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Abstract. A novel approach for solving the general absolute value equa-
tion Ax + B|x| = c where A,B ∈ IRm×n and c ∈ IRm is presented. We
reformulate the equation as a nonconvex feasibility problem which we
solve via the method of alternating projections (MAP). The fixed points
set of the alternating projections map is characterized under nondegen-
eracy conditions on A and B. Furthermore, we prove local linear con-
vergence of the algorithm. Unlike most of the existing approaches in the
literature, the algorithm presented here is capable of handling problems
with m ̸= n, both theoretically and numerically.
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1. Introduction

In this paper, we consider the absolute value equation (AVE) given by

Ax+B|x| = c (1.1)

where A ∈ IRm×n, B ∈ IRm×n, c ∈ IRm and |x| denotes the componentwise
absolute value of x ∈ IRn. Equation (1.1) with m = n was first introduced
by Rohn in [32] as a generalization of the equation

Ax− |x| = c, (1.2)

which has been the subject of numerous research works for almost two decades;
see [8, 12, 18, 21, 25, 27, 28, 29, 33, 40]. Interest in equation (1.2) is pri-
marily motivated by its equivalence with the linear complementarity prob-
lem (LCP), which encompasses several mathematical programming prob-
lems [10, 11, 26, 29, 30]. In addition, absolute value equations of the form
(1.2) are also intimately related with mixed integer programming [30] and
interval linear equations [31]. On the other hand, the (possibly non-square)
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absolute value equation (1.1) was first investigated by Mangasarian in [26] in
order to provide a more general framework for studying the traditional AVE
(1.2), which is our motivation for considering the general case (1.1).

As shown in [26, Proposition 2], we note that solving (1.1) is an NP-hard
problem. Meanwhile, conditions for existence, non-existence and uniqueness
of solutions of the AVE are reported in [21, 29, 33, 39]. On the numerical side,
there are already many algorithms aimed at solving the special case (1.2).
These algorithms can be roughly classified into four categories:

(a) Newton methods. Most of the algorithms for solving AVE in the liter-
ature are based on modifications of the Newton method. For instance,
a semismooth Newton method is proposed in [27] to directly handle
the nonsmooth equation (1.1) using the limiting subdifferential of |x|.
Variants of the semismooth Newton method were also proposed, which
include the inexact semismooth Newton method [12] and the general-
ized Traub’s method [18]. Another approach followed by several works
involves replacing the absolute value function by its smooth approxima-
tion, which then permits the use of the classical Newton method. This
technique, known as the smoothing Newton method, was employed in
several works such as in [8, 34]. A combination of both the semismooth
and smoothing Newton method is also described in [40].

(b) Picard iteration methods. The Newton methods described above involve
solving (exactly or approximately) linear systems of equations with dif-
ferent coefficient matrices at each iteration, which may be computa-
tionally expensive. On the other hand, in the Picard iteration method
proposed in [33], a linear system with a fixed coefficient matrix A is
solved in each iteration (see also equation (4.3)), and thus may be more
efficient than Newton methods. However, this approach is limited to
the case when A is invertible. A variant of this algorithm, known as
the Picard-HSS iteration, is proposed in [35] for handling the case that
A is non-Hermitian positive definite. The Douglas-Rachford splitting
method recently proposed in [9] may also be viewed as an extension of
the Picard iterations (4.3).

(c) Matrix splitting iteration method. Under this category are two algo-
rithms, namely the SOR (successive over-relaxation)-like iteration [23]
and the Gauss-Seidel iteration method [15]. We note the observation
that the Picard iteration method [33] is a special case of the SOR-like
iteration method, although the latter is derived from a matrix splitting
approach.

(d) Concave minimization approach. Mangasarian pioneered this approach
by reformulating the AVE as a concave minimization problem and then
using the successive linearization algorithm to solve the resulting re-
formulated problem [25, 28]. In another recent work [1], the AVE is
reformulated as a complementarity problem, which was smoothly ap-
proximated by a concave minimization problem.
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Meanwhile, to the best of our knowledge, the only method which can handle
AVE (1.1) when B ̸= −In andm ̸= n is the successive linearization algorithm
via concave minimization proposed in [26].

1.1. Our approach

Due to limited work on the general AVE, we propose a simple approach that
can solve (1.1) which, like [26], does not require B = −In or m = n. With its
generality, our proposed algorithm can handle as well the conventional AVE
(1.2), and in turn useful for mathematical programming problems that can
be reformulated as (1.2). Moreover, for the traditional case when B = −In
and m = n, our new approach does not fall in any of the four categories
(a)-(d) described above.

We reformulate the AVE as a feasibility problem and then use the
method of alternating projections (MAP) to solve the resulting problem.
By introducing an auxiliary variable y ∈ IRn, we have that x ∈ IRn solves
(1.1) if and only if the pair (x, y) ∈ IRn × IRn solves

Ax+By = c and y = |x|.

The above system of equations suggests the reformulation of (1.1) as a fea-
sibility problem given by

find (x, y) ∈ S1 ∩ S2 ⊆ IRn × IRn (1.3)

where the constraint sets, S1 and S2, are given by

S1 := {(x, y) ∈ IRn × IRn : Ax+By = c} and
S2 := {(x, y) ∈ IRn × IRn : y = |x|}. (1.4)

Observe that S1 is an affine set, and is thus convex. On the other hand, S2

is a nonconvex set but is expressible as a finite union of convex sets.
A simple algorithm to solve (1.3) is the method of alternating projections

(MAP): Given an initial point z0 = (x0, y0) ∈ IRn × IRn, MAP generates a
sequence of iterates according to the rule:

zk+1 = (xk+1, yk+1) ∈ (PS1 ◦ PS2)(z
k) ∀k ∈ N, (1.5)

where PS is the possibly multivalued metric projector onto the set S given
by

PS(z) := {s ∈ S : ∥s− z∥ ≤ ∥t− z∥ ∀t ∈ S} .
When S is nonempty and closed, the image of PS at each point is nonempty. If
in addition, S is convex, the function PS is single-valued everywhere. When-
ever PS(z) is single-valued, say PS(z) = {s}, we simply write s = PS(z).

1.2. Contributions

Our primary contribution includes the proposal of a new algorithm, namely
MAP (1.5), for solving the general absolute value equation (1.1). The non-
convexity of the set S2 complicates the convergence analysis of the proposed
algorithm. Nonetheless, we outline our important theoretical contributions
as follows.
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(a) A significant portion of our analyses involve the characterization of fixed
points of the alternating projections mapping PS1 ◦PS2 , that is, the set

Fix(PS1 ◦ PS2) = {z ∈ IRn × IRn : z ∈ (PS1 ◦ PS2)(z)}, (1.6)

which necessarily contains S1 ∩ S2, but not conversely. Hence, if a se-
quence generated by MAP (1.5) is convergent, then its limit, which
belongs to Fix(PS1

◦PS2
), need only be a candidate solution to the fea-

sibility problem (1.3). We determine what conditions on A and B are
sufficient to guarantee that a fixed point of PS1 ◦ PS2 is indeed a point
in S1 ∩ S2 (see Theorems 2.7, 2.13, 2.17 and 2.19).

(b) We establish in Theorem 3.1 the local convergence of the algorithm (1.5)
using the theory developed by Dao and Tam (2019) in [14], which uses
ideas originally developed in [6, 38]. We also present a new complemen-
tarity function in Section 3.2 which we use to provide an alternative
convergence analysis of the MAP iterates. Local linear convergence of
MAP (1.5) to a point in S1∩S2 is proved in Theorems 3.17 and 3.19 un-
der the same conditions used to characterize the fixed points of PS1

◦PS2
.

(c) Despite the difficulty of proving the global convergence of (1.5) due to
the nonconvexity of S2, we prove in Proposition 3.16 a weaker result
implying the impossibility of the iterates to be trapped in some par-
ticular region not containing a point in S1 ∩ S2. Moreover, by utilizing
the convergence theory of Attouch, Bolte and Svaiter (2013) for semi-
algebraic and tame problems [4], we prove in Theorem 3.20 the global
convergence to stationary points of a relaxed version of the iterations
(1.5) given by

wk+1 ∈ (1− γ)PC2
(wk) + γ(PC1

◦ PC2
)(wk), γ ∈ (0, 1). (1.7)

That is, we take the convex combination of the iterates (1.5) with the
mapping PC2

. Although MAP iterations (1.5) are not covered by the
above relaxation, we note that the former is the limiting case of (1.7)
when γ = 1.

On the other hand, the numerical contributions of our work include the
superior performance of our proposed algorithm MAP in solving randomly
generated AVEs of the form (1.2) as compared with other methods from the
four categories (a)-(d) of algorithms described above. We also derive from
the MAP iterations a related algorithm called MAP-LS, which can serve as
an alternative method for instances when a given AVE is difficult to solve
by MAP. For the general AVE (1.1), we illustrate the dominant performance
of MAP over the successive linearization algorithm in [26], which is the only
algorithm we can compare our method with. Hence, our proposed algorithms
have several merits from a numerical perspective, and are indeed an important
contribution to the growing literature of AVE.

1.3. Outline

The structure of this paper is as follows: In Section 2, we characterize the
fixed point sets of the alternating projections mapping. Next, we present the



Alternating projections for the general absolute value equation 5

convergence analysis of the algorithms in Section 3. Finally, we illustrate the
applicability of our approach through numerical experiments in Section 4.

2. Fixed points of the alternating projections map

This section is devoted to characterizing the set of fixed points of the alternat-
ing projections map. More precisely, we provide conditions on the matrices
A and B which will allow us to determine which fixed points of PS1

◦ PS2

belong to S1 ∩ S2.

2.1. Change of variables

Instead of directly dealing with the sets S1 and S2 given by (1.4), we consider
a change of variables which will reveal the close connection of the absolute
value equation (1.1) and complementarity. More precisely, we obtain a feasi-
bility problem equivalent to (1.3) involving two transformed sets C1 and C2,
where C1 is an affine set (see (2.3)) and C2 is a complementarity set (see
(2.4)). As we shall see in Section 2.4, such a change of variables will also help
in our goal of characterizing fixed points in the case that m = n. Moreover,
the relationship with the linear complementarity problem will also become
more apparent with such a transformation (see Remark 2.18).

In general, we may consider any linear transformation z = Rw where
z = (x, y), w = (u, v) and R ∈ IR2n×2n is a unitary matrix. Letting R =[
R1 R2

R3 R4

]
with Ri ∈ IRn×n, we see that z ∈ Si if and only if w ∈ Ci for

i = 1, 2 where

C1 := {w = (u, v) ∈ IRn × IRn :
[
AR1 +BR3 AR2 +BR4

]
w = c},

and

C2 := {w = (u, v) ∈ IRn × IRn : |R1u+R2v| = R3u+R4v}.
With these, AVE (1.1) is also equivalent to the feasibility problem

find w = (u, v) ∈ C1 ∩ C2. (FP)

Accordingly, we consider the MAP iterates given by

wk+1 ∈ (PC1 ◦ PC2)(w
k). (MAP)

Since we have chosen R to be a unitary matrix, it follows that for all z =
(x, y) ∈ IRn × IRn,

PSi
(z) = RPCi

(RTz), i = 1, 2.

Consequently,

(PS1 ◦ PS2)(z) = R
(
(PC1 ◦ PC2)(R

Tz)
)

(2.1)

Thus, if z0 is the initial point for the original MAP iterates (1.5) and we
set w0 = RTz0 for the iterations (MAP), then zk+1 = Rwk+1 for all k ≥ 0.
Moreover, we also have from (2.1) that

Fix(PS1 ◦ PS2) = {Rw : w ∈ Fix(PC1 ◦ PC2)} = RFix(PC1 ◦ PC2). (2.2)
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In the sequel, all our analyses and results are based on the constraint

sets induced by R = 1√
2

[
In −In
In In

]
. Defining

T :=
[
A+B −A+B

]
∈ IRm×2n, (T)

it can be verified that C1 is given by

C1 = {w ∈ IRn × IRn : Tw =
√
2c}. (2.3)

On the other hand, (u, v) ∈ C2 if and only if |u− v| = u+ v. Using the fact
that t + |t| = 2t+ where t+ := max(0, t) (with the maximum understood in
the pointwise sense), we see that |u−v| = u+v if and only if u−(u−v)+ = 0.
Then, C2 reduces to

C2 = {w = (u, v) ∈ IRn × IRn : u ≥ 0, v ≥ 0, and ⟨u, v⟩ = 0}. (2.4)

It follows that if x solves (1.1), then (u, v) with u = 1√
2
x+ and v = 1√

2
(−x)+

solves the feasibility problem (FP) with C1 and C2 given by (2.3) and (2.4),
respectively. Conversely, if (u, v) solves (FP), then x = 1√

2
(u− v) solves the

AVE (1.1).

2.2. Projection formulas

Important for our subsequent analysis and numerical simulations are the
exact formulas for the projections involved in the iterations (MAP). The
projection onto the affine set C1 is well-known, which we recall in the following
proposition.

Proposition 2.1. [5, Lemma 4.1] Suppose that c ∈ IRm is in the range of T
given by (T). Then for any w ∈ IRn, we have

PC1
(w) = w − T †(Tw −

√
2c),

where T † is the Moore-Penrose inverse of T .

While PC1
is a single-valued operator, the projection onto C2 is not due

to the nonconvexity of C2.

Proposition 2.2. Let w = (u, v) ∈ IRn × IRn. Then z ∈ PC2
(w) if and only if

for each i = 1, . . . , n,

(zi, zn+i) ∈


{(0, (vi)+)} ui < vi

{((ui)+, 0)} ui > vi

{(0, (vi)+), ((ui)+, 0)} ui = vi

. (2.5)

In particular, PC2
is multivalued on {(u, v) : ∃i such that ui = vi > 0}.

Proof. Fix w = (u, v) ∈ IRn × IRn. To prove the result, we need to solve the
minimization problem

min
w̄∈C2

∥w̄ − w∥2.
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Letting w̄ = (ū, v̄) ∈ IRn × IRn, we have

∥w̄ − w∥2 =

n∑
i=1

(ūi − ui)
2 +

n∑
i=1

(v̄i − vi)
2

=

n∑
i=1

∥(ūi − ui, v̄i − vi)∥2.

As the last expression is separable, we only need to consider the projection
of an arbitrary point (s, t) ∈ IR2 onto the set

M := {(a, b) : a ≥ 0, b ≥ 0 and ab = 0}, (2.6)

which can be easily calculated as

PM (s, t) =


{(0, t+)} if s < t

{(s+, 0)} if s > t

{(0, t+), (s+, 0)} if s = t

(2.7)

This gives the formula (2.5). □

Example 2.3. Let n = 3 and w = (u, v) ∈ IR3 × IR3 where u = (2,−4, 1) and
v = (1, 3, 1). Then u1 > v1, u2 < v2 and u3 = v3. By equation (2.5), we have
PC2

(w) = {(2, 0, 1, 0, 3, 0), (2, 0, 0, 0, 3, 1)}.

Note that because of the convexity of C1, we know that the map PC1
is

firmly nonexpansive, i.e., ∥PC1
(w)−PC1

(w′)∥2 ≤ ⟨w−w′, PC1
(w)−PC1

(w′)⟩
for all w,w′ ∈ IRn × IRn. The same cannot be said for PC2

due to the non-
convexity of C2. However, PC2

is firmly nonexpansive on some subsets of
IRn × IRn as we will prove in Corollary 2.4. Before we present this result, we
first introduce some notations which will be used for the remaining parts of
this paper.

We denote by T the collection of all functions τ : {1, 2, . . . , n} → {1, 2},
so that |T | = 2n. For each τ ∈ T , we let Sτ denote the set of all w = (u, v) ∈
IRn × IRn such that for each i = 1, . . . , n, we have (ui, vi) ∈ Kj if τ(i) = j
for j = 1, 2 where

K1 := {(a, b) ∈ IR2 : a > b or a = b ≤ 0} and (2.8)

K2 := {(a, b) ∈ IR2 : a < b or a = b ≤ 0}. (2.9)

Observe that⋃
τ∈T

Sτ = IRn × IRn \ {(u, v) : ui = vi > 0 for some i}.

For each τ ∈ T , we also let Rτ := Sτ ∩ C2 so that C2 =
⋃

τ∈T Rτ . Thus,
w ∈ Rτ if and only if for each i = 1, . . . , n, we have (ui, vi) ∈ Mj if τ(i) = j
for j = 1, 2 where

M1 := {(a, b) ∈ IR2 : a ≥ 0 and b = 0} and (2.10)

M2 := {(a, b) ∈ IR2 : b ≥ 0 and a = 0}. (2.11)
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Corollary 2.4. PC2
is firmly nonexpansive on Sτ for any τ ∈ T .

Proof. First, we note that the restriction of PM given by (2.7) to Kj is
precisely the projection mapping PMj , where Mj is given by (2.10)-(2.11).
Since Mj is convex, then PMj

is firmly nonexpansive on Kj . It follows that
PM is firmly nonexpansive on Kj .

Given τ ∈ T , take two points w = (u, v) ∈ Sτ and w′ = (u′, v′) ∈ Sτ .
Then the points (ui, vi) and (u′i, v

′
i) both lie onK1 orK2 for each i = 1, . . . , n.

Then by firm nonexpansiveness of PM , we obtain

∥PC2
(w)− PC2

(w′)∥2 =

n∑
i=1

∥PM (ui, vi)− PM (u′i, v
′
i)∥2

≤
n∑

i=1

⟨(ui, vi)− (u′i, v
′
i), PM (ui, vi)− PM (u′i, v

′
i)⟩

= ⟨w − w′, PC2
(w)− PC2

(w′)⟩.

This proves the desired result. □

By invoking the fact that C1 given by (2.3) is an affine set, the next
proposition describes a property of the iterates (MAP) which is based on the
following observation: When n = 1, the set C1 defines a straight line in IR2

provided that A and B are not both zero. Intuitively, one can see that if the
line C1 intersects C2 but does not pass through the origin, then PC1

(w) ≰ 0
for any w ∈ C2. For n > 1, we may conjecture that if w̄ := PC1

(w) with
w ∈ C2, we either have (i) w̄ /∈ IRn

− × IRn
− or (ii) (w̄i, w̄n+i) /∈ IR2

− for all
i = 1, . . . , n for any w ∈ C2, where IR

n
− denotes the set of nonpositive vectors

in IRn. The following proposition indicates that (i) holds, and we illustrate
in Example 2.6 that (ii) does not hold in general.

Proposition 2.5. If c ̸= 0, C1∩C2 ̸= ∅ and {wk}∞k=0 is any sequence generated
by (MAP), then wk /∈ IRn

− × IRn
− for all k ≥ 1.

Proof. It is enough to show that given a point w ∈ C2, we have w̄ := PC1
(w) /∈

IRn
− × IRn

−. Since C1 is a convex set, we have

⟨w − w̄, w′ − w̄⟩ ≤ 0 ∀w′ ∈ C1.

In particular, we can take w′ = w∗ ∈ C1 ∩ C2 and obtain

⟨w − w̄, w∗ − w̄⟩ ≤ 0. (2.12)

Since c ̸= 0 and Tw̄ =
√
2c, then w̄ ̸= 0. Thus, if w̄ ∈ IRn

− × IRn
−, then there

exists some i ∈ {1, 2 . . . , 2n} such that w̄i < 0. Since w,w∗ ≥ 0, we must
have wi− w̄i > 0 and w∗

i − w̄i > 0. Meanwhile, we also have that wj − w̄j ≥ 0
and w∗

j − w̄j ≥ 0 for all j. In turn, we will obtain ⟨w− w̄, w∗ − w̄⟩ > 0 which
contradicts (2.12). Hence, w̄ /∈ IRn

− × IRn
− as desired. □
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Example 2.6. Let A =

[
3 −8
3 0

]
, B = −I2 and c = (6, 9)/

√
2. It can

be verified that C1 ∩ C2 = {(3/
√
2, 0, 0, 0)}. For w = (0, 0, 1, 0) ∈ C2, one

can check that w̄ := PC1
(w) ≈ (1.8042,−0.5569,−0.7921,−0.6540). That

is, w̄ /∈ IRn
− × IRn

−, illustrating Proposition 2.5. On the other hand, observe
that (w̄2, w̄4) ∈ IR2

− indicating that statement (ii) in the discussion preceding
Proposition 2.5 does not necessarily hold.

2.3. Characterization of fixed points for arbitrary m and n

We now provide a general condition which will allow us to distinguish which
fixed points of PC1

◦ PC2
belong to C1 ∩ C2. In the following, we denote by

Ker(T ) and Ran(T ) the kernel and range of T , respectively. Given any affine
set S ⊆ IRn, we denote its orthogonal complement by S⊥. We also denote

Ω := {w = (u, v) ∈ IRn × IRn : (ui, vi) /∈ IR2
−− ∀i = 1, . . . , n}, (2.13)

where IRn
−− denotes the set of negative vectors in IRn.

Theorem 2.7 (Characterization of fixed point sets for arbitrary m, n). Let
T ∈ IRm×2n be given by (T) and suppose that

Ker(T )⊥ ∩ Ĉ2 = {0}, (C)

where

Ĉ2 := {w = (u, v) ∈ IRn × IRn : uivi = 0 ∀i = 1, . . . , n}. (2.14)

Then for any c ∈ IRm,

Fix(PC1
◦ PC2

) ∩ Ω = C1 ∩ C2.

Proof. We note first that if c /∈ Ran(T ), then C1 = ∅. Since Fix(PC1
◦PC2

) ⊆
C1, then Fix(PC1 ◦ PC2) = ∅. Hence, the result necessarily holds. Suppose
now that c ∈ Ran(T ) so that C1 ̸= ∅. Since C1 ∩ C2 ⊆ Fix(PC1 ◦ PC2) and
C2 ⊆ Ω, then C1 ∩ C2 ⊆ Fix(PC1

◦ PC2
) ∩ Ω. To prove the other inclusion,

suppose that w = (u, v) ∈ Fix(PC1
◦PC2

)∩Ω. Since w ∈ (PC1
◦PC2

)(w), then
w = PC1

(w′) for some w′ ∈ PC2
(w). Since C1 is an affine set, it follows that

w − w′ ∈ Ker(T )⊥.
We also have that w ∈ Ω so that we may partition its components using

the following index sets:

I := {i ∈ {1, 2, . . . , n} : ui > vi and ui ≥ 0}
J := {i ∈ {1, 2, . . . , n} : ui = vi ≥ 0}
K := {i ∈ {1, 2, . . . , n} : ui < vi and vi ≥ 0}

By rearranging the columns of A and B if necessary, we may suppose that
u = (uI , uJ , uK) ∈ IRn where uΛ denotes the components of u indexed by
Λ ∈ {I, J,K}. Accordingly, we let v = (vI , vJ , vK) ∈ IRn. Consequently, we
have from Proposition 2.2 that w′ = (u′, v′) where u′ = (uI , u

′
J , 0|K|) and v

′ =
(0|I|, v

′
J , vK) with (u′j , v

′
j) ∈ {(uj , 0), (0, vj)} . Then (w−w′)i(w−w′)n+i = 0

for all i = 1, . . . , n, that is, we have w − w′ ∈ Ĉ2.
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To summarize, we have shown that w − w′ ∈ Ker(T )⊥ ∩ Ĉ2. By (C), it
follows that w = w′. Hence, w ∈ C2. This completes the proof. □

The geometric interpretation of condition (C) in terms of normal cones
is discussed in Section 3.3. Note, however, that this condition is not easy to
verify for the case m ̸= n. In the next subsection where we discuss the case
m = n, we use the notion of nondegenerate matrices to provide an easier-to-
verify condition on A and B that will result to a map T that satisfies (C).

Moreover, we also note the following observation: From Proposition 2.5,
we see that Fix(PC1

◦ PC2
) ⊆ (IRn × IRn) \ (IRn

−− × IRn
−−) and note that

Ω ⊆ (IRn × IRn) \ (IRn
−− × IRn

−−).

Hence, it is not necessary that Fix(PC1
◦ PC2

) ⊆ Ω. In Example 2.15, we
illustrate the importance of intersecting the set of fixed points with the set
Ω. For the case m = n, we also provide a sufficient condition so that the
set of fixed points is necessarily contained in Ω (see Theorem 2.17), which in
turn implies that Fix(PC1

◦ PC2
) is equal to C1 ∩ C2.

2.4. Characterization of fixed points for m = n

To prove our main result for the case m = n, we first establish some key
lemmas which are prerequisites to obtaining conditions on A and B that will
imply (C).

Lemma 2.8. Let T ∈ IRm×2n be given by (T). Suppose that at least one among
the matrices A, B, A+B and A−B is of full row rank. Then rank(T ) = m.
In particular, rank(T ) = n when m = n and B = −In.

Proof. If either A+B or A−B has rankm, then it is clear that rank(T ) = m.
For the other cases when either A or B is of full row rank, we note that
rank(T ) = rank(TTT) = rank(2(AAT+BBT)). The matrices AAT and BBT

are positive semidefinite, and at least one of them is positive definite by our
full rank assumption. Hence, the claim of the lemma follows. □

The next lemma precisely describes the elements of the set Ker(T )⊥.

Lemma 2.9. Suppose m = n and T ∈ IRn×2n is given by (T), and suppose
that A−B is nonsingular. Then Ker(T )⊥ = Ker(

[
In Q

]
) where

Q := (AT +BT)(AT −BT)−1 (2.15)

Proof. Let w = (u, v) ∈ Ker(T )⊥ = Ran(TT). Then there exists x ∈ IRn such
that TTx = w. It follows that u = (AT + BT)x and v = −(AT − BT)x. By
invertibility of A−B, we see that

u = (AT +BT)x = −(AT +BT)(AT −BT)−1v = −Qv.



Alternating projections for the general absolute value equation 11

Hence, we have Ker(T )⊥ ⊆ Ker(
[
In Q

]
). Meanwhile, we also have that

dim(Ker(
[
In Q

]
)) = 2n− rank(

[
In Q

]
) = n

by the rank-nullity theorem, and

dim(Ker(T )⊥) = rank(TT) = rank(T ) = n,

by Lemma 2.8. Thus,

dim(Ker(
[
In Q

]
)) = dim(Ker(T )⊥).

With these, we conclude that Ker(T )⊥ = Ker(
[
In Q

]
). □

Note that we can derive a result similar to Lemma 2.9 if we rather
assume that A+B is nonsingular.

Now that we have described the set Ker(T )⊥, we next focus on finding
conditions which will imply (C). Nondegenerate matrices, as defined below,
will play a major role in our analysis.

Definition 2.10. [11] A matrix Q ∈ IRn×n is nondegenerate if all its principal
minors are nonzero, i.e. the principal submatrix QΛΛ is nonsingular for all
Λ ⊆ {1, . . . , n}. We call Q degenerate if it is not a nondegenerate matrix.

Lemma 2.11. Let A,Q ∈ IRn×n be nonsingular matrices where Q is a non-
degenerate matrix, and let B := AQ. Let Λ ⊆ {1, . . . , n} and let A′ be the
n × n matrix obtained by replacing the columns of A indexed by Λ by those
columns of B indexed by Λ. Then A′ is nonsingular.

Proof. Without loss of generality, assume that Λ = {1, 2, . . . , k} with k ≤
n. Denote the columns of A by {v1, v2, . . . , vn} and the columns of B by
{v̄1, v̄2, . . . , v̄n}. To prove the claim, we only need to show that {v̄1, v̄2, . . . , v̄k, vk+1, . . . , vn}
is linearly independent.

Suppose that

k∑
j=1

aj v̄j +

n∑
j=k+1

ajvj = 0 for some constants a1, . . . , an.

By the definition of B, we have v̄j =

n∑
i=1

qijvi for all j, where qij is the

(i, j)-entry of Q. Direct computations lead us to k∑
j=1

ajq1j

 v1 + · · ·+

 k∑
j=1

ajqkj

 vk

+

ak+1 +

k∑
j=1

ajqk+1,j

 vk+1 + · · ·+

an +

k∑
j=1

ajqnj

 vn = 0.

Since the vi’s are linearly independent, all the coefficients above should be
equal to zero. From the first k terms, we obtain that QΛΛ(a1, . . . , ak)

T = 0.
Since QΛΛ is nonsingular by nondegeneracy of Q, then aj = 0 for all j =
1, . . . , k which consequently gives aj = 0 for all j > k. □
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Proposition 2.12. Let m = n and suppose that the matrix Q defined by (2.15)
is nondegenerate. Let Λ1 ⊆ {1, . . . , n} and Λ2 = {n + i : i /∈ Λ1}. Then the
columns of [In Q] indexed by Λ1∪Λ2 are linearly independent. Consequently,
condition (C) holds.

Proof. SetA = In and Λ = {1, . . . , n} \ Λ1. Then the columns of matrix A′

described in Lemma 2.11 are precisely the columns of D := [In Q] indexed
by Λ1 ∪ Λ2. Consequently, A

′ is nonsingular and so the first claim of the
proposition holds.

If w = (u, v) ∈ Ker(T )⊥ ∩ Ĉ2, then since Ker(T )⊥ = Ker(D) by
Lemma 2.9, we have

0 = Dw =
∑
i∈Λ1

uidi +
∑
i∈Λ′

2

vidi (2.16)

where di ∈ IRn is the ith column of D, Λ1 := {i : ui ̸= 0} and Λ′
2 := {i : vi ̸=

0}. In other words, the right-hand side of (2.16) is a linear combination of
the columns of D indexed by

Λ := Λ1 ∪ {n+ i : i ∈ Λ′
2} ⊆ Λ1 ∪ Λ2.

Thus, the columns indexed by Λ must be linearly independent, i.e. Λ1 = Λ′
2 =

∅ so that w = 0. □

As an immediate consequence of the above result and Theorem 2.7, we
have the following.

Theorem 2.13 (Characterization of fixed point sets for m = n). Let m = n.
Suppose that Q given by (2.15) is a nondegenerate matrix and Ω is given by
(2.13). Then for any c ∈ IRn,

Fix(PC1
◦ PC2

) ∩ Ω = C1 ∩ C2.

Proof. Since Q is nondegenerate, we have from Proposition 2.12 that condi-
tion (C) holds. Hence, the claim follows from Theorem 2.7. □

Remark 2.14. One can guarantee that the matrix Q given by (2.15) is nonde-
generate if σmin(A) > σmax(B), i.e. the smallest singular value of A is greater
than the largest singular value of B. To see this, note that for all x ∈ IRn,

xT(AT +BT)(AT −BT)−1x = yT(A−B)(AT +BT)y, y = (AT −BT)−1x

= yT(AAT −BAT +ABT −BBT)y

= yT(AAT −BBT)y

≥ (λmin(AA
T)− λmax(BB

T))∥y∥2

= (σmin(A)− σmax(B))∥y∥2,
where the third equality follows from yTBATy = yTABTy. It follows that Q
is a positive definite matrix, which is necessarily nondegenerate. By a similar
computation, the condition σmax(A) < σmin(B) implies nondegeneracy of Q.

■
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The following example demonstrates the importance of nondegeneracy
of Q as well as the significance of intersecting the set of fixed points with Ω.

Example 2.15.

1. Let A =

[
1 2
3 4

]
, B = −I2 and c = (−10,−19)/

√
2. Then Q =[

−1.5 1.5
1 0

]
, which is a degenerate matrix. Moreover, it can be ver-

ified that w = (−0.9231, 4.7026, 9.0872, 0.6154) ∈ Fix(PC1 ◦ PC2) ∩ Ω.
Clearly, however, w /∈ C1∩C2. We note that the problem is feasible, i.e.
C1 ∩ C2 ̸= ∅. For instance, both (0, 0, 3, 2)/

√
2 and (2, 0, 0, 5)/

√
2 are

solutions of the feasibility problem.
2. Let A = 1/2, B = 3/2 and c = −

√
2. Then Q = −2, which is nondegen-

erate. Moreover, C1∩C2 = ∅ and Fix(PC1◦PC2) = {(−0.8,−0.4)} so that
C1∩C2 ̸= Fix(PC1 ◦PC2). Nevertheless, we see that Fix(PC1 ◦PC2)∩Ω =
C1 ∩ C2.

It turns out that the signs of the principal minors of Q play an important
role in characterizing the fixed points of the alternating projections map. In
particular, the fixed points are necessarily contained in the set Ω given by
(2.13) if all the principal minors of Q are positive. Such a matrix is called
a P -matrix [11]. In contrast, we see from Example 2.15.2 that intersecting
the set of fixed points with Ω is necessary if there exists a negative principal
minor.

To characterize the set of fixed points for the P -matrix case, we need
the following lemma.

Lemma 2.16. [11, Theorem 3.3.4] Q ∈ IRn×n is a P -matrix (i.e., all of its
principal minors are positive) if and only if whenever xi(Qx)i ≤ 0 for all
i = 1, . . . , n, we have x = 0.

Theorem 2.17. Let m = n. Suppose that Q given by (2.15) is a P -matrix.
Then for any c ∈ IRn, we have

Fix(PC1
◦ PC2

) = C1 ∩ C2

In particular, by Remark 2.14, the above equality holds if σmin(A) > σmax(B).

Proof. Suppose that w ∈ (PC1 ◦PC2)(w). As in the proof of Theorem 2.7, we
have w−w′ ∈ Ker(T )⊥ where w′ ∈ PC2(w). Since Q is nondegenerate, A−B
is necessarily nonsingular so that by Lemma 2.9, w − w′ ∈ Ker([In Q]), i.e.

u− u′ +Q(v − v′) = 0. (2.17)

Observe that to prove the desired result, Theorem 2.13 implies that it is
enough to prove that w ∈ Ω, i.e. (ui, vi) /∈ IR2

−− for all i. Suppose to the
contrary that there exists an index j such that uj , vj < 0. Then from Propo-
sition 2.2, we know that u′j = v′j = 0 so that vj − v′j < 0. In particular, v− v′
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is a nonzero vector. Consequently, by Lemma 2.16, there exists some l such
that

(vl − v′l)(Q(v − v′))l > 0 (2.18)

We consider two cases:

(i) Suppose that vl − v′l > 0. From Proposition 2.2, this can only happen
if ul ≥ vl and (u′l, v

′
l) = (ul, 0). Thus, we obtain that ul − u′l = 0. From

equation (2.17), it follows that (Q(v− v′))l = 0. This is a contradiction
to (2.18).

(ii) Suppose that vl − v′l < 0. We conclude from Proposition 2.2 that vl < 0
and v′l = 0. Moreover, it also follows from the same proposition that
ul−u′l ≤ 0. From equation (2.17), it must be the case that (Q(v−v′))l ≥
0. Hence, (vl−v′l)(Q(v−v′))l ≤ 0. However, this is a direct contradiction
to (2.18).

Hence, it is impossible that there exists j such that (uj , vj) ∈ IR2
−−, i.e.

w ∈ Ω. This completes the proof. □

Remark 2.18. If A − B is nonsingular, then the feasibility problem (FP) is
equivalent to solving the system

u ≥ 0, F (u) := QTu−
√
2(A−B)−1c ≥ 0, and ⟨u, F (u)⟩ = 0,

known in the literature as a linear complementarity problem (LCP). The
above LCP has a unique solution for all c ∈ IRn if and only if Q is a P -
matrix [11]. Thus, Theorem 2.17 indicates that if Q is a P -matrix, then for
any c ∈ IRn, the set of fixed points of PC1

◦ PC2
consists of a single point,

which is precisely the solution of the feasibility problem (FP). ■

The next result, which is a very special case, provides another condition
for the equality of the set of fixed points and the intersection of C1 and C2.

Theorem 2.19. Suppose that C1 ∩Rτ ̸= ∅ for all τ ∈ T . Then

Fix(PC1 ◦ PC2) = C1 ∩ C2

Proof. Suppose w = PC1
(w′) where w′ ∈ PC2

(w). Choose τ ∈ T such that
w′ ∈ Rτ , so that w′ = PRτ

(w). Taking w∗ ∈ C1∩Rτ and using the convexity
of C1 and Rτ , we obtain ⟨w′ − w,w∗ − w⟩ ≤ 0 and ⟨w − w′, w∗ − w′⟩ ≤ 0,
respectively. Adding these two inequalities, we see that ∥w′−w∥2 ≤ 0 so that
w = w′ and therefore w ∈ C1 ∩ C2. The other inclusion is trivial, and thus,
the proof is complete. □

As a consequence, we state the following corollary whose hypothesis is
the setting considered in [29].

Corollary 2.20. Let A ∈ IRn×n, B = −In and c < 0. If ∥A∥∞ < α
2 where

α = mini |ci|
maxi |ci| , then

Fix(PC1
◦ PC2

) = C1 ∩ C2
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Proof. From [29, Proposition 6], we know that the AVE (1.1) has exactly 2n

distinct solutions, each of which has no zero components and has different
sign pattern. Thus, each Rτ contains a point in C1 ∩ C2 in its interior. The
claim then follows from Theorem 2.19. □

3. Convergence analysis

In this section, we discuss the convergence issues related to the proposed
method of alternating projections. In Section 3.1, we present some local con-
vergence results which are direct consequences of the theory developed in [14].
We present an alternative local convergence analysis in Section 3.2 through
the use of a new complementarity function. A by-product of this alternative
analysis is the global convergence of MAP for homogeneous AVE. In addi-
tion, we also prove in Section 3.2 that under a nondegeneracy assumption, the
MAP iterates cannot be trapped in some region Sτ (defined in Section 2.2) if
Sτ does not contain a solution of the feasibility problem (FP). In Section 3.3,
we establish the local linear rate of convergence of MAP. A globally conver-
gent relaxation of MAP is presented in 3.4. Finally, another algorithm derived
from the fixed point relation w ∈ (PC1

◦ PC2
)(w) is described in Section 3.5.

3.1. Convergence of MAP

The method of alternating projections and its generalization to more than
two sets are globally convergent when the involved sets are convex [7]. For our
problem (FP), the set C1 is affine (hence, convex) while C2 is a nonconvex
set. Nevertheless, C2 is a union convex set, i.e. it can be expressed as a finite

union of closed convex sets [14]. In particular, we can write C2 as C2 =
⋃
τ∈T

Rτ

where each Rτ is a closed convex set as defined in the preceding section. Thus,
the local convergence of MAP is a direct consequence of [14, Corollary 6.2].

Theorem 3.1 (Local convergence of MAP). Suppose w∗ ∈ C1 ∩ C2. Then
there exists sufficiently small δ > 0 such that for any w0 with ∥w0−w∗∥ < δ,
any sequence generated by (MAP) converges to a solution of (FP).

On the other hand, the global convergence of MAP to solutions of the
feasibility problem (FP) is not always guaranteed.

Example 3.2. In Example 2.15.1, the iterates (MAP) may converge to a fixed
point of PC1

◦ PC2
that does not belong to C1 ∩ C2. For instance, if we set

w0 = (−1, 5, 9, 1), it can be verified that wk converges to the point w =
(−0.9231, 4.8077, 9.1923, 0.6154) ∈ Fix(PC1 ◦ PC2) \ (C1 ∩ C2).

In fact, the following example shows that unique solvability does not
imply global convergence.

Example 3.3. Let A = 1, B = −1 and c = −2/
√
2. Then C1 is the horizontal

line v = 1 while C2 is the union of the nonnegative u and v axes. In Figure 1,
we see that w∗ = (0, 1) is the unique solution to (FP). Meanwhile, MAP is
not globally convergent to w∗.
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u

v

w∗v = 1

Figure 1. The method of alternating projections converges
to a fixed point of PC1

◦PC2
when the initial point w0 lies on

the gray region. However, the convergence point is not the
solution w∗ of the feasibility problem. If w0 lies on the red
dashed line, the convergence to w∗ depends on the selected
element of PC2(w

0).

In both of the examples above, we note that the matrix Q defined by
(2.15) is degenerate. This suggests that for the case m = n, nondegeneracy
of Q may be a necessary condition for global convergence to C1 ∩ C2. We
leave this as a conjecture which is worth further investigation. Note, however,
that nondegeneracy is not sufficient for global convergence to solutions (for
example, see Example 2.15.2).

We close this section by identifying two specific instances when the
method of alternating projections is globally convergent.

Proposition 3.4. Suppose T ∈ IRm×2n has full column rank. Then the feasi-
bility problem (FP) has a solution if and only if TT †c = c and

√
2T †c ∈ C2.

In particular,
√
2T †c is the unique solution to (FP) whenever a solution ex-

ists. Moreover, any sequence generated by (MAP) converges finitely to
√
2T †c

(after one iteration).

Proof. If C1 ∩ C2 ̸= ∅, then there exists w∗ ∈ C1 so that by Proposition 2.1,
w∗ = w∗ − T †(Tw∗ −

√
2c). Since T has full column rank, then T †T = I2n.

Thus, w∗ =
√
2T †c is the unique point in C1 and

√
2c = Tw∗ =

√
2TT †c.

Moreover, since C1 ∩ C2 is nonempty, then w∗ must be in C2, i.e
√
2T †c ∈

C2. Conversely, TT †c = c and
√
2T †c ∈ C2 implies that

√
2T †c ∈ C1 ∩

C2. The convergence of any sequence generated by (MAP) is an immediate

consequence of Proposition 2.1. In particular, wk =
√
2T †c for all k ≥ 1 given

any initial point w0 ∈ IRn × IRn. □

Another specific case when we obtain global convergence can be ob-
tained when 0 ∈ C1 ∩ C2.
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Proposition 3.5. If c = 0 ∈ IRm, then any sequence generated by (MAP)
converges to a point in Fix(PC1 ◦ PC2).

Proof. This is a direct consequence of [14, Corollary 4.3]. □

A result stronger than the above proposition is derived in the next
section (see Remark 3.13). In particular, we shall see that any sequence of
MAP iterates generated by (MAP) will always converge to a point in C1∩C2

for any initial point w0 whenever c = 0. That is, MAP is globally convergent
to a solution of the feasibility problem (FP) for homogeneous AVEs.

3.2. Convergence analysis using a new C-function

We now provide an alternative convergence analysis for the method of alter-
nating projections by introducing a C-function that is new to the literature.
We recall first the notion of C-functions.

Definition 3.6. A function ϕ : IR2 → IR is called a complementarity function
(or a C-function) if its zeros are precisely the points on the nonnegative axes,
i.e.

ϕ(s, t) = 0 ⇐⇒ s ≥ 0, t ≥ 0, and st = 0.

There are several examples of C-functions [2, 17], as well as methods
to construct these functions [3]. Popular choices include the natural residual
(NR) function and the Fischer-Burmeister (FB) function given respectively
by

ϕ
NR

(s, t) = min(s, t) and ϕ
FB
(s, t) =

√
s2 + t2 − (s+ t).

Given any C-function ϕ, we define Φ : IRn × IRn → IRn as

Φ(u, v) :=

 ϕ(u1, v1)
...

ϕ(un, vn)

 .

It is then easy to see that

(u∗, v∗) ∈ C2 ⇐⇒ Φ(u∗, v∗) = 0

⇐⇒ (u∗, v∗) ∈ argmin
(u,v)∈IRn×IRn

Ψ(w) :=
1

2
∥Φ(u, v)∥2.

Consequently, the feasibility problem (FP) can be equivalently reformu-
lated as a constrained minimization problem

min
w∈C1

Ψ(w), (3.1)

provided that C1 ∩C2 ̸= ∅. Note that if we define ψ := 1
2ϕ

2, then ψ is also a
C-function and Ψ(w) =

∑n
i=1 ψ(ui, vi).

Although different C-functions yield different formulations (3.1), a suit-
able choice of ϕ (or ψ) can facilitate the convergence analysis of MAP. In-
spired by the equivalence of the method of alternating projections and the
projected gradient method in the case of sparse affine feasibility problem as
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discussed in [19], we aim to choose a suitable C-function ψ such that the
induced function Ψ satisfies

(PC1
◦ PC2

)(w) = PC1
(w −∇Ψ(w)) ,

(where Ψ should be differentiable to begin with). Unfortunately, PC2 is mul-
tivalued as shown in Proposition 2.2 while the right-hand side of the above
equation is single-valued. Thus, we instead find a C-function which induces
a function Ψ satisfying

(PC1 ◦ PC2)(w) ⊆ PC1 (w − ∂Ψ(w)) , (3.2)

where ∂Ψ(w) denotes the Clarke generalized gradient of Ψ : IRn × IRn → IR
at w.

Definition 3.7. [16] Let F : IRn → IR be locally Lipschitz continuous on IRn.

(a). The B-subdifferential of F at x, denoted by ∂BF (x) is given by

∂BF (x) :=

{
lim

xk→x
∇F (xk) : F is differentiable at xk ∈ IRn

}
.

(b). The Clarke generalized gradient of F at a point x ∈ IRn, denoted by
∂F (x), is defined as the convex hull of ∂BF (x).

In the next example, we illustrate that the NR and FB functions do not
satisfy condition (3.2).

Example 3.8. Let n = 1, A = 1, B = 0, c = 0 and consider the point
w = (−1,−1). Denote the function Ψ induced by the NR and FB functions
by Ψ

NR
and Ψ

FB
, respectively. From Definition 3.7, one can verify that

∂BΨNR
(w) = {(−1, 0), (0,−1)} and ∂BΨFB

(w) = {(−3−2
√
2,−3−2

√
2)}.

Thus,

PC1
(w−∂Ψ

NR
(w)) = {(−0.5,−0.5)}, PC1

(w−∂Ψ
FB
(w)) = {(2+2

√
2, 2+2

√
2)}.

Meanwhile, we have (PC1 ◦ PC2)(w) = {(0, 0)}.

In the following result, we propose a C-function that is new to the
literature and gives the desired inclusion (3.2).

Proposition 3.9. The function defined by

ψ(s, t) =


s2

2
+

(−t)2+
2

if s ≤ t,

t2

2
+

(−s)2+
2

if s > t

=
min(s, t)2

2
+

max(−max(s, t), 0)2

2

(3.3)
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is a nonnegative C-function. Moreover, ψ is differentiable on K1∪K2, where
K1 and K2 are given by (2.8) and (2.9), respectively, and the B-subdifferential
of ψ is given by

∂Bψ(s, t) =


{(s,−(−t)+)} if s < t or s = t ≤ 0

{(−(−s)+, t)} if s > t

{(s, 0), (0, t)} if s = t > 0.

(3.4)

Proof. Due to the symmetry of ψ (that is, ψ(s, t) = ψ(t, s)), we only need to
verify the equivalence in Definition 3.6 for s ≤ t. In this case,

ψ(s, t) = 0 ⇐⇒ s = 0 and (−t)+ = 0 ⇐⇒ s = 0 and t ≥ 0.

This proves that ψ is a C-function. It can also be verified that ψ is locally Lip-
schitz continuous on IR2 (see also [16, Lemma 4.6.1] or [36, Proposition 4.1.2]).
Next, note that ψ is differentiable only on K1∪K2. The first two cases in for-
mula (3.4) can be easily verified. If s = t > 0 and {(sk, tk)}∞k=1 is a sequence
in K1∪K2 converging to (s, t), then for sufficiently large k, the sequence lie in
IR2

++. Hence, the only subsequential limits of {∇ψ(sk, tk)}∞k=1 are the limits

of {(sk, 0)}∞k=1 and {(0, tk)}∞k=1, which are (s, 0) and (0, t), respectively. This
completes the proof. □

We next show that the induced function Ψ(w) of (3.3) indeed gives the
desired inclusion (3.2). In fact, the following corollary shows that the MAP
iterates (MAP) are the same as the “projected B-subdifferential” iterates.

Corollary 3.10. If ψ is given by (3.3) and Ψ : IRn × IRn → IR+ is given by

Ψ(w) :=

n∑
i=1

ψ(ui, vi), then

PC2
(w) = w − ∂BΨ(w).

In particular, (3.2) holds.

Proof. Denote w = (u, v) ∈ IRn × IRn. A direct verification shows that
∂ΨB(w) =

∑n
i=1D

i, where the summation denotes the Minkowski sum of
sets, and Di ⊆ IRn × IRn denotes the set of all di such that

(dij , d
i
n+j) ∈

{
{(0, 0)} if j ̸= i

∂Bψ(ui, vi) if j = i
, i = 1, 2, . . . , n

with ∂Bψ(ui, vi) given by (3.4). To establish the result, we only need to
show that PM (s, t) = (s, t) − ∂Bψ(s, t), where PM is given by (2.7). This
equality can be directly verified by using the fact that x + (−x)+ = x+ for
all x ∈ IR. □

We next establish one more important property of ψ as defined in (3.3)
which will later be useful in proving our convergence result.
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Lemma 3.11. Let ψ be given by (3.3) and let (a, b), (s, t) ∈ IR2. If (a, b), (s, t) ∈
K1 or (a, b), (s, t) ∈ K2, where K1 and K2 are given by (2.8) and (2.9),
respectively, then

ψ(s, t)− ψ(a, b) ≥ 1

2
⟨∇ψ(a, b), (s− a, t− b)⟩

− min(a, b)2

8
− max(a, b)2

8
1IR2

−
(max(a, b),max(s, t)), (3.5)

where 1IR2
−
(c, d) = 1 if (c, d) ∈ IR2

− and 0 otherwise. In particular, if ψ(s, t) =

0, then

2ψ(a, b) ≤ ⟨∇ψ(a, b), (a− s, b− t)⟩. (3.6)

Moreover,

2ψ(a, b) ≤ ⟨ψ′(a, b), (a, b)⟩ ∀(a, b) ∈ IR2, ∀ψ′(a, b) ∈ ∂Bψ(a, b). (3.7)

Proof. By symmetry of ψ, it suffices to consider the case when (a, b), (s, t) ∈
K1 to prove (3.5). By direct computation, we get from (3.3) and (3.4) that

ψ(s, t)− ψ(a, b)− 1

2
⟨∇ψ(a, b), (s− a, t− b)⟩ = t2

2
− bt

2
+

(−s)2+
2

+
(−a)+s

2

Noting that t2−bt ≥ −b2/4 and s2−as ≥ −a2/4, we get the desired inequality.
On the other hand, (3.6) directly follows from (3.6). Finally, in view of (3.6),
we only need to verify inequality (3.7) for a = b > 0 which is a routine
calculation. □

We now present our convergence result using the C-function (3.3).

Theorem 3.12. Let {wk}∞k=0 be any sequence generated by (MAP). Let w∗ =
(u∗, v∗) ∈ C1 ∩ C2, and denote

I∗1 := {i : u∗i > v∗i = 0},
I∗2 := {i : 0 = u∗i < v∗i },

and let Γ∗ := {w = (u, v) : (ui, vi) ∈ Ki if i ∈ I∗i (i = 1, 2)}. If wk ∈ Γ∗ for
all sufficiently large k, then Ψ(wk) → 0 as k → ∞. Moreover, there exists a
point w̄ ∈ C1 ∩ C2 such that wk → w̄ as k → ∞.

Proof. We have from Corollary 3.10 that wk − Ψ′(wk) ∈ PC2
(wk) where

Ψ′(wk) ∈ ∂BΨ(wk). Thus,

∥wk+1 − w∗∥2 = ∥PC1
(wk −Ψ′(wk))− PC1

(w∗)∥2

≤ ∥(wk − w∗)−Ψ′(wk)∥2

= ∥wk − w∗∥2 − 2⟨wk − w∗,Ψ′(wk)⟩+ ∥Ψ′(wk)∥2,(3.8)
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where the inequality holds by nonexpansiveness of PC1
. Meanwhile, since

wk, w∗ ∈ Γ∗, then inequalities (3.6) and (3.7) yield

⟨wk − w∗,Ψ′(wk)⟩ = ⟨(uk − u∗, vk − v∗),Ψ′(wk)⟩
=

∑
i∈I∗

1∪I∗
2

⟨(uki − u∗i , v
k
i − v∗i ),∇ψ(uki , vki )⟩

+
∑

i/∈I∗
1∪I∗

2

⟨(uki , vki ), ψ′(uki , v
k
i )⟩

≥ 2

n∑
i=1

ψ(uki , v
k
i )

= 2Ψ(wk), (3.9)

where ψ′(uki , v
k
i ) ∈ ∂Bψ(u

k
i , v

k
i ). On the other hand, we have

∥Ψ′(wk)∥2 − 2Ψ(wk) =

n∑
i=1

[
∥ψ′(uki , v

k
i )∥2 − 2ψ(uki , v

k
i )
]
= 0, (3.10)

where the last equality can be verified directly from (3.3) and (3.4). Contin-
uing from (3.8), we have

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − 4Ψ(wk) + ∥Ψ′(wk)∥2 (3.11)

= ∥wk − w∗∥2 − 2Ψ(wk) (3.12)

where (3.11) and (3.12) follow from (3.9) and (3.10), respectively. From (3.12),
we get

2

N∑
k=1

Ψ(wk) = ∥w0 − w∗∥2 − ∥wN+1 − w∗∥2 ≤ ∥w0 − w∗∥2 ∀N ∈ N.

Thus, Ψ(wk) → 0 as k → ∞. This proves the first claim.
Meanwhile, note that (3.12) implies that the sequence {wk}∞k=0 is bounded.

Thus, the sequence has an accumulation point w̄, i.e. there exists a subse-
quence {wkj}∞j=1 such that wkj → w̄ as j → ∞. Since {wk}∞k=0 ⊆ C1 and

C1 is closed, then w̄ ∈ C1. Moreover, Ψ(wkj ) → Ψ(w̄) as j → ∞ since Ψ
is continuous. Since the full sequence {Ψ(wk)}∞k=0 converges to zero, then
Ψ(w̄) = 0, that is, w̄ ∈ C2. Hence, we obtain that w̄ ∈ C1 ∩ C2 and since w̄
must also be a point in the closure of Γ∗, then w̄ ∈ Γ∗. By applying the same
argument for w∗ as above, we obtain ∥wk+1 − w̄∥ ≤ ∥wk − w̄∥ as in (3.12).
Thus, {∥wk− w̄∥} is a decreasing sequence of nonnegative numbers and must
therefore be convergent. Since ∥wkj − w̄∥ → 0 as j → ∞, then it follows that
∥wk − w̄∥ → 0, i.e. wk → w̄ as k → ∞. This completes the proof. □

Remark 3.13. We observe that the above theorem implies the local conver-
gence result given by Theorem 3.1. In addition, we obtain the global conver-
gence to C1∩C2 if c = 0, which is stronger than the claim of Proposition 3.5.
Hence, the above discussion provides an alternative proof for the aforemen-
tioned results in light of the new C-function ψ.



22 J. H. Alcantara, J.-S. Chen and M. K. Tam

To see precisely how one gets the local convergence given by Theo-
rem 3.1, let B(w, δ) denote the open ball centered at w with radius δ. For
each i ∈ I∗1 , let δi > 0 be such that B((u∗i , v

∗
i ), δi) ⊆ {(a, b) ∈ IR2 : a > b}

and for each i ∈ I∗2 , let δi > 0 so that B((u∗i , v
∗
i ), δi) ⊆ {(a, b) ∈ IR2 : a < b}.

Taking δ := min{δi : i ∈ I∗1 ∪ I∗2}, then B(w∗, δ) ⊆ Γ∗. Moreover, for any
w ∈ Γ∗, note that

∥PC2
(w)− PC2

(w∗)∥2 =
∑

i∈I∗
1∪I∗

2

∥PM (ui, vi)− PM (u∗i , v
∗
i )∥2

+
∑

i/∈I∗
1∪I∗

2

∥PM (ui, vi)− PM (0, 0)∥2

≤
∑

i∈I∗
1∪I∗

2

∥(ui, vi)− (u∗i , v
∗
i )∥2 +

∑
i/∈I∗

1∪I∗
2

∥PM (ui, vi)∥2

≤
∑

i∈I∗
1∪I∗

2

∥(ui, vi)− (u∗i , v
∗
i )∥2 +

∑
i/∈I∗

1∪I∗
2

∥(ui, vi)∥2

= ∥w − w∗∥2, (3.13)

where M is as defined in the proof of Proposition 2.2. The first inequality
above follows from the proof of Corollary 2.4, while the second inequality
holds since ∥PM (a, b)∥ ≤ ∥(a, b)∥ for all (a, b) ∈ IR2. It follows from inequality
(3.13) that if w0 ∈ B(w∗, δ), then wk ∈ B(w∗, δ) for all k ≥ 0. Thus, wk ∈ Γ∗

for all k and by Theorem 3.12, wk converges to some w̄ ∈ C1 ∩ C2. This is
precisely the claim of Theorem 3.1.

If c = 0, we see that w∗ = 0 ∈ C1 ∩ C2 so that I∗1 = I∗2 = ∅. The above
discussion reveals that the MAP iterates will converge to a point in C1 ∩ C2

given any initial point w0. ■

We provide a geometric interpretation of Theorem 3.12 for the case
that I∗1 ∪ I∗2 = {1, . . . , n}. In this case, there exists τ∗ ∈ T such that w∗ is
contained in the interior of Sτ∗ . Theorem 3.12 indicates that if the iterates will
eventually be “trapped” in Sτ∗ , then the iterates must converge to a solution
of the feasibility problem (FP). Observe that the above remark implies that
this could occur if we choose an initial point w0 that is close enough to
w∗. However, it is in general difficult to prove this when the initial point
is arbitrarily set. Nevertheless, we will prove that for the case m = n, it is
impossible for the iterates to be eventually trapped in some Sτ that does not
contain a point in C1 ∩ C2 if we assume nondegeneracy of Q as defined in
(2.15). To this end, we need the following lemma.

Given any matrix A ∈ IRm×n, we denote by σk(A) the kth largest
singular value of A. Moreover, the norm of A is the largest singular value,
i.e. ∥A∥ = σ1(A). If k > min{m,n}, we set σk(A) = 0.

Lemma 3.14. [20, Corollary 3.1.3] Let A ∈ IRm×n and let Ar denote a sub-
matrix of A obtained by deleting a total of r rows and/or columns of A. Then

σk(A) ≥ σk(Ar) ≥ σk+r(A), k = 1, . . . ,min{m,n}.
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Lemma 3.15. Suppose that Q given by (2.15) is nondegenerate. Let Λ :=
Λ1 ∪ Λ2 where Λ1 ⊆ {1, . . . , n} and Λ2 = {n + i : i /∈ Λ1}. If L·Λ is the
submatrix of L := I2n − T †T containing all its columns indexed by Λ and all
of its 2n rows, then ∥L·Λ∥ < 1.

Proof. Let E1 ∈ IRn×n such that the first |Λ1| columns of E1 are the standard
unit vectors ei ∈ IRn with i ∈ Λ1, while the other remaining columns are
zeros. In addition, let E2 ∈ IRn×n be such that the first |Λ1| columns are
zeros and the last |Λ2| columns are composed of ei’s where i /∈ Λ1. Further,

let E :=

[
E1 E2

E2 E1

]
. We note that

E1E
T
1 +E2E

T
2 = In, EiE

T
j = 0 (∀i ̸= j) and EET = ETE = I2n.

(3.14)

Then the matrix L·Λ is precisely the submatrix of L̃ := ETME containing
all its rows and its first n columns. Meanwhile, using the identities (3.14),

it can be verified that the matrix L̃ is also equal to I2n − T̃ †T̃ where T̃ :=

TE = [ U V ], U := T

[
E1

E2

]
and V := T

[
E2

E1

]
. Calculating L̃ using this

formula, we see that

L·Λ =

[
In − UTWU
−V TWU

]
,

whereW = (TTT)−1. Noting that UUT+V V T =W−1, which can be derived
from (3.14), we obtain

UTWV V TWU = UTWU − (UTWU)2. (3.15)

Then

∥L·Λ∥2 = λmax(L
T
·ΛL·Λ)

= λmax

(
(In − UTWU)2 + UTWV V TWU

)
= λmax(In − UTWU)

where the last equality follows from (3.15). Meanwhile, we know from the
definition of U that it is composed of the columns of T which are indexed by
Λ. By Lemma 2.12, these columns must be linearly independent so that U
is nonsingular and 1 is not an eigenvalue of In − UTWU . We conclude that
∥L·Λ∥ ≠ 1. But by Lemma 3.14, we know that ∥L·Λ∥ ≤ ∥L∥ = 1. Hence, we
arrive at the desired conclusion. □

Using the above lemma, we obtain the following proposition.

Proposition 3.16. Let {wk}∞k=0 be any sequence generated by (MAP), and
suppose there exists τ ∈ T such that Sτ ∩ (C1 ∩ C2) = ∅, i.e. Sτ does not
contain a solution of (FP). Then there does not exist N ∈ N such that
{wk}∞k=N ⊆ Sτ ∩ Ω, where Ω is given by (2.13).

Proof. Suppose to the contrary that there exists N such that wk ∈ Sτ ∩ Ω
for all k ≥ N . To prove the result, we will show that wk converges to some
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point w∗ ∈ Sτ ∩ (C1 ∩ C2) which is a contradiction to our hypothesis. To
this end, we apply a convenient change of variables based on τ . First, let
Λ1 := {i : τ(i) = 1} and Λ2 := {n + i : τ(i) = 2}. With these index sets,

define the matrices E, L·Λ, L̃ and T̃ be as in the proof of Lemma 3.15.
We consider the transformation w = Ew̃. Similar to the discussion in

Section 2.1, we see that w ∈ Ci if and only if w̃ ∈ C̃i where C̃1 := {w̃ : T̃ w̃ =√
2c} and C̃2 = C2. Moreover,

w ∈ Sτ ∩ Ω ⇐⇒ ũi > ṽi and ũi ≥ 0 ∀i = 1, . . . , n. (3.16)

Analogous to equations (2.1) and (2.2), we have

(PC1
◦ PC2

)(w) = E(PC̃1
◦ PC̃2

)(w̃),

and

Fix(PC1
◦ PC2

) = E
(
Fix(PC̃1

◦ PC̃2
)
)

(3.17)

since E is unitary. We now look at the transformed iterates w̃k = ETwk =

(ũk, ṽk). By (3.16), we have ũk > ṽk and ũk ≥ 0 for all k ≥ N so that

w̃k+1 = (PC̃1
◦ PC̃2

)(w̃k) (3.18)

= PC̃1

(
(ũk, 0)

)
(3.19)

= L̃(ũk, 0)T +
√
2T̃ †c (3.20)

= L·Λũ
k +

√
2T̃ †c ∀k ≥ N,

where (3.19) and (3.20) follow from Propositions 2.2 and 2.1, respectively.

Letting L·Λ =

[
(L·Λ)1
(L·Λ)2

]
and

√
2T̃ †c =

[
d1
d2

]
where (L·Λ)1, (L·Λ)2 ∈ IRn×n and

d1, d2 ∈ IRn, then we see that ũk+1 = (L·Λ)1ũ
k+d1 and ṽ

k+1 = (L·Λ)2ũ
k+d2.

Since ∥L·Λ∥ < 1 by Lemma 3.15, we also have by Lemma 3.14 that ∥(L·Λ)1∥ <
1 so that {ũk}∞k=0 is convergent. Consequently, {ṽk}∞k=0 is also convergent.

Therefore, there exists w̃∗ such that w̃k → w̃∗ as k → ∞. Moreover,
we have from (3.18) that w̃∗ = (PC̃1

◦ PC̃2
)(w̃∗), i.e. w̃∗ ∈ Fix(PC̃1

◦ PC̃2
).

Since wk = Ew̃k, it also follows that wk → w∗ := Ew̃∗ and from (3.17),
w∗ ∈ Fix(PC1 ◦ PC2). Since Ω is closed, it also follows that w∗ ∈ Ω. From
Theorem 2.13, we must have w∗ ∈ C1∩C2. However, since w∗ must belong to
the closure of Sτ , the fact that it is in C1 ∩ C2 implies that w∗ ∈ Sτ . Hence,
w∗ ∈ Sτ ∩ (C1 ∩ C2). This is a contradiction. □

3.3. Rate of Convergence

An immediate consequence of Lemma 3.15 is the local linear rate of conver-
gence of the iterates (MAP).

Theorem 3.17. Let m = n and suppose that w∗ ∈ C1∩C2 such that (u∗i , v
∗
i ) ̸=

(0, 0) for all i = 1, . . . , n. If Q given by (2.15) is nondegenerate, then there
exists sufficiently small δ > 0 such that for any w0 with ∥w0 − w∗∥ < δ, the
sequence {wk}∞k=0 generated by (MAP) converges linearly to w∗.
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In the following, we denote by supp(w) := {i : wi ̸= 0} the support of a
vector w.

Proof. Let τ∗ ∈ T such that w∗ ∈ Sτ∗ . Observe that since (u∗i , v
∗
i ) ̸= (0, 0)

for all i = 1, . . . , n, then Γ∗ defined in Theorem 3.12 is precisely the set Sτ∗ .
Choose δ > 0 sufficiently small so that the closure of B(w∗, δ) is contained
in the interior of Γ∗ = Sτ∗ . From the discussion in Remark 3.13, we have
{wk}∞k=0 ⊆ B(w∗, δ) whenever w0 ∈ B(w∗, δ). Moreover, there exists w̄ ∈
C1 ∩ C2 in the interior of Sτ∗ such that wk → w̄ as k → ∞ for any w0 ∈
B(w∗, δ). Thus, (ūi, v̄i) ̸= (0, 0) for all i = 1, . . . , n. Meanwhile, in view of
the equivalence of AVE and the LCP described in Remark 2.18 together
with [11, Theorem 3.6.3], the nondegeneracy assumption on Q implies that
w∗ is an isolated solution of the feasibility problem (FP). Thus, by choosing
a smaller δ (if necessary), we have that w̄ = w∗. That is, wk → w∗ for all
w0 ∈ B(w∗, δ).

Denote by Λ the support of w∗. Since {wk}∞k=0 is contained in the in-
terior of Sτ∗ and wk → w∗, then we have by Proposition 2.2 that PC2

is
single-valued at wk and supp(PC2

(wk)) = Λ for all k ≥ 0. Thus,

∥(PC2(w
k)− PC2(w

∗))Λ∥ = ∥PC2(w
k)− PC2(w

∗)∥ ≤ ∥wk − w∗∥,
where the inequality holds by nonexpansiveness of PC2 on Sτ∗ (Corollary 2.4).
Then if L·Λ denotes the submatrix of L := I2n − T †T containing all of its 2n
rows and all its columns indexed by Λ, we have from Proposition 2.1 that

∥wk+1 − w∗∥ = ∥PC1
(PC2

(wk))− PC1
(PC2

(w̄))∥
= ∥L(PC2

(wk))− L(PC2
(w∗))∥

= ∥L·Λ(PC2(w
k)− PC2(w

∗))Λ∥
≤ ∥L·Λ∥ · ∥(PC2(w

k)− PC2(w
∗))Λ∥

≤ ∥L·Λ∥ · ∥wk − w∗∥,
Since ∥L·Λ∥ < 1 by Lemma 3.15, the conclusion of this theorem follows. □

The rate of convergence asserted by the above result can also be obtained
using [24, Theorem 5.16] and Proposition 2.12. In fact, it can be extended
to the general case when m is not necessarily equal to n using the notions
of “super-regularity” and “linearly regular intersection”. We recall from [24]
that a closed set C is super-regular at w∗ if, for all ε > 0, any two points
z1, z2 sufficiently close to w∗ with z2 ∈ C, and any point y ∈ PC(z1), satisfy
⟨z1 − y, z2 − y⟩ ≤ ε∥z1 − y∥ · ∥z2 − y∥. In particular, a convex set is super-
regular at each of its points. We refer the reader to [13] for more details on
how super-regularity is related with other pre-existing notions.

To define the concept involving sets with linearly regular intersection,
we first recall that the limiting normal cone to a closed set C at w∗ ∈ C is
given by

NC(w
∗) =

{
lim
k→∞

tk(w
k − zk) : tk ≥ 0, wk → w∗, zk ∈ PC(w

k)

}
.
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We say that two closed sets C1 and C2 have a linearly regular intersection at
w∗ ∈ C1 ∩ C2 if

NC1
(w∗) ∩ (−NC2

(w∗)) = {0}. (3.21)

With these definitions, we state the following convergence result from [24].

Lemma 3.18. [24, Theorem 5.16] If C1 and C2 are closed sets which have
a linearly regular intersection at w∗ ∈ C1 ∩ C2 and if either C1 or C2 is
super-regular at w∗, then any alternating projection sequence with initial point
sufficiently close to w∗ converges linearly to a point in C1 ∩ C2.

Using the above result, we obtain the local linear convergence of the
MAP iterates.

Theorem 3.19. Suppose that w∗ ∈ C1 ∩ C2 such that (u∗i , v
∗
i ) ̸= (0, 0) for all

i = 1, . . . , n. If condition (C) holds, then any sequence generated by (MAP)
with initial point sufficiently close to w∗ converges linearly to a point in C1∩
C2.

Proof. We note that since C1 is convex, then it is super-regular at each of
its points. Thus, by Lemma 3.18, it suffices to show that C1 and C2 have a
linearly regular intersection at w∗ ∈ C1 ∩ C2 where (u∗i , v

∗
i ) ̸= (0, 0) for all

i = 1, . . . , n. Directly from the definition, the limiting normal cones to C1

and C2 are given, respectively, by

NC1
(w) = Ker(T )⊥ ∀w ∈ C1

and

NC2
(w) = {w′ = (u′, v′) ∈ IRn × IRn : (u′i, v

′
i) ∈ NM (ui, vi)} ∀w ∈ C2

(3.22)
where M is given by (2.6) and

NM (s, t) =


{(0, λ) : λ ∈ IR} if s > t = 0

{(λ, 0) : λ ∈ IR} if 0 = s < t

IR2
− ∪M if s = t = 0

.

We note that the normal cone to C2 can also be obtained using [37, Theo-

rem 3.4]. Since (u∗i , v
∗
i ) ̸= (0, 0), it follows that NC2

(w∗) ⊆ Ĉ2, where Ĉ2 is
given by (2.14). By condition (C), we see that (3.21) holds, i.e. the intersec-
tion at w∗ is linearly regular. This completes the proof. □

Notice that the above theorem guarantees local linear convergence of
(MAP) to a point in C1 ∩ C2, which may not be the same as the point w∗.
On the other hand, Theorem 3.17 shows that local linear convergence to w∗

is achieved.
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3.4. Globally convergent relaxation of MAP

In the preceding sections, our analysis was focused on the iterates given by
(MAP). In order to obtain a global result, we now focus on a relaxed version
of the iterations (MAP) given by

wk+1 ∈ (1− γ)PC2(w
k) + γ(PC1 ◦ PC2)(w

k) (3.23)

where γ ∈ (0, 1) is fixed and the initial point is w0 = (1− γ)w̄0 + γPC1(w̄
0)

with w̄0 ∈ C2.

Theorem 3.20. Let {wk}∞k=0 be a sequence generated by (3.23). If {wk}∞k=0

is bounded, then there exists w̄∗ ∈ C2 such that wk → w∗ where w∗ = (1 −
γ)w̄∗ + γPC1(w̄

∗). Moreover, if condition (C) holds and (ū∗i , v̄
∗
i ) ̸= (0, 0) for

all i = 1, . . . , n, then w∗ ∈ C1 ∩C2, that is, the sequence {wk}∞k=0 is globally
convergent to a solution of the feasibility problem (FP).

Proof. To prove the convergence of {wk}∞k=0, denote w̄
k ∈ PC2

(wk) for all
k ≥ 0. By (3.23), we have

wk+1 = (1− γ)w̄k + γPC1(w̄
k) (3.24)

and so

w̄k+1 ∈ PC2(w
k+1) = PC2((1− γ)w̄k + γPC1(w̄

k)). (3.25)

Let h(w) := 1
2∥w − PC1(w)∥2. Then h is a Lipschitz continuous function

with Lipschitz constant 1 and ∇h(w) = w − PC1(w). Thus, w − γ∇h(w) =
(1 − γ)w + PC1

(w). In turn, (3.25) reduces to w̄k+1 ∈ PC2
(w̄k − γ∇h(w̄k)).

From [4, Theorem 5.3], we conclude that there exists a point w̄∗ ∈ C2 such
that w̄k → w̄∗ and

0 ∈ ∇h(w̄∗) +NC2
(w̄∗). (3.26)

By continuity of PC1
and using equation (3.24), we see that wk → w∗ =

(1− γ)w̄∗ + γPC1(w̄
∗).

To prove global convergence to a solution, note that from (3.26), there
exists z∗ ∈ NC2

(w̄∗) such that z∗ = PC1
(w̄∗)−w̄∗. The latter equation implies

that z∗ ∈ Ker(T )⊥. Since (ū∗i , v̄
∗
i ) ̸= (0, 0) for all i = 1, . . . , n, it follows from

(3.22) that NC2(w̄
∗) ⊂ Ĉ2. By condition (C), we conclude that z∗ = 0 and

therefore w̄∗ = PC1(w̄
∗), i.e. w̄∗ ∈ C1. Hence, w∗ = w̄∗ ∈ C1 ∩ C2. □

3.5. A related fixed point algorithm

Another algorithm can also be derived from the method of alternating projec-
tions. To describe this algorithm, we denote by D the multivalued mapping
from IRn × IRn to IR2n×2n such that for each w = (u, v) ∈ IRn × IRn, D(w)
is a set containing diagonal matrices Dw such that

((Dw)ii, (Dw)n+i,n+i) ∈


{(1, 0)} if ui > vi, ui ≥ 0

{(0, 1)} if ui < vi, vi ≥ 0

{(0, 1), (1, 0)} if ui = vi > 0

{(0, 0)} if ui = vi ≤ 0

,
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for all i = 1, . . . , n. Then, the projection onto C2 can equivalently written as

PC2
(w) = D(w)w = {Dww : Dw ∈ D(w)}.

Suppose now that w is a fixed point of PC1
◦ PC2

, i.e. w ∈ (PC1
◦ PC2

)(w).

Recalling that PC1(w) = Lw +
√
2T †c where L = I2n − T †T , we have

w = LDww +
√
2T †c, where Dw ∈ D(w).

That is, w ∈ Fix(PC1
◦ PC2

) if and only if there exists Dw ∈ D(w) such that

(I2n − LDw)w =
√
2T †c.

This motivates the iterations

wk+1 =
√
2(I2n − LDwk)−1T †c, (3.27)

whereDwk ∈ D(wk). This algorithm is well-defined if 1 is not an eigenvalue of
LD(wk) for all k. A particular case is described in the following proposition.

Proposition 3.21. The iterations (3.27) are well-defined for any initial point
w0 ∈ IRn × IRn if Q given by (2.15) is nondegenerate.

Proof. We show that for all w ∈ IRn×IRn, the matrix I2n−LDw is nonsingu-
lar for any Dw ∈ D(w). To this end, let Λ = {i ∈ {1, . . . , 2n} : (Dw)ii = 1}.
Then

∥LDw∥ = ∥L·Λ∥ ≤ ∥L∥,
where the inequality follows from Lemma 3.14. Since Q is nondegenerate,
∥L∥ < 1 by Lemma 3.9. Thus, ∥LDw∥ < 1 and therefore I2n − LDw is
nonsingular, as desired. □

Unlike the iterates (MAP), it is not difficult to show that any sequence
generated via (3.27) is bounded.

Proposition 3.22. Let {wk}∞k=0 be any sequence generated by (3.27). Then
{wk}∞k=0 is a bounded sequence. Any accumulation point w∗ of {wk}∞k=0 sat-

isfies w∗ =
√
2(I2n − LD∗)−1T †c, where D∗ ∈ IR2n×2n is a diagonal ma-

trix with diagonal elements of 1 or 0 and satisfy D∗
iiD

∗
n+i,n+i = 0 for all

i = 1, . . . , n.

Proof. Note that the range of the multivalued mapping D is a finite set. In
particular, the set {Dw : Dw ∈ D(w) and w ∈ IRn × IRn} has 3n elements.
Thus, there exists a constant κ ∈ (0,∞) such that ∥(I2n − LDw)

−1∥ ≤ κ for

all w ∈ IRn × IRn and Dw ∈ D(w). Thus, ∥wk+1∥ ≤
√
2∥(I2n − LDwk)−1∥ ·

∥T †c∥ ≤
√
2κ∥T †c∥ for all k. Hence, {wk}∞k=0 is a bounded sequence. To prove

the last claim, let w∗ be an arbitrary accumulation point of {wk}∞k=0, and let
{wkj}∞j=1 be a subsequence that converges to w∗. Denote by dkj−1 the diag-

onal entries of Dwkj−1 . Then the sequence {(wkj , dkj−1)}∞j=1 is bounded and
must have subsequence that converges to some point (w∗, d∗). Without loss
of generality, we may assume that {(wkj , dkj−1)}∞j=1 converges to (w∗, d∗). It
follows that Dwkj−1 → D∗ as j → ∞, where D∗ is the diagonal matrix with
diagonal entries equal to d∗. Setting k = kj in (3.27) and letting j → ∞, we
get the desired conclusion. □
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Both the MAP algorithm (MAP) and the iterations (3.27) are aimed at
finding a fixed point of PC1 ◦PC2 . However, the iterations (3.27) require more
computational effort than MAP since the former involves solving a linear
system involving 2n equations in 2n unknowns for each iteration. Neverthe-
less, we may consider a hybrid algorithm where we generate first a sequence
of MAP iterates, then use (3.27) for the succeeding iterations. We call this
approach the MAP-LS algorithm (where LS denotes linear system involved
in computing the iterations given by (3.27)) which is described in Algorithm
1. Whenever convergent, the limit of the sequence generated by MAP-LS
algorithm is necessarily a fixed point of PC1

◦ PC2
.

Algorithm 1: MAP-LS algorithm

Choose a termination parameter ε and set w0 = T †c. Let N be a
positive integer and δ > 0. Set k = 0.
Step 1.. Let

wk+1 ∈

{
(PC1 ◦ PC2)(w

k) if k ≤ N and ∥wk+1 − wk∥ > δ√
2(I2n − LDwk)−1T †c if k > N or ∥wk+1 − wk∥ ≤ δ.

.

Step 2.. Set xk+1 = 1√
2
(uk+1 − vk+1).

Step 3.. Stop if ∥Axk+1 +B|xk+1| − c∥ ≤ ε. Otherwise, set k = k + 1
and go to Step 1.

4. Numerical simulations

In this section, we demonstrate the applicability of MAP and MAP-LS in
solving randomly generated absolute value equations (1.1). We first note some
remarks on the implementation of our algorithms.

4.1. Implementation of MAP and MAP-LS

If T = [ A+B −A+B ] ∈ IRm×2n is of full row rank, then its Moore-
Penrose inverse of T is well-known and is given by

T † = TT(TTT)−1.

In view of Proposition 2.1, we calculate the projection onto C1 of a point
w ∈ IRn × IRn by first solving for z in

TTTz = Tw −
√
2c, (4.1)

then setting PC1
(w) = w − TTz.

Notice that since T is of full row rank, the coefficient matrix TTT of
the linear system (4.1) is a symmetric positive definite matrix, so we can use
its Cholesky decomposition. In particular, we use the Matlab function dS =

decomposition(S,’chol’) where S := TTT = 2(AAT+BBT) and solve for

z in (4.1) by using the backslash operator, i.e. z = dS\b where b := Tw−
√
2c.

In particular, by virtue of Lemma 2.8, the above procedure can be
applied when dealing with the traditional AVE (1.1) with A ∈ IRn×n and
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B = −In. Furthermore, in this case, the matrix-vector multiplication TTz
can be calculated more efficiently by computing first z′ := ATz so that
TTz = (z′ − z,−z′ − z).

On the other hand, the inversion of 2n × 2n matrix in equation (3.27)
may be computationally intensive. However, since I2n − LDwk can be parti-
tioned into four n × n blocks, then its inverse can be calculated in terms of

the inverses of two n × n matrices. Particularly, if we let L =

[
L1 L2

LT
2 L3

]
and Dwk =

[
Dk

1 0
0 Dk

2

]
, then

I2n − LDwk =

[
In − L1D

k
1 −L2D

k
2

−LT
2D

k
1 In − L3D

k
2

]
.

Thus, the inverse of I2n − LDwk can be calculated in terms of the inverse
of In − L1D

k
1 and the inverse of its Schur complement (or the inverse of

In −L3D
k
2 and the inverse of its Schur complement). These inverses exist, in

particular, if ∥LDwk∥ < 1 (such as when Q is nondegenerate) in which case
∥LDk

1∥ < 1 and ∥LDk
2∥ < 1 by Lemma 3.14. In general, such approach is

more efficient than dealing directly with the inverse of I2n − LDwk . Hence,
we take this approach when using the MAP-LS algorithm.

4.2. Numerical results

We compare MAP and MAP-LS to four other algorithms in the literature,
each of which is a representative of the four classifications described in the
introduction. We only choose those algorithms which, like MAP and MAP-
LS, do not require parameters which need to be tuned carefully. From the
class of algorithms based on Newton methods, we choose the generalized
Newton method (GNM) [27] as the other variants of the Newton method
involve parameters that may be problem-dependent or are difficult to tune.
From the second group, we choose the Picard iteration method (PIM) in [33].
The variant of this method presented in [35] is only applicable for positive
definite matrices and involves a problem-dependent parameter. On the other
hand, the iterates of the Douglas-Rachford splitting method [9] are simply
convex combinations of the PIM iterates and the current iterate (similar to
the MAP relaxation (3.23)). In fact, if we use the prescribed parameters
in [9], the Douglas-Rachford iterates approximate the PIM iterates. From
matrix splitting iteration methods, we choose the Gauss-Seidel iteration [15].
The SOR-like iteration method [23] also requires a parameter, and from the
numerical results presented in [23], we see that the SOR-like iteration also
generates iterates which are approximately the same as the PIM iterations for
optimally chosen parameters. Finally, we note that the concave minimization
approach involves solving a linear program at each iteration, which may be
inefficient for large scale problems. We omit comparisons with this approach
for the case B = −In as the current algorithms in the literature [25, 28]
are not competitive enough with the other methods. However, we use the
successive linearization algorithm (SLA) in [26] for the general AVE (1.1),
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which is the only existing algorithm in the literature that can solve such
problems.

We briefly describe the algorithms we have chosen for our numerical
comparisons:

(a) Generalized Newton method (GNM) [27]
This algorithm is aimed at solving the AVE (1.1) with m = n and
B = −In, and the iterations are given by

xk+1 = (A−Dk)−1c, (4.2)

where Dk = diag(sgn(xk1), . . . , sgn(x
k
n)). The iterations are derived by

applying the semismooth Newton method in solving the equation Ax−
|x| − c = 0. As in [27], we use the Matlab’s backslash operator “\” to
obtain the iterates. The maximum iterations for this algorithm is set to
2000.

(b) Picard iteration method (PIM) [33]
This method is applicable whenever m = n and A is invertible. The
algorithm consists of the fixed point iterations for the equation x =
A−1(−B|x|+ c), that is,

xk+1 = A−1(−B|xk|+ c). (4.3)

From the above formula, we only need to compute A−1 once. For the
sake of efficiency, we pre-compute the LU decomposition of A using the
decomposition function of Matlab. We set the maximum number of
iterations to 2000.

(c) Gauss-Seidel iteration method (GSM) [15]
Similar to the generalized Newton method, this Gauss-Seidel algorithm
solves the AVE Ax − |x| = c by decomposing A as A = D − E − F
where D, E and F are diagonal, strictly lower triangular and strictly
upper triangular matrices. Using this decomposition, the Gauss-Seidel
iterations are given by

(D − E)xk+1 − |xk+1| = Fxk + c.

Though the above system is nonlinear, the next iterate xk+1 can be eas-
ily solved sinceD−E is lower triangular. In particular, having computed
xk+1
1 , we inductively compute xk+1

i using the previously obtained coor-

dinates xk+1
1 , xk+1

2 , . . . , xk+1
i−1 . We set the maximum iterations to 20000.

(d) Successive linearization algorithm (SLA) [26]
This is the only algorithm in the existing literature which can handle the
general AVE (1.1). Given an initial point (x0, t0, s0) ∈ IRn × IRn × IRm,
we solve the linear programming problem

min ϵ

n∑
i=1

(sgn(xki )xi + ti) +

m∑
j=1

si

s.t. − s ≤ Ax+Bt− c ≤ s

− t ≤ x ≤ t,
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and call its solution (xk+1, tk+1, sk+1). To solve this linear program,
we use the Matlab function linprog. We set the maximum number of
iterations to 1000.

All simulations were carried out in Matlab R2020a on a desktop machine
with an Intel Core i7-8700 3.20 GhZ and 32GB of memory. We use the zero
vector as the initial point for all the algorithms, and the stopping criterion is

∥Axk +B|xk| − c∥ ≤ ε with ε = 10−6. (4.4)

For the case m = n and B = −In, we compare our algorithms with GNM,

PIM and GSM, since SLA takes a lot of computing time in solving the these
problems. For the general case, we can only compare our algorithms with the
SLA as the other solvers can only handle the case m = n.

Example 4.1. We generate a matrix A as in [27]. First, we generate a matrix
A′ ∈ IRn×n whose entries are from the uniform distribution on [−10, 10].
Then, we let A = A′/(tσmin(A

′)) where t is a uniform random number in [0, 1].
We then randomly generate a vector x∗ ∈ IRn such that x∗i = r · 10αs where
α ∈ {0, 1, 2, 3}, while r and s are generated from the uniform distribution on
[−1, 1] and [0, 1], respectively. Finally, we set c = Ax+B|x|, where B = −In.
We note that the case α = 0 is precisely the test problem considered in [27].

In this example, σmin(A) > σmax(B) so that the AVE (1.1) has a unique
solution (see Remark 2.18). For our experiments, we let n = 5000 and gener-
ate 100 random AVEs as described above. We report in Table 1 the success
rates and averages of CPU time and number of iterations (of successful sim-
ulations) of MAP, GNM, PIM and GSM. First, note that PIM has the best
average CPU time in solving the AVEs, followed by GNM and our MAP
algorithm. However, in terms of reaching a solution with residual given by
(4.4), both GNM and PIM have relatively lower success rates compared to
MAP. Moreover, GNM and PIM failed to solve several test problems as α
increases. In particular, both of these algorithms failed to solve 100 randomly
generated AVEs when α = 3. On the other hand, our algorithm is still able
to solve more than 60% of the problems when α = 3. Finally, notice that
Gauss-Seidel method failed to solve any of the problems. For this algorithm,
each component of the iterate xk+1 is obtained by solving a nonlinear equa-
tion of the form ax − |x| = b. This equation might not have a solution for
b ̸= 0 if b/(a − 1) < 0 and b/(a + 1) > 0, which is the reason why GSM
failed in solving the generated AVEs. In fact, this problem was encountered
by GSM during the first iteration for all of the test problems considered.

We next demonstrate the use of MAP-LS algorithm in the following two
examples.

Example 4.2. We set B = −In and let A = A′(A′)T where A′ ∈ IRn×n is
sampled from the standard normal distribution. We also randomly generate
a vector x∗ from the standard normal distribution, and set c = Ax∗ +B|x∗|.
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Table 1. Numerical results for Example 4.1.

Method
α

0 1 2 3

MAP

Success rate 1 0.99 0.87 0.62
Ave. Time 2.58 3.03 3.13 10.42
Ave. Iter 40.85 52.51 55.44 250.39

GNM

Success rate 0.76 0.55 0 0
Ave. Time 2.23 2.29 − −
Ave. Iter 3.93 4.00 − −

PIM

Success rate 0.75 0.54 0.01 0
Ave. Time 0.57 0.59 0.84 −
Ave. Iter 4.99 5.65 22.00 −

GSM

Success rate 0 0 0 0
Ave. Time − − − −
Ave. Iter − − − −

For each n ∈ {50, 100, 500, 1000, 2000, 3000}, we generate 100 random AVEs
as described. For this experiment, we note that the convergence of MAP can
possibly be extremely slow (for instance, see Figure 2). Hence, we solve the
randomly generated problems using MAP-LS algorithm only, and we present
comparisons with GNM, PIM and GSM. The summary of the results is re-
ported in Table 2. For the MAP-LS algorithm, we set N = 100 and δ = 10−3

in Algorithm 1. In Table 2, we also report two averages of iteration num-
bers for MAP-LS: (i) “Ave. Iter (MAP)” indicates the average number of
MAP iterations (MAP) of successful instances, and (ii) “Ave. Iter (LS)” in-
dicates the average number of the linear system iterations (3.27) of successful
simulations.

We see from Table 2 that MAP-LS used 100 iterations of the alternat-
ing projections (MAP) for all the test problems, before using the iterations
(3.27). Moreover, the average number of iterations via (3.27) increases as the
dimension n increases. Despite this, it is evident that the average CPU time
required by MAP-LS to solve the AVEs is significantly shorter than the time
required by GNM. In fact, the gap in CPU times spent by MAP-LS and
GNM becomes more apparent as the dimension of the problem increases.
This is due to the fact that GNM took much more iterations than MAP-LS.
Recall that using the implementation described in Section 4.1, each iteration
of MAP-LS requires two n × n matrix inversions, while from (4.2), we see
that GNM only needs to invert a single n×n matrix at each iteration. How-
ever, as GNM took significantly more iterations than MAP-LS, the latter
significantly outperforms the former.

In addition, MAP-LS achieved at least 75% success rate in solving the
AVEs of different dimensions n, while the success rate of GNM decreases
dramatically as n increases. In particular, for n = 3000, GNM only achieved
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less than 25% success rate. Finally, PIM failed to solve all the generated
test problems after reaching the maximum number of iterations set for all
n considered, while GSM achieved low success rates for n ∈ {50, 100} and
failed to solve the problems when n ∈ {500, 1000, 2000, 3000}.
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Figure 2. Convergence of MAP and MAP-LS for a test
problem generated as in Example 4.2 with n = 100.

Table 2. Numerical results for Example 4.2

Method
n

50 100 500 1000 2000 3000

MAP-LS

Success(%) 0.89 0.84 0.78 0.81 0.76 0.76
Ave. Time 0.00242 0.0056 0.21 1.40 10.81 36.67
Ave. Iter (MAP) 98.47 99.48 100 100 100 100
Ave. Iter (LS) 3.15 4.94 10.38 15.14 19.41 23.38

GNM

Success(%) 0.68 0.71 0.84 0.84 0.63 0.22
Ave. Time 0.00048 0.0039 0.51 6.28 74.91 252.69
Ave. Iter 11.03 24.44 118.55 335.90 803.70 1067.32

PIM

Success(%) 0 0 0 0 0 0
Ave. Time − − − − − −
Ave. Iter − − − − − −

GSM

Success(%) 0.24 0.17 0 0 0 0
Ave. Time 0.18671 1.6259 − − − −
Ave. Iter 3937.29 15413.41 − − − −
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Example 4.3. As mentioned in the introduction, the linear complementarity
problem (LCP), that is, the problem of finding x ∈ IRn satisfying

x ≥ 0, Mx+ q ≥ 0 and ⟨x,Mx+Q⟩ = 0 (4.5)

where M ∈ IRn×n and q ∈ IRn is equivalent to the absolute value equation.
In particular, we have from [29, Proposition 2] that (4.5) is equivalent to
(1.2) with A = (M − I)−1(M + I) and c = (M − I)−1q provided that 1
is not an eigenvalue of M . We now use this equivalence to solve standard
test problems for LCP given in [22, Example 7.4] where M is given by M =
CTC +D + diag(η), q ∈ IRn is randomly generated from (−500, 0), and n ∈
{50, 100, 150, 200}. Here, C,D ∈ IRn×n and η ∈ IRn are randomly generated
such that cij , dij ∈ (−5, 5), ηi ∈ (0, 0.3) and D is skew-symmetric. Similar
to the preceding example, we compare only MAP-LS with the other three
algorithms, and the results are summarized in Table 3. All of the methods
considered were able to solve all the test problems generated, with GNM
achieving the best running time among all. On the other hand, MAP-LS,
PIM and GSM have almost the same running time.

Table 3. Numerical Results for Example 4.3

Method
n

50 100 150 200

MAP-LS

Success(%) 1 1 1 1
Ave. Time 0.0044 0.010 0.019 0.029
Ave. Iter (MAP) 100.00 100.00 100.00 100.00
Ave. Iter (LS) 9.66 10.86 11.93 12.23

GNM

Success(%) 1 1 1 1
Ave. Time 0.0003 0.001 0.002 0.003
Ave. Iter 7.62 8.09 8.75 8.84

PIM

Success(%) 1 1 1 1
Ave. Time 0.0053 0.012 0.028 0.041
Ave. Iter 1110.21 1482.51 1805.79 2009.94

GSM

Success(%) 1 1 1 1
Ave. Time 0.0071 0.014 0.027 0.036
Ave. Iter 137.27 125.72 119.02 113.2

Example 4.4. We sample the entries of A,B ∈ IRm×n and x∗ ∈ IRn from the
standard normal distribution, and we set c = Ax∗ + B|x∗|. We let n = 500
and for each m = rn with r ∈ {0.25, 0.5, 0.75, 1.5, 2, 3}, we generate 100
random AVEs and solve these problems using MAP and SLA. The results are
summarized in Table 4. Observe that both algorithms were able to solve all
the randomly generated problems. However, it is noticeable that the difference
in the average CPU time spent in solving the test problems is quite significant.
More specifically, the ratios of the average CPU time of SLA to the average
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CPU time of MAP for the six values of r considered are 516.60, 712.23,
247.15, 211.84, 1604.34 and 470.73, respectively. This shows the substantial
difference in performance of the two algorithms.

Table 4. Numerical Results for Example 4.4

Method
r

0.25 0.5 0.75 1.5 2 3

MAP

Success rate 1 1 1 1 1 1
Ave. Time 0.01 0.03 0.26 0.12 0.02 0.19
Ave. Iter 104.19 296.34 2162.84 227.16 1 1

SLA

Success rate 1 1 1 1 1 1
Ave. Time 4.21 19.69 63.60 26.11 31.33 90.31
Ave. Iter 2.38 3.64 6.11 1 1 1
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