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Abstract: Mean inequalities on the second order cone have been studied as an extension of the SPD cone.
In this article, we turn our eyes on non-symmetric cones. In fact, we investigate two types of decompositions
associated with circular cones, and establish their own mean inequalities. These inequalities are ground
bricks for further study regarding circular cone optimization. We also find under the condition 0 < 6 < %
some inequalities cannot hold if we apply different decomposition, and correspondingly we raise a conjecture.
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Introduction

The second-order cone (SOC) in IR™, also called Lorentz cone, is defined by
K" = {(xl,Xg) IR x ]R,n_l |IL‘1 > HXQ”},

where || - || denotes the Euclidean norm. If n = 1, then K™ reduces to the set of nonnegative
real numbers IR4. As a natural extension of the second-order cone, the circular cone £y was
first considered and investigated in [9]. In particular, let the half-aperture angle be 6 with
0 € (0,7%), the circular cone Ly is defined as

Lo ={(x1,%x2) € R x R ! | 21 > ||x2]| cot 0},

where | - || is the Euclidean norm, see Figures 1-2. It is clear that the SOC is a special case
of circular cone, corresponding to 0 = 7.

There holds a relationship between these two cones, see [9]. More specifically, it has been
shown that

n [ tang oF
TLy=K", where T—[ 0 7 ],
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s

Figure 1: Circular cone with 6 € (0, §). Figure 2: Circular cone with 6 € (F, 7).

which is equivalent to saying
XxeLly <+<— Txek".

Since Ly is a pointed and salient closed convex cone in IR™, we introduce a partial order
on IR™. For any x,y in IR"”, we write x >, y if and only if x —y € Ly; and write x >, ¥
if and only if x —y € int(Ly). With this partial ordering, it is easy to verify the following
facts.

Lemma 1.1. Suppose that x,y € R™. Then, the following holds.

(a) If x>z, 0 andy =, O, then x+y =, 0.
(b) Ifx =2, ¥,y =z, 2, then X =¢, z.

(¢) If x =, 0, then —x =, O.

For any real-valued function f : IR — IR, the SOC function f (a vector-valued
function) is defined as

soc

7 x) = fOux)uld + fOex)u?,  vx = (21,%x2) e R x R"L (1.1)

Here x is decomposed as
x = A (x)ul) + Ao (x)u, (1.2)

where A1 (x), A2(x) and uﬁcl), ugf) are the spectral values and the associated spectral vectors

of x given by

Xi(x) = w1+ (=1)"]|xz|l, (1.3)
. X .
‘ % 1, (—1)Zm)7 if x9#0,
ul) = 2 (1.4)

i1, (—1)iw), if x9=0,
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for i = 1,2 with w being any vector in IR"~! satisfying ||w| = 1. If x2 # 0, the decompo-
sition is unique. The SOC function was first introduced in [3] and also contributes a lot of
applications to second-order cone program (SOCP) and second-order cone complementarity
problem (SOCCP), see [7, 4, 8, 6]. In addition, SOC-convex and SOC-monotone functions,
and mean inequalities associated with second-order cone play important roles. In this article
we turn our eyes on circular cones. We will consider two types of decomposition on circular
cones, and develop their own mean inequalities correspondingly. First, once the circular
cone has its own decomposition like (1.2), we introduce the circular cone function analogous
to (1.1) as follows.

Definition 1.2 (Circular Cone Function). Let f : R — IR be a real-valued function, we
define a vector-valued function, f%¢ : R — IR™ by

FEx) = Fu))ud + fFRe(x)uld),  Vx = (z1,%2) € R x R",
which is called an Ly function.

If f is defined only on a subset of IR, then f%¢ is defined on the corresponding subset of
IR™. With Definition 1.2 the arithmetic mean A(x,y) and the harmonic mean H(x,y) are
defined. In particular, for any x,y € Ly, we define

x| = ) + Po(x)ul,
x = M)W 4 (x)Tal®, A (x)Ae(x) # 0,
X+y
Axy) = —,
xfl _|_y71 —1 )
Hixy) = (F—=Y—) . ixen) £0.
Furthermore, the maximum value x V y and minimum value x Ay are defined:
1
xVy = Sx+y+x-yl),
wny = JaxFy-lx-yh x4y e x -yl
0, otherwise.

In the SOC setting [1], there holds
xVy =xn A(X,y) =xr H(X,¥) =k XAY. (1.5)

To prove the inequalities in (1.5), SOC-monotone functions and SOC-convex functions play
important roles [2, 1]. Likewise, in order to show these inequalities in the circular cone
setting, we introduce Ly-monotone and Ly-convex functions as below.

Definition 1.3. Let f: IR — IR be a real-valued function.

(a) f is said to be Lg-monotone if it satisfies the following implication:
XZr,y = fﬁe(x) Lo fEG (Y)
(b) f is said to be Ly-convex if it satisfies the following condition:

AL (x) 4+ (1= N fP(y) =, £ x4+ (1= N)y), VYAelo,1].

In this paper, we will raise two types of decomposition for the circular cone Ly, and
study their own mean inequalities.
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First type of decomposition

In this section, we introduce the first type of decomposition for the circular cone Ly, which
is new to the literature. For any x = (71,%2) € IR x IR" ™!, x is decomposed as

x = A (x)ull) + A (x)ul?, (2.1)
where the spectral values of x are given by

A1(x) = 21 — ||x2| cot 8,
Ao (x) = 1 + ||x2|| cot 6.

In addition, the spectral vectors of x are respectively expressed as below:

11, (—1)ix2tan0>, if x2#0,
ud = %2l
% 1, (—1)iwtan9>7 if xo=0,

for i = 1,2 with w being any vector in IR"~! satisfying ||w| = 1. If x5 # 0, the decom-
position is unique. When 6 = %, this decomposition coincides with those (1.3) and (1.4) in
SOC setting. Note that it is true that Aq2(x) > A1 (x), and

M) >0 <= x€Ly <= xrz,0; M(x)>0 < x€int(Ly) < x>, 0.

For subsequent needs, let us examine some basic properties of the absolute value |x| and
the inverse x ! based on the above decomposition.

Lemma 2.1. Suppose that x = (x1,%x3) € R X R 1.

(a) If x =, O, then x = |x].

(b) If x =, 0, then x 1= Wm(xh—XQ) >, 0.

(c) Ifr € R and r #0, then (rx)~' = 1x~1
(d) Ifx =, 0, then (x )71 =x.

Proof. (a) By decomposition (2.1), it is clear to see that |x| = \Al(x)|u§(1) + |>\2(x)|u£(2).
Since x € Lg, A\1(x) = z1 — ||x2| cot § > 0, and A2(x) = 1 + ||x2]| cot > A1 (x) > 0. Then,
we have | A1 (x)] = A1(x), |A2(x)| = A2(x), which concludes x = |x].

(b) Tt is easy to verify the case for xo = 0. Assume x5 # 0 now. Then, the desired result
follows directly from below verifications:

x 7= X)) + e (x) T u?)
—peptand] " o llcot0 2 |y tand

T — ||xz\|cot9§

1
= T1,—X2) >z, 0.
A Tl T e
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(c) Applying part (b) yields

e = ()

1
- rr1, —rx
r2z? —r2||X2||2C0t29( ! 2)
1
= *Xil,
,
which shows the desired result.
(d) Tt is an immediate consequence of part(b) and part(c). O

First relation: xVy =, A(X,y) =z, XAy

Now, we aim to show the first relation,

XVy =z, AX,y) =z, XAY.
To this end, we need the following basic property regrading absolute value |x|.
Proposition 2.2. For any x = (z1,%x2) € R x R"!, |x| € Ly.

Proof. For x5 = 0, it is trivial. Assume x3 # 0 now. For convenience, we denote p; :=
[A1(x)| > 0 and py := |A2(x)| > 0. Then, we have

_ P 1 P2 1
x| = 9 { IIZH tan@] + 9 [ X2 tan@]

(B3]
1 p1+ p2
— - ! >z, 0.
2 [(Pz — p1) T tan 9} —ko

Thus, the proof is complete. O

Proposition 2.3. Suppose that x = (v1,%x2) € R x R ! y = (y1,y2) € R x R""! and
X,y € Ly. Then, the following hold.

(a) xVy =g, Axy),

(b) A(x,y) Z£, XA y.

Proof. (a) It is easy to see that

1 xty |[x-y
XVy - Alxy) = Licby 4 oyl - XY - RO

From Proposition 2.2, we have |x — y| >, 0, which proves x Vy =, A(X,y).
(b) Similarly, there has

x —y|
2

X+y
2

1
Alx,y) —xA\y = —§@+y—k—yD: =, 0.

Then, the proof is complete. O
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Second relation: xVy =p, H(X,y) =z, XAy

The second relation we want to claim is

xVy e, HX,y) =z, XA\Y.
Likewise, we need the following properties regarding the absolute value |x|.
Proposition 2.4. For any x = (z1,%2) € R x R"~!, we have

(a) [x[ =g, x,

(b) x| =gy —x.

Proof. (a) Again, it is easy to verify the case for x5 = 0. Assume x5 # 0 now. Let
p1 = | A1 (x)] — A1(x) > 0 and pg2 := |A2(x)| — A2(x) > 0. Then, we have

|x|—x—& 1 +@ L
2 |Toptand] © 2 [Elptand

1 p1+p2
3 [(Pz - m)xztane} =20 0

[

which shows the proof.
(b) Tt is trivial for xo = 0. Assume x5 # 0 now. Similarly, we denote p; := |A1(x)|+ A1 (x) >
0 and p2 := |A2(x)| + A2(x) > 0. Then, we have

‘XH_X_E =2 tan 6 +p2§ X2 tané

EA [EA]

1 1+ p2
o] [P

[EA]
Thus, the proof is complete. O
In order to link the inequalities, we still need the concept of circular cone monotonicity.

Proposition 2.5. Suppose that f : Ryy — R is given by f(t) = —t=1. Then, f is
Lg-monotone.

Proof. Tt suffices to show that x =,, y =, 0 implies y = =, x~!. For any x,y € Ly, by

Lemma 2.1, we know that y~! = g5 (y1, —¥2), X' = gy (21, —X2), where det(x) =
x% - ||X2||2 cot? § and det(y) = y% — HYQ||2 cot? @. Thus, we obtain
ylox1 = i1 X2 Y2
det(y) det(x) det(x) det(y)
1

= der0) det(y) <det(x)y1 — det(y)zy, det(y)xa — det(x)y2> )

Note that x >, y implies

21— Y1 2 [[x2 — yaflcot 6 > [[|xa]| = [lyz]|| cot 6.
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In view of these, to complete the proof, we need to verify two things.
First, we have to show that det(x)y; — det(y)z1 > 0. Indeed, we compute

T

T2y oy

det(x) 2} — ||x2/|? cot? 4 (ml + [|x2]| cot9> (xl — ||x2|| cot 0) - 221
det(y)  yf = lly2l?cot®60  \ w1 + [lyallcot 0 ) \ 1 — [[y2] cot 0

Here we use the inequality

()@ =i

provided that @ > b > 0 and ¢ > d > 0. Then, cross multiplying yields det(x)y; > det(y)x1,
i.e., det(x)y; — det(y)z; > 0.

Secondly, we shall show that || det(y)xs — det(x)y2||cotf < det(x)y; — det(y)z1. To see
this, we compute

2
{det(x)yl —det(y)z1| — | det(y)xs — det(x)ya]|? cot? §

= (det(x))%y? — 2det(x) det(y)z1y1 + (det(y))?a?
- [(dewy))?umn? ~ 2 det(x) det(y){xz, y2) + (det<x>>2||y2|2} cot?

= (det(x))*(y7 — lly2l* cot® ) + (det(y))*(x} — [Ix2]|* cot 6)
—2det(x) det(y)(z1y1 — (X2, y2) cot? 6)
= (det(x))?*det(y) + (det(y))? det(x) — 2det(x) det(y)(z1y1 — (X2,y2) cot? 0)

= det(x) det(y)| det(x) + det(y) — 2z1y1 + 2(x2, y2) cot? 9}

= det(x) det(y) | (27 — [[x2]|* cot? ) + (47 — [ly2l|* cot® §) — 2131 + 2(x2, y2) cot? 0

= det(x)det(y) | (o1 — 91)” = (Ixal® + ly2> — 202, y2)) cot? 9]

— det(x) det(y) | (@1 — )2 — (2 — yal|?) cot? 0]

0, )

v

where the last step holds by the inequality x >,, ¥y >, 0, which is equivalent to x—y >, 0.
To sum up, from all the above, we prove y 1 —x~! € int(Ly), i.e., y ! =, x 1. Then, the
proof is complete. O

Proposition 2.6. Suppose that x = (1,%x2) € R x R"!, y = (y1,y2) € R x R" !,
X >r, 0, andy >, 0. Then, we have

(a) xVy =z, H(x,y),

(b) H(x,y) Zr, X \y-
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Proof. (a) Applying Proposition 2.4 gives

1 1
x =yl =z, (x—y) = Jx-ylzz, 5(x-y)

2
1 1

= Slx—ylze, —5x+y)+x
1

= Sx+y+x-yl) zz %

2
and
1 1
x—yl=g, —(x—-y) = §IX—Y\ " Lo —§(X—Y)
1 1
= Slx=ylze, —5x+y)+y
1
= Sx+y+x-y) ey

With these, we conclude that §(x+y+[x—y|) =z, x and 3(x+y+ |[x—y|) =z, y. Then,

using Ly-monotonicity of f(t) = —t~! shown in Proposition 2.5, we obtain
- X+y+[x—yl\! - x+ty+x—yh!
X1, ( y 2| y\) and y~l g, ( y 2| yl) ’

which further imply
x 'y ! X+y+x—y[!
g L ( 2 ) '

Using Lp-monotonicity of f again, it yields

xty+lx—yl (X‘“ry‘l)*l
2 =Lo 2 :

Thus, xVy =z, H(x,y) is proved.
(b) For 2(x+y — [x — y|) & Ly, the inequality holds clearly. For 1(x+y — |x — y|) € Ly,
applying Proposition 2.5 gives

1 1
x—ylrg, —(x-y) = §\X—YI > Lo §(X+.Y)—x

1
= §(X+y_|X_YD =L X,

and
1 1
x—yl=g, (x-y) = §|x—y\ " Lo §(X+y) -y

1
= Sty —[x-y) =y
Hence, we can conclude that (x+y —|x —y|) 2z, x and 3 (x+y — [x—y]) =z, y. Again,
using the Lg-monotonicity of f(t) = —t~! shown in Proposition 2.5, we obtain

_ _ —1 _ _
(X+y |x y\) s, x~L and (X+y Ix —y|

—1
> _1
2 2 ) Lo Y
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which imply
x+y—[x—y[\! x4y !
(o)
2 2
Besides, employing Lg-monotonicity of f one more time, we achieve
x 'y I\ X+y—[x—yl
S
2 2

Thus, H(x,y) =z, XAY. O

Third relation: A(x,y) =, H(x,y)

Next, under the first type of decomposition, we clarify the relation between A(x,y) >r,
H(x,y). In fact, we will show

A(X7 y) ELG H(X7 Y)7

for which we need the concept of the circular cone convexity. However, showing f(t) = —t~!
is Ly-convex is a bit complicated. Instead, we only need to prove the inequality as shown in
Proposition 2.7, since it is what will be employed.

Proposition 2.7. Suppose that x = (z1,x3) € R x R"! y = (y;,y2) € R x R*7!,
X >z, 0, andy >, 0. Then, we have

-1 -1 -1
X Tty Xty
— T L < ) .

2 2
Proof. For any x >, 0 and y >, 0, we know that

x1 — ||x2|| cot 8 > 0,
y1 — [[y2[ cot 6 > 0, (2.2)
[(x2,32)| cot? 0 < [[x2|| - [|y2[ cot? & < w11

1

From x~ ! = ﬁ(x)(xl, —xg) and y ! = #(y)(yl, —y2), there have

;(x—1 + y_1> = ;(def(lx) + degt/zy) ’ _de)tizx) - dei’?}f))

RN CE )

Xty
2

and

-1
1 1
For notational convenience, we denote 5 <x1 + y1>( > = 5(El,EQ), where

Z; € R and =5 € R" ! are given by

( B )_4($1+y1)

det(x) = det(y) det(x +y)’

_ 4(XQ+y2)_( Xo Y2
det(x +y) \det(x) det(y)

(1]
|

[1]
V)

Now it suffices to verify two things : Z; > 0 and ||Za| cot 0 < =;.
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First, we verify that Z; > 0. In fact, by defining the function
T !
22 — ||xa][2cot?§  det(x)’

g(x) =

then we observe that

Q(X;y>§;(g(X)+g(Y)> = E1>0.

Hence, to prove Z; > 0, it is sufficient to show g is convex on int(Ly). Since int(Ly) is a
convex set, it is equivalent to verifying that V2g(x) is a positive semidefinite matrix. From
direct computations, we have

Vig(x) = 1 Exat

(2] — [|x2[? cot? 6)*
where
5 ¢
BT C
2273 + 621||x2]|? cot? 0 — (622 + 2||x2]|? cot? §) cot OxT
— (627 + 2||x2||? cot? 0) cot Oxa 271 ((m% — |Ix2||? cot2 ) I + 4 cot? Hxox
Obviously, A is a positive scalar. By (2.2) and the Schur Complement Theorem (see [5,

Theorem 7.7.6)), it suffices to claim that AC' — BT B is positive semidefinite. To this end,
we compute

AC — BB

21 (2.%";’ + 621 ||x2]|? cot? 9) ((w? — ||x2]|* cot? O)T + 4 cot? HXng>

2
—cot? 6 (63:% + 2||x2||? cot? 0) XoX2

(43(;‘11 + 1222 ||x2||* cot? 9) (w% — ||x2]|? cot? 9)[
—cot? 6 (20x‘1L — 2422 ||1x2||? cot? 6 + 4 x2||* cot* 0) XoXa
= (4:13‘1L + 1222 ||x2||? cot? 9) (z% — |Ix2/|? cot? 0>I
—4 cot? 9(53:? — [|x2]|? cot? 0) (a:f — [|x2||* cot? 9) XoX2
= (m% — [|x2]|? cot? 9) {(43:‘11 + 1223 ||x2||* cot? 9)[
—4cot? 6 (51‘% — |Ix2]|* cot? 9) xszT]
= <x% — ||x2]|? cot? 9) - M.

We know that xox3 is positive semidefinite with only nonzero eigenvalue ||x2||?. Hence, all
the eigenvalues of the matrix M are 427 +122%||x2||? cot? § —202%||x2||? cot? +4||x2||* cot 6
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with multiplicity of 1 and 4z} + 122%||x2||? cot? § with multiplicity of n — 2, which are all
positive because

4o 4+ 1222 ||x2 % cot? @ — 2027||x2|? cot? O + 4||xa||* cot? 0 = 4o — 8xF||x2]||? cot? O

+ 4||x2||* cot* 6

2
= 4(35% — ||x2]? cot? 9>
> 0.

Thus, we conclude that V2g(x) is positive semidefinite. Then, it follows that g is convex on
int(Ly), which says =1 > 0.
It remains to verify that =3 — || Z2]|? cot? 6 > 0.

Z2 — ||IZs]? cot? 0

_ 3 22191 yi ~ 8(z1 +y1) 1 Y1
N Kdet(x)2 det(x) det(y) + det(y)2> det(x +y) <det(x) * det(y))

16 2 5 )] 4(x2 +y2) X2 y2
. 9 _ _
+ det(x +y)? <x1 Témn yl)_ ’ det(x +y) \det(x) + det(y)

2
cot? 9

_ 3 2z i 8(x1 + 1) 1 Y
= Kdet(x)2 dot(x) det(y) det(y)2> T det(x+y) (det(x) + detéy))

P A ——
det(x +y)2 \'! 191 |

16 cot? 0 9 X2 + Y2 X2 Y2
| 2 2) —8cot?0
{det(x +y)? (X2” +2(x2,y2) + [yl ) 0 <det(x +y) det(x) + det(y)

[[x2]|> 2(x2,y2) lly2]®
+ cot? g(det(x)Q * det(x) det(y) * det(y)Q)}

B V% — ||x2|?cot? 0 2(m1y1 — cot? O(x2,y2)) | v} — |ly2|? cot? 9}

det(x)? det(x) det(y) det(y)?
16
* det(x +y)? [(w% — |Ix2||* cot? 0) + 2(x1y1 — cot? O(x2,y2)) + (¥ — |ly=2/|* cot? 9)]

B 2?2 — ||x2][?cot? 0 z1y; — cot? O(x2,y2) w1y1 — cot?0(xa,y2) yZ — |lya|/® cot? 0
det(x +y)det(x)  det(x +y)det(x) det(x +y)det(y)  det(x+y)det(y)

= (22 — ||x2||? cot? 6 ! + 16 - 8
1
det(x)?  det(x+y)? det(x+y)det(x)
2

t
1 16 8
2 2 0t29 B
+ (1 = [lyallco )(det(y) + det(x+y)? det(x+y) det(y)>

) 1 16 4(det(x) + det(y))
+2(z1y1 — cot 0<X2’YQ>)<det(x) det(y) + det(x +y)?2 det(x +y) >
B det(x + y)—4det(x) > det(x +y)—4det(y)\”
<$§‘X2”2C°t29)( det(x) det(x +y) )Hy%_””%(’tm( det(y) det(x 1+ ) )

+ 2(z1y1 — cot? O(xa, YQ>)((det(X +y) — 4det(x))(det(x +y) — 4det(y)) >

det(x) det(y) det(x + y)2

Now applying the fact that det(x) = z? — ||x2/|>cot? 6, det(y) = 3 — ||y2]|? cot? 6 and
det(x +y) — det(x) — det(y) = 2(z1y1 — cot? 0(xa,y2)) are all nonnegative by (2.2), we can
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simplify the last term (after a lot of algebra simplifications) and achieve

[det(x +y)—2det(x) — 2 det(y)} 2

=2 = 12 ot 2
== t= 0 = > 0.
1~ l1Z2]eo det(x) det(y) det(x +y) -

Hence,

x4yt X+y -1

— L .

2 2

Then, the proof is complete. O

Proposition 2.8. Suppose that x = (r1,%2) € R x R" !, y = (y1,y2) € R x R" !,
x>z, 0, andy >, 0. Then, there holds

A(X7 y) =L H(X7 y)‘

Proof. From Proposition 2.7, we have

x4yt X+ -t
A tag( y) .

2 2
Then, applying Proposition 2.5 and Lemma 2.1(d), it leads to A(x,y) =z, H(X,y). O

To sum up, from all the aforementioned three relations, we conclude that x Vy >,
A(x,y) =, H(x,y) =1, x Ay which is stated in Theorem 2.9.

Theorem 2.9. Suppose that x = (z1,x2) € RxR" !y = (y1,y2) € RxR" !, x=,, 0,
andy >, 0. Then, we have

XVy =g, AX,y) =g, H(X,y) =, XAY.

Second type of decomposition

This section is devoted to presenting another type of decomposition for the circular cone
Ly. Indeed, it is a traditional decomposition already studied in [9]. For any x = (1,x%2) €
R x R" !, x is decomposed as

x = A (x)ul) + Ay (x)ul?), (3.1)
where the spectral values of x are defined as

A1(x) = 21 — ||x2|| cot 0,
A2(x) = x1 + ||x2]| tan 6,

with the spectral vectors of x respectively given by

X2

.92 .
sin“f , —(sinfcosf)——
bl

), if X9 7& 0,
ull) =

sin?@ , —(sinf cosf)w |, if xo=0.



MEAN INEQUALITIES ASSOCIATED WITH CIRCULAR CONES 613

cos? @ , (sinfcosb) X2 >, if x9 #0,

cos? 0 , (sinfcosf)w |, if x=0.
The above w could be any vector in IR~ satisfying ||w| = 1. If x5 # 0, the decomposition
is unique. When 6 = 7, this decomposition coincides with those (1.3) and (1.4) in SOC

setting. Note that it is true that A2(x) > A1 (x), and
AM(X) >0 <= x€Ly <= x>£,0; M(x)>0 <= xcint(Ly) < x>, 0.

To proceed, we examine some basic properties of the absolute value |x| and the inverse
x~! based on the second type of decomposition.

Proposition 3.1. Suppose that x = (71,%3) € IR x R" 1.

(a) If x =, 0, then x = |x|.

(b) Ifx>=,0 and 0 € (5,%), thenx* >, 0.

¢) Letr € R and r # 0, then (rx)~' = 1x1.
# 0, ;

Proof. (a) From decomposition (3.1), we have |x| = |/\1(x)|u§(1) + |)\2(x)|u,((2). Since x € Ly,
A(x) = 21 — ||x2||cot@ > 0, and A2(x) = x1 + ||x2|tand > A (x) > 0, we have |\ (x)| =
A1(x), |A2(x)] = A2(x), which proves x = |x].

(b) It is easy to check the case of xo = 0. Assume x2 # 0 now. Then, we have

x 1= Al(x)flug) + )\g(x)flu)(f)

v sin” 0 n 1 cos? 0
T 21— |[x2] cotf |—(sinfcosf) 22| T 2 1 [[xo] tand |(sind cosf) 22

[EA] [EA]
sin? 0 cos? 6
_ [ zlfoQgcotO + z1+||x2|| tan 6 ]
- —(sin 6 cos 0)x2 (sin 6 cos 0) x5
(w1 =[xzl cot O)[Ix2]l " (21+[[x2]l tan 6)]|x2|]
_ ! 21+ (S — )|
(@1 — ||x2| cot 0)(z1 + ||x2|| tan §) |sin @ cos O(—xz(tan § + cot 0))
1 T+ (sin407cos49)||X2H

— cos @ sin 6 .

(1 — [Jx2| cot 0) (z1 + [|x2|| tan ) [ X }

Since (z1 — [|x2]| cot 0)(z1 + ||x2|| tan @) > 0, it suffices to show z; + (%)H)@H >

cot f|x2]|. To see this, using x =, 0 = x1 > ||x2|| cot 8, we have

sin* 0 — cos 6
1+ ( cos ) sin 6 )|

sin @ — cos? 0
W) [[x2|

sin* 6 — cos* 6
= |cot@+ | —— || [|x2||-

cos fsin 6

> cot 0%z + (

Note that 6 € (§,5) = sinf > cos#, it yields

sin* 6 — cos 6
cot + | ————— | | [|x2]| > cot ||x2]|,
cos fsin 6
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which is equivalent to saying x =% =,, 0.
(c) Again, the case of xo = 0 is trivial. Assume x5 # 0 now. Then, we have

= ([])

B 1 sin” 0 n 1 cos“ 6
= T2y — %] cot 8 (smecosﬁ)m ray + r|xo|| tan @ [ (sin 6 cos 0) iy

(1 1 sin” 0 L I cos? @
= (= x1 — ||x2 cot @ | —(sinfcos O) T x1 + ||x2 tan 6 | (sinf cos ) Z2: B

which is the desired result. O

In view of the above arguments, it can be concluded that when an element x falls in the
circular cone Ly, its absolute value |x| and inverse x ~! will also fall in the circular cone under
the condition 6 € [F, T). Moreover, when 6 < 7, it is no longer true. This indicates that
the second type of decomposition is very dlfferent from the first type one. The differences
between decomposition (2.1) and decomposition (3.1) will be elaborated in the final section.

The relation xVy =, A(X,y) =z, x Ay does not hold under 6 € (0, §)

Under the second type of decomposition, when 6 € (0, 7 ), the inequalities
xVy =z, AX,y) Zg, XAy
do not hold in general. Here are counterexamples.

Example 3.2. Consider 6 =
(1.65,0.15,0.2) and x Vy = (1

= (1.6,0.3,—-0.1), y = (1.7,0,0.5). Then, A(x,y) =

G x = (
.91,0.06,0.39 ),Whlch says

xVy— A(x,y) = (0.27,-0.09,0.19) #., O

Example 3.3. Consider 6 =
(1.65,0.15,0.2) and x Ay = (1

5 x = (16,0.3,-0.1), y = (1.7,0,0.5). Then, A(x,y) =
.38,0.24,0.01), which says

A(x,y) —x Ay = (0.27,-0.09,0.19) #,, O

In order to conquer the hurdle and build up new inequalities, we need the following
inequality. In fact, it does not hold under € (0, §) in general.

Proposition 3.4. Suppose that x = (v1,%2) € RxR"™!, y = (y1,y2) € RxIR""!. Then,
we have |x —y| =, 0 for 0 € (F,7).

Proof. Tt is easy to verify the case of xo = yo. Assume X5 # ys now. With this, we know
M(x—y) = (#1 —y1) = [[x2 — y2f cot 6 and Aa(x —y) = (21 — y1) + [[x2 — y2[/tan . To
proceed, we divide the arguments into three cases.

Case 1. \i(x—y) >0, and d2(x—y) > 0.

If \i(x—y) >0, Aa(x—y) > 0, then |x —y| = x—y which clearly says [x—y| =x—y € Ly.
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Figure 3: x Vy — A(X,y) %, 0 with 6 = §.

Figure 4: A(x,y) —x Ay %, 0 with 6 = .

Case 2. \i(x—y) <0, and Aa2(x—y) <O0.
If Mi(x—y) <0and A\y(x —y) <0, we have

.2
sin”® 6
Koyl = Gt e - valootd) |2ty |
[[x2—y2l|
- cos? 6
+(y1 — 1 — [[x2 — y2l tan 0) sin 6 cos § 22=Y2
[Ix2—y=]l

_ Y1 — 71
Y2 — X2’

For 6 > 7, the below implication is true:

A(x—y) <0 = y1—21 2> |[ly2 — Xz tant > [[y2 — x2[[ cot 0.

Hence, it says that |x —y| =y —x € Ly.

615
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Case 3. \i(x—y) <0, and \y(x —y) > 0.
For \i(x—y) <0, Aa(x—y) >0, letting A = -\ (x —y) and B = \y(x — y) yields

.2 2
sin” 6 cos* 0
-yl = A{ sin 6 cos O =2=Y2 } +B |:Sin90089 X2 =¥
Ix2—y2ll [Ix2—y=||
[ Asin? 60 + Bcos? 0
(

_ - X2—y
A+ B)sinf cosf =

It is obvious that

Asin?@ + Bcos? 0 > ||(— A—i—B)schosH ||cot9

since 0 € (%, 7%). Hence, it is clear that |x —y| >, 0 holds.
Notice that A2(x —y) > A1(x —y) and based on the above three cases, we conclude that
|x —y| =g, 0 for 6 c(F,7%). O

Next, we establish the inequalities:

xVy =g, A(X,y) =, x ANy, for HE(Z ;T)

Proposition 3.5. Suppose that x = (z1,X2),y = (y1,y2) € R x R"™1, and x,y € Ly.
Then, we have

(a) xVy =¢, A(x,y) for0 e (%,5),
(b) A(x,y) =g, x Ny forec (3,5
Proof. (a) It is clear to see

x+y _ [x—yl
2 2

1
xVy—A(x,y) = §(X+Y+|X—Y|)—

By Proposition 3.4, we know |x —y| =, 0 for 0 € (§,5). Hence, xVy =, A(x,y) for

(b) Snnllarly, there holds

x+y 1 X—-y
Alx,y) —x Ay = —sx+y—Ix—yl)= eyl
2 2 2
Then, the proof is trivial with the same arguments. O

The relation xVy =, H(x,y) =, X Ay does not hold under ¢ € (0, §)

Likewise, under the second type of decomposition, the inequality x Vy =, H(x,y) does
not hold in the circular cone setting when 6 € (0, §). Here is a counterexample.

Example 3.6. Consider § = %, x = (1.6,0.3,-0.1), y = (1.7,0,0.5). Then, H(x,y) =
(1.6,0.26,0.4) and x Vy = (1.91,0.06,0.39), which says

xVy—H(x,y) =(0.31,-0.2,-0.01) %, O
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Figure 5: x Vy — H(x,y) #r, 0 with § = &.

In order to fix the problem, we need to propose the following more delicate property
regarding the absolute value |x].

Proposition 3.7. For any x = (21,%2) € R x R"!, we have

(a) |x| =gy x for0 e (5,5);
(b) |x| =z, —x for 6 e (%, g)

Proof. (a) From definition, we have
x| = x = [I\1 ()] = M (0Tul) + [IA2(3)] = Ao (x)]ul?.

To proceed, we discuss three cases.

Case 1. For \i(x) > 0, A2(x) > 0, it is clear that |x| —x =0 >, O.

Case 2. For A\;(x) <0, A2(x) < 0, we know |x| —x = —2()\1(X)u§(1) + Ag(x)ug)) = —2x.
Since A2(x) = z1 + ||x2]| tand < 0, we have —z1 > || — x2|[tanf > || — x2|| cot & > 0, which
says |x| —x = —2x =, 0.

Case 3. For A\1(x) <0, A2(x) > 0, there have

.2
sin” 6
x| = x = =2\ (x)ul) = —2X(x) [— sin § cos 9|x_2|}
X2
Since —2X1(x) > 0, we only need to verify sin®6 > || — sinf cos 22| cot @ = cos?6. In

(B3]
fact, from the hypothesis § € (7, 5 ), we have sin? @ > cos? 6, which says |x| — x =, 0.
(b) Similarly, from definition, we have

x| 43 = [IA(x)] + M (0] ul + [z (x)] + Ao ()] uld.

Again, three cases are discussed.

Case 1. For A\i(x) > 0, A2(x) >0, it gives |x| +x =2x =, 0.
Case 2. For \i(x) <0, A2(x) <0, it gives |[x| +x =0 >, 0.
Case 3. For \i(x) <0, A2(x) > 0, there has

29
x|+ x = 200 (x)u? = 2X(x) { . ]

sin 6 cos 022
B2
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ﬁ” cot § = cos? §, which is

always true for any angle. Thus, |x| +x >, 0. O

Since 2X2(x) > 0, we only need to check cos? > || sinf cos @

In order to establish more inequalities under this type of decomposition, we still need
the concept of circular cone monotonicity. Zhou and Chen [9] are the pioneers who studied
the second decomposition on Ly, and they provided a sufficient condition for f to be Lp-
monotone within the second decomposition.

Theorem 3.8 ([10, Theorem 2.3]). Suppose that f : R — IR is differentiable. If for all
real numbers t1 < to, we have

(tan @ — cot 0)(f'(t1) — f'(t2)) > 0,

and
f'(t1) (f(t2) — f(ta
(f(t2) = f(t1))(t2 — t1) 7" J'(

is a positive semidefinite matriz, then f is Lo-monotone.

N(t2 —t1)~!
t

2)

Recall that the fact a matrix is positive semidefinite if and only if all its eigenvalues are
nonnegative. Consequently, we obtain Corollary 3.9.

Corollary 3.9. Suppose that f : Ry — IR is given by f(t) = —t', and 6 € (5, 3).
Then f is Lg-monotone.

Proof. Only the case to > t; > 0 needs to be considered. Suppose to > t; > 0, then we
have f'(t1) — f'(t2) = t;> —t;° > 0. When 6 € (2, Z), obviously we have tan 6 — cot § > 0.
Hence, (tan — cot 0)(f'(t1) — f'(t2)) > 0 is satisfied.

f'(t1) (f(ta) = f(t1))(ta —t1) "
(f(ta) = f(t2))(ta —t2) " f'(t2)

Next, we will show is a positive

semidefinite matrix.
It is easy to see that (t7' —t5')(ta — t1)~! = (t1t2)~*. The eigenvalues of the matrix
will be shown all nonnegative below.

et [éﬁl—ltg)—kl (tt;@ﬂ = (7= N7 =) = () ™)

(tita) 2 — (t 2+ )N+ A2 — (tatg) 2
A2 — (72 + 12N
When A2 — (t72 +t;2)A = 0, we have A = 0 or A = t; 2 + t5 2, which implies

[ ) 115;2 (tflft?)(ztzftl)*l
=t )t — 1)t ty

is a positive semidefinite matrix. Then, applying Theorem 3.8 yields that f(t) = —t~! is
Ly-monotone. O

Use Proposition 3.7 and Corollary 3.9, we also establish the following inequalities under
the second type of decomposition.

Proposition 3.10. Suppose that x = (11,%2) € R x R"1, y = (y;,y2) € R x R" !,
x>z, 0, andy >, 0. Then, we have
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(a) xVy =r, H(x,y) for0 € (§,%);
(b) H(x,y) =g, XAy for0 e (F,3).

Proof. (a) For 6 € (%, %), from Proposition 3.7, we have

1 1
x—¥lze (x—y) = Sx-ylze, 5x-y)

1 1
= Slx—ylre, —5xty) +x

1
= Sty +x-vyl) =z x
and

1 1
x—y|l=g, —(x—-y) = §Ix—y| iy —§(X—Y)

1 1
= Slx=ylze —5x+y)+y

1
= Sx+y+x-y) ey
Hence, we see that 3 (x+y+[x—y|) =, x and 3 (x+y+|x—y|) =, y. Use Ly-monotonicity
of f(t) = —t~! shown in Corollary 3.9, we obtain

x+y+x—y[\ - X+y+[x—yl\!
e 2=

-1y
X =L 2 2

which imply
x ' +y! X+y+[x—y[\™*
L (e
2 2
Applying Lg-monotonicity of f again, we obtain
x+y+[x—yl x 1y !
2 Lo ( 2 ) '
Thus, x Vy =g, H(x,y) when 0 € (§, 5).
(b) If 1 (x+y — |x—y]|) ¢ Lo, the inequality holds clearly. Suppose 1(x+y —[x—y]|) € Lo.

For § € (%, 5), by Proposition 3.7, we have

1 1
=¥l me, —(x—y) = lx—¥lze, 3x+y) - x

1
== §(X+y7|X7Y|) Lo X,

and
1 1
x—yl=e (x—y) = §|X—Y| o §(X+y)—y

1
= §(X+y—|X—Y|) =Ly Y-

Hence, we can conclude that 1(x+y — |x —y|) 2z, x and 3(x +y — [x —y|) =, y. Use
Lp-monotonicity of f(t) = —t~! shown in Corollary 3.9, we obtain

_ _ —1 _ _ —1
(X+y 2|x Y|> e, x~! and (X+y 2|X y\) -
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which imply
-1 -1
o XAV

(><+y—|x—3>'l)‘1

2
Applying Ly-monotonicity of f again, we obtain

ey

! . X+y—|X—Y|‘

Z Lo 5
Thus, H(x,y) =z, x Ay when 6 € (§, 7). O

Relation between A(x,y) and H(x,y)
With no doubt, under the second type of decomposition, the inequality
A(X7y) tl:g H(X)y)

does not hold when 0 < 6 < 7. To see this, we can find two vectors x,y € Lz such that
the inequality A(x,y) >,, H(x,y) does not hold.
6

Example 3.11. Consider § = ¢, x = (1.6,0.3,-0.1), y = (1.7,0,0.5). Then, we have
A(x,y) = (1.65,0.15,0.2) and H(x,y) = (1.6,0.26,0.4), which says

A(x,y) — H(x,y) = (0.05,—-0.11, —0.2) #, 0.

Figure 6: A(x,y) — H(x,y) #., 0 with 6 = %.

Unfortunately, we can also find x,y € Lz such that the inequality A(x,y) =z, H(x,y)
3
does not hold.

Example 3.12. Let 6 = T, x = (0.6,0,0.4), y = (0.6, —0.2,0.4), then A(x,y) = (0.6, —0.1,0.4),
and H(x,y) = (0.48,—0.03,0.12), we have

A(x,y) — H(x,y) = (0.12,—-0.07,0.28) %, O.
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’{y)-ﬁ(x,y)

Figure 7: A(x,y) — H(x,y) #r, 0 with 6 = %.

According to Example 3.12, the inequality between A(x,y) and H(x,y) in the SOC
setting cannot be directly generalized to the circular cone setting. Nonetheless, by letting

2, 29
k(x,y) — max {1+8tan 0—2 8tan® 6 — 2 }’

pdab + pded
a =z — cot 0]|x2]l,
b=z + tan 6||xa||,
¢ = y1 — cot 0|yal|,

d =y + tan 0[]y |,

sin® 6 — cos?

’ Iva)

sin? 6 — cos? 6

¢:$(m1+ ||m||)+%(y1+

sin 6 cos 6 sin 6 cos 6

1 1
— H%XQ + a}’QH cot 6,
5= 1 (301 N sin? 0 — cos? ”X2”> N i(yl N sin? 6 — cos? 0||Y2||>
ab sin 6 cos 6 cd sin 6 cos 6

+ H L + ! H tané
—X9 + — ané.
ab 2 cd”?
we can achieve Proposition 3.13 though it is a tedious work (the arguments are omitted).

Proposition 3.13. Suppose that x = (1,%2) € Rx R" !, y = (y1,y2) € IR x R"7!,

T
X>r, 0, andy =, 0. Let K = [ kx,y) 0

0 T }, then we have

T
K- Ax,y) =z, Hx,y) for0e (Z’E) .

In fact, the matrix K depends on x,y, which does not sound good. It is hoped that
we can replace it by a constant matrix which does not depend on x and y. After lots of
experiments, it seem to be true that all examples support this idea. For instance, letting
T [tan& o”

0 T ] , we obtain below example.
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Example 3.14. Consider § = %, x = (0.6,0,0.4), y = (0.6, -0.2,0.4). Then, we have
A(x,y) = (0.6,—0.1,04), and H(x,y) = (0.48,—0.03,0.12), which says

T-A(x,y) — Hx,y) = (0.6V/3 — 0.48,—0.07,0.28) =, 0.

T-Alcy)

AGey)-Hix,y)

Figure 8 T- A(Xa y) - H<X7Y) ELQ 0 with 6 = %

Based on the aforementioned examples and discussions, we make the following conjecture.

Conjecture 3.15. Suppose that x = (z1,%x2) € R x R" ! y = (y1,y2) € R x R"!,
tang 0T

0 7 ] , then we have

X>r,0,andy >,, 0. Let T' = [

Tom
T -Ax,y) =¢, Hx,y) for6e (1’5)

Final remarks and conclusion

In this paper, we raise two types of decompositions regarding the circular cone L£y. Within
the first decomposition, we establish

XVy =g, AX,y) =z, HX,y) =g, XNy,

as happened in the SOC setting. To the contrast, on the second decomposition with 0 <

6 < /4, things become complicated. Nonetheless, when 6 € (%, g), we achieve that

XVy =g, AX,y) =z, x Ay and xVy>=g, HX,y) =g, XA\Yy.

However, in general the inequality A(x,y) =r, H(x,y) does not hold. Accordingly, we
propose a conjecture for this. If the conjecture is true, then we have

T-(xVy) =z, T-AX,y) =z, HX,y) =z, XAy,

T
instead, where 6 € (%7 %) and T = [tane 0 } .

0 1
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At last, we point out the main differences between these two type of decompositions.
They indeed arise from the choices of their eigenvectors, which are the main sources of
achieving various outcomes.

First Decomposition | Second Decomposition
Eigenvectors are in the cone? Yes. Yes, when % <6< %
Eigenvectors are orthogonal? No, when 6 # 7. Yes.
Vx € int(Ly), (x 1)~ is still x? | Yes. No, when 6 # 7.
vx € R™, do we have |x| >, x? Yes. Yes, when 7 <60 < 7.
vx € R", do we have |x| =z, —x7 | Yes. Yes, when % <6< %

Figure 9: First Decomposition Figure 10: Second Decomposition

Once the eigenvectors fall outside the cone, the absolute value |x| and the inverse x !

would fall outside the cone. That tells why we have lots of counterexamples when 0 <
# < 7 within the second decomposition. On the other hand, the advantage of orthogonal
eigenvectors helps us to clarify the characterization of monotonicity of circular function f2¢,
see Theorem 3.8. If the eigenvectors are not orthogonal, the proof of monotonicity becomes
complicated, see Proposition 2.5.

The geometric mean that we have not touched is also important. The SOC geometric
mean G(x,y) is considered in [1]. Let V be a Euclidean Jordan algebra with a Jordan
product o, let K be the set of all square elements of V' (the associated symmetric cone), and
Q := int(K) (the interior of the symmetric cone). For x € V, let £(x) denote the linear
operator given by £(x)y :=x oy, and let P(x) := 2£(x)? — £(x?). Suppose that x,y € .
The geometric mean of x and y is defined by

G(x,y) = P(x*)(P(x”%)y)*.
It can be shown that in the SOC setting [6]

xVy =in AX,y) Zxn G(X,¥) Zxn H(X,y) Zxn XA Y.
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However, for circular cones, we were unable to find a counterpart to the definition of P(x) as
seen in the SOC setting. Therefore, we can not find similar inequalities analogous to those
in the SOC setting. We leave them as future works.
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