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Abstract
Based on a class of smoothing approximations to projection function onto second-order
cone, an approximate lower order penalty approach for solving second-order cone linear
complementarity problems (SOCLCPs) is proposed, and four kinds of specific smoothing
approximations are considered. In light of this approach, the SOCLCP is approximated by
asymptotic lower order penalty equations with penalty parameter and smoothing parameter.
When the penalty parameter tends to positive infinity and the smoothing parameter mono-
tonically decreases to zero, we show that the solution sequence of the asymptotic lower
order penalty equations converges to the solution of the SOCLCP at an exponential rate
under a mild assumption. A corresponding algorithm is constructed and numerical results
are reported to illustrate the feasibility of this approach. The performance profile of four spe-
cific smoothing approximations is presented, and the generalization of two approximations
are also investigated.
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1 Introduction

This paper targets the following second-order cone linear complementarity problem
(SOCLCP), which is to find x ∈ IRn , such that

x ∈ K, Ax − b ∈ K, xT (Ax − b) = 0, (1)

where A is an n×nmatrix, b is a vector in IRn , andK is the Cartesian product of second-order
cones (SOCs), also called Lorentz cones [7,18]. In other words,

K := Kn1 × · · · × Knr (2)

with r , n1, . . . , nr ≥ 1, n1 + · · · + nr = n and

Kni := {
(x1, x2) ∈ IR × IRni−1 | ‖x2‖ ≤ x1

}
, i = 1, . . . , r ,

where ‖ · ‖ denotes the Euclidean norm and (x1, x2) := (x1, xT2 )T . Note that K1 denotes the
set of nonnegative real numbers IR+. The SOCLCP, as an extension of the linear complemen-
tarity problem (LCP), has a wide range of applications in linear and quadratic programming
problems, computer science, game theory, economics, finance, engineering, and network
equilibrium problems [3,15,17,26,27,30].

During the past several years, there are many methods proposed for solving the SOCLCPs
(1)–(2), including the interior-point method [1,28,32], the smoothing Newton method
[14,19,24], the smoothing-regularization method [23], the semismooth Newton method
[25,33], the merit function method [5,10,12], and the matrix splitting method [22,41] etc.
Although the effectiveness of some methods has been improved substantially in recent
years, the fact remains that there still have many complementarity problems require effi-
cient and accurate numerical methods. The penalty methods are well-known for solving
constrained optimization problems which possess many nice properties. More specifically,
the l1 exact penalty functionmethod and lower order penalty functionmethod are knownas the
approaches which hold many nice properties and attracts much attention [2,20,29,34,39,40].
The smoothing of the exact penalty methods are also proposed [35,37,38]. Besides, Wang
and Yang [36] focus on the power of lower order penalty function, and propose a power
penalty method for solving LCP based on approximating the LCP by nonlinear equations. It
shows that under some mild assumptions, the solution sequence of the nonlinear equations
converges to the solution of the LCP at an exponential rate when the penalty parameter tends
to positive infinity. Based on the method in [36], Hao et al. [21] propose a power penalty
method for solving the SOCLCP with a single K = Kn , i.e.,

x ∈ Kn, Ax − b ∈ Kn, xT (Ax − b) = 0, (3)

where A ∈ IRn×n and b ∈ IRn . In particular, they consider the power penalty equations:

Ax − α[x]1/k− = b, (4)

where k ≥ 1 and α ≥ 1 are parameters,

[x]1/k− = [λ1(x)]1/k− u(1)
x + [λ2(x)]1/k− u(2)

x

with [t]− = max{0,−t} and the spectral decomposition (will be introduced later in (5)).
Under a mild assumption of matrix A, as α → +∞, the solution sequence of (4) converges
to the solution of the SOCLCP (3) at an exponential rate.

In this paper, we further enhance improvement and extension of the method and the
problem studied in [21]. We first generalize [x]1/k− in (4) to general lower order penalty
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function [x]σ− with σ ∈ (0, 1], then focus on a class of approximate function to [x]σ− for
solving the general SOCLCP (1) instead of the SOCLCP (3) with single SOC constraint.
In addition, we construct a class of functions �−(μ, x)σ to approximate [x]σ− as μ → 0+.
Four kinds of specific smoothing approximations are studied. Theoretically, we prove that
the solution sequence of the approximating lower order penalty equations converge to the
solution of the SOCLCP (1) at an exponential rate O(α−1/σ ) when α → +∞ and μ → 0+.
This generalizes all its counterparts in the literature. Moreover, a corresponding algorithm is
constructed and numerical results are also reported to examine the feasibility of the proposed
method. The performance profile of those specific smoothing approximations is presented,
and the generalization of two approximations are also investigated.

This paper is organized as follows: In Sect. 2, we review some properties related to the
single SOC which is the basis for our subsequent analysis. In Sect. 3, a class of approxi-
mation functions for lower order penalty function is constructed, and four kinds of specific
smoothing approximations are investigated. In Sect. 4, we study the approximating lower
order penalty equations for solving the SOCLCP (1), and prove the convergence analysis. In
Sect. 5, a corresponding algorithm is constructed and the preliminary numerical experiments
are presented. The performance profiles of the considered four specific smoothing approxi-
mations and the generalization of two approximations are also considered. Finally, we draw
the conclusion in Sect. 6.

For simplicity, we denote the interior of single SOCKn by int(Kn). For any x, y in IRn , we
write x �Kn y if x − y ∈ Kn and write x 	Kn y if x − y ∈ int(Kn). In other words, we have
x �Kn 0 if and only if x ∈ Kn , and x 	Kn 0 if and only if x ∈ int(Kn). We usually denote
(x, y) := (xT , yT )T for the concatenation of two column vectors x, y for simplicity. The
notation ‖ · ‖p denotes the usual l p-norm on IRn for any p ≥ 1. In particular, it is Euclidean
norm ‖ · ‖ when p = 2.

2 Preliminary results

In this section, we first recall some basic concepts and preliminary results related to a single
SOCK = Kn that will be used in the subsequent analysis. All of the analysis are then carried
over to the general structure K (2). For any x = (x1, x2) ∈ IR × IRn−1, y = (y1, y2) ∈
IR × IRn−1, their Jordan product [7,18] is defined as

x ◦ y := (〈x, y〉 , y1x2 + x1y2).

We write x + y to mean the usual componentwise addition of vectors and x2 to mean x ◦ x .
The identity element under this product is e = (1, 0, . . . , 0)T ∈ IRn . It is known that x2 ∈ Kn

for all x ∈ IRn . Moreover, if x ∈ Kn , then there is a unique vector in Kn , denoted by x
1
2 ,

such that (x
1
2 )2 = x

1
2 ◦ x

1
2 = x . For any x ∈ IRn , we define x0 = e if x 
= 0. For any

integer k ≥ 1, we recursively define the powers of element as xk = x ◦ xk−1, and define
x−k = (xk)−1 if x ∈ int(Kn). The Jordan product is not associative for n > 2, but it is power
associated, i.e., x ◦ (x ◦ x) = (x ◦ x) ◦ x . Thus, for any positive integer p, the form x p is
definite, and xm+n = xm ◦ xn for all positive integer m and n. Note that Kn is not closed
under the Jordan product for n > 2.

In the following, we recall the expression of the spectral decomposition of x with respect to
SOC, see [5–8,10–12,18,19,33]. For x = (x1, x2) ∈ IR × IRn−1, the spectral decomposition
of x with respect to SOC is given by

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x , (5)
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where for i = 1, 2,

λi (x) = x1 + (−1)i‖x2‖, u(i)
x =

{
1
2 (1, (−1)i x2‖x2‖ ) if ‖x2‖ 
= 0,
1
2 (1, (−1)iw) if ‖x2‖ = 0,

(6)

with w ∈ IRn−1 being any unit vector. The two scalars λ1(x) and λ2(x) are called spectral
values of x , while the two vectors u(1)

x and u(2)
x are called the spectral vectors of x . Moreover,

it is obvious that the spectral decomposition of x ∈ IRn is unique if x2 
= 0.
Some basic properties of the spectral decomposition in the Jordan algebra associated with

SOC are stated as below, whose proofs can be found in [6,7,18,19].

Proposition 2.1 For any x = (x1, x2) ∈ IR × IRn−1 with the spectral values λ1(x), λ2(x)
and spectral vectors u(1)

x , u(2)
x given as (6), we have:

(a) u(1)
x ◦ u(2)

x = 0 and u(i)
x ◦ u(i)

x = u(i)
x , ‖u(i)

x ‖2 = 1/2 for i = 1, 2.
(b) λ1(x), λ2(x) are nonnegative (positive) if and only if x ∈ Kn (x ∈ int(Kn)).
(c) For any x ∈ IRn, x �Kn 0 if and only if 〈x, y〉 ≥ 0 for all y �Kn 0.

The spectral decomposition (5)–(6) and the Proposition 2.1 indicate that xk can be
described as xk = λk1(x)u

(1)
x + λk2(x)u

(2)
x . For any x ∈ IRn , let [x]+ denote the projec-

tion of x onto Kn , and [x]− be the projection of −x onto the dual cone (Kn)∗ of Kn , where
the dual cone (Kn)∗ is defined by (Kn)∗ := {y ∈ IRn | 〈x, y〉 ≥ 0,∀x ∈ Kn}. In fact, by
Proposition 2.1, the dual cone ofKn being itself, i.e., (Kn)∗ = Kn . Due to the special structure
of Kn , the explicit formula of projection of x = (x1, x2) ∈ IR × IRn−1 onto Kn is obtained
in [14,17,19] as below

[x]+ =
⎧
⎨

⎩

x if x ∈ Kn,

0 if x ∈ −Kn,

u otherwise,
where u =

[ x1+‖x2‖
2(

x1+‖x2‖
2

)
x2‖x2‖

]

.

Similarly, the expression of [x]− can be written out as

[x]− =
⎧
⎨

⎩

0 if x ∈ Kn,

−x if x ∈ −Kn,

v otherwise,
where v =

[ − x1−‖x2‖
2(

x1−‖x2‖
2

)
x2‖x2‖

]

.

It is easy to verify that x = [x]+ − [x]− and

[x]+ = [λ1(x)]+u(1)
x + [λ2(x)]+u(2)

x , [x]− = [λ1(x)]−u(1)
x + [λ2(x)]−u(2)

x ,

where [α]+ = max{0, α} and [α]− = max{0,−α} for α ∈ IR. Thus, it can be seen that
[x]+, [x]− ∈ Kn and [x]+ ◦ [x]− = 0.

Putting these analyses into a single SOC Kni , i = 1, . . . , r in (2), we can extend them
to the general case K = Kn1 × · · · × Knr . More specifically, for any x = (x1, . . . , xr ) ∈
IRn1 × · · · × IRnr , y = (y1, . . . , yr ) ∈ IRn1 × · · · × IRnr , their Jordan product is defined as

x ◦ y := (x1 ◦ y1, . . . , xr ◦ yr ).

Let [x]+, [x]− respectively denote the projection of x onto K and the projection of −x onto
the dual cone K∗ = K, then

[x]+ := ([x1]+, . . . , [xr ]+), [x]− := ([x1]−, . . . , [xr ]−), (7)

where [xi ]+, [xi ]− for i = 1, . . . , r respectively denote the projection of xi onto the single
SOC Kni and the projection of −xi onto (Kni )∗.

123



Journal of Global Optimization (2022) 83:671–697 675

3 Approximation of projection function with power

This section is devoted to presenting a way to generate smoothing functions for the plus
function [t]+ = max{0, t} and minus function [t]− = max{0,−t} via convolution which
was proposed by Chen and Mangasarian [4]. First, we consider the piecewise continuous
function d(t) with finite number of pieces, which is a density (kernel) function. In other
words, it satisfies

d(t) ≥ 0 and
∫ +∞

−∞
d(t)dt = 1. (8)

Next, we define ŝ(μ, t) := 1
μ
d
(

t
μ

)
, where μ is a positive parameter. If

∫ +∞
−∞ |t | d(t)dt <

+∞, then a smoothing approximation for [t]+ is formed. In particular,

φ+(μ, t) =
∫ +∞

−∞
(t − s)+ŝ(μ, s)ds =

∫ t

−∞
(t − s)ŝ(μ, s)ds ≈ [t]+. (9)

The following proposition states the properties of φ+(μ, t), whose proofs can be found in
[4, Proposition 2.2].

Proposition 3.1 Let d(t) be a density function satisfying (8) and ŝ(μ, t) = 1
μ
d
(

t
μ

)
with

positive parameter μ. If d(t) is piecewise continuous with finite number of pieces and∫ +∞
−∞ |t | d(t)dt < +∞. Then, the function φ+(μ, t) defined by (9) possesses the follow-
ing properties.

(a) φ+(μ, t) is continuously differentiable.
(b) −D2μ ≤ φ+(μ, t) − [t]+ ≤ D1μ, where

D1 =
∫ 0

−∞
|t |d(t)dt and D2 = max

{∫ +∞

−∞
td(t)dt, 0

}
.

(c) ∂
∂t φ

+(μ, t) is bounded satisfying 0 ≤ ∂
∂t φ

+(μ, t) ≤ 1.

From Proposition 3.1(b), we have

lim
μ→0+ φ+(μ, t) = [t]+

under the assumptions of this proposition. Applying the above way of generating smoothing
function to approximate [t]− = max{0,−t}, which appears in equation (4), we also achieve
a smoothing approximation as follows:

φ−(μ, t) =
∫ −t

−∞
(−t − s)ŝ(μ,−s)ds =

∫ +∞

t
(s − t)ŝ(μ, s)ds ≈ [t]−. (10)

Similar to Proposition 3.1, we have the below properties for φ−(μ, t).

Proposition 3.2 Let d(t) and ŝ(μ, t) be as in Proposition 3.1 with the same assumptions.
Then, the function φ−(μ, t) defined by (10) possesses the following properties.

(a) φ−(μ, t) is continuously differentiable.
(b) −D2μ ≤ φ−(μ, t) − [t]− ≤ D1μ, where

D1 =
∫ +∞

0
|t |d(t)dt and D2 = max

{∫ +∞

−∞
td(t)dt, 0

}
.
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(c) ∂
∂t φ

−(μ, t) is bounded satisfying −1 ≤ ∂
∂t φ

−(μ, t) ≤ 0.

Similar to Proposition 3.1, we also obtain limμ→0+ φ−(μ, t) = [t]−.Therefore, in view of
Proposition 3.1 and 3.2, we know that φ+(μ, t) defined by (9) and φ−(μ, t) defined by (10),
are the smoothing functions of [t]+ and [t]−, respectively. Accordingly, using the continuity
of compound function and φ+(μ, t) ≥ 0, φ−(μ, t) ≥ 0, we can generate approximate
function (not necessarily smooth) for [t]σ+ and [t]σ−, see below lemma.

Lemma 3.1 Under the assumptions of Proposition 3.1, let φ+(μ, t), φ−(μ, t) be the smooth-
ing functions of [t]+, [t]−, defined by (9) and (10) respectively. Then, for any σ > 0, we
have

(a) lim
μ→0+ φ+(μ, t)σ = [t]σ+,

(b) lim
μ→0+ φ−(μ, t)σ = [t]σ−.

By modifying the smoothing functions used in [4,9,31], we have four specific smoothing
functions for [t]− as well:

φ−
1 (μ, t) = −t + μ ln

(
1 + e

t
μ

)
, (11)

φ−
2 (μ, t) =

⎧
⎪⎨

⎪⎩

0 if t ≥ ¯
2 ,

1
2μ

(−t + μ
2

)2 if − ¯
2 < t < ¯

2 ,

−t if t ≤ − ¯
2 ,

(12)

φ−
3 (μ, t) =

√
4μ2 + t2 − t

2
, (13)

φ−
4 (μ, t) =

⎧
⎪⎨

⎪⎩

0 if t > 0,
t2
2μ if − ¯ ≤ t ≤ 0,

−t − μ
2 if t < −¯,

(14)

where the corresponding kernel functions are

d1(t) = et

(1 + et )2
,

d2(t) =
{
1 if − 1

2 ≤ t ≤ 1
2 ,

0 otherwise,

d3(t) = 2

(t2 + 4)
3
2

,

d4(t) =
{
1 if − 1 ≤ t ≤ 0,
0 otherwise.

For those specific functions (11)–(14), they certainly obey Proposition 3.2 and Lemma
3.1. The graphs of [t]− and φ−

i (μ, t), i = 1, 2, 3, 4 with μ = 0.1 are depicted in Fig. 1.
From Fig. 1, we see that, for a fixed μ > 0, the function φ−

2 (μ, t) seems the one which
best approximate the function [t]− among all φ−

i (μ, t), i = 1, 2, 3, 4. Indeed, for a fixed
μ > 0 and all t ∈ IR, we have

φ−
3 (μ, t) ≥ φ−

1 (μ, t) ≥ φ−
2 (μ, t) ≥ [t]− ≥ φ−

4 (μ, t). (15)
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Fig. 1 Graphs of [t]− and φ−
i (μ, t), i = 1, 2, 3, 4 with μ = 0.1.

Furthermore, we shall show that φ−
2 (μ, t) is the function closest to [t]− in the sense of the

infinite norm. For any fixed μ > 0, it is clear that

lim|t |→∞
∣∣φ−

i (μ, t) − [t]−
∣∣ = 0, i = 1, 2, 3.

The functions φ−
i (μ, t) − [t]−, i = 1, 3 have no stable point but unique non-differentiable

point t = 0, and φ−
2 (μ, t) − [t]− is non-zero only on the interval (−μ/2, μ/2) with

maxt∈(−μ/2,μ/2)
∣∣φ−

2 (μ, t) − [t]−
∣∣ = φ−

2 (μ, 0). These imply that

max
t∈IR

∣∣φ−
i (μ, t) − [t]−

∣∣ = ∣∣φ−
i (μ, 0)

∣∣ , i = 1, 2, 3.

Since φ−
1 (μ, 0) = (ln 2)μ ≈ 0.7μ, φ−

2 (μ, 0) = μ/8, φ−
3 (μ, 0) = μ, we obtain

‖φ−
1 (μ, t) − [t]−‖∞ = (ln 2)μ,

‖φ−
2 (μ, t) − [t]−‖∞ = μ/8,

‖φ−
3 (μ, t) − [t]−‖∞ = μ.

On the other hand, it is obvious that maxt∈IR
∣∣φ−

4 (μ, t) − [t]−
∣∣ = μ/2, which says

‖φ−
4 (μ, t) − [t]−‖∞ = μ/2.

In summary, we have

‖φ−
3 (μ, t) − [t]−‖∞ > ‖φ−

1 (μ, t) − [t]−‖∞ > ‖φ−
4 (μ, t) − [t]−‖∞ > ‖φ−

2 (μ, t) − [t]−‖∞.

(16)

The orderings of (15) and (16) indicate the behavior of φ−
i (μ, t), i = 1, 2, 3, 4 for fixed

μ > 0. When taking μ → 0+, we know limμ→0+ φ−
i (μ, t) = [t]−, i = 1, 2, 3, 4 and

φ−
2 (μ, t) is the closest to [t]−, which can be verified by geometric views depicted as in

Fig. 2.
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Fig. 2 Graphs of φ−
i (μ, t), i = 1, 2, 3, 4 with different μ

Remark 3.1 For any μ > 0, σ > 0 and continuously differentiable φ−(μ, t) defined by (10),
it can be easily seen that, φ−(μ, t)σ is continuous function about t , but may not be differ-
entiable. For example, φ−

1 (μ, t)σ , φ−
3 (μ, t)σ are continuously differentiable, but φ−

2 (μ, t)σ ,
φ−
4 (μ, t)σ are not continuously differentiable for σ = 1/2 since the non-differentiable points

are t = μ/2 and t = 0 respectively. Their geometric views are depicted in Fig. 3.

With the aforementioned discussions, for any x = (x1, . . . , xr ) ∈ IRn1 × · · · × IRnr ,
we are ready to show how to construct a smoothing function for vectors [x]+ and [x]−
associated with K = Kn1 × · · · × Knr . We start by constructing a smoothing function for
vectors [xi ]+, [xi ]− on a single SOCKni , i = 1, . . . , r since [x]+ and [x]− are shown as (7).
First, given smoothing functions φ+, φ− in (9),(10) and xi ∈ IRni , i = 1, . . . , r , we define
vector-valued function �+

i ,�−
i : IR++ × IRni → IRni , i = 1, . . . , r as

�+
i (μ, xi ) := φ+ (μ, λ1(xi )) u

(1)
xi + φ+ (μ, λ2(xi )) u

(2)
xi , (17)

�−
i (μ, xi ) := φ− (μ, λ1(xi )) u

(1)
xi + φ− (μ, λ2(xi )) u

(2)
xi , (18)

where μ ∈ IR++ is a parameter, λ1(xi ), λ2(xi ) are the spectral values, and u(1)
xi , u

(2)
xi are the

spectral vectors of xi .
Consequently, �+

i (μ, xi ), �
−
i (μ, xi ) are also smooth on IR++ × IRni [8]. Moreover, it is

easy to assert that

lim
μ→0+ �+

i (μ, xi ) = [λ1(xi )]+u(1)
xi + [λ2(xi )]+u(2)

xi = [xi ]+, (19)
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Fig. 3 Graphs of φ−
i (μ, t)σ , i = 1, 2, 3, 4 with different μ and σ = 1/2

lim
μ→0+ �−

i (μ, xi ) = [λ1(xi )]−u(1)
xi + [λ2(xi )]−u(2)

xi = [xi ]−, (20)

which means each function �+
i (μ, xi ),�

−
i (μ, xi ) serves as a smoothing function of

[xi ]+, [xi ]− associated with single SOC Kni , i = 1, . . . , r , respectively. Due to Lemma
3.1, Remark 3.1 and from definition of �+

i (μ, xi ), �
−
i (μ, xi ) in (17), (18), it is not difficult

to verify that for any σ > 0, the below two functions

�+
i (μ, xi )

σ := φ+ (μ, λ1(xi ))
σ u(1)

xi + φ+ (μ, λ2(xi ))
σ u(2)

xi , (21)

�−
i (μ, xi )

σ := φ− (μ, λ1(xi ))
σ u(1)

xi + φ− (μ, λ2(xi ))
σ u(2)

xi (22)

are continuous functions approximate to [xi ]σ+ and [xi ]σ−, respectively. In other words,

lim
μ→0+ �+

i (μ, xi )
σ = [λ1(xi )]σ+u(1)

xi + [λ2(xi )]σ+u(2)
xi = [xi ]σ+,

lim
μ→0+ �−

i (μ, xi )
σ = [λ1(xi )]σ−u(1)

xi + [λ2(xi )]σ−u(2)
xi = [xi ]σ−.

Now we construct smoothing function for vectors [x]+ and [x]− associated with general
cone (2). To this end, we define vector-valued function �+,�− : IR++ × IRn → IRn as

�+(μ, x) := (
�+

1 (μ, x1), . . . , �
+
r (μ, xr )

)
, (23)

�−(μ, x) := (
�−

1 (μ, x1), . . . , �
−
r (μ, xr )

)
, (24)

where�+
i (μ, xi ),�

−
i (μ, xi ), i = 1, . . . , r are defined by (17), (18), respectively. Therefore,

from (19), (20) and (7), �+(μ, x),�−(μ, x) serves as a smoothing function for [x]+, [x]−
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associated with K = Kn1 × · · · × Knr , respectively. At the same time, from (21), (22),

�+(μ, x)σ := (
�+

1 (μ, x1)
σ , . . . , �+

r (μ, xr )
σ
)
, (25)

�−(μ, x)σ := (
�−

1 (μ, x1)
σ , . . . , �−

r (μ, xr )
σ
)

(26)

are continuous functions approximate to [x]σ+ and [x]σ−, respectively.
In light of this idea, we establish an approximating lower order penalty equations for

solving SOCLCP (1), which will be described in next section. To end this section, we present
a technical lemma for subsequent needs.

Lemma 3.2 Suppose that�+(μ, x) and�−(μ, x) are defined by (23), (24), respectively, and
�+(μ, x)σ and �−(μ, x)σ are defined for any σ > 0 as in (25), (26), respectively. Then,
the following results hold.

(a) Both �+(μ, x) and �−(μ, x) belong to K,
(b) Both �+(μ, x)σ and �−(μ, x)σ belong to K .

Proof (a) For any xi ∈ IRni , i = 1, . . . , r , since φ+(μ, λk(xi )) ≥ 0, φ−(μ, λk(xi )) ≥ 0 for
k = 1, 2 from (9), (10), we have �+

i (μ, xi ),�
−
i (μ, xi ) ∈ Kni according to the definition

(17), (18). Therefore, the conclusion holds due to the definitions (23), (24) and (2).
(b) From part (a) and knowing σ > 0, we have φ+(μ, λk(xi ))σ ≥ 0, φ−(μ, λk(xi ))σ ≥ 0,
k = 1, 2. Applying (25) and (26), the desired result follows. ��

4 Approximate lower order penalty approach and convergence
analysis

In this section,we propose an approximate lower order penalty approach for solving SOCLCP
(1). To this end, we consider the approximate lower order penalty equations (LOPEs):

Ax − α�−(μ, x)σ = b, (27)

where σ ∈ (0, 1] is a given power parameter, α ≥ 1 is a penalty parameter and �−(μ, x)σ is
defined as (26). Throughout this section, xμ,α means the solution of (27), and corresponding
to the structure of (2), we denote

xμ,α = (
(xμ,α)1, . . . , (xμ,α)r

) ∈ IRn1 × · · · × IRnr . (28)

For simplicity and without causing confusion, we always denote the spectral values and
spectral vectors of (xμ,α)i , i = 1, . . . , r as λk := λk((xμ,α)i ), u(k) := u(k)

(xμ,α)i
for k = 1, 2.

Accordingly, [λk]− := [λk((xμ,α)i )]− and φ−(μ, λk) := φ−(μ, λk((xμ,α)i )), k = 1, 2 for
instance. Note that for special case σ = 1, the nonlinear function in (27) is always smooth.

Note that the equations (27) are penalized equations corresponding to the SOCLCP (1)
because the penalty term α�−(μ, x)σ penalizes the ‘negative part’ of x when μ → 0+.
By Lemma 3.2 and from equations (27), it is easy to see that Axμ,α − b ∈ K (noting
α�−(μ, xμ,α)σ ∈ K). Our goal is to show that the solution sequence {xμ,α} converges to the
solution of SOCLCP (1) when α → +∞ and μ → 0+. In order to achieve this, we need to
make the assumption for matrix A as below.

Assumption 4.1 The matrix A is positive definite, but not necessarily symmetric, i.e., there
exists a constant a0 > 0, such that

yT Ay ≥ a0‖y‖2, ∀y ∈ IRn . (29)
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This assumption just implies that Ā = (A + AT )/2 is symmetric positive definite with
a0 = λmin( Ā) since yT Ay = yT Āy. Here is an example of A. Let

A =
[
2 −1
3 1

]
,

it is easy to see that matrix A is positive definite satisfying (29), but not symmetric. Under
Assumption 4.1, the SOCLCP (1) has a unique solution and the LOPEs (27) also has a unique
solution, see for more details in [17,21].

Proposition 4.1 For any α ≥ 1, σ ∈ (0, 1] and sufficiently smallμ, the solution of the LOPEs
(27) is bounded, i.e., there exists a positive constant M, independent of xμ,α, μ, α and σ ,
such that ‖xμ,α‖ ≤ M.

Proof By multiplying xμ,α on both sides of (27), we observe that

xTμ,α Axμ,α = xTμ,αb + αxTμ,α�−(μ, xμ,α)σ =
r∑

i=1

(
(xμ,α)Ti bi + α(xμ,α)Ti �−

i (μ, (xμ,α)i )
σ
)
(30)

by (26),(28) and denoting b = (b1, . . . , br ) ∈ IRn1×· · ·×IRnr . For any (xμ,α)i , i = 1, . . . , r ,
to proceed, we consider three cases to evaluate the term

�i := (xμ,α)Ti bi + α(xμ,α)Ti �−
i (μ, (xμ,α)i )

σ ≤ ‖xμ,α‖ (‖b‖ + 1) . (31)

Case 1: (xμ,α)i ∈ Kni . FromCauchy-Schwarz inequality, spectral decomposition of (xμ,α)i ,
and the fact that the norm of the piece component is less than that of the whole vector, we
have

�i ≤ ‖(xμ,α)i‖
(‖bi‖ + α‖�−

i (μ, (xμ,α)i )
σ ‖)

≤ ‖xμ,α‖ (‖b‖ + α‖φ−(μ, λ1)
σ u(1) + φ−(μ, λ2)

σ u(2)‖)
≤ ‖xμ,α‖

(
‖b‖ + √

2αφ−(μ, 0)σ
)

,

(32)

where the second inequality holds by the definition of �−
i (μ, (xμ,α)i )

σ as in (22), and the
last inequality holds by the triangle inequality, the nonnegativity of φ−(μ, 0)σ from (10) and
the monotone decreasing of φ−(μ, t) about t since 0 ≤ λ1 ≤ λ2 in this case. Now, applying
Lemma 3.1, we have limμ→0+ φ−(μ, 0)σ = 0. This means, for any penalty parameter α,
there exists a positive real number ν, such that

√
2αφ−(μ, 0)σ ≤ 1 for all μ ∈ (0, ν].

Therefore, from (32), we obtain the conclusion (31).
Case 2: (xμ,α)i ∈ −Kni . In light of Lemma 3.2, we know �−

i (μ, (xμ,α)i )
σ ∈ Kni , and

hence

(xμ,α)Ti �−
i (μ, (xμ,α)i )

σ ≤ 0.

Thus,wehave�i ≤ (xμ,α)Ti bi ≤ ‖(xμ,α)i‖‖bi‖ ≤ ‖xμ,α‖ (‖b‖ + 1),which says conclusion
(31) holds.
Case 3: (xμ,α)i /∈ Kni ∪ −Kni . In this case, we know that λ1 < 0 < λ2 and [(xμ,α)i ]+ =
λ2u(2). From the definition of �−

i (μ, (xμ,α)i )
σ as in (22), Proposition 2.1, we have

(xμ,α)Ti �−
i (μ, (xμ,α)i )

σ = (λ1u(1) + λ2u(2))T
(
φ−(μ, λ1)

σ u(1) + φ−(μ, λ2)
σ u(2)

)
.

= 1
2

(
λ1φ

−(μ, λ1)
σ + λ2φ

−(μ, λ2)
σ
)

≤
√
2
2 (

√
2
2 λ2)φ

−(μ, λ2)
σ

≤
√
2
2 ‖xμ,α‖φ−(μ, λ2)

σ ,

(33)
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where the first inequality holds due to λ1φ
−(μ, λ1)

σ < 0 < λ2φ
−(μ, λ2)

σ , and the second

inequality holds due to
√
2
2 λ2 = ‖[(xμ,α)i ]+‖ ≤ ‖(xμ,α)i‖ ≤ ‖xμ,α‖. Substituting (33) from

�i and using Cauchy-Schwarz inequality, we obtain

�i ≤ ‖(xμ,α)i‖‖bi‖ +
√
2
2 α‖xμ,α‖φ−(μ, λ2)

σ

≤ ‖xμ,α‖‖b‖ +
√
2
2 α‖xμ,α‖φ−(μ, λ2)

σ

≤ ‖xμ,α‖
(
‖b‖ +

√
2
2 αφ−(μ, 0)σ

)
,

(34)

where the third inequality holds by the monotone decreasing of φ−(μ, t) about t . Similar
to case 1, for any penalty parameter α, there exists a positive real number ν, such that√

2
2 αφ−(μ, 0)σ ≤ 1 for all μ ∈ (0, ν]. Hence, we reach the conclusion (31) by (34).
From above three cases, the conclusion (31) holds, which shows an evaluation of �i .

Thus, from (30) and Assumption 4.1, there exists a constants a0 > 0 such that

a0‖xμ,α‖2 ≤ xTμ,αAxμ,α =
r∑

i=1

�i ≤ r‖xμ,α‖ (‖b‖ + 1) .

This implies ‖xμ,α‖ · (a0‖xμ,α‖ − r (‖b‖ + 1)
) ≤ 0, and hence ‖xμ,α‖ ≤ r

a0
(‖b‖ + 1) .

By taking M = r
a0

(‖b‖ + 1), the proof is completed. ��
It is well-known that the affine function g(x) := Ax − b is continuous function and by

Proposition 4.1, ‖g(xμ,α)‖ is bounded for any α ≥ 1, σ ∈ (0, 1] and sufficiently small μ.
We are able to establish an upper bound for ‖�−(μ, xμ,α)‖ in next proposition. The upper
bound is also applicable for ‖[xμ,α]−‖ (see Remark 4.1), which plays an important role in
the convergence analysis. The detailed proof is based on the definition of �−

i (μ, (xμ,α)i )

stated as in (18) and uses the same techniques as in [21, Proposition 3.2] by left multiplying
�−

i (μ, (xμ,α)i ) on both sides of the i th block of (27):

(Axμ,α)i − α�−
i (μ, (xμ,α)i )

σ = bi .

Therefore, we omit it and only present the result, i.e., there exists a positive constant Ci ,
independent of xμ,α, μ and α, such that

‖�−
i (μ, (xμ,α)i )‖ ≤ Ci

α1/σ (35)

holds for any α ≥ 1, σ ∈ (0, 1] and sufficiently small μ. By the definition of �−(μ, xμ,α)

as shown in (24) and setting C = C1 + · · · + Cr , we obtain the following proposition.

Proposition 4.2 For any α ≥ 1, σ ∈ (0, 1] and sufficiently small μ, there exists a positive
constant C, independent of xμ,α, μ and α, such that

‖�−(μ, xμ,α)‖ ≤ C

α1/σ . (36)

Remark 4.1 For any α ≥ 1, σ ∈ (0, 1] and sufficiently small μ, the i th (i = 1, . . . , r )
component vector (xμ,α)i is fixed since xμ,α with (28) means the solution of (27). For the
fixed (xμ,α)i with spectral decomposition (xμ,α)i = λ1u(1) + λ2u(2) and the expression
�−

i (μ, (xμ,α)i ) = φ−(μ, λ1)u(1) + φ−(μ, λ2)u(2), by taking μ → 0+ in φ−(μ, λ1) and

φ−(μ, λ2), we obtain ‖[λ1]−u(1) + [λ2]−u(2)‖ ≤ Ci
α1/σ from (35),

which yields

∥∥[(xμ,α)i ]−
∥∥ ≤ Ci

α1/σ . (37)
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Also, by setting C = C1 + · · · + Cr , we obtain

∥∥[(xμ,α)]−
∥∥ ≤ C

α1/σ . (38)

By using Propositions 4.1, 4.2 and Remark 4.1, we are able to obtain the following desired
convergence result of SOCLCP (1) is approximated by the LOPEs (27).

Theorem 4.1 For any α ≥ 1, σ ∈ (0, 1] and sufficiently small μ, let xμ,α be the solution of
LOPEs (27), and x∗ be the solution of SOCLCP (1). Then, there exists a positive constant
C, independent of x∗, xμ,α, μ and α, such that

‖x∗ − xμ,α‖ ≤ C

α1/σ . (39)

Proof Follows from (28) and the definition (7), we get xμ,α = [xμ,α]+ − [xμ,α]−, where
[xμ,α]+ = ([(xμ,α)1]+, . . . , [(xμ,α)r ]+), [xμ,α]− = ([(xμ,α)1]−, . . . , [(xμ,α)r ]−)

respectively denotes the projection of xμ,α on K and −xμ,α on K∗. Therefore, the vector
x∗ − xμ,α can be decomposed as

x∗ − xμ,α = x∗ − [xμ,α]+ + [xμ,α]− = rμ,α + [xμ,α]−, (40)

where

rμ,α = x∗ − [xμ,α]+. (41)

Let’s consider the estimation of rμ,α . If rμ,α = 0, the inequality (39) is satisfied due to (38)
and (40). Therefore, in the following, we only consider rμ,α 
= 0. Noting that, the SOCLCP
(1) is equivalent to the variational inequality problem: find x∗ ∈ K (see [17, Proposition
1.1.3]), such that

(y − x∗)T Ax∗ ≥ (y − x∗)T b, ∀y ∈ K. (42)

It is known that [xμ,α]+ ∈ K, by (41) and substituting [xμ,α]+ for y in (42) yields

− rTμ,αAx
∗ ≥ −rTμ,αb. (43)

Then, multiplying both sides of (27) by rμ,α yields

rTμ,αAxμ,α − αrTμ,α�−(μ, xμ,α)σ = rTμ,αb. (44)

Adding up (43) and (44) leads to

rTμ,αA(xμ,α − x∗) − αrTμ,α�−(μ, xμ,α)σ ≥ 0. (45)

Applying (41) again, we have

rTμ,α�−(μ, xμ,α)σ = (x∗ − [xμ,α]+)T�−(μ, xμ,α)σ . (46)

Combining (45) and (46), we achieve rTμ,αA(xμ,α − x∗) ≥ α(x∗ − [xμ,α]+)T�−(μ, xμ,α)σ ,

which says

rTμ,αA(x∗ − xμ,α) ≤ α([xμ,α]+ − x∗)T�−(μ, xμ,α)σ . (47)

Now, using (40) and (47) further gives

(x∗ − xμ,α − [xμ,α]−)T A(x∗ − xμ,α) ≤ α([xμ,α]+ − x∗)T�−(μ, xμ,α)σ ,
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which implies

(x∗ − xμ,α)T A(x∗ − xμ,α) ≤ [xμ,α]T−A(x∗ − xμ,α) + α([xμ,α]+ − x∗)T�−(μ, xμ,α)σ .

(48)

Follows from (26),(28) and the definition (7), by denoting

�i := [(xμ,α)i ]T−
(
A(x∗ − xμ,α)

)
i + α

([(xμ,α)i ]+ − x∗
i

)T
�−

i (μ, (xμ,α)i )
σ , (49)

the inequality (48) is reduced to

(x∗ − xμ,α)T A(x∗ − xμ,α) ≤
r∑

i=1

�i . (50)

To proceed, we discuss three cases of (xμ,α)i to proof the term (49) satisfying

�i ≤ 1

α1/σ

(
C ′‖x∗ − xμ,α‖ + c

)
, (51)

where C ′ is a positive constant, independent of xμ,α, μ, α and c ∈ IR++ is undetermined.
Case 1: (xμ,α)i ∈ Kni . Under this case, we see that [(xμ,α)i ]− = 0 and [(xμ,α)i ]+ = (xμ,α)i .
Using (49) and Cauchy-Schwarz inequality, we have

�i = α
(
(xμ,α)i − x∗

i

)T
�−

i (μ, (xμ,α)i )
σ

≤ α‖(xμ,α)i − x∗
i ‖ · ‖�−

i (μ, (xμ,α)i )
σ ‖

≤ α‖xμ,α − x∗‖ · ‖�−
i (μ, (xμ,α)i )

σ ‖
= α‖x∗ − xμ,α‖‖φ−(μ, λ1)

σ u(1) + φ−(μ, λ2)
σ u(2)‖

≤ ‖x∗ − xμ,α‖√2αφ−(μ, 0)σ ,

(52)

where the second inequality holds by the fact that the norm of the piece component is less
than that of the whole vector, the second equality holds by the definition as (18) and the last
inequality holds by Proposition 2.1, the triangle inequality, the nonnegativity of φ−(μ, 0)σ

from (10) and the monotone decreasing of φ−(μ, t) about t since 0 ≤ λ1 ≤ λ2 in this case.
By Lemma 3.1, we know limμ→0+ φ−(μ, 0)σ = 0. Therefore, for any α ≥ 1 and σ ∈ (0, 1],
there exists a positive real number ν, such that

√
2αφ−(μ, 0)σ ≤ 1

α1/σ for all μ ∈ (0, ν].
Thus, we achieve the conclusion (51) by setting C ′ = 1.
Case 2: (xμ,α)i ∈ −Kni . Under this case, it is clear that [(xμ,α)i ]+ = 0, and we have
(x∗

i )T�−
i (μ, (xμ,α)i )

σ ≥ 0 since �−
i (μ, (xμ,α)i )

σ ∈ Kni and x∗
i ∈ Kni . Thus, it follows

from (49) and Cauchy-Schwarz inequality that

�i ≤ [(xμ,α)i ]T−
(
A(x∗ − xμ,α)

)
i≤ ‖[(xμ,α)i ]−‖ · ‖ (A(x∗ − xμ,α)

)
i ‖≤ ‖[(xμ,α)i ]−‖ · ‖A(x∗ − xμ,α)‖

≤ Ci
α1/σ ‖A‖‖x∗ − xμ,α‖,

(53)

where the last inequality holds by (37) and norm compatibility. Thus, we also achieve the
conclusion (51) by setting C ′ = Ci‖A‖.
Case 3: (xμ,α)i /∈ Kni ∪ −Kni . Under this case, λ1 < 0 < λ2 and [(xμ,α)i ]+ = λ2u(2).
Because �−

i (μ, (xμ,α)i )
σ ∈ Kni and x∗

i ∈ Kni , we have (x∗
i )T�−

i (μ, (xμ,α)i )
σ ≥ 0 and

([(xμ,α)i ]+ − x∗
i

)T
�−

i (μ, (xμ,α)i )
σ ≤ [(xμ,α)i ]T+�−

i (μ, (xμ,α)i )
σ .
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Furthermore, from the definition of �−
i (μ, (xμ,α)i )

σ stated as in (18), Proposition 2.1 and
Proposition 4.1, we also have

[(xμ,α)i ]T+�−
i (μ, (xμ,α)i )

σ = (λ2u(2))T
(
φ−(μ, λ1)

σ u(1) + φ−(μ, λ2)
σ u(2)

)

= 1
2λ2φ

−(μ, λ2)
σ ≤ Mφ−(μ, 0)σ

by the monotone decreasing of φ−(μ, t) about t since λ2 > 0 in this case.
According to limμ→0+ φ−(μ, 0)σ = 0, there exists a positive real number ν, such that

α[(xμ,α)i ]T+�−
i (μ, (xμ,α)i )

σ ≤ αMφ−(μ, 0)σ ≤ c

α1/σ (54)

for all μ ∈ (0, ν], where c ∈ IR++ is undetermined. It follows from (49),(53) and (54) that

�i ≤ [(xμ,α)i ]T−
(
A(x∗ − xμ,α)

)
i + α[(xμ,α)i ]T+�−

i (μ, (xμ,α)i )
σ

≤ Ci
α1/σ ‖A‖‖x∗ − xμ,α‖ + c

α1/σ = 1
α1/σ (Ci‖A‖‖x∗ − xμ,α‖ + c).

By setting C ′ = Ci‖A‖, we also achieve the conclusion (51).
From above three cases, we all conclude the conclusion (51), together with (50) and

Assumption 4.1, there exists a constants a0 > 0, such that

a0‖x∗ − xμ,α‖2 ≤ (x∗ − xμ,α)T A(x∗ − xμ,α) ≤
r∑

i=1

�i ≤ r

α1/σ

(
C ′‖x∗ − xμ,α‖ + c

)
.

Thus, we obtain a quadratic inequality with respect to ‖x∗ − xμ,α‖, i.e.,

a0‖x∗ − xμ,α‖2 − rC ′

α1/σ ‖x∗ − xμ,α‖ − rc

α1/σ ≤ 0.

According to the solution formula of quadratic inequality, we know

‖x∗ − xμ,α‖ ≤ 1

2a0

⎛

⎝ rC ′

α1/σ +
√(

rC ′
α1/σ

)2

+ 4a0
rc

α1/σ

⎞

⎠ .

Especially, by taking c = r(C ′)2
4a0α1/σ , yields ‖x∗ − xμ,α‖ ≤ 1+√

2
2a0

rC ′
α1/σ , which is the conclusion

(39) by setting C = 1+√
2

2a0
rC ′. The proof is complete. ��

In light of Theorem 4.1, to deal with the SOCLCP (1) with any b ∈ IRn and A ∈ IRn×n

satisfying Assumption 4.1, we only solve the LOPEs (27) as α → +∞ and μ → 0+.
However, in order to implementing the algorithm, it is necessary to balance α → +∞ and
μ → 0+. The key part is on how to evaluate the sufficiently small μ in Theorem 4.1, in
which there exists a positive real number ν such that the conclusion holds for all μ ∈ (0, ν].
The exact value of ν is unknown, on the other hand, it is not necessary to know the exact
value of ν because it is only a bound of μ. Therefore, in the implementations, it would be
better to provide a simple criterion to evaluate whether μ is sufficiently small. To this end,
we discuss from the system of linear equations Ax − b = 0, which has a unique solution
A−1b according to Assumption 4.1. If A−1b ∈ K, then of course this solution is the solution
to SOCLCP (1). Hence, we only need to focus on the case where the system Ax − b = 0 has
no solution in K.

Proposition 4.3 Consider the SOCLCP (1) with Ax − b = 0 having no solution in K, and
the LOPEs (27) with α ≥ 1, σ ∈ (0, 1], μ ∈ (0, 1). If parameter μ is sufficiently small, then
the numerical solution xμ,α /∈ K.

123



686 Journal of Global Optimization (2022) 83:671–697

Proof For the SOCLCP (1) with Ax − b = 0 having no solution in K, there is at least one
i ∈ {1, . . . , r}, such that (Ax − b)i 
= 0

for any x ∈ K. Therefore, we obtain ‖Ax − b‖ > 0 for all x ∈ K and there exists a
positive number δ, such that

min
x∈K ‖Ax − b‖ = δ > 0 (55)

since K is a closed convex set and g(x) = Ax − b is a continuous affine function. For
LOPEs (27) with α ≥ 1, σ ∈ (0, 1] and sufficiently small parameter μ, we will claim that
the numerical solution must satisfy xμ,α /∈ K. Suppose not, i.e., xμ,α ∈ K, we have

Axμ,α − b = α�−(μ, xμ,α)σ = α
(
�−

1 (μ, (xμ,α)1)
σ , . . . , �−

r (μ, (xμ,α)r )
σ
)

from LOPEs (27). For any �−
i (μ, (xμ,α)i )

σ , using Proposition 2.1, triangle inequality, the
nonnegativity of φ−(μ, 0)σ and the monotone descending of φ−(μ, t), we have

‖�−
i (μ, (xμ,α)i )

σ ‖ = ‖φ−(μ, λ1)
σ u(1) + φ−(μ, λ2)

σ u(2)‖ ≤ √
2φ−(μ, 0)σ

since 0 ≤ λ1 ≤ λ2 from (xμ,α)i ∈ Kni . Accordingly, this gives

‖Axμ,α − b‖ = α‖�−(μ, xμ,α)σ ‖ ≤ α
√
2rφ−(μ, 0)σ .

For any α ≥ 1, σ ∈ (0, 1] and positive number δ in (55), due to limμ→0+ φ−(μ, 0)σ = 0
from Lemma 3.1, there exists a positive real number ν, such that α

√
2rφ−(μ, 0)σ < δ/2

for all μ ∈ (0, ν]. In other words, xμ,α ∈ K, but ‖Axμ,α − b‖ ≤ δ/2, which contradicts the
formula (55). This completes the proof. ��

As a result, from Proposition 4.3, in practical implementation, an approximate simple
criterion is developed to estimate the parameter μ as following, which will be applied to
Algorithm 5.1 in next section.

Remark 4.2 For the SOCLCP (1) with Ax − b = 0 having no solution in K, and the LOPEs
(27) with α ≥ 1, σ ∈ (0, 1], μ ∈ (0, 1). If xμ,α /∈ K, we regard parameter μ as sufficiently
small; otherwise, μ is not quite small yet, and we should take μ much smaller.

From LOPEs (27) and Lemma 3.2, we always have Axμ,α − b = α�−(μ, xμ,α)σ ∈ K.
Therefore, for the SOCLCP (3) with single SOCKn and A−1b /∈ Kn , if the exact solution x∗
and Ax∗ − b are in different boundary of Kn without origin, a more concise criterion will be
obtained, which is to treat the parameters as sufficiently small if xTμ,α(Axμ,α − b) ≤ 0 since
xμ,α and Axμ,α − b approximate x∗ and Ax∗ − b, respectively.

5 Algorithm and numerical experiments

In this section, an algorithm is constructed first for solving the SOCLCP (1), and some
numerical experiments are implemented. Then, we present the performance profiles of four
kinds specific smoothing approximations in (11)–(14). Finally,we consider the generalization
of two approximations (12) and (14), the performance profiles of the generalization are also
reported.
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5.1 Algorithmic construction and numerical experiments

According to Theorem 4.1 and the criterion in Proposition 4.3, Remark 4.2, we give the
algorithm as following.

Algorithm 5.1

Step 0 Given a vector b ∈ IRn , and a matrix A ∈ IRn×n satisfying Assumption 4.1

Step 1 If A−1b ∈ K, set x̃ = A−1b, go to step 5; else, go to step 2.
Step 2 Given the power parameter σ ∈ (0, 1], the penalty parameter α ≥ 1, the smoothing

parameter 0 < μ < 1, the error bound eps and the multiple parameter c1 > 1
and c2 < 1, select an initial point x (0) = (x (0)

1 , . . . , x (0)
r ) ∈ IRn1 × · · · × IRnr with

x (0)
i = (x (0)

i1 , x (0)
i2 ) ∈ IR × IRni−1 by taking x (0)

i2 
= 0 while x (0)
i1 ≤ 0, i = 1, . . . , r .

Step 3 For the parameters α,μ and the initial point x (0), solve the nonlinear equations

Ax − α�−(μ, x)σ = b. (56)

Suppose that xμ,α is the solution of (56) and let Tol = xTμ,α(Axμ,α − b).

Step 4 If |Tol| ≤ eps, set x̃ = xμ,α , go to step 5; else, let x (0) = xμ,α , α = c1α if
xμ,α /∈ K, and x (0) = xμ,α , μ = c2μ if xμ,α ∈ K, go to step 3.

Step 5 The vector x̃ is the approximate optimal solution of SOCLCP (1), stop.

We test some examples to show the efficiency of Algorithm 5.1. Especially, we start with
a simple SOCLCP (1) whose solution can be obtained by algebraic way.

Example 5.1 Consider the SOCLCP (1) on K2, where

A =
[
1 1
0 2

]
, b =

[
0
4

]
.

We consider the influence of parameter variation on numerical results. To see this, noting that
the exact solution of this problem is x∗ = (1, 1)T . We take an initial point x (0) = (0, 2)T and
consider the tendency of numerical results while parameters α,μ, σ change. In the following
tables, “Err" denotes ‖x̃− x∗‖, “Val" denotes x̃ T (Ax̃−b), where x̃ is the numerical solution.

We do the numerical experiment according to the following three steps:

• First, we take σ = 1/2, μ = 1e− 5 and some α = 50× 2i , i = 1, · · · , 6, the numerical
results are listed in Table 1;

• Second, we take σ = 1/2, α = 1000 and some μ = 1e− i, i = 2, · · · , 7, the numerical
results are listed in Table 2;

• Finally, we take μ = 1e − 5, α = 1000 and some σ = 1, 1/2, · · · , 1/6, the numerical
results are listed in Table 3, where “-" denotes the Jacobian matrix close to singular or
badly scaled.

From these tables, we can draw the following conclusions:

• From Table 1, we see that, the overall situation is that as α increases, the Err decreases,
but it is not true for φ−

3 and φ−
1 . For φ−

3 for example, by looking at the value of Val,
we can conclude that the penalty paremeter α = 200 is large enough under the existing
conditions. At this point, we won’t get better results by simply increasing the value of α.
The bottleneck here is the need for a smaller μ.

123



688 Journal of Global Optimization (2022) 83:671–697

Table 1 The numerical results for α change (σ = 1/2, μ = 1e−5)

α → 100 200 400 800 1600 3200

φ−
1 Err 0.001264 3.1682e−4 7.9820e−5 1.9566e−5 5.8716e−7 1.3108e−5

Val −0.003198 −8.0142e−4 −2.0193e−4 −4.9497e−5 1.4854e−6 3.3160e−5

φ−
2 Err 0.001264 3.1682e−4 7.9820e−5 2.0655e−5 5.4553e−6 9.9050e−7

Val −0.003198 −8.0142e−4 −2.0193e−4 −5.2252e−5 −1.3801e−5 −2.5058e−6

φ−
3 Err 0.001174 4.5673e−4 9.6690e−4 0.001991 0.003997 0.007999

Val −0.002490 6.1347e−4 0.002629 0.005618 0.011347 0.022814

φ−
4 Err 0.001268 3.2077e−4 8.3773e−5 2.4608e−5 9.4082e−6 4.9433e−6

Val −0.003208 −8.1142e−4 −2.1193e−4 −6.2252e−5 −2.3801e−5 −1.2506e−5

Table 2 The numerical results for μ change (σ = 1/2, α = 1000)

μ → 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7

φ−
1 Err 0.050637 0.003261 1.3748e−4 1.1602e−5 1.3242e−5 1.3242e−5

Val 0.130153 0.008257 3.4782e−4 −2.9352e−5 −3.3500e−5 −3.3500e−5

φ−
2 Err 0.003504 2.5302e−4 5.7373e−6 1.3242e−5 1.3242e−5 1.3242e−5

Val 0.008875 6.4015e−4 −1.4514e−5 −3.3500e−5 −3.3500e−5 −3.3500e−5

φ−
3 Err 2.934882 0.255396 0.025001 0.002494 2.4442e−4 2.2246e−5

Val 19.36984 0.890571 0.072549 0.007056 6.7396e−4 3.6514e−5

φ−
4 Err 4.4813e−4 1.4225e−4 4.5265e−5 1.7195e−5 1.3637e−5 1.3282e−5

Val −0.001134 −3.5984e−4 −1.1451e−4 −4.3500e−5 −3.4500e−5 −3.3600e−5

Table 3 The numerical results for σ change (μ = 1e–5, α = 1000)

σ → 1 1/2 1/3 1/4 1/5 1/6

φ−
1 Err – 1.1602e−5 3.8325e−5 8.1231e−5 1.3490e−4 –

Val – −2.9352e−5 9.6957e−5 2.0577e−4 3.7235e−4 –

φ−
2 Err 0.003159 1.3242e−5 2.4262e−6 3.5321e−6 3.6108e−6 3.8182e−6

Val −0.007984 −3.3500e−5 6.1378e−6 8.9355e−6 9.1346e−6 9.6594e−6

φ−
3 Err 0.003159 0.002494 – – – –

Val −0.007984 0.007056 – – – –

φ−
4 Err 0.003163 1.7195e−5 1.5267e−6 4.2077e−7 3.4207e−7 1.3464e−7

Val −0.007994 −4.3500e−5 −3.8622e−6 −1.0645e−6 −8.6539e−7 −3.4062e−7

• We see fromTable 2 that, the overall situation is that asμ decreases, the Err gets decrease,
but it is not true for φ−

2 and φ−
1 . For φ−

2 , by observing the value of Val, we can conclude
that the smoothing parameter μ = 1e− 4 is small enough under the existing conditions.
At this point, we will not obtain better results by simply decreasing the value of μ. What
we really need to improve is to increase the penalty parameter α.
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Table 4 The numerical results for different initial points

IP(x(0)) Val(φ−
1 ) Val(φ−

2 ) Val(φ−
3 ) Val(φ−

4 ) Val([t]−)

(1, 1, 1, 1, 1)T 5.9114e−7 1.8896e−7 4.7370e−7 5.1100e−7 7.3415e−7

(−1, · · · ,−1)T 5.9119e−7 1.8902e−7 4.5308e−7 5.1100e−7 7.3419e−7

(10, · · · , 10)T 5.9124e−7 1.8908e−7 3.3751e−7 5.1101e−7 7.3423e−7

(−10, · · · ,−10)T 5.9128e−7 1.8913e−7 4.3411e−7 5.1101e−7 7.3426e−7

(103, · · · , 103)T 5.9100e−7 1.8878e−7 3.6168e−7 5.1099e−7 7.3403e−7

(106, · · · , 106)T 5.9100e−7 1.8880e−7 4.4352e−7 5.1099e−7 7.3404e−7

• From Table 3, we also see that, the roughly situation is that as σ decreases, the Err gets
decreases, but φ−

3 , φ−
1 are less stable than φ−

2 , φ−
4 . In addition, we see that, with the

decreasing of σ , the minimum α that can satisfy the penalty is correspondingly smaller.

All these numerical results listed above coincide with Theorem 4.1. Note that if different
initial points are chosen, even far away from x∗, the similar numerical results can be obtained.
Yet, the points on IR− × {0}, cannot be taken as the initial point, since the denominator of
LOPEs (27) in calculation equals to zero in this case. Therefore, we choose x (0)

i2 
= 0 while

x (0)
i1 ≤ 0 for initial point x (0) in step 2 of Algorithm 5.1.
Now, we test more examples to evaluate the efficiency of Algorithm 5.1. We use discrete

Newton method to solve nonlinear equations for all examples. All numerical experiments are
performed under the MATLAB 2012a running on a PC with Inter(R) Core(TM) i5-2410M
CPU of 2.3GHz and RAM of 1GB.

The following two test examples are employed from [13], which will be solved by Algo-
rithm 5.1. In our tests, we employ eps=1e − 6 as the termination criterion. In the following
tables, IP(x (0)) denotes the initial points, Val denotes |x̃ T (Ax̃ −b)|, where x̃ is the numerical
solution.

Example 5.2 Consider the SOCLCP (1) on K5, where

A =

⎡

⎢⎢⎢⎢
⎣

15 −5 −1 4 −5
0 5 0 0 1

−1 −3 8 2 −3
2 −4 2 9 −4
0 −5 0 0 10

⎤

⎥⎥⎥⎥
⎦

, b =

⎡

⎢⎢⎢⎢
⎣

0
0
0
0
1

⎤

⎥⎥⎥⎥
⎦

.

In this example, the matrix A is positive definite, but not symmetric, i.e., Assumption 4.1
holds.The exact solution x∗ ≈ (0.049185,−0.0030997, 0.0096024, 0.0031883, 0.048033)T

[13]. For different initial points, by taking σ = 1/2, c1 = 10, c2 = 0.1, initial α = 100 and
proper initial μ(1e − 6 for φ−

1 and 1e − 5 for φ−
i , i = 2, 3, 4), the test results are listed in

Table 4, in which, the numerical results based on (4) are also listed.
From Table 4, we see that Algorithm 5.1 is insensitive for initial point in this example.

Example 5.3 Consider the SOCLCP (1) on K3, where

A =
⎡

⎣
21 −9 18
−9 4 −7
18 −7 19

⎤

⎦ , b =
⎡

⎣
−3
−7
−1

⎤

⎦ .
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Table 5 The numerical results for different initial points

IP(x(0)) Val(φ−
1 ) Val(φ−

2 ) Val(φ−
3 ) Val(φ−

4 ) Val([t]−)

(1, 1, 1)T 2.1794e−7 3.6749e−7 8.4605e−7 3.9977e−7 3.6749e−7

(−1, −1,−1)T 2.1834e−7 3.6597e−7 8.4941e−7 4.0048e−7 3.6597e−7

(10, 10, 10)T 2.2027e−7 3.6591e−7 8.4419e−7 4.0214e−7 3.6591e−7

(−10, −10,−10)T 2.1966e−7 3.6655e−7 8.4676e−7 4.0082e−7 3.6654e−7

(103, 103, 103)T 2.1843e−7 3.6598e−7 8.5017e−7 3.9908e−7 3.6598e−7

(106, 106, 106)T 2.1922e−7 3.6355e−7 8.4671e−7 3.9940e−7 3.6355e−7

Table 6 The numerical results for different initial points

IP(x(0)) Val(φ−
1 ) Val(φ−

2 ) Val(φ−
3 ) Val(φ−

4 ) Val([t]−)

(1, 1, 1, 1, 1)T 2.1450e−7 9.3391e−8 3.3642e−7 4.8759e−7 1.7123e−7

(−1, · · · ,−1)T – 9.3326e−8 3.6425e−7 4.8759e−7 1.6881e−7

(10, · · · , 10)T 2.1475e−7 9.3362e−8 4.1324e−7 4.8759e−7 1.7106e−7

(−10, · · · ,−10)T – 9.3362e−8 4.4575e−7 4.8759e−7 1.6955e−7

(103, · · · , 103)T 2.1475e−7 9.3361e−8 3.3902e−7 4.8759e−7 1.7101e−7

(106, · · · , 106)T – 9.3358e−8 4.5595e−7 4.8759e−7 1.7156e−7

In this example, the symmetric matrix A is positive semidefinite, but not positive definite.
As indicated in [13], it has one solution x∗ ≈ (−0.183606, 0.154346, 0.099440)T . For
different initial points, we test this problem by taking σ = 1/2, c1 = 10, c2 = 0.1, initial
α = 1000 and proper initial μ (1e − 7 for φ−

1 and 1e − 6 for φ−
i , i = 2, 3, 4),

the results are listed in Table 5. The numerical results based on (4) are also listed in this
table. This example indicates that, the Algorithm 5.1 is also applicable to those SOCLCPs,
in which the matrix A is only positive semidefinite.

Examples 5.2 and 5.3 are two examples of SOCLCP with a single SOC K = Kn . Next,
we construct two examples of the SOCLCP (1) with multiple SOCs.

Example 5.4 Consider the SOCLCP (1) on K3 × K2, where A is shown as in Example 5.2,
and b = (3, 0, 2, 2, 5)T .

The Assumption 4.1 also holds in this example. By computation, the exact solution is
about x∗ ≈ (0.255103,−0.053464, 0.249438, 0.367316, 0.367316)T . For different initial
points, the test results are listed in Table 6 by taking σ = 1/2, c1 = 10, c2 = 0.1, initial
α = 100 and proper initial μ (1e − 7 for φ−

1 , 1e − 5 for φ−
i , i = 2, 3, 4).

Example 5.5 Consider the SOCLCP (1) on K3 × K4, where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

3.9475 1.1370 −0.3462 −0.1258 −1.2034 −0.4979 −1.0337
1.1370 3.5593 −1.2955 −0.4391 −0.3009 −0.6016 −0.0404

−0.3462 −1.2955 5.0908 −1.1187 −0.6652 −1.5541 −1.0419
−0.1258 −0.4391 −1.1187 3.5778 −0.4033 −0.1402 −0.1991
−1.2034 −0.3009 −0.6652 −0.4033 2.9766 0.3725 0.0995
−0.4979 −0.6016 −1.5541 −0.1402 0.3725 4.8431 −0.5048
−1.0337 −0.0404 −1.0419 −0.1991 0.0995 −0.5048 4.0049

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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and b = (2,−1, 3,−2, 4,−1, 3)T .

The Assumption 4.1 also holds since A is symmetry positive definite. The exact solution is
about x∗ ≈ (1.309502, 0.079978, 1.307057, 1.373952, 1.081021, 0.235470, 0.814673)T .
For different initial points, we can obtain similar results to Example 5.4 by taking proper
parameters, which we omit here.

In summary, according to the numerical experiments, we observe the following facts
regarding parameter selection.

• The selection of initialμ. In general, for the Algorithm 5.1 to be successful and effective,
the initialμ for φ−

3 and φ−
1 must be taken much smaller than the initialμ for φ−

2 , whereas
any value of μ for φ−

4 is applicable.
• The selection of initial α. In practical situation, the penalty parameter α increases gradu-

ally by iteration. If we choose the initial α too large, the Algorithm 5.1 may fail because
its corresponding matrix may be singular.

• The selection of power σ . Theoretically, the smaller the parameter σ is, the faster the
convergence of Algorithm 5.1 will be. Nonetheless, in the implementations, the param-
eter σ cannot be taken too small, otherwise, the matrix singularity will likely occur.
In most cases, it is appropriate to take σ ≥ 0.2, and we usually use σ = 1/2 in our
implementations.

• The selection of multiple parameter c1 and c2. The parameter c1 represents themagnitude
of increase of α, whereas the parameter c2 represents the magnitude of decrease of μ.
The closer the distance between c1, c2 and 1, the higher probability of success for the
Algorithm 5.1 will be. For example, by keeping other parameters the same, and we have
tried to implement two cases c1 = 10, c2 = 0.1 or c1 = 2, c2 = 0.5 which show that the
numerical experiment success rate of the second case is higher than that of the first case.
If both cases are successful, then the second case will take more time than the first case.

5.2 Performance profile of different�−(�, t)

In order to compare the performance of functions φ−
i (μ, t), i = 1, 2, 3, 4 and [t]−, we

consider the performance profile which is introduced in [16] as a means. Assume that there
are ns solvers and n p test problems from the test set P . We are interested in using computing
time or iteration number as a performancemeasure. In the following, we take computing time
as a performance measure, the idea also applicable to iteration number. For each problem p
and solver s, we define

f p,s = computing time required to solve problem p by solver s.

We employ the performance ratio

rp,s = f p,s
min{ f p,s |s ∈ S} ,

where S is the solver set. We assume that a parameter rM , such that rM ≥ rp,s for all p, s
is chosen, and rp,s = rM if and only if solver s does not solve problem p. The choice of rM
does not affect the performance evaluation. In order to obtain an overall assessment for each
solver, we define

ρs(τ ) = 1

n p
size{p ∈ P|rp,s ≤ τ }.
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Fig. 4 Performance profile of φ−
i (μ, t), i = 1, 2, 3, 4 and [t]−

The function ρs(τ ) is the cumulative performance ratio, which is called the performance
profile. In the performance profile, we use functions φ−

i (μ, t), i = 1, 2, 3, 4 in Algorithm
5.1 and [t]− in [21, Algorithm 4.1] as five solvers, and take randomly generated 40 SOCLCPs
with single SOC, in which the matrices are symmetric positive definite. All these problems
have an average distribution of dimensions from 3 to 10. The performance plot based on
computing time is depicted in Fig. 4. By overall looking, from Fig. 4, we see that the function
φ−
2 (μ, t) has the best performance, then followed by [t]− and φ−

4 (μ, t). Note that the time
efficiency of φ−

1 (μ, t) is the worst. In other words, in view of computing time, there has

φ−
2 (μ, t) > [t]− > φ−

4 (μ, t) > φ−
3 (μ, t) > φ−

1 (μ, t), (57)

where “>"means “better performance". Ifwe concern the iteration number, although iteration
numbers are pretty much the same, there are about 20% problems failed for φ−

1 (μ, t). As
a result, the similar results (57) are obtained. In summary, for the SOCLCPs (3), when we
use Algorithm 5.1 by applying functions φ−

i (μ, t), i = 1, 2, 3, 4, no matter the iteration
number or the computing time is taken into account, the function φ−

2 (μ, t) is the best choice.
Meanwhile, φ−

2 (μ, t) in Algorithm 5.1 has better performance than [t]− in [21, Algorithm
4.1].

5.3 Generalization of�−
2 (�, t) and�−

4 (�, t)

Among the given four typical smoothing functions (11)–(14) for [t]−, from last subsection,
the function φ−

2 (μ, t) has the best performance for solving SOCLCPs (1) by using (27),
then followed by φ−

4 (μ, t). The functions φ−
2 (μ, t) and φ−

4 (μ, t) both smoothize the non-
differentiable point of [t]− by a quadratic function, which can be further generalized by a p-
power function [9,31]. Indeed, for φ−

2 (μ, t) in (12) and φ−
4 (μ, t) in (14), we can respectively

consider a family of new smoothing functions, which include the function φ−
2 (μ, t) and

φ−
4 (μ, t) as a special case, for solving the SOCLCP (1). More specifically, we consider the

family of smoothing functions as below:

ψ
p
2 (μ, t) =

⎧
⎪⎨

⎪⎩

−t if t ≤ −μ
p−1 ,

μ
p−1

[
(p−1)(−t+μ)

pμ

]p
if −μ

p−1 < t < μ,

0 if t ≥ μ,

(58)
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Fig. 5 Graphs of ψ
p
2 (μ, t) and ψ

p
4 (μ, t) with different μ and p

and

ψ
p
4 (μ, t) =

⎧
⎪⎨

⎪⎩

−t − u if t ≤ −pμ
p−1 ,

μ
p−1

[
(p−1)(−t)

pμ

]p
if −pμ

p−1 < t < 0,

0 if t ≥ 0,

(59)

where μ > 0 and p ≥ 2. Note that when p = 2, ψ p
2 (

μ
2 , t) reduces to the smoothing function

φ−
2 (μ, t) in (12) andψ

p
4 (

μ
2 , t) reduces to the smoothing functionφ−

4 (μ, t) in (14). The graphs
of ψ

p
2 (μ, t) and ψ

p
4 (μ, t) with different values of p and various μ are depicted as in Fig. 5.

Moreover, the graphs of lower order power (ψ
p
2 (μ, t))σ and (ψ

p
4 (μ, t))σ corresponding to

(27) are depicted in Fig. 6.
We see from (58) and (59) that, for a fixed p ≥ 2, as μ goes down to zero, ψ p

2 (μ, t) and
ψ

p
4 (μ, t) all tend to [t]−. At the same time, for a fixed μ, ψ p

2 (μ, t) also tends to [t]− as p
goes to positive infinite, which shows that the increasing of p and the decreasing of μ both
play a positive role for ψ

p
2 (μ, t). However, the increasing of p does not play a positive role

for ψ
p
4 (μ, t), since for a fixed μ and a negative small t , the distance of ψ

p
4 (μ, t) and [t]−

equals the constant μ. All of these are reflected in Figs. 5 and 6.
Next, we present the performance profile for various p. We take randomly generated 40

SOCLCPs as in Sect. 5.2, and replace φ−(μ, t) in (27) by ψ
p
2 (μ, t), p = 2, 3, 5, 10 and

ψ
p
4 (μ, t), p = 2, 3, 5, 10, respectively, in Algorithm 5.1 as four solvers. The performance

profiles based on computing time are presented in Figs. 7 and 8, and the performance based
on iteration number are similar.
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Fig. 6 Graphs of (ψ
p
2 (μ, t))σ and (ψ

p
4 (μ, t))σ with different p, μ and σ = 1/2

Fig. 7 Performance profile of ψ
p
2 (μ, t), p = 2, 3, 5, 10

We conclude fromFig. 7 that, in general, the greater value of p is, the better performance of
ψ

p
2 (μ, t)will be, the visibility decreases with increasing of p. But, this phenomenon is totally

different forψ p
4 (μ, t). As we see from Fig. 8, the greater value of p is, the worse performance

of ψ
p
4 (μ, t) will be. In summary, for the SOCLCPs (1), when we replace φ−(μ, t) in (27) by

ψ
p
i (μ, t), i = 2, 4 in (58) and (59), the appropriate greater value of p could be better choice

for ψ
p
2 (μ, t), whereas p = 2 is the best choice for ψ

p
4 (μ, t).
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Fig. 8 Performance profile of ψ
p
4 (μ, t), p = 2, 3, 5, 10

6 Conclusions

Based on the asymptotic approximate LOPEs (27), we propose an approximate lower order
penalty approach for solving SOCLCPs (1). The main result is Theorem 4.1, which shows
that, under Assumption 4.1, the solution sequence of asymptotic approximate LOPEs (27)
converges to the solution of SOCLCP (1) at an exponential rate. Four specific approximate
LOPEs (27) are considered, corresponding toφ−

i (μ, t), i = 1, 2, 3, 4.Numerical experiments
indicate that, the Algorithm 5.1 with φ−

2 (μ, t) has the best performance, then followed by
φ−
4 (μ, t), and φ−

1 (μ, t) has the worst performance. Meanwhile, φ−
2 (μ, t) in Algorithm 5.1

has better performance than [t]− in [21, Algorithm 4.1] for some certain problems.
By generalizing quadratic function to a p-power (p ≥ 2) function, we also investigate

more general functions, ψ p
2 (μ, t) in (58) and ψ

p
4 (μ, t) in (59), which are extensions of the

functions φ−
2 (μ, t) and φ−

4 (μ, t) respectively. For ψ
p
2 (μ, t), the appropriate greater p is the

better choice, meanwhile, for ψ
p
4 (μ, t), the best choice is p = 2.

To sum up, the study of this paper not only build up theoretical bricks for the proposed
approach, but also suggest possible good choices of smoothing functions that work along
with the algorithm. Further work includes the consideration of more extensive problems,
such as second order cone nonlinear complementarity problem, and weaker assumptions etc.
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