup> | 2x <sup>2</sup>         | +6x        |    |  |
|                 |                 | x <sup>2</sup>          | +2x        | +5 |  |
|                 |                 | <b>x</b> <sup>2</sup>   | + <b>x</b> | +3 |  |
|                 |                 |                         | х          | +2 |  |

The result is as follows.

$$2x^{3}+3x^{2}+8x+5=(x^{2}+x+3)(2x+1)+(x+2)$$

| Material                                                                                        | Note                                                        |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 除法原理                                                                                            | Vocabulary: Divide Evenly Into/Be Divisible By (整除),        |
| 設 $f(x) 與 g(x) 為兩個多項式且 g(x) \neq 0,在計算「f(x)路以g(x)」時可求得唯一的一組q(x)及r(x),滿足f(x) = g(x)q(x) + r(x),$ | Factor (因數), Multiple (倍數).                                 |
| 其中 / k,) = 0 或 deg / k) < degg(x) , 此時 q(x)與 / k) 分別構造 酷式與顧<br>式 *                              | Translations:                                               |
|                                                                                                 | The Division Algorithm                                      |
|                                                                                                 | If $f(x)$ and $g(x)$ are polynomials such that              |
|                                                                                                 | $g(x) \neq 0$ , when doing "divide $f(x)$ by $g(x)$ " there |
|                                                                                                 | exist unique polynomials $q(x)$ and $r(x)$ such that        |
|                                                                                                 | f(x)=g(x)q(x)+r(x)                                          |
|                                                                                                 | Dividend = Divisor × Quotient + Remainder                   |
|                                                                                                 | Where $r(x)=0$ or the degree of $r(x)$ is less              |



**Step 4:** Multiple the number -3 by 1 and write the result  $(1 \cdot (-3) = -3)$  beneath the coefficient (+2) and above the horizontal line.

**Step 5:** Add -3 and +2 (-3+2=-1) and write the sum in the same column as those values, below the horizontal line.

Repeat the step 4 and step 5.

Combine the numbers in the rightmost column (-7+12=5) and write the result in the same column, blow the horizontal line.

The number below the horizontal line represents the coefficients of the quotient and the remainder. Note that the degree of the quotient is always one less than the degree of the dividend, so this quotient has degree three:  $x^3 - x^2 + 3x - 4$ . The rightmost number the horizontal line represents the remainder, which is 5 for this problem.

$$1 + 2 + 0 + 5 -7 -3$$
  
+) -3 +3 -9 +12  
1 -1 +3 -4 +5  
Therefore,  $x^4 + 2x^3 + 5x - 7 = (x+3)(x^3 - x^2 + 3x - 4) + 5$ .

| Polynomial Division: Synthetic Division                                                                                                  | Vocabulary: Column (直行), Row (横列), Pattern (模                                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Synthetic Division of a Third-Degree Polynomial<br>Use synthetic division to divide $ax^3 + bx^2 + cx + d$<br>by $(x - k)$ , as follows. | 式), Diagonal (對角線), Preference (偏愛).                                                                                |  |
| a b+ka<br>Vertical Pattern: Add terms<br>Diagonal Pattern: Multiply by k                                                                 | Video: Mathispower4U - Polynomial Division:                                                                         |  |
| The bottom row represent the coefficients of the quotient, which is 1 degree less than the dividend.                                     | Synthetic Division.                                                                                                 |  |
| ▶ N • 132/1006 向下供転回可益者詳述 • • • • • • • • • • • • • • • • • • •                                                                          | https://www.youtube.com/watch?v=5dBAdzl2Mns                                                                         |  |
| 丙 餘式定理                                                                                                                                   | Translations:                                                                                                       |  |
| 想求多項式 $f(x) = x^4 - 5x + 3 除以 x - 2 的商式與餘式,可以使用綜合除法:$                                                                                    | Finding the quotient and the remainder, we can                                                                      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | use synthetic division. We will have the quotient is                                                                |  |
| 得商式為 x <sup>3</sup> + 2x <sup>2</sup> + 4x + 3,餘式為 9。但是如果只要求餘式,而不求商式時,還<br>有另一種較簡捷的方法:                                                   | $x^{3}\!+\!2x^{2}\!+\!4x\!+\!3$ , and the remainder is 9. However, if                                               |  |
|                                                                                                                                          | it is only the remainder which is needed, there is                                                                  |  |
|                                                                                                                                          | another easier and quicker method to use.                                                                           |  |
| 根據除法原理,設 $f(x)$ 除以 $x-2$ 的商式為 $q(x)$ ,餘式為常數 $r$ ,且滿足 $f(x)=(x-2)q(x)+r$ 。                                                                | By the division algorithm,                                                                                          |  |
| 將 $x = 2$ 代入上式 · 得 $f(2) = (2-2)q(2) + r = r$ ·                                                                                          | Dividend = (Divisor × Quotient) + Remainder                                                                         |  |
| (因此, 解示ア=f(2)=2 <sup>-5</sup> ×2 <sup>+3</sup> =9・<br>一般而言,仿照這個捷的方法,可以推得 <b>餘式定理。</b><br>餘式定理                                            | Set $f(\boldsymbol{x})$ is divided by $\boldsymbol{x}\!-\!\boldsymbol{2}$ , the quotient is $q(\boldsymbol{x})$ and |  |
| 多項式 $f(x)$ 餘以一次式 $ax-b$ 的餘式等於 $f\left(\frac{b}{a}\right)$ 。                                                                              | the remainder is r, which satisfy the equation:                                                                     |  |
|                                                                                                                                          | f(x) = (x-2)q(x) + r.                                                                                               |  |
|                                                                                                                                          | Substitute $x = 2$ into the former equation, yielding                                                               |  |
|                                                                                                                                          | f(2)=(2-2)q(2)+r=r                                                                                                  |  |
|                                                                                                                                          | Hence, the remainder is $r = f(2) = 2^4 - 5 \times 2 + 3 = 9$                                                       |  |
|                                                                                                                                          | Remainder Theorem                                                                                                   |  |
|                                                                                                                                          | If a polynomial $f(x)$ is divided by the binomial $ax-b$ ,                                                          |  |
|                                                                                                                                          | the remainder is $f\left(\frac{b}{a}\right)$ .                                                                      |  |
| Supplementary Materials I                                                                                                                |                                                                                                                     |  |
| If $x-1$ and $x+1$ are both factors of the polynomial $ax^4 + bx^3 - 3x^2 + 5x$ and "a" and "b" are                                      |                                                                                                                     |  |

constants, what is the value of a?

## Solution

Using the remainder theorem, we can set up a system of equations. When the polynomial is divided by x-1 or x+1, the remainder is 0, which means that if we let p(x) denote the

polynomial, p(1)=0 and p(-1)=0.  $\begin{cases} a(1)^4 + b(1)^3 - 3(1)^2 + 5(1) = 0 \\ a(-1)^4 + b(-1)^3 - 3(-1)^2 + 5(-1) = 0 \end{cases} \Rightarrow \begin{cases} a+b-3+5=0 \\ a-b-3-5=0 \end{cases}$ Adding the equations together,  $2a-6=0 \Rightarrow a=3$ Supplementary Materials II If the expression  $\frac{5x^3-2x^2-14x+1}{x-2}$  is written in the form  $5x^2-2x^2-14x+1+\frac{B}{x-2}$ , where B is a constant. Find the value of B. Solution Based on where it is, B represents the remainder of the division. Using the remainder theorem, we can find B by plugging x = 2 into the polynomial  $5x^3 - 2x^2 - 14x + 1$ .  $5(2)^{3}-2(2)^{2}-14(2)+1=5$ We can write the result of this division as  $5x^2 - 2x^2 - 14x + 1 + \frac{5}{x-2}$ , from which B = 5. References 1. 許志農、黃森山、陳清風、廖森游、董涵冬(2019)。數學1:單元8多項式的除法原 理。龍騰文化。 2. BYJUS. Polynomials. https://reurl.cc/061bDx 3. Saylor Academy. Use Synthetic Division to Divide Polynomials. https://reurl.cc/581Log 4. MATH is FUN. Definition of Subscript. https://reurl.cc/QWX03o 5. Barbara Lee Bleau (2003). Forgotten Algebra Third Edition. Barron's. 6. Ron Larson & Robert P. Hostetler (2001). Algebra and Trigonometry Fifth Edition. Houghton Mifflin Company.

7. W. Michael Kelley (2008). *The Humongous Book of Algebra Problems*. Penguin Group.

製作者:臺北市立陽明高中 吳柏萱 教師