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ABSTRACT
In contrast to symmetric cone optimization, there has no uni-
fied framework for non-symmetric cone optimization. One
main reason is that the structure of various non-symmetric
cone differs case by case. Especially, their boundary conditions
are usually mysterious. In this paper, we provide characteriza-
tions of boundary conditions on some non-symmetric cones,
including p-order cone, ellipsoidal cone, power cone and gen-
eral closed convex cone. These results will be key bricks for
further investigations on non-symmetric cone optimization
accordingly.
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1. Introduction

In contrast to symmetric cone optimization, there has no unified frame-
work for non-symmetric cone optimization. One main reason is that the
structure of various non-symmetric cone differs case by case. In the litera-
ture, the study regarding non-symmetric cones, focuses on homogeneous
cones [1–3], matrix norm cones [4], p-order cones [5–8], hyperbolicity
cones [9–11], circular cones [12, 13] and copositive cones [14], etc. In par-
ticular, there seems no systematic study due to the various features and
very few algorithms are proposed to solve optimization problems with these
non-symmetric cones constraints, except for some interior-point type meth-
ods [1, 8, 15, 16]. For instance, Xue and Ye [8] study an optimization prob-
lem of minimizing a sum of p-norms, in which two new barrier functions
are introduced for p-order cones and a primal-dual potential reduction
algorithm is presented. Chua [1] combines the T-algebra with the primal-
dual interior-point algorithm to solve the homogeneous conic program-
ming problems. In light of the concept of self-concordant barriers and the
efficient computational experience of the long path-following steps,
Nesterov [15] proposes a new predictor-corrector path-following method.
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Skajaa and Ye [16] investigate a homogeneous interior-point algorithm for
non-symmetric convex conic optimization.
Besides the aforementioned interior-point type methods, are there any

other possible algorithms that we can explore? To answer this question, we
recall that one category of algorithms to deal with optimization problems
rely on so-called complementarity functions, which play an important role
in recasting the corresponding KKT conditions as a system of nonsmooth
equations or an unconstrained minimization problem. Hence, looking for
appropriate complementarity functions is an important issue from a com-
putational viewpoint. In [17], the authors establish novel constructions of
complementarity functions associated with symmetric cones, in which the
decomposition associated with symmetric cones and the boundary condi-
tions on symmetric cones are crucial in the analysis. Can these ideas be
employed in non-symmetric cone setting? Indeed, for non-symmetric
cones, their corresponding decompositions are figured out only in a few
cases, see [13, 18]. The big hurdle is still the miscellaneous structures of
non-symmetric cones. In view of this, we pay attention to the boundary
conditions on some non-symmetric cones, which may help building up
more useful links to explore possible algorithms for solving non-symmetric
cone optimization.
It is well-known that the KKT conditions of an optimization problem is

closely related to complementarity problem. More specifically, for a nonlin-
ear programming, its KKT conditions can be rewritten as a nonlinear com-
plementarity problem (NCP) as below: find a solution x 2 Rn to the
system

x � 0, FðxÞ � 0, hx, FðxÞi ¼ 0,

where h�, �i is the Euclidean inner product and F is a map from Rn to Rn:
There are essentially three popular ways to solve the NCP: (i) smoothing
approach, (ii) merit functions approach, and (iii) projection-type approach.
All of these approaches rely on so-called NCP-functions and their corre-
sponding merit functions. A function / : R2 ! R is called a NCP-function
if

/ða, bÞ ¼ 0 () a, b � 0 and ab ¼ 0:

From nonlinear programming problems to symmetric cone optimization,
the above ideas can be employed if we extend the concepts of NCP-func-
tion and complementarity problem to the setting of symmetric cones.
Accordingly, as a natural extension of the NCP, the symmetric cone com-
plementarity problem (SCCP) is to find a point v 2 E such that

v 2 K, FðvÞ 2 K and hv, FðvÞi ¼ 0,

where F is an operator on Rn; E is a Euclidean Jordan algebra and K is the
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corresponding symmetric cone in E: In particular, for E ¼ Rn and K ¼
Kn, i.e., the second-order cone (SOC, also called Lorentz cone, see Figure
1), defined by

Kn :¼ fx ¼ ð�x, xnÞ 2 Rn�1 �R j xn � jj�xjjg,
then the SCCP reduces to the second-order cone complementarity problem
(SOCCP), which is to find a point z 2 Rn satisfying

z 2 Kn, FðzÞ 2 Kn and hz, FðzÞi ¼ 0:

There exists a special Jordan product associated with SOC of x ¼
ð�x, xnÞ 2 Rn�1 � R and y ¼ ð�y, ynÞ 2 Rn�1 � R, which is defined by

x � y :¼ yn�x þ xn�y, hx, yi
� �

:

Then, by [19, Proposition 2.1], there holds

x 2 Kn, y 2 Kn and hx, yi ¼ 0 () x 2 Kn, y 2 Kn and x � y ¼ 0: (1)

As a result, a so-called C-function (parallel to NCP-function) associated
with SOC is a function u : Rn � Rn ! Rn satisfying

uðx, yÞ ¼ 0 () x 2 Kn, y 2 Kn and x � y ¼ 0:

In the setting of non-symmetric cone, the corresponding complementar-
ity problem becomes finding an element z such that

z 2 K, FðzÞ 2 K� and hz, FðzÞi ¼ 0,

where K� means the dual cone of K: To tackle this non-symmetric cone
complementarity problem, we observe that the following parts are key com-
ponents to do the analysis.

i. z¼ 0 and Fð0Þ 2 K�:

Figure 1. The graph of a 3-dimensional second-order cone.
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ii. z 2 K and F(z) ¼ 0.
iii. z 2 Knf0g, FðzÞ 2 K�nf0g:

For part (iii), it leads to investigate z being on the boundary of the cone
@K and F(z) being on the boundary of the dual cone @K� (this will be ela-
borated more in Section 4). This is another reason why we look into the
boundary conditions of non-symmetric cones. Apparently, our results on
the boundary conditions of non-symmetric cones are connected to non-
symmetric cone complementarity problem, and hence possible algorithms
can be adopted in light of the complementarity problem. In other words,
the results established in this paper will be key bricks for further investiga-
tions on non-symmetric cone optimization accordingly, which has import-
ant contribution to the development of non-symmetric cone optimization.

2. Boundary conditions on ellipsoidal cone

In this section, we provide characterizations of boundary conditions on
ellipsoidal cone [20, 21]. Before showing out the characterizations, we pre-
sent the boundary conditions on second-order cone in the below propos-
ition, which are already studied in [17, Lemmas 2.3, 2.4 and 2.5]. However,
we hereby offer an alternative proof without using the spectral decompos-
ition of vectors. From which, the similar idea and technique will be applied
to our subsequent analysis.

Proposition 2.1. Let x ¼ ð�x, xnÞ, y ¼ ð�y, ynÞ 2 Rn�1 �R with xn 6¼ 0 and
yn 6¼ 0. Then, x 2 Kn, y 2 Kn and x � y ¼ 0 if and only if x, y are both on
the boundary of Kn (that is, xn ¼ jj�xjj, yn ¼ jj�yjj) and yn�x þ xn�y ¼ 0.
Moreover, we have �x 6¼ 0, �y 6¼ 0 and �y ¼ �m�x, where m :¼ jj�yjj

jj�xjj :

Proof. “)” Suppose that x and y are nonzero vectors in Kn with x � y ¼ 0:
Then, we have

yn�x þ xn�y ¼ 0 and 0 ¼ hx, yi ¼ xnyn þ h�x,�yi,

which implies xnyn ¼ �h�x,�yi: Since x, y 2 Kn and xn 6¼ 0, yn 6¼ 0, we have
xn>0, yn>0, which yields

0<xnyn ¼ jh�x,�yij � jj�xjj � jj�yjj � xnyn:

This means xnyn ¼ jj�xjj � jj�yjj and xn ¼ jj�xjj, yn ¼ jj�yjj; and by Cauchy-
Schwartz inequality, one of �x and �y is a multiple of the other.
“(” It suffices to show that if yn�x þ xn�y ¼ 0 then hx, yi ¼ 0: Suppose

yn�x þ xn�y ¼ 0, then ynh�x,�yi þ xnjj�yjj2 ¼ 0: Since yn ¼ jj�yjj, ynh�x,�yi þ
xny2n ¼ 0 and hence hx, yi ¼ xnyn þ h�x,�yi ¼ 0:
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Moreover, we have �x 6¼ 0,�y 6¼ 0, and

xn�y ¼ �yn�x ) �y ¼ � yn
xn

�x ¼ � jj�yjj
jj�xjj �x:

Thus, the proof is complete. w

Remark 2.1. Note that in Proposition 2.1 a vector x ¼ ð�x, xnÞ in the cone Kn

with xn 6¼ 0 is equivalent to say x 2 Kn with x 6¼ 0. We use this just for
convenience.

Proposition 2.1 characterizes the boundary conditions on second-order
cone, which is a symmetric cone, namely it is self-dual. Here, we offer
another way to verify it without using the spectral decomposition of vec-
tors. In fact, this kind of techniques will be employed to derive analogous
conditions for nonsymmetric cones, including ellipsoidal cone, p-order
cone, power cone, and also for general closed convex cones.
The ellipsoidal cone (see Figure 2) is the form of

Ke :¼ fx 2 Rn j xTQx � 0, uTnx � 0g,
where Q 2 Rn�n is a nonsingular symmetric matrix with a single negative
eigenvalue kn corresponding to the unit eigenvector un. The dual cone K�

e
is given as

K�
e :¼ fy 2 Rn j yTQ�1y � 0, uTny � 0g:

Both Ke and K�
e are closed convex cone and it is obvious that Ke is not a

symmetric cone. The arising ellipsoidal cone complementarity problem
(ECCP) is to find a point x 2 Rn such that

Figure 2. The graph of a 3-dimensional ellipsoidal cone.
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x 2 Ke, FðxÞ 2 K�
e and hx, FðxÞi ¼ 0,

where h�, �i is the Euclidean inner product and F : Rn ! Rn is a continu-
ously differentiable mapping.
As an important prototype, ellipsoidal cone is a natural generalization of

second-order cone, circular cone and elliptic cone. More precisely, let

Q ¼ In�1 0
0 �1

� �
or

In�1 0
0 � tan 2h

� �
or

MTM 0
0 �1

� �
,

and un ¼ ð0, :::, 0, 1ÞT , where In�1 is the identity matrix of order n� 1, M is
any nonsingular matrix of order n� 1, the ellipsoidal cone respectively
reduces to the second-order cone:

Kn :¼ x ¼ ð�x, xnÞ 2 Rn�1 �R j xn � jj�xjj
� �

,

the circular cone:

Lh :¼ x ¼ ð�x, xnÞ 2 Rn�1 �R j xn tan h � jj�xjj
� �

,

and the elliptic cone:

Kn
M :¼ x ¼ ð�x, xnÞ 2 Rn�1 �R j xn � jjM�xjj� �

:

Therefore, the ellipsoidal cone complementarity problem (ECCP) covers
a range of nonsymmetric cone complementarity problems.
Since the ellipsoidal cone is described by a symmetric matrix Q, we can

change the x-coordinate to the a-coordinate by an orthogonal matrix UT,
where columns of U are eigenvectors and the corresponding eigenvalues
can be chose to satisfy

k1 � k2 � � � �>0>kn:

Let U :¼ ½u1 u2 � � � un	 and a :¼ ½a1, a2, :::, an	T ¼ UTx, i.e., ai ¼ uTi x for
i ¼ 1, 2, :::, n, it follows that

xTQx ¼
Xn
i¼1

kia
2
i and uTnx ¼ an,

and the ellipsoidal cone Ke can be expressed as

Ke ¼ Ua 2 Rn

���� Xn
i¼1

kia
2
i � 0 and an � 0

( )
: (2)

Similarly, the dual cone K�
e can be expressed as

K�
e ¼ Ub 2 Rn

���� Xn
i¼1

k�1
i b2i � 0 and bn � 0

( )
, (3)

where b :¼ ½b1, b2, :::, bn	T ¼ UTy:
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The product of x and y associated with the ellipsoidal cone Ke is defined
by

x 
 y ¼ w
hx, yi

� �
where w :¼ ðw1, :::,wn�1ÞT with wi ¼ bnk

1
2
iai�knank

�1
2

i bi:

Let D :¼ diag k
�1

2
1 , k

�1
2

2 , � � � , ð�knÞ�
1
2

h i
, the diagonal entries are singular

values of Q, then D is nonsingular. To establish the boundary conditions
on ellipsoidal cone, we need following lemma, which provide equivalent
conditions involved in the Euclidean inner product h�, �i, the Jordan prod-
uct “�” and the product “
”. Indeed, this lemma is a direct consequence of
[21, Theorem 2.3, 2.5]. Here, we give a new proof, which is neat and differs
form the one in the literature.

Lemma 2.1. For any x, y 2 Rn, the following are equivalent:

a. x 2 Ke, y 2 K�
e and hx, yi ¼ 0:

b. D�1UTx 2 Kn, DUTy 2 Kn and ðD�1UTxÞ � ðDUTyÞ ¼ 0:
c. x 2 Ke, y 2 K�

e and x 
 y ¼ 0:

Proof. “(a) () (b)” Note that

ðD�1UTxÞ � ðDUTyÞ ¼

k
1
2
1a1

..

.

k
1
2
n�1an�1

ð�knÞ
1
2an

0
BBBBBB@

1
CCCCCCA

�

k
�1

2
1 b1

..

.

ðkn�1Þ�
1
2bn�1

ð�knÞ�
1
2bn

0
BBBBBB@

1
CCCCCCA

¼

..

.

..

.

..

.

ha, bi

0
BBBBBB@

1
CCCCCCA

¼

..

.

..

.

..

.

hx, yi

0
BBBBBB@

1
CCCCCCA

(4)

where the equalities are due to x ¼ Ua, y ¼ Ub and U being orthogonal.
In addition, from (2) and (3), it follows that

x 2 Ke ()
Xn
i¼1

kia
2
i � 0 and an � 0

() k1a
2
1 þ � � � þ kn�1a

2
n�1 � �kna

2
n and an � 0

() D�1UTx 2 Kn

Similarly, it can be verified that y 2 K�
e if and only if DUTy 2 Kn: Hence,

conditions (a) and (b) are equivalent.
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“(a) () (c)” For x 2 Ke, y 2 K�
e , it is sufficient to show that hx, yi ¼ 0

if and only if x 
 y ¼ 0: From the above equality (4), we see that

hx, yi ¼ 0

() ðD�1UTxÞ � ðDUTyÞ ¼ 0,

() hx, yi ¼ 0 and ð�knÞ�
1
2bn

k
1
2
1a1

..

.

k
1
2
n�1an�1

0
BBB@

1
CCCAþ ð�knÞ

1
2an

k
�1

2
1 b1

..

.

ðkn�1Þ�
1
2bn�1

0
BBB@

1
CCCA ¼ 0,

() hx, yi ¼ 0 and ð�knÞ�
1
2bnk

1
2
iai þ ð�knÞ

1
2ank

�1
2

i bi ¼ 0 for all i ¼ 1, :::, n�1,

() hx, yi ¼ 0 and wi ¼ 0 for all i ¼ 1, :::, n�1,

() x 
 y ¼ 0:

Then, the proof is complete. w

Now, in light of Lemma 2.1, we characterize the boundary conditions on
ellipsoidal cone as below.

Proposition 2.2. Let x, y 2 Rn. If x, y are nonzero vectors with x 2 Ke, y 2
K�
e and hx, yi ¼ 0, then x is on the boundary of Ke and y is on the boundary

of K�
e :

Proof. Suppose that x, y are nonzero vectors with x 2 Key 2 K�
e and

hx, yi ¼ 0: By Lemma 2.1(b), it gives D�1UTx, DUTy are nonzero vectors in
Kn and ðD�1UTxÞ � ðDUTyÞ ¼ 0: Then, applying (1) and Proposition 2.1,
both D�1UTx, DUTy are on the boundary of Kn: Hence, we have

Figure 3. The graph of a 3-dimensional p-order cone with p¼ 8.
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ð�knÞ
1
2an

	 
2

¼ k
1
2
1a1

	 
2

þ � � � þ k
1
2
n�1an�1

	 
2

) k1a
2
1 þ � � � þ kn�1a

2
n�1 þ kna

2
n ¼ 0,

which implies Ua ¼ x is on the boundary of Ke: Similarly, it can be veri-
fied that Ub ¼ y is on the boundary of K�

e : w

3. Boundary conditions on p-order cone and power cone

In this section, we establish the boundary conditions on p-order cone (see
Figure 3) and power cone (see Figure 4), which are two popular cones
in reality.
First, we quickly review the definition of p-order cone [22]. The p-order

cone, denoted by Kp, is defined by

Kp :¼ x ¼ ð�x, xnÞ 2 Rn�1 �R j xn � jj�xjjp
n o

,

and its dual cone is given by

K�
p :¼ y ¼ ð�y, ynÞ 2 Rn�1 � R j yn � jj�yjjq

n o
¼ Kq,

where q � 1 and 1
p þ 1

q ¼ 1: Both Kp and K�
p are closed convex cone.

Indeed, the p-order cone is also a generalization of the second-order cone,
but there is no Jordan product for the setting of the p-order cone yet.
There is a product for p-order cone defined in [22] as below

x�y ¼ w
hx, yi

� �

where w :¼ ðw1, :::,wn�1ÞT with wi ¼ jxnj
p
qjyij�jynjjxij

p
q and �x ¼

ðx1, :::, xn�1ÞT ,�y ¼ ðy1, :::, yn�1ÞT: When x, y satisfy POCCP (see [22]) and

Figure 4. The graph of a 3-dimensional power cone with a ¼ 0:2:
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p ¼ q ¼ 2, it is the Jordan product in the setting of second-order cone, but
it is inappropriate to call it a “Jordan product”, because it is not symmetric
with respect to the inner product, that is, the condition hx�y, zi ¼ hy, x�zi
is not satisfied. For example, for p¼ 3 and q ¼ 3

2 , let x ¼ ð1, 2Þ, y ¼ ð1, 3Þ
and z ¼ ð1, 4Þ then hx�y, zi ¼ 29 but hy, x�zi ¼ 27: Moreover, the � prod-
uct is even not commutative due to ð1, 2Þ�ð1, 3Þ 6¼ ð1, 3Þ�ð1, 2Þ: The follow-
ing proposition describes the boundary conditions on p-order cone, and
the proof is similar to that of Proposition 2.1.

Proposition 3.1. Let x¼ ð�x,xnÞ 2 Rn�1�R, y¼ ð�y,ynÞ 2 Rn�1�R with xn 6¼ 0
and yn 6¼ 0. If x 2 Kp, y 2 K�

p and hx,yi ¼ 0, then x is on the boundary of Kp and
y is on the boundary of K�

p, that is, xn ¼ jj�xjjp and yn ¼ jj�yjjq:
Proof. Suppose that x and y are nonzero vectors with x 2 Kp, y 2 K�

p and
hx, yi ¼ 0, then xnyn þ h�x,�yi ¼ 0: Applying Holder’s inequality yields

0<xnyn ¼ jh�x,�yij � jj�xjjpjj�yjjq � xnyn,

which says xnyn ¼ jj�xjjpjj�yjjq and xn ¼ jj�xjjp, yn ¼ jj�yjjq: Then, the proof is
complete. w

Another cone that has real applications is power cone, see [18] for more
details. We describe its definition as below. Let a1, :::, am 2 R be positive
with a1 þ � � � þ am ¼ 1: The power cone Ka is defined by

Ka :¼ ðx, yÞ 2 Rm
þ � Rn j xa11 xa22 � � � xamm � jjyjj� �

,

and its dual cone is given by

K�
a :¼ ðu, vÞ 2 Rm

þ � Rn

����
�
u1
a1

�a1� u2
a2

�a2

� � �
�
um
am

�am

� jjvjj
( )

:

Following the similar techniques, the boundary conditions on power
cone are established as below.

Proposition 3.2. Let ðx, yÞ 2 Rm
þ � Rn and ðu, vÞ 2 Rm

þ � Rn be nonzero vec-
tors with hx, ui 6¼ 0. If ðx, yÞ 2 Ka, ðu, vÞ 2 K�

a and hðx, yÞ, ðu, vÞi ¼ 0, then
(x, y) is on the boundary of Ka and (u, v) is on the boundary of K�

a:

Proof. Suppose that x1u1 þ � � � þ xmum þ y1v1 þ � � � þ ynvn ¼ 0, using
Cauchy-Schwartz inequality, it leads to

0<x1u1 þ � � � þ xmum ¼ �ðy1v1 þ � � � þ ynvnÞ � jjyjj � jjvjj:
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Then, we have

jjyjj � jjvjj � x1u1 þ � � � þ xmum

¼ a1 x1
u1
a1

� �
þ � � � þ am xm

um
am

� �

� ðx1 u1a1Þ
a1 � � � ðxm um

am
Þam

¼ xa11 � � � xamm ðu1
a1
Þa1 � � � ðum

am
Þam

� jjyjj � jjvjj
>0:

This indicates xa11 x
a2
2 � � � xamm ¼ jjyjj and ðu1a1Þ

a1ðu2a2Þ
a2 � � � ðumamÞ

am ¼ jjvjj, In
other words, (x, y) is on the boundary of Ka and (u, v) is on the boundary
of K�

a: w

4. Boundary conditions on general closed convex cones

It is a natural question whether the aforementioned analysis can be
extended to general closed convex cones. In general, suppose that ðV, h�, �iÞ
is an inner product space and K is a closed convex cone in V: Let K

�

denote the dual cone of K, then the boundary conditions are established
as follows.

Proposition 4.1. Suppose that ðV, h�, �iÞ is an inner product space, K is a
closed convex cone in V, and both K and its dual K� are solid (i.e., their
interiors are nonempty). Let x, y 2 V, and suppose x 2 Knf0g, y 2 K

�nf0g
and hx, yi ¼ 0, then x is on the boundary of K and y is on the boundary
of K�:

Proof. Suppose on the contrary that x is an interior point of K, then there
exists a radius r> 0 such that BrðxÞ ¼ xþ Brð0Þ � K: Consider the point
z ¼ � r

2
y

jjyjj , then jjzjj<r and hence xþ z 2 BrðxÞ � K: Thus, there holds

0 � hxþ z, yi ¼ hx, yi þ hz, yi ¼ hz, yi ¼ � r
2
jjyjj,

which is indeed a contradiction. Therefore, x is on the boundary of K:
On the other hand, since K is a closed convex cone, we have ðK�Þ� ¼ K:

Consider y 2 K
� and x 2 K ¼ ðK�Þ� with hx, yi ¼ 0, as shown above, y

must be on the boundary of K�: w

Remark 4.1. The condition of K being solid is essential in the proof of
Proposition 4.1. Here is a counterexample, which tells that Proposition 4.1
does not hold in the relative sense. The relative interior of K is given by
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relintðKÞ :
¼ fv 2 K j for all u

2 K, there exists some k>1 such that kvþ ð1�kÞu 2 Kg:
Consider K ¼ fð0, 0, zÞ j z � 0g the non-negative z-axis in R3, then the

dual cone is K
� ¼ fðx, y, zÞ j x, y 2 R, z � 0g. Let u ¼ ð0, 0, 1Þ and

v ¼ ð1, 1, 0Þ, we have u 2 relintðKÞ and v 2 @K�, but hu, vi ¼ 0:

In fact, the condition of a closed convex cone in Proposition 4.1 can be
relaxed to a closed set in an inner product space ðV, h�, �iÞ: A dual cone for
any subset C in V can be defined as

C� ¼ fy 2 V j hy, xi � 0, 8x 2 Cg:
Notice that C� is always a convex cone and the result of Proposition 4.1

still holds for the closed set C case.

Proposition 4.2. Suppose that ðV, h�, �iÞ is an inner product space, C is a
closed set in V. Let x, y 2 V, and suppose x 2 Cnf0g, y 2 C�nf0g and
hx, yi ¼ 0, then x is on the boundary of C and y is on the boundary of C�:

Proof. Note that if C is a closed set with the empty interior, then x 2 C if
and only if x belongs to boundary of C. Therefore, we only consider cases:
(i) intðCÞ is nonempty and x 2 intðCÞ or (ii) intðC�Þ is nonempty and y 2
intðC�Þ: In each case, with almost the same arguments as in the proof of
Proposition 4.1, by replacing K, K� with C, C�, respectively, we can verify
that x is on the boundary of C, and y is on the boundary of C�, without
using the convex cone property of K: w

Based on the observation of Proposition 4.1, we would like to propose
an approach to solve the complementarity problem on general closed con-
vex cones. Let F : V ! V be a function defined on V: Before to solve z 2
K and FðzÞ 2 K

�, we divide it into the following three possibilities:

I. z¼ 0 and Fð0Þ 2 K
�:

II. z 2 K and F(z) ¼ 0.
III. z 2 Knf0g, FðzÞ 2 K

�nf0g:

For solutions of types I and II, we do not need to check hz, FðzÞi ¼ 0
since it is automatically satisfied. In fact, for solution of type I, we only
have to check Fð0Þ 2 K

�, and this is simple. On the other hand, for solu-
tion of type II, this is an inclusion problem to find a z 2 F�1ð0Þ \K:
For solution of type III, combined with hz, FðzÞi ¼ 0, then we observe

that z is on the boundary of the cone @K and F(z) is on the boundary of
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the dual cone @K� by Proposition 4.1. We can take second-order cone Kn

as a concrete example. Thus, to find the solution is equivalent to solve the
equations:

zn ¼ jj�zjj, FnðzÞ ¼ jj�FðzÞjj and hz, FðzÞi ¼ 0:

A more fancy way to express the result is the following. Let C ¼ K�K
�:

It is easy to see that C is a closed convex cone in V�V: Define

D ¼ fðu, vÞ 2 @K� @K� j u 6¼ 0, v 6¼ 0, hu, vi ¼ 0g:
Now, we denote �@C :¼ ðf0g �K

�Þ [ ðK� f0gÞ [ D: Suppose z is a solu-
tion to the below complementarity problem:

z 2 K, FðzÞ 2 K
�, hz, FðzÞi ¼ 0:

Then, we have ðz, FðzÞÞ 2 �@C, and vice versa.
In summary, if we understand the boundary behavior of the cone and its

dual more, then we understand the complementarity problem more. In
most of the time, taking ellipsoidal cone, p-order cone and power cone for
instances, the boundary conditions on these cones are always defined by
algebraic equations. These are good and helpful for subsequent analysis and
investigation.
Another research direction is studying on the property of the function F

on the boundary behavior of the cone and its dual, which are also essential
to the complementarity problem. Maybe knowledge from algebraic geom-
etry would help. We leave it for future work.
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