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is called an NCP-function. During the past few decades, numerous NCP-functions
have been proposed and extensively studied in the literature, see [1,4–6,8,9,13,21,
25, 27] and references therein. Moreover, there are also some systematic ways to
construct new NCP-functions, for instance in [1, 13, 25, 27]. There are a couple of
features regarding NCP-functions which are worth pointing out. The first one is that
an NCP-function cannot be differentiable and convex simultaneously as established
in [28]. This fact is further extended to general complementarity function associated
with any closed and convex cone [18]. The other feature is that, even though we have
the differentiability of an NCP-function, the Newton method may not be applied
directly because the Jacobian at a degenerate solution to the NCP may be singular,
see [19, 20]. Nonetheless, the differentiability of an NCP-function is still useful
since we can use some other methods relying on differentiability (like quasi Newton
methods, neural network methods) and hence they can be used directly for solving
the NCP.

The symmetric cone complementarity problem (SCCP), on the other hand, can
be viewed as natural extension of the NCP. The SCCP is the problem of finding a
point z ∈ V such that

(1.2) z ∈ K, F (z) ∈ K, 〈z, F (z)〉 = 0,

where F : V → V is a map, V is a Euclidean Jordan algebra and K is its cor-
responding symmetric cone defined in V. We shall see more details in Section 2
regarding symmetric cone and Euclidean Jordan algebra. The SCCP (1.2) includes
a few well-known complementarity problems as special cases. For example, when
K is the nonnegative orthant IRn

+, the problem (1.2) reduces to the NCP (1.1).
When K is the second-order cone Kn, the problem (1.2) is known as the second-
order cone complementarity problem (SOCCP), see [10, 11, 17, 26, 30, 31]. When
K is the positive semidefinite cone Sn

+, the problem (1.2) is the positive semidefi-
nite complementarity problem (SDCP), see [32, 35]. Likewise, there is a need for a
corresponding complementarity function for the SCCP (C-function for short) when
tackling the SCCP (1.2). Under the symmetric cone setting, we call a function
φ : V×V → V a complementarity function associated with symmetric cone (again,
C-function for short) if it satisfies

φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, x ◦ y = 0,

where x ◦ y means the Jordan product of x and y (which will be recalled in Section
2).

In view of the importance of complementarity functions for the SCCP (1.2),
many researchers have paid significant attention to extending some existing NCP-
functions to serve as C-functions in the general symmetric cone setting. In par-
ticular, Gowda at el. [15] established that the following two popular functions are
C-functions for the SCCP:

φFB(x, y) =
(
x2 + y2

)1/2 − (x+ y)

φNR(x, y) = x− (x− y)+

which are called Fischer-Burmeister and natural residual functions, respectively,
where (·)+ means the metric or orthogonal projection onto K. Kong at el. [22]
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studied the vector-valued type of implicit Lagrangian function, and proved that it
is a C-function for the SCCP. Liu et al. [24] successfully extended those families
of NCP-functions proposed by Luo-Tseng in [25] to the symmetric cone setting.
In addition, Pan and Chen [29], Kum and Lim [23] generalized some penalized
complementarity functions to the symmetric cone setting. Following these research
directions, there are two natural and long-standing questions to ask regarding the
construction of complementarity functions for the symmetric cone complementarity
problem: (i) Is there a systematic way to construct complementarity functions
associated with symmetric cone? (ii) Is it possible to employ existing NCP-functions
to generate complementarity functions for symmetric cone? These two problems are
indeed long-standing questions in the literature complementarity functions. The
main purpose and contribution of this paper lie on providing affirmative answers
for the aforementioned questions.

More specifically, we present two methods for the constructions of C-functions in
the symmetric cone setting. The first method is inspired by a class of NCP-functions
investigated by Mangasarian in [27], which is stated below.

Proposition 1.1. Assume that θ : IR → IR is a strictly increasing function, that
is, a > b ⇐⇒ θ(a) > θ(b), and let θ(0) = 0. Then, the function

ϕ(a, b) := θ(|a− b|)− θ(a)− θ(b)

is an NCP-function.

In [27], Mangasarian provided two examples of θ, namely θ(z) = z|z| and θ(z) =
z. Accordingly, they induce the following NCP-functions:

ϕMan1(a, b) = (a− b)2 − b|b| − a|a|,
ϕMan2(a, b) = |a− b| − b− a.

Motivated by Proposition 1.1, as will be seen Section 3, we define a class of vector-
valued functions to induce C-function associated with symmetric cone. Moreover,
we develop some various kinds of composition forms of C-functions.

The second method is built upon existing NCP-functions. As mentioned earlier,
extension of NCP-functions to serve as C-functions for the SCCP are studied by
many researchers. Our novel idea is to employ existing NCP-functions (real-valued
functions) to construct vector-valued C-functions in the symmetric cone setting. It
is known that there exists around fifty NCP-functions in the literature. In turn, our
idea opens up an innovative way to obtain plenty of C-functions. We believe that
this result is a good contribution to the literature, which paves bricks for subse-
quent analysis regarding the SCCP through NCP-functions. In particular, we shall
demonstrate general forms of C-functions using NCP-functions for the SCCP. Es-
pecially, we construct C-functions in two special symmetric cones including second-
order cone and positive semidefinite cone based on explicit formulas of the inner
product (Jordan product). This novel idea is outspread a new direction in tackling
complementarity problems via minimization problems related to NCP-functions.
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2. Preliminaries

In this section, we review some background materials and properties about sym-
metric cones which are needed for subsequent analysis. Most of these contents can
be found in [7, 15,16,33,34].

Let (V, 〈., .〉) be a finite dimensional inner product space over IR and V×V → V,
(x, y) 7→ x ◦ y satisfying the following three conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 := x ◦ x;
(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V.

A triple (V, ◦, 〈., .〉) satisfying the above three conditions is called a Euclidean
Jordan algebra. An element e ∈ V is a unit element if x ◦ e = x for all x ∈ V. In V,
the set of squares K := {x2 | x ∈ V} is said to be a symmetric cone. It is known
that K is a self-dual closed convex cone.

For any x, y ∈ V, we write x �K y if x−y ∈ K and write x �K y if x−y ∈ int(K).
In other words, we have x �K 0 if and only if x ∈ K and x �K 0 if and only
if x ∈ int(K). For x ∈ V, we define m(x) := min{k > 0 | {e, x, . . . , xk} is linearly
independent} and call the number r := max{m(x) |x ∈ V} the rank of V. An
element c ∈ V is an idempotent if c2 = c, while it is a primitive idempotent if it
is nonzero and cannot be written as a sum of two nonzero idempotents. One says
that a finite set {e1, e2, . . . , em} of primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 if i 6= j and

m∑
i=1

ei = e.

Note that 〈ei, ej〉 = 〈ei ◦ ej , e〉 = 0 whenever i 6= j. We have the following spectral
decomposition theorem.

Theorem 2.1 ( [16, Theorem III.1.2]). Let V be a Euclidean Jordan algebra with
rank r. Then, for every x ∈ V, there exists a Jordan frame {e1, e2, . . . , er} and real
numbers λ1(x), λ2(x), . . . , λr(x) such that

(2.1) x = λ1(x)e1 + · · ·+ λr(x)er.

Here, λi(x) are called the eigenvalues of x.

Let f : IR → IR be a real-valued function. A vector-valued function f sc : V →
V associated with the Euclidean Jordan algebra [3, 33] (SC-function for short) is
defined by

f sc(x) :=
r∑

i=1

f(λi(x))ei = f(λ1(x))e1 + · · ·+ f(λr(x))er,

where x is defined in (2.1). This is also called a Löwner function. For example,
if we take f(t) = (t)+ := max(0, t) for t ∈ IR, then f sc(x) becomes the projection
operator onto K:

(x)+ = (λ1(x))+e1 + · · ·+ (λr(x))+er.
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Similarly, when f(t) = (t)− := min(0, t) for t ∈ IR, f sc(x) means the projection
operator onto −K:

(x)− = (λ1(x))−e1 + · · ·+ (λr(x))−er.

We also have the following facts

x = (x)+ + (x)−, |x| = (x)+ − (x)−.

Besides, it is known that x ∈ K if and only if λi(x) ≥ 0 for all i = 1, . . . , r.
Thoughout the remaining paper, for x ∈ V we denote x◦|x| by x|x|; for any x, y ∈ V,
λi(x) and λi(y), i = 1, . . . , r are arranged in the increasing order λ1(x) ≤ · · · ≤ λr(x)
and λ1(y) ≤ · · · ≤ λr(y), respectively.

It is worth writing out the spectral decomposition given in (2.1) for two special
symmetric cones. To see this, we now look into two special examples of Euclidean
Jordan algebra (see in [3, 14,15]).

Example 2.2. The algebra S n of n× n real symmetric matrices. Let Sn×n

be the set of all n× n real symmetric matrices with the inner product and Jordan
product given by

〈X,Y 〉 := trace(XY ) and X ◦ Y :=
1

2
(XY + Y X) ∀X,Y ∈ Sn×n.

Then, (Sn×n, ◦, 〈., .〉) is a Euclidean Jordan algebra and we write it as S n. The
cone of squares Sn×n

+ in S n is the set of all positive semidefinite matrices in Sn×n.

Note that the rank of Sn×n is n and the identity matrix is the unit element. Given
any X ∈ Sn×n, there exists an orthogonal matrix U with columns u1, u2, . . . , un and
a real diagonal matrix D = diag(λ1, λ2, . . . , λn) such that X = UDUT . Clearly,
there holds

X = λ1u1u
T
1 + · · ·+ λnunu

T
n

which is the spectral decomposition of X. In particular, {u1uT1 , . . . , unuTn} is a
Jordan frame.

Example 2.3. The Jordan spin algebra L n. Consider IRn (n > 1) with inner
product 〈·, ·〉 and Jordan product defined by

x ◦ y := (〈x, y〉, y1x̄2 + x1ȳ2) .

for any x = (x1, x̄2) ∈ IR×IRn−1 and y = (y1, ȳ2) ∈ IR×IRn−1. Then, (IRn, ◦, 〈·, ·〉) is
a Euclidean Jordan algebra, which is denoted by L n. The cone of squares, denoted
by L n

+ , is called Lorentz cone (or second-order cone or ice-cream cone) which is
given by L n

+ := {(x1, x̄2) ∈ IR× IRn−1 |x1 ≥ ‖x̄2‖}.
It is clear that the unit element in L n is e = (1, 0, . . . , 0). For each x = (x1, x̄2) ∈

IR× IRn−1, a spectral decomposition of x associated with L n
+ is given by

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

where λ1(x), λ2(x) are the spectral values and e1 ≡ u
(1)
x , e2 ≡ u

(2)
x are their cor-

responding spectral vectors of x. There are explicit expressions for λi(x) and u
(i)
x

below:

(2.2) λi(x) = x1 + (−1)i||x̄2||,



580 Y.-L. CHANG, C.-Y. YANG, C. T. NGUYEN, AND J.-S. CHEN

(2.3) u(i)x =


1

2

(
1, (−1)i

x̄2
||x̄2||

)
if x̄2 6= 0,

1

2

(
1, (−1)iw2

)
if x̄2 = 0,

for i = 1, 2, with w2 being any vector in IRn−1 satisfying ||w2|| = 1. If x̄2 6= 0, the
decomposition is unique.

Now, we present a few technical lemmas which are crucial to our subsequent anal-
ysis. The first one is a useful monotone property, which is proved in [15, Proposition
8].

Lemma 2.4. For any x, y ∈ K, if x �K 0, y �K 0 and x �K y, then x1/2 �K y1/2.

The second lemma includes a few properties regarding positive semidefinite ma-
trices which can be found in [14, 32]. For any X ∈ Sn×n, we denote X �Sn×n 0 by
X � 0.

Lemma 2.5. Let X,Y be n× n matrices in Sn×n. Then, the following hold:

(a) X � 0 ⇒ UXUT � 0 for any orthogonal matrix U .
(b) X � 0, Y � 0 ⇒ 〈X,Y 〉 ≥ 0.
(c) X � 0, Y � 0, 〈X,Y 〉 = 0 ⇒ XY = Y X = 0.
(d) If X � 0, Y � 0, then 〈X,Y 〉 = 0 ⇐⇒ XY = 0.
(e) Given X and Y in Sn×n with XY = Y X, there exists an orthogonal matrix

U , diagonal matrices D and E such that X = UDUT and Y = UEUT .

The next three lemmas describe the boundary behavior of Lorentz cone.

Lemma 2.6. Let x = (x1, x̄2) ∈ IR× IRn−1 and y = (y1, ȳ2) ∈ IR× IRn−1. Then,

x �L n
+
0, y �L n

+
0 and x ◦ y = 0

if and only if the following hold

(i) If x̄2 6= 0 and ȳ2 6= 0, then x, y are both on the boundary of L n
+ , share the

same spectral vectors, and can be expressed as

x = λ2(x) · u(2)x = 2x1 ·
1

2

(
1,

x̄2
||x̄2||

)
,

y = λ2(y) · u(2)y = 2y1 ·
1

2

(
1,− x̄2

||x̄2||

)
,

with 〈u(2)x , u
(2)
y 〉 = 0 or u

(2)
x ◦ u(2)y = 0.

• (ii)] If x̄2 = 0 or ȳ2 = 0, then it goes to the trivial cases that x = 0 and
y ∈ L n

+ or x ∈ L n
+ and y = 0.

Proof. The idea for the proof is very similar to [17, Proposition 2.1]. For the sake
of completeness, we provide the details.

“⇐” The proof of this direction is trivial.

“⇒” From x �L n
+
0, y �L n

+
0 and x ◦ y = (〈x, y〉, x1ȳ2 + y1x̄2) = 0, we have

(2.4) 〈x, y〉 = x1y1 + x̄T2 ȳ2 = 0, x1 ≥ ||x̄2||, y1 ≥ ||ȳ2||.
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To proceed, we discuss two cases.

(i) If x̄2 6= 0 and ȳ2 6= 0, then equation (2.4) implies −x̄T2 ȳ2 = x1y1 ≥ ||x̄2||||ȳ2||.
Since −x̄T2 ȳ2 ≤ ||x̄2||||ȳ2||, it leads to x1y1 = −x̄T2 ȳ2 = ||x̄2||||ȳ2||. Hence x1 =
||x̄2||, y1 = ||ȳ2||; otherwise, if x ∈ int(L n

+) or y ∈ int(L n
+) then x1y1 > ||x̄2||||ȳ2||,

which is impossible. This means x and y are both on the boundary of L n
+ . Using

the facts that the second component of x ◦ y is zero, i.e x1ȳ2 + y1x̄2 = 0, and the
fact that x1 = ||x̄2||, y1 = ||ȳ2||, these yield that

x = λ2(x) · u(2)x = (x1 + ||x̄2||) ·
1

2

(
1,

x̄2
||x̄2||

)
= 2x1 ·

1

2

(
1,

x̄2
||x̄2||

)
and

y = λ2(y) · u(2)y = (y1 + ||ȳ2||) ·
1

2

(
1,

ȳ2
||ȳ2||

)
= 2y1 ·

1

2

(
1,− x̄2

||x̄2||

)
,

where x and y can be viewed as sharing the same spectral vectors {u(2)x , u
(2)
y } with

u
(2)
x = 1

2(1,
x̄2

||x̄2||), u
(2)
y = 1

2(1,−
x̄2

||x̄2||) = u
(1)
x and 〈u(2)x , u

(2)
y 〉 = u

(2)
x ◦ u(2)y = 0.

(ii) If x̄2 = 0, from equation (2.4), we obtain x1y1 = 0. It leads to x1 = 0 or y1 = 0.
For x1 = 0, then we have x = 0 and y can be any element in L n

+ . For y1 = 0, then
ȳ2 must be 0 from the third inequality of (2.4), which means y = 0 and x can be
any element in L n

+ in this case. Similar to the case ȳ2 = 0. □

Lemma 2.7. Let x = (x1, x̄2) ∈ IR × IRn−1 and y = (y1, ȳ2) ∈ IR × IRn−1 with
x̄2 6= 0, ȳ2 6= 0. Then,

x �L n
+
0, y �L n

+
0 and x ◦ y = 0

if and only if x1 = ‖x̄2‖, y1 = ‖ȳ2‖, and x1ȳ2 + y1x̄2 = 0.

Proof. This is an immediate consequence of Lemma 2.6. □
Lemma 2.8. Let x = (x1, x̄2) ∈ IR × IRn−1 and y = (y1, ȳ2) ∈ IR × IRn−1 with
x̄2 6= 0, ȳ2 6= 0. If x �L n

+
0, y �L n

+
0 and x ◦ y = 0, then ȳ2 = −mx̄2, where

m := ∥ȳ2∥
∥x̄2∥ . Moreover,

ȳ2 = −mx̄2 ⇐⇒ there exists k ∈ {2, . . . , n} such that yk = −mxk 6= 0

and ylxk = xlyk for all l ∈ {2, . . . , n}.(2.5)

Proof. From case (i) in the proof of Lemma 2.6, we see that x̄T2 ȳ2 = −||x̄2||||ȳ2||,
which further implies

x̄T2 ȳ2
||ȳ2||

= −||x̄2|| ⇐⇒ x̄T2 ȳ2
||ȳ2||

= − x̄T2 x̄2
||x̄2||

⇐⇒ ȳ2
||ȳ2||

= − x̄2
||x̄2||

⇐⇒ ȳ2 = −||ȳ2||
||x̄2||

x̄2.

Letting m := ∥ȳ2∥
∥x̄2∥ , it implies ȳ2 = −mx̄2.

Next, we prove the relation (2.5).

“⇒” Since ȳ2 = −mx̄2, and x̄2 6= 0, ȳ2 6= 0, there exists k ∈ {2, . . . , n} such that
xk 6= 0, yk 6= 0 and yk = −mxk. In addition, yl = −mxl for all l ∈ {2, . . . , n}.
Multiplying by −mxk both sides of this equation, we have

yl(−mxk) = −mxl(−mxk) = −mxlyk.
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Thus, we prove that ylxk = xlyk.

“⇐” Since ylxk = xlyk and yk = −mxk 6= 0, it yields ylxk = xl(−mxk). This
implies that yl = −mxl for all l ∈ {2, . . . , n}. Hence, ȳ2 = −mx̄2. □

3. First construction method of C-functions

This section is devoted to establishing assumptions under which we can construct
a C-function in the setting of symmetric cone. We shall provide three different
assumptions, each of which leads to a possible construction way of C-function.
Moreover, the C-function can be extended to general Euclidean Jordan algebras.

3.1. A general form of C-functions. There exist some systematic ways [1,13] to
construct NCP-functions, which usually exploits the fact that a ≥ 0, b ≥ 0, ab = 0
implies either a = 0 or b = 0. Unfortunately, this phenomenon does not occur in
the symmetric cone setting. We note the fact that from [15, Proposition 6], we have

x �K 0, y �K 0, x ◦ y = 0 ⇐⇒ x �K 0, y �K 0, 〈x, y〉 = 0.

The main hurdle for a symmetric cone K is that

x �K 0, y �K 0, x ◦ y = 0 does not imply that x = 0 or y = 0.

Nonetheless, through the following assumption, it may remedy the above deficiency.

Assumption 3.1. A function θ : IRn → IRn is said to satisfy Assumption 3.1 if

(i): x �K 0 if and only if θ(x) �K 0.
(ii): for any x, y �K 0, x ◦ y = 0 if and only if θ(x) ◦ θ(y) = 0.

Assumption 3.1(i) is a slightly weaker than the strictly increasing property men-
tioned in Proposition 1.1, whereas Assumption 3.1(ii) is used to adjust the expres-
sion in a general symmetric cone setting.

Theorem 3.1. Suppose that θ : IRn → IRn satisfies Assumption 3.1. Then, the
function φ : IRn × IRn → IRn defined by

φ(x, y) := |θ(x)− θ(y)| − θ(x)− θ(y)

is a C-function in the symmetric cone setting.

Proof. It suffices to verify that φ(x, y) = 0 if and only if x �K 0, y �K 0, x ◦ y = 0.

“⇒” Assume that φ(x, y) = 0, we observe

(3.1)

φ(x, y) = |θ(x)− θ(y)| − θ(x)− θ(y) = 0
=⇒ |θ(x)− θ(y)| = θ(x) + θ(y)
=⇒ |θ(x)− θ(y)|2 = (θ(x) + θ(y))2

=⇒ θ(x)2 − 2θ(x) ◦ θ(y) + θ(y)2 = θ(x)2 + 2θ(x) ◦ θ(y) + θ(y)2

=⇒ θ(x) ◦ θ(y) = 0.

Letting ω = |θ(x) − θ(y)| gives ω2 = θ(x)2 − 2θ(x) ◦ θ(y) + θ(y)2 = θ(x)2 + θ(y)2.
Thus, we have ω2 �K θ(x)2 and ω2 �K θ(y)2. This leads to ω �K θ(x) and
ω �K θ(y) by applying Lemma 2.4. Since φ(x, y) = 0, ω = θ(x) + θ(y), it follows
that θ(x) = ω − θ(y) �K 0 and θ(y) = ω − θ(x) �K 0. Using Assumption 3.1(i) of
θ, we obtain x, y �K 0. Then, we further have x ◦ y = 0 from Assumption 3.1(ii).
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“⇐” Suppose that x �K 0, y �K 0, x ◦ y = 0 and θ satisfies Assumption 3.1. Then
it is clear that θ(x) �K 0, θ(y) �K 0 and θ(x) ◦ θ(y) = 0. On the other hand, we
have

φ(x, y) = [(θ(x)− θ(y))2]1/2 − (θ(x) + θ(y))

= [θ(x)2 − 2θ(x) ◦ θ(y) + θ(y)2]1/2 − (θ(x) + θ(y))

= [θ(x)2 + 2θ(x) ◦ θ(y) + θ(y)2]1/2 − (θ(x) + θ(y))

= |θ(x) + θ(y)| − (θ(x) + θ(y)) = 0,

where θ(x) + θ(y) ∈ K due to [15, Proposition 6]. □
What are some examples of θ(·) function that satisfy Assumption 3.1? Indeed, in

light of Theorem 2.1 and note that x ∈ K if and only if λi(x) ≥ 0 for all i = 1, . . . , r,
we can confirm that the following functions satisfy Assumption 3.1 in their domain:

θ1(z) = z,

θ2(z) = zp, where p is positive odd integer,

θ3(z) = z|z|,
θ4(z) = z1/2, where θ4 : K → K.

Hence, by Theorem 3.1, these functions corresponds to C-functions φ1, φ2, φ3, and
φ4 which are listed below.

φ1(x, y) = |x− y| − (x+ y) = −1

2
φNR(x, y);

φ2(x, y) = |xp − yp| − xp − yp, where p is positive odd integer;

φ3(x, y) =
∣∣x|x| − y|y|

∣∣− x|x| − y|y|;
φ4(x, y) = |x1/2 − y1/2| − x1/2 − y1/2, where φ4 : K ×K → K.

3.2. Composition form of C-functions. In this subsection, we explore com-
position forms of C-functions. More specifically, given a θ(·) function satisfying
Assumption 3.1 and any C-function φ, the composition function φ(θ(x), θ(y)) is a
C-function as well.

Theorem 3.2. Suppose that θ : IRn → IRn satisfies Assumption 3.1. Then, for any
C-function φ : IRn × IRn → IRn, the composition function φ(θ(x), θ(y)) is also a
C-function.

Proof. “⇐” If x �K 0, y �K 0, x ◦ y = 0 and θ satisfies Assumption 3.1, we have
θ(x) �K 0 and θ(y) �K 0 by Assumption 3.1(i) and θ(x) ◦ θ(y) = 0 by Assumption
3.1(ii). Then, it follows that φ(θ(x), θ(y)) = 0 since φ is a C-function.

“⇒” If φ(θ(x), θ(y)) = 0, we have θ(x), θ(y) �K 0 and θ(x) ◦ θ(y) = 0 since φ is a
C-function. Again, applying Assumption 3.1 yields x, y �K 0 and x ◦ y = 0. □

Since those functions θ1, θ2, θ3, θ4 shown in Section 3.1 satisfy Assumption 3.1,
we can use them and apply Theorem 3.2 to obtain more C-functions. For example,
if we take the Fischer-Burmeister function

φFB(x, y) = (x2 + y2)1/2 − (x+ y),
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then we achieve the following C-functions accordingly:

φ̃1(x, y) = φFB(x, y);

φ̃2(x, y) = (x2p + y2p)1/2 − (xp + yp), where p is positive odd integer;

φ̃3(x, y) = ((x|x|)2 + (y|y|)2)1/2 − (x|x|+ y|y|);
φ̃4(x, y) = (x+ y)1/2 − (x1/2 + y1/2), where φ̃4 : K ×K → K.

In fact, item (i) and (ii) in Assumption 3.1 can be combined together as a com-
plementarity property, which is slightly weaker than Assumption 3.1.

Assumption 3.2. A function θ : IRn → IRn is said to satisfy Assumption 3.2 if

x �K 0, y �K 0, x ◦ y = 0 ⇐⇒ θ(x) �K 0, θ(y) �K 0, θ(x) ◦ θ(y) = 0.

It is noted that Assumption 3.2 is sufficient for Theorem 3.2. The following is a
weaker version of the composition form.

Theorem 3.3. Suppose that θ : IRn → IRn satisfies Assumption 3.2. Then, for any
C-function φ : IRn × IRn → IRn, the composition function φ(θ(x), θ(y)) is also a
C-function.

Proof. The proof is straightforward. Since φ is a C-function and θ satisfies Assump-
tion 3.2, we have

φ(θ(x), θ(y)) = 0

⇐⇒ θ(x) �K 0, θ(y) �K 0, θ(x) ◦ θ(y) = 0

⇐⇒ x �K 0, y �K 0, x ◦ y = 0.

Hence, φ(θ(x), θ(y)) is also a C-function. □

If we choose θ(z) = z, then the composition function φ(θ(x), θ(y)) in Theorem 3.3
goes back to the original C-function φ(x, y). If we choose φ1(x, y) = x− (x− y)+ =

φNR(x, y), φ2(x, y) = (x2 + y2)1/2 − (x + y) = φFB(x, y), composing them with
different θ(·) leads to various C-functions.

(1) Let θ(z) = zp where p is positive odd integer. Then, applying Theorem 3.3
implies that

φ1(θ(x), θ(y)) = xp − (xp − yp)+,

φ2(θ(x), θ(y)) =
(
x2p + y2p

)1/2 − (xp + yp),

are also C-functions.
(2) Let θ(z) = z|z|. Then, applying Theorem 3.3 implies that

φ1(θ(x), θ(y)) = x|x| −
(
x|x| − y|y|

)
+
,

φ2(θ(x), θ(y)) =
(
(x|x|)2 + (y|y|)2

)1/2 − (x|x|+ y|y|),

are also C-functions.

We next introduce a special class of functions, which also satisfy Assumption 3.2.
Therefore, we can generate many θ(·) functions from it and use them with Theorem
3.3.
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Proposition 3.4. For any real-valued function f : IR → IR with the following
properties:

(i) t ≥ 0 if and only if f(t) ≥ 0;
(ii) t = 0 if and only if f(t) = 0,

the vector-valued function f sc : IRn → IRn associated with K, defined by

f sc(x) = f(λ1(x))e1 + · · ·+ f(λr(x))er ∀x ∈ V,

satisfies Assumption 3.2. Here, λi(x) and {ei} for i = 1, 2, . . . , r are the spectral
values and the spectral vectors of x, respectively.

Proof. Let x, y ∈ V, the spectral decompositions of x and y are given by

x =

r∑
i=1

λi(x)ei and y =

r∑
j=1

λi(y)fj .

Then, we have

f sc(x) =
r∑

i=1

f(λi(x))ei and f sc(y) =
r∑

j=1

f(λj(y))fj .

From the above properties (i)-(ii) of f , we obtain

x �K 0, y �K 0, x ◦ y = 0

⇐⇒ x �K 0, y �K 0, 〈x, y〉 = 0

⇐⇒ λi(x) ≥ 0, λi(y) ≥ 0,
r∑

i,j=1

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ λi(x) ≥ 0, λi(y) ≥ 0, λi(x)λj(y) = 0 or 〈ei, fj〉 = 0, i, j = 1, . . . , r

⇐⇒ f(λi(x)) ≥ 0, f(λi(y)) ≥ 0, f(λi(x))f(λj(y))=0 or 〈ei, fj〉=0, i, j = 1, . . . , r

⇐⇒ f sc(x) �K 0, f sc(y) �K 0,
r∑

i,j=1

f(λi(x))f(λj(y)) 〈ei, fj〉 = 0

⇐⇒ f sc(x) �K 0, f sc(y) �K 0, 〈f sc(x), f sc(y)〉 = 0

⇐⇒ f sc(x) �K 0, f sc(y) �K 0, f sc(x) ◦ f sc(y) = 0.

Note that we have 〈ei, fj〉 ≥ 0 since ei, fj belong to the symmetric cone K which
is self-dual. Thus, it is clear that Assumption 3.2 is satisfied and the proof is
complete. □

We list a couple of examples of f mentioned in Proposition 3.4. The first one
is f(t) = tp with positive odd number p. It is clear that the properties (i) and
(ii) are held. Hence, its corresponding SC-function reduces to the regular function

f sc(x) = xp. The second one is f(t) =
t

t2 + 1
, which also possesses (i) t ≥ 0 if and

only if f(t) ≥ 0; and (ii) t = 0 if and only if f(t) = 0. Then, in light of Proposition
3.4, its SC-function satisfies Assumption 3.2. This means we can employ this f sc



586 Y.-L. CHANG, C.-Y. YANG, C. T. NGUYEN, AND J.-S. CHEN

function as a choice of θ(·) function in Theorem 3.3 to generate C-functions below:

θ(x) = f sc(x) =
λ1(x)

λ1(x)2 + 1
e1 + · · ·+ λr(x)

λr(x)2 + 1
er.

where x ∈ V, λi(x) for i = 1, 2, . . . , r are spectral values of x, and {ei}ri=1 is a
Jordan frame.

In fact, Assumption 3.2 can be extended to the two functions version below:

Assumption 3.3. The functions θ1, θ2 : IRn → IRn is said to satisfy Assumption
3.3 if

x �K 0, y �K 0, x ◦ y = 0 ⇔ θ1(x) �K 0, θ2(y) �K 0, θ1(x) ◦ θ2(y) = 0.

Using Assumption 3.3, Theorem 3.3 can be naturally extended to a more general
case as follows.

Theorem 3.5. Suppose that θ1, θ2 : IRn → IRn satisfy Assumption 3.3. Then, for
any C-function φ : IRn×IRn → IRn, the composition function φ(θ1(x), θ2(y)) is also
a C-function.

Proof. The proof is straightforward. Since φ is a C-function and θ1, θ2 satisfy As-
sumption 3.3, it is easy to verify that

φ(θ1(x), θ2(y)) = 0

⇐⇒ θ1(x) �K 0, θ2(y) �K 0, θ1(x) ◦ θ2(y) = 0

⇐⇒ x �K 0, y �K 0, x ◦ y = 0.

Hence, we show that φ(θ1(x), θ2(y)) is also a C-function. □
Here are examples of θ1(·) and θ2(·) in Theorem 3.5:

θ1(x) = x3 + x and θ2(y) = y|y|.
Composing these two functions with the natural residual function φNR(x, y) = x−
(x− y)+ yields

φNR(θ1(x), θ2(y)) = x3 + x− (x3 + x− y|y|)+
which is a C-function due to Theorem 3.5. Note that the conclusion of Theorem
3.5 is still true if we exchange the position of θ1 and θ2 in the composition.

There is another surprising result that if we switch the roles of φ and θ in Theorem
3.5, the goal is still achieved.

Theorem 3.6. Suppose that θ : IRn → IRn satisfies z = 0 if and only if θ(z) = 0.
Then, for any C-function φ : IRn × IRn → IRn, the composition function θ

(
φ(·, ·)

)
is also a C-function.

Proof. Since φ is a C-function and θ satisfies z = 0 if and only if θ(z) = 0, we have

θ(φ(x, y)) = 0 ⇐⇒ φ(x, y) = 0 ⇔ x �K 0, y �K 0, x ◦ y = 0.

This proves that θ(φ(x, y)) is also a C-function. □
The following are some examples of θ(·) mentioned in Theorem 3.6:

(1) θ(z) = zp, where p is a positive integer;
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(2) θ(z) = |z|;
(3) θ(z) = f sc(z) where f sc(z) is the SC-function induced from a real-valued

function f with t = 0 if and only if f(t) = 0.

4. Second construction method of C-functions

The main idea of the second construction method of C-functions is employing
the existing NCP-functions (real-valued functions) to produce C-functions (vector-
valued functions). This is a novel idea which indicates that the existing NCP-
functions (about 50 of them) can be used to engender a bunch of C-functions.

4.1. Using NCP-functions to construct C-functions in symmetric cone
setting. As mentioned earlier, the C-function is a vector-valued function whereas
the NCP-function is only a real-valued function. How to extend an NCP-function
into a C-function has been an open question in the past few decades. In this work,
we shall demonstrate this in detail in symmetric cones.

Theorem 4.1. Let ϕ : IR2 → IR be an NCP-function. For any x ∈ V and y ∈ V,
the following Φ : V ×V → V defined by

Φ(x, y) :=
r∑

i,j=1

ϕ2(λi(x), λj(y))ei ◦ fj

is a C-function, where {ei}ri=1, {fj}rj=1 are Jordan frames of x and y, respectively.

Proof. We note the fact that Φ(x, y) is well-defined by using the uniquely defined
spectral decomposition theorem in [2] which is proved in Appendix.

Let x ∈ V and y ∈ V, the spectral decomposition of x and y are given by

x =

r∑
i=1

λi(x)ei and y =

r∑
j=1

λj(y)fj .

By definition of C-function, it suffices to show that Φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈
K, 〈x, y〉 = 0. Indeed,

“⇒” Since 〈ei, fj〉 ≥ 0, we have that

Φ(x, y) = 0 ⇐⇒
r∑

i,j=1

ϕ2(λi(x), λj(y))ei ◦ fj = 0

=⇒

〈
r∑

i,j=1

ϕ2(λi(x), λj(y))ei ◦ fj , e

〉
= 0

⇐⇒
r∑

i,j=1

ϕ2(λi(x), λj(y)) 〈ei, fj〉 = 0

⇐⇒ ϕ2(λi(x), λj(y)) = 0 or 〈ei, fj〉 = 0, i, j = 1, . . . , r

⇐⇒ ϕ(λi(x), λj(y)) = 0 or 〈ei, fj〉 = 0, i, j = 1, . . . , r

⇐⇒ λi(x) ≥ 0, λj(y) ≥ 0, λi(x)λj(y) = 0 or 〈ei, fj〉 = 0, i, j = 1, . . . , r
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⇐⇒ x ∈ K, y ∈ K,

r∑
i,j=1

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0.

“⇐” By the above equivalences, we obtain

x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇐⇒ ϕ2(λi(x), λj(y)) = 0 or 〈ei, fj〉 = 0, i, j = 1, . . . , r

⇐⇒ ϕ2(λi(x), λj(y)) = 0 or ei ◦ fj = 0, i, j = 1, . . . , r

=⇒
r∑

i,j=1

ϕ2(λi(x), λj(y))ei ◦ fj = 0

⇐⇒ Φ(x, y) = 0.

Thus, we achieve the desired result. □
In fact, if V ≡ IR, then a C-function Φ(x, y) reduces to an NCP-function ϕ2(x, y).

It is clear that we can write out components of Φ(x, y) in Theorem 4.1 in the second-
order cone case. Let x = (x1, x̄2) ∈ IR× IRn−1 and y = (y1, ȳ2) ∈ IR× IRn−1.

(4.1) Φ(x, y) =

(
a+ būT2 v̄2
cū2 + dv̄2

)
,

where

ū2 =

{ x̄2
∥x̄2∥ if x̄2 6= 0

ω otherwise,
v̄2 =

{ ȳ2
∥ȳ2∥ if ȳ2 6= 0

ϑ otherwise,

with any vector ω, ϑ ∈ IRn−1 such that ‖ω‖ = 1, ‖ϑ‖ = 1, and

a =
ϕ2(λ1(x), λ1(y)) + ϕ2(λ1(x), λ2(y)) + ϕ2(λ2(x), λ1(y)) + ϕ2(λ2(x), λ2(y))

4
,

b =
ϕ2(λ1(x), λ1(y))− ϕ2(λ1(x), λ2(y))− ϕ2(λ2(x), λ1(y)) + ϕ2(λ2(x), λ2(y))

4
,

c =
−ϕ2(λ1(x), λ1(y))− ϕ2(λ1(x), λ2(y)) + ϕ2(λ2(x), λ1(y)) + ϕ2(λ2(x), λ2(y))

4
,

d =
−ϕ2(λ1(x), λ1(y)) + ϕ2(λ1(x), λ2(y))− ϕ2(λ2(x), λ1(y)) + ϕ2(λ2(x), λ2(y))

4
.

Example 4.2. We consider the FB function ϕFB(a, b) =
√
a2 + b2 − (a+ b) for all

(a, b) ∈ IR× IR. Then the corresponding C-function is

ΦFB(x, y) =
r∑

i,j=1

ϕ2
FB
(λi(x), λj(y))ei ◦ fj .

It is easy to see that

ΦFB(x, y) = 0 ⇐⇒ φFB(x, y) = (x2 + y2)1/2 − (x+ y) = 0.

According to [31, Section 3], a formula of components of φFB(x, y) is very compli-
cated which says that its subgradient formula is also complicated. However, using
an explicit formula of Φ(x, y) given by (4.1), we see that computing the subgradi-
ent of ΦFB(x, y) becomes easier. Thus, ΦFB(x, y) might be easier in implementing
numerical experiment comparing to φFB(x, y) for solving the SOCCP.
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Next, we denote the set I = {(i, j) ∈ {1, . . . , r} | 〈ei, fj〉 = 0}, then C-functions
can be constructed by the following theorem.

Theorem 4.3. Let ϕ : IR2 → IR be an NCP-function. For any x ∈ V and y ∈ V,
the following Φ1,Φ2 : V ×V → V defined by

Φ1(x, y) :=

r∑
(i,j)/∈I

ϕ2(λi(x), λj(y))ei ◦ fj

Φ2(x, y) :=

r∑
(i,j)/∈I

ϕ2(λi(x), λj(y))ei

are C-functions, where I = {(i, j) ∈ {1, . . . , r} | 〈ei, fj〉 = 0}, {ei}ri=1, {fj}rj=1 are
Jordan frames of x and y, respectively.

Proof. Using the proof of Theorem 4.1, it is clear that Φ1(x, y),Φ2(x, y) are well-
defined and Φ1(x, y) is a C-function. We will now prove Φ2(x, y) is a C-function.
We note the fact that 〈ei, fj〉 > 0 for (i, j) /∈ I, ei ∈ K and 〈ei, ei〉 > 0 for all
i = 1, . . . , r. We have

Φ2(x, y) = 0 ⇐⇒
r∑

(i,j)/∈I

ϕ2(λi(x), λj(y))ei = 0

⇐⇒

〈
r∑

(i,j)/∈I

ϕ2(λi(x), λj(y))ei, e

〉
= 0

⇐⇒

〈
r∑

(i,j)/∈I

ϕ2(λi(x), λj(y))ei,

r∑
i=1

ei

〉
= 0

⇐⇒
r∑

(i,j)/∈I

ϕ2(λi(x), λj(y)) 〈ei, ei〉 = 0

⇐⇒ ϕ2(λi(x), λj(y)) = 0, (i, j) /∈ I

⇐⇒ ϕ(λi(x), λj(y)) = 0, (i, j) /∈ I

⇐⇒ λi(x) ≥ 0, λj(y) ≥ 0, λi(x)λj(y) = 0, (i, j) /∈ I

⇐⇒ x ∈ K, y ∈ K,
r∑

(i,j)/∈I

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K,

r∑
(i,j)/∈I

λi(x)λj(y) 〈ei, fj〉

+
r∑

(i,j)∈I

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K,
r∑

i,j=1

λi(x)λj(y) 〈ei, fj〉 = 0
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⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0.

Thus, we obtain the desired result. □

Note that from Φ2(x, y) in Theorem 4.3, we obtain that

Φ2
1(x, y) :=

r∑
(i,j)/∈I

ϕ2(λi(x), λj(y))fj and Φ2
2(x, y) :=

r∑
(i,j)/∈I

ϕ2(λi(x), λj(y))(ei + fj).

are also C-functions.

We will now establish C-functions for the special case of two commutative ele-
ments x and y. Suppose x and y share the same Jordan frame, that is,

x = λ1(x)e1(x) + · · ·+ λr(x)er(x) and y = λσ(1)(y)e1(x) + · · ·+ λσ(r)(y)er(x),

where σ : {1, . . . , r} → {1, . . . , r} is a permutation which re-permutes the eigenval-
ues of y corresponding the Jordan frame {e1(x), . . . , er(x)}. Let Ω(x) = {(x, y) ∈
V ×V | x and y operator commute}. Define Ω = ∪x∈VΩ(x).

Theorem 4.4. Let ϕ : IR2 → IR be an NCP-function. The function Φ̃ : Ω ⊂
V ×V → V defined by

Φ̃(x, y) :=
r∑

i=1

ϕ(λi(x), λσ(i)(y))ei(x)

is a C-function, where {e1, e2, . . . , er} is a Jordan frame of x and y.

Proof. Clearly, Φ̃(x, y) is well-defined. It suffices to show that Φ̃(x, y) = 0 ⇐⇒ x ∈
K, y ∈ K, 〈x, y〉 = 0. Indeed, we have

Φ̃(x, y) = 0 ⇐⇒
r∑

i=1

ϕ(λi(x), λσ(i)(y))ei = 0

⇐⇒

〈
r∑

i=1

ϕ(λi(x), λσ(i)(y))ei,
r∑

i=1

ϕ(λi(x), λσ(i)(y))ei

〉
= 0

⇐⇒
r∑

i=1

ϕ2(λi(x), λσ(i)(y)) 〈ei, ei〉 = 0

⇐⇒ ϕ2(λi(x), λσ(i)(y)) = 0, i = 1, . . . , r

⇐⇒ ϕ(λi(x), λσ(i)(y)) = 0, i = 1, . . . , r

⇐⇒ λi(x) ≥ 0, λi(y) ≥ 0, λi(x)λσ(i)(y) = 0, i = 1, . . . , r

⇐⇒ x ∈ K, y ∈ K,
r∑

i=1

λi(x)λσ(i)(y) 〈ei, ei〉 = 0

⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0,

where 〈ei, ei〉 > 0 and 〈ei, ej〉 = 0 whenever i 6= j. The proof is complete. □
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Based on Theorem 4.4, we will show that Φ̃(x, y) retrieves the existing C-functions
in the special case of two commutative elements x and y. In particular, we focus on
two popular NCP-functions, the FB and NR functions:

ϕFB(a, b) =
(
a2 + b2

)1/2 − (a+ b),

ϕNR(a, b) = a− (a− b)+

for any (a, b) ∈ IR× IR. For any (x, y) ∈ Ω, the corresponding C-functions are

Φ̃FB(x, y) =
r∑

i=1

ϕFB(λi(x), λσ(i)(y))ei,

Φ̃NR(x, y) =

r∑
i=1

ϕNR(λi(x), λσ(i)(y))ei.

Then

Φ̃FB(x, y) ≡ φFB(x, y),

Φ̃NR(x, y) ≡ φNR(x, y).

Indeed, since x and y operator commute, we have

x2+y2 =

r∑
i=1

λ2
i (x)ei+

r∑
i=1

λ2
σ(i)(y)ei and

(
x2 + y2

)1/2
=

r∑
i=1

(
λ2
i (x) + λ2

σ(i)(y)
)1/2

ei,

and

(x− y)+ =

r∑
i=1

(
λi(x)− λσ(i)(y)

)
+
ei.

Hence,

Φ̃FB(x, y) =
r∑

i=1

((
λ2
i (x) + λ2

σ(i)(y)
)1/2

− (λi(x) + λσ(i)(y))

)
ei

=
r∑

i=1

(
λ2
i (x) + λ2

σ(i)(y)
)1/2

ei − (
r∑

i=1

λi(x)ei +
r∑

i=1

λσ(i)(y)ei)

=
(
x2 + y2

)1/2 − (x+ y) = φFB(x, y),

and

Φ̃NR(x, y) =
r∑

i=1

(
λi(x)−

(
λi(x)− λσ(i)(y)

)
+

)
ei

=
r∑

i=1

λi(x)ei −
r∑

i=1

(
λi(x)− λσ(i)(y)

)
+
ei

= x− (x− y)+ = φNR(x, y).

Similar arguments apply for other C-functions in the literature.
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Remark 4.5. (i) Note that if ei(x) = fi(y) for i = 1, . . . , r, that is, σ(i) = i,
then

y = λ1(y)f1 + · · ·+ λr(y)fr = λ1(y)e1 + · · ·+ λr(y)er.

Moreover, we can conclude that

x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇐⇒ λi(x) ≥ 0 λi(y) ≥ 0, λi(x)λi(y) = 0.

Suppose that x 6= 0, we have λr(x) > 0. Then the above relation implies
that λr(y) = 0, i.e. y = 0.

(ii) From Theorem 4.4 and [15, Proposition 6], we have that for any x ∈ V,
y ∈ V, x 6= 0, y 6= 0, there holds

(4.2) x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇐⇒ λ1(x) = 0, λ1(y) = 0, 〈x, y〉 = 0.

Indeed, it is enough to prove that x ∈ K, y ∈ K, 〈x, y〉 = 0 =⇒ λ1(x) =
0, λ1(y) = 0, 〈x, y〉 = 0. According to [15, Proposition 6], we have that
x and y operator commute which together with the proof of Theorem 4.4
imply

λi(x) ≥ 0, λi(y) ≥ 0, λi(x)λσ(i)(y) = 0, i = 1, . . . , r

=⇒ λ1(x)λσ(1)(y) + · · ·+ λr(x)λσ(r)(y) = 0.

Using the rearrangement inequality, we obtain

0 = λ1(x)λσ(1)(y) + · · ·+ λr(x)λσ(r)(y) ≥ λ1(x)λr(y) + · · ·+ λr(x)λ1(y) ≥ 0

which yields

λ1(x)λr(y) = 0, λr(x)λ1(y) = 0 =⇒ λ1(x) = 0, λ1(y) = 0,

where λr(x) > 0 and λr(y) > 0 due to x 6= 0, y 6= 0.
(iii) Using the relation (4.2), the following holds

x ∈ K, y ∈ K, 〈x, y〉 = 0

⇐⇒ ϕ(λ1(x), λ1(y)) = 0, 〈x, y〉 = 0 or(4.3)

ϕ(λ1(x), λr(y)) = 0, ϕ(λr(x), λ1(y)) = 0, 〈x, y〉 = 0,

where ϕ is an NCP-function.
(iv) We observe that the construction of a general form of C-functions based

on NCP-functions open a new approach in tackling the SCCP through the
spectral eigenvalues and spectral vectors(Jordan frame). In our work, we
have found out a new direction for solving the SOCCP and SDCP based
on NCP-functions via the relation (4.3) that they can be formulated as
the minimization problem. Furthermore, there are explicit expressions of
the inner product (Jordan product) in two special symmetric cones, that
is, second-order cone and positive semidefinite cone. Then, a simple form
of C-functions for these two special cases can be generated by using the
relation (4.3). We will demonstrate these in the next Section.
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4.2. Using NCP-functions to construct C-functions in second-order cone
setting. As discussed in Remark 4.5(iii), a simple form of C-functions can be con-
structed in the settings of second-order cone and positive semidefinite cone based
on the relation (4.3). Using Lemma 2.6, Lemma 2.7, and Lemma 2.8, we first show
how to do it in the SOC setting.

Theorem 4.6. Assume that x, y 6= 0 and let ϕ : IR2 → IR be an NCP-function.
For any x = (x1, x̄2) ∈ IR × IRn−1 and y = (y1, ȳ2) ∈ IR × IRn−1, the following
vector-valued function Φ1 : IRn × IRn → IRn defined by

Φ1(x, y) :=

(
ϕ(λ1(x), λ1(y))
x1ȳ2 + y1x̄2

)
is a C-function in the second-order cone setting.

In particular, for solutions (x, y) to the SOCCP, there holds ‖x̄2‖yk = −‖ȳ2‖xk 6=
0 for some k ∈ {2, . . . , n} when x̄2 6= 0 and ȳ2 6= 0. Then the following vector-valued
function Φ2 : IRn × IRn → IRn defined by

Φ2(x, y) :=

ϕ(λ1(x), λ2(y))
ϕ(λ2(x), λ1(y))
ȳ3xk − x̄3yk


is a C-function in the second-order cone setting.
Here,

x̄3 := (x2, . . . , xk−1, xk+1, . . . , xn)
T ∈ IRn−2,

ȳ3 := (y2, . . . , yk−1, yk+1, . . . , yn)
T ∈ IRn−2;

and λi(x), λi(y) for i = 1, 2 are the spectral values of x and y associated with
second-order cone, respectively.

Proof. For x̄2 = 0 or ȳ2 = 0, from Lemma 2.6, we know that x = 0 or y = 0. Then,
it is easy to verify

x �L n
+
0, y �L n

+
0, x ◦ y = 0 ⇐⇒ Φ1(x, y) = 0 and Φ2(x, y) = 0.

Therefore, we only may focus on the case of x̄2 6= 0 and ȳ2 6= 0.

(i) We first prove that Φ1(x, y) is a C-function. To proceed, we note a fact that for
any x ∈ L n

+ , y ∈ L n
+ we have

λ1(x) = 0, x1ȳ2 + y1x̄2 = 0 ⇐⇒ λ1(y) = 0, x1ȳ2 + y1x̄2 = 0.

This fact together with Lemma 2.7 yields

Φ1(x, y) = 0 ⇐⇒
{

ϕ(λ1(x), λ1(y)) = 0
x1ȳ2 + y1x̄2 = 0

⇐⇒
{

λ1(x)λ1(y) = 0, λ1(x) ≥ 0, λ1(y) ≥ 0
x1ȳ2 + y1x̄2 = 0

⇐⇒
{

λ1(x) = 0, λ1(y) = 0
x1ȳ2 + y1x̄2 = 0

⇐⇒ x �L n
+
0, y �L n

+
0, x ◦ y = 0.
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Thus, Φ1(x, y) is a C-function.

(ii) We now show that Φ2(x, y) is a C-function. Applying Lemma 2.7 and Lemma
2.8, it follows that

x �L n
+
0, y �L n

+
0, x ◦ y = 0 ⇒


λ1(x) = 0
λ1(y) = 0

ȳ2 = − ∥ȳ2∥
∥x̄2∥ x̄2

⇒


ϕ(λ1(x), λ2(y)) = 0
ϕ(λ2(x), λ1(y)) = 0
‖x̄2‖yk=−‖ȳ2‖xk 6=0 for some k∈{2, . . . , n}
ylxk = xlyk for all l ∈ {2, . . . , n}

⇒


ϕ(λ1(x), λ2(y)) = 0
ϕ(λ2(x), λ1(y)) = 0
‖x̄2‖yk=−‖ȳ2‖xk 6= 0 for some k∈{2, . . . , n}
ȳ3xk − x̄3yk = 0

⇒ Φ2(x, y) = 0.

Conversely, suppose that Φ2(x, y) = 0. Due to ϕ being an NCP-function, we obtain ϕ(λ1(x), λ2(y)) = 0
ϕ(λ2(x), λ1(y)) = 0
ȳ3xk − x̄3yk = 0

⇒

 λ1(x) ≥ 0, λ2(x) ≥ 0, λ1(y) ≥ 0, λ2(y) ≥ 0
λ1(x)λ2(y) = 0
λ2(x)λ1(y) = 0

⇒
{

x ∈ L n
+ , y ∈ L n

+

λ1(x)λ2(y) + λ2(x)λ1(y) = 0.
(4.4)

Note that λi(x) = x1 + (−1)i‖x̄2‖ and λi(y) = y1 + (−1)i‖ȳ2‖ for i = 1, 2. Hence,
we have

λ1(x)λ2(y) = x1y1 − ‖x̄2‖‖ȳ2‖+ x1‖ȳ2‖ − y1‖x̄2‖,
λ2(x)λ1(y) = x1y1 − ‖x̄2‖‖ȳ2‖ − x1‖ȳ2‖+ y1‖x̄2‖.

This fact together with (4.4) and Lemma 2.8 lead to

λ1(x)λ2(y) + λ2(x)λ1(y) = 2(x1y1 − ‖x̄2‖‖ȳ2‖) = 2(x1y1 + x̄T2 ȳ2) = 0.

It follows that 〈x, y〉 = 0. Thus, Φ2(x, y) is a C-function. □
Although in practice we can not know which k in advance when applying Φ2(x, y),

but we can take those k satisfying xk 6= 0, yk 6= 0 in turn when implementing
Φ2(x, y). Note also that in Theorem 4.6, the component x1ȳ2 + y1x̄2 of Φ1(x, y) is
a vector in IRn−1 while the component ȳ3xk − x̄3yk of Φ2(x, y) is a vector in IRn−2.
Therefore, both ranges of Φ1(x, y) and Φ2(x, y) are IRn. It is well-known that there
have plenty of NCP-functions in the literature. According to Theorem 4.6, we can
convert them into C-functions associated with second-order cone. We illustrate this
using two NCP-functions in the following example.

Example 4.7. We consider two popular NCP-functions as follows:

ϕFB(a, b) =
√
a2 + b2 − (a+ b) and ϕNR(a, b) = a− (a− b)+, ∀(a, b) ∈ IR× IR.
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In light of Theorem 4.6, it is not hard to see that

Φ1
FB
(x, y) =

(
ϕFB(λ1(x), λ1(y))

x1ȳ2 + y1x̄2

)
, Φ1

NR
(x, y) =

(
ϕNR(λ1(x), λ1(y))

x1ȳ2 + y1x̄2

)
and

Φ2
FB
(x, y) =

ϕFB(λ1(x), λ2(y))
ϕFB(λ2(x), λ1(y))

ylxk − xlyk

 , Φ2
NR

(x, y) =

ϕNR(λ1(x), λ2(y))
ϕNR(λ2(x), λ1(y))

ȳ3xk − x̄3yk


are C-functions, where ‖x̄2‖yk = −‖ȳ2‖xk 6= 0 for some k ∈ {2, . . . , n} when x̄2 6= 0
and ȳ2 6= 0,

x̄3 = (x2, . . . , xk−1, xk+1, . . . , xn)
T ∈ IRn−2, ȳ3 = (y2, . . . , yk−1, yk+1, . . . , yn)

T ∈ IRn−2,

and λi(x), λi(y) for i = 1, 2 are spectral values of x and y, respectively.

Indeed, we can further conclude that

Φi
FB
(x, y) = 0, i = 1, 2 ⇐⇒ φFB(x, y) = (x2 + y2)1/2 − (x+ y) = 0

and

Φi
NR

(x, y) = 0, i = 1, 2 ⇐⇒ φNR(x, y) = x− (x− y)+ = 0.

To see this, by definition of C-function and Lemma 2.7, for x̄2 6= 0 and ȳ2 6= 0, we
have

φFB(x, y) = 0 ⇐⇒ x ∈ L n
+ , y ∈ L n

+ , x ◦ y = 0

⇐⇒ λ1(x) = 0, λ1(y) = 0, x1ȳ2 + y1x̄2 = 0

⇐⇒ Φ1
FB
(x, y) = 0.

For x̄2 = 0 or ȳ2 = 0, it is easy to check φFB(x, y) = 0 ⇐⇒ Φ1
FB
(x, y) = 0 by

definition of C-function and Lemma 2.6. Similar arguments apply for other cases.
The above discussions indicate that Φi

FB
(x, y) are C-functions and equivalent to

the traditional complementarity function φFB(x, y); Φ
i
NR

(x, y) are C-functions and
equivalent to the traditional complementarity function φNR(x, y).

Remark 4.8. (i) In Theorem 4.6, if ϕ is a continuously differentiable NCP-
function, then Φ1(x, y) and Φ2(x, y) are continuously differentiable C-functions
when x̄2 6= 0 and ȳ2 6= 0. Let y = F (x), where F : IRn → IRn is continuously
differentiable. Then the first row of the Jacobian JΦ1(x, F (x)) and the first
and second row of the Jacobian JΦ2(x, F (x)) are described by(

JΦ1(x, F (x))
)
1

=
∂ϕ

∂λ1(x)
∇λ1(x)

T +
∂ϕ

∂λ1(F (x))
(DF (x)∇λ1(F (x)))T ,

(
JΦ2(x, F (x))

)
1

=
∂ϕ

∂λ1(x)
∇λ1(x)

T +
∂ϕ

∂λ2(F (x))
(DF (x)∇λ2(F (x)))T ,

(
JΦ2(x, F (x))

)
2

=
∂ϕ

∂λ2(x)
∇λ2(x)

T +
∂ϕ

∂λ1(F (x))
(DF (x)∇λ1(F (x)))T ,
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when x ∈ bd(L n
+)\{0} and F (x) ∈ bd(L n

+)\{0}. Since ϕ is continuously
differentiable, it can be seen that

∂ϕ

∂λ1(x)
(0, 0) = 0,

∂ϕ

∂λ1(F (x))
(0, 0) = 0,

∂ϕ

∂λ2(x)
(λ2(x), 0) 6= 0

and
∂ϕ

∂λ2(F (x))
(0, λ2(F (x))) 6= 0

when x ∈ bd(L n
+)\{0} and F (x) ∈ bd(L n

+)\{0}. Thus, for x ∈ bd(L n
+)\{0}

and F (x) ∈ bd(L n
+)\{0}, the first row of the Jacobian JΦ1(x, F (x)) is zero

and the first and second row of the Jacobian JΦ2(x, F (x)) are nonzero. In
summary, when we apply Newton method to solve the SOCCP, Φ2(x, F (x))
is a better choice than Φ1(x, F (x)).

(ii) Note that it is not easy to write out an explicit formula of components
of the existing C-functions in the literature. However, we see that there
are explicit expressions of components of Φ1(x, y) and Φ2(x, y) in Theorem
4.6 which leads to easier in computing their subgradient compared to the
existing C-functions such as the complicated formula of B-subgradient of the
FB C-function [30, Proposition 3.1]. Thus, using Φ1(x, y) and Φ2(x, y) to
deal with the SOCCP may be easier in implementing numerical simulation.

(iii) Regarding Remark 4.5(ii)-(iii), we propose a new direction to tackle the
SOCCP which can be solved by the following unconstrained minimization
problem

min
x∈IRn

ϕ2(λ1(x), λ1(F (x))) + 〈x, F (x)〉2

or

min
x∈IRn

ϕ2(λ1(x), λ2(F (x))) + ϕ2(λ2(x), λ1(F (x))) + 〈x, F (x)〉2 ,

where F : IRn → IRn is a map.

Next, we have a compact equivalence of SOCCP when F (x) is a SOC-function.

Theorem 4.9. Let ϕ : IR2 → IR be an NCP-function. Suppose that F (x) is a SOC-
function induced from function f : IR → IR, which means F (x) can be written:

F (x) = f(λ1(x))u
(1)
x + f(λ2(x))u

(2)
x .

Then, there holds

x ∈ L n
+ , F (x) ∈ L n

+ , 〈x, F (x)〉 = 0

⇐⇒ Φ3(x) :=

ϕ(λ1(x), f(λ1(x)))
ϕ(λ2(x), f(λ2(x)))

0

 = 0

where x = (x1, x̄2) ∈ IR × IRn−1 and λi(x), u
(i)
x for i = 1, 2 are the spectral values

and the spectral vectors of x, respectively.

Proof. We will prove for the case Φ3(x, F (x)). Assume that F (x) can be written:

F (x) = f(λ1(x))u
(1)
x + f(λ2(x))u

(2)
x .
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Hence, we have

x ∈ L n
+ , F (x) ∈ L n

+ , 〈x, F (x)〉 = 0

⇐⇒ λi(x) ≥ 0, f(λi(x)) ≥ 0, λ1(x)f(λ1(x)) + λ2(x)f(λ2(x)) = 0

⇐⇒ λi(x) ≥ 0, f(λi(x)) ≥ 0, λ1(x)f(λ1(x)) = 0, λ2(x)f(λ2(x)) = 0

⇐⇒ ϕ(λ1(x), f(λ1(x))) = 0, ϕ(λ2(x), f(λ2(x))) = 0

⇐⇒ Φ3(x) = 0.

□

4.3. Using NCP-functions to construct C-functions in positive semidefi-
nite cone setting. In this section, by using Lemma 2.5 and noting that Sn×n ∼=
IR

n(n+1)
2 , we show how to construct C-functions based on given NCP-functions in

the setting of positive semidefinite cone. We introduce the following notations for
convenience. For any X,Y ∈ Sn×n, we denote

X :=
[
x1 | . . . | xn

]
, Y :=

[
y1 | . . . | yn

]
,

where xi and yi for i = 1, . . . , n are column vectors of matrices X and Y , respec-
tively.

Theorem 4.10. Let ϕ : IR2 → IR be an NCP-function. For any X,Y ∈ Sn×n, the

following two functions Φi : Sn×n × Sn×n → IR
n(n+1)

2 , i = 1, 2, given by

Φ1(X,Y ) :=


ϕ(λ1(X), λ1(Y ))

xT
1 y1
...

xT
nyn

0



Φ2(X,Y ) :=



ϕ(λ1(X), λn(Y ))
ϕ(λn(X), λ1(Y ))

xT
1 y1
...

xT
nyn

0


are C-functions. Here, the zero vector in Φ1(X,Y ) belongs to IR

(n+1)(n−2)
2 whereas

the zero vector in Φ2(X,Y ) belongs to IR
n2−n−4

2 . In addition, λi(X), λi(Y ) for
i = 1, . . . , n are eigenvalues of matrices X,Y , which are arranged in the increasing
order λ1(X) ≤ · · · ≤ λn(X) and λ1(Y ) ≤ · · · ≤ λn(Y ), respectively.

Proof. First, according to Lemma 2.5 and λ1(X) ≤ · · · ≤ λn(X), λ1(Y ) ≤ · · · ≤
λn(Y ), we have

X � 0, Y � 0, 〈X,Y 〉 = 0

⇐⇒ X � 0, Y � 0, XY = 0(4.5)

⇐⇒ λ1(X) ≥ 0, λ1(Y ) ≥ 0, and XY = 0.
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Suppose that X = 0 or Y = 0, it is easy to see that

X � 0, Y � 0, 〈X,Y 〉 = 0 ⇐⇒ Φ1(X,Y ) = 0 and Φ2(X,Y ) = 0.

Therefore, it suffices to consider the case of X 6= 0 and Y 6= 0. Suppose that
Φ1(X,Y ) = 0. Noting that 〈X,Y 〉 = trace(XY ) =

∑n
i=1 x

T
i yi, we have

Φ1(X,Y ) = 0 ⇒

{
ϕ(λ1(X), λ1(Y )) = 0

xT
i yi = 0, i = 1, . . . , n

⇒

{
λ1(X) ≥ 0, λ1(Y ) ≥ 0∑n

i=1 x
T
i yi = 0

⇒ X � 0, Y � 0, 〈X,Y 〉 = 0.

Conversely, from (4.5), we know that

(4.6) X � 0, Y � 0, 〈X,Y 〉 = 0 ⇒ λ1(X) ≥ 0, λ1(Y ) ≥ 0, and XY = 0.

We now claim that

(4.7) (4.6) ⇒ λ1(X) = 0, λ1(Y ) = 0, and XY = 0.

By contradiction, suppose that λ1(X) > 0. Hence, λi(X) > 0 for all i = 1, . . . , n.
It follows that det(X) = λ1(X) . . . λn(X) > 0, that is, X is nonsingular matrix.
Multiplying both sides of XY = 0 by X−1 leads to Y = 0, which contradicts the
fact that Y 6= 0. Thus, λ1(X) = 0. Similarly, we can argue that λ1(Y ) = 0. This
says that λ1(X)λ1(Y ) = 0, and then ϕ(λ1(X), λ1(Y )) = 0. On the other hand,
since XY = 0, xT

i yi = 0 for all i = 1, . . . , n. All the above concludes Φ1(X,Y ) = 0.

For the case of Φ2(X,Y ), likewise, we also have

Φ2(X,Y ) = 0 ⇒


ϕ(λ1(X), λn(Y )) = 0

ϕ(λn(X), λ1(Y )) = 0

xT
i yi = 0, i = 1, . . . , n

⇒

{
λ1(X) ≥ 0, λ1(Y ) ≥ 0∑n

i=1 x
T
i yi = 0

⇒ X � 0, Y � 0, 〈X,Y 〉 = 0.

Conversely, suppose that X � 0, Y � 0, 〈X,Y 〉 = 0. Hence λn(X) > 0 and λn(Y ) >
0. From (4.6) and (4.7), we have

λ1(X) = 0, λ1(Y ) = 0, and XY = 0.

This yields λ1(X)λn(Y ) = 0 and λn(X)λ1(Y ) = 0, which further imply that
ϕ(λ1(X), λn(Y )) = 0 and ϕ(λn(X), λ1(Y )) = 0. Moreover, since XY = 0, xT

i yi = 0
for all i = 1, . . . , n. Thus, we conclude that Φ2(X,Y ) = 0. □

Note that both Φ1(X,Y ) and Φ2(X,Y ) yield vectors in IR
n(n+1)

2 . Therefore, they
could be viewed as matrix-valued function. In fact, there exist a lot of matrix
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expressions for Φ1(X,Y ) and Φ2(X,Y ). For instance,

Φ1(X,Y ) ≡


xT
1 y1 ϕ(λ1(X), λ1(Y )) 0 . . . 0

ϕ(λ1(X), λ1(Y )) xT
2 y2 0 . . . 0

0 0 xT
3 y3 . . . 0

...
...

...
. . .

...
0 0 0 . . . xT

nyn



Φ2(X,Y ) ≡


xT
1 y1 ϕ(λ1(X), λn(Y )) ϕ(λn(X), λ1(Y )) . . . 0

ϕ(λ1(X), λn(Y )) xT
2 y2 0 . . . 0

ϕ(λn(X), λ1(Y )) 0 xT
3 y3 . . . 0

...
...

...
. . .

...
0 0 0 . . . xT

nyn

 .

Example 4.11. We consider the FB function ϕFB(a, b) =
√
a2 + b2 − (a+ b) for all

(a, b) ∈ IR× IR. Their corresponding C-functions are

Φ1
FB
(X,Y ) =


ϕFB(λ1(X), λ1(Y ))

xT
1 y1
...

xT
nyn

0



Φ2
FB
(X,Y ) =



ϕFB(λ1(X), λn(Y ))
ϕFB(λn(X), λ1(Y ))

xT
1 y1
...

xT
nyn

0


,

where λi(X), λi(Y ) for i = 1, . . . , n are eigenvalues of matrices X,Y , which are
arranged in the increasing order λ1(X) ≤ · · · ≤ λn(X) and λ1(Y ) ≤ · · · ≤ λn(Y ),
respectively.

Likewise, in the setting of positive semidefinite cone, it is easy to see that

Φi
FB
(X,Y ) = 0, i = 1, 2 ⇐⇒ φFB(X,Y ) = (X2 + Y 2)1/2 − (X + Y ) = 0.

This feature indicates that Φi
FB
(X,Y ) are C-functions and equivalent to the tradi-

tional complementarity functions φFB(X,Y ).

Remark 4.12. There are some other possible forms equivalent to Φ1(X,Y ) and
Φ2(X,Y ) in Theorem 4.10 without having a lot of zeros. For instance, we could
define

Φ̃1(X,Y ) :=


ϕ(λ1(X), λ1(Y ))

xT
1 y1
...

xT
nyn

v1
XY


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Φ̃2(X,Y ) :=



ϕ(λ1(X), λn(Y ))
ϕ(λn(X), λ1(Y ))

xT
1 y1
...

xT
nyn

v2
XY


,

where λi(X), λi(Y ) for i = 1, . . . , n are eigenvalues of matrices X,Y , which are

arranged in the increasing order. Here, v1
XY

∈ IR
(n+1)(n−2)

2 and v2
XY

∈ IR
n2−n−4

2 may
have many alternative forms, one pair of them is

v1
XY

:=
(
xT
1 y2, . . . ,x

T
1 yn,x

T
2 y3, . . . ,x

T
n−2yn

)T
,

v2
XY

:=
(
xT
1 y2, . . . ,x

T
1 yn,x

T
2 y3, . . . ,x

T
n−2yn−1

)T
.

Again, there are many matrix forms for Φ̃1(X,Y ) and Φ̃2(X,Y ). We hereby provide
two matrix forms as follows:

Φ̃1(X,Y ) ≡


xT
1 y1 ϕ(λ1(X), λ1(Y )) xT

1 y2 . . . xT
1 yn−1

ϕ(λ1(X), λ1(Y )) xT
2 y2 xT

1 yn . . . xT
2 yn−1

xT
1 y2 xT

1 yn xT
3 y3 . . . xT

3 yn−1
...

...
...

. . .
...

xT
1 yn−1 xT

2 yn−1 xT
3 yn−1 . . . xT

nyn



Φ̃2(X,Y )≡


xT
1 y1 ϕ(λ1(X), λn(Y )) ϕ(λn(X), λ1(Y )) . . . xT

1 yn−2

ϕ(λ1(X), λn(Y )) xT
2 y2 xT

1 yn−1 . . . xT
2 yn−2

ϕ(λn(X), λ1(Y )) xT
1 yn−1 xT

3 y3 . . . xT
3 yn−2

...
...

...
. . .

...
xT
1 yn−2 xT

2 yn−2 xT
3 yn−2 . . . xT

nyn

 .

Note that it might be difficult in using Φ1(X,Y ) and Φ2(X,Y ) to define a merit
function 1

2‖Φ(X,Y )‖2 for solving the SDCP due to the implicitness of eigenvalues of
a real symmetric matrix. Thus, we propose a new direction to deal with the SDCP
through NCP-functions. More precisely, we will present a form of optimization
problem for the SDCP. Let F : Sn×n → Sn×n be a map. The SDCP is to find a
matrix X ∈ Sn×n such that

(4.8) X ∈ Sn×n
+ , F (X) ∈ Sn×n

+ , 〈X,F (X)〉 = 0.

According to the relation (4.2), the SDCP (4.8) is equivalent to find a matrix X ∈
Sn×n such that

λ1(X) = 0, λ1(F (X)) = 0, 〈X,F (X)〉 = 0

when X 6= 0 and F (X) 6= 0. One knows that

λ1(X) = min
∥u∥=1

uTXu and λ1(F (X)) = min
∥v∥=1

vTF (X)v.
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Then, for the case X ∈ bd(Sn×n
+ ) and F (X) ∈ bd(Sn×n

+ ), the SDCP (4.8) becomes
the following bilevel optimization problem:

min f(X,λ1(X), λ1(F (X))) := (λ1(X))2 + (λ1(F (X)))2 + 〈X,F (X)〉2
s.t. λ1(X) = min

∥u∥=1
uTXu and λ1(F (X)) = min

∥v∥=1
vTF (X)v, X ∈ Sn×n.

If the minimal value is zero, then there exists a matrix X ∈ Sn×n satisfying λ1(X) =
0, λ1(F (X)) = 0, 〈X,F (X)〉 = 0 which is a solution of the SDCP. We see that
the above problem does not provide the solution for the cases X = 0 and F (X) ∈
int(Sn×n

+ ) or X ∈ int(Sn×n
+ ) and F (X) = 0. However, this will not happen if we use

the same technique for Φ1(X,F (X)) and Φ2(X,F (X)). Note that

Φ1(X,F (X)) = 0 ⇐⇒ 〈X,F (X)〉 = 0, and
ϕ(λ1(X), λ1(F (X))) = 0,

or

Φ2(X,F (X)) = 0 ⇐⇒ 〈X,F (X)〉 = 0,
ϕ(λ1(X), λn(F (X))) = 0 and ϕ(λn(X), λ1(F (X))) = 0,

where ϕ is a given NCP-function. Then, we have the corresponding bilevel opti-
mization problems:

min f(X,λ1(X), λ1(F (X))) := (ϕ(λ1(X), λ1(F (X))))2 + 〈X,F (X)〉2
s.t. λ1(X) = min

∥u∥=1
uTXu and λ1(F (X)) = min

∥v∥=1
vTF (X)v, X ∈ Sn×n.

or

min f(X,λ1(X), λ1(F (X))) := (ϕ(λ1(X), λn(F (X))))2

+ (ϕ(λn(X), λ1(F (X))))2 + 〈X,F (X)〉2
s.t. λ1(X) = min

∥u∥=1
uTXu, λn(X) = max

∥u∥=1
uTXu, λ1(F (X)) = min

∥v∥=1
vTF (X)v,

and λn(F (X)) = max
∥u∥=1

uTF (X)u, X ∈ Sn×n.

Therefore, if the minimal value is zero, then there exists a matrix X ∈ Sn×n satis-
fying λ1(X) ≥ 0, λ1(F (X)) ≥ 0, 〈X,F (X)〉 = 0.

Next, we introduce an equivalence based on a special type of matrix-valued func-
tions. To this end, we recall that for a real-valued function f : IR → IR, there is a
corresponding matrix-valued function defined by

f
matr

(X) = f(λ1(X))U1 + · · ·+ f(λn(X))Un,

where X has the spectral decomposition X = λ1(X)U1 + · · ·+ λn(X)Un. For more
details regarding this special matrix-valued functions, please refer to [12].

Theorem 4.13. Let ϕ : IR2 → IR be an NCP-function. Suppose that F (X) is the
matrix-valued function induced by a function f : IR → IR, that is, F (X) is written
as

F (X) = f(λ1(X))U1 + · · ·+ f(λn(X))Un,

with X = λ1(X)U1+ · · ·+λn(X)Un, where λi(X), i = 1, . . . , n are eigenvalues of X

and {Ui}ni=1 is a Jordan frame. For any X ∈ Sn×n, we define Φ3 : Sn×n → IR
n(n+1)

2
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by

Φ3(X) :=


ϕ(λ1(X), f(λ1(X)))

...
ϕ(λn(X), f(λn(X)))

0

 ,

where the zero vector belongs to IR
n(n−1)

2 . Then the equation Φ3(X) = 0 solves the
SDCP.

Proof. Again, applying Lemma 2.5 yields

X � 0, F (X) � 0, 〈X,F (X)〉 = 0

⇐⇒ X � 0, F (X) � 0, XF (X) = 0

⇐⇒ λi(X) ≥ 0, f(λi(X)) ≥ 0, i = 1, . . . , n, and

n∑
i=1

λi(X)f(λi(X))Ui = 0

⇐⇒ λi(X) ≥ 0, f(λi(X)) ≥ 0, λi(X)f(λi(X)) = 0, i = 1, . . . , n

⇐⇒ ϕ(λi(X), f(λi(X))) = 0, i = 1, . . . , n

⇐⇒ Φ3(X) = 0.

This clearly proves that Φ3(X) = 0 solves the SDCP. □
Similarly, there exists matrix forms for Φ3(X) in Theorem 4.13, one of them is

Φ3(X) ≡


ϕ(λ1(X), f(λ1(X))) 0 . . . 0

0 ϕ(λ2(X), f(λ2(X))) . . . 0
...

...
. . .

...
0 0 . . . ϕ(λn(X), f(λn(X)))

 .

5. Concluding Remarks

This paper proposes two methods of constructing C-functions for the SCCP. The
first method is the traditional way by extending a class of NCP-functions to C-
functions whose method was also studied by many researchers in the literature. An
interesting point of this method is that we explore the composition of the existing C-
functions with the function θ which provides many C-functions under three different
assumptions of θ.

The important contribution of our work is the second method that using the real-
valued NCP-functions defined on IR2 to generate the vector-valued C-functions. In
particular, we have constructed the general formulas of C-functions for the SCCP
using given NCP-functions. In other words, there is an NCP-function, there is a C-
function. Moreover, our C-functions recover the already existing known C-functions
in the literature for the special case of two commutative operator. A remarkable
point of the second method is that we have established the simple formulas of C-
functions for second-order cone and positive semidefinite cone settings based on their
explicit expressions of the inner product (Jordan product). We conclude that this
novel idea opens up a new approach for solving the SCCP based on NCP-functions
as we mentioned in Section 4. A study in detail leaves for future work.
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Appendix

Proof of the well-defined of Φ(x, y) in Theorem 4.1

First, we recall that the degree of an element x is the number of its distinct
eigenvalues. Here we only demonstrate one of the special case in which the degrees
of x and y are r− p and r− q respectively. Similar arguments work for other cases
of other degrees.

Suppose that

x =

r∑
i=1

λi(x)ei and x =

r∑
i=1

λ′
i(x)e

′
i

satisfying λ1(x) = · · · = λp(x), 1 ≤ p ≤ r, and other eigenvalues are distinct.

y =
r∑

j=1

λj(y)fj and y =
r∑

j=1

λ′
j(y)f

′
j .

satisfying λ1(y) = · · · = λq(y), 1 ≤ q ≤ r, and other eigenvalues are distinct.

From Theorem 5 in Baes’s paper, we have λi(x) = λ
′
i(x), λj(y) = λ

′
j(y) and ei = e

′
i,

fj = f ′
j for p+ 1 ≤ i ≤ r, q + 1 ≤ j ≤ r. Moreover, λ1(x) = · · · = λp(x) = λ′

1(x) =

· · · = λ′
p(x) and

∑p
i=1 λ1(x)ei =

∑p
i=1 λ1(x)e

′
i; λ1(y) = · · · = λq(y) = λ′

1(y) = · · · =
λ′
q(y) and

∑q
j=1 λ1(y)fj =

∑q
j=1 λ1(y)f

′
j . Then, it follows that

x =

p∑
i=1

λ1(x)ei +
r∑

i=p+1

λi(x)ei =

p∑
i=1

λ1(x)e
′
i +

r∑
i=p+1

λi(x)ei,

y =

q∑
j=1

λ1(y)fj +

r∑
j=q+1

λj(y)fj =

q∑
j=1

λ1(y)f
′
j +

r∑
j=q+1

λj(y)fj .

Now we need to show that

Φ(x, y) =

r∑
i,j=1

ϕ2(λi(x), λj(y))ei ◦ fj =
r∑

i,j=1

ϕ2(λ′
i(x), λ

′
j(y))e

′
i ◦ f ′

j .

Indeed, there hold
p∑

i=1

q∑
j=1

ϕ2(λi(x), λj(y))ei ◦ fj = ϕ2(λ1(x), λ1(y))

p∑
i=1

q∑
j=1

ei ◦ fj

= ϕ2(λ′
1(x), λ

′
1(y))

p∑
i=1

q∑
j=1

e′i ◦ f ′
j

=

p∑
i=1

q∑
j=1

ϕ2(λ′
i(x), λ

′
i(y))e

′
i ◦ f ′

j ,

p∑
i=1

r∑
j=q+1

ϕ2(λi(x), λj(y))ei ◦ fj =
r∑

j=q+1

ϕ2(λ1(x), λ
′
j(y))

p∑
i=1

ei ◦ f ′
j
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=

r∑
j=q+1

ϕ2(λ′
1(x), λ

′
j(y))

p∑
i=1

e′i ◦ f ′
j

=

p∑
i=1

r∑
j=q+1

ϕ2(λ′
i(x), λ

′
j(y))e

′
i ◦ f ′

j ,

r∑
i=p+1

q∑
j=1

ϕ2(λi(x), λj(y))ei ◦ fj =
r∑

i=p+1

ϕ2(λi(x), λ
′
1(y))

q∑
j=1

e′i ◦ fj

=

r∑
i=p+1

ϕ2(λ′
i(x), λ

′
1(y))

q∑
j=1

e′i ◦ f ′
j

=

r∑
i=p+1

q∑
j=1

ϕ2(λ′
i(x), λ

′
j(y))e

′
i ◦ f ′

j ,

r∑
i=p+1

r∑
j=q+1

ϕ2(λi(x), λj(y))ei ◦ fj =
r∑

i=p+1

r∑
j=q+1

ϕ2(λ′
i(x), λ

′
j(y))e

′
i ◦ f ′

j .

From all above, it is easy to see that
r∑

i,j=1

ϕ2(λi(x), λj(y))ei ◦ fj =
r∑

i,j=1

ϕ2(λ′
i(x), λ

′
j(y))e

′
i ◦ f ′

j .

Thus, the proof is complete.
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