
Journal of Scientific Computing           (2021) 87:21 
https://doi.org/10.1007/s10915-021-01440-z

Smoothing Strategy Along with Conjugate Gradient
Algorithm for Signal Reconstruction

Caiying Wu1 · Jing Wang1 · Jan Harold Alcantara2,3 · Jein-Shan Chen2

Received: 20 January 2020 / Revised: 1 February 2021 / Accepted: 17 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
In this paper, we propose a new smoothing strategy along with conjugate gradient algo-
rithm for the signal reconstruction problem. Theoretically, the proposed conjugate gradient
algorithm alongwith the smoothing functions for the absolute value function is shown to pos-
sess some nice properties which guarantee global convergence. Numerical experiments and
comparisons suggest that the proposed algorithm is an efficient approach for sparse recovery.
Moreover, we demonstrate that the approach has some advantages over some existing solvers
for the signal reconstruction problem.

Keywords l p-norm regularization · Signal recovery · Conjugate gradient algorithm · Sparse
solution

Mathematics Subject Classification 90C33

1 Introduction

The target problem of this paper is the signal reconstruction problem, which has wide appli-
cations in compressive sensing [6,7,9,16]. Tremendous amount of articles related to this topic
can be found in the literature, and hence we do not intend to repeat its importance and various
applications here. We shall directly look into its mathematical model and show our idea for
tackling it. Mathematically, the signal reconstruction problemmodel is described as follows:

min ‖x‖0
s.t. b = Ax,
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where x ∈ IRn is the original sparse signal that needs to be recovered, A ∈ IRm×n (m � n)

is the measurement matrix, b ∈ IRm is the observed vector, and ‖x‖0 represents the l0-norm
of x , which is defined as the number of nonzero components of x . Note that b could also be
contaminated with noise, that is, b = Ax + e, where e ∈ IRm denotes the noise.

Unfortunately, the l0-norm minimization problem (1) is an NP-hard combinatorial opti-
mization problem [24]. In order to avoid this difficulty, one popular approach is to replace
l0-norm by l1-norm in model (1) and obtain the following l1-minimization problem:

min ‖x‖1
s.t. b = Ax,

(2)

where ‖x‖1 denotes the l1-norm of x and ‖x‖1 = ∑n
i=1 |xi |. More specifically, under the

Restricted Isometry Property (RIP), the l1-minimization (2) was shown to possess the same
solution as l0-minimization (1). Please refer to [1,4,5,7,8,10,11,16] for more details and
survey.

Related to (2) are two regularized unconstrained minimization problems. The first one is
given by

Model (I) : min
x∈IRn

λ‖x‖1 + 1

2
‖Ax − b‖22.

For instance, the studies in [7,16,18,21] follow model (I). The second one is

Model (II) : min
x∈IRn

λ1‖x‖1 + λ2‖x‖22 + 1

2
‖Ax − b‖22,

which is the subject of investigation done in [35].
An alternative approach to compute the sparse solutions of l0-minimization (1) is proposed

by Gribnoval and Nielsen in [19], which is given by the constrained model

min ‖x‖p
p

s.t. Ax = b,
(3)

where 0 < p < 1 and ‖x‖p
p =

n∑

j=1

|x j |p . The problem (3) is called l p-minimization, which

is motivated by the special property of l p-quasi-norm:

lim
p→0+ ‖x‖p

p = ‖x‖0.

Similarly, the l p-minimization problem (3) isNP-hard [12]. In order to dealwith this problem,
three more regularized unconstrained minimization models are studied in the literature. The
first one is

Model (III) : min
x∈IRn

λ‖x‖p
p + 1

2
‖Ax − b‖22, (4)

where λ > 0 is a parametric factor. The studies in [14,17,22,26,33] are based on the model
(III). The second one is

Model (IV) : min
x∈IRn

λ1‖x‖p
p + λ2‖x‖22 + 1

2
‖Ax − b‖22,

where λ1, λ2 > 0 are two parameters. The model (IV) is studied in [34]. The third model
based on (3) is

Model (V) : min
x∈IRn

λ1‖x‖p
p + λ2‖x‖1 + 1

2
‖Ax − b‖22,
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min ‖x‖0

s.t. Ax = b

min ‖x‖p
p

s.t. Ax = b

(V) min
x∈IRn

λ1‖x‖p
p + λ2‖x‖1 +

1
2
‖Ax − b‖2

2

(IV) min
x∈IRn

λ1‖x‖pp + λ2‖x‖2
2 +

1
2
‖Ax − b‖2

2

(III) min
x∈IRn

λ‖x‖p
p +

1
2
‖Ax − b‖2

2

min ‖x‖1

s.t. Ax = b

(II) min
x∈IRn

λ1‖x‖1 + λ2‖x‖2
2 +

1
2
‖Ax − b‖2

2

(I) min
x∈IRn

λ‖x‖1 +
1
2
‖Ax − b‖2

2

Fig. 1 Five models for sparse reconstruction

where λ1, λ2 > 0 are two parameters. The model (V) is recently investigated in [30]. To sum
up, we present in Fig. 1 all the five models (I)–(V) together.

There are many optimization algorithms that can be applied to solve the above models (I)–
(V). For the sake of simplicity and lower storage requirements, conjugate gradient algorithms
are suitable for large scale problems. In this paper, like [27,29,32,36], we are interested in
applying the conjugate gradientmethod for signal recovery. To employ the conjugate gradient
algorithm, we need to check the differentiability of the objective function that we aim to
minimize. However, we observe that there is a common feature among all the aforementioned
models (I)–(V). Not only they are regularized unconstrained minimizations, but also all the
objective functions are nonsmooth. The key part causing this is the non-differentiability of
the absolute value function | · | inside l1-norm and l p-norm. In view of this feature, we shall
consider smoothing strategy to approximate the absolute value function | · |. Albeit the idea
is not new, we propose new smoothing function and compare different kinds of smoothing
approaches along with conjugate gradient algorithm, which is the main contribution of this
paper.

Recently, there are six smoothing functions studied in [25] to approximate the absolute
value function | · |. Inspired by this article, we adapt them to work along with our proposed
conjugate gradient which will be recalled in the next section. First, we present them out as
below.

ϕ1(μ, t) = μ[ln(1 + e− t
μ ) + ln(1 + e

t
μ )],

ϕ2(μ, t) =

⎧
⎪⎨

⎪⎩

t if t ≥ μ
2 ,

t2
μ

+ μ
4 if −μ

2 < t <
μ
2 ,

−t if t ≤ −μ
2 ,

ϕ3(μ, t) =
√
4μ2 + t2,

ϕ4(μ, t) =
{

t2
2μ if |t | ≤ μ,

|t | − μ
2 if |t | > μ,
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ϕ5(μ, t) =

⎧
⎪⎨

⎪⎩

t if t > μ,

− t4

8μ3 + 3t2
4μ + 3μ

8 if −μ ≤ t ≤ μ,

−t if t < −μ,

ϕ6(μ, t) = t erf

(
t√
2μ

)

+
√

2

π
μe

− t2

2μ2 .

where the error function is defined as follows:

erf(t) = 2√
π

∫ t

0
e−u2du, ∀t ∈ IR.

With these smoothing functions, there are several smooth models that can be considered,
which are given as below.

[SF(I)] min
x∈IRn

λ

n∑

i=1

ϕ j (μ, xi ) + 1

2
‖Ax − b‖22,

[SF(II)] min
x∈IRn

λ

n∑

i=1

ϕ j (μ, xi ) + λ2‖x‖22 + 1

2
‖Ax − b‖22,

[SF(III)] min
x∈IRn

λ

n∑

i=1

ϕ
p
j (μ, xi ) + 1

2
‖Ax − b‖22,

[SF(IV)] min
x∈IRn

λ1

n∑

i=1

ϕ
p
j (μ, xi ) + λ2‖x‖22 + 1

2
‖Ax − b‖22,

[SF(V)] min
x∈IRn

λ1

n∑

i=1

ϕ
p
j (μ, xi ) + λ2

n∑

i=1

ϕ j (μ, xi ) + 1

2
‖Ax − b‖22,

Here, ϕ j (μ, xi ) ≈ |xi | for j = 1, 2, . . . , 6. Moreover, “[SF(I)]” stands for smoothing func-
tion for model (I). Likewise, the others represent similar meanings.

Now, we are ready to present our model. Theoretically, we only focus on model (III)
given as in (4). In particular, our main idea is inspired by the re-weighted techniques used in
[22,23,34]. To proceed, notice that we can express the objective function in model (III) as

λ‖x‖p
p + 1

2
‖Ax − b‖22 = λ

n∑

i=1

|xi |p + 1

2
‖Ax − b‖22

= λ

n∑

i=1

|xi |p−1 · |xi | + 1

2
‖Ax − b‖22.

In light of this expression, for j = 1, 2, . . . , 6, we construct the below smoothing function

Hj (x) := λ

n∑

i=1

(xi
2 + μ2)

p−1
2 · ϕ j (μ, xi ) + 1

2
‖Ax − b‖22, (5)

where μ > 0 and μ > 0 are two parameters. Indeed, the weight (xi 2 + μ2)
p−1
2 for i =

1, 2, . . . , n in (5) is regarded as a continuous variable, which is slightly different from that
used in the literature. Then, we have a new smoothing strategy for model (III):

[ReSF(III)] min
x∈IRn

λ

n∑

i=1

(xi
2 + μ2)

p−1
2 · ϕ j (μ, xi ) + 1

2
‖Ax − b‖22. (6)
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“[ReSF(III)]” stands for re-weighted smoothing function for model (III). We apply a version
of the conjugate gradient algorithm presented in the next section to the smooth model (6).

The remaining parts of this paper are organized as follows. In Sect. 2, we shall introduce a
version of nonlinear conjugate gradient method to solve the model (III) by using (5) and (6).
We prove the boundedness of the level sets of the objective function, as well as the Lipschitz
continuity of its gradient. On the basis of these properties, we provide a theorem that shows
the global convergence of the algorithm. In Sect. 3, we report some experimental results
to demonstrate the efficiency of our proposed method. Numerical comparisons with other
popular algorithms are shown as well, which reveal that our new model has a satisfactory
numerical performance,which strongly suggests that it is a good choice for the target problem.
We discuss our conclusions in Sect. 4.

2 Algorithm and Convergence Analysis

In this section, we first describe the nonlinear conjugate gradient (CG) algorithm, which
was proposed by Chen and Zhou and for image restoration in [13]. Here, we employ it for
signal recovery. Then, we discuss the boundedness property of the level set, the Lipschitz
continuity property of the objective function’s gradient and the global convergence. There
are many versions of CG algorithms, and this one can be viewed as a version of the CG
combined with limited memory BFGS method.

Algorithm 1

Step 0. Choose initial point x0 ∈ IRn , ε0 > 0, μ > 0, μ > 0, r ≥ 0, δ ∈ (0, 1) and
ρ ∈ (0, 1). Set k = 0.

Step 1. Compute the search direction

dk =
{−∇Hj (xk) if k = 0,

−∇Hj (xk) + βkdk−1 + θk zk−1 if k > 0,

where

βk = ∇T Hj (xk)zk−1

(dk−1)T zk−1 − 2‖zk−1‖2∇T Hj (xk)dk−1

((dk−1)T zk−1)2
,

θk = ∇T Hj (xk)dk−1

(dk−1)T zk−1 ,

zk−1 = yk−1 + tks
k−1,

tk = ε0

∥
∥
∥∇Hj (x

k)

∥
∥
∥
r + max

{

0,− (sk−1)T yk−1

‖sk−1‖2
}

,

with

yk−1 = ∇Hj (x
k) − ∇Hj (x

k−1),

sk−1 = xk − xk−1 = αk−1d
k−1.

Step 2. Compute αk = max
{
ρ0, ρ1, . . .

}
satisfying

Hj (x
k + ρi dk) ≤ Hj (x

k) + δρi
(
∇Hj (x

k)
)T

dk .
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Step 3. Set xk+1 = xk + αkdk .
Step 4. Set k = k + 1 and go to Step 1.

Lemma 2.1 Let Hj be defined as in (5). For any μ > 0 and μ > 0, the level set L(x0) =
{x ∈ IRn | Hj (x) ≤ Hj (x0)} is bounded.
Proof From the structure of the function ϕ j (μ, t), it is not hard to verify that

lim
t→∞(t2 + μ̄2)

p−1
2 ϕ j (μ, t) = +∞.

Hence, for any μ > 0, we obtain

lim‖x‖→∞ Hj (x) = +∞. (7)

Assume that L(x0) is unbounded. Then, there exists an index set K1, such that ‖xk‖ → ∞,
as k → ∞ and k ∈ K1. By applying (7), it yields

Hj (x
k) → +∞, as k → ∞ and k ∈ K1,

which contradicts Hj (xk) ≤ Hj (x0). Thus, the level set L(x0) is bounded. 
�

Noting that the function (t2+μ̄2)
p−1
2 is continuously differentiable of arbitrary orderwhile

the smoothing functions ϕ j (μ, t) have Lipschitz continuous gradient, then we conclude that
the first term of Hj given by (5) has Lipschitz continuous gradient over bounded sets. In
particular, since the level set L(x0) is bounded by Lemma 2.1, it follows that the first term of
Hj has Lipschitz continuous gradient over L(x0). Since the gradient of 1

2‖Ax − b‖22 is also
Lipschitz continuous over IRn , then we get the following result.

Lemma 2.2 The function Hj defined in (5) has Lipschitz continuous gradient, that is, there
exists a constant L > 0, such that

∥
∥∇Hj (x) − ∇Hj (y)

∥
∥ ≤ L‖x − y‖, ∀ x, y ∈ L(x0). (8)

Lemma 2.3 Let Hj be defined as in (5) and {xk}, {dk} be generated by Algorithm 1. Then,
there holds

(
∇Hj (x

k)
)T

dk ≤ −1

2
‖∇Hj (x

k)‖2. (9)

Proof With Lemma 2.1 and Lemma 2.2, the proof is exactly the same as that in [13, Lemma
2.2]. We omit it. 
�
Theorem 2.1 Let Hj be defined as in (5) and {xk}, {dk} be generated by Algorithm 1. Then,
we have

lim inf
k→∞

∥
∥
∥∇Hj (x

k)

∥
∥
∥ = 0, (10)

for j = 1, 2, . . . , 6.

Proof Suppose that the conclusion (10) is not true. Then, there exists a constant r1 > 0 such
that

∥
∥
∥∇Hj (x

k)

∥
∥
∥ ≥ r1, ∀k, j = 1, 2, . . . , 6.
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Applying Lemma 2.3, it implies that {Hj (xk)} is decreasing, which implies xk ∈ L(x0).
From Lemma 2.1, the level set L(x0) is bounded. Thus, {Hj (xk)} is convergent. In addition,
from the Armijo line search in Step 2, we know

lim
k→∞ αk

(
∇Hj (x

k)
)T

dk = 0. (11)

On the other hand, applying (9) in Lemma 2.3 gives

αk

(
∇Hj (x

k)
)T

dk ≤ −1

2
αk‖∇Hj (x

k)‖2 ≤ −r21
2

αk < 0. (12)

Putting (11) and (12) together yields

lim
k→∞ αk = 0.

Now, by [13, Lemma 2.3], there exists a constant ε > 0 such that

‖dk‖ ≤ ε‖∇Hj (x
k)‖, ∀k ≥ 0.

Since L(x0) is bounded, there is a constant r > 0 such that

‖∇Hj (x
k)‖ ≤ r , ∀k ≥ 0.

Thus, there holds ‖dk‖ ≤ εr , and hence

lim
k→∞ αkd

k = 0.

Note that from the Armijo line search, we have

Hj (xk) − Hj (xk + αk
ρ
dk)

αk/ρ
< −δ

(
∇Hj (x

k)
)T

dk . (13)

Since {xk} and {dk} are bounded, there exist subsequences {xk}k∈K and {dk}k∈K such that

xk → x and dk → d, as k ∈ K , k → ∞.

Then, taking the limit on both sides of (13) with k ∈ K leads to

− (∇Hj (x)
)T

d ≤ −δ
(∇Hj (x)

)T
d �⇒ (∇Hj (x)

)T
d ≥ 0,

which contradicts Lemma 2.3. Therefore, the proof is complete. 
�

3 Numerical Experiments

In this section, we report the results of our experiments demonstrating the applicability,
efficiency and merits of our algorithm. All tests are carried out on a PC (3.20GHz, 32GB of
RAM) with the use of Matlab R2020a.

The parameters of our algorithm are summarized as follows:

x0 = AT b, λ = λ0 = 0.001‖AT b‖∞, ρ = 0.2,

δ = 0.3, ε0 = 10−10, r = 0, μ = 10−3.

For the smoothing parameter μ, we apply a continuation approach which has been widely
used in the literature (see [3] for instance) in order to improve the quality of solution obtained.
First, we set an initial value of the smoothing parameter as μ0 = 10−3 and use Algorithm
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1 to solve (6). When running Algorithm 1, we used the stopping criterion implemented in
NESTA [3] which is based on the relative variation of the objective function. In particular,
we stop Algorithm 1 when

|Hj (xk+1) − Hj (xk)|
|Hj (xk+1)| < 10−5, j = 1, 2, 3, 4, 5, 6. (14)

For higher accuracy of the solution, a lower threshold value for the relative variation can be
used. Since we are applying a continuation scheme, we reduce the value ofμ then implement
again Algorithm 1 as above with stopping criterion given by (14). In particular, for k ≥ 0,
we set μk+1 = 0.1μk . In addition to this, we also reduce the regularization parameter λ in
each continuation step according to the formula λk+1 = 0.1λk for k ≥ 0. This procedure is
inspired by the approach used in fixed-point continuation (FPC) method [20]. We repeat the
continuation procedure until we obtain a solution within a desired relative error, or until we
have reached a pre-specified maximum number of continuation steps. In our simulations, we
set the maximum number of continuation steps to 4 which we found to be enough to obtain
a good approximate solution for the problems we have considered.

3.1 Comparison of Smoothing Functions and Choosing p

Meanwhile, the success and performance of our algorithm are indeed dependent on the
parameter p and the choice of smoothing function. Thus, we explore these issues first before
we present our comparisons with other algorithms.

Experiment 1 In this experiment, we determine which values of p will result to an algorithm
which has a good frequency of success and fast convergence time. We let A ∈ IRm×n be a
Gaussian matrix with n = 215 = 32768, m = n

2 , x
∗ ∈ IRn is a K−sparse original signal

with K = � n
40�, whose nonzero components are sampled from N (0, 1). We consider two

cases where b = Ax∗ (noiseless case) and b = Ax∗ + e where e is a Gaussian noise with
zero mean and σ = 0.01.

For each test problem, the result is reported by running the algorithm 10 times and taking
the average CPU time. Note that just like the numerical experiment in [29], the smoothing
function ϕ1 is very unstable, so we do not include it in the numerical results. In the sequel,
the frequency of successful reconstructions means the percentage of all test instances that
reach the required relative error which we set to 10−3, i.e.

‖x − x∗‖
‖x∗‖ ≤ 10−3

where x is the solution obtained by the algorithm. The summary of the results are presented
in Tables 1 and 2 .

The summary of results for the noiseless and noisy cases are presented in Tables 1 and 2,
respectively. From these, we see that the algorithm has a very low frequency of success when
a small value of p is used, particularly when p = 0.3. The frequency of success improves
as the value of p increases. In terms of CPU time of convergence, we observe the same
pattern that a larger value of p provides faster convergence. In particular, we obtain the
fastest convergence time when p = 0.9. We can also see that the smoothing function ϕ3 with
p = 0.9 has the optimal performance among all the smoothing functions and values of p
considered. We confirm that this is the case for different dimensions in the next experiment.
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Experiment 2 We compare the performance of different smoothing functions with p = 0.9,
which is the optimal value of p found in the previous experiment. We generate A, b and x∗
as in Experiment 1 but we consider different dimensions n ∈ {211, 212, 213, 214, 215, 216}
and let m = n/2 and K = �n/40�. The results are shown in Table 3. With p = 0.9, all of
the smoothing functions were effective in solving the problem as we obtained 100% success
rate from 10 independent simulations. Moreover, from Table 3, we see that the function ϕ3

results to a more efficient algorithm both in the noiseless and noisy case.

3.2 Comparisons with Other Solvers for Sparse Recovery Problems

With the findings from the previous section, we now compare our algorithm with ϕ3 and
p = 0.9 to other famous algorithms in the literature. We consider popular solvers FISTA
[2], NESTA [3], and FPC-BB [20] which are designed to solve the convex model (I). We
also look at comparisons with those algorithms based on the nonconvex model (III) with
p = 0.5 includingHALF [31], IRUcLq-v [23] and alternating directionmethod ofmultipliers
(ADMM) [28].

Experiment 3 We consider the same A, b and x∗ as in Experiment 1 and compare our algo-
rithm with FISTA, NESTA, FPC-BB, HALF, IRUcLq-v and ADMM. For this experiment,
we also consider the two cases where b is noiseless or corrupted with noise. In addition, we
explore the capability of the solvers to recover signals of different sparsity levels, namely
K ∈ {�0.05m�, �0.1m�, �0.2m�, �0.3m�}. The results are summarized in Tables 4 and 5 .

We observe from both the noiseless and noisy cases that FPC-BB is the fastest solver
for the case when K = �0.05m�, K = �0.1m� and K = �0.2m� with 100% success rate.
For these sparsity levels, the second fastest solver is our CG Algorithm with the function
ϕ3 and p = 0.9, followed by the HALF and FISTA algorithms. On the other hand, the
solvers IRUcLq-v and ADMM were able to solve all these test problems but with very high
computation time compared with other solvers.

While FPC-BB is the fastest for the aforementioned sparsity levels, it failed to solve all
the problems for the highest signal density level considered which is K = �0.3m�. For
this case, CG Algorithm has the best performance in terms of CPU time and frequency of
success among all the solvers considered. On the other hand, FISTA, HALF and IRUcLq-v
algorithms were able to solve all the problems as well but the computation times required
are larger, especially for IRUcLq-v. We point out that the methods IRUcLq-v and ADMM
are the slowest solvers in all instances which is expected since these algorithms require the
inversion of an n × n matrix, which is extremely costly for high dimensional problems.

To summarize, this experiment reveals that our method is efficient in handling different
sparsity levels. In particular, it can recover signals which are dense (i.e. not strictly sparse)
which is not achieved by FPC-BB, NESTA and ADMM.

Experiment 4 In this experiment, we look at the measurement matrix A ∈ IRm×n considered
in [15,23] where the entries are sampled from N (0, 1

m ) and we let n = 32768, m = n/4 =
8192. The signal x∗ and the vector b are generated as in the previous experiments.

The results are shown in Table 6. It is evident that our method is very efficient and effective
in solving the problems for different sparsity levels. In fact, it is the fastest solver among all
the algorithms considered followed by the FPC-BB and HALF algorithm. Notice, however,
that the time required by the HALF method to solve the problem is almost three times longer
than the time needed by our algorithm.With this, we see that theCGalgorithm is very efficient
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in handling the type of problem considered. In terms of the capability of the algorithms to
solve the problem, it can also be seen that our algorithm (as well as HALF) is dominant as
it was able to solve all the problems for all sparsity levels considered. On the other hand,
FPC-BB algorithm failed to solve all the problems for sparsity levels �0.2m� and �0.3m�.

To close this section, we summarize our numerical findings:

• The CG algorithm with the smoothing function ϕ3 and p = 0.9 provides the best conver-
gence time and success rate among all smoothing functions and values of p considered.

• Even though FPC-BB is usually the fastest solver among all, the difference between
FPC-BB and our algorithm’s CPU time of convergence is not large (see Experiment 3).
Moreover, our algorithm obtains a good success rate for problems with relatively denser
signals which is not achieved by FPC-BB. In this respect, our algorithm has a major
advantage.

• Taking into account both the CPU time of convergence and the success rate of the algo-
rithms in handling different problems, we believe that our algorithm provides a better
performance among all algorithms considered as it can solve more problems at a reason-
able computation time.

• While FPC-BB is often the fastest solver among other algorithms considered in this paper,
we note that there are some problems where our method provides way better convergence
time. We have shown this in Experiment 4 where we see that not only FPC-BB requires
more than twice the time to obtain an approximate solution, but it also cannot solve
problems with high density signals. On the other hand, the convergence times of other
algorithms are much slower compared to our algorithm.

4 Conclusion

In this paper, we formulated a new model (6) which employs l p-norm along with a special
smoothing function that is motivated by re-weighted techniques. In general, the smoothing
strategy along with a version of conjugate gradient is the main focus and contribution of this
paper, both theoretically and and numerically. Not only we show global convergence, but
also from various experiments and comparisons we have strong numerical evidence to verify
our proposed algorithm is a good choice for tackling sparse signal reconstruction problem.
In particular, our method can efficiently solve the sparse recovery problem even when the
dimension of the problem is relatively high. Moreover, we have also demonstrated that dense
signals can be recovered by our algorithm, which is not achievable by other algorithms. A
future work that is worth considering is the theoretical and numerical study of the other
smoothing models (SFI)-(SFV) along with the conjugate gradient algorithm, and numerical
comparisons of these models for dealing with the sparse recovery problem.
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