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Preface

Complementarity functions occupy a central role in the field of optimization, as they

enable the reformulation of the Karush-Kuhn-Tucker (KKT) conditions and the original

optimization problem into either an equivalent system of equations or an unconstrained

minimization problem. This reformulation opens the door to a wealth of novel approaches

aimed at solving these equivalent forms, thereby generating solution candidates for the

original problem. While two distinguished monographs have already addressed related

areas of complementarity problems - focusing primarily on the existence of solutions, their

stability, sensitivity analysis, and corresponding solution methods - this book adopts a

distinct perspective. Here, we devote our primary attention to the study of complemen-

tarity functions themselves. Specifically, our goal is to present a comprehensive overview

of their key properties and structural features, as well as to provide guiding principles

for the construction of new complementarity functions. Moreover, we will illustrate how

these functions can be effectively employed in algorithmic applications.

Chapter 1 offers an overview and essential background materials that lay the ground-

work for the analyses presented in the subsequent chapters. In Chapter 2, we delve

into the development of complementarity functions within the framework of nonlinear

complementarity problems (NCPs), introducing several novel ideas and systematic tech-

niques for constructing new NCP functions. Building upon these foundations, Chapter

3 extends the discussion to broader settings, encompassing second-order cones, positive

semidefinite cones, and symmetric cones. These two chapters form the core of this mono-

graph and are closely aligned with its central theme. Throughout Chapters 2 and 3, the

analysis is conducted within finite-dimensional spaces. Nevertheless, the development

requires the careful handling of various inequalities and intricate technical arrangements.

While the objectives in many instances may appear straightforward, the corresponding

arguments can be laborious and subtle. Readers may, however, find valuable techniques

and insights embedded within these detailed derivations.

In general, the unified analysis of certain C-functions presented in Section 3.3 encom-

passes and recovers the results discussed in Chapter 2, as well as Sections 3.1 and 3.2,

since symmetric cones naturally include the nonnegative orthant, the positive semidef-

inite cone, and the second-order cone as special cases. However, establishing certain

properties within this unified framework may necessitate additional conditions. At first

glance, one may observe parallel or analogous results across these various settings. This

resemblance arises from the progression of C-function developments - originating in the

classical NCP setting, advancing through the positive semidefinite and second-order cone

contexts, and culminating in the broader symmetric cone framework. From a historical

perspective, it is instructive to preserve this developmental pathway. Doing so not only

allows readers to trace the evolution of these ideas but also helps them discern the subtle
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distinctions between settings and appreciate the diverse techniques required in each case.

In Chapter 4, we turn our attention to a selection of algorithms that employ comple-

mentarity functions. Broadly speaking, four distinct approaches are explored: the merit

function approach, the nonsmooth function approach, the smoothing function approach,

and the regularization approach. Within each framework, we present specially designed

optimization algorithms that leverage the properties of complementarity functions, illus-

trating their practical utility and adaptability in algorithmic development.

In Chapter 5, we showcase the applications of complementarity functions within the

framework of neural network methods, which differ fundamentally from traditional opti-

mization techniques. For these dynamical systems, the primary concerns lie in the behav-

ior of solution trajectories and the stability of the system, rather than the convergence

rate or iteration count typically emphasized in conventional optimization algorithms. In

particular, we focus on applying these methods to nonlinear complementarity problems

and optimization problems involving second-order cones, providing illustrative examples

to highlight their effectiveness in such contexts.

This book encapsulates my two decades of research on complementarity functions.

Much like my earlier Springer monograph, “SOC Functions and Their Applications”, it

is dedicated, once more, to the cherished memory of my supervisor, Professor Paul Tseng.

I am profoundly grateful to have had the privilege of his mentorship. His unwavering

encouragement and profound insight have continuously shaped and guided my academic

journey. Though he tragically went missing in 2009, his exemplary dedication to research

and his inspiring attitude remain etched in my heart. I wish to express my sincere ap-

preciation to all my esteemed co-authors whose collaborative efforts have contributed to

the material presented in this book: Professor Shaohua Pan, Professor Yu-Lin Chang,

Professor Chun-Hsu Ko, Professor Xinhe Miao, Professor Juhe Sun, Professor Chu-Chin

Hu, Dr. Ching-Yu Yang, Dr. Chien-Hao Huang, Dr. Thanh Chieu Nguyen, Dr. Harold

Alcantara, among others. Working alongside them has been not only intellectually re-

warding but also a source of great personal joy. My gratitude also extends to Xiaoni

Chi and others who kindly assisted with proofreading, ensuring the clarity and precision

of the text. Lastly, I owe my deepest thanks to my family-Vivian, Benjamin, and Ian

along with Ian’s beloved Doggy, Olah and Lil Bos. Their unwavering support, love, and

encouragement have been a constant source of strength, empowering me to pursue and

persevere in my academic endeavors.

Jein-Shan Chen
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LIST OF TABLES 1

Notations

• Throughout this book, an n-dimensional vector x = (x1, x2, · · · , xn) ∈ IRn means

a column vector, i.e.,

x =


x1

x2
...

xn

 .
In other words, without ambiguity, we also write the column vector as x = (x1, x2, · · · , xn).

• IRn
+ means {x = (x1, x2, . . . , xn) |xi ≥ 0, for all i = 1, 2, . . . , n}, whereas IRn

++ de-

notes {x = (x1, x2, . . . , xn) |xi > 0, ∀i = 1, 2, . . . , n}.

• 〈·, ·〉 denotes the Euclidean inner product.

• ‖ · ‖ is the Euclidean norm.

• T means transpose of a vector or a matrix.

• B(x, δ) denotes the neighborhood of x with radius δ > 0.

• IRn×n denotes the space of n× n real matrices.

• I represents an identity matrix of suitable dimension.

• For any symmetric matrices A,B ∈ IRn×n, we write A � B (respectively, A � B)

to mean A−B is positive semidefinite (respectively, positive definite).

• Sn denotes the space of n×n symmetric matrices; and Sn+ means the space of n×n
symmetric positive semidefinite matrices.

• O denotes the set of P ∈ IRn×n that are orthogonal, i.e., PT = P−1.

• Given a set S, we denote S̄, int(S) and bd(S) by the closure, the interior and the

boundary of S, respectively.

• A function f : IRn → (−∞,∞] is said to be proper if f(ζ) < ∞ for at least one

ζ ∈ IRn and f(ζ) > −∞ for all ζ ∈ IRn.

• For a mapping f : IRn → IR, ∇f(x) denotes the gradient of f at x.

• For a closed proper convex function f : IRn → (−∞,∞], we denote its domain by

domf := { ζ ∈ IRn | f(ζ) <∞}.

• For a closed proper convex function f : IRn → (−∞,∞], we denote the subdiffer-

ential of f at ζ̂ by

∂f(ζ̂) :=
{
w ∈ IRn | f(ζ) ≥ f(ζ̂) + 〈w, ζ − ζ̂〉, ∀ζ ∈ IRn

}
.



2 LIST OF TABLES

• C(i)(J) denotes the family of functions which are defined on J ⊆ IRn to IR and have

continuous i-th derivative.

• For any differentiable mapping F = (F1, F2, · · · , Fm) : IRn → IRm, ∇F (x) =

[∇F1(x) · · · ∇Fm(x)] is a n×m matrix which denotes the transpose Jacobian of F

at x.

• For a real valued function f : J → IR, f ′(t) and f ′′(t) denote the first derivative

and second-order derivative of f at the differentiable point t ∈ J , respectively.

• For a mapping F : S ⊆ IRn → IRm, ∂F (x) denotes the subdifferential of F at x,

while ∂BF (x) denotes the B-subdifferential of F at x.

• For nonnegative scalars α and β, we write α = O(β) to mean α ≤ Cβ, with C

independent of α and β.

• We denote K∗ := {y | 〈x, y〉 ≥ 0 ∀x ∈ K} the dual cone of K, given any closed

convex cone K.

• For any x ∈ IRn, (x)+ is used to denote the orthogonal projection of x onto K,

whereas (x)− means the orthogonal projection of x onto −K.

• For any x, y ∈ IRn, we write x �Kn y if x − y ∈ Kn; and write x �Kn y if

x− y ∈ int(Kn).



Chapter 1

Backgrounds and Overviews

In this chapter, we provide a concise overview of complementarity problems frequently

encountered in optimization, along with the various contexts from which complemen-

tarity functions naturally arise. Additionally, we revisit essential background material

pertinent to the study of complementarity functions. Notably, the framework of Eu-

clidean Jordan algebra offers a powerful and unifying approach for addressing a wide

range of complementarity problems. To this end, we introduce the fundamental concepts

of Euclidean Jordan algebra, beginning with the notion of symmetric cones, which play a

central role in both complementarity problems and the construction of complementarity

functions.

1.1 Symmetric cones, Spectral decomposition and

Löwner function

Let V be a Euclidean space endowed with an inner product 〈·, ·〉. A subset K ⊆ V is

called a cone if

x ∈ K, λ ≥ 0 =⇒ λx ∈ K.

A cone K which contains no line is said to be pointed , namely, K ∩ (−K) = {0}. If K is

also convex, then K is said to be a convex cone . Regarding convex cones, the following

facts are well known.

(a) A set K ⊆ V is a convex cone if and only if

λK ⊆ K ∀λ ≥ 0 and K +K ⊆ K.

(b) A set K ⊆ V is a convex cone if and only if it contains all nonnegative linear

combinations of points in K.

1



2 CHAPTER 1. BACKGROUNDS AND OVERVIEWS

(c) Let K be a convex set. The set

{λx |x ∈ K,λ ≥ 0}

is the smallest convex cone containing K.

For any set E ⊆ V, the set

E◦ = {y ∈ V | 〈y, x〉 ≤ 1, ∀x ∈ E}

is called the polar set of E. If E is a closed convex cone, λE ⊆ E for all λ ≥ 0. Hence,

the condition 〈y, x〉 ≤ 1, ∀x ∈ E is equivalent to 〈y, x〉 ≤ 0, ∀x ∈ E. Therefore, the polar

cone of a cone K is defined as

K◦ = {y ∈ V | 〈y, x〉 ≤ 0, ∀x ∈ K}.

To visualize the graph of K◦, please see Figure 1.1. Let K be a nonempty closed convex

cone, it is also known that K = K◦◦. For a closed cone K ⊆ V, its dual cone K∗ is given

by

K∗ := {y ∈ V | 〈x, y〉 ≥ 0, ∀x ∈ K}.

Figure 1.1: The graph of K◦.

Let V be an n-dimensional vector space over the real field IR, endowed with a bilinear

mapping (x, y) 7→ x ◦ y from V × V into V. The pair (V, ◦) is called a Jordan algebra

[66, 125, 131] if the following two conditions are satisfied:

(i) x ◦ y = y ◦ x for all x, y ∈ V,

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V.



1.1. SYMMETRIC CONES, SPECTRAL DECOMPOSITION AND LÖWNER FUNCTION3

Note that a Jordan algebra is not necessarily associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z
may not hold for all x, y, z ∈ V. We refer an element e ∈ V as the identity element if

x ◦ e = e ◦ x = x for all x ∈ V. A Jordan algebra (V, ◦) with an identity element e is

called a Euclidean Jordan algebra if there is an inner product, 〈·, ·〉, such that

(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V.

Given a Euclidean Jordan algebra (V, ◦, 〈·, ·〉), we denote the set of squares as

K :=
{
x2 |x ∈ V

}
. (1.1)

By [66, Theorem III.2.1], the set K described by (1.1) is called a symmetric cone ,

which means that K is a self-dual closed convex cone with nonempty interior and for any

two elements x, y ∈ int(K), there exists an invertible linear transformation T : V → V
such that T (K) = K and T (x) = y.

Example 1.1. The vector space V = IRn with the usual inner product 〈x, y〉 = xTy can

be made into a Euclidean Jordan algebra by defining

x ◦ y = x� y,

where � denotes the Hadamard product operator, i.e. (x � y)i = xiyi for i = 1, · · · , n.

Then, the set of squares K is precisely the nonnegative orthant IRn
+, i.e, K = IRn

+

Example 1.2. For n > 1, another bilinear mapping ◦ can be defined on V = IRn if we

write x ∈ IRn as x = (x1, x̄2) ∈ IR× IRn−1. For any x, y ∈ IRn, we define

x ◦ y =

[
xTy

x1ȳ2 + y1x̄2

]
. (1.2)

The resulting Euclidean Jordan algebra is known as the Jordan spin algebra which we

denote by Ln. Its cone of squares is precisely the second-order cone (SOC for short), also

called Lorentz cone and denoted by Ln+. In other words,

K = Ln+ :=
{

(x1, x̄2) ∈ IR× IRn−1 | ‖x̄2‖ ≤ x1

}
. (1.3)

Example 1.3. The vector space V = Sn with inner product 〈X, Y 〉 = tr(XTY ) and the

bilinear map

X ◦ Y =
1

2
(XY + Y X)

forms a Euclidean Jordan algebra. Its cone of squares is precisely the set of all positive

semidefinite matrices Sn+. In other words,

K = Sn+ :=
{
X ∈ Sn |uTXu ≥ 0, ∀u ∈ IRn

}
.
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For any given x ∈ V, let ζ(x) be the degree of the minimal polynomial of x, i.e.,

ζ(x) := min
{
k
∣∣ {e, x, x2, · · · , xk} are linearly dependent

}
.

Then, the rank of V is defined as max{ζ(x) |x ∈ V}. Here, we use r to denote the rank

of the underlying Euclidean Jordan algebra. Recall that an element c ∈ V is idempotent

if c2 = c. Two idempotents ci and cj are said to be orthogonal if ci ◦ cj = 0. One says

that {c1, c2, . . . , ck} is a complete system of orthogonal idempotents if

c2
j = cj, cj ◦ ci = 0 if j 6= i for all j, i = 1, 2, · · · , k, and

k∑
j=1

cj = e.

An idempotent is primitive if it is nonzero and cannot be written as the sum of two other

nonzero idempotents. We call a complete system of orthogonal primitive idempotents

a Jordan frame . The following Spectral Decomposition Theorem is very important in

subsequent analysis under Euclidean Jordan algebra.

Theorem 1.1. [66, Theorem III.1.2] Suppose that V is a Euclidean Jordan algebra with

the rank r. Then for any x ∈ V, there exists a Jordan frame {c1, · · · , cr} and real

numbers λ1(x), · · · , λr(x), arranged in the decreasing order λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x),

such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr. (1.4)

The numbers λj(x) (counting multiplicities), which are uniquely determined by x, are

called the eigenvalues and tr(x) =
r∑
j=1

λj(x) the trace of x.

Since, by [66, Proposition III.1.5], a Jordan algebra (V, ◦) with an identity element

e ∈ V is Euclidean if and only if the symmetric bilinear form tr(x◦ y) is positive definite,

we may define another inner product on V by 〈x, y〉 := tr(x ◦ y) for any x, y ∈ V. The

inner product 〈·, ·〉 is associative by [66, Proposition II. 4.3], i.e., 〈x, y ◦ z〉 = 〈y, x ◦ z〉 for

any x, y, z ∈ V. Accordingly, we let ‖ · ‖ be the norm on V induced by the inner product,

namely,

‖x‖ :=
√
〈x, x〉 =

(∑r
j=1 λ

2
j(x)

)1/2

, ∀x ∈ V.

Then, by the Schwartz inequality, it is easy to verify that

‖x ◦ y‖ ≤ ‖x‖ · ‖y‖, ∀ x, y ∈ V. (1.5)

For any given x ∈ (V, ◦, 〈·, ·〉), let L(x) be the linear operator of V defined by

L(x)y := x ◦ y ∀y ∈ V. (1.6)
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It is noted that L(x) is symmetric with respect to the inner product 〈·, ·〉 in the sense of

〈L(x)y, z〉 = 〈y,L(x)z〉 ∀y, z ∈ V.

Suppose that (V, ◦, 〈·, ·〉) is a simple Euclidean Jordan algebra of rank r and {c1, c2, · · · , cr}
is a Jordan frame of V. From [66, Lemma IV.], we know that the operators L(cj), j =

1, 2, · · · , r commute and admit a simultaneous diagonalization. In particular, for i, j ∈
{1, 2, · · · , r}, define the subspaces

Vii := {x ∈ V |x ◦ ci = x} = IRci,

Vij :=

{
x ∈ V | ci ◦ x = cj ◦ x =

1

2
x

}
when i 6= j.

From [66, Corollary IV.2.6], it says that

dim(Vij) = dim(Vst) for any i 6= j ∈ {1, 2, · · · , r} and s 6= t ∈ {1, 2, · · · , r},

and n = r + d
2
r(r − 1), where d denotes this common dimension. Moreover, from [66,

Theorem IV.2.1], we have the second version of decomposition.

Theorem 1.2. [66, Theorem IV.2.1] The space V is the orthogonal direct sum of sub-

spaces Vij (1 ≤ i ≤ j ≤ r), i.e., V = ⊕i≤jVij. Furthermore,

Vij ◦ Vij ⊂ Vii + Vij,

Vij ◦ Vjk ⊂ Vik, if i 6= k,

Vij ◦ Vkl = {0}, if {i, j} ∩ {k, l} = ∅.

Hence, given any fixed Jordan frame {c1, c2, · · · , cr}, we can write any element x ∈ V as

x =
r∑
i=1

xici +
∑
i<j

xij,

where xi ∈ IR and xij ∈ Vij. The expression
∑r

i=1 xici +
∑

i<j xij is called the Peirce

decomposition of x.

The decomposition in Theorem 1.1 is called the spectral decomposition, whereas the

decomposition in Theorem 1.2 is called the Peirce decomposition. For different elements

x and y in V, the Jordan frames in their spectral decompositions are different. To the

contrast, x and y share the same Jordan frame in the Peirce decomposition. A Euclidean

Jordan algebra is called simple if it cannot be written as a direct sum of the other

two Euclidean Jordan algebras. It is known that every Euclidean Jordan algebra can

be written as a direct sum of simple ones, which are not themselves direct sums in a

nontrivial way. In finite dimensions, the simple Euclidean Jordan algebras come from

the following five basic structures.
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Theorem 1.3. [66, Chapter V.3.7] Every simple Euclidean Jordan algebra is isomorphic

to one of the followings.

(i) The Jordan spin algebra Ln.

(ii) The algebra Sn of n× n real symmetric matrices.

(iii) The algebra Hn of all n× n complex Hermitian matrices.

(iv) The algebra Qn of all n× n quaternion Hermitian matrices.

(v) The algebra O3 of all 3× 3 octonion Hermitian matrices.

Given an n-dimensional Euclidean Jordan algebra (V, 〈·, ·〉, ◦) with K being its cor-

responding symmetric cone in V. For any scalar function f : IR → IR, we define a

vector-valued function f
sc

(x) (called Löwner function) on V as

f
sc

(x) = f(λ1(x))c1 + f(λ2(x))c2 + · · ·+ f(λr(x))cr, (1.7)

where x ∈ V has the spectral decomposition as

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr.

As mentioned earlier, when V represents the Jordan spin algebra Ln, K corresponds to

the second-order cone (SOC) given as in (1.3). For convenience, we also denote it by Kn,

which means a single SOC, that is,

Kn := {(x1, x2) ∈ IR× IRn−1 | ‖x2‖ ≤ x1}.

In particular, when n = 1, Kn reduces to the set of nonnegative real numbers IR+. Under

such case, the spectral decomposition (1.4) of x = (x1, x2) ∈ IR × IRn−1 appeared in

Theorem 1.1 becomes

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (1.8)

where λ1(x), λ2(x), u
(1)
x and u

(2)
x with respect to Kn are given by

λi(x) = x1 + (−1)i‖x2‖, (1.9)

u(i)
x =


1
2

(
1, (−1)i

x2

‖x2‖
)

if x2 6= 0,

1
2

(
1, (−1)iw

)
if x2 = 0,

(1.10)

for i = 1, 2, with w being any vector in IRn−1 satisfying ‖w‖ = 1. If x2 6= 0, the

decomposition (1.8) is unique. The determinant and trace of x are defined as det(x) :=

λ1(x)λ2(x) and tr(x) := λ1(x) + λ2(x), respectively.
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Under the SOC setting, the Löwner function defined as in (1.7) reduces to so-called

SOC-function f
soc

studied in [16, 21, 23, 28, 29]. More specifically, with this spectral de-

composition, for any scalar function f : J ⊆ IR→ IR, the Löwner function f
sc

associated

with Kn reduces to f
soc

: S ⊆ IRn → IRn as below:

f
soc

(x) = f(λ1(x))u(1)
x + f(λ2(x))u(2)

x ∀x = (x1, x2) ∈ IR× IRn−1, (1.11)

where J is an interval (finite or infinite, open or closed) of IR, and S is the domain of

f
soc

determined by f .

In the SOC setting, Chen, Chen, and Tseng [29] demonstrated that the Löwner func-

tion f
soc

inherits several key properties from the underlying function f , including continu-

ity, Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous

differentiability, and semismoothness. The Hölder continuity of both f
soc

and f was fur-

ther established in [16]. Sun and Sun [197] extended some of these foundational results

to the broader context of symmetric cones, specifically regarding f
sc

. Moreover, the SOC

trace function associated with f can be defined as follows:

f tr(x) := f(λ1(x)) + f(λ2(x)) = tr(f
soc

(x)) ∀x ∈ S. (1.12)

Chen, Liao and Pan [34] built up the following relation between f tr and f
soc

∇f tr(x) = (f ′)soc(x) and ∇2f tr(x) = ∇(f ′)soc(x) ∀x ∈ intS.

By employing the Schur Complement Theorem, they establish the convexity of SOC trace

functions as well as compositions involving these functions. Several of these functions

play a pivotal role in penalty and barrier function methods for second-order cone pro-

grams (SOCPs). Furthermore, certain fundamental inequalities related to second-order

cones are instrumental in demonstrating the convexity properties of these functions. For

a more comprehensive discussion on the roles and applications of f
soc

and f tr, defined in

(1.11) and (1.12), respectively, the reader is referred to [28].

When V represents the algebra Sn of n × n real symmetric matrices, what do the

spectral decomposition and the Löwner function look like? For any X ∈ Sn, its (repeated)

eigenvalues λ1, · · · , λn are real and it admits a spectral decomposition of the form:

X = P diag
[
λ1, · · · , λn

]
PT, (1.13)

for some orthogonal matrix P , where diag[λ1, · · · , λn] denotes the n×n diagonal matrix

with its ith diagonal entry λi. In fact, the spectral decomposition (1.13) corresponds to

the spectral decomposition in Theorem 1.1. To see this, letting P =
[
u1 | u2 | · · · | un

]
,

by taking the Jordan frame {c1, c2, · · · , cn} as{
u1u

T
1 ,u2u

T
2 , · · · ,unuT

n

}
,
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it can be verified that the spectral decomposition (1.4) of X, that is,

X = λ1(X)c1 + λ2(X)c2 + · · ·+ λr(X)cr,

reduces to the above matrix decomposition (1.13). Likewise, under the Sn+ setting, the

Löwner function defined as in (1.7) reduces to a matrix-valued function. More specifi-

cally, for any function f : IR→ IR, we can define a corresponding function f
mat

: Sn → Sn
[11, 95] by

f
mat

(X) := P diag
[
f(λ1), · · · , f(λn)

]
PT. (1.14)

It is known that f
mat

(X) is well-defined (independent of the ordering of λ1, . . . , λn and

the choice of P ) and belongs to Sn, see [11, Chapter V] and [95, Section 6.2]. Moreover,

a result of Daleckii and Krein showed that if f is continuously differentiable, then f
mat

is

differentiable and its Jacobian ∇fmat
(X) has a simple formula, see [11, Theorem V.3.3];

also see [45, Proposition 4.3].

The function f
mat

was used to develop non-interior continuation methods for solving

semidefinite programs and semidefinite complementarity problems in [50]. Another re-

lated method was studied in [117]. Further studies of f
mat

in the case of f(ξ) = |ξ| and

f(ξ) = max{0, ξ} were conducted in [173, 196], obtaining results such as strong semis-

moothness, formulas for directional derivatives, and necessary/sufficient conditions for

strong stability of an isolated solution to semidefinite complementarity problem (SDCP).

The SOC function f
soc

defined as in (1.11) has a connection to the matrix-valued f
mat

given as in (1.14) via a special mapping. To see this, in light of the Löwner operator L(·)
given as in (1.6), for any x = (x1, x2) ∈ IR× IRn−1, we define a linear mapping from IRn

to IRn as
Lx : IRn −→ IRn

y 7−→ Lxy :=

[
x1 xT2
x2 x1I

]
y.

(1.15)

It can be easily verified that x ◦ y = Lxy for all y ∈ IRn, and Lx is positive definite

(and hence invertible) if and only if x ∈ int(Kn). However, L−1
x y 6= x−1 ◦ y, for some

x ∈ int(Kn) and y ∈ IRn, i.e., L−1
x 6= Lx−1 . The mapping Lx defined as in (1.15) will

be used to relate f
soc

to f
mat

; see relation (1.17) in Proposition 1.1. For convenience, in

the subsequent contexts, we sometimes omit the variable notion x in λi(x) and u
(i)
x for

i = 1, 2.

Proposition 1.1. Let x = (x1, x2) ∈ IR × IRn−1 with spectral values λ1(x), λ2(x) given

by (1.9) and spectral vectors u
(1)
x , u

(2)
x given by (1.10). We denote z := x2 if x2 6= 0;

otherwise let z be any nonzero vector in IRn−1. Then, the following results hold.

(a) For any t ∈ IR, the matrix Lx + tMz has eigenvalues λ1(x), λ2(x), and x1 + t of
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multiplicity n− 2, where

Mz :=

[
0 0

0 I − zzT

‖z‖2

]
. (1.16)

(b) For any f : IR→ IR and any t ∈ IR, we have

f
soc

(x) = f
mat

(Lx + tMz)e. (1.17)

Proof. (a) It is straightforward to verify that, for any x = (x1, x2) ∈ IR × IRn−1, the

eigenvalues of Lx are λ1(x), λ2(x), as given by (1.9), and x1 of multiplicity n − 2. Its

corresponding orthonormal set of eigenvectors is
√

2u(1)
x ,
√

2u(2)
x , u(i)

x = (0, u
(i)
2 ), i = 3, ..., n,

where u
(1)
x , u

(2)
x are the spectral vectors with w = z

‖z‖ whenever x2 = 0, and u
(3)
2 , · · · , u(n)

2

is any orthonormal set of vectors that span the subspace of IRn−2 orthogonal to z. Thus,

Lx = Udiag[λ1(x), λ2(x), x1, · · · , x1]UT,

where U :=
[ √

2u
(1)
x

√
2u

(2)
x u

(3)
x · · · u

(n)
x

]
. In addition, by using u

(i)
x =

(
0, u

(i)
2

)
,

i = 3, ..., n, it is not hard to verify that

U diag[0, 0, 1, · · · , 1]UT =

 0 0

0
n∑
i=3

u
(i)
2 (u

(i)
2 )T

 .
Since Q :=

[
z
‖z‖ u

(3)
2 · · · u(n)

2

]
is an orthogonal matrix, we have

I = QQT =
zzT

‖z‖2
+

n∑
i=3

u
(i)
2 (u

(i)
2 )T

and hence
∑n

i=3 u
(i)
2 (u

(i)
2 )T = I − zzT

‖z‖2 . This together with (1.16) shows that

Udiag[0, 0, 1, ..., 1]UT = Mz.

Thus, we obtain

Lx + tMz = Udiag[λ1(x), λ2(x), x1 + t, · · · , x1 + t]UT, (1.18)

which is the desired result.

(b) Applying (1.18) yields

f
mat

(Lx + tMz)e = Udiag [f(λ1(x)), f(λ2(x)), f(x1 + t), · · · , f(x1 + t)]UTe

= f(λ1(x))u(1)
x + f(λ2(x))u(2)

x

= f
soc

(x),
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where the second equality uses the special form of U . Then, the proof is complete. �

In light of (1.7), let ϕ : IR → IR be a scalar valued function. There exists a vector-

valued function associated with the Euclidean Jordan algebra (V, ◦, 〈·, ·〉) given by

ϕV(x) := ϕ(λ1(x))c1 + ϕ(λ2(x))c2 + · · ·+ ϕ(λr(x))cr, (1.19)

where x ∈ V has the spectral decomposition x =
∑r

j=1 λj(x)cj. The function ϕV is also

called the Löwner operator [197]. When ϕ(t) is chosen as max{0, t} and min{0, t} for

t ∈ IR, respectively, ϕV becomes the metric projection operator onto K and −K:

(x)+ :=
r∑
j=1

max{0, λj(x)}cj and (x)− :=
r∑
j=1

min{0, λj(x)}cj.

Theorem 1.4. [197, Theorem 13] For any x =
∑r

j=1 λj(x)cj, let ϕV be given as in

(1.19). Then, ϕV is (continuously) differentiable at x if and only if ϕ is (continuously)

differentiable at each λj(x), j = 1, 2, . . . , r. The derivative of ϕV at x, for any h ∈ V, is

ϕ′
V
(x)h =

r∑
j=1

[
ϕ[1](λ(x))

]
jj
〈cj, h〉cj +

∑
1≤j<l≤r

4
[
ϕ[1](λ(x))

]
jl
cj ◦ (cl ◦ h),

where

[
ϕ[1](λ(x))

]
ij

:=


ϕ(λi(x))− ϕ(λj(x))

λi(x)− λj(x)
if λi(x) 6= λj(x)

ϕ′(λi(x)) if λi(x) = λj(x)
, i, j = 1, 2, . . . , r.

In fact, the Jacobian ϕ′
V
(·) is a linear and symmetric operator, which can be written

as

ϕ′
V
(x) =

r∑
j=1

ϕ′(λj(x))P(cj) + 2
r∑

i,j=1,i 6=j

[
ϕ[1](λ(x))

]
ij
L(cj)L(ci) (1.20)

where P(x) := 2L2(x) − L(x2) for any x ∈ M is called the quadratic representation

of V. Consider x ∈ V with the spectral decomposition x =
∑r

j=1 λj(x)cj. For i, j ∈
{1, 2, . . . , r}, let Cij(x) be the orthogonal projection operator onto Vij. Then, there hold

Cij(x) = C∗ij(x), C2
ij(x) = Cij(x), Cij(x)Ckl(x) = 0 if {i, j} 6= {k, l}, i, j, k, l = 1, . . . , r

(1.21)

and ∑
1≤i≤j≤r

Cij(x) = I,

where C∗ij is the adjoint (operator) of Cij. Moreover, by using [66, Theorem IV. 2.1], it

indicates

Cjj(x) = P(cj) and Cij(x) = 4L(ci)L(cj) = 4L(cj)L(ci) = Cji(x), i, j = 1, 2, . . . , r.
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Note that the original notation in [66] for orthogonal projection operator is Pij. However,

to avoid confusion with another orthogonal projector Pi(cj) onto V(c, α) and orthogonal

matrix P which will be used later, we adopt Cij instead.

With the orthogonal projection operators {Cij(x) | i, j = 1, 2, . . . , r}, we have the

following spectral decomposition theorem for L(x) and L(x2); see [125, Chapters VI–V].

Theorem 1.5. Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj and L(·) be

defined as in (1.6). Then, the operator L(x) has the spectral decomposition

L(x) =
r∑
j=1

λj(x)Cjj(x) +
∑

1≤j<l≤r

1

2
(λj(x) + λl(x)) Cjl(x)

with the spectrum σ(L(x)) consisting of all distinct numbers in{
1

2
(λj(x) + λl(x)) | j, l = 1, 2, · · · , r

}
,

and L(x2) has the spectral decomposition

L(x2) =
r∑
j=1

λ2
j(x)Cjj(x) +

∑
1≤j<l≤r

1

2

(
λ2
j(x) + λ2

l (x)
)
Cjl(x)

with the spectrum σ(L(x2)) consisting of all distinct numbers in{
1

2

(
λ2
j(x) + λ2

l (x)
)
| j, l = 1, 2, · · · , r

}
.

Proposition 1.2. For any x ∈ V, the operator L(x2)− L2(x) is positive semidefinite.

Proof. By Theorem 1.5 and (1.21), we can verify that L2(x) has the spectral decompo-

sition:

L2(x) =
r∑
j=1

λ2
j(x)Cjj(x) +

∑
1≤j<l≤r

1

4
(λj(x) + λl(x))2 Cjl(x).

This means that the operator L(x2)− L2(x) has the spectral decomposition

L(x2)− L2(x) =
∑

1≤j<l≤r

[
1

2

(
λ2
j(x) + λ2

l (x)
)
− 1

4
(λj(x) + λl(x))2

]
Cjl(x).

Noting that the orthogonal projection operator is positive semidefinite on V and

λ2
j(x) + λ2

l (x)

2
≥ (λj(x) + λl(x))2

4
for all j, l = 1, 2, . . . , r,

from which the conclusion follows, utilizing the spectral decomposition of L(x2)−L2(x).

�
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1.2 Complementarity Problems

Complementarity conditions lie at the heart of both the theoretical foundations and

numerical analysis of numerous optimization algorithms. They frequently emerge, for

example, in the formulation of the Karush-Kuhn-Tucker (KKT) conditions in mathe-

matical programming, which underpin most - if not all - of the algorithms explored in

the subsequent chapters. Beyond their pivotal role in optimization, complementarity

problems also provide a well-established unified framework for addressing equilibrium

models arising in various applied disciplines, including operations research, engineering,

and economics [53, 63].

The standard setting of a complementarity problem is a Euclidean space V endowed

with an inner product 〈·, ·〉, in which we define the complementarity problem as below.

Definition 1.1. Let F : V → V and let K be a cone in V. The problem of finding a

point x ∈ V that satisfies

x ∈ K, F (x) ∈ K∗, and 〈x, F (x)〉 = 0 (1.22)

is known as a complementarity problem .

Below are some well-known and classic examples of complementarity problems.

Example 1.4 (Nonlinear Complementarity Problem). Let V = IRn and consider the

usual inner product 〈x, y〉 = xTy. Setting K = IRn
+, then K∗ = K, i.e., K is self-dual,

and the complementarity problem (1.22) reduces to finding x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, and 〈x, F (x)〉 = 0, (1.23)

which is known as nonlinear complementarity problem (NCP) .

Example 1.5 (Linear Complementarity Problem). Let V = IRn and consider the usual

inner product 〈x, y〉 = xTy. From the NCP (1.23), there corresponds to linear comple-

mentarity problem (LCP) when F reduces to affine function Mx+q where M is an n×n
matrix and q ∈ IRn. It is usually denoted by LCP(M, q) with the mathematical format

x ≥ 0, Mx+ q ≥ 0, and 〈x,Mx+ q〉 = 0. (1.24)

The Linear Complementarity Problem (LCP) (1.24) is not only equivalent to mixed linear

0 − 1 optimization, but is also equivalent to the mixed integer feasibility problem. In

addition, there exist several notable variants of the LCP, such as the horizontal LCP and

vertical LCP. For a comprehensive treatment of these topics, the reader is referred to the

the monograph [53] and the Encyclopedia of Optimization [76].
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Example 1.6 (Second-Order Cone Complementarity Problem). Let V = IRn be endowed

with the inner product 〈x, y〉 = xTy. The Lorentz cone, also known as the second-order

cone , is defined as

K = Ln+ :=
{

(x1, x̄2) ∈ IR× IRn−1 | ‖x̄2‖ ≤ x1

}
.

This cone is also self-dual, and the corresponding complementarity problem is to find

x ∈ IRn such that

x �Ln+
0, F (x) �Ln+

0, and 〈x, F (x)〉 = 0, (1.25)

which is called the second-order cone complementarity problem (SOCCP) .

Example 1.7 (Positive Semidefinite Cone Complementarity Problem). Let V = Sn be

the vector space of all n×n symmetric matrices endowed with the inner product 〈X, Y 〉 =

tr(XTY ). We consider the cone of positive semidefinite matrices K = Sn+, which is again

self-dual. The resulting complementarity problem is the search for a matrix X ∈ IRn×n

such that

X � 0, F (X) � 0, and 〈X,F (X)〉 = 0, (1.26)

known as the positive semidefinite cone complementarity problem (SDCP) .

Example 1.8 (Symmetric Cone Complementarity Problem). Let V be the general Eu-

clidean Jordan algebra introduced in Section 1.1 and K be the symmetric cone defined as

in (1.1). Then, the complementarity problem (1.22) becomes

x ∈ K, F (x) ∈ K, 〈x, F (x)〉 = 0, (1.27)

which is called the symmetric cone complementarity problem (SCCP) .

As highlighted in Theorem 1.3 (see also [66, Chapter V.3.7]), the cones featured in

the aforementioned examples belong to the class of symmetric cones. Consequently, the

SCCP (1.27) serves as a unified framework encompassing the NCP (1.23), the SOCCP

(1.25), and the SDCP (1.26). A recent study [223] further introduces systematic method-

ologies for constructing general non-symmetric cones.

In a Euclidean Jordan algebra, the orthogonality requirement in the complementarity

problem (1.22) can also be expressed in terms of the Jordan product “◦”. In other words,

from [85, Proposition 6], for K being a symmetric cone, there holds

x ∈ K, F (x) ∈ K, and 〈x, F (x)〉 = 0

⇐⇒ x ∈ K, F (x) ∈ K, and x ◦ F (x) = 0. (1.28)
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Several nonlinear complementarity problems have already been introduced in well-

known textbooks, such as [53, 63]. Therefore, we do not reiterate those examples here.

Instead, we present a representative real-world problem arising from engineering applica-

tions, as discussed in [123]. Additional practical instances of nonlinear complementarity

problems can be found in various domains, including multiuser power control in digital

subscriber lines [222], three-dimensional frictional contact problems [230], and electric

power markets [42, Section 5].

grasp transport

Figure 1.2: Multifingered robot manipulation.

Figure 1.2 illustrates the multifingered robot grasping manipulation, where a mul-

tifingered robotic hand grasps and transports an object from an initial position to a

final position. The dynamics of the object during this process can be described by the

Newton-Euler equations, as outlined in [86, 149]. More precisely, the dynamic equation

of the object is described by

ẏ = v,

v̇ =
1

m
RG1u+

[
0 0 −g

]T
, (1.29)

q̇ = Qω,

ω̇ = I−1

(
RG2u− ω × (Iω)

)
,

where y is the position, v is the velocity, q = [q1 q2 q3]T is the quaternion, ω is the

angular velocity, m is the object mass, I is the matrix of moment of initia, g is the

gravity constant, u means the grasping forces which is represented by a matrix, [G1 G2]

is the contact matrix, R is the rotation matrix of the object, and Q can be expressed as

Q =
1

2

 q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

 with q0 =
√
q2

1 + q2
2 + q2

3.
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Moreover, the grasping forces are subject to the contact friction constraint, expressed as

‖(ui2, ui3)‖ ≤ µui1,

where ui1 is the normal force of the i-th finger, ui2 and ui3 are the friction forces of the

i-th finger, ‖ · ‖ is the 2-norm, and µ is the friction coefficient.

In order to find the path that can be achieved with the minimum grasping forces, the

optimal control problem is recast as

min

∫ T

0

Ldt

s.t. ẋ = f(x, u)

x(0) = x0 (1.30)

x(T ) = x
T

Du ∈ Kd ×Kd × · · · × Kd,

where

L =
uTu

2
, x =


y

v

q

ω

 .
In addition, f represents the right hand side of system (1.29), T is the control duration,

x0 and x
T

are the initial and final states, respectively, D is the diagonal matrix with the

friction coefficient, and K denotes the second-order cone, which is given by

Kd :=

{[
z1

z2

]
∈ IR× IRd−1

∣∣∣∣ ‖z2‖ ≤ z1

}
.

The optimal control problem (1.30) can be addressed by applying Pontryagin’s min-

imum principle; see, for example, [80, 104, 135]. In the language of optimization, this

approach is equivalent to formulating the Karush-Kuhn-Tucker (KKT) conditions for

problem (1.30), which consist of two key components. The first component involves a set

of equalities pertaining to the Lagrange multipliers, while the second component captures

the complementarity conditions. Specifically, by introducing the Hamiltonian function,

the first part of the KKT conditions can be reformulated as follows:

ẋ−Hλ = ẋ− f(x, u) = 0,

λ̇+Hx = λ̇+ λTfx = 0,

Hu = Lu + λTfu + ηTD = 0,

φ(x(0), x(T )) = 0,

λ(0) + φT
x(0)σ = 0,

λ(T ) + φT
x(T )σ = 0,
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where λ, η, σ are the Lagrange multipliers, and φ(x(0), x(T )) =

[
x(0)− x0

x(T )− xT

]
. The

second part forms a second-order cone complementarity problem (SOCCP) as below:

−η ∈ K, Du ∈ K, ηTDu = 0, (1.31)

where K = Kd ×Kd × · · · × Kd.
To conclude this section, we highlight the notion of “weighted complementarity prob-

lems” (WCP) , which emerge in various equilibrium models in economics; see [177, 202].

The WCP can be viewed as a natural extension of the complementarity problem (1.27)

and is characterized by the following mathematical formulation. Given a vector w ∈ K,

the goal of the weighted complementarity problem is to find (x, s, y) ∈ V×V× IRm such

that

x ∈ K, s ∈ K, F (x, s, y) = 0, x ◦ s = w, (1.32)

where F : V × V × IRm → V × IRm is a continuously differentiable nonlinear mapping.

When the vector w = 0, the WCP (1.32) reduces to a mixed symmetric cone comple-

mentarity problem studied in [225]. When w = 0, m = 0, and F (x, s, y) = f(x)− s with

f : V→ V being a continuously differentiable mapping, according to relation (1.28), the

WCP (1.32) becomes the SCCP (1.27).

1.3 Complementarity Functions

The complementarity problem (1.22) essentially involves solving a system composed of

inequalities defining the cones K and K∗, along with an equation capturing the orthogo-

nality condition. Rather than handling this system of inequalities and equation directly,

we will demonstrate in the next section how it can be reformulated more conveniently

and effectively through the use of complementarity functions. To this end, we present its

definition as below.

Definition 1.2. A function φ : V×V→ V is called a complementarity function or

a C-function if

φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K∗, and 〈x, y〉 = 0. (1.33)

In some cases, there exists a real-valued function ψ : V × V → IR+, which also

satisfies condition (1.33). Such a function is referred to as both a merit function and

a C-function. This class of C-functions, along with their associated merit functions,

plays a crucial role in the development of algorithms for solving the symmetric cone

complementarity problem (SCCP) and symmetric cone programming (SCP). They have

garnered significant attention in the contemporary optimization literature; see [102, 126,

127, 140, 164, 197] and references therein.
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For self-dual closed convex cones K in a Euclidean space V, we can always construct

a complementarity function based on the projection mapping onto K. We recall that

given a set K ⊆ V, the orthogonal projection onto K, denoted by ΠK, is defined by

ΠK(x) = argminy∈K‖y − x‖,

that is, ΠK(x) satisfies

‖ΠK(x)− x‖ ≤ ‖y − x‖, ∀y ∈ K.

A well-known result, the so-called Projection Theorem, is that for a nonempty closed and

convex set K, the projection ΠK(x) exists (which means the nearest-point) and is unique

for each point x ∈ V. Moreover, ΠK(x) is also the unique point satisfying the inequality

〈x− ΠK(x), z − ΠK(x)〉 ≤ 0, ∀z ∈ K. (1.34)

The proof of (1.34) is shown in Lemma 1.1(d) and other properties regarding projection

mapping are summarized thereat, which are for subsequent needs. In addition, any point

x ∈ V has a unique decomposition, known as the Moreau decomposition, given by

x = ΠK(x)− ΠK∗(−x),

where 〈ΠK(x),ΠK∗(−x)〉 = 0. Very often, we also use x+
K and x−K or PK(x) and PK∗(−x)

to denote the projection of x onto K and −K∗, respectively.

Lemma 1.1. Let K be any closed convex cone in IRn. For each x ∈ IRn, let x+
K and

x−K denote the nearest-point (in the Euclidean norm) projection of x onto K and −K∗,
respectively. The following results hold.

(a) For any x ∈ IRn, we have x = x+
K + x−K and ‖x‖2 = ‖x+

K‖2 + ‖x−K‖2.

(b) For any x ∈ IRn and y ∈ K, we have 〈x, y〉 ≤ 〈x+
K, y〉.

(c) If K is self-dual, then for any x ∈ IRn and y ∈ K, we have
∥∥(x+ y)+

K
∥∥ ≥ ∥∥x+

K
∥∥.

(d) For any x, y ∈ IRn and z ∈ K, there hold(
x− x+

K
)T (

z − x+
K
)
≤ 0 and

∥∥x+
K − y+

K
∥∥ ≤ ‖x− y‖.

Proof. (a) These are well-known results in convex geometry on representing x as the

sum of its projection onto K and its polar −K∗.
(b) Since x−K ∈ −K∗ and y ∈ K, 〈x−K, y〉 ≤ 0. By part(a), it is clear that 〈x, y〉 =

〈x+
K, y〉+ 〈x−K, y〉 ≤ 〈x+

K, y〉.



18 CHAPTER 1. BACKGROUNDS AND OVERVIEWS

(c) Since K is self-dual, we have y ∈ K∗. Then, (x + y)−K − y ∈ −K∗. Since x−K is the

nearest-point projection of x onto −K∗, this implies

‖x−K − x‖ ≤
∥∥((x+ y)−K − y

)
− x
∥∥ .

By part(a), this simplifies to ‖x+
K‖ ≤

∥∥(x+ y)+
K
∥∥.

(d) Consider the point x+
K + α(z − x+

K) = αz + (1− α)x+
K for 0 < α ≤ 1. It belongs to K

due to the convexity of K. Since this point belongs to K, we have∥∥x− x+
K − α

(
z − x+

K
)∥∥2 ≥ ‖x− x+

K‖2 ∀x ∈ IRn.

Writing out the expression of the left hand side gives∥∥x− x+
K − α

(
z − x+

K
)∥∥2

= ‖x− x+
K‖2 + α2‖z − x+

K‖2 − 2α
(
x− x+

K
)T (

z − x+
K
)

≥
∥∥x− x+

K
∥∥2
.

Then, we obtain

2α(x− x+
K)T(z − x+

K) ≤ α2‖z − x+
K‖2.

Dividing by α on both sides and letting α→ 0 imply(
x− x+

K
)T (

z − x+
K
)
≤ 0, (1.35)

which is the desired result.

For the second part, from the above inequality (1.35), we have (w − x+
K)T(x − x+

K) ≤ 0

for all w ∈ K. Noting y+
K ∈ K, it says that(

y+
K − x+

K
)T (

x− x+
K
)
≤ 0

and similarly (
x+
K − y+

K
)T (

y − y+
K
)
≤ 0.

Adding these two inequalities gives(
y+
K − x+

K
)T (

x− x+
K − y + y+

K
)
≤ 0,

which together with Schwartz inequality implies∥∥y+
K − x+

K
∥∥2 ≤

(
y+
K − x+

K
)T

(y − x) ≤
∥∥y+
K − x+

K
∥∥ · ‖y − x‖.

Then, the desired result follows and the proof is complete. �

Proposition 1.3. Let K ⊆ V be a self-dual closed convex cone. Define φ : V × V → V
as

φ
NR

(x, y) = x− ΠK(x− y). (1.36)

Then, φ
NR

is a C-function such that φ
NR

(x, y) = φ
NR

(y, x) for all x, y ∈ V.
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Proof. Using the Moreau decomposition of x − y and noting that K = K∗ due to self-

duality of K, we have

x− y = ΠK(x− y)− ΠK(y − x).

This equation indicates φ
NR

(x, y) = φ
NR

(y, x). Now, assume that x ∈ K, y ∈ K and

〈x, y〉 = 0. Using φ
NR

(x, y) = φ
NR

(y, x), there hold

‖φ
NR

(x, y)‖2 = 〈φ
NR

(x, y), φ
NR

(y, x)〉
= 〈x− ΠK(x− y), y − ΠK(y − x)〉 (1.37)

= −〈x,ΠK(y − x)〉 − 〈y,ΠK(x− y)〉.

Since K is self-dual and x ∈ K, it is clear 〈x,ΠK(y−x)〉 ≥ 0. Likewise, 〈y,ΠK(x−y)〉 ≥ 0.

From (1.37), we see that ‖φ
NR

(x, y)‖2 ≤ 0, i.e. φ
NR

(x, y) = 0. Conversely, suppose that

φ
NR

(x, y) = 0, that is x = ΠK(x − y). Then x ∈ K. Since φ
NR

(x, y) = φ
NR

(y, x), it also

follows that y ∈ K. It remains to show that 〈x, y〉 = 0. By convexity of K and inequality

(1.34), we have

0 ≥ 〈(x− y)− x, z − x〉 = 〈−y, z − x〉 (1.38)

for all z ∈ K. Taking z = 0 ∈ K, (1.38) gives 〈x, y〉 ≤ 0. Since x ∈ K and K is a cone,

z = 2x ∈ K. From (1.38) implies that 〈x, y〉 ≥ 0. Altogether, we achieve 〈x, y〉 = 0. �

When K represents a symmetric cone, we denote by φsc
NR

the function defined in

(1.36), which has been shown to be strongly semismooth in [197]. More recently, the

nonsingularity of Clarke’s generalized Jacobian associated with the nonsmooth KKT

system based on φsc
NR

for linear SCP has been investigated in [129]. These contributions

form the theoretical foundation for the development of nonsmooth Newton methods and

smoothing Newton methods for solving the SCCPs and the SCPs. Another popular choice

of φ satisfying Definition 1.2 is the Fischer-Burmeister (FB) complementarity function

[85] defined as

φsc
FB

(x, y) := (x2 + y2)1/2 − (x+ y) ∀x, y ∈ V, (1.39)

where x2 = x ◦ x, and x1/2 denotes the unique square root of x ∈ K, i.e., x1/2 ◦ x1/2 = x.

Compared to the function φsc
NR

, this function possesses a notable advantage: its squared

norm induces a continuously differentiable merit function, which further enjoys a glob-

ally Lipschitz continuous gradient; see [128, 164] for details. This property significantly

facilitates the globalization of nonsmooth Newton methods based on φsc
FB

. Throughout

this book, we frequently employ φ
FB

and φ
NR

directly in various settings associated with

K, whenever the context allows clear distinction without ambiguity.

For K representing symmetric cones, or certain classes of non-symmetric cones, there

exist alternative approaches to constructing C-functions beyond the use of projections;

see [142, 144, 150, 153, 154] for details. A more thorough discussion of these methods

will be presented in Chapter 3. By employing a C-function φ satisfying Definition 1.2,
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the SOCCP (1.31) introduced in Section 1.2 can be further reformulated as a system of

equations:

φ(Du,−η) = 0.

In [41, 78], the complementarity function φ
FB

is employed, which is a special case of (1.39)

corresponding to SOC setting. In other words, by using the vector-valued function,

φ
FB

(a,b) :=
(
a2 + b2

)1/2 − (a + b) (1.40)

for a =

[
a1

a2

]
∈ IR × IRd−1, b =

[
b1

b2

]
∈ IR × IRd−1, the SOCCP (1.31) is equivalent

to

φ
FB

(Du,−η) = 0.

Here, the square term and square-root term in (1.40) are calculated via Jordan product

a ◦ b =

[
aTb

a1b2 + b1a2

]
.

In particular, the expressions for a2 and a1/2 are given by

a2 =

[
‖a‖2
2a1a2

]
and

a1/2 =

[
s
a2

2s

]
with s =

√
1

2

(
a1 +

√
a2
1 − ‖a2‖2

)
,

respectively.

1.4 Semismooth Functions, P -functions, and P -properties

To lay the groundwork for presenting the properties of existing NCP functions in the next

chapter, we first recall some essential background concepts and materials that will play a

crucial role in the subsequent analysis. To this end, we begin by briefly reviewing several

notations. For a function f : IRn → IR, we denote by ∇f(x) and ∇2f(x) the gradient

and Hessian of f , respectively. Besides, given a function F : IRn → IRm, we denote by

JF (x) the Jacobian of F and we let ∇F (x) = JF (x)T. Sometimes, to emphasize that

the derivative is taken w.r.t. x, we write JxF (x) and ∇xF (x), respectively.

We begin with the concept of semismoothness, originally introduced by Mifflin [155]

for functionals and later extended to vector-valued functions by Qi and Sun [181]. As

a preliminary, we first define the notion of strict continuity (also referred to as local

Lipschitz continuity) at a point x ∈ IRn; see [186, Chapter 9]. Specifically, a function F
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is said to be strictly continuous at x if there exist positive constants κ > 0 and δ > 0

such that

‖F (y)− F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ IRn with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ IRn. If δ can be taken

to be ∞, then F is Lipschitz continuous with Lipschitz constant κ. Define the function

lipF : IRk → [0,∞] by

lipF (x) := lim sup
y,z→x
y 6=z

‖F (y)− F (z)‖
‖y − z‖ .

Then, F is strictly continuous at x if and only if lipF (x) is finite. We say F is directionally

differentiable at x ∈ IRn if

F ′(x;h) := lim
t→0+

F (x+ th)− F (x)

t
exists ∀h ∈ IRk;

and F is directionally differentiable if F is directionally differentiable at every x ∈ IRn.

F is differentiable (in the Fréchet sense) at x ∈ IRn if there exists a linear mapping

∇F (x) : IRn → IRn such that

F (x+ h)− F (x)−∇F (x)h = o(‖h‖).

We say that F is continuously differentiable if F is differentiable at every x ∈ IRn and

∇F is continuous.

If F is strictly continuous, then F is almost everywhere differentiable by Rademacher’s

Theorem–see [52] and [186, Sec. 9J]. In this case, the generalized Jacobian ∂F (x) of F at

x (in the Clarke sense) is defined as the convex hull of the generalized Jacobian ∂BF (x),

where

∂BF (x) :=

{
lim
xj→x
∇F (xj)

∣∣F is differentiable at xj ∈ IRk

}
.

The notation ∂B is adopted from [178]. In [186, Chapter 9], the case of n = 1 is considered

and the notations “∇̄” and “∂̄” are used instead of, respectively, “∂B” and “∂”. In other

words, ∂F (x) = conv∂BF (x). If m = 1, we also call ∂F (x) the generalized gradient of

F at x. The calculation of ∂F (x) is usually difficult in practice, and Qi [180] proposed

so-called C-subdifferential of F :

∂CF (x)T := ∂F1(x)× · · · × ∂Fm(x), (1.41)

which is easier to compute than the generalized Jacobian ∂F (x). Here, the right-hand

side of (1.41) denotes the set of matrices in IRn×m whose i-th column is given by the

generalized gradient of the i-th component function Fi. In fact, by [52, Proposition

2.6.2], there holds

∂F (x)T ⊆ ∂CF (x)T.
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Assume F : IRn → IRm is strictly continuous. We say F is semismooth at x if F is

directionally differentiable at x and, for any V ∈ ∂F (x+ h), we have

F (x+ h)− F (x)− V h = o(‖h‖).

We say F is ρ-order semismooth at x (0 < ρ <∞) if F is semismooth at x and, for any

V ∈ ∂F (x+ h), we have

F (x+ h)− F (x)− V h = O(‖h‖1+ρ). (1.42)

A function F is said to be semismooth (respectively, ρ-order semismooth) if it possesses

this property at every point x ∈ IRk. In particular, F is referred to as strongly semismooth

if it is 1-order semismooth. Notable examples of semismooth functions include convex

functions and piecewise continuously differentiable functions. Furthermore, the composi-

tion of two semismooth (respectively, ρ-order semismooth) functions remains semismooth

(respectively, ρ-order semismooth). The property of semismoothness plays a pivotal role

in the design and analysis of nonsmooth Newton methods [178, 181], as well as in cer-

tain smoothing techniques discussed in the previous section. For more comprehensive

treatments of semismooth functions, the reader is referred to [73, 155, 181].

Lemma 1.2. Suppose F : IRn → IRn is strictly continuous and directionally differentiable

in a neighborhood of x ∈ IRn. Then, for any 0 < ρ < ∞, the following two statements

(where O(·) depends on F and x only) are equivalent:

(a) For any h ∈ IRn and any V ∈ ∂F (x+ h),

F (x+ h)− F (x)− V h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

(b) For any h ∈ IRn such that F is differentiable at x+ h,

F (x+ h)− F (x)−∇F (x+ h)h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

Proof. Please see [196, Theorem 3.6]. �

The following lemmas, including a mean value theorem for vector-valued functions,

will be essential for the subsequent analysis.

Lemma 1.3. If F : D ⊆ IRn → IRm has a second derivative at each point of a convex

set D0 ⊆ D, then

‖∇F (y)−∇F (x)‖ ≤ sup
0≤t≤1

∥∥∇2F (x+ t(y − x))
∥∥ · ‖y − x‖.

Proof. Please see [160, Theorem 3.3.5]. �

The Mean Value Theorem in Lemma 1.3 for a vector-valued function F : IRn → IRm

is a bit different from the traditional one. More specifically, a vector-valued function F :
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IRn → IRm does not have a Mean Value Theorem in form of F (y) = F (x)+∇F (z)T(y−x)

where z ∈ [x, y]. To see a counterexample, define F : IR→ IR2 as

F (t) = (t− t2, t− t3).

We compute that F (0) = (0, 0), F (1) = (0, 0), and ∇F (t) =
[

1− 2t 1− 3t2
]
. It can

be seen that there does not exist t ∈ [0, 1] satisfying F (1)− F (0) = ∇F (t)T(1− 0).

Lemma 1.4. ([92, Lemma 1.3]) Let x = (x1, x2, . . . , xn) ∈ IRn and ‖x‖p :=

(
n∑
i=1

|xi|p
) 1

p

.

If 1 < p1 < p2, then ‖x‖p2 ≤ ‖x‖p1 ≤ n
( 1
p1
− 1
p2

)‖x‖p2.

Proof. We assume x = (x1, x2, · · · , xn) is a nonzero vector since the inequality is trivial

when x = 0. Thus, there exists at least one nonzero scalar component of x, say xi0 6= 0.

Then, by noting p2
p1
> 1, we obtain

‖x‖p2p1 =

(
n∑
i=1

|xi|p1
) p2

p1

=

(
|xi0|p1 +

n∑
i=1,i 6=i0

|xi|p1
) p2

p1

= |xi0|p2
(

1 +

∑n
i=1,i 6=i0 |xi|p1
|xi0|p1

) p2
p1

≥ |xi0|p2
1 +

(∑n
i=1,i 6=ii0

|xi|p1
|xi0|p1

) p2
p1


= |xi0|p2 +

(
n∑

i=1,i 6=i0

|xi|p1
) p2

p1

≥ |xi0|p2 +

(
n∑

i=1,i 6=i0

|xi|p2
)

= ‖x‖p2p2 ,

where the first inequality uses the fact that (1 + t)α ≥ 1 + tα for all t > 0 and α > 1.

This proves ‖x‖p1 ≥ ‖x‖p2 .

To prove the reverse inequality, we will apply the Hölder Inequality,∣∣xTy∣∣ ≤ ‖x‖p · ‖y‖q,
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where
1

p
+

1

q
= 1 and 1 ≤ p ≤ ∞. This can be verified by the following:

‖x‖p1 =

(
n∑
i=1

|xi|p1
) 1

p1

=

(
n∑
i=1

1 · |xi|p1
) 1

p1

≤

( n∑
i=1

1
p2

p2−p1

) p2−p1
p2

(
n∑
i=1

(|xi|p1)
p2
p1

) p1
p2


1
p1

= n
p2−p1
p1p2

(
n∑
i=1

|xi|p2
) 1

p2

= n
( 1
p1
− 1
p2

)‖x‖p2 ,

where we set 1
p

= p2−p1
p2

and 1
q

= p1
p2

in the Hölder Inequality. �

An important concept closely related to semismooth functions is that of SC1 func-

tions. We present its formal definition below.

Definition 1.3. A function f : IRn → IR is said to be an SC1 function if f is continuously

differentiable and its gradient is semismooth.

The class of SC1 functions can be regarded as lying between C1 and C2 functions.

By introducing SC1 functions, many results originally established for the minimization

of C2 functions can be extended to the minimization of SC1 functions; see [172] and

references therein. For further applications and a more comprehensive discussion on SC1

functions, the reader is referred to the excellent book [63]. In addition to SC1 functions,

we also introduce the concept of LC1 functions in this section.

Definition 1.4. A function f : IRn → IR is called an LC1 function if f is continuously

differentiable and its gradient is locally Lipschitz continuous.

The class of LC1 minimization problems was studied in [179], where the local superlin-

ear convergence of an approximate Newton method was established under the assumption

of semismoothness of the gradient function at a solution point. It is evident that any SC1

function also qualifies as an LC1 function. Additional concepts related to semismooth

functions include piecewise smooth and almost smooth functions. It is well-known that

piecewise smooth functions are prototypical examples of semismooth functions. How-

ever, recent studies have identified various semismooth functions that are not piecewise

smooth; see [182] and references therein. Notable examples include the p-norm function
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with 1 < p <∞ defined on IRn for n ≥ 2, the Euclidean norm function, pseudo-smooth

NCP functions, and various smoothing functions.

Definition 1.5. The almost smooth (respectively, strongly almost smooth) functions are

functions that are semismooth (respectively, strongly semismooth) on the whole space IRn

and smooth everywhere except on sets with “dimension” less than n− 1 in the sense that

the sets do not locally partition IRn into multiple connected components.

Now, we recall definitions of P -matrix, P -functions and P -property, along with several

related concepts.

Definition 1.6. A matrix M ∈ IRn×n is a

(a) P0-matrix if every of its principal minors is nonnegative.

(b) P -matrix if every of its principal minors is positive.

It is clear that every P -matrix is also a P0-matrix. Moreover, it is well-known that

the Jacobian of any continuously differentiable P0-function is itself a P0-matrix. Below,

we present one of the key characterizations of P0-matrices, which will be utilized in

subsequent analysis. For additional properties and a comprehensive discussion of P -

matrices and P0-matrices, the reader is referred to [53].

Lemma 1.5. [53, Theorem 3.4.2] Let M ∈ IRn×n. The followings are equivalent:

(a) M is a P0-matrix.

(b) For every nonzero vector x there exists an index i such that xi 6= 0 and xi(Mx)i ≥ 0.

(c) All real eigenvalues of M and its principal submatrices are nonnegative.

(d) For each ε > 0, M + εI is a P -matrix.

Definition 1.7. Let F : IRn → IRn, then

(a) F is monotone if 〈x− y, F (x)− F (y)〉 ≥ 0, for all x, y ∈ IRn.

(b) F is strictly monotone if 〈x− y, F (x)− F (y)〉 > 0, for all x, y ∈ IRn and x 6= y.

(c) F is strongly monotone with modulus µ > 0 if 〈x− y, F (x)−F (y)〉 ≥ µ‖x− y‖2, for

all x, y ∈ IRn.

(d) F is a P0-function if max
1≤i≤n
xi 6=yi

(xi − yi)(Fi(x)− Fi(y)) > 0, for all x, y ∈ IRn and x 6= y.
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(e) F is a P -function if max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) > 0, for all x, y ∈ IRn and x 6= y.

(f) F is a uniform P -function with modulus µ > 0 if max
1≤i≤n

(xi − yi)(Fi(x) − Fi(y)) ≥
µ‖x− y‖2, for all x, y ∈ IRn.

(g) ∇F (x) is uniformly positive definite with modulus µ > 0 if dT∇F (x)d ≥ µ‖d‖2, for

all x ∈ IRn and d ∈ IRn.

(h) F is Lipschitz continuous if there exists a constant L > 0 such that ‖F (x)−F (y)‖ ≤
L‖x− y‖, for all x, y ∈ IRn.

From Definition 1.7, it is evident that strongly monotone functions are strictly mono-

tone, and strictly monotone functions are, in turn, monotone. Furthermore, a function

F is a P0-function if it is monotone, and it is a uniform P -function with modulus µ > 0

if F is strongly monotone with modulus µ > 0. Additionally, when F is continuously

differentiable, the following conclusions hold:

1. F is monotone if and only if ∇F (x) is positive semidefinite for all x ∈ IRn.

2. F is strictly monotone if ∇F (x) is positive definite for all x ∈ IRn.

3. F is strongly monotone if and only if ∇F (x) is uniformly positive definite.

Next, we introduce the definitions of Cartesian P -properties for a matrix M ∈ IRn×n,

which can be viewed as special cases of the more general properties formulated by Chen

and Qi [43] for linear transformations.

Definition 1.8. A matrix M ∈ IRn×n is said to have

(a) the Cartesian P -property if for any 0 6= x = (x1, . . . , xm) ∈ IRn with xi ∈ IRni, there

exists an index ν ∈ {1, 2, . . . ,m} such that 〈xν , (Mx)ν〉 > 0;

(b) the Cartesian P0-property if for any 0 6= x = (x1, . . . , xm) ∈ IRn with xi ∈ IRni, there

exists an index ν ∈ {1, 2, . . . ,m} such that xν 6= 0 and 〈xν , (Mx)ν〉 ≥ 0.

Clearly, when m = n and n1 = · · · = nm = 1, M having the Cartesian P -property (or

P0-property) coincides with M being a P -matrix (or P0-matrix), which are introduced in

[53]. Let M be an n× n matrix with elements mij. Then, M can be denoted by

M =


M11 M12 · · · M1m

M21 M22 · · · M2m

· · · · · · · · · · · ·
Mm1 Mm2 · · · Mmm

 , (1.43)
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where Mνl for each ν = 1, . . . ,m and l = 1, . . . ,m is an nν×nl matrix consisting of those

elements mkj with k = nν−1 + 1, . . . , nν , j = nj−1 + 1, . . . , nj and n0 = 0. Let S be a

proper subset of {1, 2, . . . ,m} and denote by M(S) the matrix resulting from deleting

the block matrix Mνl with ν or l complementary to those indicated by S from M given as

in (1.43). We call M(S) a principal block matrix of M . By Definition 1.8, it is not hard

to verify that every principal block matrix M(S) must have the Cartesian P -property if

the matrix M has the Cartesian P -property. When m = n and n1 = · · · = nm = 1, this

reduces to the well-known fact that every principal submatrix of a P -matrix is again a

P -matrix. Particularly, assume that the matrix M , by rearrangement, is written as

M =

[
MJJ MJB
MBJ MBB

]
, (1.44)

where J and B are index sets such that J ∪ B = {1, 2, . . . ,m} and J ∩ B = ∅. Then,

when M has the Cartesian P -property and MJJ is nonsingular, we have the following

result, which can be regarded as an extension of the fact that any Schur-complement of

a P -matrix is also a P -matrix.

Proposition 1.4. Suppose that M defined as in (1.44) has the Cartesian P -property and

the matrix MJJ is nonsingular. Then its Schur-complement in the matrix M , i.e.,

M̂JJ = MBB −MBJ (MJJ )−1MJB

also has the Cartesian P -property.

Proof. Let yB be an arbitrary nonzero vector with the dimension same as MBB. Let xJ
be a vector with the dimension same as MJJ such that

MJJxJ +MJByB = 0, (1.45)

or equivalently,

xJ = −(MJJ )−1MJByB. (1.46)

Let z = (xJ , yB) ∈ IRn. Then, z 6= 0. From Definition 1.8(a) and the given assumption

that M has the Cartesian P -property, there exists an index i ∈ {1, 2, . . . ,m} such that

〈zi, (Mz)i〉 > 0. (1.47)

Notice that the index i must belong to the set B. If not, i.e., i ∈ J , then from the

definition of M we learn that the inequality (1.47) is equivalent to

〈(xJ )i, [MJJxJ +MJByB]i〉 > 0,

which obviously contradicts the equality (1.45). Now (1.47) is equivalent to

〈(yB)i, [MBJxJ +MBByB]i〉 > 0.
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Using the inequality and equation (1.46), we immediately have that

〈(yB)i, [M̂JJ yB]i〉 = 〈(yB)i, [MBByB −MBJ (MJJ )−1MJByB]i〉
= 〈(yB)i, [MBByB +MBJxJ ]i〉 > 0.

Thus, by Definition 1.8(a), the matrix M̂JJ has the Cartesian P -property. �

Definition 1.9. [85] A matrix M ∈ IRn×n is said to have

(a) the Jordan P -property (or the P1-property) if x ◦ (Mx) ∈ −K ⇒ x = 0;

(b) the P -property if the condition that LxiL(Mx)i = L(Mx)iLxi , i = 1, 2, . . . ,m and

x ◦ (Mx) ∈ −K necessarily implies x = 0;

(c) the P0-property if M + εI for any ε > 0 has the P -property.

Proposition 1.5. (a) If a matrix M ∈ IRn×n has the Cartesian P -property, then it also

has the Jordan P -property, and consequently the P -property.

(b) If a matrix M ∈ IRn×n has the Cartesian P0-property, it has the P0-property.

Proof. (a) From Definition 1.9, it is not hard to see that the Jordan P -property implies

the P -property. Therefore, we only need to prove the Cartesian P -property implies the

Jordan P -property. Let x = (x1, . . . , xm) ∈ IRn with xi ∈ IRni be any vector such that

x ◦ (Mx) ∈ −K. From the Cartesian structure of K, we have

xi ◦ (Mx)i ∈ −Kni for i = 1, 2, . . . ,m,

which, by the definition of Jordan product given by (1.2), means that

〈xi, (Mx)i〉 ≤ 0 for all i = 1, 2, . . . ,m. (1.48)

Now, suppose that x 6= 0. Then, from Definition 1.8(a), it follows that there exists

an index ν ∈ {1, 2, . . . ,m} such that 〈xν , (Mx)ν〉 > 0, which clearly contradicts (1.48).

Hence, M has the Jordan P -property.

(b) Observe that for any ε > 0, M + εI has the Cartesian P -property. By part (a) and

Definition 1.9, M has the P0-property. �

It should be noted that the Cartesian P0-property does not necessarily entail the

P -property. For example, let m = 2 and n1 = n2 = 2, and consider

M =


1 1 0 0

1 1 0 0

0 0 2 2

0 0 2 2

 and x =


−2

2

−1

1

 .
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It is easy to verify that M has the Cartesian P0-property, x ◦ (Mx) = (0, 0, 0, 0) ∈ −K =

−(K2 ×K2) and LxLMx = LMxLx = 0, but x 6= 0, i.e., M has not the P -property. Now,

we are not clear whether the P -property implies the Cartesian P0-property.

We now introduce the definitions of Cartesian P -properties for a nonlinear mapping

F : IRn → IRn within the framework of second-order cones (SOCs). The foundational

concepts of P -properties on Cartesian products in IRn were first formulated by Facchinei

and Pang [63]. Subsequently, Chen and Qi [43], as well as Kong et al. [127], extended

these notions to the settings of positive semidefinite cones and general Euclidean Jordan

algebras, respectively. Building upon these developments, we present several nonlinear

generalizations of the Cartesian P -properties in the context of K, defined as follows.

Definition 1.10. A nonlinear mapping F = (F1, . . . , Fm) with Fi : IRn → IRni is said to

(a) have the uniform Cartesian P -property if there exists a constant ρ > 0 such that, for

any x, y ∈ IRn, there is an index ν ∈ {1, 2, . . . ,m} such that

〈xν − yν , Fν(x)− Fν(y)〉 ≥ ρ‖x− y‖2;

(b) have the Cartesian P -property if for any x, y ∈ IRn with x 6= y, there exists an index

ν ∈ {1, 2, . . . ,m} such that

xν 6= yν and 〈xν − yν , Fν(x)− Fν(y)〉 > 0;

(c) have the Cartesian P0-property if for any x, y ∈ IRn with x 6= y, there exists an index

ν ∈ {1, 2, . . . ,m} such that

xν 6= yν and 〈xν − yν , Fν(x)− Fν(y)〉 ≥ 0.

(d) have the Cartesian R02-property if for any sequence {xk} satisfying the condition

‖xk‖ → +∞, [−xk]+
‖xk‖ → 0,

[−F (xk)]+
‖xk‖ → 0, (1.49)

there exists an index i ∈ {1, 2, . . . ,m} such that

lim inf
k→+∞

λ2

[
Fi(x

k) ◦ xki
]

‖xk‖2
> 0.

It is straightforward to verify the following one-way implications from Definition 1.10:

Uniform Cartesian P -property =⇒ Cartesian P -property =⇒ Cartesian P0-property;

Uniform Cartesian P -property =⇒ Cartesian R02-property.
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Moreover, it is evident that when m = 1, the Cartesian P -property (or P0-property)

of the mapping F reduces to the strict monotonicity (or monotonicity) of F . If the

mapping F is continuously differentiable and possesses the Cartesian P -property (or P0-

property), then its transposed Jacobian matrix ∇F (x) at any point x ∈ IRn inherits

the corresponding Cartesian P -property. Furthermore, when F specializes to an affine

function of the form Mx+ q, the uniform Cartesian P -property of F is equivalent to the

Cartesian P -property of the matrix M .

Proposition 1.6. For any ε > 0, let Fε : IRn → IRn be given by

Fε(x) := F (x) + εx. (1.50)

(a) If F is a P0-function, then the Jacobian matrices F ′ε(x) for all x ∈ IRn are P -

matrices. In particular, the function Fε is a P -function.

(b) If F has the Cartesian P0-property, then Fε has the Cartesian P -property.

Proof. Please see [62, Lemma 3.2] for part(a), whereas part(b) is clear by Definition 1.10

(b) and (c). �

It is worth noting that even if F possesses the Cartesian P -property, the perturbed

function Fε, as defined in (1.50), may fail to exhibit the uniform Cartesian P -property.

A counterexample illustrating this phenomenon in the case m = 1 can be found in

[62]. Lastly, in parallel with Definition 1.9, we introduce the notions of P -properties for

nonlinear mappings within the framework of SOCs, which represent special instances of

the broader concepts established in [204].

Definition 1.11. A nonlinear mapping F = (F1, . . . , Fm) : IRn → IRn is said to have

(a) the Jordan P -property if (x− y) ◦ (F (x)− F (y)) ∈ −K ⇒ x = y;

(b) the P -property if from the condition that Lxi−yiLFi(x)−Fi(y) = LFi(x)−Fi(y)Lxi−yi , i =

1, 2, . . . ,m and (x− y) ◦ (F (x)− F (y)) ∈ −K implies x = y;

(c) the P0-property if F (x) + εx has the P -property for all ε > 0.

(d) the uniform Jordan P -property if there exists a constant % > 0 such that, for any

ζ, ξ ∈ IRn, there is an index ν ∈ {1, 2, . . . ,m} such that

λ2[(ζν − ξν) ◦ (Fν(ζ)− Fν(ξ))] ≥ %‖ζ − ξ‖2

where λ2[(ζν − ξν) ◦ (Fν(ζ)− Fν(ξ))] means the second spectral value of (ζν − ξν) ◦
(Fν(ζ)− Fν(ξ)).

(e) the linear growth if there is a constant c > 0 such that ‖F (ζ)‖ ≤ ‖F (0)‖+ c‖ζ‖.
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Proposition 1.7. (a) If a mapping F : IRn → IRn has the Cartesian P -property, then

it must have the Jordan P -property and the P -property.

(b) If a mapping F : IRn → IRn has the Cartesian P0-property, then it has the P0-

property.

Proof. The proof is similar to that of Proposition 1.5, and we omit it. �

There are analogous concepts such as R0-matrix, R0-type function and R0-type prop-

erty, which play a crucial role in proving the existence of solutions and in establishing

both local and global error bounds for the LCPs, the NCPs, and the SOCCPs, respec-

tively. The precise definitions are provided below; for further details, we refer the reader

to [19, 53, 204].

Definition 1.12. A matrix M ∈ IRn×n is called an R0-matrix if SOL(0,M) = {0}, i.e.,

the linear complementarity problem

x ≥ 0, Mx ≥ 0, 〈x,Mx〉 = 0

has 0 as its unique solution. Equivalently, M is an R0-matrix if xi(Mx)i = 0 for all i

and x ≥ 0, and Mx ≥ 0 implies x = 0.

It is known that P -matrix ⇒ R0-matrix. For defining the R0-type function, we need

the following notation. For any x ∈ V, let λi(x) for i = 1, · · · , r denote the spectral

values of x and

ω(x) := max
1≤i≤r

λi(x).

Definition 1.13. A function F : V→ V is called

(a) an Rs
0-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+

‖xk‖
→ 0,

(−F (xk))+

‖xk‖
→ 0,

we have

lim inf
k→∞

ω(φ
NR

(xk, F (xk)))

‖xk‖
> 0;

(b) an Rs
01-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+

‖xk‖
→ 0,

(−F (xk))+

‖xk‖
→ 0,

we have

lim inf
k→∞

〈xk, F (xk)〉
‖xk‖

> 0;
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(c) an Rs
02-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+

‖xk‖
→ 0,

(−F (xk))+

‖xk‖
→ 0,

we have

lim inf
k→∞

ω(xk ◦ F (xk))

‖xk‖
> 0.

In the setting of SOC, i.e., V = IRn and ω(xk ◦ F (xk)) reduces to λ2(xk ◦ F (xk)),

there are R01-function and R02-function whose definitions are similar to Rs
01-function

and Rs
02-function, respectively. The only distinction is that they incorporate ‖xk‖2 in the

denominator. In other words, a function F : IRn → IRn is called

(i) an R01-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+

‖xk‖
→ 0,

(−F (xk))+

‖xk‖
→ 0, (1.51)

we have

lim inf
k→∞

〈xk, F (xk)〉
‖xk‖2

> 0;

(ii) an R02-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+

‖xk‖
→ 0,

(−F (xk))+

‖xk‖
→ 0,

we have

lim inf
k→∞

λ2(xk ◦ F (xk))

‖xk‖2
> 0.

It is well known that every R01-function is also an R02-function, and that if F possesses

the uniform Jordan P -property, then F is an R02-function. Utilizing the inequality

〈x, y〉 ≤ ω(x ◦ y)‖e‖2 (see [204, Proposition 2.1(ii)]) together with Definition 1.13, it is

straightforward to verify that Rs
01 =⇒ Rs

02. Moreover, by employing the Peirce Decompo-

sition Theorem (Theorem 1.2), the following result establishes an additional implication:

Rs
0 =⇒ Rs

02.

Proposition 1.8. If the function F : V→ V is a Rs
0-function, then F is a Rs

02-function.

Proof. For the sake of simplicity, for any x, y ∈ V, we let

x u y := x− (x− y)+, x t y := y + (x− y)+.

It is easy to verify that x t y := y + (x − y)+ = x + (y − x)+. Moreover, these are

commutative operations with

(x u y) ◦ (x t y) = x ◦ y, x u y + x t y = x+ y



1.4. SEMISMOOTH FUNCTIONS, P -FUNCTIONS, AND P -PROPERTIES 33

and

x t y − x u y = |y − x| ∈ K.

If we consider the element xuy = x−(x−y)+ ∈ V and apply the Spectral Decomposition

Theorem (Theorem 1.1), there exist a Jordan frame {e1, e2, · · · , er} and real numbers

λ1, λ2, · · · , λr such that

x u y = λ1e1 + · · ·+ λrer.

On the other hand, considering the element x t y = x + (y − x)+ ∈ V and applying the

Peirce Decomposition Theorem (Theorem 1.2), we know

x t y =
r∑
i=1

xiei +
∑
i<j

xij

with xi ∈ IR and xij ∈ Vij. Without loss of generality, let λ1 = ω(xu y). To proceed the

arguments, we first establish an inequality:

x1 ≥ λ1.

Note that

(x t y − x u y) =
r∑
i=1

(xi − λi)ei +
∑
i<j

xij ∈ K.

Thus, it follows that

〈x t y − x u y, e1〉 = (x1 − λ1)‖e1‖2 ≥ 0,

which yields x1 ≥ λ1. Now suppose Rs
0 condition holds. Take a sequence {xk} satisfying

the required condition in Definition 1.13(c), i.e.,

‖xk‖ → ∞,
(−xk)+

‖xk‖
→ 0,

(−yk)+

‖xk‖
→ 0,

where yk := F (xk). From Rs
0 condition, we have

lim inf
k→∞

ω(xk u yk)
‖xk‖

= lim inf
k→∞

λ1

‖xk‖
> 0 and λ1 > 0. (1.52)

For the element xk ◦ yk ∈ V, applying the Spectral Decomposition Theorem (Theorem

1.1) again, there exist a Jordan frame {f1, f2, · · · , fr} and real numbers µ1, µ2, · · · , µr
with µ1 ≥ µ2 ≥ · · · ≥ µr such that

xk ◦ yk = µ1f1 + · · ·+ µrfr.
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Then, we have ω(xk ◦ yk) = µ1. On the other hand,

xk ◦ yk = (xk u yk) ◦ (xk t yk)

= (λ1e1 + · · ·+ λrer) ◦ (
r∑
i=1

xiei +
∑
i<j

xij)

=
r∑
i=1

λixiei +
r∑
i=1

λiei ◦ (
∑
i<j

xij)

=
r∑
i=1

λixiei +
r∑
i=1

λi
2

∑
i<j

xij.

Hence,

λ1x1〈e1, e1〉 = 〈xk ◦ yk, e1〉
= µ1〈f1, e1〉+ µ2〈f2, e1〉+ · · ·+ µr〈fr, e1〉
≤ µ1〈f1, e1〉+ µ1〈f2, e1〉+ · · ·+ µ1〈fr, e1〉
≤ rµ1θ,

where θ = max{〈f1, e1〉, · · · , 〈fr, e1〉}. This leads to

µ1

‖xk‖
≥ λ1x1〈e1, e1〉

rθ‖xk‖
,

which combining with the formula (1.52) implies that

lim inf
k→∞

ω(xk ◦ yk)
‖xk‖

= lim inf
k→∞

µ1

‖xk‖
≥ lim inf

k→∞

λ1x1〈e1, e1〉
rθ‖xk‖

> 0,

where the second inequality holds due to x1 ≥ λ1 > 0 and 〈e1,e1〉
rθ

> 0. Therefore, the

implication Rs
0 =⇒ Rs

02 holds. �

Next, we introduce the notion of weak R0-type functions, which will be instrumental

in establishing the boundedness of level sets for the SCCPs in Section 3.3.

Definition 1.14. A function F : V → V is called an Rw
0 -function if for any sequence

{xk} that satisfies

‖xk‖ → ∞, lim sup
k→∞

ω((−xk)+) <∞, lim sup
k→∞

ω((−F (xk))+) <∞,

we have

ω(xk u F (xk))→∞.
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When the mapping F is linear, specifically F (x) = L(x) + q with q ∈ V, the notions

of Rs
0-function and Rw

0 -function reduce to the classical R0-property (or R0-matrix) of L;

that is, the associated SCLCP with q = 0 admits a unique zero solution. The proofs

of these equivalences closely follow the arguments presented in [19, Proposition 2.2] and

are therefore omitted here. Furthermore, by Definition 1.13 and Definition 1.14, we can

readily establish the following relationship between Rs
0 and Rw

0 .

Proposition 1.9. For the function F : V→ V, there holds

Rs
0 =⇒ Rw

0 .

Proof. Suppose Rs
0 condition holds. Take a sequence {xk} satisfying the required con-

dition in Definition 1.14, i.e.,

‖xk‖ → ∞, lim sup
k→∞

ω((−xk)+) <∞, lim sup
k→∞

ω((−F (xk))+) <∞.

It follows that

‖xk‖ → ∞,
(−xk)+

‖xk‖
→ 0,

(−yk)+

‖xk‖
→ 0.

By the definition of Rs
0, we have

lim inf
k→∞

ω(xk u yk)
‖xk‖

> 0.

Combining with ‖xk‖ → ∞ implies that

ω(xk u yk)→∞.

Therefore, the implication Rs
0 =⇒ Rw

0 holds. �

Definition 1.15. The mappings G = (G1, . . . , Gm) and F = (F1, . . . , Fm) are said to

have the joint Cartesian R02-property if for any sequence {ζk} satisfying the condition:

‖ζk‖ → +∞, [−G(ζk)]+
‖ζk‖ → 0,

[−F (ζk)]+
‖ζk‖ → 0, (1.53)

there exists an index ν ∈ {1, 2, . . . ,m} such that

lim inf
k→+∞

λmax

[
Gν(ζ

k) ◦ Fν(ζk)
]

‖ζk‖ > 0.

Proposition 1.10. Assume that G(ζ) ≡ ζ for any ζ ∈ V and F is a R02-function. Then,

G and F have the joint Cartesian R02-property.
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Proof. Suppose that F is an R02-function. From Definition 3 of [140], for any sequence

{ζk} satisfying the condition (1.53), there holds

lim inf
k→+∞

λmax

[
ζk ◦ F (ζk)

]
‖ζk‖2

> 0. (1.54)

For each k, let zk = ζk ◦ F (ζk) and suppose that it has the spectral decomposition

zk =
∑r

j=1 λj(z
k)ckj , where {ck1, . . . , ckr} ⊆ V is a Jordan frame. For convenience, we also

denote zk = (zk1 , . . . , z
k
m) with zki ∈ Vi. By the spectral decomposition of zk, clearly,

zki =
r∑
j=1

λj(z
k)(ckj )i, i = 1, 2, . . . ,m, (1.55)

with ckj =
(
(ckj )1, . . . , (c

k
j )m
)

for every j ∈ {1, 2, . . . , r}. Now, without loss of generality,

we assume that λlk(z
k) = λmax(zk) with 1 ≤ lk ≤ r. Then,

λmax(zk) =
r∑
j=1

λj(z
k)〈ckj , cklk〉 =

m∑
i=1

r∑
j=1

λj(z
k)
〈
(ckj )i, (c

k
lk

)i
〉
.

Combining with (1.54) and (1.55), there exists an index ν ∈ {1, 2, . . . ,m} such that

0 < lim inf
k→+∞

∑r
j=1 λj(z

k)
〈
(ckj )ν , (c

k
lk

)ν
〉

‖ζk‖2
= lim inf

k→+∞

〈zkν , (cklk)ν〉
‖ζk‖2

. (1.56)

Suppose that zkν as an element in the simple Euclidean Jordan algebra (Vν , ◦, 〈·, ·〉) has

the following spectral decomposition

zkν =
r̄∑
j=1

λj(z
k
ν )qkνj,

where {qkν1, . . . , q
k
νr̄} ⊆ Vν be the corresponding Jordan frame. Then,

〈zkν , (cklk)ν〉 ≤ λmax(zkν )

〈
r̄∑
j=1

qkνj, (c
k
lk

)ν

〉
= λmax(zkν )〈eν , (cklk)ν〉, (1.57)

where eν is the identity element in Vν and the inequality is since (cklk)ν ∈ Kν and qkνj ∈ Kν
for every j = 1, 2, . . . , r̄. From (1.56) and (1.57), it then follows that

0 < lim inf
k→+∞

〈zkν , (cklk)ν〉
‖ζk‖2

≤ lim inf
k→+∞

λmax(zkν )

‖ζk‖ · 〈eν , (c
k
lk

)ν〉
‖ζk‖ .

Noting that 〈eν , (cklk)ν〉 is bounded for each k, we have that

lim inf
k→+∞

〈eν , (cklk)ν〉
‖ζk‖ = 0.
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From the last two inequalities, it readily follows that

lim inf
k→+∞

λmax(zkν )

‖ζk‖ > 0.

By Definition 1.15, the mappings G and F have the joint Cartesian R02-property. �

Definition 1.16. The mappings F,G : IRn → IRn are said to have the joint R̃01-property

if for any sequence {ζk} with

‖ζk‖ → +∞, [−G(ζk)]+
‖ζk‖ → 0,

[−F (ζk)]+
‖ζk‖ → 0, (1.58)

there holds

lim inf
k→+∞

〈F (ζk), G(ζk)〉
‖ζk‖ > 0. (1.59)
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Chapter 2

The Nonlinear Complementarity

Functions

Complementarity Problems (NCPs) constitute a fundamental class of variational inequal-

ities, frequently emerging in the formulation of Karush-Kuhn-Tucker (KKT) conditions

for optimization problems [63]. Beyond their role in optimization theory, the NCPs of-

fer a powerful framework for analyzing equilibrium phenomena across a wide range of

disciplines, including operations research, engineering, and economics [63, 68, 70].

Given a function F : IRn → IRn, the problem of finding a point x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, and 〈x, F (x)〉 = 0, (2.1)

is precisely the nonlinear complementarity problem . Various approaches to solving this

problem have been proposed, in which most of them utilize a so-called NCP function ,

that is, a function φ : IR2 → IR such that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, and ab = 0. (2.2)

An NCP function is useful in solving the NCP (2.1) as it naturally exploits the structure

of the problem. In particular, defining Φ
F

: IRn → IRn as

Φ
F
(x) =

 φ(x1, F1(x))
...

φ(xn, Fn(x))

 , (2.3)

it is clear to see that NCP (2.1) is equivalent to solving the system of equations Φ
F
(x) = 0.

Based on the above discussion, there are roughly four main approaches to addressing the

NCP (2.1), each utilizing an NCP function φ as defined in (2.2).

(1) Merit function approach. The central idea of this approach is to reformulate the

NCP as an unconstrained global minimization problem:

min
x∈IRn

Ψ
F
(x) where Ψ

F
(x) :=

1

2
‖Φ

F
(x)‖2.. (2.4)

39
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Here, the objective function Ψ
F

is also referred to as a merit function. It is evident that

the global minimizers of problem (2.4) correspond precisely to the solutions of the NCP

(2.1). As a result, attention is directed toward analyzing the structure and properties of

ΨF, as well as developing effective solution methods for solving the minimization problem

(2.4).

(2) Nonsmooth function approach. For this approach, it just employes the direct

equivalent relation:

NCP ⇐⇒ Φ
F
(x) =

 φ(x1, F1(x))
...

φ(xn, Fn(x))

 = 0. (2.5)

In other words, solving the NCP (2.1) is equivalent to finding solutions to the system of

equations ΦF(x) = 0. In general, the function ΦF is nonsmooth, which gives rise to the

term “nonsmooth function approach”.

(3) Smoothing function approach. The functions ΨF and ΦF used in the merit

function and nonsmooth function approaches are often nondifferentiable. To address this,

the smoothing approach introduces a family of smooth approximations. Specifically, one

may construct a smooth function ΨF
µ

with µ > 0 such that

Ψ
µ

F
→ Ψ

F
as µ→ 0. (2.6)

Alternatively, one may define a smooth approximation ΦF
µ

satisfying

Φ
µ

F
→ Φ

F
as µ→ 0. (2.7)

Since both ΨF
µ

and ΦF
µ

are smooth, a wide range of well-established algorithms for

smooth optimization or equation-solving can be employed to tackle problems (2.6) and

(2.7), respectively. The subsequent analysis then focuses on identifying conditions under

which solutions to the smoothed problems converge to those of the original nonsmooth

formulations, namely, (2.4) or (2.5) as µ→ 0.

(4) Regularization approach. Distinct from the previous three approaches, this

method focuses on solving the original NCP (2.1) through a sequence of regularized

complementarity problems, denoted as NCP(Fε):

x ≥ 0, Fε(x) ≥ 0, 〈x, Fε(x)〉 = 0, (2.8)

where ε > 0 is a regularization parameter tending to zero, and Fε is defined by

Fε(x) := F (x) + εx.

The central question in this approach is to determine under what conditions the solutions

of the regularized problem NCP(Fε), as defined in (2.8), converge to a solution of the

original NCP (2.1) as ε→ 0.
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Owing to their practical relevance, a wide variety of NCP functions have been pro-

posed and thoroughly investigated in the literature [79]. Among these, one of the most

widely used is the natural residual (NR) function [170], defined as

φ
NR

(a, b) = min{a, b} = a− [a− b]+. (2.9)

In contrast to the merit function defined in (2.4), the NR merit function Ψ
NR

: IRn → IR+

is employed, and is given by

Ψ
NR

(x) :=
1

2

n∑
i=1

φ2
NR

(xi , Fi(x)). (2.10)

Analogously, for the nonsmooth function approach described in (2.5), the corresponding

function Φ
NR

is defined componentwise by replacing the generic NCP function φ with the

natural residual φ
NR

as given in (2.9), i.e.,

Φ
NR

(x) =

 φ
NR

(x1, F1(x))
...

φ
NR

(xn, Fn(x))

 .

Mangasarian and Solodov proposed another type of NCP function [147], which is

defined by

φ
MS

(a, b) = ab+
1

2α

(
max{0, a− αb}2 − a2 + max{0, b− αa}2 − b2

)
, α > 1. (2.11)

The NCP function φ
MS

described above is differentiable, which is advantageous for the un-

constrained minimization approach. However, it is important to note that an NCP func-

tion cannot, in general, be both convex and differentiable simultaneously; see [99, 157].

Consequently, the design of NCP functions that exhibit either convexity or differentia-

bility, depending on the needs of a particular application, remains an important and

ongoing area of research.

Another widely used NCP function is the Fischer-Burmeister (FB) function [72, 73],

defined as

φ
FB

(a, b) =
√
a2 + b2 − (a+ b). (2.12)

The FB function has attracted considerable attention and has been extensively employed

in numerous studies due to its favorable numerical properties. Several variants of φ
FB
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have also been explored in the literature [195]:

φ1(a, b) := φ
FB

(a, b)− αa+b+, α > 0.

φ2(a, b) := φ
FB

(a, b)− α(ab)+, α > 0.

φ3(a, b) :=
√

[φ
FB

(a, b)]2 + α(ab)2, α > 0.

φ4(a, b) :=
√

[φ
FB

(a, b)]2 + α(a+b+)2, α > 0.

φ5(a, b) :=
√

[φ
FB

(a, b)]2 + α[(ab)+]2, α > 0.

φ6(a, b) :=
√

[φ
FB

(a, b)]2 + α[(ab)+]4, α > 0.

φ7(a, b) :=
√

[φ
FB

(a, b)+]2 + α[(ab)+]2, α > 0.

In particular, it has been noted that the functions φ2(a, b) = φ
FB

(a, b) − α(ab)+ and

φ3(a, b) =
√

[φ
FB

(a, b)]2 + α(ab)2 are not recommended for practical use, as they lack

certain desirable properties; see [195, page 206].

A general framework for constructing NCP functions was first introduced by Man-

gasarian in [146]. The idea is to select a strictly increasing function θ : IR→ IR satisfying

θ(0) = 0, such that a > b if and only if θ(a) > θ(b). Under this setting, a vector z solves

the complementarity problem (2.1) if and only if

θ(|Fi(z)− zi|)− θ(Fi(z))− θ(zi) = 0, i = 1, · · · , n.

An alternative construction was proposed by Luo and Tseng [143], which introduces a

merit function f
LT

: IRn → IR defined by

f
LT

(ζ) := ψ0(〈ζ, F (ζ)〉) +
n∑
i=1

ψi(−ζi,−Fi(ζ)), (2.13)

where ψ0 : IR→ [0,∞) and ψi : IR2 → [0,∞) are continuous functions that vanish on the

negative orthant only. The construction of the function f
LT

is not derived from an NCP

function. Nevertheless, it possesses several notable properties under certain assumptions

[143]. In particular, f
LT

is convex on IRn provided that the function 〈x, F (x)〉 and each

component −Fi(x), for i = 1, . . . , n, are convex in x. Building upon the idea underlying

the construction of f
LT

as defined in (2.13), Kanzow, Yamashita, and Fukushima [120]

introduced a class of NCP functions. Specifically, they considered the set of continuous

functions Ψ : IRm → [0,∞) satisfying

Ψ(t) = 0 ⇐⇒ t ≤ 0

which they denoted by Ψm. Then, for any Ψ0 ∈ Ψ1 and Ψi ∈ Ψ2, each function

φi : IR2 → IR defined by

φi(a, b) = Ψ0(a, b) + Ψi(−a,−b), i = 1, · · · , n

is a nonnegative NCP function. A comprehensive survey of various merit functions can be

found in [74]. More recently, a rigorous treatment of the construction of NCP functions
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was provided by Galántai in [79], which is notably the first work to compile a systematic

list of existing NCP functions. In essence, most of these functions are extensions or

variants of the previously discussed φ
NR

, φ
FB

, and φ
MS

. Additional generalizations have

also been proposed, building upon these foundational forms. In the following sections,

we present a survey and review of recent developments in the design and analysis of new

NCP functions.

2.1 Constructions of NCP Functions based on φ
FB

2.1.1 Construction by using p-norm

There are several extensions of the FB function φ
FB

given as in (2.12) in the literature.

For example, Kanzow and Kleinmichel [116] extended φ
FB

function to

φθ(a, b) :=
√

(a− b)2 + θab− (a+ b), θ ∈ (0, 4).

Chen, Chen, and Kanzow [20] studied a penalized FB function

φλ(a, b) := λφ
FB

(a, b) + (1− λ)a+b+, λ ∈ (0, 1).

Additional forms of penalized Fischer-Burmeister (FB) functions have been explored by

Sun and Qi in [195]. In this section, we turn our attention to a notable extension of the

classical FB function, denoted by φ
FB

, which has recently garnered significant interest

and has been the subject of extensive study. As observed in [79], it is particularly

noteworthy that several nonlinear complementarity problem (NCP) functions bear a close

resemblance to the FB function. Among them, the generalized FB function is of special

interest:

φp
FB

(a, b) = ‖(a, b)‖p − (a+ b), p > 1 (2.14)

This formulation represents a compelling generalization of φ
FB

and has proven to be

an effective tool for solving NCPs. Initially introduced by Tseng in [206], the function

φp
FB

was established therein as a valid NCP function. Subsequent studies have further

examined its properties and applications, as documented in [22, 27, 30, 35, 36, 39, 96, 205].

Here, | · |p denotes the lp-norm, and the parameter p serves as a tunable variable that, as

demonstrated in [30, 32, 35, 36, 39], can potentially enhance the numerical performance

of certain algorithms.

Accordingly, we define ψp
FB

: IR2 → IR+ by

ψp
FB

(a, b) :=
1

2
|φp

FB
(a, b)|2. (2.15)
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For any given p > 1, the function ψp
FB

is a nonnegative NCP function and smooth on IR2

as will be seen later. Analogous to Φ
F
, the function Φp

FB
: IRn → IRn given as

Φp
FB

(x) =


φp

FB
(x1 , F1(x))

·
·
·

φp
FB

(xn , Fn(x))

 (2.16)

yields a family of merit functions Ψp
FB

: IRn → IR for the NCP for which

Ψp
FB

(x) :=
1

2
‖Φp

FB
(x)‖2 =

1

2

n∑
i=1

φp
FB

(xi , Fi(x))2 =
n∑
i=1

ψp
FB

(xi , Fi(x)). (2.17)

As will be demonstrated later, for any fixed p > 1 the function Ψp
FB

serves as a con-

tinuously differentiable merit function for the NCP. This smoothness property makes

it amenable to classical iterative approaches, such as the Newton method, which can

be effectively employed to solve the NCP through unconstrained smooth optimization,

namely:

min
x∈IRn

Ψp
FB

(x). (2.18)

Proposition 2.1. Let φp
FB

: IR2 → IR be defined as in (2.14) where p > 1. Then, the

following hold.

(a) The function φp
FB

is an NCP function, i.e., it satisfies (2.2).

(b) The function φp
FB

is sub-additive, i.e., φp
FB

(w+w′) ≤ φp
FB

(w)+φp
FB

(w′) for all w,w′ ∈
IR2.

(c) The function φp
FB

is positive homogeneous, i.e., φp
FB

(αw) = αφp
FB

(w) for all w ∈ IR2

and α ≥ 0.

(d) The function φp
FB

is convex, i.e., φp
FB

(αw + (1− α)w′) ≤ αφp
FB

(w) + (1− α)φp
FB

(w′)

for all w,w′ ∈ IR2 and α ≥ 0.

(e) The function φp
FB

is Lipschitz continuous with L1 =
√

2 + 2(1/p−1/2) when 1 < p < 2,

and with L2 = 1+
√

2 when p ≥ 2. That is,
∣∣φp

FB
(w)− φp

FB
(w′)

∣∣ ≤ L2‖w−w′‖ when

1 < p < 2 and
∣∣φp

FB
(w)− φp

FB
(w′)

∣∣ ≤ L1‖w − w′‖ when p ≥ 2 for all w,w′ ∈ IR2.

(f) Given any point (a, b) ∈ IR2, each element in the generalized gradient ∂φp
FB

(a, b) has

the representation (ξ − 1, ζ − 1) where, if (a, b) 6= (0, 0),

(ξ, ζ) =

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

,
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

)
,

and otherwise (ξ, ζ) is an arbitrary vector in IR2 satisfying |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1.
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Proof. (a) The proof can be seen in [206, page 20]. For completeness, we here include

it. Consider any a ≥ 0 and b ≥ 0 satisfying ab = 0. Then, we have either a = 0 or

b = 0, which implies that φp
FB

(a, b) = p
√
|a|p − a or φp

FB
(a, b) = p

√
|b|p − b. Considering

a ≥ 0 and b ≥ 0, we thus have φp
FB

(a, b) = 0. Conversely, consider any (a, b) ∈ IR2

satisfying φp
FB

(a, b) = 0. Then, there must hold a ≥ 0 and b ≥ 0. Otherwise, we have
p
√
|a|p + |b|p > (a + b) and hence contradicts the fact that φp(a, b) = 0. Now we prove

that one of a and b must be 0. Otherwise, ‖(a, b)‖p < ‖(a, b)‖1 = a + b. This obviously

contradicts the fact that φp
FB

(a, b) = 0. The two sides show that φp
FB

is indeed an NCP

function.

(b) Let w = (a, b) and w′ = (c, d). Then, the desired result follows by

φp
FB

(w + w′) = ‖(a, b) + (c, d)‖p − (a+ b+ c+ d)

≤ ‖(a, b)‖p + ‖(c, d)‖p − (a+ b)− (c+ d)

= φp
FB

(a, b) + φp
FB

(c, d) = φp
FB

(w) + φp
FB

(w′),

where the inequality is true since the triangle inequality holds for p-norm when p > 1.

(c) Let w = (a, b) ∈ IR2 and α > 0. Then the proof follows by

φp
FB

(αw) = p
√
|αa|p + |αb|p − (αa+ αb) = α p

√
|a|p + |b|p − α(a+ b) = αφp

FB
(w).

(d) This is true by part (b) and part (c).

(e) Let w = (a, b) and w′ = (c, d), we have

|φp
FB

(w)− φp(w′)| =

∣∣∣∣‖(a, b)‖p − (a+ b)− ‖(c, d)‖p + (c+ d)

∣∣∣∣
≤

∣∣∣∣‖(a, b)‖p − ‖(c, d)‖p
∣∣∣∣+ |a− c|+ |b− d|

≤ ‖(a, b)− (c, d)‖p +
√

2
√
|a− c|2 + |b− d|2

≤ ‖(a, b)− (c, d)‖p +
√

2‖(a, b)− (c, d)‖
= ‖w − w′‖p +

√
2‖w − w′‖.

Then, by Lemma 1.4 (also see [92, Lemma 1.3]), i.e.,

‖x‖p2 ≤ ‖x‖p1 ≤ n(1/p1−1/p2)‖x‖p2 for x ∈ IRn and 1 < p1 < p2,

the desired results follow.

(f) This comes from direct computation. �

As shown below, the function φp
FB

possesses several additional properties that are

instrumental in establishing the results presented in the subsequent section.
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Lemma 2.1. Let φp
FB

: IR2 → IR be defined as in (2.14) where p > 1. If {(ak, bk)} ⊆ IR2

with (ak → −∞) or (bk → −∞) or (ak →∞ and bk →∞), then we have |φp
FB

(ak, bk)| →
∞ for k →∞.

Proof. This result is also mentioned in [206, page 20]. �

We now introduce another family of NCP functions that reformulate the nonlinear

complementarity problem as an unconstrained minimization problem. In other words,

these functions serve as a class of merit functions for the NCP. Given φp
FB

as defined in

(2.14), we define the function ψp
FB

: IR2 → IR+ for p > 1 by

ψp
FB

(a, b) :=
1

2
|φp

FB
(a, b)|2. (2.19)

This class of functions exhibits several desirable properties, as detailed below. Notably,

for any fixed p > 1, the function ψp
FB

is continuously differentiable everywhere, in contrast

to φp
FB

, which lacks differentiability at the origin.

Proposition 2.2. Let φp
FB

, ψp
FB

be defined as in (2.14) and (2.19), respectively, where

p > 1. Then, the following hold.

(a) ψp
FB

is an NCP function, i.e., it satisfies (2.2).

(b) ψp
FB

(a, b) ≥ 0 for all (a, b) ∈ IR2.

(c) ψp
FB

is continuously differentiable everywhere.

(d) ∇aψ
p
FB

(a, b) · ∇bψ
p
FB

(a, b) ≥ 0 for all (a, b) ∈ IR2. The equality holds if and only if

φp
FB

(a, b) = 0.

(e) ∇aψ
p
FB

(a, b) = 0⇐⇒ ∇bψ
p
FB

(a, b) = 0⇐⇒ φp
FB

(a, b) = 0.

Proof. (a) Since ψp
FB

(a, b) = 0 if and only if φp
FB

(a, b) = 0, the desired result is satisfied

by Proposition 2.1(a).

(b) It is clear by definition of ψp
FB

.

(c) From direct computation, we obtain ∇aψ
p
FB

(0, 0) = ∇bψ
p
FB

(0, 0) = 0. For (a, b) 6=
(0, 0), we have

∇aψ
p
FB

(a, b) =

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
φp

FB
(a, b) (2.20)

∇bψ
p
FB

(a, b) =

(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φp

FB
(a, b). (2.21)

where sgn(·) is the sign function. Clearly,

∣∣∣∣sgn(a) · |a|p−1

‖(a, b)‖p−1
p

∣∣∣∣ ≤ 1 and

∣∣∣∣sgn(a) · |a|p−1

‖(a, b)‖p−1
p

∣∣∣∣ ≤ 1

(i.e., uniformly bounded) and moreover φp
FB

(a, b) → 0 as (a, b) → (0, 0). Therefore, we
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have ∇aψ
p
FB

(a, b) → 0 and ∇bψ
p
FB

(a, b) → 0 as (a, b) → (0, 0). This means that ψp
FB

is

continuously differentiable everywhere.

(d) From part(c), we know that if (a, b) = (0, 0), it is clear that∇aψ
p
FB

(a, b)·∇bψ
p
FB

(a, b) =

0 and ψp
FB

(a, b) = 0. Now we assume that (a, b) 6= (0, 0). Then, ∇aψ
p
FB

(a, b) · ∇bψ
p
FB

(a, b)

is (
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φp

FB
(a, b)2.

Again, from

∣∣∣∣sgn(a) · |a|p−1

‖(a, b)‖p−1
p

∣∣∣∣ ≤ 1 and

∣∣∣∣sgn(b) · |b|p−1

‖(a, b)‖p−1
p

∣∣∣∣ ≤ 1, it immediately yields that

∇aψ
p
FB

(a, b) · ∇bψ
p
FB

(a, b) ≥ 0 for all (a, b) ∈ IR2. The equality holds if and only if

φp
FB

(a, b) = 0,
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

= 1 or
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

= 1. In fact, if
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

= 1,

then we have a > 0 and |a| = ‖(a, b)‖p, which leads to b = 0 and hence φp
FB

(a, b) =

p
√
|a|p − a = a− a = 0. Similarly, we have φp

FB
(a, b) = 0 if

sgn(b) · |b|p−1

‖(a, b)‖p−1
p

= 1. Thus, we

conclude that the equality holds if and only if φp
FB

(a, b) = 0.

(e) It is already seen in the last part of proof for part(d). �

It has been shown that if F is a monotone function [81] or a P0-function [64], then any

stationary point of Ψ
F

is a global minimizer of the unconstrained optimization problem

min
x∈IRn

Ψ
F
(x), and therefore constitutes a solution to the NCP. Furthermore, if F is strongly

monotone [81] or a uniform P -function [64], the level sets of Ψ
F

are guaranteed to be

bounded. In what follows, we establish and prove analogous results for Ψp
FB

, assuming

the same conditions as those in [64, 81]. The proofs of the subsequent propositions are

inspired by the corresponding arguments found in these references.

Proposition 2.3. Let Ψp
FB

: IRn → IR be defined as (2.17) where p > 1. Then Ψp
FB

(x) ≥ 0

for all x ∈ IRn and Ψp
FB

(x) = 0 if and only if x solves the NCP (2.1). Moreover, suppose

that the NCP has at least one solution. Then, x is a global minimizer of Ψp
FB

if and only

if x solves the NCP.

Proof. The results follow from Proposition 2.2. �

Proposition 2.4. Let Ψp
FB

: IRn → IR be defined as (2.17) where p > 1. Assume F is

either monotone or P0-function, then every stationary point of Ψp
FB

is a global minima

of (2.18); and therefore solves the original NCP.

Proof. (I) For the assumption of monotonicity of F , suppose that x∗ is a stationary

point of Ψp
FB

. Then we have ∇Ψp
FB

(x∗) = 0 which implies that

n∑
i=1

(
∇aψ

p
FB

(x∗i , Fi(x
∗))ei +∇bψ

p
FB

(x∗i , Fi(x
∗))∇Fi(x∗)

)
= 0, (2.22)
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where ei = (0, · · · , 1, · · · , 0)T . We denote∇aψ
p
FB

(x∗, F (x∗)) = (· · · ,∇aψ
p
FB

(x∗i , Fi(x
∗)), · · · )T

and ∇bψ
p
FB

(x∗, F (x∗)) = (· · · ,∇bψ
p
FB

(x∗i , Fi(x
∗)), · · · )T, respectively. Then (2.22) can be

abbreviated as

∇aψ
p
FB

(x∗, F (x∗)) +∇F (x∗)∇bψ
p
FB

(x∗, F (x∗)) = 0. (2.23)

Now, multiplying (2.23) by ∇bψ
p
FB

(x∗, F (x∗))T leads to

n∑
i=1

(
∇aψ

p
FB

(x∗i , Fi(x
∗))·∇bψ

p
FB

(x∗i , Fi(x
∗))

)
+∇bψ

p
FB

(x∗, F (x∗))T∇F (x∗)∇bψ
p
FB

(x∗, F (x∗)) = 0.

(2.24)

Since F is monotone, ∇F (x∗) is positive semidefinite, the second term of (2.24) is non-

negative. Moreover, each term in the first summation of (2.24) is nonnegative as well

due to Prop. 2.2(d). Therefore, we have

∇aψ
p
FB

(x∗i , Fi(x
∗)) · ∇aψ

p
FB

(x∗i , Fi(x
∗)) = 0, ∀i = 1, 2, · · · , n,

which yields φp
FB

(x∗i , Fi(x
∗)) = 0 for all i = 1, 2, · · · , n by Proposition 2.2(e). Thus,

Ψp
FB

(x∗) = 0 which says x∗ is a global minimizer of (2.18).

(II) If F is P0-function and x∗ is a stationary point of Ψp
FB

, then Ψp
FB

(x∗) = 0, which

yields (2.23). Notice that ∇aψ
p
FB

(a, b) and ∇bψ
p
FB

(a, b) are given as forms of (2.20). If

we denote A(x∗) and B(x∗) the possibly multi-valued n × n diagonal matrices whose

diagonal elements are given by

Aii(x
∗) =

sgn(x∗i ) · |x∗i |p−1

‖(x∗i , Fi(x∗))‖p−1
p

if (x∗i , Fi(x
∗)) 6= (0, 0)

and

Bii(x
∗) =

sgn(Fi(x
∗)) · |Fi(x∗)|p−1

‖(x∗i , Fi(x∗))‖p−1
p

if (x∗i , Fi(x
∗)) 6= (0, 0).

If (x∗i , Fi(x
∗)) = (0, 0), then we let A(x∗) = B(x∗) = I, i.e., the n × n identity matrix.

With the notions of A(x∗), B(x∗) and (2.20), the equation (2.23) can be rewritten as[
(A(x∗)− I) +∇F (x∗)(B(x∗)− I)

]
Φp

FB
(x∗) = 0. (2.25)

We want to prove that Φp
FB

(x∗) = 0 (and hence Ψp
FB

(x∗) = 0). Suppose not, i.e.,

Φp
FB

(x∗) 6= 0. Recall that Φp
FB

(x∗) = 0 if and only if (2.1) is satisfied and the i-th

component of Φp
FB

(x∗) is φp
FB

(x∗i , Fi(x
∗)). Thus, φp

FB
(xi, Fi(x

∗)) 6= 0 means one of the

following occurs:

1. x∗i 6= 0 and Fi(x
∗) 6= 0.

2. x∗i = 0 and Fi(x
∗) < 0.
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3. x∗i < 0 and Fi(x
∗) = 0.

In every case, we have Bii(x
∗) 6= 1 (since Bii(x

∗) = 1 if and only if φp
FB

(x∗i , Fi(x
∗)) = 0

by Proposition 2.2(d)(e)), so that (Bii(x
∗)− 1) · φp

FB
(x∗i , Fi(x

∗)) 6= 0. Similar arguments

apply for the vector (A(x∗) − I)Φp
FB

(x∗). Thus, from the above, we can easily verify

that if Φp
FB

(x∗) 6= 0 then (B(x∗) − I)Φp
FB

(x∗) and (A(x∗) − I)Φp
FB

(x∗) are both nonzero.

Moreover, both of their nonzero elements are in the same positions, and such nonzero

elements have the same sign. But, for equation (2.25) to hold, it would be necessary

that ∇F (x∗) “revert the sign” of all the nonzero elements of (B(x∗)− I)Φp
FB

(x∗), which

contradicts the fact that ∇F (x∗) is a P0-matrix by Lemma 1.5. �

Proposition 2.5. Let Ψp
FB

: IRn → IR be defined as (2.17) where p > 1. Assume that F

is either strongly monotone or uniform P -function, then the level sets

L(Ψp
FB
, γ) :=

{
x ∈ IRn | Ψp

FB
(x) ≤ γ

}
are bounded for all γ ∈ IR.

Proof. (I) First, we consider the assumption of strong monotonicity of F . Suppose there

exists an unbounded sequence {‖xk‖}k∈K → ∞ with {xk}k∈K ⊆ L(Ψp
FB
, γ) for some

γ ≥ 0, where K is a subset of N . We define the index set as

J :=
{
i ∈ {1, 2, · · · , n}| {xki } is unbounded

}
.

Since {xk} is unbounded, J 6= ∅. Let {zk} denote a bounded sequence defined by

zki =

{
0, if i ∈ J,
xki , if i 6∈ J.

Then from the definition of {zk} and the strong monotonicity of F , we obtain

µ
∑
i∈J

(xki )
2 = µ‖xk − zk‖2

≤ 〈xk − zk, F (xk)− F (zk)〉

=
n∑
i=1

(xki − zki )(Fi(x
k)− Fi(zk)) (2.26)

=
∑
i∈J

xki (Fi(x
k)− Fi(zk))

≤
(∑

i∈J

(xki )
2

)1/2∑
i∈J

|(Fi(xk)− Fi(zk))|.

Since
∑
i∈J

(xki )
2 6= 0 for k ∈ K, then dividing by

∑
i∈J

(xki )
2 on both sides of (2.26) yields

µ

(∑
i∈J

(xki )
2

)1/2

≤
∑
i∈J

|(Fi(xk)− Fi(zk))|, k ∈ K. (2.27)
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On the other hand, we know {Fi(zk)}k∈K is bounded (i ∈ J) due to {zk}k∈K is bounded

and F is continuous. Therefore from (2.27), we have

{|Fi0(xk)|} → ∞ for some i0 ∈ J.

Also, {‖xki0‖} → ∞ by the definition of the index set J . Thus, Lemma 2.1 yields

φp(x
k
i0
, Fi0(x

k))→∞ as k →∞.

But this contradicts {xk} ⊆ L(Ψp
FB
, γ).

(II) If F is uniform P -function, then the proof almost follows the same arguments as

above. In particular, (2.26) is replaced by

µ
∑
i∈J

(xki )
2 = µ‖xk − zk‖2

≤ max
1≤i≤n

(xki − zki )(Fi(x
k)− Fi(zk))

= max
i∈J

xki (Fi(x
k)− Fi(zk)) (2.28)

= xkj0(Fi(x
k)− Fi(zk))

≤ |xkj0 ||(Fi(xk)− Fi(zk))|,

where j0 is one of the indices for which the max is attained. Then dividing by |xkj0 | on

both sides of (2.28) and the proof follows. �

We now examine some geometric properties of the function φp
FB

and offer interpre-

tations of their significance. In particular, we present the family of surfaces defined by

φp
FB

(a, b) for various values of p ∈ (1,+∞); see Figures 2.1–2.2. When the parameter p is

fixed within this interval, Figure 2.2 provides an intuitive visualization showing how the

shape of the surface is influenced by the choice of p. From the definition of the p-norm,

we recall that ‖(a, b)‖1 := |a| + |b|, and ‖(a, b)‖∞ := max{|a|, |b|}. It follows trivially

that φp
FB

(a, b) → φ1
FB

(a, b) := |a| + |b| − (a + b) pointwise as p → 1; see Figures 2.2(a)

and (b). Conversely, as p→∞, we have φp
FB

(a, b)→ φ∞
FB

(a, b) := max{|a|, |b|} − (a+ b),

as illustrated in Figures 2.2(e) and (f). It is important to note that φ1
FB

(a, b) does not

qualify as an NCP function, since φ1
FB

(a, b) = 0 even when a > 0 and b > 0. In contrast,

φ∞
FB

(a, b) is indeed an NCP function, although it fails to be differentiable along the line

a = b.

Lemma 2.2. [31, Lemma 3.1] If a > 0 and b > 0, then (a + b)p > ap + bp for all

p ∈ (1,+∞).

Proof. We present two different ways to prove this lemma.

(1) For any p > 1, p = n + m, where n = [p] (the greatest integer less than or equal to
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Figure 2.1: The surface of z = φ2
FB

(a, b) with (a, b) ∈ [−10, 10]× [−10, 10].

p) and m = p− n, applying binomial theorem gives

(a+ b)p = (a+ b)n(a+ b)m

≥ (an + bn)(a+ b)m

= an(a+ b)m + bn(a+ b)m

≥ anam + bnbm

= ap + bp.

(2) Let f(t) = (t+ 1)p − (tp + 1). It is easy to verify that f is increasing on [0,∞) when

p > 1. Hence, f(a/b) ≥ f(0) = 0 which yields (a+ b)p ≥ ap + bp. �

Lemma 2.3. [30, Lemma 3.2] Let φp
FB

: IR2 → IR be given as in (2.14) where p > 1.

Then, there holds(
2− 2

1
p

)
|min{a, b}| ≤

∣∣φp
FB

(a, b)
∣∣ ≤ (2 + 2

1
p

)
|min{a, b}| .

Proof. Without loss of generality, assume a ≥ b. We will establish the desired results by

examining the following two cases: (1) a+ b ≤ 0 and (2) a+ b > 0.

Case(1): a+ b ≤ 0. In this case, we have

|φp
FB

(a, b)| ≥ ‖(a, b)‖p ≥ |b| = |min{a, b}| ≥ (2− 2
1
p )|min{a, b}|. (2.29)

On the other hand, since a ≥ b and a+ b ≤ 0, we have |b| ≥ |a|. Then

|φp
FB

(a, b)| ≤ ‖(a, b)‖p − 2b = (2 + 2
1
p )|b| = (2 + 2

1
p )|min{a, b}|.
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Case(2): a + b > 0. If ab=0, then the desired inequality clearly holds. Thus, we discuss

by two subcases:

(i) ab < 0. In this subcase, we have a > 0, b < 0, and |a| > |b|. Consequently,

φp
FB

(a, b) ≤ |a|+ |b| − (a+ b) = −2b = 2|min{a, b}| ≤ (2 + 2
1
p )|min{a, b}|,

and

φp
FB

(a, b) ≥ ‖(a, b)‖∞ − (a+ b) = −b = |min{a, b}| ≥ (2− 2
1
p )|min{a, b}|.

(ii) ab > 0. Now we have a ≥ b > 0. Since for any p > 1 there holds that

0 ≥ φp
FB

(a, b) ≥ ‖(a, b)‖∞ − (a+ b) = a− (a+ b) = −b = −min{a, b},

we immediately obtain that

|φp
FB

(a, b)| ≤ |min{a, b}| ≤ (2 + 2
1
p )|min{a, b}|.

On the other hand, since φp
FB

(a, b) ≤ 0, it follows that

|φp
FB

(a, b)| = a+ b− ‖(a, b)‖p = b

[(a
b

+ 1
)
−
((a

b

)p
+ 1
)1/p

]
.

Let f(t) = t+ 1− (tp + 1)1/p for t ≥ 1. Then

f ′(t) = 1−
(

tp

tp + 1

) p−1
p

.

Notice that f ′(t) > 0 for t ≥ 1, and f(1) = 2− 2
1
p , and hence we obtain that

|φp
FB

(a, b)| ≥ (2− 2
1
p )b = (2− 2

1
p )|min{a, b}| for any p > 1. (2.30)

All the aforementioned inequalities (2.29)-(2.30) imply that the desired inequality holds.

�

Proposition 2.6. Let φp
FB

: IR2 → IR be given as in (2.14) where p ∈ (1,+∞). Then,

(a) (a > 0 and b > 0) ⇐⇒ φp
FB

(a, b) < 0;

(b) (a = 0 and b ≥ 0) or (b = 0 and a ≥ 0) ⇐⇒ φp
FB

(a, b) = 0;

(c) b = 0 and a < 0 ⇒ φp
FB

(a, b) = −2a > 0;

(d) a = 0 and b < 0 ⇒ φp
FB

(a, b) = −2b > 0.
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(a) z = φp
FB

(a, b), p = 1
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(b) z = φp
FB

(a, b), p = 1.1
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(c) z = φp
FB

(a, b), p = 2
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(d) z = φp
FB

(a, b), p = 3
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(e) z = φp
FB

(a, b), p = 100
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(f) z = φp
FB

(a, b), p =∞

Figure 2.2: The surface of z = φp
FB

(a, b) with different values of p.
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(f) p =∞

Figure 2.3: Level curves of z = φp
FB

(a, b) with different values of p.
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Figure 2.4: The surface of z = φ2
FB

(a, b) with (a, b) ∈ [0, 10]× [0, 10].

Proof. (a) If a > 0 and b > 0, it is easy to see φp
FB

(a, b) < 0 by Lemma 2.2. Conversely,

using p
√
|a|p + |b|p ≥ |a| and p

√
|a|p + |b|p ≥ |b|, we have p

√
|a|p + |b|p ≥ max{|a|, |b|}.

Suppose a ≤ 0 or b ≤ 0, then we have max{|a|, |b|} ≥ (a+ b) which implies φp
FB

(a, b) ≥ 0.

This is a contradiction.

(b) By definition of φp
FB

(a, b), we know

φp
FB

(a, 0) = |a| − a =

{
0 a ≥ 0,

−2a a < 0,
φp(0, b) = |b| − b =

{
0 b ≥ 0,

−2b b < 0,

which say that (a = 0 and b ≥ 0) or (b = 0 and a ≥ 0) ⇒ φp
FB

(a, b) = 0. Conversely,

suppose φp
FB

(a, b) = 0. If a < 0 or b < 0, mimicking the arguments of part(a) yields

p
√
|a|p + |b|p > max{|a|, |b|} > (a+ b)

which implies φp
FB

(a, b) > 0. Thus, there must hold a ≥ 0 and b ≥ 0. Furthermore, one

of a and b must be 0 from part(a).

The proof of (c) and (d) are direct from the proof of part(b). �

Proposition 2.6(a) demonstrates that φp
FB

(a, b) is negative in the first quadrant of the

IR2-plane; see Figure 2.3. Meanwhile, Proposition 2.6(b) establishes that φp
FB

(a, b) = 0

occurs only along the nonnegative coordinate axes, that is, when a ≥ 0, b = 0 or a =

0, b ≥ 0. In fact, this result is equivalent to asserting that φp
FB

(a, b) satisfies the conditions

of an NCP function. Furthermore, Propositions 2.6(b)–(d) collectively indicate that the

parameter p has no influence on the value of φp
FB

(a, b) along the a-axis and the b-axis.
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Proposition 2.7. Let φp
FB

: IR2 → IR be given as in (2.14) where p ∈ (1,+∞). Then,

(a) φp
FB

(a, b) = φp
FB

(b, a);

(b) if 1 < p1 < p2, then φp1
FB

(a, b) ≥ φp2
FB

(a, b).

Proof. Part(a) is trivial and part(b) is true by applying Lemma 1.4. �

Proposition 2.7(a) establishes the symmetry of φp
FB

(a, b), indicating that there exist

pairs of points symmetric about the line a = b that share the same function value. In

other words, the surface defined by z = φp
FB

(a, b) exhibits identical geometric features

in the second and fourth quadrants of the IR2-plane; see Figure 2.3, Figure 2.4, and

Figure 2.5. Moreover, Proposition 2.1(d) shows that the surface is convex, as φp
FB

itself

is a convex function. Proposition 2.7(c) further reveals that the values of φp
FB

decrease

as the parameter p increases. In summary, the parameter p significantly influences the

geometric structure of the surface.

Proposition 2.8. If {ak, bk} ⊆ IR2 with (ak → −∞) or (bk → −∞) or (ak → +∞ and

bk → +∞), then |φp
FB

(ak, bk)| → +∞ for k → +∞.

Proof. This can be found in [206, page 20]. �

Proposition 2.8 highlights the increasing direction on the surface defined by z =

φp
FB

(a, b). This behavior is visually evident in the contour plot shown in Figure 2.4, where

darker shades correspond to lower surface heights. To gain a deeper understanding of

the surface’s structure, it is natural to examine certain characteristic curves lying on it.

To this end, we consider a family of curves αr,p : IR→ IR3 defined by:

αr,p(t) :=
(
r + t, r − t, φp

FB
(r + t, r − t)

)
(2.31)

where r ∈ IR and p ∈ (1,+∞) are arbitrary but fixed. Geometrically, each curve αr,p
represents the intersection of the surface z = φp

FB
(a, b) with the plane defined by a+b = 2r;

see Figure 2.5. In the following, we explore several key properties of these special curves.

Lemma 2.4. Let φp
FB

: IR2 → IR be given as in (2.14) where p ∈ (1,+∞). Fix any

r ∈ IR, we define f : IR→ IR as f(t) := φp
FB

(r + t, r − t), then f is a convex function.

Proof. By Proposition 2.7(b), we know that φp
FB

is a convex function. Observing that

f is the composition of φp
FB

with an affine function, we conclude that f is also convex.

Although the composition of two convex functions is not generally convex, convexity is

preserved in this case due to the affine nature of one of the components. �

Proposition 2.9. Let φp
FB

: IR2 → IR be given as in (2.14) where p > 1. Suppose a and

b are constrained on the curve determined by a+ b = 2r (r ∈ IR) and the surface. Then,

φp
FB

(a, b) attains its minima φp
FB

(r, r) = 2
1
p |r| − 2r along this curve at (a, b) = (r, r).
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(a) a+ b = 4 and z = φ2
FB

(a, b) (b) a+ b = −4 and z = φ2
FB

(a, b)

(c) a+ b = 0 and z = φ2
FB

(a, b) (d) a+ b = 0 and z = φ1.1
FB

(a, b)

Figure 2.5: The curve intersected by surface z = φp
FB

(a, b) and plane a+ b = 2r.
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Proof. We know that φp
FB

(a, b) is differentiable everywhere except at the point (0, 0).

Therefore, we consider two separate cases:

(i) Case (1): r = 0. Since a + b = 0, it follows that a and b have opposite signs, unless

a = b = 0. According to Proposition 2.6, this implies that φp
FB

(a, b) ≥ 0 in this scenario.

In particular, φp
FB

(a, b) achieves its minimum value of zero at the origin, (a, b) = (0, 0).

(ii) Case (2): r 6= 0. Fix r and p > 1. Let f : IR → IR and g : IR → IR be respectively

defined as

f(t) := φp
FB

(r + t, r − t), g(t) := |r + t|p + |r − t|p.

Then, we calculate that

f ′(t) =
g′(t)

p(g(t))
p−1
p

and g′(t) = p
[
sgn(r + t)(r + t)p−1 − sgn(r − t)(r − t)p−1

]
.

We know g(t) > 0 for all t ∈ IR. It is clear g′(0) = 0, and hence f ′(0) = 0. By Lemma

2.4, f(t) is convex on IR. In addition, it is also continuous, therefore, t = 0 is a critical

point of f(t) which is also a global minimizer of f(t). The proof is done since a = b = r

and φp
FB

(r, r) = 2
1
p |r| − 2r when t = 0. �

Lemma 2.4 and Proposition 2.9 establish that the curve formed by the intersection

of the plane a+ b = 2r and the surface z = φp
FB

(a, b) is convex and attains its minimum

at the point where a = b (see Figure 2.6). We now examine the curvature of the family

of curves αr,p, defined as in (2.31), at the point
(
r, r, φp

FB
(r, r)

)
. Since the function φp

FB

is not differentiable at (a, b) = (0, 0) (i.e., when r = 0), we consider two nearby points,(
−t0, t0, φpFB

(−t0, t0)
)

and
(
t0,−t0, φpFB

(t0,−t0)
)
, for some t0 > 0. We then compute the

cosine of the angle formed between α0,p(−t0) and α0,p(t0); see Figure 2.7.

Proposition 2.10. Let αr,p : IR → IR3 be defined as in (2.31), and cosp(θ) be cosine

function of the angle between two vectors α0,p(−t0) and α0,p(t0) where t0 > 0. Then,

(a) cosp(θ) =
2

2
p − 6√(

2
2
p − 2

)2

+ 32

;

(b) cosp(θ)→ −1
3

as p→ 1, and cosp(θ)→ − 5
33

as p→ +∞;

(c) if 1 < p1 < p2, then cosp1(θ) < cosp2(θ).
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Proof. (a) By direct computation, we obtain

cosp(θ) =
α0,p(−t0) · α0,p(t0)

‖α0,p(−t0)‖‖α0,p(t0)‖

=
2

2
p − 6√

(2
2
p + 6) + 2

1
p

+2

√
(2

2
p + 6)− 2

1
p

+2

=
2

2
p − 6√

(2
2
p − 2)2 + 32

.

(b) From part(a), let f : (1,+∞) → IR be f(p) := cosp(θ). Then f(p) is continuous on

(1,+∞). By taking the limit, we have cosp(θ) → −1
3

as p → 1, and cosp(θ) → − 5
33

as

p→ +∞.

(c) From part(b), we know f ′(p) =
6−(1− ln 2

p )2
2
p√

(2
2
p−2)2+32

which implies f ′(p) > 0 for all p > 1.

Therefore, f(p) is a strictly increasing function on (1,+∞). �

Proposition 2.11. Let αr,p : IR→ IR3 be defined as in (2.31). Then, the following hold.

(a) The curvature at point αr,p(0) =
(
r, r, φp

FB
(r, r)

)
is κp(0) =

(p− 1)2
1
p
−1

|r| .

(b) κp(0)→ 0 as p→ 1 and κp(0)→ +∞ as p→ +∞.

(c) If 1 < p1 < p2, then κp1(0) < κp2(0).

Proof. (a) Because αr,p(t) =
(
r + t, r − t, φp

FB
(r + t, r − t)

)
, we know

α′r,p(0) = (1,−1, 0) and α′′r,p(0) =

(
0, 0,

(p− 1)2
1
p

|r|

)
.

Recall the formulation of curvature

κp(t) =
|α′r,p(t) ∧ α′′r,p(t)|
|α′r,p(t)|3

,

where wage operator means the outer product of two vectors. Thus, we have

κp(0) =
|α′r,p(0) ∧ α′′r,p(0)|
|α′r,p(0)|3 =

(p− 1)2
1
p
−1

|r| .

(b) Let f : (1,+∞)→ IR be defined as

f(p) := κp(0) =
(p− 1)2

1
p
−1

|r| ,
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then obviously f(p) is continuous on IR. Thus, the desired result follows by taking the

limit directly.

(c) From part(b), we compute

f ′(p) =
2

1
p
−1

|r|

(
1− ln 2

p
+

ln 2

p2

)
which implies f ′(p) > 0 for all p ∈ (1,+∞). Thus, f(p) is strictly increasing on (1,+∞).

�

The preceding two propositions illustrate how the parameter p influences the geomet-

ric structure of the surface; see Figures 2.8(a) and (b). Proposition 2.11(b) states that as

p→ 1, the curve approaches a straight line (Figure 2.8(c)). Conversely, as p→ +∞, the

curve becomes increasingly sharp at the origin, and is no longer differentiable at t = 0

(Figure 2.8(d)). In summary, the results presented in this section reveal that the param-

eter p significantly affects both the local and global geometric behavior of the surface

defined by z = φp
FB

(a, b).

As previously discussed, the generalized FB function φp
FB

is convex and differentiable

everywhere except at the point (0, 0). In contrast, the function ψp
FB

(a, b), defined in

(2.19), is non-convex but remains continuously differentiable across its entire domain.

Despite this key difference, φp
FB

and ψp
FB

exhibit many similar geometric properties, as

will be demonstrated. In what follows, we present several properties of ψp
FB

and highlight

the distinctions between ψp
FB

and φp
FB

.

Proposition 2.12. Let ψp
FB

: IR2 → IR be given as in (2.19) where p ∈ (1,+∞). Then,

(a) ψp
FB

(a, b) ≥ 0, ∀(a, b) ∈ IR2;

(b) ψp
FB

(a, b) = ψp
FB

(b, a), ∀(a, b) ∈ IR2;

(c) (a = 0 and b ≥ 0) or (b = 0 and a ≥ 0) ⇐⇒ ψp
FB

(a, b) = 0;

(d) b = 0 and a < 0 ⇒ ψp
FB

(a, b) = 2a2 > 0;

(e) a = 0 and b < 0 ⇒ ψp
FB

(a, b) = 2b2 > 0;

(f) ψp
FB

is continuously differentiable everywhere.

Proof. Part (d) and (e) come from Proposition 2.6(c) and Proposition 2.6(d), please see

[22, 27, 35] for the rest. �

Proposition 2.7(c) states that the value of φp
FB

decreases with respect to the parameter

p. In contrast, ψp
FB

does not exhibit this monotonicity in general. More precisely, this

property holds for ψp
FB

only within certain quadrants of the domain.
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Figure 2.6: The curve f(t) = φp
FB

(r + t, r − t).
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Figure 2.7: Angle between vectors α0,p(−t0) and α0,p(t0).



2.1. CONSTRUCTIONS OF NCP FUNCTIONS BASED ON φ
FB

63

−0.4 −0.2 0.0 0.2 0.4−0.5

−0.4

−0.3

−0.2

−0.1

0.0

p = 1.1
p = 1.5
p = 2
p = 3
p = 10

(a) The curvature with different p with r = 1/2

−0.4 −0.2 0.0 0.2 0.4

2.8

3.0

3.2

3.4

3.6

3.8

4.0

p = 1.1
p = 1.5
p = 2
p = 3
p = 10

(b) The curvature with different p with r = −1

−0.4 −0.2 0.0 0.2 0.4
t

3.0

3.2

3.4

3.6

3.8

4.0

f(
t)

p

p→ 1

(c) The change of curvature as p→ 1.

−0.4 −0.2 0.0 0.2 0.4
t

3.0

3.1

3.2

3.3

3.4

3.5

f(
t)

p

p→ ∞

(d) The change of curvature as p→ +∞.

Figure 2.8: The curvature κp(0) at point αr,p(0).
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Figure 2.9: The surface of z = ψ2
FB

(a, b) with (a, b) ∈ [−10, 10]× [−10, 10].
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Figure 2.10: The local surface of z = ψ2
FB

(a, b) with (a, b) ∈ [0, 10]× [0, 10].
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Figure 2.11: The surface of z = ψp
FB

(a, b) with different values of p.
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Figure 2.12: Level curves of z = ψp
FB

(a, b) with different values of p.
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Proposition 2.13. Suppose 1 < p1 < p2 and (a, b) ∈ IR2. Then,

(a) if a < 0 or b < 0, then ψp1
FB

(a, b) ≥ ψp2
FB

(a, b);

(b) if a > 0 and b > 0, then ψp1
FB

(a, b) ≤ ψp2
FB

(a, b).

Proof. (a) This is clear from Proposition 2.7(c).

(b) Suppose a > 0 and b > 0, from Proposition 2.6(a), we have φp
FB

(a, b) < 0. Then

Proposition 2.7(c) yields φp1
FB

(a, b) ≥ φp2
FB

(a, b), and hence (φp1
FB

)2(a, b) ≤ (φp2
FB

)2(a, b).

�

(a) a+ b = 0 and z = ψ2
FB

(a, b) (b) a+ b = 2 and z = ψ2
FB

(a, b)

Figure 2.13: The curve intersected by surface z = ψp
FB

(a, b) and plane a+ b = 2r.

Since ψp
FB

is not convex in general, the counterpart to Proposition 2.9 is presented

below.

Proposition 2.14. Let ψp
FB

(a, b) be defined as (2.19) with a+b = 2r. Then, the following

hold.

(a) If r ∈ IR+ and a > 0, b > 0, then ψp
FB

(a, b) attains maxima
(

2
2
p
−1 − 2

1
p

+1 + 2
)
r2

when (a, b) = (r, r).

(b) If r ∈ IR− ∪ {0}, then ψp
FB

(a, b) attains minima
(

2
2
p
−1 + 2

1
p

+1 + 2
)
r2 when (a, b) =

(r, r).

Proof. (a) When a > 0 and b > 0, Proposition 2.6(a) says that φp
FB

(a, b) < 0. Since

φ2
FB

(a, b) > 0, by Proposition 2.9, the minima of φp
FB

(a, b) becomes maxima of ψp
FB

(a, b).

(b) This is a consequence of Proposition 2.9. �
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The preceding results indicate that ψp
FB

shares many geometric properties with φp
FB

,

as illustrated in Figures 2.11–2.12. In particular, we define ψ1
FB

(a, b) := 1
2
|φ1

FB
(a, b)|2 and

ψ∞
FB

(a, b) := 1
2
|φ∞

FB
(a, b)|2. Nonetheless, there remain key differences between φp

FB
and

ψp
FB

. For instance, unlike φp
FB

, the function ψp
FB

is not convex. Figure 2.12 illustrates the

direction of increase for ψp
FB

. It is also worth noting that ψp
FB

(a, b) is nonnegative and

exhibits distinct behaviors in the region where a > 0 and b > 0, as shown in Figures 2.9,

2.10, and 2.11.

To further explore the geometric properties of ψp
FB

, we introduce a family of curves

defined by

βr,p(t) :=
(
r + t, r − t, ψp

FB
(r + t, r − t)

)
, (2.32)

where r is a fixed real number and t ∈ IR. This family of curves represents the intersection

between the plane a+ b = 2r and the surface z = ψp
FB

(a, b), as illustrated in Figure 2.13.

Proposition 2.15. Let βr,p : IR→ IR3 be defined as in (2.32). Then, the following hold.

(a) The curvature at point βr,p(0) =
(
r, r, ψp

FB
(r, r)

)
is κ̄p(0) = (p− 1)2

1
p

(
1− 2

1
p
−1
)

.

(b) κ̄p(0)→ 0 as p→ 1 and κ̄p(0)→ +∞ as p→ +∞.

(c) If 1 < p1 < p2, then κ̄p1(0) < κ̄p2(0).

Proof. (a) From βr,p(t) =
(
r + t, r − t, ψp

FB
(r + t, r − t)

)
, we know

β′r,p(0) = (1,−1, 0) and β′′r,p(0) =
(

0, 0, (p− 1)2
2
p − sgn(r)(p− 1)2

1
p

+1
)

which yields

κ̄p(r) =
|β′r,p(0) ∧ β′′r,p(0)|
|β′r,p(0)|3 = (p− 1)2

1
p (1− 2

1
p
−1).

(b) Let f : (1,+∞) → IR be defined as f(p) := κ̄p(0) = (p − 1)2
1
p (1 − 2

1
p
−1). Then, the

result follows by taking the limit directly.

(c) From part(b), it can be verified that f ′(p) > 0 for all p ∈ (1,+∞). Thus, f(p) is

strictly increasing on (1,+∞). �

Figure 2.14 illustrates how the shape of the curve evolves with varying values of p,

particularly highlighting changes in curvature as p approaches 1 or tends toward infinity.

As an addendum to part (a), we note that the curvature at two special points, βr,p(−r) =

(0, 2r, 0) and βr,p(r) = (2r, 0, 0), is identical and given by κ̄p(r) = κ̄p(−r) = 1
2
. Although

ψp
FB

is differentiable everywhere, the mean curvature at the origin, (0, 0), does not exist.

We summarize the similarities and differences between φp
FB

and ψp
FB

below.

φp
FB

(a, b) ψp
FB

(a, b)

Difference convex nonconvex

differentiable everywhere except (0, 0) differentiable everywhere

φp
FB

(a, b) < 0 when a > 0 and b > 0 ψp
FB

(a, b) ≥ 0,∀(a, b) ∈ IR2
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Similarity (1) NCP function.

(2) Symmetry (i.e., φp
FB

(a, b) = φp
FB

(b, a) and ψp
FB

(a, b) = ψp
FB

(b, a)).

(3) The function is not affected by p on axes.

(4) When (ak → −∞) or (bk → −∞) or (ak, bk → +∞),

there have |φp
FB

(ak, bk)| → ∞ and |ψp
FB

(ak, bk)| → ∞.

(5) non-coercive.

Proposition 2.16. The function Φp
FB

: IRn → IRn defined as in (2.16) is semismooth.

Proof. From Proposition 2.1(d), we know that φp
FB

is convex and thus semismooth.

Furthermore, each component of Φp
FB

(x) is formed by composing the convex function

φp
FB

: IR2 → IR with the differentiable mapping (xi, Fi(x))T : IRn → IR2. Since both

convex and differentiable functions are semismooth, and the composition of semismooth

functions remains semismooth, it follows that Φp
FB

itself is semismooth. �

Proposition 2.17 shows that ψp
FB

is an SC1 function. Consequently, if each Fi is

also an SC1 function, then Ψp
FB

inherits this property. Before presenting the proof, we

introduce a key technical lemma, which establishes that the gradient ∇ψp
FB

is globally

Lipschitz continuous, an essential result for our subsequent analysis.

Lemma 2.5. The gradient of the function ψp
FB

defined as (2.19) is Lipschitz continuous,

that is, there exists L > 0 such that

‖∇ψp
FB

(a, b)−∇ψp
FB

(c, d)‖ ≤ L‖(a, b)− (c, d)‖,

for all (a, b), (c, d) ∈ IR2.

Proof. Based on the expressions for the gradient of ψp
FB

given in (2.20) and (2.21), and by

applying the chain rule and quotient rule (the computation, while routine, is somewhat

tedious and thus omitted), we arrive at the following two cases.

(i) If p is even and (a, b) 6= (0, 0), then

∇2
aaψ

p
FB

(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)2

+
(p− 1)ap−2bp

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a+ b)

)
,

∇2
abψ

p
FB

(a, b) = ∇2
baψ

p
FB

(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)(
bp−1

‖(a, b)‖p−1
p

− 1

)
,

−(p− 1)ap−1bp−1

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a+ b)

)
,

∇2
bbψ

p
FB

(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1

)2

+
(p− 1)apbp−2

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a+ b)

)
.
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Figure 2.14: The curvature κ̄p(0) at point βr,p(0).
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It is clear that
|a|p−1

‖(a, b)‖p−1
p

≤ 1 and we also see that

|a|p−2 · |b|p ≤
(

max{|a|, |b|}
)2p−2

≤
(

p
√
|a|p + |b|p

)2p−2

≤ ‖(a, b)‖2p−2
p ,

which yields

|a|p−2|b|p
‖(a, b)‖2p−2

p

≤ 1. (2.33)

Similarly, it can be verified that
|a|p|b|p−2

‖(a, b)‖2p−2
p

≤ 1. On the other hand, by Lemma 1.4, we

have

|a|+ |b| ≤
√

2
√
a2 + b2 =

√
2‖(a, b)‖2 ≤

√
2 · 2(1/2−1/p)‖(a, b)‖p = 2(1−1/p)‖(a, b)‖p.

Applying all the above, we can give an upper bound for ∇2
aaψ

p
FB

(a, b) as below.

∣∣∣∣∇2
aaψ

p
FB

(a, b)

∣∣∣∣
≤

(
ap−1

‖(a, b)‖p−1
p

+ 1

)2

+
(p− 1)|a|p−2|b|p
‖(a, b)‖2p−2

p

+
(p− 1)|a|p−2|b|p · (|a|+ |b|)

‖(a, b)‖2p−1
p

≤ 4 + (p− 1) +
(p− 1)|a|p−2|b|p · 2(1−1/p)‖(a, b)‖p

‖(a, b)‖2p−1
p

≤ 4 + (p− 1) + (p− 1)2(1−1/p)

= 4 + (p− 1)

[
1 + 2(1−1/p)

]
,

where the last inequality holds due to (2.33). By the same arguments, we also have

∣∣∣∣∇2
bbψ

p
FB

(a, b)

∣∣∣∣ ≤ 4 + (p− 1)

[
1 + 2(1−1/p)

]
.
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Now, we estimate the upper bound for ∇2
abψ

p
FB

(a, b) = ∇2
baψ

p
FB

(a, b) as below.∣∣∣∣∇2
abψ

p
FB

(a, b)

∣∣∣∣ =

∣∣∣∣∇2
baψ

p
FB

(a, b)

∣∣∣∣
≤

∣∣∣∣ ap−1

‖(a, b)‖p−1
p

− 1

∣∣∣∣ · ∣∣∣∣ bp−1

‖(a, b)‖p−1
p

− 1

∣∣∣∣
+

(p− 1)|a|p−1|b|p−1

‖(a, b)‖2p−1
p

(
‖(a, b)‖p + (|a|+ |b|)

)
≤

( |a|p−1

‖(a, b)‖p−1
p

+ 1

)( |b|p−1

‖(a, b)‖p−1
p

+ 1

)
+

(p− 1)|a|p−1|b|p−1

‖(a, b)‖2p−2
p

+
(p− 1)|a|p−1|b|p−1 · (|a|+ |b|)

‖(a, b)‖2p−1
p

≤ 4 + (p− 1) +
(p− 1)|a|p−1|b|p−1 · 2(1−1/p)‖(a, b)‖p

‖(a, b)‖2p−1
p

≤ 4 + (p− 1) + (p− 1)2(1−1/p)

= 4 + (p− 1)

[
1 + 2(1−1/p)

]
,

where the third and fourth inequalities are true by the similar result as (2.33), that is,
|a|p−1|b|p−1

‖(a, b)‖2p−2
p

≤ 1.

(ii) If p is odd and (a, b) 6= (0, 0), then we obtain

∇2
aaψ

p
FB

(a, b) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)2

+
sgn(a)sgn(b) · (p− 1)ap−2bp

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a+ b)

)
,

∇2
abψ

p
FB

(a, b) = ∇2
baψp(a, b) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
,

−sgn(a)sgn(b) · (p− 1)ap−1bp−1

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a+ b)

)
,

∇2
bbψ

p
FB

(a, b) =

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)2

+
sgn(a)sgn(b) · (p− 1)apbp−2

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a+ b)

)
.

In fact, the upper bounds for ∇2
aaψ

p
FB

(a, b),∇2
abψ

p
FB

(a, b),∇2
bbψ

p
FB

(a, b) remain the same

by following exactly the same steps as in the case where p is even. Thus, there exist a

constant L > 0 independent of (a, b) such that

‖∇2ψp
FB

(a, b)‖ ≤ L, ∀ (a, b) 6= (0, 0) ∈ IR2.

Then, by Lemma 1.3, we have

‖∇ψp(a, b)−∇ψpFB
(c, d)‖ ≤ L‖(a, b)− (c, d)‖, (2.34)
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for all (a, b), (c, d) ∈ IR2 with (0, 0) 6∈ [(a, b), (c, d)]. Moreover, (2.34) also holds in

case (a, b) = (c, d) = (0, 0) since ∇aψ
p
FB

(a, b) = ∇bψ
p
FB

(a, b) = 0. Therefore, we can

assume (a, b) 6= (0, 0). From Proposition 2.2(c), ψp
FB

is continuously differentiable for all

(a, b) ∈ IR2 with ∇ψp
FB

(0, 0) = (0, 0); then using a continuity argument, we obtain (2.34)

remains true for all (c, d) ∈ IR2. Thus, (2.34) holds for all (a, b), (c, d) ∈ IR2 which says

ψp
FB

is globally Lipschitz continuous. �

Proposition 2.17. The function ψp
FB

defined as in (2.19) is an SC1 function. Hence,

if every Fi is an SC1 function, then the function Ψp
FB

given as in (2.17) is also an SC1

function.

Proof. As established in Proposition 2.2(c), ψp
FB

is continuously differentiable. It remains

to verify that its gradient, ∇ψp
FB

, is semismooth. According to Lemma 2.5, ∇ψp
FB

is Lips-

chitz continuous and, consequently, strictly continuous (i.e., locally Lipschitz continuous).

Therefore, to prove the semismoothness of ∇ψp
FB

, it suffices to verify that it satisfies the

condition in Lemma 1.2(b). More precisely, we only need to check semismoothness at

the point (0, 0), since ∇ψp
FB

is continuously differentiable, and hence semismooth, at all

other points (as shown in the proof of Lemma 2.5). To this end, we have to verify that

the equation in Lemma 1.2(b) is satisfied, i.e., for any (h1, h2) ∈ IR2 such that ∇ψp
FB

is

differentiable at (h1, h2), we have

∇ψp
FB

(h1, h2)−∇ψp
FB

(0, 0)−∇2ψp
FB

(h1, h2) · h = ◦(‖(h1, h2)‖). (2.35)

In order to prove (2.35), we have two cases where p is even and p is odd.

For p is even, we denote (Ξ1,Ξ2) the left-hand side of (2.35). Then, we have[
Ξ1

Ξ2

]
:=

[
k1

k2

]
· φp

FB
(h1, h2)−

[
0

0

]
(2.36)

−

 k2
1 +

(
(p−1)hp−2

1 hp2
‖(h1,h2)‖2p−1

p

)
φp

FB
(h1, h2) k1 · k2 − k3φ

p
FB

(h1, h2)

k1 · k2 − k3φ
p
FB

(h1, h2) k2
2 +

(
(p−1)hp1h

p−2
2

‖(h1,h2)‖2p−1
p

)
φp

FB
(h1, h2)

 · [ h1

h2

]
,

where

k1 =

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
,

k2 =

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
, (2.37)

k3 =
(p− 1)hp−1

1 hp−1
2

‖(h1, h2)‖2p−1
p

.
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By plugging (2.37) into (2.36) and writing out Ξ1 and Ξ2, we obtain that Ξ1 = 0 and

Ξ2 = 0. To see this, we compute Ξ1 as below:

Ξ1 =

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
φp

FB
(h1, h2)−

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)2

h1

−(p− 1)hp−1
1 hp2

‖(h1, h2)‖2p−1
p

· φp
FB

(h1, h2)−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h2

+
(p− 1)hp−1

1 hp2
‖(h1, h2)‖2p−1

p

· φp
FB

(h1, h2)

= φp
FB

(h1, h2)

[(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
− (p− 1)hp−1

1 hp2
‖(h1, h2)‖2p−1

p

+
(p− 1)hp−1

1 hp2
‖(h1, h2)‖2p−1

p

]
−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)2

h1 −
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h2

= φp
FB

(h1, h2)

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)2

h1

−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h2

=

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)[
φp

FB
(h1, h2)−

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
h1 −

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h2

]
=

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)[
‖(h1, h2)‖p −

hp1 + hp2
‖(h1, h2)‖p−1

p

]
=

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
· 0

= 0 ,

where the second-to-last equality is true since hp1 + hp2 = ‖(h1, h2)‖pp when p is even.
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Similarly,

Ξ2 =

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
φp

FB
(h1, h2)−

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)2

h2

−(p− 1)hp1h
p−1
2

‖(h1, h2)‖2p−1
p

· φp
FB

(h1, h2)−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h1

+
(p− 1)hp1h

p−1
2

‖(h1, h2)‖2p−1
p

· φp
FB

(h1, h2)

= φp
FB

(h1, h2)

[(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
− (p− 1)hp1h

p−1
2

‖(h1, h2)‖2p−1
p

+
(p− 1)hp1h

p−1
2

‖(h1, h2)‖2p−1
p

]
−
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1

)2

h2 −
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h1

= φp
FB

(h1, h2)

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
−
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1

)2

h2

−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1

)(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h1

=

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)[
φp

FB
(h1, h2)−

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
h1 −

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)
h2

]
=

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1

)[
‖(h1, h2)‖p −

hp1 + hp2
‖(h1, h2)‖p−1

p

]
=

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1

)
· 0

= 0 ,

where the second-to-last equality is true since hp1 +hp2 = ‖(h1, h2)‖pp when p is even. From

the above two expressions of Ξ1 and Ξ2, it implies that (2.35) is satisfied. Thus, ∇ψp
FB

is

semismooth at (0, 0) for the case where p is even.

For odd values of p, the same line of reasoning applies, leading to analogous verifications.

Thus, we conclude that ∇ψp
FB

is semismooth, and therefore ψp
FB

is an SC1 function. The

second statement then follows directly from this result. �

We would like to highlight that for p = 2, the function ψp
FB

was already shown to be

an SC1 function in [63, 64], with the first formal proof appearing in [64]. Proposition

2.17 extends this result to all p ≥ 2, though its proof is considerably more intricate than

in the quadratic case. With Lemma 2.5 and Proposition 2.17 established, we can now

derive the following consequences.

Proposition 2.18. If every Fi is an LC1 function, then the function Φp
FB

given as in

(2.16) is strongly semsmooth.
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Proof. It is known that φp
FB

is semismooth, in fact, strongly semismooth. This follows

from Proposition 2.1(d), Lemma 2.5, and [182, Theorem 7]. Moreover, since every LC1

function is strongly semismooth, the result immediately follows. �

Proposition 2.19. The function ψp
FB

defined as in (2.19) is an LC1 function. Hence,

if every Fi is an LC1 function, then the function Ψp
FB

given as in (2.17) is also an LC1

function.

By applying Proposition 2.1(c), Proposition 2.16, and a result from [182], we immedi-

ately obtain an interesting property concerning the strong almost smoothness of Φp
FB

. For

further details on the notions of almost smooth and strongly almost smooth functions,

we refer the reader to [182].

Proposition 2.20. If every Fi is an LC1 function, then the function Φp
FB

defined as in

(2.16) is strongly almost smooth function.

Proof. This result follows directly from Proposition 2.1(c), Proposition 2.16, and [182,

Theorem 7]. �

2.2 Constructions of NCP Functions based on φ
NR

2.2.1 Construction by discrete generalization

As discussed in Section 2.1, the generalized Fischer-Burmeister function φp
FB

, defined in

(2.14), encompasses the classical Fischer-Burmeister function as a special case and serves

as a natural extension of the widely used φ
FB

function. This extension replaces the

Euclidean (2-norm) in φ
FB

(a, b) with a general p-norm, providing what can be regarded

as a “continuous generalization”. A geometric perspective of φp
FB

is presented in [205],

while the impact of varying p on different algorithmic frameworks has been explored in

[31, 32, 35, 39, 40]. In contrast, a natural question arises: “Is there a corresponding

extension of the natural residual function?” The following diagram illustrates the core of

this inquiry:

φ
FB

(a, b) = ‖(a, b)‖2 − (a+ b) −→ φp
FB

(a, b) = ‖(a, b)‖p − (a+ b)

φ
NR

(a, b) = min{a, b} −→ ???

While numerous NCP functions have been proposed as variants of the natural residual

function φ
NR

, no work in the literature has addressed a true extension of the natural resid-

ual function itself. The primary challenge lies in the absence of a continuous norm-based

generalization, such as the one used for φp
FB

. In this section, we provide an affirmative
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answer to this long-standing open question, as presented in [33]. Unlike the continuous

generalization used for φp
FB

, the approach here is based on a “discrete generalization”.

Specifically, we introduce the generalized natural residual function, denoted by φp
NR

, de-

fined as follows:

φp
NR

(a, b) = ap − (a− b)p+ with p > 1 being a positive odd integer, (2.38)

where (a− b)p+ = [(a− b)+]p and (a− b)+ = max{a− b, 0}. Here, p being a positive odd

integer is necessary, that is, we require that p = 2k + 1, where k = 1, 2, 3, · · · . We will

explain this later. Notice that when p = 1, φp
NR

reduces to the natural residual function

φ
NR

, i.e., when k = 0, it corresponds to

φ1
NR

(a, b) = a− (a− b)+ = min{a, b} = φ
NR

(a, b).

This is the motivation behind the term “generalized natural residual function”. We

emphasize once again that the proposed extension is based on a discrete generalization.

For even values of p, the function φp
NR

no longer qualifies as an NCP function in the

traditional sense. However, a distinguishing feature of φp
NR

is that it is twice continuously

differentiable, as will be established in Proposition 2.23. In contrast, while the generalized

Fischer-Burmeister function φp
FB

, defined in (2.14), is not differentiable in general, the

squared norm ‖φp
FB

(a, b)‖2 is differentiable everywhere. As a result, the merit function

approach typically employs ‖φp
FB

(a, b)‖2, while the nonsmooth function approach makes

direct use of φp
FB

(a, b). Unlike the nondifferentiability of φp
FB

, the function φp
NR

with p =

2k+ 1 is twice continuously differentiable, making it especially attractive for algorithmic

purposes. This smoothness enables the direct application of classical methods, such as

Newton’s method, to solve nonlinear complementarity problems (NCPs).

Proposition 2.21. Let φp
NR

be defined as in (2.38). Then, φp
NR

is an NCP function.

Proof. First, we note that for any fixed real number ξ ≥ 0 and odd integer p, the

equation tp− ξp = 0 has exactly one real solution t = ξ because the function tp is strictly

monotone. Thus, we observe that

φp
NR

(a, b) = 0

⇐⇒ ap − (a− b)p+ = 0

⇐⇒ a− (a− b)+ = 0

⇐⇒ min{a, b} = 0

⇐⇒ a, b ≥ 0, ab = 0.

This shows that φp
NR

is an NCP-function. �

For p being an even integer, φp
NR

is not an NCP function. A counterexample is given

as below:

φ2
NR

(−2,−4) = (−2)2 − (−2 + 4)2
+ = 0.
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Moreover, the function φp
NR

is neither convex nor concave function. To see this, taking

p = 3 and using the following argument verify the assertion:

−1 = φ3
NR

(−1,−1) >
1

2
φ3

NR
(−2,−1) +

1

2
φ3

NR
(0,−1) =

−8

2
+
−1

2
= −9

2
.

Proposition 2.22. Let p > 1 be a positive odd integer. Then, we have

[(a− b)+]p = [(a− b)p]+, (2.39)

and hence

φp
NR

(a, b) = ap − [(a− b)+]p = ap − [(a− b)p]+.
Proof. For any α ∈ IR, we know that [α]+ = 1

2
(α + |α|). In addition, looking the

coefficients of the binomial (1 + x)p, we have

p∑
j=0,even

C(p, j) =

p∑
j=0,odd

C(p, j) =
1

2

p∑
j=0

C(p, j) =
2p

2
= 2p−1.

These two facts lead to

[(a− b)+]p

=
1

2p
(a− b+ |a− b|)p

=
1

2p

(
p∑
j=0

C(p, j)|a− b|j(a− b)p−j
)

=
1

2p

 p∑
j=0,even

C(p, j)|a− b|j(a− b)p−j +

p∑
j=0,odd

C(p, j)|a− b|j(a− b)p−j


=
1

2p

 p∑
j=0,even

C(p, j)(a− b)p +

p∑
j=0,odd

C(p, j)|a− b|(a− b)p−1


=

1

2p
(
2p−1(a− b)p + 2p−1|a− b|(a− b)p−1

)
=

1

2

(
(a− b)p + |a− b|(a− b)p−1

)
= [(a− b)p]+,

where the last equality holds because p is a positive odd integer. Thus, the proof is

complete. �

In Proposition 2.22, observe that the equality in (2.39) holds exclusively when p is

a positive odd integer. For even values of p, the identity [(a − b)+]p = [(a − b)p]+ no

longer holds. This highlights the necessity of restricting p to positive odd integers in the

definition of φp
NR

. We now present an alternative formulation of φp
NR

and establish its

twice differentiability. To proceed, we first introduce a technical lemma.



2.2. CONSTRUCTIONS OF NCP FUNCTIONS BASED ON φ
NR

79

Lemma 2.6. Let u(t) := |t|p and v(t) := tp|t| where p > 1. Then,

(a) the function u(·) is differentiable with u′(t) = p sgn(t)|t|p−1;

(b) the function v(·) is differentiable with v′(t) = (p+ 1)tp−1|t|.

Proof. The arguments are straightforward which are omitted here. �

Proposition 2.23. Let p = 2k + 1 where k = 1, 2, 3 · · · . Then, we have

(a) φp
NR

(a, b) = a2k+1 − 1
2

(
(a− b)2k+1 + (a− b)2k|a− b|

)
;

(b) φp
NR

is continuously differentiable with

∇φp
NR

(a, b)

= p

[
ap−1 − (a− b)p−2(a− b)+

(a− b)p−2(a− b)+

]
;

(c) φp
NR

is twice continuously differentiable with

∇2φp
NR

(a, b)

= p(p− 1)

[
ap−2 − (a− b)p−3(a− b)+ (a− b)p−3(a− b)+

(a− b)p−3(a− b)+ −(a− b)p−3(a− b)+

]
.

Proof. (a) The alternative expression is a direct consequence of Proposition 2.22.

(b) From Lemma 2.6, we compute

∂φp
NR

∂a
(a, b)

=
∂

∂a

(
a2k+1 − 1

2
((a− b)2k+1 + (a− b)2k|a− b|

)
= (2k + 1)a2k − (2k + 1)

2
(a− b)2k − (2k + 1)

2
(a− b)2k−1|a− b|

and

∂φp
NR

∂b
(a, b)

=
∂

∂b

(
a2k+1 − 1

2
((a− b)2k+1 + (a− b)2k|a− b|

)
=

(2k + 1)

2
(a− b)2k +

(2k + 1)

2
(a− b)2k−1|a− b|.
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Hence, we obtain

∇φp
NR

(a, b)

=
2k + 1

2

[
2a2k − (a− b)2k − (a− b)2k−1|a− b|

(a− b)2k + (a− b)2k−1|a− b|

]
=

2k + 1

2

[
2a2k − 2(a− b)2k−1(a− b)+

2(a− b)2k−1(a− b)+

]
= p

[
ap−1 − (a− b)p−2(a− b)+

(a− b)p−2(a− b)+

]
,

which proves part(b).

(c) Similarly, with Lemma 2.6 again, the Hessian matrix can be calculated as below.

∇2φp
NR

(a, b)

= k(2k + 1)

[
2a2k−1 − (a− b)2k−1 − (a− b)2k−2|a− b| (a− b)2k−1 + (a− b)2k−2|a− b|

(a− b)2k−1 + (a− b)2k−2|a− b| −(a− b)2k−1 − (a− b)2k−2|a− b|

]
= p(p− 1)

[
ap−2 − (a− b)p−3(a− b)+ (a− b)p−3(a− b)+

(a− b)p−3(a− b)+ −(a− b)p−3(a− b)+

]
.

With this, it is clear that φp
NR

is twice continuously differentiable. �

Proposition 2.24. Let φp
NR

be defined as in (2.38) with p > 1 being a positive odd

integer. Then, the following hold.

(a) φp
NR

(a, b) > 0 ⇐⇒ a > 0, b > 0.

(b) φp
NR

is positive homogeneous of degree p, i.e., φp
NR

(αw) = αpφp
NR

(w) for all w ∈ IR2

and α ≥ 0.

(c) φp
NR

is locally Lipschitz continuous, but not (globally) Lipschitz continuous.

(d) φp
NR

is not α-Hölder continuous for any α ∈ (0, 1], that is, the Hölder coefficient

[φp
NR

]α,IR2 := sup
w 6=w′

|φp
NR

(w)− φp
NR

(w′)|
‖w − w′‖α

is infinite.

(e) ∇aφ
p
NR

(a, b) · ∇bφ
p
NR

(a, b)


> 0 on {(a, b) | a > b > 0 or a > b > 2a},
= 0 on {(a, b) | a ≤ b or a > b = 2a or a > b = 0},
< 0 otherwise.

(f) ∇aφ
p
NR

(a, b) · ∇bφ
p
NR

(a, b) = 0 provided that φp
NR

(a, b) = 0.
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Proof. (a) This result has been mentioned in [33, Lemma 2.2].

(b) It is clear by definition of φp
NR

.

(c) Since continuously differentiability implies locally Lipschitz continuity, it remains to

show that φp
NR

is not Lipschitz continuous. Consider the restriction of φp
NR

on the line

L := {(a, b) | a = b > 0}. Note that for any a > 0, φp
NR

(a, a) = ap, it suffices to show that

f(t) := tp is not Lipschitz continuous. Indeed, for any M > 0, choosing t = max{1,M}
and t′ = t+ 1 yields

|f(t)− f(t′)|
|t− t′| = (t+ 1)p − tp

= (t+ 1)p−1 + (t+ 1)p−2t+ · · ·+ tp−1

> p · tp−1

> M.

Hence, it follows that f is not Lipschitz continuous.

(d) As in the proof of part(c), we again restrict φp
NR

on L and choose the same t. Hence,

we also have
|f(t)− f(t′)|
|t− t′|α > M

for any positive number M , that is, φp
NR

is not α-Hölder continuous.

(e) According to Proposition 2.23, we know that

∇aφ
p
NR

(a, b) · ∇bφ
p
NR

(a, b) = p2 · (ap−1 − (a− b)p−2(a− b)+) ((a− b)p−2(a− b)+)

=

{
p2 · (ap−1 − (a− b)p−1) (a− b)p−1 if a > b,

0 if a ≤ b.

When a > b, it is clear that p2 > 0 and (a− b)p−1 > 0. Thus, we only consider the term

ap−1 − (a− b)p−1. Note that p− 1 is even, which implies

ap−1 = (a− b)p−1 ⇐⇒ |a| = a− b ⇐⇒ b = 0 or b = 2a.

In addition to the case a ≤ b, there are two subcases a > b = 0 and a > b = 2a such that

∇aφ
p
NR

(a, b) · ∇bφ
p
NR

(a, b) = 0. On the other hand, we have

ap−1 > (a− b)p−1 ⇐⇒ |a| > a− b ⇐⇒ b > 0 or b > 2a.

All the above says ∇aφ
p
NR

(a, b)·∇bφ
p
NR

(a, b) is positive only when a > b > 0 or a > b > 2a.

For the remainder case, it is not hard to verify ∇aφ
p
NR

(a, b) · ∇bφ
p
NR

(a, b) < 0.

(f) It is clear from part(e). �
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Finally, we present several variants of φp
NR

. Analogous to the functions introduced in

[195], these variants can also be verified as NCP functions.

ϕ1(a, b) = φp
NR

(a, b) + α(a)+(b)+, α > 0.

ϕ2(a, b) = φp
NR

(a, b) + α ((a)+(b)+)2 , α > 0.

ϕ3(a, b) =
(
φp

NR
(a, b)

)2
+ α ((ab)+)4 , α > 0.

ϕ4(a, b) =
(
φp

NR
(a, b)

)2
+ α ((ab)+)2 , α > 0.

Lemma 2.7. The value of φp
NR

(a, b) is positive only in the first quadrant, i.e., φp
NR

(a, b) >

0 if and only if a > 0, b > 0.

Proof. Since p is odd, the function f(t) = tp is strictly increasing. This observation

allows us to verify that

a > 0, b > 0

⇐⇒ a+ b > |a− b|

⇐⇒ a >
a− b+ |a− b|

2
⇐⇒ a > (a− b)+

⇐⇒ ap > (a− b)p+
⇐⇒ φp

NR
(a, b) > 0,

which is the desired result. �

Proposition 2.25. All the above functions ϕi, i ∈ {1, 2, 3, 4} are NCP functions.

Proof. We will only show that ϕ1 is an NCP-function and the same argument can be

applied to the other cases. Let Ω := {(a, b) | a > 0, b > 0} and suppose ϕ1(a, b) = 0.

If (a, b) ∈ Ω, then φp
NR

(a, b) > 0 by Lemma 2.7; and hence, ϕ1(a, b) > 0. This is a

contradiction. Therefore, there must have (a, b) ∈ Ωc which says (a)+(b)+ = 0. This

further implies φp
NR

(a, b) = 0 which is equivalent to a, b ≥ 0, ab = 0. Then, one direction

is proved. The converse direction is straightforward. �

We now illustrate the surfaces of φp
NR

for various values of p, providing further insight

into this new family of NCP functions. Figure 2.15 shows the surface of φ
NR

(a, b), which

is observed to be concave and increasing along the direction (t, t) in the first quadrant. In

contrast, Figure 2.16 displays the surface of φp
NR

(a, b), revealing that it is neither convex

nor concave. Moreover, as noted in Lemma 2.7, φp
NR

(a, b) is positive only when both

a > 0 and b > 0. The surfaces of φp
NR

for different values of p are depicted in Figure 2.17.
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Figure 2.15: The surface of z = φp
NR

(a, b) with p = 1 and (a, b) ∈ [−10, 10]× [−10, 10]
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Figure 2.16: The surface of z = φp
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(a, b) with p = 3 and (a, b) ∈ [−10, 10]× [−10, 10]
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(a, b) with different values of p.
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2.2.2 Construction by symmetrizations

In contrast to φp
FB

the function φp
NR

is derived through a “discrete generalization” and,

quite remarkably, retains twice differentiability. This property allows for the direct appli-

cation of various methods, such as Newton’s method, to solve nonlinear complementarity

problems (NCPs). However, unlike the graph of φp
FB

, the graph of φp
NR

lacks symme-

try, which may pose challenges in further analysis and in the development of solution

algorithms. To address this, we aim to symmetrize φp
NR

. Specifically, we propose two

approaches to construct symmetric variants of this “generalized natural residual func-

tion”, both of which continue to satisfy the conditions of NCP-functions. In doing

so, we not only introduce new NCP functions and merit functions for the nonlinear

complementarity problem, but also provide “symmetric counterparts” to the generalized

Fischer-Burmeister function.

Next, we outline our approach to symmetrizing the “generalized natural residual

function”. The first step involves examining the graph of φp
NR

as presented in [205]. To

achieve symmetry in the graph of φp
NR

, we consider the cases a ≥ b and a ≤ b separately.

Motivated by the structure of φp
NR

, we propose a first symmetrized version, denoted by

φp
S−NR

: IR2 → IR, defined as follows:

φp
S−NR

(a, b) =


ap − (a− b)p if a > b,

ap = bp if a = b,

bp − (b− a)p if a < b,

(2.40)

where p > 1 is a positive odd integer. As shown in Figure 2.18, φp
S−NR

is an NCP function

whose graph is symmetric. However, φp
S−NR

is not differentiable in general, prompting the

natural question of whether a symmetric and differentiable variant can be constructed.

To this end, we observe that the associated merit function ‖φp
S−NR
‖2 possesses the de-

sired smoothness, although we seek a more direct and simpler differentiable formulation.

Fortunately, we identify a second symmetrization of φp
NR

, denoted by ψp
S−NR

: IR2 → IR+,

defined as:

ψp
S−NR

(a, b) =


apbp − (a− b)pbp if a > b,

apbp = a2p if a = b,

apbp − (b− a)pap if a < b,

(2.41)

where p > 1 is again a positive odd integer. The graph of ψp
S−NR

is shown in Figure 2.19

and exhibits both symmetry and differentiability, fulfilling our desired properties for a

well-behaved symmetrized NCP function.

Proposition 2.26. Let φp
S−NR

be defined in (2.40) with p > 1 being a positive odd integer.

Then, φp
S−NR

is an NCP function and is positive only on the first quadrant Ω = {(a, b) | a >
0, b > 0}.
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with different values of p.
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88 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Proof. It is straightforward to verify that φp
S−NR

is positive only in the first quadrant.

Next, we demonstrate that φp
S−NR

satisfies the properties of an NCP function. To this

end, we proceed by analyzing three distinct cases. For a > b and φp
S−NR

(a, b) = 0, it is

clear to see ap − (a − b)p = 0, which implies that a = a − b. Thus, we conclude that

a > b = 0. Similarly, for a < b and φp
S−NR

(a, b) = 0, we have 0 = a < b. For the third

case, a = b and φp
S−NR

(a, b) = 0, it is easy to see that a = b = 0. It is trivial to check

the converse way. In summary, φp
S−NR

satisfies that φp
S−NR

(a, b) = 0 if and only if a, b ≥ 0,

ab = 0; and hence, it is an NCP function. �

For p being an even integer, φp
S−NR

is not an NCP function. A counterexample is given

as below:

φ2
S−NR

(−2,−4) = (−2)2 − (−2 + 4)2 = 0.

Moreover, the function φp
S−NR

is neither convex nor concave. To illustrate this, we set

p = 3 and use the following arguments to verify the assertions:

1 = φ3
S−NR

(1, 1) <
1

2
φ3

S−NR
(0, 0) +

1

2
φ3

S−NR
(2, 2) =

0

2
+

8

2
= 4.

1 = φ3
S−NR

(1, 1) >
1

2
φ3

S−NR
(2, 0) +

1

2
φ3

S−NR
(0, 2) =

0

2
+

0

2
= 0.

Proposition 2.27. Let φp
S−NR

be defined in (2.40) with p > 1 being a positive odd integer.

Then, the following hold.

(a) An alternative expression of φp
S−NR

is

φp
S−NR

(a, b) =


φp

NR
(a, b) if a > b,

ap = bp if a = b,

φp
NR

(b, a) if a < b.

(b) The function φp
S−NR

is not differentiable. However, φp
S−NR

is continuously differen-

tiable on the set Ω := {(a, b) | a 6= b} with

∇φp
S−NR

(a, b) =

{
p [ ap−1 − (a− b)p−1, (a− b)p−1 ]T if a > b,

p [ (b− a)p−1, bp−1 − (b− a)p−1 ]T if a < b.

In a more compact form,

∇φp
S−NR

(a, b) =

{
p [φp−1

NR
(a, b), (a− b)p−1 ]T if a > b,

p [ (b− a)p−1, φp−1
NR

(b, a) ]T if a < b.

(c) The function φp
S−NR

is twice continuously differentiable on the set Ω = {(a, b) | a 6= b}
with

∇2φp
S−NR

(a, b) =


p(p− 1)

[
ap−2 − (a− b)p−2 (a− b)p−2

(a− b)p−2 −(a− b)p−2

]
if a > b,

p(p− 1)

[
−(b− a)p−2 (b− a)p−2

(b− a)p−2 bp−2 − (b− a)p−2

]
if a < b.
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In a more compact form,

∇2φp
S−NR

(a, b) =


p(p− 1)

[
φp−2

NR
(a, b) (a− b)p−2

(a− b)p−2 −(a− b)p−2

]
if a > b,

p(p− 1)

[
−(b− a)p−2 (b− a)p−2

(b− a)p−2 φp−2
NR

(b, a)

]
if a < b.

Proof. The arguments are just direct computations, we omit them. �

Proposition 2.28. Let φp
S−NR

be defined as in (2.40) with p > 1 being a positive odd

integer. Then, the following hold.

(a) φp
S−NR

(a, b) > 0 ⇐⇒ a > 0, b > 0.

(b) φp
S−NR

is positive homogeneous of degree p.

(c) φp
S−NR

is not Lipschitz continuous.

(d) φp
S−NR

is not α-Hölder continuous for any α ∈ (0, 1].

(e) ∇aφ
p
S−NR

(a, b) · ∇bφ
p
S−NR

(a, b) > 0 on {(a, b) | a > b > 0}⋃{(a, b) | b > a > 0}.

(f) ∇aφ
p
S−NR

(a, b) · ∇bφ
p
S−NR

(a, b) = 0 provided that φp
S−NR

(a, b) = 0 and (a, b) 6= (0, 0).

Proof. (a) It is clear from Proposition 2.26 or [18, Proposition 2.1]).

(b) It follows from the definition of φp
S−NR

.

(c)-(d) The proof is similar to Proposition 2.24(c)-(d).

(e) It is enough to verify the case for a > b > 0 because for b > a > 0, the inequality will

hold automatically due to φp
S−NR

having a symmetric surface. To see this, according to

Proposition 2.27(b), we have

∇aφ
p
S−NR

(a, b) · ∇bφ
p
S−NR

(a, b) = p2 ·
[
ap−1 − (a− b)p−1

]
(a− b)p−1,

which yields the desired result by Proposition 2.24(e).

(f) This result also follows from the proof of Proposition 2.24(e). �

We now establish the semismoothness of φp
S−NR

. It is well known that any piecewise

continuously differentiable function is semismooth. For completeness, we will verify this

property step by step based on the definition. Through this process, we will not only

confirm local Lipschitz continuity and characterize the generalized gradient, but also

demonstrate that φp
S−NR

is strongly semismooth. As a first step, we verify that the

function is strictly continuous, that is, locally Lipschitz continuous. It is important

to note, however, that φp
S−NR

is not “globally” Lipschitz continuous, as established in

Proposition 2.28(c).
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Lemma 2.8. Let φp
S−NR

be defined as in (2.40) with p > 1 being a positive odd integer.

Then, φp
S−NR

is strictly continuous (locally Lipschitz continuous).

Proof. For any point x = (a, b) with a 6= b, the continuous differentiability of φp
S−NR

implies its locally Lipschitz continuity. It remains to show φp
S−NR

is locally Lipschitz

continuous on the line L = {(a, b) | a = b}.
To proceed the arguments, we present two inequalities that will be frequently used. Given

any x0 = (a0, a0) and δ > 0, let Nδ(x
0) := {x ∈ IR2 | ‖x − x0‖ ≤ δ}. Then, for any

x = (x1, x2) ∈ Nδ(x
0), we have two basic inequalities as follows:

|xi| ≤ ‖x‖ ≤ ‖x− x0‖+ ‖x0‖ ≤ δ + ‖x0‖ ∀i = 1, 2. (2.42)

|x1 − x2| ≤ |x1 − a0|+ |a0 − x2| ≤ ‖x− x0‖+ ‖x0 − x‖ ≤ 2δ. (2.43)

Now, for any y, z ∈ Nδ(x
0), we discuss four cases as below.

(i) For y ∈ L and z ∈ L, we have∣∣∣φp
S−NR

(y)− φp
S−NR

(z)
∣∣∣ = |yp1 − zp1 |

= |y1 − z1| · |yp−1
1 + yp−2

1 z1 + · · ·+ zp−1
1 |

≤ ‖y − z‖ · (|y1|p−1 + |y1|p−2 · |z1|+ · · ·+ |z1|p−1)

≤ p(δ + ‖x0‖)p−1‖y − z‖
= κ1‖y − z‖,

where κ1 := p(δ + ‖x0‖)p−1 and the second inequality holds by (2.42).

(ii) For y /∈ L and z ∈ L (or y ∈ L and z /∈ L), without loss of generality, we assume

y1 > y2. Then, we have∣∣∣φp
S−NR

(y)− φp
S−NR

(z)
∣∣∣ = |yp1 − (y1 − y2)p − zp1 |
≤ |yp1 − zp1 |+ (y1 − y2)p

≤ κ1‖y − z‖+ (y1 − y2)p−1(|y1 − z1|+ |z1 − z2|+ |z2 − y2|)
≤ κ1‖y − z‖+ (2δ)p−1(‖y − z‖+ ‖z − y‖)
= κ2‖y − z‖,

where κ2 := κ1 + 2(2δ)p−1 and the last inequality holds by (2.43).

(iii) For y /∈ L, z /∈ L and y, z lie on the opposite side of L, i.e., (y1 − y2)(z1 − z2) < 0,

without loss of generality, we assume y1 > y2 and z1 < z2. Since y, z lie on the opposite

side of L, the line L and the segment [y, z] := {λy + (1− λ)z |λ ∈ [0, 1]} must intersect

at a point w ∈ [y, z] ∩ L. Thus, we have∣∣∣φp
S−NR

(y)− φp
S−NR

(z)
∣∣∣ ≤ |φp

S−NR
(y)− φp

S−NR
(w)|+ |φp

S−NR
(w)− φp

S−NR
(z)|

≤ κ2‖y − w‖+ κ2‖w − z‖
≤ κ2‖y − z‖+ κ2‖y − z‖
= κ3‖y − z‖,
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where κ3 := 2κ2 and the third inequality holds because w ∈ [y, z].

(iv) For y /∈ L, z /∈ L and y, z lie on the same side of L, i.e., (y1 − y2)(z1 − z2) > 0,

without loss of generality, we assume y1 > y2 and z1 > z2. Then, we have∣∣∣φp
S−NR

(y)− φp
S−NR

(z)
∣∣∣ = |(yp1 − (y1 − y2)p)− (zp1 − (z1 − z2)p)|
≤ |yp1 − zp1 |+ |(y1 − y2)p − (z1 − z2)p|
≤ κ1‖y − z‖+ 2p(2δ)p−1‖y − z‖
= κ4‖y − z‖

where κ4 = κ1 + 2p(2δ)p−1 and the second part is estimated as follows:

|(y1 − y2)p − (z1 − z2)p|
= |(y1 − y2)− (z1 − z2)| · |(y1 − y2)p−1 + · · ·+ (z1 − z2)p−1|
≤ (|y1 − z1|+ |y2 − z2|)(|y1 − y2|p−1 + · · ·+ |z1 − z2|p−1)

≤ (‖y − z‖+ ‖y − z‖)p(2δ)p−1

= 2p(2δ)p−1‖y − z‖.

From all the above, by choosing κ = max{κ1, κ2, κ3, κ4}, we conclude that∣∣∣φp
S−NR

(y)− φp
S−NR

(z)
∣∣∣ ≤ κ‖y − z‖ for any y, z ∈ Nδ(x

0).

This means that φp
S−NR

is locally Lipschitz continuous at x0. Then, the proof is complete.

�

Proposition 2.29. Let φp
S−NR

be defined as in (2.40) with p > 1 being a positive odd

integer. Then, the generalized gradient of φp
S−NR

is given by

∂φp
S−NR

(a, b) =


p [ ap−1 − (a− b)p−1, (a− b)p−1 ]T if a > b,{
p [αap−1, (1− α)ap−1]T |α ∈ [0, 1]

}
if a = b,

p [ (b− a)p−1, bp−1 − (b− a)p−1 ]T if a < b.

Proof. We have already seen the ∂φp
S−NR

(a, b) when a 6= b in [144]. For a = b, according

to the definition of Clarke’s generalized gradient, we claim that

∂φp
S−NR

(a, a) = conv

{
lim

(ai,bi)→(a,a)
∇φp

S−NR
(ai, bi)

∣∣φp
S−NR

is differentiable at (ai, bi) ∈ IR2

}
.

To see this, we discuss three cases as below.

(i) If ai > bi, for any i ≥ n and sufficiently large n, then

lim
(ai,bi)→(a,a)

∇φp
S−NR

(ai, bi) = lim
(ai,bi)→(a,a)

p

[
ap−1
i − (ai − bi)p−1

(ai − bi)p−1

]
= p

[
ap−1

0

]
.
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(ii) If ai < bi, for any i ≥ n and sufficiently large n, then

lim
(ai,bi)→(a,a)

∇φp
S−NR

(ai, bi) = lim
(ai,bi)→(a,a)

p

[
(bi − ai)p−1

bp−1
i − (bi − ai)p−1

]
= p

[
0

ap−1

]
.

(iii) For the remainder case, ∇φp
S−NR

(ai, bi) has no limit as (ai, bi)→ (a, a).

From all the above, we conclude that

∂φp
S−NR

(a, a) = conv

{
p

[
ap−1

0

]
, p

[
0

ap−1

]}
=

{
p

[
αap−1

(1− α)ap−1

]
α ∈ [0, 1]

}
.

Thus, the desired result follows. �

Lemma 2.9. Let φp
S−NR

be defined as in (2.40) with p > 1 being a positive odd integer.

Then, φp
S−NR

is a directional differentiable function.

Proof. For any point x = (a, b) with a 6= b, the continuous differentiability of φp
S−NR

ensures its directional differentiability. Therefore, it remains verify directional differen-

tiability along the line L = {(a, b) | a = b}. To this end, consider an arbitrary point

x = (a, a), a direction h = (h1, h2), and t > 0. We proceed by examining the following

three cases:

(i) If h1 = h2, then

lim
t→0+

φp
S−NR

(x+ th)− φp
S−NR

(x)

t

= lim
t→0+

(a+ th1)p − ap
t

= lim
t→0+

ap + pap−1th1 +
∑p

k=2

(
p
k

)
ap−ktkhk1 − ap

t

= lim
t→0+

(
pap−1h1 +

p∑
k=2

(
p
k

)
ap−ktk−1hk1

)
= pap−1h1.

(ii) If h1 > h2, then

lim
t→0+

φp
S−NR

(x+ th)− φp
S−NR

(x)

t

= lim
t→0+

(a+ th1)p − (th1 − th2)p − ap
t

= lim
t→0+

ap + pap−1th1 +
∑p

k=2

(
p
k

)
ap−ktkhk1 − tp(h1 − h2)p − ap
t

= lim
t→0+

(
pap−1h1 +

p∑
k=2

(
p
k

)
ap−ktk−1hk1 − tp−1(h1 − h2)p

)
= pap−1h1.
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(iii) If h1 < h2, then

lim
t→0+

φp
S−NR

(x+ th)− φp
S−NR

(x)

t

= lim
t→0+

(a+ th2)p − (th2 − th1)p − ap
t

= lim
t→0+

ap + pap−1th2 +
∑p

k=2

(
p
k

)
ap−ktkhk2 − tp(h2 − h1)p − ap
t

= lim
t→0+

(
pap−1h2 +

p∑
k=2

(
p
k

)
ap−ktk−1hk2 − tp−1(h2 − h1)p

)
= pap−1h2.

To sum up, we have verified the definition of directional differentiability for φp
S−NR

. This

completes the proof. �

Proposition 2.30. Let φp
S−NR

be defined as in (2.40) with p > 1 being a positive odd

integer. Then, φp
S−NR

is a semismooth function. Moreover, φp
S−NR

is strongly semismooth

.

Proof. We shall proceed to directly establish the strong semismoothness of φp
S−NR

. Ob-

serve that φp
S−NR

is twice continuously differentiable at any point x = (a, b) with a 6= b,

which immediately implies its strong semismoothness at such points. It thus remains to

verify that φp
S−NR

is strongly semismooth along the line L = {(a, b) | a = b}.
For any x = (a, a), h = (h1, h2), V ∈ ∂φp

S−NR
(x + h) and h → 0, we have the following

inequality while ‖h‖ ≤ 1:

‖h‖p ≤ ‖h‖2 for any p ≥ 2.

To prove the strong semismoothness of φp
S−NR

, we will apply this inequality and verify

(1.42) by discussing three cases as below.

(i) If h1 = h2, then for any α ∈ [0, 1]∣∣∣φp
S−NR

(x+ h)− φp
S−NR

(x)− V h
∣∣∣

=

∣∣∣∣(a+ h1)p − ap − p
[
αap−1, (1− α)ap−1

] [ h1

h1

]∣∣∣∣
=

∣∣∣∣∣ap + pap−1h1 +

p∑
k=2

(
p
k

)
ap−khk1 − ap − pap−1h1

∣∣∣∣∣
≤ M1(|h1|2 + · · ·+ |h1|p)
≤ M1(‖h‖2 + · · ·+ ‖h‖p)
≤ (p− 1)M1‖h‖2,
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where M1 = max
{(

p
k

)
|a|p−k | k = 2, 3, · · · , p

}
and the last inequality holds when ‖h‖ ≤ 1.

(ii) If h1 > h2, then∣∣∣φp
S−NR

(x+ h)− φp
S−NR

(x)− V h
∣∣∣

=

∣∣∣∣(a+ h1)p − (h1 − h2)p − ap − p
[
(a+ h1)p−1 − (h1 − h2)p−1, (h1 − h2)p−1

] [ h1

h2

]∣∣∣∣
=

∣∣(a+ h1)p − (h1 − h2)p − ap − p(a+ h1)p−1h1 + p(h1 − h2)p
∣∣

=

∣∣∣∣∣(a+ h1)p − ap − p
(
ap−1 +

p−1∑
k=1

(
p−1
k

)
ap−1−khk1

)
h1 + (p− 1)(h1 − h2)p

∣∣∣∣∣
≤

∣∣(a+ h1)p − ap − pap−1h1

∣∣︸ ︷︷ ︸
Ξ1

+p

∣∣∣∣∣
p−1∑
k=1

(
p−1
k

)
ap−1−khk+1

1

∣∣∣∣∣︸ ︷︷ ︸
Ξ2

+(p− 1) |(h1 − h2)p|︸ ︷︷ ︸
Ξ3

.

As h→ 0, we have the following estimations for each Ξi.

• Ξ1 ≤ (p− 1)M1‖h‖2 by case (i).

• Ξ2 ≤
∑p−1

k=1

(
p−1
k

)
|a|p−1−k|h1|k+1 ≤ M2(|h1|2 + · · · + |h1|p) ≤ (p − 1)M2‖h‖2, where

M2 = max
{(

p−1
k

)
|a|p−1−k | k = 1, 2, · · · , p− 1

}
.

• Ξ3 ≤
∑p

k=0

(
p
k

)
|h1|p−k|h2|k ≤M3(‖h‖p + · · ·+ ‖h‖p) ≤ (p+ 1)M3‖h‖2, where M3 =

max
{(

p
k

)
| k = 0, 1, · · · , p

}
.

Hence, we conclude that∣∣∣φp
S−NR

(x+ h)− φp
S−NR

(x)− V h
∣∣∣ ≤M‖h‖2,

where M = (p− 1)M1 + p(p− 1)M2 + (p− 1)(p+ 1)M3.

(iii) If h1 < h2, the argument is similar to the case (ii).

All the above together with Lemmas 2.8-2.9 prove that φp
S−NR

is strongly semismooth.

�

We now introduce additional variants of φp
S−NR

. As with the functions discussed in

[195], the following variants can also be verified to satisfy the properties of NCP functions.

φ̃1(a, b) = φp
S−NR

(a, b) + α(a)+(b)+, α > 0.

φ̃2(a, b) = φp
S−NR

(a, b) + α ((a)+(b)+)2 , α > 0.

φ̃3(a, b) = φp
S−NR

(a, b) + α ((ab)+)4 , α > 0.

φ̃4(a, b) = φp
S−NR

(a, b) + α ((ab)+)2 , α > 0.

φ̃5(a, b) = φp
S−NR

(a, b) + α
(
(a)+)2((b)+

)2
, α > 0.
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Proposition 2.31. All the above functions φ̃i(a, b) for i ∈ {1, 2, 3, 4, 5} are NCP func-

tions.

Proof. We only show that φ̃1(a, b) is an NCP function and the same argument can be

applied to the other cases. First, we denote Ω := {(a, b) | a > 0, b > 0} the first quadrant

and suppose that φ̃1(a, b) = 0. If (a, b) ∈ Ω, then φp
S−NR

(a, b) > 0 by Proposition 2.26;

and hence, φ̃1(a, b) > 0. This is a contradiction. Therefore, we must have (a, b) ∈ Ωc

which says (a)+(b)+ = 0. This further implies φp
S−NR

(a, b) = 0 which is equivalent to

a, b ≥ 0, ab = 0 by applying Proposition 2.26 again. Thus, φ̃1 is an NCP function. �

Proposition 2.32. Let ψp
S−NR

be defined in (2.41) with p > 1 being a positive odd integer.

Then, ψp
S−NR

is an NCP function and is positive on the set

Ω = {(a, b) | ab 6= 0} ∪ {(a, b) | a < b = 0} ∪ {(a, b) | 0 = a > b}.

Proof. First of all, when a < b = 0, we have ψp
S−NR

(a, b) = a2p > 0. Similarly, when

0 = a > b, we have ψp
S−NR

(a, b) = b2p > 0. For 0 6= a > b 6= 0, suppose that b > 0. Then,

a > (a − b) which implies ap > (a − b)p and bp > 0, and hence apbp − (a − b)pbp > 0.

On the other hand, suppose that b < 0. Then, a < (a − b) which implies ap < (a − b)p
and bp < 0. Thus, we also have apbp − (a − b)pbp > 0. For a = b 6= 0, it is clear that

apbp = a2p > 0. For the remaining case: 0 6= a < b 6= 0, the proof is similar to the case

of 0 6= a > b 6= 0. From all the above, we prove that ψp
S−NR

is positive on the set Ω.

Next, we go on showing that ψp
S−NR

is an NCP function. Suppose that a > b and

apbp − (a − b)pbp = [ap − (a − b)p]bb = 0. If b = 0, then we have a > b = 0. Otherwise,

we have a = (a− b) which also yields that a > b = 0. Similarly, the condition a < b and

apbp − (b − a)pap = 0 implies that b > a = 0. The remaining case a = b and apbp = 0

gives that a = b = 0. Thus, from all the above, ψp
S−NR

is an NCP function. �

From Proposition 2.32, we conclude that ψp
S−NR

is a merit function, as it is positive

on Ω and vanishes precisely on the set {(a, b) | a ≥ b = 0} ∪ {(a, b) | 0 = a ≤ b}. A bit

further discussion of the function ψp
S−NR

is provided as follows:

(i) For p being an even integer, ψp
S−NR

is not an NCP function. A counterexample is

given as below.

ψ2
S−NR

(−2,−4) = (−2)2(−4)2 − (−2 + 4)2(−4)2 = 0.

(ii) The function ψp
S−NR

is neither convex nor concave function. To see this, taking

p = 3 and using the following argument verify the assertion.

1 = ψ3
S−NR

(1, 1) <
1

2
ψ3

S−NR
(0, 0) +

1

2
ψ3

S−NR
(2, 2) =

0

2
+

64

2
= 32.

1 = ψ3
S−NR

(1, 1) >
1

2
ψ3

S−NR
(2, 0) +

1

2
ψ3

S−NR
(0, 2) =

0

2
+

0

2
= 0.
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Proposition 2.33. Let ψp
S−NR

be defined as in (2.41) with p > 1 being a positive odd

integer. Then, the following hold.

(a) An alternative expression of φp
S−NR

is

ψp
S−NR

(a, b) =


φp

NR
(a, b)bp if a > b,

apbp = a2p if a = b,

φp
NR

(b, a)ap if a < b.

(b) The function ψp
S−NR

is continuously differentiable with

∇ψp
S−NR

(a, b) =


p [ ap−1bp − (a− b)p−1bp, apbp−1 − (a− b)pbp−1 + (a− b)p−1bp ]T if a > b,

p [ ap−1bp, apbp−1 ]T = pa2p−1[1 , 1 ]T if a = b,

p [ ap−1bp − (b− a)pap−1 + (b− a)p−1ap, apbp−1 − (b− a)p−1ap ]T if a < b.

In a more compact form,

∇ψp
S−NR

(a, b) =


p [φp−1

NR
(a, b)bp, φp

NR
(a, b)bp−1 + (a− b)p−1bp ]T if a > b,

p [ a2p−1, a2p−1 ]T if a = b,

p [φp
NR

(b, a)ap−1 + (b− a)p−1ap, φp−1
NR

(b, a)ap ]T if a < b.

(c) The function ψp
S−NR

is twice continuously differentiable with

∇2ψp
S−NR

(a, b) =



p


(p− 1)[ap−2 − (a− b)p−2]bp

(p− 1)(a− b)p−2bp

+p[ap−1 − (a− b)p−1]bp−1

(p− 1)(a− b)p−2bp

+p[ap−1 − (a− b)p−1]bp−1

(p− 1)[ap − (a− b)p]bp−2

+2p(a− b)p−1bp−1

−(p− 1)(a− b)p−2bp

 if a > b,

p

[
(p− 1)ap−2bp pap−1bp−1

pap−1bp−1 (p− 1)apbp−2

]
if a = b,

p



(p− 1)[bp − (b− a)p]ap−2

+2p(b− a)p−1ap−1

−(p− 1)(b− a)p−2ap

(p− 1)(b− a)p−2ap

+p[bp−1 − (b− a)p−1]ap−1

(p− 1)(b− a)p−2ap

+p[bp−1 − (b− a)p−1]ap−1 (p− 1)[bp−2 − (b− a)p−2]ap

 if a < b.

Proof. (a) It is clear to see this part.

(b) It is easy to verify the continuous differentiability of ψp
S−NR

(a, b) on the set {(a, b) | a >
b or a < b}. We only need to check the differentiability along the line a = b. Suppose

that h > k, we observe that

ψp
S−NR

(a+ h, a+ k)− ψp
S−NR

(a, a)

= (a+ h)p(a+ k)p − (h− k)pbp − a2p

=
〈
pa2p−1(1, 1), (h, k)

〉
+R(a, h, k).
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Here the remainder R(a, h, k) is o(h, k) function of h and k, since the degree of h and k

of R(a, h, k) is at least 2. Similarly, from the other two cases h = k and h < k, we can

conclude that ∇ψp
S−NR

(a, a) = pa2p−1(1, 1)T. In addition, the continuity of ∇ψp
S−NR

(a, b)

along the line a = b is easy to verify.

(c) The arguments for this part are similar to those for part(b). We omit them. �

Likewise, we present some other variants of ψp
S−NR

. Indeed, analogous to those func-

tions in [195], the variants of ψp
S−NR

as below can be verified being NCP functions.

ψ̃1(a, b) = ψp
S−NR

(a, b) + α(a)+(b)+, α > 0.

ψ̃2(a, b) = ψp
S−NR

(a, b) + α ((a)+(b)+)2 , α > 0.

ψ̃3(a, b) = ψp
S−NR

(a, b) + α ((ab)+)4 , α > 0.

ψ̃4(a, b) = ψp
S−NR

(a, b) + α ((ab)+)2 , α > 0.

ψ̃5(a, b) = ψp
S−NR

(a, b) + α
(
(a)+)2((b)+

)2
, α > 0.

Proposition 2.34. All the above functions ψ̃i(a, b) for i ∈ {1, 2, 3, 4, 5} are NCP func-

tions.

Proof. We only show that ψ̃1 is a NCP-function and the same argument can be applied

to the other cases. Let Ω := {(a, b) | ab 6= 0} and suppose that ψ̃1(a, b) = 0. If (a, b) ∈ Ω,

then ψp
S−NR

(a, b) > 0 by Proposition 2.32; and hence, ψ̃1(a, b) > 0. This is a contradiction.

Therefore, we must have (a, b) ∈ Ωc which says (a)+(b)+ = 0. This further implies

ψp
S−NR

(a, b) = 0 which is equivalent to a, b ≥ 0, ab = 0 by applying Proposition 2.32

again. Thus, ψ̃1 is an NCP function. �

Based on Figures 2.18 and 2.19, we offer several observations regarding the sur-

faces of φp
S−NR

and ψp
S−NR

, as well as their algebraic properties. First, it is evident that

φp
S−NR

(a, b) = φp
S−NR

(b, a) and ψp
S−NR

(a, b) = ψp
S−NR

(b, a), indicating that both surfaces are

symmetric with respect to the line a = b. Regarding their algebraic structure, it can be

verified that

ψp
S−NR

(a, b) =
[

min(a, b)
]2

for p = 1.

To see this, for example if a > b, we check that a1b1 − (a − b)1b1 = b2 = min(a, b)2.

On the other hand, for large p = 3, 5, 7, · · · , the function ψp
S−NR

does not coincide with[
min(a, b)

]2p
. Nonetheless, when we restrict ψp

S−NR
(a, b) on the line a = b and two axes

a = 0 and b = 0, we really have that

ψp
S−NR

(a, b) =
[

min(a, b)
]2p
.

In summary, ψp
S−NR

can be regarded as a merit function associated with the original

natural residual NCP function φ
NR

(a, b) = min(a, b). Notably, ψp
S−NR

is twice contin-

uously differentiable, making it well-suited for the development of various algorithmic
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frameworks that exploit smoothness properties. However, it is important to point out

that ψp
S−NR

does not satisfy the condition:

∇aψ
p
S−NR

(a, b) · ∇bψ
p
S−NR

(a, b) ≥ 0. (cf. Property 2.2(d) in [27])

For instance, setting p = 3 and evaluating at (a, b) = (0,−1), we obtain∇aψ
3
S−NR

(0,−1) =

3 and ∇bψ
3
S−NR

(0,−1) = −6, leading to a negative product. This may present challenges

when analyzing convergence rates in certain optimization algorithms. Visually, the sur-

face of φp
S−NR

resembles The graph of φp
S−NR

is neither convex nor concave. On the other

hand, the surface of ψp
S−NR

is smooth yet also lacks convexity and concavity.

Proposition 2.35. Let ψp
S−NR

be defined as in (2.41) with p > 1 being a positive odd

integer. Then, the following hold.

(a) ψp
S−NR

(a, b) ≥ 0 for all (a, b) ∈ IR2.

(b) ψp
S−NR

is positive homogeneous of degree 2p.

(c) ψp
S−NR

is locally Lipschitz continuous, but not Lipschitz continuous.

(d) ψp
S−NR

is not α-Hölder continuous for any α ∈ (0, 1].

(e) ∇aψ
p
S−NR

(a, b) · ∇bψ
p
S−NR

(a, b) > 0 on the first quadrant IR2
++.

(f) ψp
S−NR

(a, b) = 0 ⇐⇒ ∇ψp
S−NR

(a, b) = 0. In particular, we have ∇aψ
p
S−NR

(a, b) ·
∇bψ

p
S−NR

(a, b) = 0 provided that ψp
S−NR

(a, b) = 0.

Proof. (a) This inequality follows from Proposition 2.32 or [18, Proposition 3.1].

(b) It is clear by the definition of ψp
S−NR

.

(c)-(d) The proof is similar to Proposition 2.24(c)-(d).

(e) For convenience, we denote Λ := ∇aψ
p
S−NR

(a, b) ·∇bψ
p
S−NR

(a, b). Then, we proceed the

proof by discussing three cases. For a > b > 0, we have

Λ = p2b2p−1 ·
(
ap−1 − (a− b)p−1

) (
ap − (a− b)p + (a− b)p−1b

)
.

Note that a > a− b > 0 and b > 0, therefore we prove Λ > 0. Similarly, when b > a > 0,

we also have Λ > 0. For the third case a = b > 0, it is clear that Λ = p2a4p−2 > 0 .

(f) Note that ψp
S−NR

is a NCP-function, i.e.,

ψp
S−NR

(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

From Proposition 2.33(b), we know∇ψp
S−NR

(a, b) = 0 either when a ≥ b = 0 or b ≥ a = 0.

Conversely, we suppose ∇ψp
S−NR

(a, b) = 0. For a = b,

∇ψp
S−NR

(a, b) = pa2p−1[1 1 ]T = 0 =⇒ a = b = 0,
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this proves that ψp
S−NR

(a, b) = 0. For a > b, we know from Proposition 2.33(b) that{
ap−1bp − (a− b)p−1bp = 0,

apbp−1 − (a− b)pbp−1 + (a− b)p−1bp = 0.
(2.44)

Note that it is clear to see that b = 0 satisfies the system (2.44). Assume b 6= 0, the

system (2.44) becomes

ap−1 − (a− b)p−1 = 0, (2.45)

ap − (a− b)p + (a− b)p−1b = 0. (2.46)

From (2.45), we obtain (a− b)p−1 = ap−1. Then, substituting it into the equation (2.46)

yields

ap − (a− b)ap−1 + ap−1b = 0.

This implies ap−1b = 0. Thus, we obtain a = 0. Again, by (2.45), we obtain (−b)p−1 =

0. This leads to a contradiction since we assume b 6= 0. Therefore, for a > b, we

obtain that b must be zero, and hence ψp
S−NR

(a, b) = 0. Similarly, when a < b, we also

have ψp
S−NR

(a, b) = 0. In summary, we conclude that ψp
S−NR

(a, b) = 0 if and only if

∇ψp
S−NR

(a, b) = 0. �

Lastly, we investigate the growth behavior of φp
NR

, φp
S−NR

, and ψp
S−NR

in Proposition

2.36. To this end, we first introduce a key lemma that will serve as the foundation for

our analysis.

Lemma 2.10. For any x ∈ [0, 1] and any k > 0, we have

(1− x)k ≤ 1

1 + kx
.

Proof. First, we define f : [0, 1]→ IR by f(x) = (1− x)k(1 + kx). A simple calculation

yields f ′(x) = −k(k + 1)x(1 − x)k−1. Then, f monotonically decreases on [0, 1] from

f(0) = 1 to f(1) = 0. Consequently, 0 ≤ f(x) ≤ 1, which completes the proof. �

Proposition 2.36. Let {(ak, bk)}∞k=1 ⊆ IR2 such that |ak| → ∞ and |bk| → ∞ as k →∞.

Then, |φp
NR

(ak, bk)| → ∞, |φp
S−NR

(ak, bk)| → ∞, and |ψp
S−NR

(ak, bk)| → ∞.

Proof. (a) First, we verify that |φp
S−NR

(ak, bk)| → ∞. To proceed, we consider three

cases.

(i) Suppose ak →∞ and bk →∞. Note that for all x ∈ [−1, 0] and n ∈ N, there holds

(1 + x)n ≤ (1− nx)−1
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which is due to Lemma 2.10. Thus, when a > b > 0, we have

φp
S−NR

(a, b) = ap − (a− b)p = ap − ap
(

1− b

a

)p
≥ ap − ap

(
1− p

(
− b
a

))−1

= ap − ap
(

a

a+ pb

)
=

papb

a+ pb

≥ pap−1b

1 + p

≥ pbp

1 + p
.

Similarly, φp
S−NR

(a, b) ≥ pap

1+p
for b > a > 0. Thus, φp

S−NR
(ak, bk)→∞ as k →∞.

(ii) Suppose ak → −∞ and bk → −∞. Observe that φp
S−NR

(a, b) ≤ ap when a > b, and

φp
S−NR

(a, b) ≤ bp when a < b. Thus, φp
S−NR

(ak, bk)→ −∞ as k →∞.

(iii) Suppose ak →∞ and bk → −∞. For a > 0 and b < 0, we have

(a− b)p ≥ ap + (−b)p = ap − bp.

Thus, φp
S−NR

(a, b) = ap − (a − b)p ≤ bp and we conclude that φp
S−NR

(ak, bk) → −∞ as

k → ∞. In the case that ak → −∞ and bk → ∞, we also have φp
S−NR

(ak, bk) → −∞ as

k →∞ by symmetry of φp
S−NR

.

(b) Next, we show that |φp
NR

(ak, bk)| → ∞. Again, we examine three cases.

(i) Suppose that ak → −∞. Since φp
NR

(a, b) = ap − (a− b)p+ ≤ ap for all (a, b) ∈ IR2, it is

trivial to see that φp
NR

(ak, bk)→ −∞.

(ii) Suppose that ak →∞ and bk →∞. For a > b > 0, then we have

φp
NR

(a, b) = φp
S−NR

(a, b) ≥ pbp

1 + p
.

For 0 ≤ a < b, it is clear that φp
NR

(a, b) = ap. Then, we conclude that φp
NR

(ak, bk)→∞.

(iii) Suppose that ak →∞ and bk → −∞. For a > 0 and b < 0, we have

φp
NR

(a, b) = φp
S−NR

(a, b) ≤ bp

and so φp
NR

(ak, bk)→ −∞. Thus, we have proved that |φp
NR

(ak, bk)| → ∞.
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(c) The last limit, |ψp
S−NR

(ak, bk)| → ∞, follows from the fact that

ψp
S−NR

(a, b) =


φp

S−NR
(a, b)bp if a > b,

apbp = a2p if a = b,

φp
S−NR

(b, a)ap if a < b.

and the inequalities obtained above for φp
S−NR

. �

2.2.3 Construction by continuous generalization

From a numerical perspective, one may naturally ask whether a “continuous gener-

alization” of the natural residual (NR) function φ
NR

exists, namely, a generalization

parametrized by p taking values over a continuous interval. In this section, we propose

such a continuous-type generalization of the NR function. The proposed function, while

lacking a symmetric surface, admits two symmetrized forms that also depend continu-

ously on the parameter p. Our generalization is defined as follows:

φ̃p
NR

(a, b) = sgn(a)|a|p − [(a− b)+]p, (2.47)

where p ∈ (0,∞), and the sign function is defined by

sgn(t) :=


1, if t > 0,

0, if t = 0,

−1, if t < 0.

It is not hard to verify that φ̃p
NR

is an NCP function. Indeed, observe that

φ̃p
NR

(a, b) = f(a)− f((a− b)+),

where f(t) = sgn(t)|t|p, a bijective function. Consequently,

φ̃p
NR

(a, b) = 0⇐⇒ f(a) = f((a− b)+)⇐⇒ a = (a− b)+ ⇐⇒ φ
NR

(a, b) = 0.

Notably, when p is an odd integer, φ̃p
NR

coincides with φp
NR

, meaning this continuous

generalization subsumes the discrete-type extension defined in (2.38). We further remark

that this type of transformation, applying a monotonic bijective function f to φ
NR

, can

be applied to any NCP function of the form φ = φ1 − φ2, a fact also noted in [79].

It is clear to see that the function (2.47) does not have a symmetric surface. Employing

the same strategy as in [18], we propose two symmetrizations of φ̃p
NR

as

φ̃p
S−NR

(a, b) =

{
sgn(a)|a|p − (a− b)p if a ≥ b,

sgn(b)|b|p − (b− a)p if a < b,
(2.48)
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and

ψ̃p
S−NR

(a, b) =

{
sgn(a)sgn(b)|a|p|b|p − sgn(b)(a− b)p|b|p if a ≥ b,

sgn(a)sgn(b)|a|p|b|p − sgn(a)(b− a)p|a|p if a < b,
(2.49)

where p > 0. Notice that φ̃p
S−NR

= φp
S−NR

and ψ̃p
S−NR

= ψp
S−NR

whenever p is odd.

Proposition 2.37. Let φ̃p
NR
, φ̃p

S−NR
, and ψ̃p

S−NR
be defined as in (2.47), (2.48), and (2.49),

respectively. For any p > 0, the functions φ̃p
NR
, φ̃p

S−NR
, and ψ̃p

S−NR
are NCP functions.

Moreover, φ̃p
NR

(a, b) > 0 (φ̃p
S−NR

(a, b) > 0) if and only if a > 0 and b > 0, while

ψ̃p
S−NR

(a, b) ≥ 0 for all (a, b) ∈ IR2.

Proof. That φ̃p
NR

is an NCP function follows from the above discussion. Moreover,

note that a > 0 and b > 0 if and only if a > (a − b)+. Since f(t) = sgn(t)|t|p is strictly

increasing, we see that a > 0 and b > 0 if and only if sgn(a)|a|p > sgn((a−b)+)|(a−b)+|p,
i.e. φ̃p

NR
(a, b) > 0. On the other hand, observe that

φ̃p
S−NR

(a, b) =

{
φ̃p

NR
(a, b) if a ≥ b,

φ̃p
NR

(b, a) if a < b,
(2.50)

and

ψ̃p
S−NR

(a, b) =

{
sgn(b)|b|pφ̃p

NR
(a, b) if a ≥ b,

sgn(a)|a|pφ̃p
NR

(b, a) if a < b.
(2.51)

Using above identities and the fact that φ̃p
NR

is an NCP function, then φ̃p
S−NR

and ψ̃p
S−NR

are also NCP functions with algebraic signs as specified in the proposition. �

In light of the preceding proposition, the functions φ̃p
NR

, φ̃p
S−NR

, and ψ̃p
S−NR

may be

regarded as continuous generalizations of φp
NR

, φp
S−NR

, and ψp
S−NR

, respectively. We now

proceed to establish several fundamental properties of these functions, which will later

play a key role in the development of a neural network-based approach. We begin by

examining their smoothness properties. Throughout this discussion, C1(Ω) and C2(Ω),

denote the spaces of continuously differentiable and twice continuously differentiable

functions on a domain Ω ⊂ IRn, respectively.

Proposition 2.38. The following result holds:

(a) If p > 1, the function φ̃p
NR
∈ C1(IR2) and its gradient is given by

∇φ̃p
NR

(a, b) = p

[
|a|p−1 − (a− b)p−1sgn((a− b)+)

(a− b)p−1sgn((a− b)+)

]
.

If p > 2, then φ̃p
NR
∈ C2(IR2) and its Hessian is given by

∇2φ̃p
NR

(a, b) = p(p−1)

[
sgn(a)|a|p−2 − (a− b)p−2sgn((a− b)+) (a− b)p−2sgn((a− b)+)

(a− b)p−2sgn((a− b)+) −(a− b)p−2sgn((a− b)+)

]
.
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(b) If p > 1, the function φ̃p
S−NR

∈ C1(Ω) where Ω := {(a, b) | a 6= b}. In this case, the

gradient of φ̃p
S−NR

is given by

∇φ̃p
S−NR

(a, b) =

{
p [ |a|p−1 − (a− b)p−1, (a− b)p−1 ]T if a > b,

p [ (b− a)p−1, |b|p−1 − (b− a)p−1 ]T if a < b.

Further, φ̃p
S−NR

is differentiable at (0, 0) with ∇φ̃p
S−NR

(0, 0) = [0, 0]T . If p > 2, then

φ̃p
S−NR

∈ C2(Ω) with Hessian given by

∇2φ̃p
S−NR

(a, b) =


p(p− 1)

[
sgn(a)|a|p−2 − (a− b)p−2 (a− b)p−2

(a− b)p−2 −(a− b)p−2

]
if a > b,

p(p− 1)

[
−(b− a)p−2 (b− a)p−2

(b− a)p−2 sgn(b)|b|p−2 − (b− a)p−2

]
if a < b.

(c) If p > 1, then ψ̃p
S−NR

∈ C1(IR2) whose gradient is given by

∇ψ̃p
S−NR

(a, b) =



p

[
sgn(b)|b|p(|a|p−1 − (a− b)p−1)

sgn(a)|a|p|b|p−1 − (a− b)p|b|p−1 + sgn(b)(a− b)p−1|b|p
]

if a > b,

p|a|2p−1
[
1

1

]
if a = b,

p

[
sgn(b)|a|p−1|b|p − (b− a)p|a|p−1 + sgn(a)(b− a)p−1|a|p

sgn(a)|a|p(|b|p−1 − (b− a)p−1)

]
if a < b,

If p > 2, then ψ̃p
S−NR

∈ C2(IR2) whose Hessian is given by

∇2ψ̃p
S−NR

(a, b) =



p



(p− 1)[sgn(a)sgn(b)|a|p−2|b|p]
−(p− 1)(a− b)p−2sgn(b)|b|p

(p− 1)(a− b)p−2sgn(b)|b|p
+p[|a|p−1 − (a− b)p−1]|b|p−1

(p− 1)(a− b)p−2sgn(b)|b|p
+p[|a|p−1 − (a− b)p−1]|b|p−1

(p− 1)[sgn(a)sgn(b)|a|p|b|p−2]

−(p− 1)(a− b)psgn(b)|b|p−2
+2p(a− b)p−1|b|p−1

−(p− 1)(a− b)p−2sgn(b)|b|p


if a > b,

p

[
(p− 1)sgn(a)sgn(b)|a|p−2|b|p p|a|p−1|b|p−1

p|a|p−1|b|p−1 (p− 1)sgn(a)sgn(b)|a|p|b|p−2
]

if a = b,

p



(p− 1)[sgn(a)sgn(b)|a|p−2|b|p]
−(p− 1)(b− a)psgn(a)|a|p−2

+2p(b− a)p−1|a|p−1
−(p− 1)(b− a)p−2sgn(a)|a|p

(p− 1)(b− a)p−2sgn(a)|a|p
+p[|b|p−1 − (b− a)p−1]|a|p−1

(p− 1)(b− a)p−2sgn(a)|a|p
+p[|b|p−1 − (b− a)p−1]|a|p−1

(p− 1)[sgn(a)sgn(b)|a|p|b|p−2]

−(p− 1)(b− a)p−2sgn(a)|a|p


if a < b.
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Proof. Note that f(t) = sgn(t)|t|p is continuously differentiable when p > 1 with f ′(t) =

p|t|p−1. Moreover, f is twice continuously differentiable when p > 2 with f ′′(t) = p(p −
1)sgn(t)|t|p−2. Using these and the alternative formulas given in (2.50) and (2.51), the

gradients and Hessians can be easily obtained. The calculations are omitted. �

The above proposition serves as a generalization of results found in [33, Proposition

2.2], [18, Proposition 2.2 and Proposition 3.2], and [103, Proposition 4.3]. In a similar

vein, the following result extends [103, Proposition 3.4, Proposition 4.5, and Proposition

5.4].

Proposition 2.39. Let p > 1. Then, the following hold:

(a) ∇aφ̃
p
NR

(a, b) · ∇bφ̃
p
NR

(a, b)


> 0 on {(a, b) | a > b > 0 or a > b > 2a},
= 0 on {(a, b) | a ≤ b or a > b = 2a or a > b = 0},
< 0 otherwise.

(b) ∇aφ̃
p
S−NR

(a, b)·∇bφ̃
p
S−NR

(a, b)


> 0 on {(a, b) | a > b > 0 or a > b > 2a}

and on {(a, b) | b > a > 0 or b > a > 2b},
= 0 on {(a, b) | φ̃p

S−NR
(a, b) = 0 or a > b = 2a or b > a = 2b},

< 0 otherwise.

(c) ∇aψ̃
p
S−NR

(a, b)·∇bψ̃
p
S−NR

(a, b) > 0 on the first quadrant IR2
++, and ψ̃p

S−NR
(a, b) = 0⇐⇒

∇ψ̃p
S−NR

(a, b) = 0.

Proof. Using Proposition 2.38(a),

∇aφ̃
p
NR

(a, b) · ∇bφ̃
p
NR

(a, b)

= p2[|a|p−1 − (a− b)p−1sgn((a− b)+)](a− b)p−1sgn((a− b)+)

=

{
p2[|a|p−1 − (a− b)p−1](a− b)p−1 if a > b

0 if a ≤ b
.

Suppose now that a > b. Since g(t) := tp−1 is a strictly increasing function on [0,∞),

|a|p−1 − (a − b)p−1 > 0 if and only if |a| > a − b, which happens if and only if b > 0 or

b > 2a. This establishes Proposition 2.39(a). Statement (b) easily follows from part(a),

while part(c) can be easily verified using the result of Proposition 2.38(c). �

Like what we did earlier, we now analyze the growth behavior of the proposed families

of functions in Proposition 2.40, which serves as a continuous counterpart to Proposition

2.36.

Proposition 2.40. Let φ ∈ {φ̃p
NR
, φ̃p

S−NR
, ψ̃p

S−NR
}. Then, |φ(ak, bk)| → ∞ for any sequence

{(ak, bk)}∞k=1 in IR2 such that |ak| → ∞ and |bk| → ∞.

Proof. The proposition follows from Lemma 2.10 and analogous arguments for Proposi-

tion 2.36. �
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2.3 Constructions of NCP Functions based on φp
FB

In this section, we explore several extensions based on the Fischer–Burmeister function

φp
FB

. Recall that the FB function is defined by

φ
FB

(a, b) =
√
a2 + b2 − a− b, ∀(a, b) ∈ IR2,

and one of its generalizations, proposed by Kanzow and Kleinmichel [116], is given by

φθ(a, b) :=
√

(a− b)2 + θab− a− b, θ ∈ (0, 4), ∀(a, b) ∈ IR2. (2.52)

It has been shown in [22, 27, 35, 36, 116, 167] that both φθ defined in (2.52) and φp
FB

given in (2.14) enjoy several desirable properties, including strong semismoothness, Lip-

schitz continuity, and continuous differentiability. Furthermore, the corresponding merit

functions associated with φθ and φp
FB

have been shown to possess the SC1 property (i.e.,

they are continuously differentiable with semismooth gradients) and the LC1 property

(i.e., they are continuously differentiable with Lipschitz continuous gradients), under

appropriate assumptions.

2.3.1 Construction by using parameter

The above idea of introducing a parameter can likewise be applied to φp
FB

,

φp
FB

(a, b) =
p
√
|a|p + |b|p − a− b, p ∈ (1,∞).

In fact, motivated by those functions studied in [35, 116], we consider the following class

of functions [96]:

φθ,p(a, b) :=
p
√
θ(|a|p + |b|p) + (1− θ)|a− b|p − a− b, p > 1, θ ∈ (0, 1]. (2.53)

Accordingly, there is an associated unconstrained minimization:

Ψθ,p(x) :=
1

2

n∑
i=1

φ2
θ,p(xi, Fi(x)). (2.54)

An important question arises: is the function φθ,p an NCP function? If so, do the

functions defined in (2.53) and (2.54) inherit the same desirable properties, such as strong

semismoothness, Lipschitz continuity, and smooth merit function characteristics, as the

previously studied functions mentioned above? Furthermore, how do the merit function

methods based on (2.53) and (2.54) perform in terms of numerical behavior and practical

efficiency?

In this section, we provide a partial answer to the questions raised above. Specifically,

we demonstrate that the function φθ,p, defined in (2.53), is indeed an NCP function. We
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also examine several desirable properties of φθ,p and its associated nonnegative merit

function, including strong semismoothness, Lipschitz continuity, and continuous differ-

entiability. For convenience, we define

ηθ,p(a, b) :=
p
√
θ(|a|p + |b|p) + (1− θ)|a− b|p, p > 1, θ ∈ (0, 1]. (2.55)

Proposition 2.41. The function φθ,p defined by (2.53) is an NCP function.

Proposition 2.42. The function ηθ,p defined by (2.55) is a norm on IR2 for all p >

1, θ ∈ (0, 1].

Proposition 2.43. Let φθ,p be defined by (2.53), then for all θ ∈ (0, 1] and p > 1,

(i) φθ,p is sub-additive, i.e., φθ,p((a, b)+(c, d)) ≤ φθ,p(a, b)+φθ,p(c, d) for all (a, b), (c, d) ∈
IR2;

(ii) φθ,p is positive homogenous, i.e., φθ,p(α(a, b)) = αφθ,p(a, b) for all (a, b) ∈ IR2 and

α > 0;

(iii) φθ,p is a convex function on IR2, i.e., φθ,p(α(a, b)+(1−α)(c, d)) ≤ αφθ,p(a, b)+(1−
α)φθ,p(c, d) for all (a, b), (c, d) ∈ IR2 and α ∈ [0, 1];

(iv) φθ,p is Lipschitz continuous on IR2;

(v) φθ,p is continuously differentiable on IR2\{(0, 0)};

(vi) φθ,p is strongly semismooth on IR2.

Proof. By using φθ,p((a, b)) = ηθ,p(a, b) − (a + b) and Proposition 2.42, we can obtain

that the results (i), (ii), and (iii) hold.

(iv) Since ηθ,p is a norm on IR2 from Proposition 2.42 and any two norms in finite

dimensional space are equivalent, it follows that there exists a positive constant κ such

that

ηθ,p(a, b) ≤ κ‖(a, b)‖, ∀(a, b) ∈ IR2,

where ‖ · ‖ represents the Euclidean norm on IR2. Hence, for all (a, b), (c, d) ∈ IR2, there

holds

|φθ,p(a, b)− φθ,p(c, d)| = |ηθ,p(a, b)− (a+ b)− ηθ,p(c, d) + (c+ d)|
≤ |ηθ,p(a, b)− ηθ,p(c, d)|+ |a− c|+ |b− d|
≤ ηθ,p(a− c, b− d) +

√
2‖(a− c, b− d)‖

≤ κ‖(a− c, b− d)‖+
√

2‖(a− c, b− d)‖
= (κ+

√
2)‖(a− c, b− d)‖.
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This says that φθ,p is Lipschitz continuous with Lipschitz constant κ+
√

2, i.e., the result

(iv) holds.

(v) If (a, b) 6= (0, 0), then ηθ,p(a, b) 6= 0 by Proposition 2.42. By direct calculations, we

obtain

∂φθ,p(a, b)

∂a
=
θsgn(a)|a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

ηθ,p(a, b)p−1
− 1; (2.56)

∂φθ,p(a, b)

∂b
=
θsgn(b)|b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

ηθ,p(a, b)p−1
− 1, (2.57)

where sgn(·) is the symbol function. Then, it is easy to see from (2.56) and (2.57) that

the result (v) holds.

(vi) Since φθ,p is a convex function by the result (iii), we know that it is a semismooth

function. Noticing that φθ,p is continuously differentiable except (0, 0), it is sufficient

to prove that it is strongly semismooth at (0, 0). For any (h, k) ∈ IR2\{(0, 0)}, φθ,p is

differentiable at (h, k), and hence, ∇φθ,p(h, k) =
(
∂φθ,p(h,k)

∂a
,
∂φθ,p(h,k)

∂b

)T
. Thus, we have

φθ,p((0, 0) + (h, k))− φθ,p(0, 0)−
(
∂φθ,p(h, k)

∂a
,
∂φθ,p(h, k)

∂b

)(
h

k

)
=

p
√
θ(|h|p + |k|p) + (1− θ)|h− k|p − (h+ k)

−(
sgn(h)|h|p−1 + sgn(h− k)|h− k|p−1

ηθ,p(h, k)p−1
− 1)h

−(
sgn(k)|k|p−1 − sgn(h− k)|h− k|p−1

ηθ,p(h, k)p−1
− 1)k

=
p
√
θ(|h|p + |k|p) + (1− θ)|h− k|p

−sgn(h)|h|p−1h+ sgn(k)|k|p−1k + sgn(h− k)|h− k|p−1(h− k)

ηθ,p(h, k)p−1

=
p
√
θ(|h|p + |k|p) + (1− θ)|h− k|p − |h|

p + |k|p + |h− k|p
ηθ,p(h, k)p−1

= ηθ,p(h, k)− |h|
p + |k|p + |h− k|p
ηθ,p(h, k)p−1

=
ηθ,p(h, k)p − (|h|p + |k|p + |h− k|p)

ηθ,p(h, k)p−1

= 0

= O(‖(h, k)‖2).

Then, we obtain that φθ,p is strongly semismooth. �
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Proposition 2.44. Let φθ,p be defined by (2.53) and {(ak, bk)} ⊆ IR2. Then,

|φθ,p(ak, bk)| → ∞

if one of the following conditions is satisfied. (i) ak → −∞; (ii) bk → −∞; (iii)

ak →∞ and bk →∞.

Proof. (i) Suppose that ak → −∞. If {bk} is bounded from above, then the result holds

trivially. When bk → ∞, we have −ak > 0 and bk > 0 for all k sufficiently large, and

hence,

p
√
θ(|ak|p + |bk|p) + (1− θ)|ak − bk|p − bk ≥ p

√
θ|bk|p + (1− θ)|bk|p − bk = 0.

This, together with −ak →∞ and the definition of φθ,p, implies that the result holds.

(ii) For the case of bk → −∞, a similar analysis yields the result of the proposition.

(iii) Suppose that ak →∞ and bk →∞. Since p > 1 and θ ∈ (0, 1], we have

(1− θ)|ak − bk|p ≤ (1− θ)(|ak|p + |bk|p)

for all sufficiently large k. Thus, for all sufficiently large k,

p
√
θ(|ak|p + |bk|p) + (1− θ)|ak − bk|p ≤ p

√
|ak|p + |bk|p,

and hence,

(ak + bk)− p
√
θ(|ak|p + |bk|p) + (1− θ)|ak − bk|p ≥ (ak + bk)− p

√
|ak|p + |bk|p.

By [35, Lemma 3.1] we know that (ak + bk) − p
√
|ak|p + |bk|p → ∞ as k → ∞ when the

condition (iii) is satisfied. Thus, we obtain that

|φθp(ak, bk)| = (ak + bk)− p
√
θ(|ak|p + |bk|p) + (1− θ)|ak − bk|p →∞

as k →∞, which completes the proof. �

We now define a nonnegative merit function, associated with the function φθ,p, as

follows:

ψθ,p(a, b) :=
1

2
φ2
θ,p(a, b), p > 1, θ ∈ (0, 1], (a, b) ∈ IR2. (2.58)

Proposition 2.45. Let ψθ,p be defined by (2.58), then for all θ ∈ (0, 1] and p > 1,

(i) ψθ,p is an NCP function;

(ii) ψθ,p(a, b) ≥ 0 for all (a, b) ∈ IR2;
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(iii) ψθ,p is continuously differentiable on IR2;

(vi) ψθ,p is strongly semismooth on IR2;

(v)
∂ψθ,p(a,b)

∂a
· ∂ψθ,p(a,b)

∂b
≥ 0 for all (a, b) ∈ IR2, where the equality holds if and only if

φθ,p(a, b) = 0;

(vi)
∂ψθ,p(a,b)

∂a
= 0 ⇐⇒ ∂ψθ,p(a,b)

∂b
= 0 ⇐⇒ φθ,p(a, b) = 0.

Proof. By the definition of ψθ,p, it is easy to see that the results (i) and (ii) hold.

(iii). By using Proposition 2.43 and the definition of ψθ,p, it is sufficient to prove that

ψθ,p is differentiable at (0, 0) and the gradient is continuous at (0, 0). In fact, for all

(a, b) ∈ IR2\{(0, 0)}, we have,

|φθp(a, b)| =
∣∣∣ p√θ(|a|p + |b|p) + (1− θ)|a− b|p − a− b

∣∣∣
≤

∣∣∣ p√θ|a|p +
p
√
θ|b|p +

p
√

(1− θ)|a− b|p
∣∣∣+ |a|+ |b|

≤ |a|+ |b|+ |a− b|+ |a|+ |b|
≤ 3(|a|+ |b|),

where the second inequality follows from p > 1 and the third inequality follows from

θ ∈ (0, 1]. Hence,

ψθ,p(a, b)− ψθ,p(0, 0) =
1

2
φ2
θ,p(a, b) ≤

1

2
(3(|a|+ |b|))2 ≤ O(|a|2 + |b|2).

Thus, similar to that of [41, Proposition 1], we can achieve that ψθ,p is differentiable at

(0, 0) with ∇ψθ,p(0, 0) = (0, 0)T . Now, we prove that for all (a, b) ∈ IR2\{(0, 0)},

∣∣∣∣θsgn(a)|a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

ηθ,p(a, b)p−1

∣∣∣∣ ≤ 1, (2.59)

∣∣∣∣θsgn(b)|b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

ηθ,p(a, b)p−1

∣∣∣∣ ≤ 1. (2.60)
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In fact, ∣∣∣∣θsgn(a)|a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

ηθp(a, b)p−1

∣∣∣∣
≤ θ|a|p−1 + (1− θ)|a− b|p−1

ηθ,p(a, b)p−1

=
θ

1
p |θ 1

pa|p−1 + (1− θ) 1
p |(1− θ) 1

p (a− b)|p−1

ηθp(a, b)p−1

≤ ((θ
1
p )p + ((1− θ) 1

p )p)
1
p ((|θ 1

pa|p−1)
p
p−1 + (|(1− θ) 1

p (a− b)|p−1)
p
p−1 )

p−1
p

ηθ,p(a, b)p−1

=
(θ + (1− θ))(xp + zp)

p−1
p

ηθ,p(a, b)p−1

=
(xp + zp)

p−1
p

(xp + yp + zp)
p−1
p

= (
xp + zp

xp + yp + zp
)
p−1
p

≤ 1,

where x := |θ 1
pa|p, y := |θ 1

p b|p, z := |(1−θ) 1
p (a− b)|p; the first inequality follows from the

triangle inequality; the second inequality follows from the well known Hölder inequality;

the second equality follows from the definitions of x and z; the third equality follows from

the definitions of ηθ,p(a, b), x, y and z; and the third inequality follows from the fact that

x, y and z are all nonnegative. Therefore, (2.59) holds. Similar analysis will derive that

(2.60) holds.

Thus, it follows from (2.59) and (2.60) that both
∂φθ,p(a,b)

∂a
and

∂φθ,p(a,b)

∂b
are uniformly

bounded. Since φθ,p(a, b)→ 0 as (a, b)→ (0, 0), we obtain the desired result.

(iv) Since the composition of strongly semismooth function is also strongly semismooth

(see [73, Theorem 19]), by Proposition 2.43(vi) and the definition of ψθ,p we obtain that

the desired result holds.

(v) It is obvious that
∂ψθ,p(a,b)

∂a
= 0 when (a, b) = (0, 0). Now, suppose that (a, b) 6= (0, 0).

Since

∂ψθ,p(a, b)

∂a
· ∂ψθ,p(a, b)

∂b
=
∂φθ,p(a, b)

∂a
· ∂φθ,p(a, b)

∂b
· φθ,p(a, b)2, (2.61)

by (2.56), (2.57), (2.59), and (2.60), we obtain that
∂φθ,p(a,b)

∂a
≤ 0 and

∂φθ,p(a,b)

∂b
≤ 0

for all (a, b) ∈ IR2, that is, the first result of (v) holds. In addition, from (2.61) it is

obvious that the sufficient condition of the second result of (v) holds. Now, we suppose

that
∂ψθ,p(a,b)

∂a
· ∂ψθ,p(a,b)

∂b
= 0. Then, it is sufficient to prove that φθ,p(a, b) = 0 when

∂φθ,p(a,b)

∂a
· ∂φθ,p(a,b)

∂b
= 0. Suppose that

∂φθ,p(a,b)

∂a
= 0, without loss of generality. From the
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proof of (iii) in this proposition, it is easy to see that it must be y = 0, and hence, b = 0.

After a simple symbol discussion for (2.56), we may get a ≥ 0. Hence φθ,p(a, b) = 0 by

Proposition 2.41. So, the result (v) holds.

(vi). Since

∂ψθ,p(a, b)

∂a
=
∂φθ,p(a, b)

∂a
φθ,p(a, b),

∂ψθ,p(a, b)

∂b
=
∂φθ,p(a, b)

∂b
φθ,p(a, b),

the result (vi) is immediately satisfied from the above analysis. �

Proposition 2.46. The gradient function of the function ψθ,p, defined by (2.58) with

p ≥ 2 and θ ∈ (0, 1], is Lipschitz continuous, that is, there exists a positive constant L

such that

‖∇ψθ,p(a, b)−∇ψθ,p(c, d)‖ ≤ L‖(a, b)− (c, d)‖ (2.62)

holds for all (a, b), (c, d) ∈ IR2.

Proof. It follows from the definition of ψθ,p and the proof of Proposition 2.45(iii) that

∇ψθ,p(a, b) = ∇φθ,p(a, b)φθp(a, b) when (a, b) 6= (0, 0), and ∇ψθ,p(0, 0) = (0, 0)T. From

Proposition 2.45(iii), we know that ψθ,p is continuous differentiable. The proof is divided

into three cases.

Case 1: If (a, b) = (c, d) = (0, 0), it follows from Proposition 2.45 that∇ψθ,p(0, 0) = (0, 0),

and hence, (2.62) holds for all positive number L.

Case 2: Consider the case that one of (a, b) and (c, d) is (0, 0), but not all. We assume

that (a, b) 6= (0, 0) and (c, d) = (0, 0), without loss of generality. Then,

‖∇ψθ,p(a, b)−∇ψθ,p(c, d)‖ = ‖∇ψθ,p(a, b)− (0, 0)‖
= ‖∇φθ,p(a, b)φθ,p(a, b)− (0, 0)‖
= ‖∇φθ,p(a, b)‖φθ,p(a, b)
= ‖∇φθ,p(a, b)‖|φθ,p(a, b)− φθ,p(0, 0)|
≤ L‖(a, b)− (0, 0)‖,

where the inequality follows from the fact that {‖∇φθ,p(a, b)‖} is uniformly bounded on

IR2 (which can be obtained from the proof of Proposition 2.45(iii)) and φθ,p is Lipschitz

continuous on IR2 given in Proposition 2.43(iv). Hence, (2.62) holds for some positive

constant L.

Case 3: If both (a, b) and (c, d) are not (0, 0), we will apply Lemma 1.3 to prove that
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(2.62) holds for this case. For simplicity, we denote

ĥ1 :=
θsgn(a)|a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

ηp−1
θ,p (a, b)

;

ĥ2 :=
θsgn(b)|b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

ηp−1
θ,p (a, b)

;

â1 := (θ|a|p−2 + (1− θ)|a− b|p−2)ηpθ,p(a, b);

â2 := −ĥ2
1η

2p−2
θ,p (a, b);

b̂1 := −(1− θ)|a− b|p−2ηpθ,p(a, b);

b̂2 := −ĥ1ĥ2η
2p−2
θp (a, b);

ĉ1 := (θ|b|p−2 + (1− θ)|a− b|p−2)ηpθ,p(a, b);

ĉ2 := −ĥ2
2η

2p−2
θp (a, b).

When (a, b) 6= (0, 0), by direct calculations, we have

∂2ψθ,p(a, b)

∂a2
= (ĥ1 − 1)2 + (p− 1)

â1 + â2

η2p−1
θ,p (a, b)

(ηθ,p(a, b)− (a+ b));

∂2ψθ,p(a, b)

∂a∂b
= (ĥ1 − 1)(ĥ2 − 1) + (p− 1)

b̂1 + b̂2

η2p−1
θ,p (a, b)

(ηθ,p(a, b)− (a+ b));

∂2ψθ,p(a, b)

∂b2
= (ĥ2 − 1)2 + (p− 1)

ĉ1 + ĉ2

η2p−1
θp (a, b)

(ηθ,p(a, b)− (a+ b));

∂2ψθ,p(a, b)

∂b∂a
=

∂2ψθ,p(a, b)

∂a∂b
,

where the last equality follows from the fact that
∂2ψθ,p(a,b)

∂a∂b
and

∂2ψθ,p(a,b)

∂b∂a
are continuous

when (a, b) 6= (0, 0). Since for any p ≥ 2, ηθ,p(·, ·) is a norm on IR2 by Proposition 2.42,

it is easy to verify that

|a+ b| ≤ |a|+ |b| ≤ p
√
|a|p + |b|p +

p
√
|a|p + |b|p = 2‖(a, b)‖p ≤ 2κ∗ηθp(a, b),

where κ∗ > 0 is a constant depending on θ and p. Thus, we have

â1

η2p−2
θp (a, b)

=
θ|a|p−2 + (1− θ)|a− b|p−2

ηp−2
θp (a, b)

=
θ|a|p−2

ηp−2
θp (a, b)

+
(1− θ)|a− b|p−2

ηp−2
θp (a, b)

≤ θ
2
p + (1− θ) 2

p

≤ 2.
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Similarly, we have

|b̂1|
η2p−2
θp (a, b)

≤ 1;
ĉ1

η2p−2
θp (a, b)

≤ 2.

These, together with the results |ĥ1| ≤ 1 and |ĥ2| ≤ 1 given in Proposition 2.45, yield

|â2|
η2p−2
θ,p (a, b)

≤ 1;
|b̂2|

η2p−2
θ,p (a, b)

≤ 1;
|ĉ2|

η2p−2
θ,p (a, b)

≤ 1.

Thus, we compute that∣∣∣∣∂2ψθ,p(a, b)

∂a2

∣∣∣∣ =

∣∣∣∣∣(ĥ1 − 1)2 + (p− 1)
â1 + â2

η2p−1
θ,p (a, b)

(ηθ,p(a, b)− (a+ b))

∣∣∣∣∣
≤ |(ĥ1 − 1)2|+ (p− 1)

(∣∣∣∣∣ â1 + â2

η2p−1
θp (a, b)

ηθ,p(a, b)

∣∣∣∣∣+

∣∣∣∣∣ â1 + â2

η2p−1
θ,p (a, b)

(a+ b)

∣∣∣∣∣
)

≤ 4 + (1 + 2κ∗)(p− 1)

(
â1

η2p−2
θ,p (a, b)

+
|â2|

η2p−2
θp (a, b)

)
≤ 4 + 3(1 + 2κ∗)(p− 1);∣∣∣∣∂2ψθ,p(a, b)

∂a∂b

∣∣∣∣ =

∣∣∣∣∣(ĥ1 − 1)(ĥ2 − 1) + (p− 1)
â1 + â2

η2p−1
θ,p (a, b)

(ηθ,p(a, b)− (a+ b))

∣∣∣∣∣
≤ |(ĥ1 − 1)(ĥ2 − 1)|

+(p− 1)

(∣∣∣∣∣ b̂1 + b̂2

η2p−1
θ,p (a, b)

ηθ,p(a, b)

∣∣∣∣∣+

∣∣∣∣∣ b̂1 + b̂2

η2p−1
θ,p (a, b)

(a+ b)

∣∣∣∣∣
)

≤ 4 + (1 + 2κ∗)(p− 1)

(
|b̂1|

η2p−2
θ,p (a, b)

+
|b̂2|

η2p−2
θ,p (a, b)

)
≤ 4 + 2(1 + 2κ∗)(p− 1);∣∣∣∣∂2ψθ,p(a, b)

∂b2

∣∣∣∣ =

∣∣∣∣∣(ĥ2 − 1)2 + (p− 1)
ĉ1 + ĉ2

η2p−1
θ,p (a, b)

(ηθ,p(a, b)− (a+ b))

∣∣∣∣∣
≤ |(ĥ2 − 1)2|+ (p− 1)

(∣∣∣∣∣ ĉ1 + ĉ2

η2p−1
θ,p (a, b)

ηθ,p(a, b)

∣∣∣∣∣+

∣∣∣∣∣ ĉ1 + ĉ2

η2p−1
θ,p (a, b)

(a+ b)

∣∣∣∣∣
)

≤ 4 + (1 + 2κ∗)(p− 1)

(
ĉ1

η2p−2
θ,p (a, b)

+
|ĉ2|

η2p−2
θ,p (a, b)

)
≤ 4 + 3(1 + 2κ∗)(p− 1).

Hence, there exists a positive constant L such that (2.62) holds by Lemma 1.3. �

It should be noted that ∇ψθ,p is not Lipschitz continuous for all θ ∈ (0, 1] when
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p ∈ (1, 2). In fact, if we fixed θ = 1, for (a, b) 6= (0, 0) and (c, d) 6= (0, 0), we have

‖∇ψ1p(a, b)−∇ψ1p(c, d)‖
= ‖∇φ1p(a, b)φ1p(a, b)−∇φ1p(c, d)φ1p(c, d)‖

≥
∣∣∣∣sgn(a)|a|p−1

‖(a, b)‖p−1
p

φ1p(a, b)−
sgn(c)|c|p−1

‖(c, d)‖p−1
p

φ1p(c, d) + φ1p(c, d)− φ1p(a, b)

∣∣∣∣
≥

∣∣∣∣sgn(a)|a|p−1

‖(a, b)‖p−1
p

φ1p(a, b)−
sgn(c)|c|p−1

‖(c, d)‖p−1
p

φ1p(c, d)

∣∣∣∣− |φ1p(c, d)− φ1p(a, b)|

≥
∣∣∣∣sgn(a)|a|p−1

‖(a, b)‖p−1
p

φ1p(a, b)−
sgn(c)|c|p−1

‖(c, d)‖p−1
p

φ1p(c, d)

∣∣∣∣− (κ+
√

2)‖(c, d)− (a, b)‖,

where κ+
√

2 is given in Proposition 2.43(iv). If we let (a, b) = (1,−n), (c, d) = (−1,−n)

with n ∈ (1,∞), we have∣∣∣∣sgn(a)|a|p−1

‖(a, b)‖p−1
p

φ1p(a, b)−
sgn(c)|c|p−1

‖(c, d)‖p−1
p

φ1p(c, d)

∣∣∣∣
=

p√
1 + np + (n− 1)

(1 + np)(p−1)/p
+

p√
1 + np + (n+ 1)

(1 + np)(p−1)/p

= 2

p√
1 + np + n

(1 + np)(p−1)/p

≥ 4n

(1 + np)(p−1)/p

=
4n2−pnp−1

(1 + np)(p−1)/p

=
4n2−p

(1 + (1/n)p)(p−1)/p

≥ n2−p,

where the first and the second inequalities follow from 2 > p > 1 and n > 1. Since

‖(a, b)− (c, d)‖ = 2 and n ∈ (1,∞), from the above inequalities it is easy to verify that

∇ψ1p is not Lipschitz continuous.

We now turn our attention to the merit function for the NCP as defined in (2.54), and

proceed to examine several of its key properties. These properties serve as the theoretical

foundation for the algorithms presented in Chapter 5. Furthermore, we explore the

semismoothness related characteristics of the merit function. To this end, we define

Φθ,p(x) :=

 φθ,p(x1, F1(x))

. . .

φθ,p(xn, Fn(x))

 . (2.63)
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Consequently, the merit function defined in (2.54) can be expressed as

Ψθ,p(x) =
1

2
‖Φθ,p(x)‖2 =

n∑
i=1

ψθ,p(xi, Fi(x)). (2.64)

Proposition 2.47. (i) The function ψθ,p defined by (2.58) with p ≥ 2 and θ ∈ (0, 1] is

an SC1 function. Hence, if every Fi is an SC1 function, then the function Ψθ,p

defined by (2.64) with p ≥ 2 and θ ∈ (0, 1] is also an SC1 function.

(ii) If every Fi is an LC1 function, then the function Φθp defined by (2.63) with p > 1

and θ ∈ (0, 1] is strongly semismooth.

(iii) The function ψθ,p defined by (2.58) with p ≥ 2 and θ ∈ (0, 1] is an LC1 function.

Hence, if every Fi is an LC1 function, then the function Ψθ,p defined by (2.64) with

p ≥ 2 and θ ∈ (0, 1] is also an LC1 function.

Proof. (i) By Proposition 2.45, it suffices to establish the semismoothness of∇ψθ,p. From

the proof of Proposition 2.46, it is evident that ∇ψθ,p(a, b) is continuously differentiable

for all (a, b) 6= (0, 0). Thus, our focus narrows to demonstrating the semismoothness of

∇ψθ,p(a, b) at the point (0, 0).

For any direction (h1, h2) ∈ IR2 \ {(0, 0)}, it is known that ∇ψθ,p is differentiable at

(h1, h2). Consequently, it remains to show that

∇ψθ,p(h1, h2)−∇ψθ,p(0, 0)−∇2ψθ,p(h1, h2) · (h1, h2)T = o(‖(h1, h2)‖).
In fact, let â1, â2, b̂1, b̂2, ĉ1, ĉ2 be similarly defined as those in Proposition 2.46 with (a, b)

being replaced by (h1, h2). Denote

ĥ3 := (p− 1)
â1 + â2

η2p−1
θ,p (h1, h2)

φθ,p(h1, h2);

ĥ4 := (p− 1)
b̂1 + b̂2

η2p−1
θ,p (h1, h2)

φθ,p(h1, h2);

ĥ5 := (p− 1)
ĉ1 + ĉ2

η2p−1
θ,p (h1, h2)

φθ,p(h1, h2),

and

m1 := (θ|h1|p−2 + (1− θ)|h1 − h2|p−2)ηpθ,p(h1, h2)h1 − ĥ2
1η

2p−2
θ,p (h1, h2)h1;

m2 := (1− θ)|h1 − h2|p−2ηpθ,p(h1, h2)h2 + ĥ1ĥ2η
2p−2
θ,p (h1, h2)h2;

m3 := (θ|h1|p−2 + (1− θ)|h1 − h2|p−2)ηpθ,p(h1, h2)h1

−(1− θ)|h1 − h2|p−2ηpθ,p(h1, h2)h2;

m4 := ĥ1ĥ2η
2p−2
θ,p (h1, h2)h2 + ĥ2

1η
2p−2
θ,p (h1, h2)h1;

m5 := (θsgn(h1)|h1|p−1 + (1− θ)sgn(h1 − h2)|h1 − h2|p−1)ηpθ,p(h1, h2);

m6 := ĥ1ĥ2η
2p−2
θ,p (h1, h2)h2 + ĥ2

1η
2p−2
θ,p (h1, h2)h1.



116 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Then,(
H1

H2

)
:=

(
ĥ1 − 1

ĥ2 − 1

)
· φθ,p(h1, h2)−

(
0

0

)

−
(

(ĥ1 − 1)2 + ĥ3 (ĥ1 − 1)(ĥ2 − 1) + ĥ4

(ĥ1 − 1)(ĥ2 − 1) + ĥ4 (ĥ2 − 1)2 + ĥ5

)
·
(
h1

h2

)
.

and hence,

H1 = (ĥ1 − 1)φθ,p(h1, h2)− ((ĥ1 − 1)2 + ĥ3)h1 − ((ĥ1 − 1)(ĥ2 − 1) + ĥ4)h2

= (ĥ1 − 1)φθ,p(h1, h2)− ĥ3h1 − ĥ4h2 − (ĥ1 − 1)((ĥ1 − 1)h1 + (ĥ2 − 1)h2)

= (ĥ1 − 1)φθ,p(h1, h2)− ĥ3h1 − ĥ4h2 − (ĥ1 − 1)φθ,p(h1, h2)

= −(p− 1)

(
â1 + â2

η2p−1
θ,p (h1, h2)

h1 +
b̂1 + b̂2

η2p−1
θ,p (h1, h2)

h2

)
φθ,p(h1, h2)

= −(p− 1)φθ,p(h1, h2)

(
m1 −m2

η2p−1
θ,p (h1, h2)

)

= −(p− 1)φθ,p(h1, h2)

(
m3 −m4

η2p−1
θ,p (h1, h2)

)

= −(p− 1)φθ,p(h1, h2)

(
m5 −m6

η2p−1
θ,p (h1, h2)

)

= −(p− 1)φθ,p(h1, h2)

(
ĥ1 − ĥ1

ĥ1h1 + ĥ2h2

ηθ,p(h1, h2)

)
= −(p− 1)φθ,p(h1, h2)(ĥ1 − ĥ1)

= 0,

where the third equality follows from ĥ1h1 + ĥ2h2 = ηθ,p given in the proof of Proposition

2.43 and the definition of φθ,p, the fourth equality follows from the definitions of ĥ3, ĥ4, the

fifth equality follows from the definitions of â1, â2, b̂1, b̂2, and the eighth equality follows

from ĥ1h1 + ĥ2h2 = ηθ,p given in the proof of Proposition 2.43.

Similar analysis yields H2 = 0. Thus, ∇ψθ,p is semismooth. Furthermore, ψθ,p is a SC1

function.

(ii) Since an LC1 function is strongly semismooth, and the composition of strongly semis-

mooth functions preserves strong semismoothness, it follows from Proposition 2.43(vi)

that the desired result holds.

(iii) Utilizing the results established above, it is straightforward to verify that assertion

(iii) holds. �
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The conclusions of Proposition 2.47(i) and (iii) no longer hold when p ∈ (1, 2) for all

θ ∈ (0, 1], due to the fact that ∇ψθ,p is, in general, not locally Lipschitz continuous. For

instance, consider the points (a, b) = ( 1
n
,−1) and (c, d) = (− 1

n
,−1); it can be shown that

∇ψθ,p fails to be Lipschitz continuous in any neighborhood of (0,−1).

Proposition 2.48. Let Ψθ,p : IRn → IR be defined by (2.64) with p > 1 and θ ∈ (0, 1].

Then, Ψθ,p(x) ≥ 0 for all x ∈ IRn and Ψθ,p(x) = 0 if and only if x solves the NCP (2.1).

Moreover, suppose that the solution set of the NCP (2.1) is nonempty, then x is a global

minimizer of Ψθ,p if and only if x solves the NCP (2.1).

Proof. The result follows from Proposition 2.45 immediately. �

Proposition 2.49. Let Ψθ,p : IRn → IR be defined by (2.64) with p > 1, θ ∈ (0, 1].

Suppose that F is either a monotone function or a P0-function, then every stationary

point of Ψθ,p is a global minima of minx∈IRn Ψθ,p(x); and therefore solves the NCP (2.1).

Proof. Relying on Proposition 2.45 and [35, Lemma 2.1], the proof of this proposition

closely follows the argument presented in [35, Proposition 3.4], and is thus omitted. �

Proposition 2.50. Let Ψθ,p be defined by (2.64) with θ ∈ (0, 1] and p > 1. Suppose that

F is either a strongly monotone function or a uniform P -function. Then the level sets

L(Ψθ,p, γ) := {x ∈ IRn|Ψθ,p(x) ≤ γ}

are bounded for all γ ∈ IR.

Proof. By invoking Proposition 2.44, the proof proceeds in a manner analogous to that

of [35, Proposition 3.5], and is therefore omitted here. �

2.3.2 Construction by using penalized term

An alternative approach involves introducing a penalization term in place of a parameter.

In this section, we explore this technique by analyzing the following merit function Ψα,p :

IRn → IR, defined as

Ψα,p(x) :=
n∑
i=1

ψα,p(xi , Fi(x)), (2.65)

where ψα,p : IR2 → IR+ is an NCP function given by

ψα,p(a, b) :=
α

2
(max{0, ab})2 + ψp(a, b) =

α

2
(ab)2

+ +
1

2
(‖(a, b)‖p − (a+ b))2 (2.66)

with α ≥ 0 being a real parameter. When α = 0, the function ψα,p reduces to ψp, making

ψα,p an extension of ψp
FB

. Moreover, ψα,p generalizes the function ψα investigated by

Yamada, Yamashita, and Fukushima in [217], which corresponds to the case p = 2. In
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what follows, we examine several advantageous properties of the merit function ψα,p that

are instrumental in the subsequent analysis. We also establish mild conditions under

which the merit function Ψα,p possesses bounded level sets and provides a global error

bound.

The next lemma demonstrates that ψα,p shares many of the favorable properties of

ψp. Additionally, when α > 0, it enjoys a significant property that ψp
FB

lacks; see Lemma

2.11(f).

Lemma 2.11. The function ψα,p defined by (2.66) has the following favorable properties:

(a) ψα,p is an NCP function and ψα,p ≥ 0 for all (a, b) ∈ IR2.

(b) ψα,p is continuously differentiable everywhere, and moreover, if (a, b) 6= (0, 0),

∇aψα,p(a, b) = αb(ab)+ +

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
φp(a, b),

∇bψα,p(a, b) = αa(ab)+ +

(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φp(a, b);

(2.67)

and otherwise ∇aψα,p(0, 0) = ∇bψα,p(0, 0) = 0.

(c) For p ≥ 2, the gradient of ψα,p is Lipschitz continuous on any nonempty bounded set

S, i.e., there exists L > 0 such that for any (a, b), (c, d) ∈ S,

‖∇ψα,p(a, b)−∇ψα,p(c, d)‖ ≤ L‖(a, b)− (c, d)‖.

(d) ∇aψα,p(a, b) · ∇bψα,p(a, b) ≥ 0 for any (a, b) ∈ IR2, and furthermore, the equality

holds if and only if ψα,p(a, b)=0.

(e) ∇aψα,p(a, b) = 0⇐⇒ ∇bψα,p(a, b) = 0⇐⇒ ψα,p(a, b) = 0.

(f) Suppose that α > 0. If a→ −∞ or b→ −∞ or ab→∞, then ψα,p(a, b)→∞.

Proof. Parts (a), (b) and (f) directly follow from the definition of ψα,p and Proposition

3.2 (a) and(c) and [35, Lemma 3.1]. It remains to show parts (c)-(e).

(c) Notice that the functions a(ab)+ and b(ab)+ for any a, b ∈ IR are Lipschitz continuous

on any nonempty bounded set S, whereas φp(a, b) is Lipschitz continuous on IR2 by [35,

Proposition 3.1 (e)]. Therefore, by the expression of ∇ψα,p(a, b) and the boundedness of(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
and

(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
,

it is not hard to verify that the gradient ∇ψα,p(a, b) is Lipschitz continuous on S for

p ≥ 2.
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(d) If (a, b) = (0, 0), part (d) clearly holds. Now suppose that (a, b) 6= (0, 0). Then,

∇aψα,p(a, b) · ∇bψα,p(a, b)

=

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
(φp

FB
)2(a, b) (2.68)

+α2ab(ab)+
2 + αa(ab)+

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
φp

FB
(a, b)

+αb(ab)+

(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φp

FB
(a, b).

Since

ab(ab)+
2 ≥ 0,

sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1 ≤ 0, and
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1 ≤ 0, (2.69)

it suffices to show that the last two terms of (2.68) are nonnegative. We next claim that

αa(ab)+

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
φp(a, b) ≥ 0, ∀ (a, b) 6= (0, 0). (2.70)

If a ≤ 0, then φp
FB

(a, b) ≥ 0, which together with the second inequality in (2.69) implies

that (2.70) holds. If a > 0 and b > 0, then φp
FB

(a, b) < 0, which implies (2.70) by a

similar reason. If a > 0 and b ≤ 0, then (ab)+ = 0, and hence (2.70) holds. Similarly, we

have that

αb(ab)+

(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φp

FB
(a, b) ≥ 0, ∀ (a, b) 6= (0, 0).

Consequently, ∇aψα,p(a, b) · ∇bψα,p(a, b) ≥ 0. From (2.68), ∇aψα,p(a, b) · ∇bψα,p(a, b)=0

if and only if {a = 0 or (a ≥ 0 and b = 0) or φp(a, b)=0} and {b = 0 or (b ≥ 0 and

a=0) or φp
FB

(a, b) = 0} and {ab=0}. Thus, ∇aψα(a, b) · ∇bψα,p(a, b) = 0 if and only if

ψα,p(a, b) = 0.

(e) If ψα,p(a, b) = 0, then ab = 0 and φp
FB

(a, b) = 0 by part (a), which in turn implies

that ∇aψα,p(a, b) = 0 and ∇bψα,p(a, b) = 0. Next, we claim that ∇aψα,p(a, b) = 0 implies

ψα,p(a, b) = 0. Suppose that ∇aψα,p(a, b) = 0. Then,

αb(ab)+ = −
(

sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
φp

FB
(a, b). (2.71)

We can verify that the equality (2.71) implies b = 0, a ≥ 0 or b > 0, a = 0. Under the two

cases, we achieve ψα,p(a, b) = 0. Similarly, ∇bψα,p(a, b) = 0 also implies ψα,p(a, b) = 0.

�

Note that ab → ∞ does not necessarily imply ψp(a, b) → ∞, which means ψp
FB

does

not share Lemma 2.11(f). In fact, for α = 0, the lemma needs to be modified as “if
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(a → ∞) or (b → ∞) or (a → ∞ and b → ∞), then ψα,p(a, b) → ∞”. As we will

see later, Lemma 2.11(f) is useful for proving that the level sets of Ψα,p are bounded.

Besides, by Lemma 2.11(a), we immediately have the following result.

Proposition 2.51. Let Ψα,p be defined as in (2.65). Then, Ψα,p(x) ≥ 0 for all x ∈ IRn

and Ψα,p(x) = 0 if and only if x solves the NCP. Moreover, if the NCP has at least one

solution, then x is a global minimizer of Ψα,p if and only if x solves the NCP.

Proposition 2.51 indicates that the NCP can be recast as the unconstrained mini-

mization:

min
x∈IRn

Ψα,p(x). (2.72)

In general, finding a global minimizer of Ψα,p is a challenging task. Hence, it is crucial

to identify conditions under which a stationary point of Ψα,p is guaranteed to be a global

minimum. By applying Lemma 2.11(d) along with the proof techniques used in [81,

Theorem 3.5], one can establish that each stationary point of Ψα,p is a global minimizer

if and only if the mapping F is a P0-function.

Proposition 2.52. Let F be a P0-function. Then x∗ ∈ IRn is a global minimum of the

unconstrained optimization problem (2.72) if and only if x∗ is a stationary point of Ψα,p.

The following proposition demonstrates that the unconstrained minimization (2.72)

admits a stationary point under fairly mild assumptions on the mapping F . Given that

similar results and related analyses can be found in [27, Proposition 4.1], [81, Theorem

3.8], and [120, Theorem 4.1], we omit the proof here.

Proposition 2.53. The function Ψα,p has bounded level sets L(Ψα,p, γ) for all γ ∈ IR,

if F is monotone and the NCP is strictly feasible (i.e., there exists x̂ > 0 such that

F (x̂) > 0) when α > 0, or F is a uniform P -function when α ≥ 0.

In what follows, we show that the merit functions Ψp
FB

, Ψ
NR

and Ψα,p exhibit the same

order of growth on any bounded set.

Proposition 2.54. Let Ψ
NR

, Ψp
FB

, and Ψα,p be defined as in (2.10), (2.17), and (2.65),

respectively. Let S be an arbitrary bounded set. Then, for any p > 1, we have(
2− 2

1
p

)2

Ψ
NR

(x) ≤ Ψp
FB

(x) ≤
(

2 + 2
1
p

)2

Ψ
NR

(x) for all x ∈ IRn (2.73)

and (
2− 2

1
p

)2

Ψ
NR

(x) ≤ Ψα,p(x) ≤
(
αB2 + (2 + 2

1
p )2
)

Ψ
NR

(x) for all x ∈ S, (2.74)

where B is a constant defined by B = max
1≤i≤n

{
sup
x∈S
{max {|xi|, |Fi(x)|}}

}
<∞.
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Proof. The inequality in (2.73) is direct by Lemma 2.3 and the definitions of Ψp and

Ψ
NR

. In addition, from Lemma 2.3 and the definition of Ψα,p, it follows that

Ψα,p(x) ≥
(

2− 2
1
p

)2

Ψ
NR

(x) for all x ∈ IRn.

We next prove the inequality on the right hand side of (2.74). We claim that, for each i,

(xiFi(x))+ ≤ B|min{xi, Fi(x)}| for all x ∈ S. (2.75)

Without loss of generality, suppose Fi(x) ≥ xi. If Fi(x) ≥ xi ≥ 0, it follows that

(xiFi(x))+ = xiFi(x) = Fi(x)|min{xi, Fi(x)}| ≤ B|min{xi, Fi(x)}|.

If Fi(x) ≥ 0 ≥ xi, then (xiFi(x))+ = 0. If 0 ≥ Fi(x) ≥ xi, it follows that

(xiFi(x))+ = |xiFi(x)| ≤ |xi|2 ≤ B|min{xi, Fi(x)}|.

Thus, (2.75) holds for all x ∈ S. By Lemma 2.3 and (2.75), for all i = 1, . . . , n and x ∈ S,

ψα,p(xi, Fi(x)) ≤
{
αB2 + (2 + 2

1
p )2
}

min{xi, Fi(x)}2

holds for any p > 1. The proof is then complete by the definition of Ψα,p and Ψ
NR

. �

Proposition 2.55. Let Ψp
FB

and Ψα,p be defined by (2.17) and (2.65) respectively, and S

be any bounded set. Then, for any p > 1 and all x ∈ S, we have the following inequalities:

(2− 2
1
p )2(

αB2 + (2 + 2
1
p )2
)Ψα,p(x) ≤ Ψp

FB
(x) ≤ (2 + 2

1
p )2

(2− 2
1
p )2

Ψα,p(x)

where B is the constant defined as in Proposition 2.54.

Proof. This is an immediate consequence of Proposition 2.54. �

Since Ψp
FB

, Ψ
NR

and Ψα,p exhibit the same order of growth on bounded sets, it follows

that any one of them yields a global error bound for the NCP if the others do as well.

In what follows, we establish that Ψα,p provides a global error bound for the NCP when

α > 0, even in the absence of Lipschitz continuity of the mapping F .

Proposition 2.56. Let Ψα,p be defined as in (2.65). Suppose that F is a uniform P -

function with modulus µ > 0. If α > 0, then there exists a constant κ1 > 0 such that

‖x− x∗‖ ≤ κ1Ψα,p(x)
1
4 for all x ∈ IRn;

if α = 0 and S is any bounded set, there exists a constant κ2 > 0 such that

‖x− x∗‖ ≤ κ2

(
max

{
Ψα,p(x),

√
Ψα,p(x)

}) 1
2

for all x ∈ S;

where x∗ = (x∗1, · · · , x∗n) is the unique solution for the NCP (2.1).
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Proof. Since F is a uniform P -function, the NCP has the unique solution, and moreover,

µ‖x− x∗‖2 ≤ max
1≤i≤n

(x− x∗)(Fi(x)− Fi(x∗))
= max

1≤i≤n
{xiFi(x)− x∗iFi(x)− xiFi(x∗) + x∗iFi(x

∗)}
= max

1≤i≤n
{xiFi(x)− x∗iFi(x)− xiFi(x∗)}

≤ max
1≤i≤n

τi{(xiFi(x))+ + (−Fi(x))+ + (−xi)+}, (2.76)

where τi := max{1, x∗i , Fi(x∗)}. We next prove that for all (a, b) ∈ IR2,

(−a)+
2 + (−b)+

2 ≤ [‖(a, b)‖p − (a+ b)]2 . (2.77)

Without loss of generality, suppose a ≥ b. If a ≥ b ≥ 0, then (2.77) holds obviously. If

a ≥ 0 ≥ b, then ‖(a, b)‖p − (a+ b) ≥ −b ≥ 0, which in turn implies that

(−a)+
2 + (−b)+

2 = b2 ≤ [‖(a, b)‖p − (a+ b)]2 .

If 0 ≥ a ≥ b, then (−a)+
2 + (−b)+

2 = a2 + b2 ≤ [‖(a, b)‖p − (a+ b)]2. Hence, (2.77)

follows.

Suppose that α > 0. Using the inequality (2.77), we then obtain that

[(ab)+ + (−a)+ + (−b)+]2 = (ab)2
+ + (−b)2

+ + (−a)2
+ + 2(ab)+(−a)+

+2(−a)+(−b)+ + 2(ab)+(−b)+

≤ (ab)2
+ + (−b)2

+ + (−a)2
+ + (ab)2

+ + (−a)2
+

+(−a)2
+ + (−b)2

+ + (ab)2
+ + (−b)2

+

≤ 3
[
(ab)2

+ + (‖(a, b)‖p − (a+ b))2]
≤ τ

[
α

2
(ab)2

+ +
1

2
(‖(a, b)‖p − (a+ b))2

]
= τψα,p(a, b) for all (a, b) ∈ IR2, (2.78)

where τ := max

{
6

α
, 6

}
> 0. Combining (2.78) with (2.76) and letting τ̂ = max

1≤i≤n
τi, we

get

µ‖x− x∗‖2 ≤ max
1≤i≤n

τi {τψα,p(xi, Fi(x))}1/2

≤ τ̂ τ 1/2 max
1≤i≤n

ψα,p(xi, F (x))1/2

≤ τ̂ τ 1/2

{
n∑
i=1

{ψα,p(xi, Fi(x))

}1/2

= τ̂ τ 1/2Ψα,p(x, F (x))1/2.



2.3. CONSTRUCTIONS OF NCP FUNCTIONS BASED ON φP
FB

123

From this, the first desired result follows immediately by setting κ1 :=
[
τ̂ τ 1/2/µ

]1/2
.

Suppose that α = 0. From the proof of Proposition 2.54, the inequality (2.75) holds.

Combining with equations (2.76)–(2.77), it then follows that for all x ∈ S,

µ‖x− x∗‖2 ≤ max
1≤i≤n

τi
[
B|min{xi, Fi(x)}|+ (ψp

FB
(xi, Fi(x)))1/2

]
≤ τ̂ max

1≤i≤n

[√
2B̂ψp

FB
(xi, Fi(x)) + (ψp

FB
(xi, Fi(x)))1/2

]
≤
√

2τ̂ B̂
(

Ψp
FB

(x) +
√

Ψp
FB

(x)
)

≤ 4τ̂ B̂max
{

Ψp
FB

(x),
√

Ψp
FB

(x)
}

= 4τ̂ B̂max

{
Ψα,p(x),

√
Ψα,p(x)

}
,

where B̂ = B/(2− 2
1
p ) and the second inequality is due to Lemma 2.3. Letting κ2 :=

2
[
τ̂ B̂/µ

]1/2

, we obtain the desired result from the above inequality. �

The following lemma is crucial in the proof of Proposition 2.57, which is pivotal in

establishing the convergence rate of the algorithm.

Lemma 2.12. For all (a, b) 6= (0, 0) and p > 1, we have the following inequality:(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 2

)2

≥
(

2− 2
1
p

)2

.

Proof. If a = 0 or b = 0, the inequality holds obviously. Then we complete the proof by

considering three cases: (i) a > 0 and b > 0, (ii) a < 0 and b < 0, and (iii) ab < 0.

Case (i): Without loss of generality, we suppose a ≥ b > 0. Then, we have

|a|p−1 + |b|p−1

‖(a, b)‖p−1
p

=

(∣∣a
b

∣∣)p−1
+ 1((∣∣a

b

∣∣)p + 1
)1− 1

p

.

Let f(t) :=
tp−1 + 1

(tp + 1)1− 1
p

for any t > 0. By computation, we obtain that

f ′(t) =
tp−2(p− 1)(1− t)

(tp + 1)2 , ∀t > 0.

Since f ′(t) < 0 for t ≥ 1 and f(1) = 2
1
p , it follows that f(t) ≤ 2

1
p for t ≥ 1. Therefore,

|a|p−1 + |b|p−1

‖(a, b)‖p−1
p

≤ 2
1
p for p > 1,
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which in turn implies that 2 − |a|
p−1 + |b|p−1

‖(a, b)‖p−1
p

≥ 2 − 2
1
p for p > 1. Squaring both sides

then leads to the desired inequality.

Case (ii): By similar arguments as in case (i), we obtain

2− 2
1
p ≤ 2− |a|

p−1 + |b|p−1

‖(a, b)‖p−1
p

≤ 2 +
|a|p−1 + |b|p−1

‖(a, b)‖p−1
p

for p > 1,

from which the result follows immediately.

Case (iii): Again, we suppose |a| ≥ |b| and therefore have

2
1
p ≥ |a|

p−1 + |b|p−1

‖(a, b)‖p−1
p

≥ |a|
p−1 − |b|p−1

‖(a, b)‖p−1
p

for p > 1.

Thus 2− 2
1
p ≤ 2− |a|

p−1 − |b|p−1

‖(a, b)‖p−1
p

for p > 1 and the desired result is also satisfied. �

Proposition 2.57. Let ψα,p be given as in (2.66). Then, for all x ∈ IRn and p > 1,

‖∇aψα,p(x, F (x)) +∇bψα,p(x, F (x))‖2 ≥ 2
(

2− 2
1
p

)2

Ψp
FB

(x),

and particularly, for all x belonging to any bounded set S and p > 1,

‖∇aψα,p(x, F (x)) +∇bψα,p(x, F (x))‖2 ≥ 2(2− 2
1
p )4(

αB2 + (2 + 2
1
p )2
)Ψα,p(x)

where B is defined as in Proposition 2.54 and

∇aψα,p(x, F (x)) :=

(
∇aψα,p(x1, F1(x)), · · · ,∇aψα,p(xn, Fn(x))

)T

,

∇bψα,p(x, F (x)) :=

(
∇bψα,p(x1, F1(x)), · · · ,∇bψα,p(xn, Fn(x))

)T

.

Proof. The second part of the conclusions is direct by Proposition 2.55 and the first

part. From the definition of ∇aψα,p(x, F (x)),∇bψα,p(x, F (x)) and Ψp
FB

(x), the first part

of the conclusions is equivalent to proving that the following inequality

(∇aψα,p(a, b) +∇bψα,p(a, b))
2 ≥ 2

(
2− 2

1
p

)2

ψp
FB

(a, b) (2.79)
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holds for all (a, b) ∈ IR2. When (a, b) = (0, 0), the inequality (2.79) clearly holds. Suppose

(a, b) 6= (0, 0). Then, it follows from equation (2.67) that

(∇aψα,p(a, b) +∇bψα,p(a, b))
2

=

{
α(a+ b)(ab)+ + (φp(a, b))

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 2

)}2

= α2(a+ b)2(ab)2
+ + (φp(a, b))

2

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 2

)2

+2α(a+ b)(ab)+(φp(a, b))

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 2

)
.

Now, we claim that for all (a, b) 6= (0, 0) ∈ IR2,

2α(a+ b)(ab)+(φp(a, b))

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 2

)
≥ 0. (2.80)

If ab ≤ 0, then (ab)+ = 0 and the inequality (2.79) is clear. If a, b > 0, then by noting

that (
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 2

)
≤ 0, ∀(a, b) 6= (0, 0) ∈ IR2 (2.81)

and φp
FB

(a, b) ≤ 0, the inequality (2.80) also holds. If a, b < 0, then φp
FB

(a, b) ≥ 0,

which together with (2.81) then yields the inequality (2.80). Thus, we prove that the

inequality (2.80) holds for all (a, b) 6= (0, 0). Using Lemma 2.12 and equations (2.80)-

(2.81), we readily obtain the inequality (2.79) holds for all (a, b) 6= (0, 0). Then, the proof

is complete. �

2.3.3 Construction by using parameter and penalized term

We combine both previously discussed ideas, parameterization and penalization, to con-

struct a new class of NCP functions. In contrast to the function φθ,p introduced in (2.53),

defined by

φθ,p(a, b) = p
√
θ(|a|p + |b|p) + (1− θ)(|a− b|p)− (a+ b),

we now propose an alternative extension. Specifically, we define the function ψα,θ,p :

IR2 → IR+ as

ψα,θ,p(a, b) :=
α

2
(max{0, ab})2 + ψθ,p(a, b) (2.82)

where α ≥ 0 is a real parameter. The corresponding merit function Ψα,θ,p : IRn → IR+ is

defined by

Ψα,θ,p(x) :=
n∑
i=1

ψα,θ,p(xi , Fi(x)). (2.83)



126 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

It is worth noting that ψα,θ,p encompasses several well-known functions, such as ψ
FB

,

ψp
FB

, ψθ, ψθ,p, and the function ψ7 from [195], as special cases. Although ψα,θ,p is con-

structed by penalizing the function ψθ,p studied in [96], we explore additional and more

favorable properties of ψα,θ,p here. In particular, we show that the merit function Ψα,θ,p

possesses bounded level sets and provides a global error bound for the NCP under mild

assumptions, properties that were not addressed in [96]. Moreover, as highlighted in

[20], the penalized Fischer-Burmeister function not only exhibits stronger theoretical

properties than the classical FB function, but also demonstrates superior numerical per-

formance. This further motivates our consideration of this generalized class of NCP

functions. Indeed, a unified investigation into the properties of various penalized NCP

functions and their variants has been conducted; for further details, we refer the reader

to [211].

Lemma 2.13. The function ψα,θ,p defined by (2.82) has the following favorable properties:

(a) ψα,θ,p is an NCP function and ψα,θ,p ≥ 0 for all (a, b) ∈ IR2.

(b) ψα,θ,p is continuously differentiable everywhere. Moreover, if (a, b) 6= (0, 0),

∇aψα,θ,p(a, b)

= αb(ab)+ +

(
θsgn(a) · |a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
φθ,p(a, b),

∇bψα,θ,p(a, b)

= αa(ab)+ +

(
θsgn(b) · |b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
φθ,p(a, b),

(2.84)

and otherwise, ∇aψα,θ,p(0, 0) = ∇bψα,θ,p(0, 0) = 0.

(c) For p ≥ 2, the gradient of ψα,θ,p is Lipschitz continuous on any nonempty bounded

set S, i.e., there exists L > 0 such that for any (a, b), (c, d) ∈ S,

‖∇ψα,θ,p(a, b)−∇ψα,θ,p(c, d)‖ ≤ L‖(a, b)− (c, d)‖.

(d) ∇aψα,θ,p(a, b) · ∇bψα,θ,p(a, b) ≥ 0 for any (a, b) ∈ IR2, and the equality holds if and

only if ψα,θ,p(a, b) = 0.

(e) ∇aψα,θ,p(a, b) = 0⇐⇒ ∇bψα,θ,p(a, b) = 0⇐⇒ ψα,θ,p(a, b) = 0.

(f) Suppose that α > 0. If a→ −∞ or b→ −∞ or ab→∞, then ψα,θ,p(a, b)→∞.

Proof. (a) It is clear that ψα,θ,p(a, b) ≥ 0 for all (a, b) ∈ IR2 from the definition of ψα,θ,p.

Then by [96, Proposition 2.1], we have

ψα,θ,p(a, b) = 0⇐⇒ α

2
(max{0, ab})2 = 0 and ψθ,p(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.
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Hence, ψα,θ,p is an NCP function.

(b) First, direct calculations give the partial derivatives of ψα,θ,p. Then, using αb(ab)+ →
(0, 0) and αa(ab)+ → (0, 0) as (a, b) → (0, 0), we have α

2
(max{0, ab})2 is continuously

differentiable everywhere. By [96, Proposition 2.5], it is known that ψθ,p is continu-

ously differentiable everywhere. In view of the expression of ∇ψα,θ,p(a, b), ψα,θ,p is also

continuously differentiable everywhere.

(c) First, we claim that a(ab)+ for any a, b ∈ IR is Lipschitz continuous on any nonempty

bounded set S. For any (a, b) ∈ S and (c, d) ∈ S, without loss of generality, we may

assume that a2 + b2 ≤ k and c2 + d2 ≤ k which imply |a| ≤ k+ 1, |b| ≤ k+ 1, |c| ≤ k+ 1

and |d| ≤ k + 1. Then,∣∣∣∣a(ab)+ − c(cd)+

∣∣∣∣
=

1

2

∣∣∣∣a2b+ a|ab| − c2d− c|cd|
∣∣∣∣

=
1

2

∣∣∣∣a2b− a2d+ a2d− c2d+ a|ab| − c|ab|+ c|ab| − c|cd|
∣∣∣∣

≤ 1

2

(
|a2b− a2d|+ |a2d− c2d|+

∣∣a|ab| − c|ab|∣∣+
∣∣c|ab| − c|cd|∣∣)

=
1

2

(
a2|b− d|+ |a+ c||d||a− c|+ |ab||a− c|+ |c||ab− cd|

)
≤ 1

2

[
k|b− d|+ (|a|+ |c|)|d||a− c|+ k|a− c|+ (k + 1)|ab− ad+ ad− cd|

]
≤ 1

2

[
k|b− d|+ 2(k + 1)2|a− c|+ k|a− c|+ (k + 1)2(|b− d|+ |a− c|)

]
=

1

2

{[
2(k + 1)2 + k + (k + 1)2

]
|a− c|+

[
k + (k + 1)2

]
|b− d|

}
≤ l

(
|a− c|+ |b− d|

)
≤
√

2l‖(a, b)− (c, d)‖,
where l = 2(k + 1)2 + k + (k + 1)2. Hence, the mapping a(ab)+ is Lipschitz continuous

on any nonempty bounded set S and so is αa(ab)+. Similarly, αb(ab)+ is Lipschitz

continuous on any nonempty bounded set S. All of these imply the gradient function

of the function α
2
(max{0, ab})2 is Lipschitz continuous on any bounded set S. On the

other hand, by [96, Theorem 2.1], the gradient function of the function ψθ,p with p ≥ 2,

θ ∈ (0, 1] is Lipschitz continuous. Thus, the gradient of ψα,θ,p is Lipschitz continuous on

any nonempty bounded set S.

(d) If (a, b) = (0, 0), part(d) clearly holds. Now we assume that (a, b) 6= (0, 0). Then,

∇aψα,θ,p(a, b) · ∇bψα,θ,p(a, b) (2.85)

= cdφ2
θ,p(a, b) + α2ab(ab)+

2 + αa(ab)+cφθ,p(a, b) + αb(ab)+dφθ,p(a, b),
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where

c =

(
θsgn(a) · |a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
,

d =

(
θsgn(b) · |b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
.

From the proof of [96, Proposition 2.5 ], we know ab(ab)2
+ ≥ 0 and(

θsgn(a) · |a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
≤ 0,(

θsgn(b) · |b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
≤ 0, (2.86)

it suffices to show that the last two terms of (2.85) are nonnegative. For this purpose,

we claim that

αa(ab)+

(
θsgn(a) · |a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
φθ,p(a, b) ≥ 0 (2.87)

for all (a, b) 6= (0, 0). If a ≤ 0 and b ≤ 0, then φθ,p(a, b) ≥ 0, which together with

the second inequality in (2.86) implies that (2.87) holds. If a ≤ 0 and b ≥ 0, then

(ab)+ = 0, which says that (2.87) holds. If a > 0 and b > 0, then |a|p + |b|p ≥ |a − b|p.
Thus, φθ,p(a, b) ≤ φp(a, b) ≤ 0, which together with the second inequality in (2.86) yields

(2.87). If a > 0 and b ≤ 0, then (ab)+ = 0, and hence (2.87) holds. Similarly, we also

have

αb(ab)+

(
θsgn(b) · |b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
φθ,p(a, b) ≥ 0

for all (a, b) 6= (0, 0). Consequently, ∇aψα,θ,p(a, b) · ∇bψα,θ,p(a, b) ≥ 0. Besides, by the

proof of [96, Proposition 2.5], we know c = 0 if and only if b = 0 and a > 0; d = 0 if and

only if a = 0 and b > 0. This together with (2.85) says ∇aψα,θ,p(a, b) · ∇bψα,θ,p(a, b) = 0

if and only if {ψθ,p(a, b) = 0 and α2ab(ab)+
2 = 0} or {c = 0} or {d = 0} if and only

if {ψθ,p(a, b) = 0 and ab ≤ 0} or {c = 0} or {d = 0} if and only if ψθ,p(a, b) = 0 and
α
2
(max{0, ab})2 = 0 if and only if ψα,θ,p(a, b) = 0.

(e) If ψα,θ,p(a, b) = 0, then α
2
(max{0, ab})2 = 0 and ψθ,p(a, b) = 0, which imply ab ≤ 0

and φθ,p(a, b) = 0. Hence, ∇aψα,θ,p(a, b) = 0 and ∇bψα,θ,p(a, b) = 0. Now, it remains to

show that ∇aψα,θ,p(a, b) = 0 implying ψα,θ,p(a, b) = 0. Suppose that ∇aψα,θ,p(a, b) = 0,

which yields

αb(ab)+ = −
(
θsgn(a) · |a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
φθ,p(a, b). (2.88)
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We will argue that the equality (2.88) implies
(
b = 0, a ≥ 0

)
or
(
b > 0, a = 0

)
. To see

this, we let

c = αb(ab)+,

d = −
(
θsgn(a) · |a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
φθ,p(a, b),

e =

(
θsgn(a) · |a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 1

)
.

It is not hard to observe that
(
e ≤ 0

)
and

(
e = 0 implies b = 0

)
which are helpful for

the following discussions.

Case 1: b = 0 and a < 0. Then, it leads to c = 0 but d 6= 0, which violates (2.88).

Case 2: b < 0 and a ≥ 0. Then, we have e < 0, and hence c = 0 but d 6= 0, which

violates (2.88).

Case 3: b < 0 and a < 0. Then, we have e < 0 and φθ,p(a, b) > 0, which yield c ≤ 0 but

d > 0. This contradicts to (2.88) too.

Case 4: b > 0 and a > 0. Then, we have e < 0 and φθ,p(a, b) < 0, which imply c ≥ 0 but

d < 0. This contradicts to (2.88) too.

Case 5: b > 0 and a < 0. Similar arguments as in Case 2 cause a contradiction.

Thus, (2.88) implies
(
b = 0, a ≥ 0

)
or
(
b > 0, a = 0

)
, and each of which always yields

ψα,θ,p(a, b) = 0. By symmetry, ∇bψα,θ,p(a, b) = 0 also implies ψα,θ,p(a, b) = 0.

(f) If a → −∞ or b → −∞, from [96, Proposition 2.4], we know |φθ,p(a, b)| → ∞. In

addition, the fact α
2
(max{0, ab})2 ≥ 0 gives ψα,θ,p(a, b) → ∞. If ab → ∞, since α > 0,

we have α
2
(max{0, ab})2 → ∞. This together with ψθ,p(a, b) ≥ 0 says ψα,θ,p(a, b) → ∞.

�

Proposition 2.58. Let Ψα,θ,p be defined as in (2.83). Then Ψα,θ,p(x) ≥ 0 for all x ∈ IRn

and Ψα,θ,p(x) = 0 if and only if x solves the NCP. Moreover, if the NCP has at least one

solution, then x is a global minimizer of Ψα,θ,p if and only if x solves the NCP.

Proof. Since ψθ,p is a NCP function, from [96, Proposition 2.5], we have that x solving

the NCP ⇐⇒ x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0 ⇐⇒ x ≥ 0, F (x) ≥ 0, xiFi(x) = 0 for

all i ∈ {1, 2, · · · , n} ⇐⇒ Ψα,θ,p(x) = 0. Besides, Ψα,θ,p(x) is nonnegative. Thus, if x

solves the NCP, then x is a global minimizer of Ψα,θ,p. Next, we claim that if the NCP

has at least one solution, then x is a global minimizer of Ψα,θ,p =⇒ x solves the NCP.

Suppose x does not solve the NCP. From x solves the NCP ⇐⇒ Ψα,θ,p(x) = 0 and

Ψα,θ,p(x) is nonnegative, it is clear Ψα,θ,p(x) > 0. However, by assumption, the NCP

has a solution, say y, which makes that Ψα,θ,p(y) = 0. Then, we reach a contradiction

that Ψα,θ,p(x) > 0 = Ψα,θ,p(y) and x is a global minimizer of Ψα,θ,p. Thus, the proof is

complete. �
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Like what we have done in previous sections, Proposition 2.58 indicates that the NCP

can be recast as the unconstrained minimization:

min
x∈IRn

Ψα,θ,p(x). (2.89)

Then, we establish analogous results based on this reformulation.

Proposition 2.59. Let F be a P0-function. Then x∗ ∈ IRn is a global minimum of the

unconstrained optimization problem (2.89) if and only if x∗ is a stationary point of Ψα,θ,p.

Proposition 2.60. The function Ψα,θ,p has bounded level sets L(Ψα,θ,p, c) for all c ∈ IR,

if F is monotone and the NCP is strictly feasible (i.e., there exists x̂ > 0 such that

F (x̂) > 0) when α > 0, or F is a uniform P -function when α ≥ 0.

Proof. From [20], if F is a monotone function with a strictly feasible point, then the

following condition holds: for every sequence {xk} such that ‖xk‖ → ∞, (−xk)+ <

∞, and (−F (xk))+ < ∞, we have max
1≤i≤n

{
(xki )+Fi(x

k)+

}
→ ∞. Suppose that there

exists an unbounded sequence xk ⊆ L(Ψα,θ,p, c) for some c ∈ IR. Since Ψα,θ,p(x
k) ≤ c,

there is no index i such that xki → −∞ or Fi(x
k) → −∞ by Lemma 2.13(f). Hence,

max
1≤i≤n

{
(xki )+Fi(x

k)+

}
→ ∞. Also, there is an index j, and at least a subsequence xkj

such that
{

(xkj )+Fj(x
k)+

}
→∞. However, this implies that Ψα,θ,p(x

k) is unbounded by

Lemma 2.13(f), contracting to the assumption on level sets. Another part of the proof

is similar to the proof of [35, Proposition 3.5]. �

Lemma 2.14. Let φθ,p : IR2 → IR be defined as in (2.53). Then, for any p > 1 and all

θ ∈ (0, 1], there holds

(2− 2
1
p )|min{a, b}| ≤ |φθ,p(a, b)| ≤ (2 + 2

1
p )|min{a, b}|. (2.90)

Proof. Without loss of generality, we assume a ≥ b. We will prove the desired results

by considering the following two cases: (1) a+ b ≤ 0 and (2) a+ b > 0.

Case(1): a+ b ≤ 0. In this case, we need to discuss two subcases:

(i) |a|p + |b|p ≥ |a− b|p. In this subcase, we have

|φθ,p(a, b)| ≥ | p
√
θ(|a− b|p) + (1− θ)(|a− b|p)− (a+ b)|

= | p
√

(|a− b|p)− (a+ b)|
= |(|a− b| − (a+ b)|
= |a− b− (a+ b)|
= |2b|
= 2|min{a, b}|
≥ (2− 2

1
p )|min{a, b}| (2.91)
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On the other hand, since |a|p + |b|p ≥ |a− b|p and by [30, Lemma 3.2], we have

|φθ,p(a, b)| ≤ |φpFB
(a, b)| ≤ (2 + 2

1
p )|min{a, b}|.

(ii) |a|p + |b|p < |a− b|p. Since |a|p + |b|p < |a− b|p and by [30, Lemma 3.2], we have

|φθ,p(a, b)| > |φpFB
(a, b)| ≥ (2− 2

1
p )|min{a, b}|.

On the other hand, by the discussion of Case(1),

|φθ,p(a, b)| < 2|b| ≤ (2 + 2
1
p )|min{a, b}|.

Case(2): a + b > 0. If ab=0, then (2.90) clearly holds. Thus, we proceed the arguments

by discussing two subcases:

(i) ab < 0. In this subcases, we have a > 0, b < 0, |a| > |b|. By Lemma 2.2, |a|p + |b|p ≤
|a− b|p. Then,

φθ,p(a, b) ≥ φp
FB

(a, b) ≥ |a| − a− b ≥ −b = |min{a, b}| ≥ (2− 2
1
p )|min{a, b}|.

On the other hand,

φθ,p(a, b) ≤ |a− b| − (a+ b) = −2b = 2|min{a, b}| ≤ (2 + 2
1
p )|min{a, b}|.

(ii) ab > 0. In this subcases, we have a ≥ b > 0, |a|p + |b|p ≥ |a − b|p. By Lemma 2.2,

φθ,p(a, b) ≤ φp(a, b) ≤ 0 . Notice that φθ,p(a, b) ≥ |a− b| − (a+ b) = −2b = −2 min{a, b},
and hence we obtain that

|φθ,p(a, b)| ≤ 2|min{a, b}| ≤ (2 + 2
1
p )|min{a, b}|.

On the other hand, since φθ,p(a, b) ≤ φp(a, b) ≤ 0 , and by [30, Lemma 3.2], and hence

we obtain that

|φθ,p(a, b)| ≥ |φp(a, b)| ≥ (2− 2
1
p )|min{a, b}|. (2.92)

All the aforementioned inequalities (2.91)-(2.92) imply that (2.90) holds. �

Proposition 2.61. Let Ψθ,p,ΨNR
and Ψα,θ,p be defined as in (2.54), (2.10) and (2.83),

respectively. Let S be an arbitrary bounded set. Then, for any p > 1, we have

(2− 2
1
p )2Ψ

NR
(x) ≤ Ψθ,p(x) ≤ (2 + 2

1
p )2Ψ

NR
(x) for all x ∈ IRn (2.93)

and

(2− 2
1
p )2Ψ

NR
(x) ≤ Ψα,θ,p(x) ≤ (αB2 + (2 + 2

1
p )2)Ψ

NR
(x) for all x ∈ S, (2.94)

where B is a constant defined by B = max
1≤i≤n

{
sup
x∈S
{max {|xi|, |Fi(x)|}}

}
<∞.
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Proof. The inequality in (2.93) is direct by Lemma 2.14 and the definitions of Ψθ,p and

Ψ
NR

. In addition, from Lemma 2.14 and the definition of Ψα,θ,p, it follows that

Ψα,θ,p(x) ≥
(

2− 2
1
p

)2

Ψ
NR

(x) for all x ∈ IRn.

It remains to prove the inequality on the right hand side of (2.94). From the proof of

[30, Proposition 3.1], we know for each i,

(xiFi(x))+ ≤ B|min{xi, Fi(x)}| for all x ∈ S. (2.95)

By Lemma 2.14 and (2.95), for all i = 1, . . . , n and x ∈ S,

ψα,θ,p(xi, Fi(x)) ≤ 1

2

{
αB2 + (2 + 2

1
p )2
}

min{xi, Fi(x)}2

holds for any p > 1. The proof is then complete by the definitions of Ψα,θ,p and Ψ
NR

.

�

Proposition 2.62. Let Ψθ,p and Ψα,θ,p be defined by (2.54) and (2.83), respectively;

and S be any bounded set. Then, for any p > 1 and all x ∈ S, we have the following

inequalities:

(2− 2
1
p )2(

αB2 + (2 + 2
1
p )2
)Ψα,θ,p(x) ≤ Ψθ,p(x) ≤ (2 + 2

1
p )2

(2− 2
1
p )2

Ψα,θ,p(x)

where B is the constant defined as in Proposition 2.61.

Proof. It follows from Proposition 2.61 directly. �

Proposition 2.63. Let Ψα,θ,p be defined as in (2.83). Suppose that F is a uniform

P -function with modulus µ > 0. If α > 0, then there exists a constant κ1 > 0 such that

‖x− x∗‖ ≤ κ1Ψα,θ,p(x)
1
4 for all x ∈ IRn;

if α = 0 and S is any bounded set, there exists a constant κ2 > 0 such that

‖x− x∗‖ ≤ κ2

(
max

{
Ψα,θ,p(x),

√
Ψα,θ,p(x)

}) 1
2

for all x ∈ S;

where x∗ = (x∗1, · · · , x∗n) is the unique solution for the NCP.

Proof. By the proof of [30, Theorem 3.4], we have

µ‖x− x∗‖2 ≤ max
1≤i≤n

τi{(xiFi(x))+ + (−Fi(x))+ + (−xi)+}, (2.96)
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where τi := max{1, x∗i , Fi(x∗)}. We next prove that for all (a, b) ∈ IR2,

(−a)+
2 + (−b)+

2 ≤ [φθ,p(a, b)]
2. (2.97)

To see this, without loss of generality, we assume a ≥ b and discuss three cases:

(i) If a ≥ b ≥ 0, then (2.97) holds obviously.

(ii) If a ≥ 0 ≥ b, then |a|p + |b|p ≤ |a − b|p by Lemma 2.2, which implies φθ,p(a, b) ≥
‖(a, b)‖p − (a+ b) ≥ −b ≥ 0. Hence, (−a)+

2 + (−b)+
2 = b2 ≤ [φθ,p(a, b)]

2.

(iii) If 0 ≥ a ≥ b, then (−a)+
2 + (−b)+

2 = a2 + b2 ≤ [φθ,p(a, b)]
2. Hence, (2.97) follows.

Suppose that α > 0. Using the inequality (2.97), we then obtain that

[(ab)+ + (−a)+ + (−b)+]2 = (ab)2
+ + (−b)2

+ + (−a)2
+ + 2(ab)+(−a)+

+2(−a)+(−b)+ + 2(ab)+(−b)+

≤ (ab)2
+ + (−b)2

+ + (−a)2
+ + (ab)2

+ + (−a)2
+

+(−a)2
+ + (−b)2

+ + (ab)2
+ + (−b)2

+

≤ 3
[
(ab)2

+ + [φθ,p(a, b)]
2
]

≤ τ

[
α

2
(ab)2

+ +
1

2
[φθ,p(a, b)]

2

]
= τψα,θ,p(a, b), (2.98)

where τ := max

{
6

α
, 6

}
> 0. Combining (2.98) with (2.96) and letting τ̂ = max

1≤i≤n
τi, we

get

µ‖x− x∗‖2 ≤ max
1≤i≤n

τi {τψα,θ,p(xi, Fi(x))}1/2

≤ τ̂ τ 1/2 max
1≤i≤n

ψα,θ,p(xi, Fi(x))1/2

≤ τ̂ τ 1/2

{
n∑
i=1

{ψα,θ,p(xi, Fi(x))

}1/2

= τ̂ τ 1/2Ψα,θ,p(x)1/2.

From this, the first desired result follows immediately by setting κ1 :=
[
τ̂ τ 1/2/µ

]1/2
.

Suppose that α = 0. From the proof of Proposition 2.61, the inequality (2.95) holds.

Combining with equations (2.96)–(2.97), it then follows that for all x ∈ S,

µ‖x− x∗‖2 ≤ max
1≤i≤n

τi
[
B|min{xi, Fi(x)}|+ 2(ψθ,p(xi, Fi(x)))1/2

]
≤ τ̂ max

1≤i≤n

[√
2B̂(ψθ,p(xi, Fi(x)))1/2 + 2(ψθ,p(xi, Fi(x)))1/2

]
≤ (
√

2B̂ + 2)τ̂(Ψθ,p(x))1/2

= (
√

2B̂ + 2)τ̂(Ψα,θ,p(x))1/2

≤ (
√

2B̂ + 2)τ̂(max

{
Ψα,θ,p(x),

√
Ψα,θ,p(x)

}
)
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where B̂ = B/(2− 2
1
p ), τ̂ = max

1≤i≤n
τi and the second inequality is from Lemma 2.14.

Letting κ2 :=
[
(
√

2B̂ + 2)τ̂ /µ
]1/2

, we obtain the desired result from the above inequality.

�

Lemma 2.15. For all (a, b) 6= (0, 0) and p > 1, we have the following inequality:(
θ[sgn(a) · |a|p−1 + sgn(b) · |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 2

)2

≥
(

2− 2
1
p

)2

, ∀θ ∈ (0, 1].

Proof. If a = 0 or b = 0, the inequality holds obviously. Then we complete the proof by

considering three cases: (i) a > 0 and b > 0, (ii) a < 0 and b < 0, and (iii) ab < 0.

Case (i): Since θ ∈ (0, 1] and p > 1, it follows that θ1/p ≤ 1. Now, by the proof of [30,

Lemma 3.3], we have

θ[sgn(a) · |a|p−1 + sgn(b) · |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p

=
θ[|a|p−1 + |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p

≤ θ[|a|p−1 + |b|p−1]

[θ(|a|p + |b|p)](p−1)/p

=
θ1/p[|a|p−1 + |b|p−1]

[(|a|p + |b|p)](p−1)/p

≤ 21/p for p > 1.

Therefore, it yields

2− θ[|a|p−1 + |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
≥ 2− 2

1
p

for p > 1. Squaring both sides then leads to the desired inequality.

Case (ii): By similar arguments as in case (i), we obtain

2− 2
1
p

≤ 2− θ[|a|p−1 + |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p

≤ 2 +
θ[|a|p−1 + |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
for p > 1,

from which the result follows immediately.
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Case (iii): Again, we suppose |a| ≥ |b| and therefore have

2
1
p

≥ θ[|a|p−1 + |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p

≥ θ[|a|p−1 − |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
for p > 1.

Thus, it gives

2− 2
1
p ≤ 2− θ[|a|p−1 − |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p

for p > 1 and the desired result is also satisfied. �

Proposition 2.64. Let ψα,θ,p be given as in (2.82). Then, for all x ∈ IRn and p > 1,∥∥∇aψα,θ,p(x, F (x)) +∇bψα,θ,p(x, F (x))
∥∥2 ≥ 2

(
2− 2

1
p

)2

Ψθ,p(x) ∀θ ∈ (0, 1].

In particular, for all x belonging to any bounded set S and p > 1,∥∥∇aψα,θ,p(x, F (x)) +∇bψα,θ,p(x, F (x))
∥∥2 ≥ 2(2− 2

1
p )4(

αB2 + (2 + 2
1
p )2
)Ψα,θ,p(x) ∀θ ∈ (0, 1],

where B is defined as in Proposition 2.61 and

∇aψα,θ,p(x, F (x)) :=

(
∇aψα,θ,p(x1, F1(x)), · · · ,∇aψα,θ,p(xn, Fn(x))

)T

,

∇bψα,θ,p(x, F (x)) :=

(
∇bψα,θ,p(x1, F1(x)), · · · ,∇bψα,θ,p(xn, Fn(x))

)T

.

Proof. The second part of the conclusions is direct by Corollary 2.62 and the first

part. Thus, it remains to show the first part. From the definitions of ∇aψα,θ,p(x, F (x)),

∇bψα,θ,p(x, F (x)) and Ψθ,p(x), showing the first part is equivalent to proving that the

following inequality

(∇aψα,θ,p(a, b) +∇bψα,θ,p(a, b))
2 ≥ 2

(
2− 2

1
p

)2

ψθ,p(a, b) (2.99)

holds for all (a, b) ∈ IR2. When (a, b) = (0, 0), the inequality (2.99) clearly holds. Suppose

(a, b) 6= (0, 0). Then, it follows from equation (2.84) that

(∇aψα,θ,p(a, b) +∇bψα,θ,p(a, b))
2

=

{
α(a+ b)(ab)+ + (φθ,p(a, b))

(
θ[sgn(a) · |a|p−1 + sgn(b) · |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 2

)}2

= α2(a+ b)2(ab)2
+ + (φθ,p(a, b))

2

(
θ[sgn(a) · |a|p−1 + sgn(b) · |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 2

)2

+2α(a+ b)(ab)+(φθ,p(a, b))

(
θ[sgn(a) · |a|p−1 + sgn(b) · |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 2

)
.(2.100)
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Now, we claim that for all (a, b) 6= (0, 0) ∈ IR2,

2α(a+ b)(ab)+(φθ,p(a, b))

(
θ[sgn(a) · |a|p−1 + sgn(b) · |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 2

)
≥ 0. (2.101)

If ab ≤ 0, then (ab)+ = 0 and the inequality (2.101) is clear. If a, b > 0, then by the

proof of Lemma 2.15, we have(
θ[sgn(a) · |a|p−1 + sgn(b) · |b|p−1]

[θ(|a|p + |b|p) + (1− θ)|a− b|p)](p−1)/p
− 2

)
≤ 0, ∀(a, b) 6= (0, 0) ∈ IR2 (2.102)

and φθ,p(a, b) ≤ 0, which imply the inequality (2.101) also holds. If a, b < 0, then

φθ,p(a, b) ≥ 0, which together with (2.102) yields the inequality (2.101). Thus, we obtain

that the inequality (2.101) holds for all (a, b) 6= (0, 0). Now using Lemma 2.15 and

equations (2.100)–(2.101), we readily obtain the inequality (2.99) holds for all (a, b) 6=
(0, 0). The proof is thus complete. �

2.3.4 Construction by discrete generalization

We may also extend the concept of “discrete generalization”, as introduced in Section 2.2,

to the Fischer-Burmeister (FB) function. This leads to the definition of a new function,

denoted by denoted by φp
D−FB

, given by

φp
D−FB

(a, b) =
(√

a2 + b2
)p
− (a+ b)p, (2.103)

where p > 1 is a positive odd integer and (a, b) ∈ IR2. Observe that when p = 1, φp
D−FB

reduces to the standard Fischer-Burmeister function. We will show that φp
D−FB

is an NCP

function and, notably, is twice continuously differentiable without requiring the squaring

of its norm. However, it is important to note that if p is even, the function φp
D−FB

no longer

satisfies the properties necessary to qualify as an NCP function. Although differentiability

of φp
D−FB

is advantageous, it does not imply that Newton’s method can be directly applied

in all cases, since the Jacobian at a degenerate solution to the NCP may be singular (see

[110, 115]). Nonetheless, this differentiability feature opens the door to applying various

methods, such as derivative-free algorithms, for solving the NCP directly and effectively.

Lemma 2.16. Suppose that p = 2k + 1 where k = 1, 2, 3, · · · . Then, for any u, v ∈ IR,

we have up = vp if and only if u = v.

Proof. The proof is straightforward and can be found in [7, Theorem 1.12]. Here, we

provide an alternative proof.

“⇐” It is trivial.

“⇒” For v = 0, since up = vp, we have u = v = 0. For v 6= 0, from f(t) = tp − 1 being a

strictly monotone increasing function for any t ∈ IR, we have
(u
v

)p
− 1 = 0 if and only

if
u

v
= 1, which implies u = v. Thus, the proof is complete. �
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Lemma 2.17. Let φp
D−FB

be defined as in (2.103) where p is a positive odd integer. Then,

the value of φp
D−FB

(a, b) is negative only in the first quadrant, i.e., φp
D−FB

(a, b) < 0 if and

only if a > 0, b > 0.

Proof. We know that f(t) = tp is a strictly increasing function when p is odd. Using

this fact yields

a > 0, b > 0

⇐⇒ a+ b > 0 and ab > 0

⇐⇒
√
a2 + b2 < a+ b

⇐⇒
(√

a2 + b2
)p

< (a+ b)p

⇐⇒ φp
D−FB

(a, b) < 0,

which proves the desired result. �

Proposition 2.65. Let φp
D−FB

be defined as in (2.103) where p is a positive odd integer.

Then, the function φp
D−FB

is an NCP function.

Proof. Suppose φp
D−FB

(a, b) = 0 , which says
(√

a2 + b2
)p

= (a + b)p. Using p being a

positive odd integer and applying Lemma 2.16, we have(√
a2 + b2

)p
= (a+ b)p ⇐⇒

√
a2 + b2 = a+ b.

It is well known that
√
a2 + b2 = a+ b is equivalent to a, b ≥ 0, ab = 0 because φ

FB
is an

NCP-function. This shows that φp
D−FB

(a, b) = 0 implies a, b ≥ 0, ab = 0. The converse

direction is trivial. Thus, we prove that φp
D−FB

is an NCP-function. �

We now provide a more detailed discussion of the newly introduced NCP function

φp
D−FB

.

(a) For p being an even integer, φp
D−FB

is not an NCP function. A counterexample is

given as below.

φp
D−FB

(−5, 0) = (−5)2 − (−5)2 = 0.

(b) The surface of φp
D−FB

is symmetric, that is, φp
D−FB

(a, b) = φp
D−FB

(b, a).

(c) The function φp
D−FB

(a, b) is positive homogenous of degree p, i.e., φp
D−FB

(α(a, b)) =

αpφp
D−FB

(a, b).

(d) The function φp
D−FB

is neither convex nor concave function. To see this, taking p = 3

and using the following argument verify the assertion.

0 = φ3
D−FB

(1, 1) >
1

2
φ3

D−FB
(0, 0)+

1

2
φ3

D−FB
(2, 2) =

1

2
×0+

1

2

(
2

9
2 − 26

)
=

1

2

(
2

9
2 − 26

)
and

2−
3
2 = φ3

D−FB
(−1

2
,
1

2
) <

1

2
φ3

D−FB
(−1, 0) +

1

2
φ3

D−FB
(0, 1) =

1

2
× 2 +

1

2
× 0 = 1.
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Proposition 2.66. Let φp
D−FB

be defined as in (2.103) where p is a positive odd integer.

Then, the following hold.

(a) For p > 1, φp
D−FB

is continuously differentiable with

∇φp
D−FB

(a, b) = p

[
a(
√
a2 + b2)p−2 − (a+ b)p−1

b(
√
a2 + b2)p−2 − (a+ b)p−1

]
.

(b) For p > 1, φp
D−FB

is twice continuously differentiable with ∇2φp
D−FB

(0, 0) =

[
0 0

0 0

]
,

and for (a, b) 6= (0, 0),

∇2φp
D−FB

(a, b) =

 ∂2φp
D−FB

∂a2

∂2φp
D−FB

∂a∂b
∂2φp

D−FB

∂b∂a

∂2φp
D−FB

∂b2

 , (2.104)

where

∂2φp
D−FB

∂a2
= p

{
[(p− 1)a2 + b2](

√
a2 + b2)p−4 − (p− 1)(a+ b)p−2

}
,

∂2φp
D−FB

∂a∂b
= p[(p− 2)ab(

√
a2 + b2)p−4 − (p− 1)(a+ b)p−2] =

∂2φp
D−FB

∂b∂a
,

∂2φp
D−FB

∂b2
= p

{
[a2 + (p− 1)b2](

√
a2 + b2)p−4 − (p− 1)(a+ b)p−2

}
.

Proof. (a) The differentiability of φp
D−FB

, along with the computations of its first and

second derivatives, follows directly from standard calculus and is therefore omitted here

for brevity.

(b) For p > 3, the verifications are straightforward. The trick part is the case of p = 3.

Thus, we only show that φp
D−FB

is twice continuously differentiable whenever p = 3. In

fact, for (a, b) 6= (0, 0), φ3
D−FB

is twice continuously differentiable with ∇2φ3
D−FB

satisfying

(2.104). It remains to claim ∇2φ3
D−FB

(0, 0) =

[
0 0

0 0

]
, and ∇2φ3

D−FB
is continuous at

(0, 0). First, we note that

∇φ3
D−FB

(a, b)−∇φ3
D−FB

(0, 0) = 3

[
a(
√
a2 + b2)− (a+ b)2

b(
√
a2 + b2)− (a+ b)2

]
,

and ∥∥∥∥[ a(
√
a2 + b2)− (a+ b)2

b(
√
a2 + b2)− (a+ b)2

]∥∥∥∥ ≤ ∥∥∥∥(
√
a2 + b2)

[
a

b

]∥∥∥∥+

∥∥∥∥(a+ b)2

[
1

1

]∥∥∥∥
= a2 + b2 +

√
2(a+ b)2

= (1 +
√

2) (a2 + b2)︸ ︷︷ ︸
(i)

+2
√

2ab︸ ︷︷ ︸
(ii)

.



2.3. CONSTRUCTIONS OF NCP FUNCTIONS BASED ON φP
FB

139

(i)
(a2 + b2)√
a2 + b2

=
√
a2 + b2 → 0 as (a, b)→ (0, 0).

(ii)
|
√

2ab|√
a2 + b2

≤
√

2|ab|√
2|ab|

=
√
|ab| → 0 as (a, b)→ (0, 0), where the inequality holds by

arithmetic-geometric mean inequality.

Hence, we have

lim
(a,b)→(0,0)

‖∇φ3
D−FB

(a, b)−∇φ3
D−FB

(0, 0)‖
√
a2 + b2

= 0,

i.e., φ3
D−FB

is twice differentiable and ∇2φ3
D−FB

(0, 0) =

[
0 0

0 0

]
. Secondly, we claim each

second partial derivative is continuous at (0, 0). For

∂2φ3
D−FB

∂a2
= 3

(
2a2 + b2

√
a2 + b2

− 2(a+ b)

)
= 3

(√
a2 + b2 +

a2

√
a2 + b2

− 2(a+ b)

)
,

it is clear that
√
a2 + b2 → 0, a + b → 0 as (a, b) → (0, 0). And the second term a2√

a2+b2

also tends to zero because

a2

√
a2 + b2

= |a| · |a|√
a2 + b2

≤ |a| → 0.

Hence,
∂2φ3

D−FB

∂a2
is continuous at (0, 0). For

∂2φ3
D−FB

∂b2
, the proof is similar. For

∂2φp
D−FB

∂a∂b
= 3

(
ab√
a2 + b2

− 2(a+ b)

)
=
∂2φp

D−FB

∂b∂a
,

it is obvious that
∂2φp

D−FB

∂a∂b
tends to zero, where the first term tends to zero by (ii).

Therefore, we obtain φ3
D−FB

is twice continuously differentiable at (0, 0), which is the

desired result. �

Proposition 2.67. Let φp
D−FB

be defined as in (2.103) where p > 1 being a positive odd

integer. Then, the following hold.

(a) φp
D−FB

(a, b) < 0 ⇐⇒ a > 0, b > 0.

(b) φp
D−FB

is locally Lipschitz continuous, but not Lipschitz continuous.

(c) φp
D−FB

is not α-Hölder continuous for any α ∈ (0, 1].

(d) ∇aφ
p
D−FB

(a, b) · ∇bφ
p
D−FB

(a, b) > 0 on the first quadrant IR2
++.

(e) ∇aφ
p
D−FB

(a, b) · ∇bφ
p
D−FB

(a, b) = 0 provided that φp
D−FB

(a, b) = 0.



140 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Proof. (a) It follows from Lemma 2.17 immediately.

(b)-(c) The arguments are similar to Proposition 2.24(c)-(d).

(d) According to Proposition 2.66, we have

∇aφ
p
D−FB

(a, b) · ∇bφ
p
D−FB

(a, b)

= p
[
a(
√
a2 + b2)p−2 − (a+ b)p−1

]
· p
[
b(
√
a2 + b2)p−2 − (a+ b)p−1

]
= p2

[
ab(a2 + b2)p−2 + (a+ b)2p−2 − (a+ b)p−1(

√
a2 + b2)p−2 · (a+ b)

]
= p2

[
ab(a2 + b2)p−2 + (a+ b)2p−2 − (a+ b)p(

√
a2 + b2)p−2

]
= p2

[
ab(a2 + b2)p−2 + (a+ b)p

(
(a+ b)p−2 − (

√
a2 + b2)p−2

)]
.

Since a > 0, b > 0 and p− 2 is also an odd number, the term (a+ b)p−2 − (
√
a2 + b2)p−2

is always positive by part(a). This clearly implies the desired result.

(e) From Proposition 2.65, we know φp
D−FB

is an NCP function, which implies

φp
D−FB

(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

When a ≥ 0 and b = 0, we have ∇aφ
p
D−FB

(a, 0) = a(
√
a2)p−2 − ap−1 = ap−1 − ap−1 = 0.

Similarly, when b ≥ 0 and a = 0, we have ∇bφ
p
D−FB

(0, b) = 0. In summary, we conclude

∇aφ
p
D−FB

(a, b) · ∇bφ
p
D−FB

(a, b) = 0 provided that φp
D−FB

= 0. �

We next present several variants of φp
D−FB

. In fact, similar to the functions proposed

in [195], these variants can be verified to satisfy the defining properties of NCP functions.

φ1(a, b) = φp
D−FB

(a, b)− α(a)+(b)+, α > 0.

φ2(a, b) = φp
D−FB

(a, b)− α ((a)+(b)+)2 , α > 0.

φ3(a, b) = [φp
D−FB

(a, b)]2 + α ((ab)+)4 , α > 0.

φ4(a, b) = [φp
D−FB

(a, b)]2 + α ((ab)+)2 , α > 0.

Proposition 2.68. All the above functions φi for i ∈ {1, 2, 3, 4} are NCP functions.

Proof. Applying Lemma 2.17, the arguments are similar to those in [33, Proposition

2.4], which are omitted here. �

Indeed, in light of Lemma 2.16, we can construct additional variants of φp
D−FB

, each

of which constitutes a novel NCP function. More specifically, let k and m be positive

integers, and let f : IR× IR→ IR, and g : IR× IR→ IR be functions such that g(a, b) 6= 0

for all a, b ∈ IR. Then, the following constructions yield new variants of φp
D−FB

that satisfy
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the properties of NCP functions.

φ5(a, b) =
[
g(a, b)

(√
a2 + b2 + f(a, b)

)] 2k+1
2m+1 −

[
g(a, b)

(
a+ b+ f(a, b)

)] 2k+1
2m+1 .

φ6(a, b) =
[
g(a, b)(

√
a2 + b2 − a− b)

] 2k+1
2m+1

.

φ7(a, b) =
[
g(a, b)(

√
a2 + b2 − a+ f(a, b))

] 2k+1
2m+1 − [g(a, b)(b+ f(a, b))]

2k+1
2m+1 .

φ8(a, b) =
[
g(a, b)(

√
a2 + b2 − a+ f(a, b))

] 2k+1
2m+1 − [g(a, b)(b+ f(a, b))]

2k+1
2m+1 .

φ9(a, b) = eφi(a,b) − 1 where i = 5, 6, 7, 8.

φ10(a, b) = ln(|φi(a, b)|+ 1) where i = 5, 6, 7, 8.

Proposition 2.69. All the above functions φi for i ∈ {5, 6, 7, 8, 9, 10} are NCP functions.

Proof. This is an immediate consequence of Propositions 2.65-2.68. In particular, by

Lemma 2.16 and g(a, b) 6= 0 for a, b ∈ IR, we have

φ5(a, b) = 0

⇐⇒
[
g(a, b)

(√
a2 + b2 + f(a, b)

)] 2k+1
2m+1

=
[
g(a, b)

(
a+ b+ f(a, b)

)] 2k+1
2m+1

⇐⇒
{[

g(a, b)
(√

a2 + b2 + f(a, b)
)] 2k+1

2m+1
}2m+1

=
{ [
g(a, b)

(
a+ b+ f(a, b)

)] 2k+1
2m+1

}2m+1

⇐⇒
[
g(a, b)

(√
a2 + b2 + f(a, b)

)]2k+1

=
[
g(a, b)

(
a+ b+ f(a, b)

)]2k+1

⇐⇒ g(a, b)
(√

a2 + b2 + f(a, b)
)

= g(a, b)
(
a+ b+ f(a, b)

)
⇐⇒

(√
a2 + b2 + f(a, b)

)
=
(
a+ b+ f(a, b)

)
⇐⇒

√
a2 + b2 = a+ b.

The other functions φi for i ∈ {6, 7, 8, 9, 10} is similar to φ5. �

Proposition 2.70. Suppose that φ(a, b) = ϕ1(a, b) − ϕ2(a, b) is an NCP function on

IR × IR and k and m are positive integers. Then,
[
φ(a, b)

] 2k+1
2m+1 and

[
ϕ1(a, b)

] 2k+1
2m+1 −

[ϕ2(a, b)]
2k+1
2m+1 are NCP functions.

Proof. Using k and m being positive integers and applying Lemma 2.16, we have[
φ(a, b)

] 2k+1
2m+1 = 0

⇐⇒
{[
φ(a, b)

] 2k+1
2m+1

}2m+1

= 0

⇐⇒
[
φ(a, b)

]2k+1
= 0

⇐⇒ φ(a, b) = 0.
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Similarly, we have [
ϕ1(a, b)

] 2k+1
2m+1 − [ϕ2(a, b)]

2k+1
2m+1 = 0

⇐⇒
[
ϕ1(a, b)

] 2k+1
2m+1 = [ϕ2(a, b)]

2k+1
2m+1

⇐⇒
{[
ϕ1(a, b)

] 2k+1
2m+1

}2m+1

=
{

[ϕ2(a, b)]
2k+1
2m+1

}2m+1

⇐⇒
[
ϕ1(a, b)]2k+1 =

[
ϕ2(a, b)]2k+1

⇐⇒ ϕ1(a, b) = ϕ2(a, b)

⇐⇒ φ(a, b) = 0.

The above arguments together with the assumption of φ(a, b) being an NCP function

yield the desired result. �

Couple remarks regarding Proposition 2.70 are pointed out as below:

(a) When k is a positive odd integer and m is a positive integer,
[
φ(a, b)

]k
is an NCP

function. Whenever perturbing the parameter k, we obtain new NCP functions.

For example, if φ(a, b) is an NCP-function, then
[
φ(a, b)

]k+ 1
2m+1 is an NCP function.

We can determine suitable and nice NCP functions among these functions according

to their numerical performance.

(b) When k is a positive even integer and m is a positive integer,
[
φ(a, b)

]k
cannot be an

NCP function. However,
[
φ(a, b)

]k+ 1
2m+1 is an NCP function, which offers an way

to construct new NCP functions for even k. This approach opens an entirely new

avenue for constructing NCP functions, offering a flexible and systematic frame-

work for generating novel formulations with desirable analytical and computational

properties.

To conclude this section, we illustrate the surfaces of φp
D−FB

for various values of p,

providing a visual perspective that offers deeper insight into the structure and behavior

of this new family of NCP functions. Figure 2.20 is the surface if φ
D−FB

(a, b) from which

we see that it is convex. Figure 2.21 presents the surface of φ3
D−FB

(a, b) in which we

see that it is neither convex nor concave as mentioned earlier. In addition, the value of

φp
D−FB

(a, b) is negative only when a > 0 and b > 0 as mentioned in Lemma 2.17. The

surfaces of φp
D−FB

with various values of p are shown in Figure 2.22.

2.4 Constructions of NCP Functions involving cer-

tain functions

To motivate this section, we note that there exists an alternative approach to deriving

the functions φp
NR

and φp
D−FB

, as discussed in Section 2.2 and Section 2.3, respectively. In
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Figure 2.20: The surface of z = φ
D−FB

(a, b) and (a, b) ∈ [−10, 10]× [−10, 10].
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Figure 2.21: The surface of z = φ3
D−FB

(a, b) and (a, b) ∈ [−10, 10]× [−10, 10].
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(b) z = φ5
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(c) z = φ7
D−FB

(a, b)
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(d) z = φ9
D−FB

(a, b)

Figure 2.22: The surface of z = φp
D−FB

(a, b) with different values of p.



2.4. CONSTRUCTIONS OF NCP FUNCTIONS INVOLVING CERTAIN FUNCTIONS145

[79], a method is proposed that constructs new NCP functions from existing ones through

monotone transformations. This approach is, in fact, inspired by a key lemma presented

in [79], which serves as the foundation for the transformation-based construction.

Lemma 2.18. Assume that φ is continuous and φ(a, b) = f1(a, b)−f2(a, b). Let θ : IR→
IR be a strictly monotone increasing and continuous function. Then, the function φ is an

NCP function if and only if ψθ(a, b) = θ(f1(a, b))− θ(f2(a, b)) is an NCP function.

Proof. Please see [79, Lemma 15]. �

In light of Lemma 2.18, we define the function θ = θp as θp(t) = sgn(t)|t|p, where

“sgn(t)” denotes the sign function and p ≥ 1. To illustrate, consider the Fischer-

Burmeister function, for which we take f1(a, b) =
√
a2 + b2 and f2(a, b) = a + b. For

the natural residual function, we set f1(a, b) = a and f2(a, b) = (a − b)+. With these

choices, it can be verified that both φp
D−FB

and φp
NR

(with p restricted to odd integers)

can be derived from the more general formulation ψθp . In this sense, ψθp encompasses

both functions as special cases, and may thus be viewed as a form of “continuous gener-

alization”. However, our preference is to interpret these constructions through the lens

of “discrete generalization”, which more accurately reflects the nature of our approach.

Specifically, for the function φp
NR

(a, b) = ap − (a − b)p+, it is essential that p be an odd

integer to ensure that the resulting function retains the defining properties of an NCP

function. This condition underscores the discrete nature of the generalization: the valid-

ity of the function fundamentally depends on specific, discrete values of the parameter

p. Therefore, the central idea behind our new families of NCP functions is rooted in dis-

crete generalization, rather than in a smooth or continuous extension. This distinction

forms the basis for our terminology and conceptual framework. On the other hand, if we

consider the FB function φ
FB

(a, b) =
√
a2 + b2 − (a + b). When plugging p = 2 into θp,

we obtain a corresponding NCP function

ψθ2(a, b) = a2 + b2 − sgn(a+ b)(a+ b)2,

which doesn’t coincide with the form

φp
D−FB

(a, b) =
(√

a2 + b2
)2

− (a+ b)2.

Thus, the functions φp
D−FB

and φp
NR

only with positive odd integer p can be retrieved from

the way proposed in [79]. Again, it requires p to be a positive odd integer to guarantee

that both φp
D−FB

and φp
NR

are NCP functions. In view of all the above, we still call them

discrete-type families of NCP functions.

The aforementioned construction in Lemma 2.18 or [79, Lemma 15] relies on specific

functions θ(·) that satisfy particular conditions. Motivated by this concept, we propose

novel construction ways that incorporate alternative classes of functions, thereby expand-

ing the toolkit for generating new complementarity functions. Another noteworthy point
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is that both φp
D−FB

and φp
NR

serve not only as NCP functions, but also as complementar-

ity functions for second-order cone complementarity problems (SOCCPs); further details

can be found in Chapter 3.

2.4.1 Construction by using certain functions

As previously indicated, we introduce a novel approach for constructing continuous NCP

functions through the use of specific auxiliary functions. Let θ : IR→ IR be a continuous

function, and define φpθ : IR2 → IR by

φpθ(a, b) = ‖(a, b)‖p − (θ(b)a+ θ(a)b), p ≥ 1. (2.105)

It is evident that φpθ is a continuous and symmetric function, meaning that φpθ(a, b) =

φpθ(b, a). With an appropriate choice of θ, this construction gives rise to an NCP function.

Our analysis proceeds by considering two distinct cases, determined by the value of p.

I. The case of p = 1.

We first consider the case of p = 1, that is, φpθ : IR2 → IR is given by

φ1
θ(a, b) = |a|+ |b| −

(
θ(b)a+ θ(a)b

)
. (2.106)

Proposition 2.71. Let θ : IR → IR such that θ(0) = 1, θ(t) > 1 for all t > 0, and

−1 < θ(t) < 1 for all t < 0. Then, the function φ1
θ defined by (2.106) is an NCP

function. Moreover, φ1
θ(a, b) ≤ 0 if and only if (a, b) ∈ IR2

+.

Proof. Observe that we may rewrite φ1
θ as

φ1
θ(a, b) = a

(
sgn(a)− θ(b)

)
+ b
(
sgn(b)− θ(a)

)
,

where

sgn(t) :=


1 if t > 0,

0 if t = 0,

−1 if t < 0.

Then, it is easy to verify that

φ1
θ(a, b)

=


0 if a, b ≥ 0 & ab = 0,

a(1− θ(b)) + b(1− θ(a)) if a > 0 & b > 0,

−a(1 + θ(b)) + b(1− θ(a)) if a < 0 & b ≥ 0,

−a(1 + θ(b))− b(1 + θ(a)) if a < 0 & b < 0.

(2.107)

By our hypotheses on θ, we see that φ1
θ(a, b) < 0 for the second case, and φ1

θ(a, b) > 0 for

the third and last cases. Finally, by symmetry of φ1
θ, we have φ1

θ(a, b) > 0 when a > 0
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and b < 0 as in the third case. In other words, φ1
θ(a, b) = 0 if and only if a, b ≥ 0 and

ab = 0. This says that φ1
θ is an NCP function. �

An important implication of Proposition 2.71 is encapsulated in the following result,

which characterizes the growth behavior of the NCP function φ1
θ. This consequence plays

a key role in establishing the coerciveness of ΦF, as defined in (2.3) (see [64]), which in

turn facilitates the convergence analysis of relevant algorithms. We omit the proof, as it

follows directly from the explicit formula of φ1
θ given in (2.107). It is worth emphasizing,

however, that the strict inequality conditions on the limits of θ as x→ ±∞ are essential

to preclude the emergence of indeterminate products.

Proposition 2.72. Let θ satisfy the hypothesis of Proposition 2.71 such that lim
t→∞

θ(t) >

1 and −1 < lim
t→−∞

θ(t) < 1. Then, |φ1
θ(a

k, bk)| → ∞ as k → ∞ for any sequence

{(ak, bk)} ⊆ IR2 with |ak| → ∞ and |bk| → ∞.

For the remainder of this section, we assume that θ(·) satisfies the conditions specified

in Proposition 2.71 when p = 1. A straightforward choice for θ is any monotonically

increasing function whose range lies within (−1,∞), passes through the point (0, 1), and

is strictly monotonic in a neighborhood of zero.

Example 2.1. The functions

θ1(t) = et, θ2(t) =

√
t2 + 4 + t

2
, and θ3(t) =

2

1 + e−t

clearly satisfy the conditions of Proposition 2.71 and Corollary 2.72. The graphs of

φ1
θi

(a, b) for i = 1, 2, 3 are shown in Figures 2.23(a), Figure 2.24(a), and Figure 2.25(a).

For each i, it is evident that the function φ1
θi

is non-positive on IR2
+ and has the growth

behavior as described in Corollary 2.72. In addition, φ1
θi

is a nonsmooth nonconvex

function for all i. In particular, the function has sharp trace curves corresponding to

a = 0 and b = 0, which are the points of non-differentiability of φ1
θ.

II. The case of p > 1.

We now turn our attention to the case p > 1 and investigate the conditions under

which φpθ constitutes an NCP function. These conditions closely resemble those presented

in Proposition 2.71, with a few key distinctions. Specifically, strict inequality at t = 1 is

not required; however, a stronger lower bound on θ(t) is necessary for t < 0.

Proposition 2.73. Let p > 1. Suppose θ : IR → IR such that θ(0) = 1, θ(t) ≥ 1 for all

t > 0, and −2
1−p
p ≤ θ(t) ≤ 1 for all t < 0. Then, the function φpθ defined by (2.105) is

an NCP function. Moreover, φpθ(a, b) ≤ 0 if and only if (a, b) ∈ IR2
+.
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(d) Graph of φ10θ1

Figure 2.23: Graphs of φpθ1 for different values of p where θ1(t) = et.
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(c) Graph of φ2θ2

a-axis

−1.0
−0.5

0.0
0.5

1.0
b-axis

−1.0
−0.5

0.0
0.5

1.0

z-
ax

is
−2

−1

0

1

2

(d) Graph of φ10θ2

Figure 2.24: Graphs of φpθ2 for different values of p where θ2(t) =
√
t2+4+t

2
.
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(d) Graph of φ10θ3

Figure 2.25: Graphs of φpθ3 for different values of p where θ3(t) = 2
1+e−t

.
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Proof. Since φpθ is symmetric w.r.t. the line a = b, it suffices to check the values of φpθ
on the region a ≤ b. We carefully consider four cases.

(i) If a = 0 and b > 0, then φpθ(a, b) = |b| − θ(0)b = 0 since θ(0) = 1.

(ii) Suppose a > 0 and b > 0. Due to p > 1, we have ‖(a, b)‖p = (ap + bp)
1
p < a+ b which

in turn yields

φpθ(a, b) < a+ b− (θ(b)a+ θ(a)b) = a(1− θ(b)) + b(1− θ(a)).

Because θ(t) ≥ 1 for any t > 0 it follows that φpθ(a, b) < 0.

(iii) Suppose a < 0 and b ≥ 0. In this case, we have that ‖(a, b)‖p > a+ b. Thus,

φpθ(a, b) > a+ b− (θ(b)a+ θ(a)b) = a(1− θ(b)) + b(1− θ(a)).

Since b ≥ 0, we have 1 − θ(b) ≤ 0 and so the term a(1 − θ(b)) is nonnegative. On the

other hand, 1 − θ(a) > 0 since a < 0 which means that the term b(1 − θ(a)) is likewise

nonnegative. Hence, φpθ(a, b) > 0.

(iv) Finally, suppose that a < 0 and b < 0. The function t 7→ tp is strictly convex on

[0,∞) since p > 1. Thus,

‖(a, b)‖pp = |a|p + |b|p > 21−p(|a|+ |b|)p,

which implies that ‖(a, b)‖p > 2
1−p
p (|a|+ |b|) = −2

1−p
p (a+ b). Consequently,

φpθ(a, b) > −2
1−p
p (a+ b)− (θ(b)a+ θ(a)b)

= −a(2
1−p
p + θ(b))− b(2

1−p
p + θ(a))

≥ 0

where the last inequality follows from the assumption that θ(t) ≥ −2
1−p
p for all t ≤ 0.

From the above four cases, it is clear that φpθ(a, b) ≤ 0 only on IR2
+. This completes the

proof. �

Proposition 2.74. Let θ satisfy the hypothesis of Proposition 2.73 such that lim
t→∞

θ(t) > 1

and −2
1−p
p < lim

t→−∞
θ(t) < 1. Then, |φpθ(ak, bk)| → ∞ as k → ∞ for any sequence

{(ak, bk)} ⊆ IR2 with |ak| → ∞ and |bk| → ∞.

Proof. The result follows from the inequalities obtained from cases (ii), (iii) and (iv) in

the proof of Proposition 2.73. �

For all cases where p > 1, we henceforth assume that θ(·) satisfies the conditions

outlined in Proposition 2.73. We now proceed to illustrate this with a few examples.



152 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Example 2.2. Observe that by taking θ(t) ≡ 1, we obtain the generalized FB func-

tion (2.14). Hence, the family of NCP functions given by (2.105) subsumes the class of

generalized FB functions.

Example 2.3. As in Example 2.1, consider θi for i = 1, 2, 3. Then, for any p > 1, the

function φpθi is an NCP function by Proposition 2.73. Notice from Figures 1-3 (subfigures

(b) to (d)) that the graphs of φpθi (p > 1) look “smoother” than that of φ1
θi

. In particular,

φpθ is not differentiable only at the origin. Finally, φpθi is also nonconvex similar to φ1
θi

in

Example 2.1.

It is well established that no complementarity function can simultaneously possess

both differentiability and convexity [99, 157]. In fact, such a function may lack both

properties. The following two propositions demonstrate that this is indeed true for φpθ.

As observed in Examples 2.1 and 2.3, φpθ fails to be convex. We now assert that this

non-convexity holds more generally.

Proposition 2.75. Suppose that θ is strictly increasing on some interval I = [0, t0).

Then, φpθ is not convex.

Proof. Suppose that φpθ is convex, due to φpθ(0, 0) = 0, it must be the case that

φpθ(λa, λb) ≤ λφpθ(a, b) for any λ ∈ [0, 1] and any u, v ∈ IR. Taking any a, b ∈ I yields

φpθ(λa, λb)− λφpθ(a, b)
= ‖(λa, λb)‖p − (λθ(λb)a+ λθ(λa)b)− λ(‖(a, b)‖p
−(θ(b)a+ θ(a)b))

= λa(θ(b)− θ(λb)) + λb(θ(a)− θ(λa)).

Since λ ∈ [0, 1], we have that λa, λb ∈ I. By the strict monotonicity assumption on θ in

I, there has φpθ(λa, λb)− λφpθ(a, b) > 0. Hence, φpθ is not convex. �

Proposition 2.76. Suppose that θ is continuously differentiable and satisfies the condi-

tions of Proposition 2.71 if p = 1 or Proposition 2.73 if p > 1. Then, φpθ is semismooth.

Moreover, the generalized gradient of φ1
θ is described by

∂φ1θ(a, b) =

{[sgn(a)− θ′(a)b− θ(b), sgn(b)− θ′(b)a− θ(a)]T} if a 6= 0 & b 6= 0

{[0, 2λ− 1− aθ′(0)− θ(a)]T |λ ∈ [0, 1]} if a > 0 & b = 0

{[2λ− 1− bθ′(0)− θ(b), 0]T |λ ∈ [0, 1]} if a = 0 & b > 0

{[−2, 2λ− 1− aθ′(0)− θ(a)]T |λ ∈ [0, 1]} if a < 0 & b = 0

{[−2, 2λ− 1− bθ′(0)− θ(b)]T |λ ∈ [0, 1]} if a = 0 & b < 0

{[ξ, ζ]T | ξ, ζ ∈ [−2, 0] } if a = b = 0
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and for p > 1, we have

∂φpθ(a, b) ={{[ sgn(a)|a|p−1

‖(a,b)‖1−p
p
− θ(b)− bθ′(a), sgn(b)|b|

p−1

‖(a,b)‖1−p
p
− θ(a)− aθ′(b)

]T}
if (a, b) 6= (0, 0){

[ξ − 1, ζ − 1]T | |ξ| p
p−1 + |ζ| p

p−1 ≤ 1
}

if a = b = 0.

Proof. Note that the mapping f : (a, b) 7→ ‖(a, b)‖p is a convex map and is therefore

semismooth. Because g : (a, b) 7→ −(θ(b)a + θ(a)b is smooth (and hence semismooth),

their sum f + g = φpθ is semismooth. Now, we compute the generalized gradient of φ1
θ.

It is clear that φ1
θ is differentiable only on D := {(a, b) : a 6= 0 and b 6= 0}. Then, its

gradient

∇φ1
θ(a, b) =

[
sgn(a)− θ′(a)b− θ(b)
sgn(b)− θ′(b)a− θ(a)

]
∀(a, b) ∈ D,

coincides with the generalized gradient on D. Suppose then that (a, b) /∈ D. First, we

consider the case when a > 0 and b = 0. By definition of Clarke’s generalized gradient

∂φ1
θ(a, b) = conv (∂Bφ

1
θ(a, b)), i.e., the convex hull of the B-subdifferential

∂Bφ
1
θ(a, b) = {g ∈ IR2 | ∃{(ak, bk)}∞k=1 ⊆ D s.t.

(ak, bk)→ (a, b) and ∇φ1
θ(ak, bk)→ g} .

Let {(ak, bk)}∞k=1 ⊆ D such that (ak, bk) → (a, 0). For all sufficiently large k, we have

ak > 0. If bk > 0 for all k sufficiently large, then

lim
k→∞
∇φ1

θ(ak, bk) = lim
k→∞

[
sgn(ak)− θ′(ak)bk − θ(bk)
sgn(bk)− θ′(bk)ak − θ(ak)

]
=

[
1− θ′(a) · 0− θ(0)

1− θ′(0) · a− θ(a)

]
=

[
0

1− aθ′(0)− θ(a)

]
,

where we used the fact that θ is continuously differentiable and that θ(0) = 1. If bk < 0

for all k sufficiently large, then

lim
k→∞
∇φ1

θ(ak, bk) =

[
1− θ′(a) · 0− θ(0)

−1− θ′(0) · a− θ(a)

]
=

[
0

−1− aθ′(0)− θ(a)

]
.

In other cases, ∇φ1
θ(ak, bk) has no limit. Hence,

∂Bφ
1
θ(a, 0) =

{
[0, 1− aθ′(0)− θ(a)]T, [0,−1− aθ′(0)− θ(a)]T

}
and the result for the case a > 0 and b = 0 follows by taking the convex hull. We

omit the proof of the other cases as the arguments are similar. Finally, note that φpθ
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is differentiable on IR2 except at (0, 0). The computation of the generalized gradient

φpθ(0, 0) is similar to the computation of ∂φp
FB

(0, 0) shown as in [27]. This completes the

proof. �

Finally, we explore several variants and generalizations of φpθ. In addition, we propose

specific functions that can be employed to construct new NCP functions from existing

ones. To facilitate this discussion, we denote by (t)+ the projection of t onto the non-

negative real line, that is,

(t)+ :=

{
t if t ≥ 0,

0 if t < 0.

For convenience, we define φ̂p,iθ for i = 1, 2, 3 as follows:

φ̂p,1θ (a, b) = φpθ(a, b)− α(a)+(b)+

φ̂p,2θ (a, b) = φpθ(a, b)− α(ab)2
+

φ̂p,3θ (a, b) = φpθ(a, b)− α(a)2
+(b)2

+

where α > 0. For any p ≥ 1 and (a, b) ∈ IR2
++, we know from Proposition 2.71 and

Proposition 2.73 that φ̂p,iθ (a, b) < 0. Moreover, φ̂p,iθ (a, b) = φpθ(a, b) > 0 for all (a, b) /∈ IR2
+.

Consequently, these three variants are easily to be seen as NCP functions as well.

Proposition 2.77. The functions φ̂p,iθ are all NCP functions for any α > 0 and i =

1, 2, 3.

In recent years, both “continuous” and “discrete” generalizations of NCP functions

have attracted considerable interest; see [18, 27, 33, 35]. These generalizations typically

involve a tunable parameter q, which has been shown to significantly enhance the nu-

merical performance of certain algorithms based on NCP functions [2, 32, 35]. Moreover,

such extensions can yield NCP functions with distinct analytical properties [18, 33]. For

example, the generalized Fischer–Burmeister (FB) function (2.14) serves as a continuous

generalization of the classical FB function (2.12), with p ∈ (1,∞). The standard FB

function is recovered by setting p = 2. In parallel, discrete generalizations have also been

proposed. One notable instance is the natural residual (NR) function,

φ
NR

(a, b) = min{a, b} = a− (a− b)+

which remains a widely used NCP function alongside the FB function. A discrete gener-

alization of the NR function, proposed in [33], is given by

φq
NR

(a, b) = aq − [(a− b)+]q (2.108)

where q is a positive odd integer. When q = 1, the original NR function is recovered. The

term “discrete” reflects the fact that q is restricted to positive odd integers. An intriguing
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feature of the generalized NR function (2.108) is its twice differentiability for q > 3, a

property not shared by the original NR function. This enhanced smoothness renders φq
NR

particularly suitable for algorithms that require differentiable NCP functions.

We wish to highlight that the technique underlying the second type of generalization

discussed above, namely, the discrete generalization, can be systematically applied to

NCP functions of the form

φ(a, b) = φ̄1(a, b)− φ̄2(a, b). (2.109)

In other words, the function

φq(a, b) := [φ̄1(a, b)]q − [φ̄2(a, b)]q

is always a discrete generalization of φ given in (2.109), where q is a positive odd integer.

As a matter of fact, we can further extend such technique by considering any family of

injective functions {fq}. More precisely, consider the function

φfq(a, b) := fq(φ̄1(a, b))− fq(φ̄2(a, b)) (2.110)

which can be readily shown to be an NCP function whenever fq is injective and φ is an

NCP function of the form given in (2.109). This transformation, as expressed in (2.110),

has also been observed in [79]. For example, the discrete generalized NR function (2.108)

can be obtained by applying this transformation to the standard NR function using the

map fq(t) = tq, where q > 0 is an odd integer. Applying the same transformation to our

NCP function φpθ, we arrive at the discrete generalization

(φpθ)
q := ‖(a, b)‖qp − (θ(b)a+ θ(a)b)q,

where q is again a positive odd integer. As noted earlier, such generalizations may yield

NCP functions with distinct analytical properties. In particular, it is straightforward to

verify that (φpθ)
q is continuously differentiable on IR2 whenever q ≥ p > 1, in contrast to

the original function φpθ, which is not differentiable at the origin.

Another discrete generalization of φpθ can be obtained by applying the same map

fq(t) = tq to the equivalent form of φpθ given by

φpθ(a, b) = φp
FB

(a, b)−
[
a(θ(b)− 1) + b(θ(a)− 1)

]
. (2.111)

This yields another symmetric generalization

(φpθ)
q
FB

(a, b) = [φp
FB

(a, b)]q −
[
(a(θ(b)− 1) + b(θ(a)− 1)

]q
.

For q = 1, Proposition 2.76 ensures the semismoothness of φpθ. Interestingly, the discrete

generalization introduced above yields smooth NCP functions for any p > 1 and odd

integers q ≥ 3. This fact is straightforward to verify, and we omit the proof for brevity.
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These results are consolidated in Proposition 2.78. It is also worth noting that all of the

aforementioned generalizations preserve symmetry. More generally, the transformation

in (2.110) produces symmetric NCP functions when applied to our proposed function φpθ
as well as to its alternative representation given in (2.111).

Proposition 2.78. Suppose θ is continuously differentiable and satisfies the conditions

of Proposition 2.71 if p = 1, or Proposition 2.73 if p > 1. Let q ≥ 1 be an odd integer.

Then,

(φpθ)
q(a, b) := ‖(a, b)‖qp −

(
θ(b)a+ θ(a)b

)q
is a discrete generalization of φpθ, which is smooth if q ≥ p > 1. Additionally,

(φpθ)
q
FB

(a, b) := [φp
FB

(a, b)]q − [(a(θ(b)− 1) + b(θ(a)− 1)]q

is also a discrete generalizations of φpθ, which is smooth if q ≥ 3 and p > 1

It is worth noting that the function fq(t) = tq, with q ≥ 1 an odd integer, is com-

monly used to enhance the numerical performance of algorithms. In the context of neural

network-based approaches to optimization, such functions are often referred to as acti-

vation functions. Their primary purpose is to improve convergence rates, and several

alternative activation functions have been proposed in the literature. A few notable

examples include:

1. Bipolar Sigmoid Function [228, 229]:

fq(t) =
1− e−qt
1 + e−qt

, q > 0.

2. Power-Sigmoid Function [228, 229]:

fq(t) =

{
1+e−q1
1−e−q1 · 1−e−q1t

1+e−q1t
if |t| < 1

tq2 if |t| ≥ 1

where q = (q1, q2), q1 > 2 and q2 ≥ 3 is an odd integer.

3. Smooth Power-Sigmoid Function [228, 229]:

fq(t) =
1

2
· 1 + e−q1

1− e−q1 ·
1− e−q1t
1 + e−q1t

+
1

2
tq2

where q = (q1, q2), q1 > 2 and q2 ≥ 3.

4. Sign-Bi-Power Function [136]:

fq(t) =


|t|q + |t| 1q if t > 0

0 if t = 0

−|t|q − |t| 1q if t < 0

, q > 0.
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All of the functions mentioned above are injective mappings that can be employed

to transform an NCP function of the form (2.109). However, these transformations do

not constitute generalizations in the sense described earlier. A true generalization, as

illustrated, is only possible if there exists a parameter q̄ such that fq̄(t) ≡ t. Nonetheless,

we observe that the function fq
2

yields a continuous generalization via the transformation

(2.110) when fq is chosen to be the “sign-bi-power function”. In any case, a promising

direction for future research lies in exploring how these injective functions might enhance

the numerical efficiency of NCP function, based solution methods, much in the same way

they are used to improve performance in neural network approaches. For the power func-

tion fq(t) = tq, and the resulting generalized NR function, some encouraging numerical

results have already been reported in [2]. Finally, we remark that the composite map

fq ◦ φpθ is also a valid NCP function, provided that fq is injective and satisfies fq(0) = 0,

as is the case for the aforementioned activation functions. This approach is also worth

consideration in numerical implementations.

2.4.2 Construction by using invertible functions

In this section, we introduce a novel approach to constructing NCP functions, an idea

that, to the best of our knowledge, is new to the literature. Specifically, we identify

conditions under which the class of invertible functions can be effectively utilized to gen-

erate new NCP functions. This development is motivated by the discovery and structural

analysis of three particular NCP functions, which reveal a unifying pattern. Illustrative

examples of the resulting NCP functions, accompanied by their graphical representations,

are also provided.

We begin by presenting the following three NCP functions, which serve as the inspi-

ration for our proposed construction:

φ
ln−max

(a, b) = ln(e|a| + e|b| − 1)−max(a, b); (2.112)

φ
ln−sum

(a, b) = ln(e|a| + e|b| − 1)− (a+ b); (2.113)

φ
abs−exp

(a, b) = |a|+ |b| − eab− eba. (2.114)

The first two functions, φ
ln−max

and φ
ln−sum

, are constructed using the exponential and

logarithmic functions, with additional terms designed to ensure that the function evalu-

ates to zero along the nonnegative axes. These NCP functions were discovered through

an examination of the construction techniques in [3, 4]. It is important to note that all

three functions involve absolute value terms, rendering them nondifferentiable. Conse-

quently, for the purposes of subsequent analysis, we must work with their subdifferentials

in the sense of Clarke [52]. To that end, we make use of the sign function:

sgn(t) :=


1 if t > 0,

0 if t = 0,

−1 if t < 0.
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along with the definition of the convex hull of all limit points of Jacobian sequences.

Proposition 2.79. Let φ
ln−max

: IR2 → IR be defined in (2.112), that is,

φ
ln−max

(a, b) = ln(e|a| + e|b| − 1)−max(a, b).

Then, the following hold.

(a) The function φ
ln−max

is an NCP function.

(b) The subdifferential of φ
ln−max

is described by

∂φ
ln−max

(a, b) =



{(
ea

ea+eb−1
− 1, eb

ea+eb−1

)}
if (a, b) ∈ I1 = {(a, b) | a, b > 0 and a > b}.{(

ea

ea+eb−1
, eb

ea+eb−1
− 1
)}

if(a, b) ∈ I2 = {(a, b) | a, b > 0 and b > a}.{(
−e−a

e−a+eb−1
, eb

e−a+eb−1
− 1
)}

if (a, b) ∈ I3 = {(a, b) | a < 0, b > 0}.{(
−e−a

e−a+e−b−1
, −e−b
e−a+e−b−1

− 1
)}

if (a, b) ∈ I4 = {(a, b) | a, b < 0 and b > a}.{(
−e−a

e−a+e−b−1
− 1, −e−b

e−a+e−b−1

)}
if (a, b) ∈ I5 = {(a, b) | a, b < 0, and a > b}{(

ea

ea+e−b−1
− 1, −e−b

ea+e−b−1

)}
if (a, b) ∈ I6 = {(a, b) | a > 0, b < 0}{

(0, ρ) | −1
ea
≤ ρ ≤ 1

ea

}
if (a, b) ∈ L1 = {(a, b) | a > 0, b = 0}

{(ρ, 0) | − 1 ≤ ρ ≤ 1} if (a, b) ∈ L3 = {(a, b) | a = 0, b > 0}
conv

{(
ea

2ea−1
− 1

ea

2ea−1

)
,

(
ea

2ea−1
ea

2ea−1
− 1

)}
if (a, b) ∈ L2 = {(a, b) | a, b > 0, and a = b}.

{(−1, ρ− 1) | − ea ≤ ρ ≤ ea} if (a, b) ∈ L4 = {(a, b) | a < 0, b = 0}.{
(ρ− 1,−1) | − eb ≤ ρ ≤ eb

}
if (a, b) ∈ L6 = {(a, b) | a = 0, b < 0}.

conv

{(
−e−a

2e−a−1
−e−a

2e−a−1
− 1

)
,

(
−e−a

2e−a−1
− 1

−e−a
2e−a−1

)}
if (a, b) ∈ L5 = {(a, b) | a, b < 0, and a = b}.

conv

{
(0, 1), (1, 0),

(−1,−2), (−2,−1)

}
if (a, b) = (0, 0).

where conv(S) denotes the convex hull of the set S.

Proof. (a) “⇒” Suppose φ
ln−max

(a, b) = 0, we need to show a ≥ 0, b ≥ 0, ab = 0. To

proceed, we discuss two cases.

(i) If a ≥ b, then e|a| + e|b| − 1 = ea. The left-hand side of this equality is greater than

or equal to 1 since the absolute value is always nonnegative. Hence, ea must be greater

than or equal to 1. This leads to a being greater than or equal to 0. Thus, a ≥ 0 and

e|b| − 1 = 0, which says a ≥ 0 and b = 0.

(ii) If b ≥ a, by the symmetric form of the function φ
ln−max

, we see that a = 0, b ≥ 0.

Therefore, a ≥ 0, b = 0 or a = 0, b ≥ 0. This is equivalent to a ≥ 0, b ≥ 0, ab = 0.
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“⇐” Conversely, if a ≥ 0, b ≥ 0, ab = 0, then a ≥ 0, b = 0 or a = 0, b ≥ 0. For

a ≥ 0, b = 0, then φ
ln−max

(a, b) = ln(e|a| + e|b| − 1) − max(a, b) = |a| − a = 0. For

a = 0, b ≥ 0, then φ
ln−max

(a, b) = ln(e|a| + e|b| − 1)−max(a, b) = |b| − b = 0. Thus, the

proof is done.

(b) Note that φ
ln−max

is differentiable at (a, b) ∈ I1 ∼ I6, whereas it is not differentiable

in other cases. Hence, we need to calculate each case separately.

Case (1): (a, b) ∈ I1 = {(a, b) | a, b > 0 and a > b}.

∇φ
ln−max

(a, b)

=

(
e|a|a

(e|a| + e|b| − 1)|a| − 1,
e|b|b

(e|a| + e|b| − 1)|b|

)
=

(
ea

ea + eb − 1
− 1,

eb

ea + eb − 1

)

Case (2): (a, b) ∈ I2 = {(a, b) | a, b > 0 and b > a}.

∇φ
ln−max

(a, b)

=

(
e|a|a

(e|a| + e|b| − 1)|a| ,
e|b|b

(e|a| + e|b| − 1)|b| − 1

)
=

(
ea

ea + eb − 1
,

eb

ea + eb − 1
− 1

)

Case (3): (a, b) ∈ I3 = {(a, b) | a < 0, b > 0}.

∇φ
ln−max

(a, b)

=

(
e|a|a

(e|a| + e|b| − 1)|a| ,
e|b|b

(e|a| + e|b| − 1)|b| − 1

)
=

( −e−a
e−a + eb − 1

,
eb

e−a + eb − 1
− 1

)

Case (4): (a, b) ∈ I4 = {(a, b) | a, b < 0, and b > a}.

∇φ
ln−max

(a, b)

=

(
e|a|a

(e|a| + e|b| − 1)|a| ,
e|b|b

(e|a| + e|b| − 1)|b| − 1

)
=

( −e−a
e−a + e−b − 1

,
−e−b

e−a + e−b − 1
− 1

)
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Case (5): (a, b) ∈ I5 = {(a, b) | a, b < 0, and a > b}.

∇φ
ln−max

(a, b)

=

(
e|a|a

(e|a| + e|b| − 1)|a| − 1,
e|b|b

(e|a| + e|b| − 1)|b|

)
=

( −e−a
e−a + e−b − 1

− 1,
−e−b

e−a + e−b − 1

)
Case (6): (a, b) ∈ I6 = {(a, b) | a > 0, b < 0}.

∇φ
ln−max

(a, b)

=

(
e|a|a

(e|a| + e|b| − 1)|a| − 1,
e|b|b

(e|a| + e|b| − 1)|b|

)
=

(
ea

ea + e−b − 1
− 1,

−e−b
ea + e−b − 1

)
Case (7): (a, b) ∈ L1 = {(a, b) | a > 0, b = 0}.
Since the point (a, 0) is adjacent to the region I1 and I6, let {(ak, bk)} be the sequence

such that limk→∞(ak, bk) = (a, 0).

If {(ak, bk)} ⊆ I1 = {(a, b)|a, b > 0 and a > b}, then

lim
k→∞
∇φ

ln−max
(ak, bk)

= lim
k→∞

(
eak

eak + ebk − 1
− 1,

ebk

eak + ebk − 1

)
=

(
ea

ea + e0 − 1
− 1,

e0

ea + e0 − 1

)
=

(
0,

1

ea

)
.

If {(ak, bk)} ⊆ I6 = {(a, b) | a > 0, b < 0}, then

lim
k→∞
∇φ

ln−max
(ak, bk)

= lim
k→∞

(
eak

eak + e−bk − 1
− 1,

−e−bk
eak + e−bk − 1

)

= (
ea

ea + e0 − 1
− 1,

−e0

ea + e0 − 1
)

= (0,
−1

ea
)

Thus, by definition of subdifferential, we have

∂φ
ln−max

(a, b) = co

{(
0
1
ea

)
,

(
0
−1
ea

)}
=

{
(0, ρ) | −1

ea
≤ ρ ≤ 1

ea

}
,
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Case (8) ∼ (12): For the region Li, i = 2, · · · , 6 and the origin point (0, 0), the way to

calculate the subdifferential is similar to L1, so we omit them here. �

The next proposition concerns the second NCP function, φ
ln−sum

. In fact, computing

the subdifferential of φ
ln−max

is significantly more intricate than that of φ
ln−sum

, due to the

presence of the max(a, b) term. When combined with the absolute value expressions, this

term induces a more complex partitioning of the domain into regions where the function

is differentiable. Moreover, some of the results pertaining to φ
ln−sum

can be derived using

elements from Proposition 2.79. Before proceeding to the proof, we highlight two notable

observations regarding φ
ln−sum

. First, observe that max(a, b) = a+ b when a ≥ 0, b ≥ 0,

ab = 0. Consequently, under these conditions, φ
ln−max

(a, b) = φ
ln−sum

(a, b) = 0. These

observations lead us to conjecture that φ
ln−sum

also qualifies as an NCP function. To

confirm this, it is necessary to evaluate the behavior of φ
ln−sum

across the remaining

regions of the domain.

Proposition 2.80. Let φ
ln−sum

: IR2 → IR be defined in (2.113), that is,

φ
ln−sum

(a, b) = ln(e|a| + e|b| − 1)− (a+ b).

Then, the following hold.

(a) The function φ
ln−sum

is an NCP function.

(b) The subdifferential of φ
ln−sum

is described by

∂φ
ln−sum

(a, b) =



{(
e|a|a

(e|a|+e|b|−1)|a| − 1, e|b|b
(e|a|+e|b|−1)|b| − 1

)}
if a 6= 0 and b 6= 0.{

(ρ− 1, 0) | ≤ −1
e|b|
≤ ρ ≤ 1

e|b|

}
if a = 0, b > 0.{

(ρ− 1,−2) | −1
e|b|
≤ ρ ≤ 1

e|b|

}
if a = 0, b < 0.{

(0, ρ− 1) | −1
e|a|
≤ ρ ≤ 1

e|a|

}
if a > 0, b = 0.{

(−2, ρ− 1) | −1
e|a|
≤ ρ ≤ 1

e|a|

}
if a < 0, b = 0.

{(ξ, η) | − 2 ≤ ξ, η ≤ 0} if a = b = 0.

Proof. To prove part (a), we must verify that φ
ln−sum

satisfies condition (2.2). From

Proposition 2.79, it is evident that φ
ln−sum

(a, b) = 0 on the nonnegative portions of the

a, b-axes, and that the function is strictly positive on their negative sides. Therefore,

it suffices to examine the behavior of φ
ln−sum

within the four quadrants of the ab-plane.

Assume that φ
ln−sum

(a, b) = 0. To analyze this scenario, we proceed by considering the

following four cases corresponding to the quadrants of the plane.

Case (i): If a > 0 and b > 0, then ea + eb − 1 = eaeb. Then, we have

0 = ea(eb − 1) + (eb − 1) = (ea − 1)(eb − 1).

Since a > 0 and b > 0, we should have (ea−1)(eb−1) > 0 which leads to a contradiction.

Thus, φ
ln−sum

(a, b) 6= 0 in case (i).
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Case (ii): If a < 0 and b > 0, then e−a + eb − 1 = eaeb and hence 1
ea

+ eb − 1 = eaeb,

which gives (ea)2eb − 1− eaeb + ea = 0. It follows that

0 = eaeb(ea − 1) + (ea − 1) = (eaeb + 1)(ea − 1).

But, eaeb + 1 > 0 and ea − 1 < 0, it says (eaeb + 1)(ea − 1) < 0, which contradicts the

above equation. Thus, φ
ln−sum

(a, b) 6= 0 in case (ii).

Case (iii): Suppose a < 0 and b < 0. Obviously, e|a| + e|b| − 1 is greater than 1, and

eaeb = ea+b is less than 1. Hence, φ
ln−sum

(a, b) 6= 0 in case (iii).

Case (iv): If a > 0 and b < 0, then φ
ln−sum

6= 0 by noting the symmetry of φ
ln−sum

(a, b)

and the arguments in case (ii).

To sum up, from all the above, we prove that φ
ln−sum

(a, b) = 0 ⇐⇒ a ≥ 0, b = 0 or

a = 0, b ≥ 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

(b) Again, by using the definition of subdifferential, we calculate each case separately.

Case (1): If a 6= 0 and b 6= 0, then φ
ln−sum

is differentiable. Then, we have

∇φ
ln−sum

(a, b) =

(
e|a|a

(e|a| + e|b| − 1)|a| − 1,
e|b|b

(e|a| + e|b| − 1)|b| − 1

)
. (2.115)

Case (2): Suppose a = 0 and b > 0. we compute subdifferential by the definition of

convex hull of all limits points of Jacobian sequence. Let (ak, bk) → (0, b) as k → ∞.

Applying (2.115) yields

lim
k→∞
∇φ

ln−sum
(ak, bk) =

{(
1
eb
− 1, 0

)
if {(ak, bk)} ⊆ {(a, b) | a > 0, b > 0}.(−1

eb
− 1, 0

)
if {(ak, bk)} ⊆ {(a, b) | a < 0, b > 0}.

This concludes ∂φ
ln−sum

(a, b) = {(ρ − 1, 0) | ρ ∈ [−1
eb
, 1
eb

]}. The other cases exclude the

case a = b = 0, which are similar to the above cases. Therefore, it remains to prove the

case when a = b = 0.

For the case a = b = 0, let (ak, bk) → (0, 0). Compute the limit of (2.115) as (ak, bk) →
(0, 0), we have

lim
k→∞
∇φ

ln−sum
(ak, bk) =


(0, 0) if {(ak, bk)} ⊆ {(a, b) | a > 0, b > 0}.
(−2, 0) if {(ak, bk)} ⊆ {(a, b) | a < 0, b > 0}.
(−2,−2) if {(ak, bk)} ⊆ {(a, b) | a < 0, b < 0}.
(0,−2) if {(ak, bk)} ⊆ {(a, b) | a > 0, b < 0}.

Hence ∂φ
ln−sum

(0, 0) = co

{(
0

0

)
,

(
0

−2

)
,

(
−2

0

)
,

(
−2

−2

)}
= {(ξ, η) | − 2 ≤ ξ, η ≤ 0}.

�



2.4. CONSTRUCTIONS OF NCP FUNCTIONS INVOLVING CERTAIN FUNCTIONS163

Proposition 2.81. Let φ
abs−exp

: IR2 → IR be defined as in (2.114), that is,

φ
abs−exp

(a, b) = |a|+ |b| − eab− eba.

Then, the following hold.

(a) The function φ
abs−exp

is an NCP function.

(b) The subdifferential of φ
abs−exp

is described as

∂φ
abs−exp

(a, b) =



{(sgn(a)− eab− eb, sgn(b)− eba− ea)} if a 6= 0, b 6= 0.

{(0, ρ− a− ea) | − 1 ≤ ρ ≤ 1} if a > 0, b = 0.

{(ρ− b− eb, 0) | − 1 ≤ ρ ≤ 1} if a = 0, b > 0.

{(−2, ρ− a− ea) | − 1 ≤ ρ ≤ 1} if a < 0, b = 0.

{(ρ− b− eb,−2) | − 1 ≤ ρ ≤ 1} if a = 0, b < 0.

{(ξ, η) | − 2 ≤ ξ, η ≤ 0} if a = b = 0.

Proof. (a) First, we rewrite the function φ
abs−exp

as

φ
abs−exp

(a, b) = a(sgn(a)− eb) + b(sgn(b)− ea),

which possesses the below piecewise expression:

φ
abs−exp

(a, b) =


0 if a ≥ 0, b ≥ 0, and ab = 0.

a(1− eb) + b(1− ea) if a > 0, b > 0.

−a(1 + eb) + b(1− ea) if a < 0, b ≥ 0.

−a(1 + eb)− b(1 + ea) if a < 0, b < 0.

It is noted that φ
abs−exp

(a, b) is negative in the second case, and positive in the third and

last cases. In light of the symmetry of φ
abs−exp

(a, b), we obtain that φ
abs−exp

(a, b) is also

positive on a ≥ 0, b < 0. Therefore, φ
abs−exp

is an NCP function.

(b) We discuss a few cases in order to calculate the subdifferential of φ
abs−exp

.

Case (1): If a 6= 0 and b 6= 0, we have

∇φ
abs−exp

(a, b) =
(
sgn(a)− eab− eb, sgn(b)− eba− ea

)
. (2.116)

Case (2): Suppose a > 0, b = 0 and (ak, bk)→ (a, 0) as k →∞. From expression (2.116),

we know

lim
k→∞
∇φ

abs−exp
(ak, bk) =

{
(0, 1− a− ea) if {(ak, bk)} ⊆ {(a, b) | a > 0, b > 0}.
(0,−1− a− ea) if {(ak, bk)} ⊆ {(a, b) | a > 0, b < 0}.

Then, it follows that ∂φ
abs−exp

(a, b) = {(0, ρ− a− ea) | − 1 ≤ ρ ≤ 1}.
For the other cases except for the case when a = b = 0, the calculation is similar to case

(2), so we omit them here.
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Case (3): Suppose a = b = 0 and (ak, bk) → (0, 0) as k → ∞. From expression (2.116),

we compute that

lim
k→∞
∇φ

abs−exp
(ak, bk) =


(0, 0) if {(ak, bk)} ⊆ {(a, b) | a > 0, b > 0}.
(−2, 0) if {(ak, bk)} ⊆ {(a, b) | a < 0, b > 0}.
(−2,−2) if {(ak, bk)} ⊆ {(a, b) | a < 0, b < 0}.
(0,−2) if {(ak, bk)} ⊆ {(a, b) | a > 0, b < 0}.

This concludes ∂φ
abs−exp

(0, 0) = {(ξ, η) | − 2 ≤ ξ, η ≤ 0}. �

It is worth noting that the function φ
abs−exp

was discovered through a different line of

reasoning than the previous two NCP functions. The key distinction lies in the interpre-

tation of the term |a|+ |b|, which can be seen as the l1-norm of the vector (a, b), while the

exponential terms ea, eb serve as monotone cofactors applied to b and a, respectively. By

examining the structural patterns underlying these three newly introduced NCP func-

tions, we identified a broader framework for generating NCP functions through the use of

invertible functions. In particular, the first two functions, φ
ln−max

(a, b) and φ
ln−sum

(a, b),

both feature the term ln(e|a| + e|b| − 1), which prominently involves invertible functions.

Motivated by this observation, we propose the following generalization of the common

term:

f(f−1(|a|) + f−1(|b|)− f−1(0)),

where f is a real-valued function defined on a suitable domain and subject to certain

structural assumptions. Accordingly, their natural extended formats become

φ(a, b) = f(f−1(|a|) + f−1(|b|)− 1)−max(a, b); (2.117)

φ(a, b) = f(f−1(|a|) + f−1(|b|)− 1)− (a+ b); (2.118)

φ(a, b) = f(f−1(|a|) + f−1(|b|)− 1)− g(a)b− g(b)a. (2.119)

Clearly, if f(t) = ln t, then the functions (2.117) and (2.118) reduce to those functions

(2.112) and (2.113). If f−1(t) = t + 1 and g(t) = et, then the function (2.119) reduces

to the function (2.114). In this Section, we provide a complete discussion on under what

conditions of f , (f−1)′ and g, the above functions defined as in (2.117), (2.118) and

(2.119) will be NCP functions.

Proposition 2.82. Suppose f is a real valued function defined on IR with f(1) = 0 and

f |I denotes the restricted function of f on I ⊆ IR. If f |I satisfies one of the following

conditions:

(a) f |I : [1,∞)→ [0,∞) is invertible, or

(b) f |I : (−∞, 1]→ [0,∞) is invertible,

then φ
f
(a, b) = f(f−1(|a|) + f−1(|b|)− f−1(0))−max(a, b) is an NCP function.
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Proof. (a) Without loss of ambiguity, we still use f instead of f |I in our analysis. Since

f : [1,∞) → [0,∞) is invertible and f(1) = 0, f is strictly monotone increasing on

[1,∞). In addition, f−1 is also strictly monotone increasing. To verify that φ
f

is an NCP

function, we need to show that φ
f

satisfies condition (2.2).

“⇒” Suppose φ
f
(a, b) = 0, we consider the two regions on the a, b-plane which are a ≥ b

and b ≥ a.

Case (1): If a ≥ b, then f(f−1(|a|) +f−1(|b|)−f−1(0)) = max(a, b) = a. Since f−1(|a|) +

f−1(|b|)−f−1(0) ≥ 1 and f is strictly monotone increasing on [1,∞), so a = f(f−1(|a|)+

f−1(|b|) − f−1(0)) ≥ f(1) = 0. Then, f−1(|b|) − 1 = f−1(a) − f−1(|a|) = 0 since a is

nonnegative. This says b = 0, a ≥ 0.

Case (2): If b ≥ a, by the symmetric form of the function, we obtain a = 0, b ≥ 0.

Therefore, a ≥ 0, b = 0 or b ≥ 0, a = 0. This is equivalent to a ≥ 0, b ≥ 0, ab = 0.

“⇐” Conversely, suppose that a ≥ 0, b ≥ 0, ab = 0. Then, we have a ≥ 0, b = 0 or

b = 0, a ≥ 0. If a ≥ 0, b = 0, it is trivial that φ
f
(a, b) = |a| − a = 0. If b ≥ 0, a = 0, it

is also clear that φ
f
(a, b) = |b| − b = 0.

(b) Since f : (−∞, 1] → [0,∞) is invertible and f(1) = 0, f is strictly monotone

decreasing. In addition, f−1 is also strictly monotone decreasing. Next, we show that φ
f

is an NCP function.

“⇒” Suppose φ
f
(a, b) = 0, we consider the two regions on the a, b-plane which are a ≥ b

and b ≥ a.

Case (1): If a ≥ b, then f(f−1(|a|) + f−1(|b|)− f−1(0)) = a. Since f−1(|a|) + f−1(|b|)−
f−1(0) ≤ 1 and f is strictly monotone decreasing on (−∞, 1], a = f(f−1(|a|)+f−1(|b|)−
f−1(0)) ≥ f(1) = 0. Then, f−1(|b|) − 1 = f−1(a) − f−1(|a|) = 0 since a is nonnegative.

Hence, b = 0, a ≥ 0.

Case (2): If b ≥ a, by the symmetric form of the function, we obtain that a = 0, b ≥ 0.

Therefore, a ≥ 0, b = 0 or b ≥ 0, a = 0. This is equivalent to a ≥ 0, b ≥ 0, ab = 0.

“⇐” Conversely, suppose that a ≥ 0, b ≥ 0, ab = 0. Then, we have a ≥ 0, b = 0 or

b ≥ 0, a = 0. For a ≥ 0, b = 0, it is clear that φ
f
(a, b) = |a| − a = 0. For b ≥ 0, a = 0,

it is also trivial that φ
f
(a, b) = |b| − b = 0. �

Example 2.4. Here are examples of f satisfying condition in Proposition 2.82(a).

1. f1(t) = (t− 1)
∣∣
[1,∞)

.

2. f2(t) = ln(t)
∣∣
[1,∞)

.

3. f3(t) = (t− 1)1/2
∣∣
[1,∞)

.

4. f4(t) = (t− 1)1/5
∣∣
[1,∞)

.



166 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Then, their corresponding NCP functions are shown as below and their graphs are depicted

in Figure 2.26.

1. φ
f1

(a, b) = |a|+ |b| −max(a, b).

2. φ
f2

(a, b) = ln(e|a| + e|b| − 1)−max(a, b).

3. φ
f3

(a, b) = ‖(a, b)‖2 −max(a, b).

4. φ
f4

(a, b) = ‖(a, b)‖5 −max(a, b).

Proposition 2.83. Suppose f is a continuously differentiable real valued function with

f(1) = 0. If f satisfies the following conditions:

(i) f : [1,∞)→ [0,∞) is invertible, and

(ii) (f−1)′ is strictly monotone on [0,∞),

then φ
f
(a, b) = f(f−1(|a|) + f−1(|b|)− f−1(0))− (a+ b) is an NCP function.

Proof. To verify that φ
f

qualifies as an NCP function, we must demonstrate that

φ
f
(a, b) = 0 if and only if a, b ≥ 0 and ab = 0; in other words, the function van-

ishes exclusively along the nonnegative sides of the a, b-axes. To this end, we examine

the behavior of φ
f

in each of the four quadrants of the ab-plane. For the second, third,

and fourth quadrants, the analysis relies solely on the monotonicity of f−1. However,

when analyzing the first quadrant, where both a > 0 and b > 0, we additionally require

the monotonicity of the derivative (f−1)′ to establish the necessary properties of φ
f
.

Case (1): Suppose a > 0 and b > 0. If (f−1)′ is strictly monotone increasing on [0,∞),

then we have

f−1(a+ b)− f−1(b)

=

∫ a+b

b

(f−1)′(x)dx

>

∫ a

0

(f−1)′(x)dx

= f−1(a)− f−1(0)

= f−1(a)− 1.

Thus, 1 < f−1(a) + f−1(b)− 1 < f−1(a + b). Since f is strictly monotone increasing on

[1,∞), so

f(f−1(a) + f−1(b)− 1) < f(f−1(a+ b)) = a+ b.

Thus,

φ
f
(a, b) = f(f−1(a) + f−1(b)− 1)− (a+ b) < 0.



2.4. CONSTRUCTIONS OF NCP FUNCTIONS INVOLVING CERTAIN FUNCTIONS167

a-axis

−1.0
−0.5

0.0

0.5

1.0 b-axis
−1.0

−0.5
0.0

0.5
1.0

z-
ax

is

0

1

2

3

4

(a) Graph of φ
f1

in Example 2.4

a-axis

−1.0
−0.5

0.0

0.5

1.0 b-axis
−1.0

−0.5
0.0

0.5
1.0

z-
ax

is

0

1

2

3

4

(b) Graph of φ
f2

in Example 2.4

a-axis

−1.0
−0.5

0.0

0.5

1.0 b-axis
−1.0

−0.5
0.0

0.5
1.0

z-
ax

is

0

1

2

3

4

(c) Graph of φ
f3

in Example 2.4

a-axis

−1.0
−0.5

0.0

0.5

1.0 b-axis
−1.0

−0.5
0.0

0.5
1.0

z-
ax

is

0

1

2

3

4

(d) Graph of φ
f4

in Example 2.4

Figure 2.26: Graphs of NCP functions shown in Example 2.4.
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If (f−1)′ is strictly monotone decreasing on [0,∞), then we have

f−1(a+ b)− f−1(b)

=

∫ a+b

b

(f−1)′(x)dx

<

∫ a

0

(f−1)′(x)dx

= f−1(a)− f−1(0)

= f−1(a)− 1.

Thus, 1 < f−1(a + b) < f−1(a) + f−1(b)− 1. Since f is strictly monotone increasing on

[1,∞), we see

f(f−1(a) + f−1(b)− 1) > f(f−1(a+ b)) = a+ b.

Then, it is clear that

φ
f
(a, b) = f(f−1(a) + f−1(b)− 1)− (a+ b) > 0.

Case (2): Suppose a < 0 and b > 0. Under this case, if a + b > 0, since f−1 is strictly

monotone increasing on [0,∞), so we have f−1(|b|) − f−1(0) > f−1(a + b) − f−1(|a|).
Thus,

f−1(|a|) + f−1(|b|)− 1 > f−1(a+ b) > 1.

Since f is strictly monotone increasing on [1,∞), we have

f(f−1(|a|) + f−1(|b|)− 1) > f(f−1(a+ b)) = a+ b.

If a + b ≤ 0, we still have f(f−1(|a|) + f−1(|b|) − 1) > a + b because f is positive on

(1,∞) and f−1(|a|) + f−1(|b|)− 1 > 1. Thus, there holds

φ
f
(a, b) = f(f−1(|a|) + f−1(|b|)− 1)− (a+ b) > 0.

Case (3): Suppose a < 0 and b < 0. Since f−1(|a|) + f−1(|b|)− 1 > 1, f(1) = 0, and f is

strictly monotone increasing on [1,∞), f(f−1(|a|) + f−1(|b|)− 1) > 0. Thus, we have

φ
f
(a, b) = f(f−1(|a|) + f−1(|b|)− 1)− (a+ b) > 0.

Case (4): Suppose a > 0 and b < 0. This case is the symmetric case of a < 0, b > 0.

Thus, there holds

φ
f
(a, b) = f(f−1(|a|) + f−1(|b|)− 1)− a+ b > 0.

Case (5): Suppose a ≥ 0, b = 0 or a = 0, b ≥ 0. In this case, φ
f

is zero.

Case (6): Suppose a < 0, b = 0 or a = 0, b < 0. In this case, φ
f

is positive.

In summary, φ
f

is zero only on the nonnegative sides of a, b-axes. �
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Proposition 2.84. Suppose f is a continuously differentiable real valued function with

f(1) = 0. If f satisfies the following conditions:

(i) f : (−∞, 1]→ [0,∞) is invertible, and

(ii) (f−1)′ is strictly monotone on [0,∞),

then φ
f
(a, b) = f(f−1(|a|) + f−1(|b|)− f−1(0))− (a+ b) is an NCP function.

Proof. The proof is similar to that in Proposition 2.83. �

Example 2.5. Here are examples of f satisfying the conditions in Proposition 2.83.

1. f1(t) = ln(t)
∣∣
[1,∞)

.

2. f2(t) = (t− 1)1/2
∣∣
[1,∞)

.

3. f3(t) = (t− 1)1/5
∣∣
[1,∞)

.

Then, their corresponding NCP functions are as below and their graphs are depicted in

Figure 2.27.

1. φ
f1

(a, b) = ln(e|a| + e|b| − 1)− (a+ b).

2. φ
f2

(a, b) = ‖(a, b)‖2 − (a+ b).

3. φ
f3

(a, b) = ‖(a, b)‖5 − (a+ b).

Proposition 2.83 establishes a sufficient condition on the function f and the derivative

(f−1)′ to ensure that φ
f

is an NCP function. However, this condition is not necessary.

In fact, there exist functions f for which (f−1)′ is neither strictly increasing nor strictly

decreasing, yet the resulting φ
f

still satisfies the defining properties of an NCP function.

To illustrate this, we present two counterexamples where f does not satisfy the strict

monotonicity requirement on (f−1)′, but φ
f

nonetheless remains a valid NCP function.

Example 2.6. Let f be a real valued function defined by

f(t) =


−
√

38− 2t+ 6, if 1 ≤ t ≤ 18.5.√
2t− 36 + 4, if 18.5 ≤ t ≤ 20.

t
2
− 4, if 20 ≤ t.

Then, we compute that

f−1(t) =


− t2

2
+ 6t+ 1, if 0 ≤ t ≤ 5.

t2

2
− 4t+ 26, if 5 ≤ t ≤ 6.

2t+ 8, if 6 ≤ t.
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Figure 2.27: Graphs of NCP functions shown in Example 2.5.
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and

(f−1)′(t) =


−t+ 6, if 0 ≤ t ≤ 5.

t− 4, if 5 ≤ t ≤ 6.

2, if 6 ≤ t.

The graphs of f , f−1 and (f−1)′ are given as in Figure 2.28. Consider φ
f
(a, b) =

f(f−1(|a|) + f−1(|b|) − f−1(0)) − (a + b), we see that φ
f

is zero on the nonnegative

sides of the a, b-axes and positive on the negative sides of the a, b-axes. In addition, by

using the monotonicity of f−1, φ is positive on the second, third, and fourth quadrant due

to Proposition 2.83. Thus, we only have to check the value of φ
f

on the first quadrant.

From the expression of (f−1)′, we can draw a diagram of the function and easily find that∫ a
0

(f−1)′(t)dt >
∫ a+b

b
(f−1)′(t)dt for all a, b > 0. This implies

f−1(a)− 1 > f−1(a+ b)− f−1(b)

=⇒ f−1(a) + f−1(b)− 1 > f−1(a+ b) > 1

=⇒ f(f−1(a) + f−1(b)− 1) > f(f−1(a+ b)) = a+ b

=⇒ f(f−1(a) + f−1(b)− 1)− (a+ b) > 0,

which says φ
f
(a, b) > 0 on the first quadrant. Hence, φ

f
is an NCP function, whose

graph is shown in Figure 2.30(a).

Example 2.7. Let f be a real valued function defined by

f(t) =


√

2t− 1− 1, if 1 ≤ t ≤ 18.5.

−
√
−2t+ 73 + 11, if 18.5 ≤ t ≤ 24.√

2t− 23 + 1, if 24 ≤ t.

Then, we compute that

f−1(t) =


t2

2
+ t+ 1, if 0 ≤ t ≤ 5.

− t2

2
+ 11t− 24, if 5 ≤ t ≤ 6.

t2

2
− t+ 12, if 6 ≤ t.

and

(f−1)′(t) =


t+ 1, if 0 ≤ t ≤ 5.

−t+ 11, if 5 ≤ t ≤ 6.

t− 1, if 6 ≤ t.

The graphs of f , f−1 and (f−1)′ are given as in Figure 2.29. Consider φ
f
(a, b) =

f(f−1(|a|) + f−1(|b|) − f−1(0)) − (a + b), we see that φ
f

is zero on the nonnegative

sides of the a, b-axes and positive on the negative sides of the a, b-axes. In addition, by

using the monotonicity of f−1, φ
f

is positive on the second, third, and fourth quadrant
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Figure 2.28: Graphs of f , f−1 and (f−1)′ in Example 2.6.
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due to Proposition 2.83. Thus, we only have to check the value of φ
f

on the first quad-

rant. From the expression of (f−1)′, we can draw a diagram of the function and easily

find that
∫ a

0
(f−1)′(x)dx <

∫ a+b

b
(f−1)′(x)dx ∀a, b > 0. This implies

f−1(a)− 1 < f−1(a+ b)− f−1(b)

=⇒ 1 < f−1(a) + f−1(b)− 1 < f−1(a+ b)

=⇒ f(f−1(a) + f−1(b)− 1) < f(f−1(a+ b)) = a+ b

=⇒ f(f−1(a) + f−1(b)− 1)− (a+ b) < 0,

which says φ
f
(a, b) < 0 on the first quadrant. Hence, φ

f
is an NCP function, whose

graph is shown in Figure 2.30(b).
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(a) Graph of f in Example 2.7
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(c) Graph of (f−1)′ in Example 2.7

Figure 2.29: Graphs of f , f−1 and (f−1)′ in Example 2.7.

There exists a promising avenue for further extending the class of NCP functions

described in Proposition 2.83. Specifically, we observe that by incorporating additional
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Figure 2.30: Graphs of two φ
f

functions in Example 2.6 and Example 2.7.

functions, subject to suitable conditions, applied to the negative parts of a and b, one

can formulate an entirely new class of NCP functions. This extension leads to greater

flexibility in construction while preserving the key properties of NCP functions. We

formalize this idea in the next proposition.

Proposition 2.85. Suppose f is a continuously differentiable real valued function with

f(1) = 0 and g is a real valued function with g(0) = 1. If f and g satisfy the following

conditions:

(i) f : [1,∞)→ [0,∞) is invertible;

(ii) (f−1)′ is strictly monotone increasing;

(iii) g(0) = 1, g(t) ≥ 1 ∀t > 0, and 1 ≥ g(t) > −1
2
∀t < 0.

Then, φ
f,g

(a, b) = f(f−1(|a|) + f−1(|b|)− f−1(0))− (g(b)a+ g(a)b) is an NCP function.

Proof. To show that φ
f

is an NCP function, we have to verify that φ
f

is zero only on the

nonnegative sides of the a, b-axes. To this end, we check all the regions of the a, b-plane.

Case (1): Suppose a > 0 and b > 0. By Proposition 2.83, we have

f(f−1(|a|) + f−1(|b|)− 1) < a+ b ≤ g(b)a+ g(a)b,

which yields

f(f−1(|a|) + f−1(|b|)− 1)− (g(b)a+ g(a)b) < 0.
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Case (2): Suppose a < 0 and b > 0. By Proposition 2.83, we have

f(f−1(|a|) + f−1(|b|)− 1) > a+ b ≥ g(b)a+ g(a)b,

which implies

f(f−1(|a|) + f−1(|b|)− 1)− (g(b)a+ g(a)b) > 0.

Case (3): Suppose a < 0 and b < 0. Since f−1 and (f−1)′ are both strictly monotone

increasing on [0,∞), we know that f−1 is strictly convex on [0,∞). This indicates that

f−1(|a|) + f−1(|b|)− 1 > 2f−1

( |a|+ |b|
2

)
− 1 > f−1

( |a|+ |b|
2

)
> 1.

In addition, using f being strictly monotone increasing on [1,∞), it gives

f(f−1(|a|) + f−1(|b|)− 1) > f

(
2f−1

( |a|+ |b|
2

)
− 1

)
> f(f−1

( |a|+ |b|
2

)

)
=
|a|+ |b|

2
.

Thus, we obtain

f(f−1(|a|) + f−1(|b|)− 1)− g(b)a− g(a)b

>
|a|+ |b|

2
− (g(b)a+ g(a)b)

=
a

2
(sgn(a)− 2g(b)) +

b

2
(sgn(b)− 2g(a))

> 0.

Case (4): Suppose a > 0 and b < 0. This case is the symmetric case of a < 0, b > 0.

Due to

f(f−1(|a|) + f−1(|b|)− 1) > a+ b ≥ g(b)a+ g(a)b,

it is clear to see

f(f−1(|a|) + f−1(|b|)− 1)− (g(b)a+ g(a)b) > 0.

Case (5): Suppose a ≥ 0, b = 0 or a = 0, b ≥ 0. In this case, φ
f,g

is zero.

Case (6): Suppose a < 0, b = 0 or a = 0, b < 0. In this case, φ
f,g

is positive.

From all the above, φ
f,g

is zero only on the nonnegative sides of the a, b-axes. Hence, φ
f,g

is an NCP function. �

Example 2.8. Here are examples of f and g satisfying those conditions in Proposition

2.85.

(a) Three examples for function f :
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1. f1(t) = ln(t)
∣∣
[1,∞)

.

2. f2(t) = (t− 1)1/2
∣∣
[1,∞)

.

3. f3(t) = (t− 1)1/5
∣∣
[1,∞)

.

(b) Three examples for function g, see Figure 2.31:

1. g1(t) = et.

2. g2(t) =
4− e−t
1 + 2e−t

.

3. g3(t) =

√
t2 + 4 + t

2
.

Then, applying those f and g functions in Example 2.8, we generate the following nine

NCP functions, see Figure 2.32.

φ1(a, b) = ln(e|a| + e|b| − 1)− eba− eab,

φ2(a, b) = ln(e|a| + e|b| − 1)− 4− e−b
1 + 2e−b

a− 4− e−a
1 + 2e−a

b,

φ3(a, b) = ln(e|a| + e|b| − 1)−
√
b2 + 4 + b

2
a−
√
a2 + 4 + a

2
b,

φ4(a, b) = ‖(a, b)‖2 − eba− eab,

φ5(a, b) = ‖(a, b)‖2 −
4− e−b
1 + 2e−b

a− 4− e−a
1 + 2e−a

b,

φ6(a, b) = ‖(a, b)‖2 −
√
b2 + 4 + b

2
a−
√
a2 + 4 + a

2
b,

φ7(a, b) = ‖(a, b)‖5 − eba− eab,

φ8(a, b) = ‖(a, b)‖5 −
4− e−b
1 + 2e−b

a− 4− e−a
1 + 2e−a

b,

φ9(a, b) = ‖(a, b)‖5 −
√
b2 + 4 + b

2
a−
√
a2 + 4 + a

2
b.

The following proposition serves as a counterpart to Proposition 2.84, with arguments

closely paralleling those used in the proof of Proposition 2.85. The result relies on the

monotonicity and concavity of f−1 over the interval [0,∞). For brevity, we omit the

proof.

Proposition 2.86. Suppose f is a continuously differentiable real valued function with

f(1) = 0 and g is a real valued function with g(0) = 1. If f and g satisfy the following

conditions:

(i) f : (−∞, 1]→ [0,∞) is invertible;
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Figure 2.31: Graphs of g functions given in Example 2.8.

(ii) (f−1)′ is strictly monotone decreasing;

(iii) g(0) = 1, g(t) ≥ 1 ∀t > 0, and 1 ≥ g(t) > −1
2
∀t < 0.

Then, φ
f,g

(a, b) = f(f−1(|a|) + f−1(|b|)− f−1(0))− (g(b)a+ g(a)b) is an NCP function.

In Proposition 2.85, consider the specific choice f(t) = t − 1 In this case, we have

f(f−1(|a|) +f−1(|b|)−1) = |a|+ |b|, and notably, (f−1)′ is not strictly monotone increas-

ing. Nevertheless, we observe that if an auxiliary function g satisfies a strict inequality

condition, rather than an equality condition, on the interval (0,∞), then the resulting

function φ
f,g

remains a valid NCP function. This observation motivates an extended

case of Proposition 2.85. A related class of NCP functions of this type was previously

introduced in [4], and can be viewed as a specific instance connected to the framework

established in Proposition 2.85.

Example 2.9. Suppose that φ(a, b) = |a| + |b| − (g(a)b + g(b)a), where g : IR → IR

satisfying

g(0) = 1, g(t) > 1 ∀t > 0, and 1 ≥ g(t) > −1 ∀t < 0.

Then, φ is an NCP function. Note that the condition 1 ≥ g(t) > −1 for all t < 0 is a bit

weaker than 1 ≥ g(t) > −1
2

for all t < 0, used in Proposition 2.85 and Proposition 2.86.

This distinction arises because our analysis involves both f and g, whereas the approach

in [4] considers only g.

For instance, consider the same examples of g presented in Example 2.8, which also

satisfy the conditions mentioned above.

1. g1(t) = et.

2. g2(t) =
4− e−t
1 + 2e−t

.
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(d) Graph of φ4 from Example 2.8
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a-
ax

is

−1.0
−0.5

0.0
0.5

1.0b-axis
−1.0 −0.5 0.0 0.5 1.0

z-axis

−1

0

1

2

(f) Graph of φ6 from Example 2.8

a-
ax

is

−1.0
−0.5

0.0
0.5

1.0b-axis
−1.0 −0.5 0.0 0.5 1.0

z-axis

−4
−3
−2

−1

0

1

2

3

(g) Graph of φ7 from Example 2.8
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(h) Graph of φ8 from Example 2.8
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Figure 2.32: Graphs of generated NCP functions by Proposition 2.85
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3. g3(t) =

√
t2 + 4 + t

2
.

The corresponding NCP functions are then constructed as follows; see Figure 2.33 for

their graphical representations.

1. φg1 (a, b) = |a|+ |b| − eba− eab.

2. φg2 (a, b) = |a|+ |b| − 4− e−b
1 + 2e−b

a− 4− e−a
1 + 2e−a

b.

3. φg3 (a, b) = |a|+ |b| −
√
b2 + 4 + b

2
a−
√
a2 + 4 + a

2
b.
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Figure 2.33: Graphs of NCP functions generated in Example 2.9.



Chapter 3

General Complementarity Functions

The NCP functions introduced in Chapter 1 are, in fact, C-functions associated with

the nonnegative orthant IRn
+, a special instance of symmetric cones. In this chapter, we

broaden our scope to explore more general classes of complementarity functions linked to

other types of symmetric cones [66], including C-functions associated with second-order

cones (SOC), the cone of positive semidefinite matrices, and the unified symmetric cone.

3.1 Complementarity Functions associated with SOC

In this section, we examine the complementarity problem within the framework of second-

order cones, known as the second-order cone complementarity problem (SOCCP). The

objective is to find a vector ζ ∈ IRn that satisfies

〈F (ζ), ζ〉 = 0, F (ζ) ∈ K, ζ ∈ K, (3.1)

where 〈·, ·〉 denotes the Euclidean inner product, F : IRn → IRn is a smooth (i.e., con-

tinuously differentiable) mapping, and K is the Cartesian product of second-order cones.

In other words,

K = Kn1 × · · · × Knm , (3.2)

where m,n1, . . . , nm ≥ 1, n1 + · · ·+ nm = n, and

Kni := {(x1, x2) ∈ IR× IRni−1 | ‖x2‖ ≤ x1}, (3.3)

with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative reals IR+.

A special case of (3.2)–(3.3) arises when K = IRn
+, the nonnegative orthant in IRn,

corresponding to the setting where m = n and n1 = · · · = nm = 1. In this case, the

SOCCP (3.1) reduces to the classical NCP, a cornerstone in optimization theory with

wide, ranging applications in engineering and economics; see, for example, [63, 68–70].

A broader formulation of the SOCCP seeks a vector ζ ∈ IRn satisfying

〈F (ζ), G(ζ)〉 = 0, F (ζ) ∈ K, G(ζ) ∈ K, (3.4)

181
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where 〈·, ·〉 denotes the Euclidean inner product, and F : IRn → IRn, G : IRn → IRn are

smooth (i.e., continuously differentiable) mappings. Unless stated otherwise, throughout

this chapter we assume K = Kn for simplicity, that is, K is a single second-order cone.

However, the ensuing analysis readily extends to the general case where K takes the form

of a Cartesian product as in (3.2).

Recall that when K is the second-order cone Kn, a function φ : IRn × IRn → IRn is

called a C-function associated with the SOC if

φ(x, y) = 0 ⇐⇒ x, y ∈ Kn, x ◦ y = 0, (3.5)

⇐⇒ x, y ∈ Kn, 〈x, y〉 = 0.

Such C-functions are particularly valuable in addressing the SOCCP, as they enable re-

formulation into nonsmooth equations. Over the years, various methods have been pro-

posed to solve the SOCCPs. These include interior-point methods [6, 141, 158, 187, 209]

and non-interior smoothing Newton methods [46, 78, 91]. More recently, an alterna-

tive approach was introduced in [41], where the SOCCP is reformulated as an uncon-

strained smooth minimization problem. The idea is to construct a smooth function

ψ : IRn × IRn → IR+ such that

ψ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0. (3.6)

Such a function ψ is referred to as a merit function, and it also qualifies as a C-function.

With this formulation, the SOCCP can be rewritten as the unconstrained smooth (global)

minimization problem:

min
ζ∈IRn

ψ(F (ζ), ζ). (3.7)

This reformulation allows the application of standard gradient-based optimization tech-

niques, such as conjugate gradient and quasi-Newton methods [8, 75]. As discussed in

[41], this approach offers several advantages. However, its effectiveness critically depends

on the appropriate choice of the merit function ψ.

We begin with the NCP function introduced by Mangasarian and Solodov, as pre-

sented in (2.11). Under the second-order cone (SOC) setting, this function admits two

potential extensions. The first is the implicit Lagrangian function ψ
MS

: IRn× IRn → IR+,

which is parameterized by α > 1 and defined as follows:

ψ
MS

(x, y) := max
u,v∈Kn

{
〈x, y − v〉 − 〈y, u〉 − 1

2α
(‖x− u‖2 + ‖y − v‖2)

}
= 〈x, y〉+

1

2α

(
‖(x− αy)+‖2 − ‖x‖2 + ‖(y − αx)+‖2 − ‖y‖2

)
. (3.8)

This function is also extended to semidefinite complementarity problems (SDCPs) by

Tseng [207] and general symmetric cone complementarity problems (SCCPs) by Kong
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et al. [127]. The second extension is the vector-valued implicit Lagrangian function,

φ
MS

: IRn × IRn → IRn, defined by

φ
MS

(x, y) := x ◦ y +
1

2α

[
(x− αy)2

+ − x2 + (y − αx)2
+ − y2

]
∀x, y ∈ IRn, α > 1. (3.9)

Both ψ
MS

and φ
MS

are C-functions associated with the SOC; see Proposition 3.1 below.

Furthermore, according to [127, Theorem 3.2(b)] (also refer to Section 3.3), the function

ψ
MS

serves as a merit function derived from the trace of the φ
MS

function. It is worth

noting that the C-function φ
MS

is primarily constructed via the projection onto the

second-order cone, providing a natural extension of the original φ
MS

defined in (2.11). The

results that follow generalize several classical findings, particularly those in [148, 208, 218],

from the NCP framework to the SOC setting.

Proposition 3.1. For any fixed α > 1 and all x, y ∈ IRn, we have the following results.

(a) ψ
MS

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0 ⇐⇒ φ
MS

(x, y) = 0.

(b) φ
MS

and ψ
MS

are continuously differentiable everywhere, with

∇xψMS
(x, y) = y + α−1 ((x− αy)+ − x)− (y − αx)+,

∇yψMS
(x, y) = x+ α−1 ((y − αx)+ − y)− (x− αy)+.

(c) The gradient function ∇ψ
MS

is globally Lipschitz continuous.

(d) 〈x,∇xψMS
(x, y)〉+ 〈y,∇yψMS

(x, y)〉 = 2ψ
MS

(x, y).

(e) 〈∇xψMS
(x, y),∇yψMS

(x, y)〉 ≥ 0.

(f) ψ
MS

(x, y) = 0 if and only if ∇xψMS
(x, y) = 0 and ∇yψMS

(x, y) = 0.

(g) (α− 1)‖φ
NR

(x, y)‖2 ≥ ψ
MS

(x, y) ≥ (1− α−1)‖φ
NR

(x, y)‖2.

(h) α−1(α− 1)2ψ
MS

(x, y) ≤ ‖∇xψMS
(x, y) +∇yψMS

(x, y)‖2 ≤ 2α(α− 1)ψ
MS

(x, y).

Proof. The proofs of parts (a)–(b) and (e)–(f) can be found in [127]. Parts (c) and

(d) follow directly from the explicit forms of ψ
MS

and its gradient ∇ψ
MS

. Part (g) is a

straightforward application of [208, Proposition 2.2], taking π̃ = −ψ
MS

. Finally, part (h)

follows easily from [176, Theorem 4.2], together with results from parts (b) and (g). �

In the setting of SOC, as mentioned in Chapter 1, for any x = (x1, x2) ∈ IR × IRn−1

and y = (y1, y2) ∈ IR× IRn−1, their Jordan product associated with Kn is

x ◦ y = (〈x, y〉, y1x2 + x1y2) .

The identity element under this product is e := (1, 0, · · · , 0)T ∈ IRn. We use the notation

x2 to denote the Jordan product x ◦ x, and x+ y to represent the usual componentwise
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addition of vectors. It is well known that x2 ∈ Kn for any x ∈ IRn. Moreover, for any

x ∈ Kn, there exists a unique vector x1/2 ∈ Kn such that (x1/2)2 = x1/2 ◦x1/2 = x. Based

on this, the Fischer-Burmeister function associated with the SOC is defined by

φ
FB

(x, y) := (x2 + y2)1/2 − x− y, (3.10)

for all (x, y) ∈ IRn × IRn; it is a map from IRn × IRn to IRn. It was shown in [78] that

φ
FB

(x, y) = 0 if and only if x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0. Hence, ψ
FB

: IRn × IRn → IR+

induced from

ψ
FB

(x, y) :=
1

2
‖φ

FB
(x, y)‖2, (3.11)

is a merit function for the SOCCP.

It is known that SOCCP can be reduced to an SDCP by observing that, for any

x = (x1, x2) ∈ IR× IRn−1, we have x ∈ Kn if and only if

Lx :=

[
x1 xT2
x2 x1I

]
is positive semi-definite (also see [78, p. 437] and [190]). However, this reduction increases

the problem dimension from n to n(n + 1)/2 and it is not known whether this increase

can be mitigated by exploiting the special “arrow” structure of Lx.

Lemma 3.1. Suppose that x = (x1, x2) ∈ IR× IRn−1 has the spectral decomposition (1.8)

with spectral values λ1, λ2 and spectral vectors u
(1)
x , u

(2)
x . Then, the following results hold.

(a) x2 = λ2
1u

(1) + λ2
2u

(2) ∈ Kn.

(b) If x ∈ Kn, then 0 ≤ λ1 ≤ λ2 and x1/2 =
√
λ1 u

(1) +
√
λ2 u

(2).

(c) If x ∈ int(Kn), then 0 < λ1 ≤ λ2, det(x) = λ1λ2, and Lx is invertible with

L−1
x =

1

det(x)

 x1 −xT2
−x2

det(x)

x1

I +
1

x1

x2x
T
2

 .
(d) x ◦ y = Lxy for all y ∈ IRn, and Lx � 0 if and only if x ∈ int(Kn).

Proof. Please refer to [78] for detailed proof. �

Since x2, y2 ∈ Kn for any x, y ∈ IRn, we have x2 + y2 = (‖x‖2 + ‖y‖2, 2x1x2 + 2y1y2) ∈
Kn, which implies

x2 + y2 6∈ int(Kn) ⇐⇒ ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖. (3.12)

The spectral values of x2 + y2 are as below:

λ1 := ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖,
λ2 := ‖x‖2 + ‖y‖2 + 2‖x1x2 + y1y2‖.

(3.13)
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For convenience, we introduce some notational conventions that will be used throughout

the remainder of this section. For any vectors x = (x1, x2) ∈ IR×IRn−1 and y = (y1, y2) ∈
IR× IRn−1, we define the mappings w, z : IRn × IRn → IRn as follows:

w = (w1, w2) = (w1(x, y), w2(x, y)) = w(x, y) := x2 + y2,

z = (z1, z2) = (z1(x, y), z2(x, y)) = z(x, y) := (x2 + y2)1/2.
(3.14)

Clearly, w ∈ Kn with w1 = ‖x‖2 + ‖y‖2 and w2 = 2(x1x2 + y1y2). By denoting

w̄2 =


w2

‖w2‖
=

x1x2 + y1y2

‖x1x2 + y1y2‖
if w2 6= 0

any vector in IRn−1 satisfying‖w̄2‖ = 1 if w2 = 0

and using Lemma 3.1 (b) and (c), we can express z as

z =

(√
λ2(w) +

√
λ1(w)

2
,

√
λ2(w)−

√
λ1(w)

2
w̄2

)
∈ Kn. (3.15)

We now present several key technical lemmas essential for the analysis that follows.

The first lemma characterizes specific properties of vectors x and y when the sum x2 +y2

lies on the boundary of Kn. The second establishes an upper bound for two squared

terms in terms of a quantity that reflects the proximity of x2 +y2 to the boundary of Kn.

The remaining lemmas provide additional useful relationships. Collectively, these results

form the foundation for the subsequent analysis in this chapter.

Lemma 3.2. For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1 with x2 + y2 6∈ int(Kn), we

have
x2

1 = ‖x2‖2,

y2
1 = ‖y2‖2,

x1y1 = xT2 y2,

x1y2 = y1x2.

Proof. By (3.12), ‖x‖2 +‖y‖2 = 2‖x1x2 +y1y2‖. Thus (‖x‖2 + ‖y‖2)
2

= 4‖x1x2 +y1y2‖2,

so that

‖x‖4 + 2‖x‖2‖y‖2 + ‖y‖4 = 4(x1x2 + y1y2)T(x1x2 + y1y2).

Notice that ‖x‖2 = x2
1 + ‖x2‖2 and ‖y‖2 = y2

1 + ‖y2‖2. Thus,(
x2

1 + ‖x2‖2
)2

+ 2‖x‖2‖y‖2 +
(
y2

1 + ‖y2‖2
)2

= 4x2
1‖x2‖2 + 8x1y1x

T
2 y2 + 4y2

1‖y2‖2.

Simplifying the above expression yields(
x2

1 − ‖x2‖2
)2

+
(
y2

1 − ‖y2‖2
)2

+
(
2‖x‖2‖y‖2 − 8x1y1x

T
2 y2

)
= 0.
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The first two terms are nonnegative. The third term is also nonnegative because

‖x‖2‖y‖2 =
(
x2

1 + ‖x2‖2
) (
y2

1 + ‖y2‖2
)

≥ (2|x1|‖x2‖) (2|y1|‖y2‖)
= 4|x1||y1|‖x2‖‖y2‖
≥ 4x1y1x

T
2 y2.

Hence

x2
1 = ‖x2‖2, y2

1 = ‖y2‖2, 2‖x‖2‖y‖2 − 8x1y1x
T
2 y2 = 0.

Substituting x2
1 = ‖x2‖2 and y2

1 = ‖y2‖2 into the last equation, the resulting three

equations imply x1y1 = xT2 y2.

It remains to prove that x1y2 = y1x2. If x1 = 0, then ‖x2‖ = |x1| = 0 so this relation is

true. Symmetrically, if y1 = 0, then this relation is also true. Suppose that x1 6= 0 and

y1 6= 0. Then, x2 6= 0, y2 6= 0, and

x1y1 = xT2 y2 = ‖x2‖‖y2‖ cos θ = |x1||y1| cos θ,

where θ is the angle between x2 and y2. Hence, cos θ ∈ {−1, 1}, i.e., y2 = αx2 for some

α 6= 0. This yields

x1y1 = xT2 y2 = α‖x2‖2 = αx2
1,

so that y1/x1 = α. Thus, y2 = x2y1/x1. �

Lemma 3.3. For any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1 with x1x2 + y1y2 6= 0, we

have (
x1 −

(x1x2 + y1y2)Tx2

‖x1x2 + y1y2‖

)2

≤
∥∥∥∥x2 − x1

x1x2 + y1y2

‖x1x2 + y1y2‖

∥∥∥∥2

≤ ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖.

In other words,(
x1 + (−1)ixT2 w̄2

)2 ≤
∥∥x2 + (−1)ix1w̄2

∥∥2 ≤ λi(w) for i = 1, 2.

Proof. The first inequality can be seen by expanding the square on both sides and using

the Cauchy-Schwarz inequality. It remains to prove the second inequality. Let us multiply

both sides of this inequality by

‖x1x2 + y1y2‖2 = x2
1‖x2‖2 + 2x1y1x

T
2 y2 + y2

1‖y2‖2



3.1. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SOC 187

and let L and R denote, respectively, the left-hand side and the right-hand side. Since

x1x2 + y1y2 6= 0, the second inequality is equivalent to R− L ≥ 0. We have

L =

(
‖x2‖2 − 2x1

(x1x2 + y1y2)Tx2

‖x1x2 + y1y2‖
+ x2

1

)
‖x1x2 + y1y2‖2

= ‖x2‖2

(
x2

1‖x2‖2 + 2x1y1x
T
2 y2 + y2

1‖y2‖2

)
−2x1

(
x1‖x2‖2 + y1x

T
2 y2

)
‖x1x2 + y1y2‖

+x2
1

(
x2

1‖x2‖2 + 2x1y1x
T
2 y2 + y2

1‖y2‖2

)
= x2

1‖x2‖4 + 2x1y1x
T
2 y2‖x2‖2 + y2

1‖x2‖2‖y2‖2

−2x2
1‖x2‖2‖x1x2 + y1y2‖ − 2x1y1x

T
2 y2‖x1x2 + y1y2‖

+x4
1‖x2‖2 + 2x3

1y1x
T
2 y2 + x2

1y
2
1‖y2‖2,

and

R =

(
‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖

)
‖x1x2 + y1y2‖2

=

(
x2

1 + ‖x2‖2 − 2‖x1x2 + y1y2‖
)
‖x1x2 + y1y2‖2 + ‖y‖2‖x1x2 + y1y2‖2

=

(
x2

1 + ‖x2‖2 − 2‖x1x2 + y1y2‖
)(

x2
1‖x2‖2 + 2x1y1x

T
2 y2 + y2

1‖y2‖2

)
+‖y‖2‖x1x2 + y1y2‖2

= x4
1‖x2‖2 + 2x3

1y1x
T
2 y2 + x2

1y
2
1‖y2‖2 + x2

1‖x2‖4 + 2x1y1x
T
2 y2‖x2‖2

+y2
1‖x2‖2‖y2‖2 − 2x2

1‖x2‖2‖x1x2 + y1y2‖ − 4x1y1x
T
2 y2‖x1x2 + y1y2‖

−2y2
1‖y2‖2‖x1x2 + y1y2‖+ ‖y‖2‖x1x2 + y1y2‖2.

Thus, taking the difference and using the Cauchy-Schwarz inequality yields

R− L
= ‖y‖2‖x1x2 + y1y2‖2 − 2x1y1x

T
2 y2‖x1x2 + y1y2‖ − 2y2

1‖y2‖2‖x1x2 + y1y2‖
= y2

1‖x1x2 + y1y2‖2 + ‖y2‖2‖x1x2 + y1y2‖2 − 2y1y
T
2 (x1x2 + y1y2)‖x1x2 + y1y2‖

≥ y2
1‖x1x2 + y1y2‖2 + ‖y2‖2‖x1x2 + y1y2‖2 − 2|y1|‖y2‖ ‖x1x2 + y1y2‖2

= (|y1| − ‖y2‖)2 ‖x1x2 + y1y2‖2

≥ 0.

Then, the proof is complete. �

Lemma 3.4. There exists a scalar constant C > 0 such that

‖LxL−1
(x2+y2)1/2

‖F ≤ C, ‖LyL−1
(x2+y2)1/2

‖F ≤ C
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for all (x, y) 6= (0, 0) satisfying x2 + y2 ∈ int(Kn). (‖A‖F denotes the Frobenius norm of

A ∈ IRn×n.)

Proof. Consider any (x, y) 6= (0, 0) satisfying x2+y2 ∈ int(Kn). Let λ1, λ2 be the spectral

values of x2 + y2 and let z := (x2 + y2)1/2. Then, z is given by (3.15), i.e.,

z1 =

√
λ1 +

√
λ2

2
, z2 =

√
λ2 −

√
λ1

2
w2,

with λ1, λ2 given by (3.13), and w2 :=
x1x2 + y1y2

‖x1x2 + y1y2‖
if x1x2 + y1y2 6= 0; otherwise w2 is

any vector satisfying ‖w2‖ = 1. Using Lemma 3.1(c), we have that

LxL
−1
z

=
1

det(z)

[
x1z1 − xT2 z2 −x1z

T
2 + det(z)

z1
xT2 +

xT2 z2
z1
zT2

x2z1 − x1z2 −x2z
T
2 + x1 det(z)

z1
I + x1

z1
z2z

T
2

]
(3.16)

=
1√

λ1

√
λ2


√
λ1+
√
λ2

2
x1 +

√
λ1−
√
λ2

2
xT2w2

√
λ1−
√
λ2

2
x1w

T
2 + 2

√
λ1
√
λ2√

λ1+
√
λ2
xT2

+ (
√
λ1−
√
λ2)2

2(
√
λ1+
√
λ2)
xT2w2w

T
2√

λ1+
√
λ2

2
x2 +

√
λ1−
√
λ2

2
x1w2

√
λ1−
√
λ2

2
x2w

T
2 + 2

√
λ1
√
λ2√

λ1+
√
λ2
x1I

+ (
√
λ1−
√
λ2)2

2(
√
λ1+
√
λ2)
x1w2w

T
2



=



(x1 + xT2w2)

2
√
λ2

+
(x1 − xT2w2)

2
√
λ1

(
x1w

T
2

2
√
λ2

− x1w
T
2

2
√
λ1

)
+

2xT2√
λ1 +

√
λ2

+

√
λ2√
λ1
−2+

√
λ1√
λ2

2(
√
λ1+
√
λ2)

xT2w2w
T
2

(x2 + x1w2)

2
√
λ2

+
(x2 − x1w2)

2
√
λ1

(
x2w

T
2

2
√
λ2

− x2w
T
2

2
√
λ1

)
+

2x1I√
λ1 +

√
λ2

+

√
λ2√
λ1
−2+

√
λ1√
λ2

2(
√
λ1+
√
λ2)

x1w2w
T
2


.

Since λ2 ≥ ‖x‖2, we see that
√
λ2 ≥ |x1| and

√
λ2 ≥ ‖x2‖. Also, ‖w2‖ = 1. Thus,

terms that involve dividing x1 or x2 or x1w2 or xT2w2 or x1w2w
T
2 or xT2w2w

T
2 by

√
λ2 or√

λ1 +
√
λ2 are uniformly bounded. Also,

√
λ1/
√
λ2 ≤ 1. Thus

LxL
−1
z

=


O(1) +

(x1 − xT2w2)

2
√
λ1

O(1)− x1w
T
2

2
√
λ1

+

√
λ2√
λ1

2(
√
λ1 +

√
λ2)

xT2w2w
T
2

O(1) +
(x2 − x1w2)

2
√
λ1

O(1)− x2w
T
2

2
√
λ1

+

√
λ2√
λ1

2(
√
λ1 +

√
λ2)

x1w2w
T
2



=

 O(1) +
(x1 − xT2w2)

2
√
λ1

O(1)− x1w
T
2

2(
√
λ1 +

√
λ2)
−
√
λ2(x1 − xT2w2)

2(
√
λ1 +

√
λ2)
√
λ1

wT
2

O(1) +
(x2 − x1w2)

2
√
λ1

O(1)− x2w
T
2

2(
√
λ1 +

√
λ2)
−
√
λ2(x2 − x1w2)

2(
√
λ1 +

√
λ2)
√
λ1

wT
2

 ,
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where O(1) denote terms that are uniformly bounded, with bound independent of (x, y).

By Lemma 3.3, if x1x2+y1y2 6= 0, then |x1−xT2w2| ≤ ‖x2−x1w2‖ ≤
√
λ1. If x1x2+y1y2 =

0, then λ1 = ‖x‖2 +‖y‖2 so that, by choosing w2 to further satisfy xT2w2 = 0 (in addition

to ‖w2‖ = 1), we obtain

|x1 − xT2w2| ≤ ‖x2 − x1w2‖ = ‖x‖ ≤
√
λ1.

Thus, all terms in LxL
−1
z are uniformly bounded. �

Lemma 3.5. (a) For any x ∈ Kn, y ∈ IRn with x2 − y2 ∈ Kn, we have x− y ∈ Kn.

(b) For any x, y ∈ IRn and w ∈ Kn such that w2−x2− y2 ∈ Kn, we have L2
w � L2

x +L2
y.

Proof. Please see [78, Proposition 3.4]. �

Lemma 3.6. (a) For any x ∈ IRn, 〈x, (x)−〉 = ‖(x)−‖2 and 〈x, (x)+〉 = ‖(x)+‖2.

(b) For any x ∈ IRn and y ∈ IRn, we have

x ∈ Kn ⇐⇒ 〈x, y〉 ≥ 0 ∀y ∈ Kn. (3.17)

(c) Let x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1. Then, we have

〈x, y〉 ≤
√

2 ‖(x ◦ y)+‖ . (3.18)

Proof. (a) By definition of trace, we know that tr(x ◦ y) = 2〈x, y〉. Thus,

〈x, (x)−〉 =
1

2
tr
(
x ◦ (x)−

)
=

1

2
tr
(
[(x)+ + (x)−] ◦ (x)−

)
=

1

2
tr
(
(x)2
−
)

= ‖(x)−‖2,

where the last inequality is from definition of trace again. Similar arguments applied for

〈x, (x)+〉 = ‖(x)+‖2.

(b) Since Kn is self-dual, that is Kn = (Kn)∗. Hence, the desired result follows.

(c) First, we observe the fact that

x ∈ Kn ⇐⇒ (x)+ = x,

x ∈ −Kn ⇐⇒ (x)+ = 0,

x 6∈ Kn ∪ −Kn ⇐⇒ (x)+ = λ2u
(2),
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where λ2 is the bigger spectral value of x with the corresponding spectral vector u(2).

Hence, we have three cases.

Case(1): If x ◦ y ∈ Kn, then (x ◦ y)+ = x ◦ y. By definition of Jordan product of x and y

as (1.2), i.e., x ◦ y = (〈x, y〉 , x1y2 + y1x2). It is clear that ‖(x ◦ y)+‖ ≥ 〈x, y〉 and hence

(3.18) holds.

Case(2): If x ◦ y ∈ −Kn, then (x ◦ y)+ = 0. Since x ◦ y ∈ −Kn, by definition of Jordan

product again, we have 〈x, y〉 ≤ 0. Hence, it is true that
√

2‖(x ◦ y)+‖ ≥ 〈x, y〉.
Case(3): If x ◦ y 6∈ Kn ∪ −Kn, then (x ◦ y)+ = λ2u

(2) where

λ2 = 〈x, y〉+ ‖x1y2 + y1x2‖,

u(2) =
1

2

(
1 ,

x1y2 + y1x2

‖x1y2 + y1x2‖

)
.

If 〈x, y〉 ≤ 0, then (3.18) is trivial. Thus, we can assume 〈x, y〉 > 0. In fact, the desired

inequality (3.18) follows from the below.

‖(x ◦ y)+‖2 =
1

2
λ2

2

=
1

2

(
〈x, y〉2 + 2〈x, y〉 · ‖x1y2 + y1x2‖+ ‖x1y2 + y1x2‖2

)
≥ 1

2
〈x, y〉2,

where the first equality is by ‖u(2)‖ = 1/
√

2. �

Lemma 3.7. Let φ
FB

and ψ
FB

be given by (3.10) and (3.11), respectively. For any

(x, y) ∈ IRn × IRn, we have

4ψ
FB

(x, y) ≥ 2

∥∥∥∥φFB
(x, y)+

∥∥∥∥2

≥
∥∥∥∥(−x)+

∥∥∥∥2

+

∥∥∥∥(−y)+

∥∥∥∥2

.

Proof. The first inequality follows from Lemma 1.1(a). It remains to show the second

inequality. By Lemma 1.1(d), (x2 + y2)1/2 − x ∈ Kn. Since Kn is self-dual, then Lemma

1.1(c) yields ∥∥∥∥ ((x2 + y2)1/2 − x− y
)

+

∥∥∥∥2

≥
∥∥∥∥(−y)+

∥∥∥∥2

.

By a symmetric argument,∥∥∥∥ ((x2 + y2)1/2 − x− y
)

+

∥∥∥∥2

≥
∥∥∥∥(−x)+

∥∥∥∥2

.

Adding the above two inequalities yields the desired second inequality. �
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Lemma 3.8. Let φ
FB

and ψ
FB

be given by (3.10) and (3.11), respectively. For any

{(xk, yk)}∞k=1 ⊆ IRn × IRn, let λk1 ≤ λk2 and µk1 ≤ µk2 denote the spectral values of xk and

yk, respectively. Then the following results hold.

(a) If λk1 → −∞ or µk1 → −∞, then ψ
FB

(xk, yk)→∞.

(b) Suppose that {λk1} and {µk1} are bounded below. If λk2 → ∞ or µk2 → ∞, then

〈x, xk〉+ 〈y, yk〉 → ∞ for any x, y ∈ int(Kn).

Proof. (a) This follows from Lemma 3.7 and the fact that

2
∥∥(−xk)+

∥∥2
=

2∑
i=1

(
max{0,−λki }

)2

and similarly for ‖(−yk)+‖2; see [78, Property 2.2 and Proposition 3.3].

(b) Fix any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1 with ‖x2‖ < x1, ‖y2‖ < y1. Using the

spectral decomposition

xk =

(
λk1 + λk2

2
,
λk2 − λk1

2
wk2

)
with ‖wk2‖ = 1,

we have

〈x, xk〉 =

(
λk1 + λk2

2

)
x1 +

(
λk2 − λk1

2

)
xT2w

k
2 =

λk1
2

(x1 − xT2wk2) +
λk2
2

(x1 + xT2w
k
2). (3.19)

Since ‖wk2‖ = 1, we have x1 − xT2wk2 ≥ x1 − ‖x2‖ > 0 and x1 + xT2w
k
2 ≥ x1 − ‖x2‖ > 0.

Since {λk1} is bounded below, the first term on the right-hand side of (3.19) is bounded

below. If {λk2} → ∞, then the second term on the right-hand side of (3.19) tends to

infinity. Hence, 〈x, xk〉 → ∞. A similar argument shows that 〈y, yk〉 is bounded below.

Thus, 〈x, xk〉+ 〈y, yk〉 → ∞. If {µk2} → ∞, the argument is symmetric to the one above.

�

3.1.1 The functions φ
FB

and ψ
FB

in SOC setting

A. The functions φ
FB

and ψ
FB

Proposition 3.2. Let φ
FB

: IRn × IRn → IRn be given by (3.10). Then, the function

φ
FB

is a C-function associated with SOC, that is, it satisfies (3.5). In other words, there

holds

φ
FB

(x, y) = 0 ⇐⇒ x, y ∈ Kn, x ◦ y = 0,

⇐⇒ x, y ∈ Kn, 〈x, y〉 = 0.
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Proof. Please see [78, Proposition 2.1]. �

Proposition 3.3. Let φ
FB

: IRn × IRn → IRn be given by (3.10). Then, the function φ
FB

is is strongly semismooth.

Proof. The proof relies on the relationship between the singular value decomposition

(SVD) of a nonsymmetric matrix and the spectral decomposition of a symmetric matrix;

see [198, Corollary 3.3] for details. �

Proposition 3.4. Let φ
FB

be given by (3.10). Then, the function ψ
FB

given by (3.11)

has the following properties.

(a) ψ
FB

: IRn × IRn → IR+ is a C-function associated with SOC, which satisfies (3.6).

(b) ψ
FB

is differentiable at every (x, y) ∈ IRn×IRn. Moreover, ∇xψFB
(0, 0) = ∇yψFB

(0, 0) =

0. If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), then

∇xψFB
(x, y) =

(
LxL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y),

∇yψFB
(x, y) =

(
LyL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y).

If (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn), then x2
1 + y2

1 6= 0 and

∇xψFB
(x, y) =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y), (3.20)

∇yψFB
(x, y) =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y). (3.21)

Proof. (a) This result follows from Proposition 3.2 directly.

(b) In light of the behavior of x2 + y2, we proceed with the analysis by considering three

distinct cases.

Case (1): x = y = 0.

For any h, k ∈ IRn, let µ1 ≤ µ2 be the spectral values and let v(1), v(2) be the corresponding

spectral vectors of h2 + k2. Then, by Lemma 3.1(b),∥∥(h2 + k2)1/2 − h− k
∥∥ = ‖√µ1v

(1) +
√
µ2v

(2) − h− k‖
≤ √

µ1 ‖v(1)‖+
√
µ2 ‖v(2)‖+ ‖h‖+ ‖k‖

=
1√
2

(
√
µ1 +

√
µ2) + ‖h‖+ ‖k‖.

Also

µ1 ≤ µ2 = ‖h‖2 + ‖k‖2 + 2‖h1h2 + k1k2‖
≤ ‖h‖2 + ‖k‖2 + 2|h1|‖h2‖+ 2|k1|‖k2‖
≤ 2‖h‖2 + 2‖k‖2.
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Combining the above two inequalities yields

ψ
FB

(h, k)− ψ
FB

(0, 0) =
∥∥(h2 + k2)1/2 − h− k

∥∥2

≤
(

1√
2

(
√
µ1 +

√
µ2) + ‖h‖+ ‖k‖

)2

≤
(

2√
2

√
2‖h‖2 + 2‖k‖2 + ‖h‖+ ‖k‖

)2

= O(‖h‖2 + ‖k‖2).

This shows that ψ
FB

is differentiable at (0, 0) with

∇xψFB
(0, 0) = ∇yψFB

(0, 0) = 0.

Case (2): (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn).

Since x2 + y2 ∈ int(Kn), Proposition 5.2 of [78] implies that φ
FB

is continuously differen-

tiable at (x, y). Since ψ
FB

is the composition of φ with x 7→ 1
2
‖x‖2, then ψ

FB
is contin-

uously differentiable at (x, y). The expressions (3.20) for ∇xψFB
(x, y) and ∇yψFB

(x, y)

follow from the chain rule for differentiation and the expression for the Jacobian of φ
FB

given in [78, Proposition 5.2] (also see [78, Corollary 5.4]).

Case (3): (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn).

By (3.12), ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖. Since (x, y) 6= (0, 0), this also implies x1x2 +

y1y2 6= 0, so Lemmas 3.2 and 3.3 are applicable. By (3.15),

(x2 + y2)1/2 =

(√
λ1 +

√
λ2

2
,

√
λ2 −

√
λ1

2
w2

)
,

where λ1, λ2 are given by (3.13) and w2 :=
x1x2 + y1y2

‖x1x2 + y1y2‖
. Thus, λ1 = 0 and λ2 > 0.

Since x1x2 + y1y2 6= 0, we have x′1x
′
2 + y′1y

′
2 6= 0 for all (x′, y′) ∈ IRn× IRn sufficiently near

to (x, y). Moreover,

2ψ
FB

(x′, y′) =
∥∥∥(x′

2
+ y′

2
)1/2 − x′ − y′

∥∥∥2

=

∥∥∥∥(x′2 + y′
2
)1/2

∥∥∥∥2

+ ‖x′ + y′‖2 − 2

〈(
x′

2
+ y′

2
)1/2

, x′ + y′
〉

= ‖x′‖2 + ‖y′‖2 + ‖x′ + y′‖2 − 2

〈(
x′

2
+ y′

2
)1/2

, x′ + y′
〉
,

where the third equality uses the observation that ‖z‖2 = 〈z2, e〉 for any z ∈ IRn. Since
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‖x′‖2 + ‖y′‖2 + ‖x′ + y′‖2 is clearly differentiable in (x′, y′), it suffices to show that

2

〈(
x′

2
+ y′

2
)1/2

, x′ + y′
〉

= (
√
µ2 +

√
µ1)(x′1 + y′1) + (

√
µ2 −

√
µ1)

(x′1x
′
2 + y′1y

′
2)T(x′2 + y′2)

‖x′1x′2 + y′1y
′
2‖

=
√
µ2

(
x′1 + y′1 +

(x′1x
′
2 + y′1y

′
2)T(x′2 + y′2)

‖x′1x′2 + y′1y
′
2‖

)
+
√
µ1

(
x′1 + y′1 −

(x′1x
′
2 + y′1y

′
2)T(x′2 + y′2)

‖x′1x′2 + y′1y
′
2‖

)
(3.22)

is differentiable at (x′, y′) = (x, y), where µ1, µ2 are the spectral values of x′2 + y′2, i.e.,

µi = ‖x′‖2 + ‖y′‖2 + 2(−1)i‖x′1x′2 + y′1y
′
2‖. Since λ2 > 0, we see that the first term on the

right-hand side of (3.22) is differentiable at (x′, y′) = (x, y). We claim that the second

term on the right-hand side of (3.22) is o(‖h‖ + ‖k‖) with h := x′ − x, k := y′ − y, i.e.,

it is differentiable with zero gradient. To see this, notice that x1x2 + y1y2 6= 0, so that

µ1 = ‖x′‖2 + ‖y′‖2 − 2‖x′1x′2 + y′1y
′
2‖, viewed as a function of (x′, y′), is differentiable at

(x′, y′) = (x, y). Moreover, µ1 = λ1 = 0 when (x′, y′) = (x, y). Thus, first-order Taylor’s

expansion of µ1 at (x, y) yields

µ1 = O(‖x′ − x‖+ ‖y′ − y‖) = O(‖h‖+ ‖k‖).

Also, since x1x2 + y1y2 6= 0, by the product and quotient rules for differentiation, the

function

x′1 + y′1 −
(x′1x

′
2 + y′1y

′
2)T(x′2 + y′2)

‖x′1x′2 + y′1y
′
2‖

(3.23)

is differentiable at (x′, y′) = (x, y). Moreover, the function (3.23) has value 0 at (x′, y′) =

(x, y). This is because

x1 + y1 −
(x1x2 + y1y2)T(x2 + y2)

‖x1x2 + y1y2‖
= x1 − wT

2 x2 + y1 − wT
2 y2 = 0 + 0,

where w2 := (x1x2 + y1y2)/‖x1x2 + y1y2‖ and the last equality uses the fact that, by

Lemma 3.3 and ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖, we have wT
2 x2 = x1, wT

2 y2 = y1. (By

symmetry, Lemma 3.3 still holds when x and y are switched.) Thus, the function (3.23)

is O(‖h‖ + ‖k‖) in magnitude. This together with µ1 = O(‖h‖ + ‖k‖) shows that the

second term on the right of (3.22) is O((‖h‖+ ‖k‖)3/2) = o(‖h‖+ ‖k‖).
Thus, we have shown that ψ

FB
is differentiable at (x, y). Moreover, the preceding argu-

ment shows that 2∇ψ
FB

(x, y) is the sum of the gradient of ‖x′‖2 + ‖y′‖2 + ‖x′+ y′‖2 and

the gradient of the first term on the right of (3.22), evaluated at (x′, y′) = (x, y). The

gradient of ‖x′‖2 + ‖y′‖2 + ‖x′ + y′‖2 with respect to x′, evaluated at (x′, y′) = (x, y), is

4x+ 2y. Using the product and quotient rules for differentiation, the gradient of the first
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term on the right of (3.22) with respect to x′1, evaluated at (x′, y′) = (x, y), works out to

be

x1 + wT
2 x2√

λ2

(
x1 + y1 + wT

2 (x2 + y2)
)

+
√
λ2

(
1 +

xT2 (x2 + y2)

‖x1x2 + y1y2‖
− wT

2 (x2 + y2)

‖x1x2 + y1y2‖
wT

2 x2

)
=

2x1(x1 + y1)√
x2

1 + y2
1

+ 2
√
x2

1 + y2
1,

where w2 := (x1x2 + y1y2)/‖x1x2 + y1y2‖ and the equality uses Lemma 3.2 and the fact

that, by Lemma 3.3 and ‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖, we have wT
2 x2 = x1, wT

2 y2 = y1.

Similarly, the gradient of the first term on the right of (3.22) with respect to x′2, evaluated

at (x′, y′) = (x, y), works out to be

x2 + w2x1√
λ2

(
x1 + y1 + wT

2 (x2 + y2)
)

+
√
λ2

(
2x1x2 + (x1 + y1)y2

‖x1x2 + y1y2‖
− wT

2 (x2 + y2)

‖x1x2 + y1y2‖
w2x1

)
= 2

2x1x2 + (x1 + y1)y2√
x2

1 + y2
1

.

In particular, the equality uses the fact that, by Lemma 3.2, we have x1y2 = y1x2 and

‖x1x2 + y1y2‖ = x2
1 + y2

1, so that w2x1 = x2 and λ2 = 4(x2
1 + y2

1). Thus, combining the

preceding gradient expressions yields

2∇xψFB
(x, y) = 4x+ 2y −

[
2
√
x2

1 + y2
1

0

]
− 2√

x2
1 + y2

1

[
x1(x1 + y1)

2x1x2 + (x1 + y1)y2

]
.

Using ‖x1x2 + y1y2‖ = x2
1 + y2

1 and λ2 = 4(x2
1 + y2

1), we can also write

(x2 + y2)1/2 =

(√
x2

1 + y2
1,

x1x2 + y1y2√
x2

1 + y2
1

)
,

so that

φ
FB

(x, y) =

(√
x2

1 + y2
1 − (x1 + y1),

x1x2 + y1y2√
x2

1 + y2
1

− (x2 + y2)

)
. (3.24)

Using the fact that x1y2 = y1x2, we can rewrite the above expression for ∇xψFB
(x, y) in

the form of (3.20). By symmetry, (3.21) also holds. �

Proposition 3.5. Let φ
FB

be given by (3.10). Then, the function ψ
FB

given by (3.11) is

smooth everywhere on IRn × IRn.
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Proof. By Proposition 3.4, ψ
FB

is differentiable everywhere on IRn × IRn. We will show

that ∇ψ
FB

is continuous at every (a, b) ∈ IRn × IRn. By the symmetry between x and y

in ∇ψ
FB

, it suffices to verify that ∇xψFB
is continuous at every (a, b) ∈ IRn × IRn.

Case (1): a = b = 0.

By Proposition 3.4, ∇xψFB
(0, 0) = 0. Thus, we need to show that ∇xψFB

(x, y) → 0 as

(x, y) → (0, 0). We consider two subcases: (i) (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn) and

(ii) (x, y) 6= (0, 0) and x2+y2 6∈ int(Kn). In subcase (i), we have from Proposition 3.4 that

∇xψFB
(x, y) is given by the expression (3.20). By Lemma 3.4, LxL

−1
(x2+y2)1/2

is uniformly

bounded, with bound independent of (x, y). Also, φ
FB

given by (3.10) is continuous at

(0, 0) so that φ
FB

(x, y)→ 0 as (x, y)→ (a, b). It follows from (3.20) that∇xψFB
(x, y)→ 0

as (x, y) → (a, b) in subcase (i). In subcase (ii), we have from Proposition 3.4 that

∇xψFB
(x, y) is given by the expression (3.20). Clearly x1/

√
x2

1 + y2
1 is uniformly bounded,

with bound independent of (x, y). Also, φ
FB

(x, y)→ 0 as (x, y)→ (a, b). It follows from

(3.20) that ∇xψFB
(x, y)→ 0 as (x, y)→ (a, b) in subcase (ii).

Case (2): (a, b) 6= (0, 0) and a2 + b2 ∈ int(Kn).

It was already shown in the proof of Proposition 3.4 that ψ
FB

is continuously differentiable

at (a, b).

Case (3): (a, b) 6= (0, 0) and a2 + b2 6∈ int(Kn).

By (3.12), ‖a‖2 + ‖b‖2 = 2‖a1a2 + b1b2‖. By Proposition 3.4, we have a2
1 + b2

1 > 0 and

∇xψFB
(a, b) =

(
a1√
a2

1 + b2
1

− 1

)
φ(a, b).

We need to show that ∇xψFB
(x, y) → ∇xψFB

(a, b). We consider two cases: (i) (x, y) 6=
(0, 0) and x2 + y2 ∈ int(Kn) and (ii) (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn). In subcase (ii),

we have from Proposition 3.4 that ∇xψFB
(x, y) is given by the expression (3.20). This

expression is continuous at (a, b). Thus, ∇xψFB
(x, y)→ ∇xψFB

(a, b) as (x, y)→ (a, b) in

subcase (ii). The remainder of our proof treats subcase (i). In subcase (i), we have from

Proposition 3.4 that ∇xψFB
(x, y) is given by the expression (3.20), i.e.,

∇xψFB
(x, y) =

(
LxL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y)

= LxL
−1
(x2+y2)1/2

(x2 + y2)1/2 − LxL−1
(x2+y2)1/2

(x+ y)− φ
FB

(x, y)

= x− LxL−1
(x2+y2)1/2

(x+ y)− φ
FB

(x, y).

Also, by Lemma 3.2, we have ‖a1a2 + b1b2‖ = 1
2
‖a‖2 + 1

2
‖b‖2 = a2

1 + b2
1 and a1b2 = b1a2,
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implying that (see (3.13), (3.15))

a1√
a2

1 + b2
1

(a2 + b2)1/2 =
a1√
a2

1 + b2
1

(√
a2

1 + b2
1,
a1a2 + b1b2√

a2
1 + b2

1

)
=

(
a1,

a2
1a2 + a1b1b2

a2
1 + b2

1

)
=

(
a1,

a2
1a2 + b2

1a2

a2
1 + b2

1

)
= (a1, a2)

= a.

This together with (3.20) yields

∇xψFB
(a, b) =

(
a1√
a2

1 + b2
1

− 1

)
φ(a, b)

=
a1√
a2

1 + b2
1

[
(a2 + b2)1/2 − (a+ b)

]
− φ

FB
(a, b)

=
a1√
a2

1 + b2
1

(a2 + b2)1/2 − a1√
a2

1 + b2
1

(a+ b)− φ
FB

(a, b)

= a− a1√
a2

1 + b2
1

(a+ b)− φ
FB

(a, b).

Since φ
FB

is continuous, to prove ∇xψFB
(x, y)→ ∇xψFB

(a, b) as (x, y)→ (a, b), it suffices

to show that

LxL
−1
(x2+y2)1/2

x → a1√
a2

1 + b2
1

a as (x, y)→ (a, b), (3.25)

LxL
−1
(x2+y2)1/2

y → a1√
a2

1 + b2
1

b as (x, y)→ (a, b). (3.26)

Note ‖a‖2 + ‖b‖2 = 2‖a1a2 + b1b2‖ and (a, b) 6= (0, 0), there has a1a2 + b1b2 6= 0. Thus,

by taking (x, y) sufficiently near to (a, b), we can assume that x1x2 + y1y2 6= 0. Let

z := (x2 + y2)1/2. Then z is given by (3.15) with λ1, λ2 given by (3.13) and w2 :=
x1x2 + y1y2

‖x1x2 + y1y2‖
. In addition, det(z) = z2

1 −‖z2‖2 =
√
λ1λ2. Let (ζ1, ζ2) := LxL

−1
z x. Then,

(3.25) reduces to

ζ1 →
a2

1√
a2

1 + b2
1

and ζ2 →
a1√
a2

1 + b2
1

a2 as (x, y)→ (a, b). (3.27)

We prove (3.27) below. By Lemma 3.2, as (x, y)→ (a, b),

λ1 → 0, λ2 → ‖a‖2 + ‖b‖2 + 2‖a1a2 + b1b2‖ = 4(a2
1 + b2

1), z1 →
√
a2

1 + b2
1. (3.28)
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Using (3.16), we calculate the first component of LxL
−1
z x to be

ζ1 :=
1

det(z)

(
x2

1z1 − xT2 z2x1 − x1z
T
2 x2 +

det(z)

z1

‖x2‖2 +
(xT2 z2)2

z1

)
,

=
‖x2‖2

z1

+
1

z1 det(z)

(
x2

1z
2
1 − 2xT2 z2x1z1 + (xT2 z2)2

)
=
‖x2‖2

z1

+
(x1z1 − xT2 z2)2

z1 det(z)
.

In addition, applying Lemma 3.2 and (3.28) yields

‖x2‖2

z1

→ ‖a2‖2√
a2

1 + b2
1

=
a2

1√
a2

1 + b2
1

.

Thus, to prove the first relation in (3.27), it suffices to show that

(x1z1 − xT2 z2)2

z1 det(z)
→ 0 as (x, y)→ (a, b).

Note that

(x1z1 − xT2 z2)2

z1 det(z)
=

1

z1

√
λ1λ2

(
x1

√
λ1 +

√
λ2

2
+

√
λ1 −

√
λ2

2
xT2w2

)2

=
1

z1

√
λ1λ2

(
x1

√
λ1 +

√
λ2 −

√
λ1

2

(
x1 − xT2w2

))2

=
1

z1

√
λ2

(
x2

1

√
λ1 + x1

(√
λ2 −

√
λ1

) (
x1 − xT2w2

)
+

(
√
λ2 −

√
λ1)2

4
√
λ1

(
x1 − xT2w2

)2
)
. (3.29)

We also have from (3.28) that λ1 → 0,
√
λ2 → 2

√
a2

1 + b2
1 > 0, and z1 →

√
a2

1 + b2
1 > 0.

Moreover, by Lemma 3.3 and w2 =
x1x2 + y1y2

‖x1x2 + y1y2‖
,

(
x1 − xT2w2

)2

√
λ1

→ 0 as (x, y)→ (a, b).

Thus, the right-hand side of (3.29) tends to zero as (x, y)→ (a, b). This proves the first

relation in (3.27). Using (3.16), we calculate the last n− 1 components of LxL
−1
z x to be

ζ2 :=
1

det(z)

(
x1x2z1 − x2

1z2 − xT2 z2x2 +
x1 det(z)

z1

x2 +
x1

z1

z2z
T
2 x2

)
=

x1

z1

x2 +
1

det(z)

[
(x1z1 − xT2 z2)x2 + x1

(
xT2 z2

z1

− x1

)
z2

]
=

x1

z1

x2 +
(x1z1 − xT2 z2)

det(z)

(
x2 −

x1

z1

z2

)
.
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Also, by (3.28), we obtain
x1

z1

x2 →
a1√
a2

1 + b2
1

a2.

Therefore, to prove the second relation in (3.27), it suffices to show that

(x1z1 − xT2 z2)

det(z)

(
x2 −

x1

z1

z2

)
→ 0 as (x, y)→ (a, b).

First,
(x1z1 − xT2 z2)

det(z)
is bounded as (x, y)→ (a, b) because, by (3.15),

(x1z1 − xT2 z2)

det(z)
=

1√
λ1λ2

(
x1

√
λ1 +

√
λ2

2
−
√
λ2 −

√
λ1

2
xT2w2

)
=

1√
λ1λ2

(
x1

√
λ1 +

√
λ2 −

√
λ1

2

(
x1 − xT2w2

))
=

x1√
λ2

+

√
λ2 −

√
λ1

2
√
λ1λ2

(
x1 − xT2w2

)
=

x1√
λ2

+
1−
√
λ1/
√
λ2

2

(
x1 − xT2w2

)
√
λ1

,

and the first term on the right-hand side converges to a1/
√

4(a2
1 + b2

1) (see (3.28)) while

the second term is bounded by (3.13) and Lemma 3.3. Second, x2 −
x1

z1

z2 → 0 as

(x, y)→ (a, b) because, by (3.15) and (3.28),

x2 −
x1

z1

z2 → a2 −
a1√
a2

1 + b2
1

√
4(a2

1 + b2
1)

2

a1a2 + b1b2

‖a1a2 + b1b2‖

= a2 −
a2

1a2 + a1b1b2

‖a1a2 + b1b2‖

= a2 −
a2

1a2 + b2
1a2

a2
1 + b2

1

= a2 − a2

= 0,

where the second equality is due to Lemma 3.2, so that a1b2 = b1a2 and ‖a1a2 + b1b2‖ =

a2
1 + b2

1. This proves the second relation in (3.27).

Thus, we have proven (3.25). An analogous argument can be used to prove (3.26), which

we omit for simplicity. This shows that ∇xψFB
(x, y) → ∇xψFB

(a, b) as (x, y) → (a, b) in

subcase (i). �

Proposition 3.6. Let φ
FB

and ψ
FB

be given by (3.10) and (3.11), respectively. For any

(x, y) ∈ IRn × IRn, we have the following results.
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(a)

〈x,∇xψFB
(x, y)〉+ 〈y,∇yψFB

(x, y)〉 = ‖φ
FB

(x, y)‖2 . (3.30)

(b)

〈∇xψFB
(x, y),∇yψFB

(x, y)〉 ≥ 0, (3.31)

with equality holding if and only if φ
FB

(x, y) = 0.

Proof. Case (1): x = y = 0. From Proposition 3.4, ∇xψFB
(x, y) = ∇yψFB

(x, y) = 0, so

the proposition is true.

Case (2): (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn). By Proposition 3.4, we have

∇xψFB
(x, y) =

(
LxL

−1
z − I

)
φ

FB
(x, y),

∇yψFB
(x, y) =

(
LyL

−1
z − I

)
φ

FB
(x, y),

where we let z := (x2 + y2)1/2. For simplicity, we will write φ
FB

(x, y) as φ
FB

. Thus,

〈x,∇xψFB
(x, y)〉+ 〈y,∇yψFB

(x, y)〉
= 〈x, (LxL−1

z − I)φ
FB
〉+ 〈y, (LyL−1

z − I)φ
FB
〉

= 〈(L−1
z Lx − I)x, φ

FB
〉+ 〈(L−1

z Ly − I)y, φ
FB
〉

= 〈L−1
z Lxx+ L−1

z Lyy − x− y, φFB
〉

= 〈L−1
z (x2 + y2)− x− y, φ

FB
〉

= 〈L−1
z z2 − x− y, φ

FB
〉

= 〈z − x− y, φ
FB
〉

= ‖φ
FB
‖2,

where the next-to-last equality follows from Lzz = z2, so that L−1
z z2 = z. This proves

(3.30). Similarly,

〈∇xψFB
(x, y), ∇yψFB

(x, y)〉 = 〈(LxL−1
z − I)φ

FB
, (LyL

−1
z − I)φ

FB
〉

= 〈(Lx − Lz)L−1
z φ

FB
, (Ly − Lz)L−1

z φ
FB
〉 (3.32)

= 〈(Ly − Lz)(Lx − Lz)L−1
z φ

FB
, L−1

z φ
FB
〉.

Let S be the symmetric part of (Ly − Lz)(Lx − Lz). Then

S =
1

2

(
(Ly − Lz)(Lx − Lz) + (Lx − Lz)(Ly − Lz)

)
=

1

2

(
LxLy + LyLx − Lz(Lx + Ly)− (Lx + Ly)Lz + 2L2

z

)
=

1

2
(Lz − Lx − Ly)2 +

1

2
(L2

z − L2
x − L2

y).
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Since z ∈ Kn and z2 = x2 + y2, Lemma 3.5 yields L2
z − L2

x − L2
y � O. Then, (3.32) gives

〈∇xψFB
(x, y), ∇yψFB

(x, y)〉
= 〈SL−1

z φ
FB
, L−1

z φ
FB
〉

=
1

2
〈(Lz − Lx − Ly)2L−1

z φ
FB
, L−1

z φ
FB
〉+

1

2
〈(L2

z − L2
x − L2

y)L
−1
z φ

FB
, L−1

z φ
FB
〉

≥ 1

2
〈(Lz − Lx − Ly)2L−1

z φ
FB
, L−1

z φ
FB
〉

=
1

2
‖Lφ

FB
L−1
z φ

FB
‖2,

where the last equality uses Lz − Lx − Ly = Lz−x−y = Lφ
FB

. This proves (3.31).

If the inequality in (3.31) holds with equality, then the above relation yields ‖Lφ
FB
L−1
z φ

FB
‖2 =

0 and, by Lemma 3.1(d),

φ
FB
◦ (L−1

z φ
FB

) = Lφ
FB
L−1
z φ

FB
= 0.

Then, the definition of Jordan product yields

〈φ
FB
, L−1

z φ
FB
〉 = 0.

Since z = (x2 + y2)1/2 ∈ int(Kn) so that L−1
z � O (see Lemma 3.1(d)), this implies

φ
FB

= 0. Conversely, if φ
FB

= 0, then it follows from (3.20) that

〈∇xψFB
(x, y),∇yψFB

(x, y)〉 = 0.

Case (3): (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn). By Proposition 3.4, we have

∇xψFB
(x, y) =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y),

∇yψFB
(x, y) =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y).

Thus,

〈x,∇xψFB
(x, y)〉+ 〈y,∇yψFB

(x, y)〉

=

(
x1√
x2

1 + y2
1

− 1

)
〈x, φ

FB
(x, y)〉+

(
y1√
x2

1 + y2
1

− 1

)
〈y, φ

FB
(x, y)〉

=

〈(
x1√
x2

1 + y2
1

− 1

)
x+

(
y1√
x2

1 + y2
1

− 1

)
y, φ

FB
(x, y)

〉

=

〈
x1x+ y1y√
x2

1 + y2
1

− x− y, φ
FB

(x, y)

〉
= 〈φ

FB
(x, y), φ

FB
(x, y)〉,
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where the last equality uses (3.24). This proves (3.30). Similarly,

〈∇xψFB
(x, y), ∇yψFB

(x, y)〉

=

(
x1√
x2

1 + y2
1

− 1

)(
y1√
x2

1 + y2
1

− 1

)
‖φ

FB
(x, y)‖2

≥ 0.

This proves (3.31). If the inequality in (3.31) holds with equality, then either φ
FB

(x, y) = 0

or x1√
x21+y21

= 1 or y1√
x21+y21

= 1. In the second case, we have y1 = 0 and x1 ≥ 0, so that

Lemma 3.2 yields y2 = 0 and x1 = ‖x2‖. In the third case, we have x1 = 0 and y1 ≥ 0,

so that Lemma 3.2 yields x2 = 0 and y1 = ‖y2‖. Thus, in these two cases, we achieve

x ◦ y = 0, x ∈ Kn, y ∈ Kn. Then, by Proposition 3.2, φ
FB

(x, y) = 0 . �

Lemma 3.9. Let ω : IRn × IRn → IRm be defined by ω(x, y) := u(x, y) ◦ v(x, y), where

u, v : IRn × IRn → IRm are differentiable mappings. Then, ω is differentiable and

∇xω(x, y) = ∇xu(x, y)Lv(x,y) +∇xv(x, y)Lu(x,y),

∇yω(x, y) = ∇yu(x, y)Lv(x,y) +∇yv(x, y)Lu(x,y).
(3.33)

Proof. This is the product rule corresponding to the Jordan product. As its proof is

straightforward, we omit the details. �

Lemma 3.10. For any x, y ∈ IRn, let w(x, y) = (w1, w2) and z(x, y) = (z1, z2) be defined

as in (3.14). Suppose that F (x, y) := LxL
−1
z(x,y)(x + y) and G(x, y) := LyL

−1
z(x,y)(x + y).

Then, we have

(a) z is differentiable at (x, y) 6= (0, 0) ∈ IRn × IRn with x2 + y2 ∈ int(Kn). Moreover

∇xz(x, y) = LxL
−1
z(x,y), ∇yz(x, y) = LyL

−1
z(x,y).

where

L−1
z =


[

b cw̄T
2

cw̄2 aI + (b− a)w̄2w̄
T
2

]
if w2 6= 0;(

1/
√
w1

)
I if w2 = 0,

(3.34)

with

a =
2√

λ2(w) +
√
λ1(w)

,

b =
1

2

(
1√
λ2(w)

+
1√
λ1(w)

)
,

c =
1

2

(
1√
λ2(w)

− 1√
λ1(w)

)
.

and w̄2 = w2

‖w2‖ .
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(b) F,G are differentiable at (x, y) 6= (0, 0) ∈ IRn×IRn with x2+y2 ∈ int(Kn). Moreover,

‖∇F (x, y)‖, ‖∇G(x, y)‖ are uniformly bounded at such points.

Proof. (a) That the function z is differentiable is an immediate consequence of [131].

See also [29, Proposition 4]. Since, z2(x, y) = x2 + y2, applying the product rule (3.33)

in Lemma 3.9 yields

2∇xz(x, y)Lz(x,y) = 2Lx, 2∇yz(x, y)Lz(x,y) = 2Ly.

Hence, the desired results follow.

(b) For symmetry, it is enough to show that F is differentiable at (x, y) 6= (0, 0) with

x2 + y2 ∈ int(Kn) and that ‖∇xF (x, y)‖, ‖∇yF (x, y)‖ are uniformly bounded. It is clear

that F is differentiable at such points. The key part is to show the uniform boundedness

of ‖∇xF (x, y)‖, ‖∇yF (x, y)‖. Let λ1, λ2 be the spectral values of x2 + y2, then

λ1 := ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖,
λ2 := ‖x‖2 + ‖y‖2 + 2‖x1x2 + y1y2‖.

Thus, z(x, y) := (x2 + y2)1/2 has the spectral values
√
λ1,
√
λ2 and

z(x, y) = (z1, z2) =

(√
λ1 +

√
λ2

2
,

√
λ2 −

√
λ1

2
w2

)
,

where w2 :=
x1x2 + y1y2

‖x1x2 + y1y2‖
if x1x2 + y1y2 6= 0 and otherwise w2 is any vector in IRn−1

satisfying ‖w2‖ = 1.

Now, let u := L−1
z(x,y)(x+ y). By applying Lemma 3.1, we compute u as below.

u = L−1
z(x,y)(x+ y)

=
1

det(z(x, y))

 z1 −zT2
−z2

det(z(x, y))

z1

I +
1

z1

z2z
T
2

[ x1 + y1

x2 + y2

]

=
1

det(z(x, y))

[
(x1 + y1)z1 − (x2 + y2)Tz2

−(x1 + y1)z2 + det(z)
z1

(x2 + y2) + (x2+y2)Tz2
z1

z2

]

:=

[
u1

u2

]
.

We notice that F (x, y) = LxL
−1
z(x,y)(x+ y) = Lxu = x ◦ u. Then by applying Lemma 3.9,

we obtain

∇xF (x, y) = Lu +∇xu(x, y)Lx and ∇yF (x, y) = ∇yu(x, y)Lx.

To show that ‖∇xF (x, y)‖ is uniformly bounded, we shall verify that both ‖Lu‖ and

‖∇xu(x, y)Lx‖ are uniformly bounded. We prove them as follows.
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(i) To see ‖Lu‖ is uniformly bounded, it is sufficient to argue that |u1|, ‖u2‖ are both

uniformly bounded. First, we argue that |u1| is uniformly bounded. From the above

expression of u, we have

u1 =
1

det(z(x, y))
(x1z1 − xT2 z2) +

1

det(z(x, y))
(y1z1 − yT2 z2).

Following the similar arguments as in Lemma 3.4 yields

u1 =
1

det(z(x, y))
(x1z1 − xT2 z2) +

1

det(z(x, y))
(y1z1 − yT2 z2)

=

[
O(1) +

(x1 − xT2w2)

2
√
λ1

]
+

[
O(1) +

(y1 − yT2w2)

2
√
λ1

]
,

where O(1) denotes terms that are uniformly bounded with bound independent of (x, y).

Moreover, by Lemma 3.3, if x1x2 + y1y2 6= 0 then |x1 − xT2w2| ≤ ‖x2 − x1w2‖ ≤
√
λ1. If

x1x2 +y1y2 = 0 then λ1 = ‖x‖2 +‖y‖2 so that by choosing w2 to further satisfy xT2w2 = 0

we obtain |x1 − xT2w2| ≤ ‖x2 − x1w2‖ ≤ ‖x‖ ≤
√
λ1. Similarly, it can be verified that

|y1 − yT2w2| ≤
√
λ1. Thus, |u1| is uniformly bounded.

Secondly, we argue that ‖u2‖ is also uniformly bounded. Again, using the expression of

u and following the similar arguments as in Lemma 3.4, we obtain

u2 =
1

det(z(x, y))

[
− x1z2 +

det(z(x, y))

z1

x2 +
xT2 z2

z1

z2

]
+

1

det(z(x, y))

[
− y1z2 +

det(z(x, y))

z1

y2 +
yT2 z2

z1

z2

]
=

[
O(1)− x1w2

2
√
λ1

+

√
λ2√
λ1

(xT2w2)

2(
√
λ1 +

√
λ2)

w2

]
+

[
O(1)− y1w2

2
√
λ1

+

√
λ2√
λ1

(yT2w2)

2(
√
λ1 +

√
λ2)

w2

]

=

[
O(1)− x1w2

2(
√
λ1 +

√
λ2)
−
√
λ2(x1 − xT2w2)

2(
√
λ1 +

√
λ2)
√
λ1

w2

]
+

[
O(1)− y1w2

2(
√
λ1 +

√
λ2)
−
√
λ2(y1 − yT2w2)

2(
√
λ1 +

√
λ2)
√
λ1

w2

]
.

Using the same explanations as above for u1 yields that each term is uniformly bounded.

Thus, ‖u2‖ is uniformly bounded. This together with |u1| being uniformly bounded

implies that ‖∇xF (x, y)‖ = ‖Lu‖ =

∥∥∥∥[ u1 uT2
u2 u1I

]∥∥∥∥ is also uniformly bounded.

(ii) Now, it comes to show that ‖∇xu(x, y)Lx‖ is uniformly bounded. From the definition

of u := L−1
z(x,y)(x+ y), we know that z(x, y) ◦ u = x+ y. Applying Lemma 3.9 gives

∇xz(x, y)Lu +∇xu(x, y)Lz(x,y) = I,
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which leads to

∇xu(x, y)Lz(x,y) = I −∇xz(x, y)Lu = I − (LxL
−1
z(x,y))Lu

=⇒ ∇xu(x, y) =

(
I − LxL−1

z(x,y)Lu

)
L−1
z(x,y)

=⇒ ∇xu(x, y)Lx =

(
I − LxL−1

z(x,y)Lu

)
L−1
z(x,y)Lx

=⇒ ∇xu(x, y)Lx = L−1
z(x,y)Lx − LxL−1

z(x,y)LuL
−1
z(x,y)Lx

=⇒ ∇xu(x, y)Lx = (LxL
−1
z(x,y))

T − (LxL
−1
z(x,y))Lu(LxL

−1
z(x,y))

T.

Therefore,

‖∇xu(x, y)Lx‖ ≤
∥∥∥(LxL

−1
z(x,y))

T
∥∥∥+

∥∥∥LxL−1
z(x,y)

∥∥∥ · ‖Lu‖ · ∥∥∥(LxL
−1
z(x,y))

T
∥∥∥ .

By Lemma 3.4,
∥∥∥LxL−1

z(x,y)

∥∥∥ is uniformly bounded, so is
∥∥∥(LxL

−1
z(x,y))

T
∥∥∥. This together

with ‖Lu‖ being uniformly bounded shown as above yields ‖∇xu(x, y)Lx‖ is uniformly

bounded.

From (i) and (ii), it follows that that ‖∇xF (x, y)‖ is uniformly bounded. A similar line

of reasoning applies to ‖∇yF (x, y)‖; and therefore, ‖∇F (x, y)‖ is uniformly bounded as

well. This concludes the proof. �

Lemma 3.11. Let ψ
FB

be defined as in (3.11). Then, ∇ψ
FB

is continuously differentiable

everywhere except for (x, y) = (0, 0). Moreover, ‖∇2ψ
FB

(x, y)‖ is uniformly bounded for

all (x, y) 6= (0, 0).

Proof. For any (x, y) ∈ IRn × IRn, let z := (x2 + y2)1/2. We prove this lemma by

considering the following two cases.

(i) Consider all points (x, y) 6= (0, 0) with x2 + y2 ∈ int(Kn). Since

∇xψFB
(x, y) =

(
LxL

−1
z − I

)
φ

FB
(x, y) = x− LxL−1

z (x+ y)− φ
FB

(x, y),

∇yψFB
(x, y) =

(
LyL

−1
z − I

)
φ

FB
(x, y) = y − LyL−1

z (x+ y)− φ
FB

(x, y),

we compute ∇2ψ
FB

(x, y) as follows:

∇2
xxψFB

(x, y) = I −∇x

(
LxL

−1
z (x+ y)

)
−
(
LxL

−1
z − I

)
, (3.35)

∇2
xyψFB

(x, y) = −∇y

(
LxL

−1
z (x+ y)

)
−
(
LyL

−1
z − I

)
,

∇2
yxψFB

(x, y) = −∇x

(
LyL

−1
z (x+ y)

)
−
(
LxL

−1
z − I

)
,

∇2
yyψFB

(x, y) = I −∇y

(
LyL

−1
z (x+ y)

)
−
(
LyL

−1
z − I

)
.
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The continuity of ∇2ψ
FB

at (x, y) thus follows. It is easy to see that ‖LxL−1
z ‖, ‖LyL−1

z ‖
are uniformly bounded by [41, Lemma 4] (‖ · ‖ and ‖ · ‖F are equivalent in IRn×n). Let

F (x, y) := LxL
−1
z (x + y) and G(x, y) := LyL

−1
z (x + y). By Lemma 3.10, we know that∥∥∥∥∇x

(
LxL

−1
z (x+ y)

)∥∥∥∥ = ‖∇xF (x, y)‖ is uniformly bounded. Likewise, we have that∥∥∥∥∇y

(
LxL

−1
z (x+ y)

)∥∥∥∥,

∥∥∥∥∇x

(
LyL

−1
z (x+ y)

)∥∥∥∥,

∥∥∥∥∇y

(
LyL

−1
z (x+ y)

)∥∥∥∥ are all uniformly

bounded. Thus, we can conclude that ‖∇2
xxψFB

(x, y)‖, ‖∇2
xyψFB

(x, y)‖, ‖∇2
yxψFB

(x, y)‖,
‖∇2

yyψFB
(x, y)‖ are all uniformly bounded which implies that ‖∇2ψ

FB
(x, y)‖ is also uni-

formly bounded.

(ii) Consider all points (x, y) 6= (0, 0) with x2 + y2 6∈ int(Kn). Since

∇xψFB
(x, y) =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y) = x− x1√

x2
1 + y2

1

(x+ y)− φ
FB

(x, y),

∇yψFB
(x, y) =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y) = y − y1√

x2
1 + y2

1

(x+ y)− φ
FB

(x, y),

we compute ∇2ψ
FB

(x, y) as follows:

∇2
xxψFB

(x, y) = I −
(

x1√
x2

1 + y2
1

I +
x1y

2
1 + y3

1

(x2
1 + y2

1)3/2

[
1 0

0 0

])
−
(

x1√
x2

1 + y2
1

− 1

)
I,(3.36)

∇2
xyψFB

(x, y) = −
(

x1√
x2

1 + y2
1

I − x2
1y1 + x1y

2
1

(x2
1 + y2

1)3/2

[
1 0

0 0

])
−
(

y1√
x2

1 + y2
1

− 1

)
I,

∇2
yxψFB

(x, y) = −
(

y1√
x2

1 + y2
1

I − x2
1y1 + x1y

2
1

(x2
1 + y2

1)3/2

[
1 0

0 0

])
−
(

x1√
x2

1 + y2
1

− 1

)
I,

∇2
yyψFB

(x, y) = I −
(

y1√
x2

1 + y2
1

I +
x3

1 + x2
1y1

(x2
1 + y2

1)3/2

[
1 0

0 0

])
−
(

y1√
x2

1 + y2
1

− 1

)
I,

where 0 denotes the (n − 1) × (n − 1) zero matrix. Now we provide a sketch proof to

verify ∇xxψFB
is continuous. Let (a, b) 6= (0, 0) and a2 + b2 6∈ int(Kn). We want to prove

that

∇xxψFB
(x, y)→ ∇xxψFB

(a, b), as (x, y)→ (a, b). (3.37)

Due to the neighborhood of such (a, b), we have to consider two subcases: (1) (x, y) 6=
(0, 0) with x2 + y2 ∈ int(Kn) and (2) (x, y) 6= (0, 0) with x2 + y2 6∈ int(Kn). It is clear

that (3.37) holds in subcase (2) because the formula given in (3.36) is continuous. In

subcase (1), we have

∇xxψFB
(x, y) = I −∇x

(
LxL

−1
z (x+ y)

)
−
(
LxL

−1
z − I

)
(3.38)

= I −
[
Lu +

(
LxL

−1
z

)T − (LxL−1
z

)
(Lu)

(
LxL

−1
z

)T]− (LxL−1
z − I

)
.
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In view of (3.35), (3.36) and (3.38), it suffices to show the following three statements for

(3.37) to be held in this subcase (1):

(a) LxL
−1
z →

a1√
a2

1 + b2
1

I, as (x, y)→ (a, b).

(b) Lu →
a1 + b1√
a2

1 + b2
1

I, as (x, y)→ (a, b).

(c) Lu − (LxL
−1
z )(Lu)(LxL

−1
z )T → a2

1(a1 + b1)

(a2
1 + b2

1)3/2
I, as (x, y)→ (a, b).

First, we know from [41, Proposition 2] that there holds

LxL
−1
z (x+ y)→ a1√

a2
1 + b2

1

(a+ b) as (x, y)→ (a, b),

which implies LxL
−1
z →

a1√
a2

1 + b2
1

I, as (x, y)→ (a, b) since both (x+ y) and LxL
−1
z are

continuous and (x + y) → (a + b) when (x, y) → (a, b). Secondly, if we look into the

entries of Lu and compare them with the entries of LxL
−1
z (see [41, eq. (27)]), then it is

clear that Lu →
a1 + b1√
a2

1 + b2
1

I, as (x, y)→ (a, b). Finally, part(c) follows immediately from

part (a) and (b). Thus, we complete the verifications of (3.37). The other cases can be

argued similarly for ∇xyψFB
, ∇yxψFB

, and ∇yyψFB
. In addition, it is also clear that each

term in the above expressions (3.36) is uniformly bounded. Thus, we obtain that ∇2ψ
FB

is continuously differentiable near (x, y) and ‖∇2ψ
FB

(x, y)‖ is uniformly bounded. �

Proposition 3.7. Let ψ
FB

be defined as (3.11). Then, ∇ψ
FB

is globally Lipschitz con-

tinuous, i.e., there exists a constant C such that for all (x, y), (a, b) ∈ IRn × IRn,

‖∇xψFB
(x, y)−∇xψFB

(a, b)‖ ≤ C‖(x, y)− (a, b)‖, (3.39)

‖∇yψFB
(x, y)−∇yψFB

(a, b)‖ ≤ C‖(x, y)− (a, b)‖

and is semismooth everywhere.

Proof. Due to symmetry, it suffices to establish the first part of (3.39). For any (x, y) ∈
IRn × IRn, let z := (x2 + y2)1/2.

(i) First, we prove that ∇xψFB
is Lipschitz continuous at (0, 0). We have to discuss three

subcases for completing the proof of this part.

If (x, y) = (0, 0), it is obvious that (3.39) is satisfied.

If (x, y) 6= (0, 0) with x2 + y2 ∈ int(Kn), then

‖∇xψFB
(x, y)−∇xψFB

(0, 0)‖ = ‖∇xψFB
(x, y)‖ =

∥∥x− LxL−1
z (x+ y)− φ

FB
(x, y)

∥∥ .



208 CHAPTER 3. GENERAL COMPLEMENTARITY FUNCTIONS

It is already known that x and φ
FB

(x, y) are Lipschitz continuous (see [198, Corollary

3.3]). In addition, Theorem 3.2.4 of [160, pp. 70] says that the uniform boundedness

of ∇
(
LxL

−1
z (x + y)

)
(by Lemma 3.10) yields the Lipschitz continuity. Thus, (3.39) is

satisfied for this subcase.

If (x, y) 6= (0, 0) with x2 + y2 6∈ int(Kn), then

‖∇xψFB
(x, y)−∇xψFB

(0, 0)‖ = ‖∇xψFB
(x, y)‖ =

∥∥∥∥∥x− x1√
x2

1 + y2
1

(x+ y)− φ
FB

(x, y)

∥∥∥∥∥ .
Since

∣∣∣∣∣ x1√
x2

1 + y2
1

∣∣∣∣∣ ≤ 1 and both (x + y), φ
FB

(x, y) are known Lipschitz continuous, the

desired result follows.

(ii) Secondly, we prove that ∇xψFB
is Lipschitz continuous at (a, b) 6= (0, 0). Let (x, y) ∈

IRn×IRn, we wish to show that (3.39) is satisfied. In fact, if the line segment [(a, b), (x, y)]

does not contain the origin, then we can write

‖∇xψFB
(x, y)−∇xψFB

(a, b)‖ ≤
∥∥∥∥∫ 1

0

∇2ψ
FB

[(a, b) + t((x, y)− (a, b))]dt

∥∥∥∥ ≤ C‖(x, y)−(a, b)‖,

where the first inequality is from the Mean-Value Theorem (see [160, Theorem 3.2.3]),

and the second inequality is by Lemma 3.11. On the other hand, if the line segment

[(a, b), (x, y)] contains the origin, we can construct a sequence {(xk, yk)} converging to

(x, y) but for each k, the line segment [(a, b), (xk, yk)] does not contain the origin and

apply the above inequalities to obtain∥∥∇xψFB
(xk, yk)−∇xψFB

(a, b)
∥∥ ≤ C

∥∥(xk, yk)− (a, b)
∥∥ ,

which, by the continuity, implies

‖∇xψFB
(x, y)−∇xψFB

(a, b)‖ ≤ C‖(x, y)− (a, b)‖.

Thus, (3.39) is satisfied.

To complete the proof of this theorem, we only need to verify that ∇ψ
FB

is semismooth

at the origin as, by Lemma 3.11, ∇ψ
FB

is continuously differentiable near any (0, 0) 6=
(x, y) ∈ IRn × IRn. From Proposition 3.4(b)-(c), we know that for any t ∈ IR+ and

(x, y) ∈ IRn × IRn, we have

∇ψ
FB

(tx, ty) = t∇ψ
FB

(x, y) .

Thus, ∇ψ
FB

is directionally differentiable at the origin and for any (0, 0) 6= (x, y) ∈
IRn × IRn

∇2ψ
FB

(x, y)(x, y) = (∇ψ
FB

)′((x, y); (x, y)) = ∇ψ
FB

(x, y) .
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This means that for any (0, 0) 6= (x, y) ∈ IRn × IRn converging to (0, 0),

∇ψ
FB

(x, y)−∇ψ
FB

(0, 0)−∇2ψ
FB

(x, y)(x, y) = ∇ψ
FB

(x, y)− 0−∇ψ
FB

(x, y) = 0 ,

which, together with the Lipschitz continuity of ∇ψ
FB

and the directional differentiability

of ∇ψ
FB

at the origin (∇ψ
FB

is, however, not differentiable at the origin), shows that

∇ψ
FB

(x, y) is (strongly) semismooth at the origin. �

Proposition 3.8. Let ψ
FB

be defined as in (3.11). Then, ψ
FB

is an SC1 function as well

as an LC1 function.

Proof. The results follow from Proposition 3.7 immediately. �

Returning to φ
FB

, we now present the representation of the elements of the B-

subdifferential ∂BφFB
(x, y) at a general point (x, y) ∈ IRn × IRn.

Proposition 3.9. Let φ
FB

be defined as in (3.10). Given a general point (x, y) ∈ IRn ×
IRn, each element in ∂BφFB

(x, y) is given by [Vx − I Vy − I] with Vx and Vy having the

following representation:

(a) If x2 + y2 ∈ int(Kn), then Vx = L−1
z Lx and Vy = L−1

z Ly.

(b) If x2 + y2 ∈ bd(Kn) and (x, y) 6= (0, 0), then

Vx ∈
{

1

2
√

2w1

[
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

]
Lx +

1

2

[
1

−w̄2

]
uT
}

Vy ∈
{

1

2
√

2w1

[
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

]
Ly +

1

2

[
1

−w̄2

]
vT
}

(3.40)

for some u = (u1, u2), v = (v1, v2) ∈ IR × IRn−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and

|v1| ≤ ‖v2‖ ≤ 1, where w̄2 = w2/‖w2‖.

(c) If (x, y) = (0, 0), then Vx ∈ {Lx̂}, Vy ∈ {Lŷ} for some x̂, ŷ with ‖x̂‖2 + ‖ŷ‖2 = 1, or

Vx ∈
{

1

2

[
1

w̄2

]
ξT +

1

2

[
1

−w̄2

]
uT + 2

[
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

]}
Vy ∈

{
1

2

[
1

w̄2

]
ηT +

1

2

[
1

−w̄2

]
vT + 2

[
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

]}
(3.41)

for some u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2) ∈ IR × IRn−1 such

that |u1| ≤ ‖u2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, |ξ1| ≤ ‖ξ2‖ ≤ 1, |η1| ≤ ‖η2‖ ≤ 1,

w̄2 ∈ IRn−1 satisfying ‖w̄2‖ = 1, and s = (s1, s2), ω = (ω1, ω2) ∈ IR × IRn−1

satisfying ‖s‖2 + ‖ω‖2 ≤ 1/2.
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Proof. Let Dφ
FB

denote the set of points where φ
FB

is differentiable. From Lemma 3.10

and φ
FB

(x, y) = z(x, y)− (x+ y), we know

(φ
FB

)′x(x, y) = L−1
z Lx − I, (φ

FB
)′y(x, y) = L−1

z Ly − I ∀(x, y) ∈ Dφ
FB
.

(a) In this case, φ
FB

is continuously differentiable at (x, y) by Lemma 3.10. Hence,

∂BφFB
(x, y) consists of a single element, i.e., φ′

FB
(x, y) = [L−1

z Lx− I L−1
z Ly− I], and the

result is clear.

(b) Assume that (x, y) 6= (0, 0) satisfies x2 +y2 ∈ bd(Kn). Then w ∈ bd(Kn) and w1 > 0,

which means ‖w2‖ = w1 > 0 and λ2(w) > λ1(w) = 0. Observe that, when w2 6= 0, the

matrix L−1
z in (3.34) can be decomposed as the sum of

L1(w) :=
1

2
√
λ1(w)

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
and

L2(w) :=
1

2
√
λ2(w)

 1 w̄T
2

w̄2

4
√
λ2(w)√

λ2(w) +
√
λ1(w)

(I − w̄2w̄
T
2 ) + w̄2w̄

T
2

 (3.42)

with w̄2 = w2/‖w2‖. Consequently, (φ
FB

)′x and (φ
FB

)′y can be rewritten as

(φ
FB

)′x(x, y) = (L1(w) + L2(w))Lx− I, (φ
FB

)′y(x, y) = (L1(w) + L2(w))Ly − I. (3.43)

Let {(xk, yk)} ⊆ Dφ
FB

be an arbitrary sequence converging to (x, y). Let wk = (wk1 , w
k
2) =

w(xk, yk) and zk = z(xk, yk) for each k, where w(x, y) and z(x, y) are given as in (3.14).

Since w2 6= 0, we without loss of generality assume ‖wk2‖ 6= 0 for each k. Let w̄k2 =

wk2/‖wk2‖ for each k. From (3.43), it follows that

(φ
FB

)′x(x
k, yk) =

(
L1(wk) + L2(wk)

)
Lxk − I,

(φ
FB

)′y(x
k, yk) =

(
L1(wk) + L2(wk)

)
Lyk − I.

Since limk→∞ λ1(wk) = 0, limk→∞ λ2(wk) = 2w1 > 0 and limk→∞ w̄
k
2 = w̄2, we have

lim
k→∞

L2(wk)Lxk = C(w)Lx and lim
k→∞

L2(wk)Lyk = C(w)Ly

where

C(w) =
1

2
√

2w1

[
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

]
.

Next we focus on the limit of L1(wk)Lxk and L1(wk)Lyk as k →∞. By computing,

L1(wk)Lxk =
1

2

[
uk1 (uk2)T

−uk1w̄k2 −w̄k2(uk2)T

]
,

L1(wk)Lyk =
1

2

[
vk1 (vk2)T

−vk1 w̄k2 −w̄k2(vk2)T

]
,
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where

uk1 =
xk1 − (xk2)Tw̄k2√

λ1(wk)
, uk2 =

xk2 − xk1w̄k2√
λ1(wk)

, vk1 =
yk1 − (yk2)Tw̄k2√

λ1(wk)
, vk2 =

yk2 − yk1 w̄k2√
λ1(wk)

. (3.44)

By Lemma 3.3, |uk1| ≤ ‖uk2‖ ≤ 1 and |vk1 | ≤ ‖vk2‖ ≤ 1. So, taking the limit (possibly on a

subsequence) on L1(wk)Lxk and L1(wk)Lyk , respectively, gives

L1(wk)Lxk →
1

2

[
u1 uT2
−u1w̄2 −w̄2u

T
2

]
=

1

2

[
1

−w̄2

]
uT

L1(wk)Lyk →
1

2

[
v1 vT2
−v1w̄2 −w̄2v

T
2

]
=

1

2

[
1

−w̄2

]
vT (3.45)

for some u = (u1, u2), v = (v1, v2) ∈ IR × IRn−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and |v1| ≤
‖v2‖ ≤ 1. In fact, u and v are some accumulation point of the sequences {uk} and {vk},
respectively. From equations (??)-(3.45), we immediately obtain

(φ
FB

)′x(x
k, yk) → C(w)Lx +

1

2

[
1

−w̄2

]
uT − I,

(φ
FB

)′y(x
k, yk) → C(w)Ly +

1

2

[
1

−w̄2

]
vT − I.

This shows that φ′
FB

(xk, yk)→ [Vx − I Vy − I] as k →∞ with Vx, Vy satisfying (3.40).

(c) Assume that (x, y) = (0, 0). Let {(xk, yk)} ⊆ Dφ
FB

be an arbitrary sequence converg-

ing to (x, y). Let wk = (wk1 , w
k
2) = w(xk, yk) and zk = z(xk, yk) for each k. Since w = 0,

we without any loss of generality assume that wk2 = 0 for all k, or wk2 6= 0 for all k.

Case (1): wk2 = 0 for all k. From Lemma 3.10, it follows that L−1
zk

= (1/
√
wk1)I. There-

fore,

(φ
FB

)′x(x
k, yk) =

1√
wk1
Lxk − I and (φ

FB
)′y(x

k, yk) =
1√
wk1
Lyk − I.

Since wk1 = ‖xk‖2 + ‖yk‖2, every element in (φ
FB

)′x(x
k, yk) and (φ

FB
)′y(x

k, yk) is bounded.

Taking limit (possibly on a subsequence) on (φ
FB

)′x(x
k, yk) and (φ

FB
)′y(x

k, yk), we obtain

(φ
FB

)′x(x
k, yk) → Lx̂ − I and (φ

FB
)′y(x

k, yk) → Lŷ − I

for some vectors x̂, ŷ ∈ IRn satisfying ‖x̂‖2 + ‖ŷ‖2 = 1, where x̂ and ŷ are some accu-

mulation point of the sequences
{

xk√
wk1

}
and

{
yk√
wk1

}
, respectively. Thus, we prove that

φ′
FB

(xk, yk)→ [Vx − I Vy − I] as k →∞ with Vx ∈ {Lx̂} and Vy ∈ {Lŷ}.
Case (2): wk2 6= 0 for all k. Now (φ

FB
)′x(x

k, yk) and (φ
FB

)′y(x
k, yk) are given as in (??).

Using the same arguments as part(b) and noting the boundedness of {w̄k2}, we have

L1(wk)Lxk →
1

2

[
1

−w̄2

]
uT, L1(wk)Lyk →

1

2

[
1

−w̄2

]
vT (3.46)
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for some u = (u1, u2), v = (v1, v2) ∈ IR × IRn−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and |v1| ≤
‖v2‖ ≤ 1, and w̄2 ∈ IRn−1 satisfying ‖w̄2‖ = 1. We next compute the limit of L2(wk)Lxk

and L2(wk)Lyk as k →∞. By the definition of L2(w) in (3.42),

L2(wk)Lxk =
1

2

[
ξk1 (ξk2 )T

ξk1 w̄
k
2 + 4

(
I − w̄k2(w̄k2)T

)
sk2 w̄k2(ξk2 )T + 4

(
I − w̄k2(w̄k2)T

)
sk1

]
,

L2(wk)Lyk =
1

2

[
ηk1 (ηk2)T

ηk1 w̄
k
2 + 4

(
I − w̄k2(w̄k2)T

)
ωk2 w̄k2(ηk2)T + 4

(
I − w̄k2(w̄k2)T

)
ωk1

]
,

where

ξk1 =
xk1 + (xk2)Tw̄k2√

λ2(wk)
, ξk2 =

xk2 + xk1w̄
k
2√

λ2(wk)
, ηk1 =

yk1 + (yk2)Tw̄k2√
λ2(wk)

, ηk2 =
yk2 + yk1 w̄

k
2√

λ2(wk)
,

and

sk1 =
xk1√

λ2(wk) +
√
λ1(wk)

, sk2 =
xk2√

λ2(wk) +
√
λ1(wk)

,

ωk1 =
yk1√

λ2(wk) +
√
λ1(wk)

, ωk2 =
yk2√

λ2(wk) +
√
λ1(wk)

.

By Lemma 3.3, |ξk1 | ≤ ‖ξk2‖ ≤ 1 and |ηk1 | ≤ ‖ηk2‖ ≤ 1. In addition,

‖sk‖2 + ‖ωk‖2 =
‖xk‖2 + ‖yk‖2

2(‖xk‖2 + ‖yk‖2) + 2
√
λ1(wk)

√
λ2(wk)

≤ 1

2
.

Hence, taking limit (possibly on a subsequence) on L2(wk)Lxk and L2(wk)Lyk yields

L2(wk)Lxk →
1

2

[
ξ1 ξT2

ξ1w̄2 + 4(I − w̄2w̄
T
2 )s2 w̄2ξ

T
2 + 4(I − w̄2w̄

T
2 )s1

]
=

1

2

[
1

w̄2

]
ξT + 2

[
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

]
,

L2(wk)Lyk →
1

2

[
η1 ηT2

η1w̄2 + 4(I − w̄2w̄
T
2 )ω2 w̄2η

T
2 + 4(I − w̄2w̄

T
2 )ω1

]
(3.47)

=
1

2

[
1

w̄2

]
ηT + 2

[
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

]
for some vectors ξ = (ξ1, ξ2), η = (η1, η2) ∈ IR×IRn−1 satisfying |ξ1| ≤ ‖ξ2‖ ≤ 1 and |η1| ≤
‖η2‖ ≤ 1, w̄2 ∈ IRn−1 satisfying ‖w̄2‖ = 1, and s = (s1, s2), ω = (ω1, ω2) ∈ IR × IRn−1

satisfying ‖s‖2 +‖ω‖2 ≤ 1/2. Among others, ξ and η are some accumulation point of the

sequences {ξk} and {ηk}, respectively; and s and ω are some accumulation point of the

sequences {sk} and {ωk}, respectively. From (??), (3.46) and (3.47), we obtain

(φ
FB

)′x(x
k, yk)→ 1

2

[
1

w̄2

]
ξT +

1

2

[
1

−w̄2

]
uT + 2

[
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

]
− I,

(φ
FB

)′y(x
k, yk)→ 1

2

[
1

w̄2

]
ηT +

1

2

[
1

−w̄2

]
vT + 2

[
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

]
− I.
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This implies that as k →∞, (φ
FB

)′(xk, yk)→ [Vx − I Vy − I] with Vx and Vy satisfying

(3.41). Combining with Case (1) then yields the desired result. �

By introducing the vector-valued function Φ
FB

: IRn → IRm defined below, it becomes

evident that the SOCCP (3.4) can be reformulated as the following nonsmooth system

of equations:

Φ
FB

(ζ) :=


φ

FB
(F1(ζ), G1(ζ))

...

φ
FB

(Fi(ζ), Gi(ζ))
...

φ
FB

(Fq(ζ), Gq(ζ))

 = 0 (3.48)

where φ
FB

is defined as in (3.10) with a suitable dimension. Consequently, its squared

norm gives rise to a smooth merit function, defined as follows:

Ψ
FB

(ζ) :=
1

2
‖Φ

FB
(ζ)‖2 =

q∑
i=1

ψ
FB

(Fi(ζ), Gi(ζ)). (3.49)

Remark 3.1. When x2 +y2 ∈ bd(Kl) with (x, y) 6= (0, 0), using Lemma 3.2, we can also

characterize Vx and Vy in Proposition 3.9(b) by

Vx ∈
{

1√
2w1

[
x1 xT2
x2 2x1I − w2xT2

w1

]
+

1

2

[
1
−w2

‖w2‖

]
uT

}

Vy ∈
{

1√
2w1

[
y1 yT2
y2 2y1I − w2yT2

w1

]
+

1

2

[
1
−w2

‖w2‖

]
vT

}

for some u = (u1, u2), v = (v1, v2) satisfying |u1| ≤ ‖u2‖ ≤ 1 and |v1| ≤ ‖v2‖ ≤ 1.

To analyze the generalized Newton method, we begin by providing an estimate for the

B-subdifferential of Φ
FB

, along with a sufficient condition ensuring that all elements of

the B-subdifferential of Φ
FB

at a solution are nonsingular. For convenience, throughout

this section, let us denote for any i ∈ {1, 2, . . . , q} and ζ ∈ IRn:

Fi(ζ) = (Fi1(ζ), Fi2(ζ)), Gi(ζ) = (Gi1(ζ), Gi2(ζ)) ∈ IR× IRni−1,

wi(ζ) = (wi1(ζ), wi2(ζ)) = w(Fi(ζ), Gi(ζ)), zi(ζ) = (zi1(ζ), zi2(ζ)) = z(Fi(ζ), Gi(ζ))

where w(x, y) and z(x, y) are the functions defined in (3.14). Note that Φ
FB

is (strongly)

semismooth if and only if all its component functions are (strongly) semismooth. More-

over, since the composition of (strongly) semismooth functions remains (strongly) semis-

mooth by [73, Theorem 19], the following proposition follows immediately from Proposi-

tion 3.3.
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Proposition 3.10. The operator Φ
FB

: IRn → IRm defined by (3.48) is semismooth.

Furthermore, it is strongly semismooth if F ′ and G′ are locally Lipschitz continuous.

Let (Φ
FB

)i denote the i-th component of the function Φ
FB

. Notice that, for any

ζ ∈ IRn,

∂BΦ
FB

(ζ)T ⊆ ∂B(Φ
FB

)1(ζ)T × ∂B(Φ
FB

)2(ζ)T × · · · × ∂B(Φ
FB

)q(ζ)T (3.50)

where the latter denotes the set of all matrices whose (ni−1 + 1) to ni-th columns belong

to ∂B(Φ
FB

)i(ζ)T for i = 1, 2, . . . , q and n0 = 0. From Proposition 3.9 and Remark 3.1, we

immediately obtain the following estimate for ∂BΦ
FB

(ζ)T.

Proposition 3.11. Let Φ
FB

: IRn → IRm be defined by (3.48). Then, for any ζ ∈ IRn,

∂BΦ
FB

(ζ)T ⊆ ∇F (ζ) (A(ζ)− I) +∇G(ζ) (B(ζ)− I) , (3.51)

where A(ζ) and B(ζ) are possibly multivalued m ×m block diagonal matrices whose ith

blocks Ai(ζ) and Bi(ζ) for i = 1, 2, . . . , q have the following representation:

(a) If Fi(ζ)2 +Gi(ζ)2 ∈ intKni, then Ai(ζ) = LFi(ζ)L
−1
zi(ζ)

and Bi(ζ) = LGi(ζ)L
−1
zi(ζ)

.

(b) If Fi(ζ)2 +Gi(ζ)2 ∈ bdKni and (Fi(ζ), Gi(ζ)) 6= (0, 0), then

Ai(ζ) ∈
{

1√
2wi1(ζ)

[
Fi1(ζ) Fi2(ζ)T

Fi2(ζ) 2Fi1(ζ)I − Fi2(ζ)wi2(ζ)T

wi1(ζ)

]
+

1

2
ui(1,−w̄i2(ζ)T)

}

Bi(ζ) ∈
{

1√
2wi1(ζ)

[
Gi1(ζ) Gi2(ζ)T

Gi2(ζ) 2Gi1(ζ)I − Gi2(ζ)wi2(ζ)T

wi1(ζ)

]
+

1

2
vi(1,−w̄i2(ζ)T)

}

for some ui = (ui1, ui2), vi = (vi1, vi2) ∈ IR× IRni−1 satisfying |ui1| ≤ ‖ui2‖ ≤ 1 and

|vi1| ≤ ‖vi2‖ ≤ 1, where w̄i2(ζ) = wi2(ζ)/‖wi2(ζ)‖.

(c) If Fi(ζ) = Gi(ζ) = 0, then

Ai(ζ) ∈
{
Lûi

}
∪
{

1

2
ξi
(
1, w̄T

i2

)
+

1

2
ui
(
1,−w̄T

i2

)
+

[
0 2sTi2(I − w̄i2w̄T

i2)

0 2si1(I − w̄i2w̄T
i2)

]}
Bi(ζ) ∈

{
Lv̂i

}
∪
{

1

2
ηi
(
1, w̄T

i2

)
+

1

2
vi
(
1,−w̄T

i2

)
+

[
0 2ωT

i2(I − w̄i2w̄T
i2)

0 2ωi1(I − w̄i2w̄T
i2)

]}
for some ûi, v̂i ∈ IRni satisfying ‖ûi‖2+‖v̂i‖2 = 1, ui = (ui1, ui2), vi = (vi1, vi2), ξi =

(ξi1, ξi2), ηi = (ηi1, ηi2) ∈ IR× IRni−1 satisfying |ui1| ≤ ‖ui2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1,

|ξi1| ≤ ‖ξi2‖ ≤ 1 and |ηi1| ≤ ‖ηi2‖ ≤ 1, w̄i2 ∈ IRni−1 satisfying ‖w̄i2‖ = 1, and

si = (si1, si2), ωi = (ωi1, ωi2) ∈ IR× IRni−1 such that ‖si‖2 + ‖ωi‖2 ≤ 1/2.
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Lemma 3.12. For any ζ ∈ IRn, let A(ζ) and B(ζ) be given as in Proposition 3.11. Then,

(a) for all i ∈ {1, 2, . . . , q} such that Fi(ζ)2 +Gi(ζ)2 ∈ intKni, there holds that

〈(Ai(ζ)− I)vi, (Bi(ζ)− I)vi〉 ≥ 0 for any vi ∈ IRni ;

(b) for all i ∈ {1, 2, . . . , q}, we have 〈(Ai(ζ)− I)(Φ
FB

)i(ζ), (Bi(ζ)− I)(Φ
FB

)i(ζ)〉 ≥ 0,

and the inequality holds with equality if and only if (Φ
FB

)i(ζ) = 0.

Proof. (a) The proof is similar to that of [41, Lemma 6]. For completeness, we here

include it. From Proposition 3.11(a), it follows that for any υi ∈ IRni ,

〈(Ai − I)vi, (Bi − I)vi〉 = 〈(LFiL−1
zi
− I)vi, (LGiL

−1
zi
− I)vi〉

= 〈(LFi − Lzi)L−1
zi
vi, (LGi − Lzi)L−1

zi
vi〉

= 〈(LGi − Lzi)(LFi − Lzi)L−1
zi
vi, L

−1
zi
vi〉 (3.52)

where, for convenience, we will omit the notation ζ in functions. Let Si be the symmetric

part of (LGi − Lzi)(LFi − Lzi). Then, by computing, we have

Si =
1

2
[(LGi − Lzi)(LFi − Lzi) + (LFi − Lzi)(LGi − Lzi)]

=
1

2
(Lzi − LFi − LGi)2 +

1

2
(L2

zi
− L2

Fi
− L2

Gi
).

Notice that zi = (F 2
i +G2

i )
1/2 ∈ intKni and z2

i − F 2
i −G2

i = 0 ∈ Kni , and hence we have

L2
zi
− L2

Fi
− L2

Gi
� O by [78, Proposition 3.4]. From (3.52), it then follows that

〈(Ai − I)υi, (Bi − I)υi〉 = 〈SiL−1
zi
υi, L

−1
zi
υi〉

≥ 1

2
〈(Lzi − LFi − LGi)2L−1

zi
υi, L

−1
zi
υi〉

=
1

2
‖(Lzi − LFi − LGi)L−1

zi
υi‖2 ≥ 0

for any υi ∈ IRni , where the first inequality is due to the fact that L2
zi
− L2

Fi
− L2

Gi
� O.

(b) From Theorem 2.6.6 of [52] and the smoothness of ψ
FB

(x, y) (see [41]), we have

∇ψ
FB

(x, y) = ∂BφFB
(x, y)Tφ

FB
(x, y) ∀ x, y ∈ IRn,

which together with Proposition 3.9 and Proposition 3.11 implies that for i = 1, 2, . . . , q,

∇xψFB
(Fi(ζ), Gi(ζ)) = (Ai(ζ)− I)(Φ

FB
)i(ζ),

∇yψFB
(Fi(ζ), Gi(ζ)) = (Bi(ζ)− I)(Φ

FB
)i(ζ).

(3.53)

Using Lemma 6(b) of [41], we immediately obtain the desired result. �

In what follows, we study under what conditions all elements of the B-subdifferential

∂BΦ
FB

(ζ) at a solution are nonsingular. Given a solution ζ∗ of the SOCCP, we call it

non-degeneracy if Fi(ζ
∗) +Gi(ζ

∗) ∈ intKni for all i ∈ {1, 2, . . . , q}.
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Remark 3.2. Let ζ∗ be a solution of the SOCCP. From [5], we know that precisely one

of the following six cases holds for each block pair (Fi(ζ), Gi(ζ)):

Fi(ζ
∗) Gi(ζ

∗) SC

Fi(ζ
∗) ∈ intKni Gi(ζ

∗) = 0 yes

Fi(ζ
∗) = 0 Gi(ζ

∗) ∈ intKni yes

Fi(ζ
∗) ∈ bd+Kni Gi(ζ

∗) ∈ bd+Kni yes

Fi(ζ
∗) ∈ bd+Kni Gi(ζ

∗) = 0 no

Fi(ζ
∗) = 0 Gi(ζ

∗) ∈ bd+Kni no

Fi(ζ
∗) = 0 Gi(ζ

∗) = 0 no

where bd+Kni = bdKni \ {0}, and the last column indicates whether the strict comple-

mentarity, i.e. Fi(ζ
∗) + Gi(ζ

∗) ∈ intKni, holds or not. Particularly, when the i-th block

pair satisfies the strict complementarity, Ai(ζ
∗) and Bi(ζ

∗) have an explicit expression

as shown by Lemma 3.13 below.

Lemma 3.13. Let ζ∗ be a solution to the SOCCP (3.4). For any i ∈ {1, 2, . . . , q}, we

have

(a) Ai(ζ
∗) = 0 and Bi(ζ

∗) = I if Fi(ζ
∗) = 0 and Gi(ζ

∗) ∈ intKni;

(b) Ai(ζ
∗) = I and Bi(ζ

∗) = 0 if Fi(ζ
∗) ∈ intKni and Gi(ζ

∗) = 0;

(c) Ai(ζ
∗) = LFi(ζ∗)L

−1
zi(ζ∗)

and Bi(ζ
∗) = LGi(ζ∗)L

−1
zi(ζ∗)

if Fi(ζ
∗), Gi(ζ

∗) ∈ bd+Kni.

Proof. (a) Since Fi(ζ
∗)2 +Gi(ζ

∗)2 = Gi(ζ
∗)2 ∈ intKni , by Proposition 3.11(a),

Ai(ζ
∗) = LFi(ζ∗)L

−1
zi(ζ∗)

= 0 and Bi(ζ
∗) = LGi(ζ∗)L

−1
zi(ζ∗)

= LGi(ζ∗)L
−1
Gi(ζ∗)

= I.

Similarly, we can prove that part(b) holds. Next we consider part(c). We claim that

Fi(ζ
∗)2 + Gi(ζ

∗)2 ∈ intKni . Suppose not, then Fi(ζ
∗)2 + Gi(ζ

∗)2 ∈ bd+Kni , which by

Lemma 3.3 implies that Fi1(ζ∗)Gi1(ζ∗) = Fi2(ζ∗)TGi2(ζ∗). On the other hand, since

Fi(ζ
∗) ∈ bd+Kni and Gi(ζ

∗) ∈ bd+Kni , we have that

Fi1(ζ∗) = ‖Fi2(ζ∗)‖, Gi1(ζ∗) = ‖Gi2(ζ∗)‖. (3.54)

Combining the two sides then yields that ‖Fi2(ζ∗)‖ · ‖Gi2(ζ∗)‖ = Fi2(ζ∗)TGi2(ζ∗). This

implies that Fi2(ζ∗) = αGi2(ζ∗) for some α > 0. Combining with (3.54) then yields

Fi1(ζ∗) = αGi1(ζ∗). Therefore, Fi(ζ
∗) = αGi(ζ

∗). Noting that Fi(ζ
∗)TGi(ζ

∗) = 0 since

ζ∗ is a solution of the SOCCP, we have Fi(ζ
∗) = Gi(ζ

∗) = 0. This clearly contradicts the

given assumption. Using Proposition 3.11(a), we then obtain the desired result. �
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By Remark 3.2, if ζ∗ is a nondegenerate solution of the SOCCP (3.4), then the index

sets

I :=
{
i ∈ {1, 2, . . . , q} | Fi(ζ∗) = 0, Gi(ζ

∗) ∈ intKni
}
,

B :=
{
i ∈ {1, 2, . . . , q} | Fi(ζ∗) ∈ bd+Kni , Gi(ζ

∗) ∈ bd+Kni
}
,

J :=
{
i ∈ {1, 2, . . . , q} | Fi(ζ∗) ∈ intKni , Gi(ζ

∗) = 0
}

(3.55)

form a partition of {1, 2, . . . , q}. Thus, if n = m, by supposing that ∇G(ζ∗) is invertible

and rearranging the matrices appropriately, P (ζ∗) = ∇G(ζ∗)−1∇F (ζ∗) can be rewritten

as

P (ζ∗) =

 P (ζ∗)II P (ζ∗)IB P (ζ∗)IJ
P (ζ∗)BI P (ζ∗)BB P (ζ∗)BJ
P (ζ∗)JI P (ζ∗)JB P (ζ∗)JJ

 .
We are now in a position to establish the following nonsingularity result, assuming that

the given solution is nondegenerate.

Proposition 3.12. Let ζ∗ be a nondegenerate solution to the SOCCP (3.4) and I, B,

J be index sets described by (3.55). Suppose that n = m and ∇G(ζ∗) is invertible. Let

P (ζ∗) = ∇G(ζ∗)−1∇F (ζ∗). If P (ζ∗)II is nonsingular and its Schur-complement, denoted

by P̂ (ζ∗)II, in the matrix [
P (ζ∗)II P (ζ∗)IB
P (ζ∗)BI P (ζ∗)BB

]
has the Cartesian P -property, then all W ∈ ∂BΦ

FB
(ζ∗) are nonsingular.

Proof. Using (3.51) and noting that ∇G(ζ∗) is invertible, it suffices to show that any

matrix C belonging to∇G(ζ∗)−1∇F (ζ∗)(A(ζ∗)−I)+(B(ζ∗)−I) is invertible. By Lemma

3.13 and Proposition 3.11(a), C can be written in the following partitioned form

C =

 −PII PIB(AB − IB) 0IJ
−PBI PBB(AB − IB) + (BB − IB) 0BJ
−PJI PJB(AB − IB) −IJ

 ,
where IB = diag(Ii, i ∈ B) with Ii being an ni×ni identity matrix, AB = diag(Ai, i ∈ B)

and BB = diag(Bi, i ∈ B). For simplicity, we here omit the notation ζ∗ in the functions.

It is not hard to see that these C are nonsingular if and only if

Cr =

[
−PII PIB(AB − IB)

−PBI PBB(AB − IB) + (BB − IB)

]
is nonsingular. Showing that the matrix Cr is nonsingular is equivalent to proving that

the only solution of the following system

−Cry = −Cr
[
yI
yB

]
= 0
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is the zero vector. This system can be rewritten as{
PIIyI + PIB(IB − AB)yB = 0,

PBIyI + PBB(IB − AB)yB = −(IB −BB)yB.

Recalling that PII is nonsingular, we obtain from the last system that{
yI = −P−1

II PIB(IB − AB)yB,

(PBB − PBIP−1
II PIB)(IB − AB)yB = −(IB −BB)yB.

(3.56)

Therefore, establishing the nonsingularity of Cr reduces to demonstrating that the second

equation admits only the zero vector as its solution. We proceed by contradiction: assume

that yB 6= 0, and consider the following two cases.

Case (1): (IB − AB)yB = 0. Define JB := {i ∈ B : (yB)i 6= 0}. Then JB 6= ∅. Moreover,

(I − Ai(ζ∗))(yB)i = 0 and (I −Bi(ζ
∗))(yB)i = 0 for all i ∈ JB,

where the second equality is from the second equation of (3.56). This means that

[(I − Ai(ζ∗)) + (I −Bi(ζ
∗))] (yB)i = 0, ∀i ∈ JB.

Note that (yB)i 6= 0 for all i ∈ JB, and hence the last equation implies that the matrix[
2I − Ai(ζ∗)−Bi(ζ

∗)
]
quad∀i ∈ JB

is singular. On the other hand, from Lemma 3.13(c), it follows that

2I − Ai(ζ∗)−Bi(ζ
∗) = 2I − LFi(ζ∗)L−1

zi(ζ∗)
− LGi(ζ∗)L−1

zi(ζ∗)

=
[
2Lzi(ζ∗) − LFi(ζ∗) − LGi(ζ∗)

]
L−1
zi(ζ∗)

=
[
L2zi(ζ∗) − LFi(ζ∗)+Gi(ζ∗)

]
L−1
zi(ζ∗)

, ∀i ∈ B. (3.57)

Notice that wi(ζ
∗), zi(ζ

∗) ∈ intKni for each i ∈ B, and furthermore,

4zi(ζ
∗)2 − [Fi(ζ

∗) +Gi(ζ
∗)]2 = 2wi(ζ

∗) + [Fi(ζ
∗)−Gi(ζ

∗)]2 ∈ intKni .

Using Proposition 3.4 of [78] then yields that [2zi(ζ
∗) − (Fi(ζ

∗) + Gi(ζ
∗))] ∈ intKni ,

which implies that L2zi(ζ∗) − LFi(ζ∗)+Gi(ζ∗) � O. Combining with (3.57), we obtain that

2I − Ai(ζ∗)−Bi(ζ
∗) for each i ∈ JB is nonsingular. This leads to a contradiction.

Case (2): (IB − AB)yB 6= 0. Notice that Fi(ζ
∗)2 + Gi(ζ

∗)2 ∈ intKni for each i ∈ B by

Lemma 3.13(c), and hence applying Lemma 3.12(a) yields that

〈[(IB − AB)yB]i, [(BB − IB)yB]i〉 ≤ 0 for ∀i ∈ B.

This together with the second equation in (3.56) means that〈
[(IB − AB)yB]i, [(PBB − PBIP−1

II PIB)(IB − AB)yB]i
〉
≤ 0, ∀i ∈ B.
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Since PBB − PBIP−1
II PIB is exactly P̂II , using the Cartesian P -property of P̂II , this is

only possible if (IB − AB)yB = 0, and again we obtain a contradiction. �

We now turn our attention to the stationary point property and the coerciveness of

the function Ψ. In particular, we aim to present a condition, less restrictive than that in

[41, Proposition 3], that ensures every stationary point of Ψ is a solution of the SOCCP.

Furthermore, we establish that the function Ψ
FB

associated with the SOCCP (3.4) is

coercive under the assumption that F satisfies the uniform Cartesian P -property. To

prove the first result, we begin with the following technical lemma.

Lemma 3.14. Let ψ
FB

: IRn × IRn → IR+ be given by (3.11). Then, for any x, y ∈ IRn,

φ
FB

(x, y) 6= 0 ⇐⇒ ∇xψFB
(x, y) 6= 0, ∇yψFB

(x, y) 6= 0.

Proof. The equivalence is direct by Proposition 3.2. �

Proposition 3.13. Let Ψ
FB

: IRn → IR+ be given by (3.49). Suppose that n = m and

∇G is invertible. If ∇G(ζ)−1∇F (ζ) at any ζ ∈ IRn has the Cartesian P0-property, then

every stationary point of Ψ
FB

is a solution to the SOCCP.

Proof. Since Ψ
FB

is continuously differentiable by Proposition 3.5 and Φ
FB

is locally

Lipschitz continuous, we have by Clarke [52] that for any ζ ∈ IRn and any V ∈ ∂Φ(ζ)T

∇Ψ(ζ) = V Φ(ζ).

Let ζ be an arbitrary stationary point of Ψ
FB

and V be an element of ∂BΦ
FB

(ζ)T(⊆
∂Φ(ζ)T). From equation (3.50), it follows that there exist matrices Vi ∈ ∂B(Φ

FB
)i(ζ)T

such that

V = V1 × V2 × · · · × Vq.
In addition, for each Vi ∈ IRn×ni , by Proposition 3.9 there exist matrices Ai(ζ) ∈ IRni×ni

and Bi(ζ) ∈ IRni×ni , as characterized by Proposition 3.11, such that

Vi = ∇Fi(ζ)(Ai(ζ)− I) +∇Gi(ζ)(Bi(ζ)− I), i = 1, 2, . . . , q.

Let A(ζ) = diag(A1(ζ), . . . , Aq(ζ)) and B(ζ) = diag(B1(ζ), . . . , Bq(ζ)). Combining the

last three equations, it then follows that

[∇F (ζ)(A(ζ)− I) +∇G(ζ)(B(ζ)− I)] Φ
FB

(ζ) = 0,

which, by the invertibility of ∇G, is equivalent to[
∇G(ζ)−1∇F (ζ)(A(ζ)− I) + (B(ζ)− I)

]
Φ

FB
(ζ) = 0. (3.58)

We next prove that Φ
FB

(ζ) = 0. Suppose not, then there is an index ν ∈ {1, 2, . . . , q}
such that (Φ

FB
)ν(ζ) = φ

FB
(Fν(ζ), Gν(ζ)) 6= 0. From Propositions 3.9 and 3.11, we notice

that [
∇xψ(Fν(ζ), Gν(ζ))

∇yψ(Fν(ζ), Gν(ζ))

]
=

[
(Aν(ζ)− I)Φν(ζ)

(Bν(ζ)− I)Φν(ζ)

]
.
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Therefore, applying Lemma 3.14 yields

(Aν(ζ)− I)(Φ
FB

)ν(ζ) 6= 0 and (Bν(ζ)− I)(Φ
FB

)ν(ζ) 6= 0. (3.59)

In addition, from (3.58), it follows that[
∇G(ζ)−1∇F (ζ)(A(ζ)− I)Φ

FB
(ζ)
]
ν

+ (Bν(ζ)− I)(Φ
FB

)ν(ζ) = 0.

Making the inner product with (Aν(ζ)− I)(Φ
FB

)ν(ζ) on both sides, we obtain〈
(Aν(ζ)− I)(Φ

FB
)ν(ζ),

[
∇G(ζ)−1∇F (ζ)(A(ζ)− I)Φ

FB
(ζ)
]
ν

〉
+
〈

(Aν(ζ)− I)(Φ
FB

)ν(ζ), (Bν(ζ)− I)(Φ
FB

)ν(ζ)
〉

= 0.

Notice that the first term on the left hand side is nonnegative by (3.59) and the Cartesian

P0-property of ∇G(ζ)−1∇F (ζ), and the second term is positive by Lemma 3.12(b) since

(Φ
FB

)ν(ζ) 6= 0. This leads to a contradiction. �

When ∇G is invertible, it follows from [41] that the column monotonicity of ∇F (ζ)

and −∇G(ζ) is equivalent to the condition ∇G(ζ)−1∇F (ζ) � O, which clearly implies

that ∇G(ζ)−1∇F (ζ) possesses the Cartesian P0-property. Consequently, the station-

ary point condition in Proposition 3.13 is weaker than the condition employed in [41,

Proposition 3]. Moreover, for the SOCCP (3.4), this condition is equivalent to requiring

that F satisfies the Cartesian P0-property, which reduces to the familiar stationary point

condition that F is a P0-function in the case of the NCP.

Lemma 3.15. Let ψ
FB

be defined as in (3.11). For any sequence {(xk, yk)} ⊆ IRn× IRn,

let λk1 ≤ λk2 and µk1 ≤ µk2 denote the spectral values of xk and yk, respectively.

(a) If λk1 → −∞ or µk1 → −∞ as k →∞, then ψ
FB

(xk, yk)→ +∞.

(b) If {λk1} and {µk1} are bounded below, but λk2 → +∞, µk2 → +∞, and xk

‖xk‖ ◦
yk

‖yk‖ 9 0

as k →∞, then ψ
FB

(xk, yk)→ +∞.

Proof. Part (a) is indeed Lemma 3.8. We next prove part (b). Suppose that {φ
FB

(xk, yk)}
is bounded. Let zk = [(xk)2 + (yk)2]1/2 for each k. From the definition of φ

FB
,

xk + yk = zk − φ(xk, yk), ∀ k.

Squaring two sides of the last equality then yields that

2xk ◦ yk = −2zk ◦ φ(xk, yk) + φ(xk, yk)2, ∀ k. (3.60)

Since ‖xk‖ → +∞ and ‖yk‖ → +∞ by the given conditions, we have that

lim
k→∞

zk

‖xk‖‖yk‖ = lim
k→∞

[
(xk)2

‖xk‖2‖yk‖2
+

(yk)2

‖xk‖2‖yk‖2

]1/2

= 0,
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which together with the boundedness of {φ
FB

(xk, yk)} implies that

lim
k→∞

−2zk ◦ φ
FB

(xk, yk) + φ
FB

(xk, yk)2

‖xk‖‖yk‖ = 0.

Using the equality (3.60), we obtain limk→∞
xk

‖xk‖ ◦
yk

‖yk‖ = 0, which clearly contradicts the

given assumption. Consequently, the conclusion follows. �

Lemma 3.15 extends the result of [41, Lemma 9(a)], which plays a pivotal role in

establishing the coerciveness of the merit function Ψ. It is worth emphasizing that

in Lemma 3.15(b), the condition xk

‖xk‖ ◦
yk

‖yk‖ 9 0 as k → ∞ is indeed necessary, as

demonstrated by the following counterexample.

Example 3.1. Consider the sequences {xk} and {yk} given as follows:

xk =

 k

−(k + 1)

0

 and yk =

 k

k − 1

0

 for each k.

It is easy to verify that λk1 = −1, µk1 = 1 for each k, and λk2 → +∞, µk2 → +∞, but

xk

‖xk‖ →

 1/
√

2

−1/
√

2

0

 , yk

‖yk‖ →

 1/
√

2

1/
√

2

0

 , and
xk

‖xk‖ ◦
yk

‖yk‖ → 0.

That is, the sequences {xk} and {yk} do not satisfy the assumption xk

‖xk‖ ◦
yk

‖yk‖ 9 0. For

such sequences, by a simple computation, we have

φ
FB

(xk, yk) =
1

2


√

4k2 + 2 + 4k +
√

4k2 + 2− 4k − 4k

4− (
√

4k2 + 2 + 4k −
√

4k2 + 2− 4k)

0

 .
Since

lim
k→∞

√
4k2 + 2 + 4k +

√
4k2 + 2− 4k − 4k = 0,

lim
k→∞

4− (
√

4k2 + 2 + 4k −
√

4k2 + 2− 4k) = 2,

we have limk→∞ ‖φFB
(xk, yk)‖ = 1, i.e., the conclusion of Lemma 3.15(b) does not hold.

We are now ready to establish the coerciveness of Ψ
FB

for the SOCCP (3.4), under the

assumption that F satisfies the uniform Cartesian P -property, along with the following

additional condition.
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Condition A. For any sequence {ζk} ⊆ IRn satisfying ‖ζk‖ → +∞, if there exists

an index i ∈ {1, 2, . . . , q} such that {λ1(ζki )} and {λ1(Fi(ζ
k))} are bounded below, and

λ2(ζki ), λ2(Fi(ζ
k))→ +∞, then

lim sup
k→∞

〈
ζki
‖ζki ‖

,
Fi(ζ

k)

‖Fi(ζk)‖

〉
> 0.

Proposition 3.14. For the SOCCP (3.4), suppose that the mapping F has the uniform

Cartesian P -property and satisfies Condition A. Then, the merit function Ψ
FB

is coercive.

Proof. We shall prove that lim‖ζk‖→+∞Ψ(ζk) = +∞. Let {ζk} ⊆ IRn be a sequence such

that ‖ζk‖ → +∞, where ζk = (ζk1 , . . . , ζ
k
q ) with ζki ∈ IRni . Define the index set

J :=
{
i ∈ {1, 2, . . . , q} | {ζki } is unbounded

}
.

Since {ζk} is unbounded, J 6= ∅. Let {ξk} be a bounded sequence with ξk = (ξk1 , . . . , ξ
k
q )

and ξki ∈ IRni for each k, where ξki is defined as follows:

ξki =

{
0 if i ∈ J,
ζki otherwise,

i = 1, 2, . . . , q.

By the uniform Cartesian P -property of F , there is a constant ρ > 0 such that

ρ‖ζk − ξk‖2 ≤ max
i=1,...,m

〈
ζki − ξki , Fi(ζk)− Fi(ξk)

〉
=

〈
ζkν , Fν(ζ

k)− Fν(ξk)
〉

≤ ‖ζkν ‖‖Fν(ζk)− Fν(ξk)‖ for each k, (3.61)

where ν is an index from {1, 2, . . . , q} for which the maximum is attained which we have,

without loss of generality, assumed to be independent of k. Clearly, ν ∈ J , which means

that {ζkν } is unbounded. Consequently, there exists a subsequence, assumed to be {ζkν }
without loss of generality, such that ‖ζkν ‖ → +∞. Notice that

‖ζk − ξk‖2 ≥ ‖ζkν − ξkν‖2 = ‖ζkν ‖2, for each k.

Dividing the both sides of (3.61) by ‖ζkν ‖ then yields that

ρ‖ζkν ‖ ≤ ‖Fν(ζk)− Fν(ξk)‖ ≤ ‖Fν(ζk)‖+ ‖Fν(ξk)‖,

which implies ‖Fν(ζk)‖ → +∞ since ‖ζkν ‖ → +∞ and {Fν(ξk)} is bounded. Thus,

‖ζkν ‖ → +∞ and ‖Fν(ζk)‖ → +∞. (3.62)

If either λ1(ζkν ) → −∞ or λ1(Fν(ζ
k)) → −∞, then using Lemma 3.15(a) readily yields

that ψ
FB

(ζkν , Fν(ζ
k)) → +∞, and consequently, Ψ

FB
(ζk) → +∞. Otherwise, (3.62)
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implies that {λ1(ζkν )} and {λ1(Fν(ζ
k))} are bounded below, but λ2(ζkν ) → +∞ and

λ2(Fν(ζ
k))→ +∞. Using Condition A, it then follows that

lim sup
k→∞

〈
ζkν
‖ζkν ‖

,
Fν(ζ

k)

‖Fν(ζk)‖

〉
> 0,

which in turn implies that

lim sup
k→∞

λ2

[
ζkν
‖ζkν ‖

◦ Fν(ζ
k)

‖Fν(ζk)‖

]
> 0.

From this, we have ζkν
‖ζkν ‖
◦ Fν(ζk)
‖Fν(ζk)‖ 9 0. This shows that the sequences {ζkν } and {Fν(ζk)}

satisfy the conditions of Lemma 3.15(b), and therefore Ψ
FB

(ζk)→ +∞. �

When n1 = · · · = nq = 1, Condition A is automatically satisfied, and the uniform

Cartesian P -property of F reduces to the requirement that F is a uniform P -function.

Hence, Proposition 3.14 recovers the corresponding result for the Fischer–Burmeister

merit function in the context of the NCP; see [64, Theorem 4.2].

B. φτ and ψτ functions - variants of φ
FB

and ψ
FB

We now proceed to examine the following one-parameter family of functions:

ψτ (x, y) :=
1

2
‖φτ (x, y)‖2, (3.63)

where τ is a fixed parameter from (0, 4) and φτ : IRn × IRn → IRn is defined by

φτ (x, y) :=
[
(x− y)2 + τ(x ◦ y)

]1/2 − (x+ y). (3.64)

Using this class of SOC complementarity functions (3.64), the SOCCP (3.4) can be

reformulated as the following nonsmooth system of equations:

Φτ (ζ) :=


φτ (F1(ζ), G1(ζ))

...

φτ (Fi(ζ), Gi(ζ))
...

φτ (Fm(ζ), Gm(ζ))

 = 0. (3.65)

The function Φτ naturally induces a merit function Ψτ : IRn → IR+, defined by

Ψτ (ζ) =
1

2
‖Φτ (ζ)‖2 =

m∑
i=1

ψτ (Fi(ζ), Gi(ζ), (3.66)
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As will be shown, the function ψτ serves as a merit function associated with K, and is

continuously differentiable everywhere with explicitly computable gradient formulas (see

Propositions 3.15–3.17). Consequently, the SOCCP can be reformulated as the following

unconstrained smooth minimization problem:

min
ζ∈IRn

fτ (ζ) := ψτ (F (ζ), G(ζ)). (3.67)

Moreover, we establish that every stationary point of fτ is a solution to the SOCCP,

provided that ∇F and −∇G are column monotone (see Proposition 3.18). It is worth

noting that φτ reduces to φ
FB

when τ = 2, and its limit as τ → 0 becomes a multiple

of φ
NR

. This reveals a close connection between this class of merit functions and two of

the most prominent ones in the literature, thereby justifying a more detailed examina-

tion. Additionally, our investigation is motivated by the work of [116], in which φτ was

employed to develop a nonsmooth Newton method for the NCP.

To proceed, we first establish that ψτ , as defined in (3.63), is a smooth merit function.

By Lemma 3.1, both φτ and ψτ are well-defined for all x, y ∈ IRn, since the following

identity holds:

(x− y)2 + τ(x ◦ y) =

(
x+

τ − 2

2
y

)2

+
τ(4− τ)

4
y2 (3.68)

=

(
y +

τ − 2

2
x

)2

+
τ(4− τ)

4
x2 ∈ Kn.

The following proposition confirms that ψτ is indeed a merit function associated with

Kn.

Proposition 3.15. Let ψτ and φτ be given as in (3.63) and (3.64), respectively. Then,

ψτ and φτ are C-functions associated with the SOC, that is,

ψτ (x, y) = 0 ⇐⇒ φτ (x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.

Proof. The first equivalence is clear by the definition of ψτ . We consider the second one.

“⇐”. Since x ∈ Kn, y ∈ Kn and 〈x, y〉 = 0, we have x ◦ y = 0. Substituting it into the

expression of φτ (x, y) then yields that φτ (x, y) = (x2 + y2)1/2− (x+ y) = φ
FB

(x, y). From

Proposition 3.2, we immediately obtain φτ (x, y) = 0.

“⇒”. Suppose that φτ (x, y) = 0. Then, x + y = [(x− y)2 + τ(x ◦ y)]
1/2

. Squaring both

sides yields x ◦ y = 0. This implies that x + y = (x2 + y2)1/2, i.e., φ
FB

(x, y) = 0. From

Proposition 3.2, it then follows that x ∈ Kn, y ∈ Kn and 〈x, y〉 = 0. �

In the following, we focus on establishing the smoothness of ψτ . To that end, we

begin by introducing some notation that will be used throughout the analysis. For any

x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1, let

w = (w1, w2) = w(x, y) := (x− y)2 + τ(x ◦ y),

z = (z1, z2) = z(x, y) :=
[
(x− y)2 + τ(x ◦ y)

]1/2
. (3.69)
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Then, w ∈ Kn and z ∈ Kn. Moreover, by the definition of Jordan product,

w1 = w1(x, y) = ‖x‖2 + ‖y‖2 + (τ − 2)xTy,

w2 = w2(x, y) = 2(x1x2 + y1y2) + (τ − 2)(x1y2 + y1x2). (3.70)

Let λ1(w) and λ2(w) be the spectral values of w. By Lemma 3.1, we have

z1 = z1(x, y) =

√
λ2(w) +

√
λ1(w)

2
, z2 = z2(x, y) =

√
λ2(w)−

√
λ1(w)

2
w̄2, (3.71)

where w̄2 := w2

‖w2‖ if w2 6= 0 and otherwise w̄2 is any vector in IRn−1 satisfying ‖w̄2‖ = 1.

Lemma 3.16. For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, if w /∈ int(Kn), then

x2
1 = ‖x2‖2, y2

1 = ‖y2‖2, x1y1 = xT2 y2, x1y2 = y1x2; (3.72)

x2
1 + y2

1 + (τ − 2)x1y1 = ‖x1x2 + y1y2 + (τ − 2)x1y2‖
= ‖x2‖2 + ‖y2‖2 + (τ − 2)xT2 y2. (3.73)

If, in addition, (x, y) 6= (0, 0), then w2 6= 0, and furthermore,

xT2
w2

‖w2‖
= x1, x1

w2

‖w2‖
= x2, yT2

w2

‖w2‖
= y1, y1

w2

‖w2‖
= y2. (3.74)

Proof. Since w = (x− y)2 + τ(x ◦ y) /∈ int(Kn), using (3.68) and [41, Lemma 3.2] yields(
x1 +

τ − 2

2
y1

)2

=

∥∥∥∥x2 +
τ − 2

2
y2

∥∥∥∥2

, y2
1 = ‖y2‖2,(

x1 +
τ − 2

2
y1

)
y2 =

(
x2 +

τ − 2

2
y2

)
y1,

(
x1 +

τ − 2

2
y1

)
y1 =

(
x2 +

τ − 2

2
y2

)T

y2;(
y1 +

τ − 2

2
x1

)2

=

∥∥∥∥y2 +
τ − 2

2
x2

∥∥∥∥2

, x2
1 = ‖x2‖2,(

y1 +
τ − 2

2
x1

)
x2 =

(
y2 +

τ − 2

2
x2

)
x1,

(
y1 +

τ − 2

2
x1

)
x1 =

(
y2 +

τ − 2

2
x2

)T

x2.

From these equalities, we readily get the results in (3.72). Since w ∈ Kn but w /∈ int(Kn),

we have ‖x‖2 + ‖y‖2 + (τ − 2)xTy = ‖2x1x2 + 2y1y2 + (τ − 2)(x1y2 + y1x2)‖ by λ1(w) =

0. Applying the relations in (3.72) then gives the equalities in (3.73). If, in addition,

(x, y) 6= (0, 0), then it is clear that ‖x1x2 +y1y2 +(τ−2)x1y2‖ = x2
1 +y2

1 +(τ−2)x1y1 6= 0.

To prove the equalities in (3.74), it suffices to verify that xT2
w2

‖w2‖ = x1 and x1
w2

‖w2‖ = x2

by the symmetry of x and y in w. The verifications are straightforward by (3.73) and

x1y2 = y1x2. �

Lemma 3.16 characterizes the behavior of x, y when w = (x − y)2 + τ(x ◦ y) lies on

the boundary of Kn. In fact, it can be regarded as an extension of [41, Lemma 3.2].
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According to Lemma 3.16, when w /∈ int(Kn), the spectral values of w are determined as

follows:

λ1(w) = 0, λ2(w) = 4
(
x2

1 + y2
1 + (τ − 2)x1y1

)
. (3.75)

If (x, y) 6= (0, 0) also holds, then using equations (3.71), (3.73) and (3.75) yields that

z1(x, y) =
√
x2

1 + y2
1 + (τ − 2)x1y1, z2(x, y) =

x1x2 + y1y2 + (τ − 2)x1y2√
x2

1 + y2
1 + (τ − 2)x1y1

.

Thus, if (x, y) 6= (0, 0) and (x− y)2 + τ(x ◦ y) /∈ int(Kn), φτ (x, y) can be rewritten as

φτ (x, y) = z(x, y)− (x+ y) =


√
x2

1 + y2
1 + (τ − 2)x1y1 − (x1 + y1)

x1x2 + y1y2 + (τ − 2)x1y2√
x2

1 + y2
1 + (τ − 2)x1y1

− (x2 + y2)

 . (3.76)

This specific expression (3.76) will be utilized in the proof of the following key result.

Lemma 3.17. The function z(x, y) defined by (3.69) (or (3.71) equivalently) is (contin-

uously) differentiable at a point (x, y) if and only if (x − y)2 + τ(x ◦ y) ∈ int(Kn), and

furthermore,

∇xz(x, y) = Lx+ τ−2
2
yL
−1
z , ∇yz(x, y) = Ly+ τ−2

2
xL
−1
z ,

where

L−1
z =


(

b cw̄T
2

cw̄2 aI + (b− a)w̄2w̄
T
2

)
if w2 6= 0;(

1/
√
w1

)
I if w2 = 0,

with

a =
2√

λ2(w) +
√
λ1(w)

,

b =
1

2

(
1√
λ2(w)

+
1√
λ1(w)

)
, (3.77)

c =
1

2

(
1√
λ2(w)

− 1√
λ1(w)

)
.

Proof. The proof follows similarly to that of Lemma 3.10 and is therefore omitted. �

Proposition 3.16. The function ψτ given by (3.63) is differentiable at every (x, y) ∈
IRn × IRn. Moreover, ∇xψτ (0, 0) = ∇yψτ (0, 0) = 0; if (x− y)2 + τ(x ◦ y) ∈ int(Kn), then

∇xψτ (x, y) =
[
Lx+ τ−2

2
yL
−1
z − I

]
φτ (x, y),

∇yψτ (x, y) =
[
Ly+ τ−2

2
xL
−1
z − I

]
φτ (x, y); (3.78)
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if (x, y) 6= (0, 0) and (x− y)2 + τ(x ◦ y) 6∈ int(Kn), then x2
1 + y2

1 + (τ − 2)x1y1 6= 0 and

∇xψτ (x, y) =

[
x1 + τ−2

2
y1√

x2
1 + y2

1 + (τ − 2)x1y1

− 1

]
φτ (x, y),

∇yψτ (x, y) =

[
y1 + τ−2

2
x1√

x2
1 + y2

1 + (τ − 2)x1y1

− 1

]
φτ (x, y). (3.79)

Proof. Case (1): (x, y) = (0, 0). For any u = (u1, u2), v = (v1, v2) ∈ IR×IRn−1, let µ1, µ2

be the spectral values of (u− v)2 + τ(u ◦ v) and ξ(1), ξ(2) be the spectral vectors. Then,

2 [ψτ (u, v)− ψτ (0, 0)] =
∥∥[u2 + v2 + (τ − 2)(u ◦ v)]1/2 − u− v

∥∥2

=
∥∥√µ1 ξ

(1) +
√
µ2 ξ

(2) − u− v
∥∥2

≤
(√

2µ2 + ‖u‖+ ‖v‖
)2

.

In addition, from the definition of spectral value, it follows that

µ2 = ‖u‖2 + ‖v‖2 + (τ − 2)uTv + 2‖(u1u2 + v1v2) + (τ − 2)(u1v2 + v1u2)‖
≤ 2‖u‖2 + 2‖v‖2 + 3|τ − 2|‖u‖‖v‖ ≤ 5(‖u‖2 + ‖v‖2).

Now combining the last two equations, we have ψτ (u, v) − ψτ (0, 0) = O(‖u‖2 + ‖v‖2).

This shows that ψτ is differentiable at (0, 0) with ∇xψτ (0, 0) = ∇yψτ (0, 0) = 0.

Case (2): (x − y)2 + τ(x ◦ y) ∈ int(Kn). By Lemma 3.17, z(x, y) defined by (3.71) is

continuously differentiable at such (x, y), and consequently φτ (x, y) is also continuously

differentiable at such (x, y) since φτ (x, y) = z(x, y)− (x+ y). Notice that

z2(x, y) =

(
x+

τ − 2

2
y

)2

+
τ(4− τ)

4
y2,

which leads to ∇xz(x, y)Lz = Lx+ τ−2
2
y by taking differentiation on both sides about x.

Since Lz � O by Lemma 3.17, it follows that ∇xz(x, y) = Lx+ τ−2
2
yL
−1
z . Consequently,

∇xφτ (x, y) = ∇xz(x, y)− I = Lx+ τ−2
2
yL
−1
z − I.

This together with ∇xψτ (x, y) = ∇xφτ (x, y)φτ (x, y) proves the first formula of (3.78).

For the symmetry of x and y in ψτ , the second formula also holds.

Case (3): (x, y) 6= (0, 0) and (x − y)2 + τ(x ◦ y) /∈ int(Kn). For any x′ = (x′1, x
′
2), y′ =

(y′1, y
′
2) ∈ IR× IRn−1, it is easy to verify that

2ψτ (x
′, y′) =

∥∥∥∥[x′2 + y′
2

+ (τ − 2)(x′ ◦ y′)
]1/2
∥∥∥∥2

+ ‖x′ + y′‖2

−2

〈[
x′

2
+ y′

2
+ (τ − 2)(x′ ◦ y′)

]1/2

, x′ + y′
〉

= ‖x′‖2 + ‖y′‖2 + (τ − 2)〈x′, y′〉+ ‖x′ + y′‖2

−2

〈[
x′

2
+ y′

2
+ (τ − 2)(x′ ◦ y′)

]1/2

, x′ + y′
〉
,
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where the second equality uses the fact that ‖z‖2 = 〈z2, e〉 for any z ∈ IRn. Since ‖x′‖2 +

‖y′‖2 +(τ−2)〈x′, y′〉+‖x′+y′‖2 is clearly differentiable in (x′, y′), it suffices to show that

〈[x′2 +y′2 +(τ−2)(x′ ◦y′)]1/2, x′+y′〉 is differentiable at (x′, y′) = (x, y). By Lemma 3.16,

w2 = w2(x, y) 6= 0, which implies w′2 = w2(x′, y′) = 2x′1x
′
2+2y′1y

′
2+(τ−2)(x′1y

′
2+y′1x

′
2) 6= 0

for all (x′, y′) ∈ IRn × IRn sufficiently near to (x, y). Let µ1, µ2 be the spectral values of

x′2 + y′2 + (τ − 2)(x′ ◦ y′). Then we can compute that

2

〈[
x′

2
+ y′

2
+ (τ − 2)(x′ ◦ y′)

]1/2

, x′ + y′
〉

=
√
µ2

[
x′1 + y′1 +

[2(x′1x
′
2 + y′1y

′
2) + (τ − 2)(x′1y

′
2 + y′1x

′
2)]T (x′2 + y′2)

‖2(x′1x
′
2 + y′1y

′
2) + (τ − 2)(x′1y

′
2 + y′1x

′
2)‖

]

+
√
µ1

[
x′1 + y′1 −

[2(x′1x
′
2 + y′1y

′
2) + (τ − 2)(x′1y

′
2 + y′1x

′
2)]T (x′2 + y′2)

‖2(x′1x
′
2 + y′1y

′
2) + (τ − 2)(x′1y

′
2 + y′1x

′
2)‖

]
. (3.80)

Since λ2(w) > 0 and w2(x, y) 6= 0, the first term on the right-hand side of (3.80) is

differentiable at (x′, y′) = (x, y). Now, we claim that the second term is o(‖x′ − x‖ +

‖y′ − y‖), i.e., it is differentiable at (x, y) with zero gradient. To see this, notice that

w2(x, y) 6= 0, and hence µ1 = ‖x′‖2 + ‖y′‖2 + (τ − 2)〈x′, y′〉 − ‖2(x′1x
′
2 + y′1y

′
2) + (τ −

2)(x′1y
′
2 + y′1x

′
2)‖, viewed as a function of (x′, y′), is differentiable at (x′, y′) = (x, y).

Moreover, µ1 = λ1(w) = 0 when (x′, y′) = (x, y). Thus, the first-order Taylor’s expansion

of µ1 at (x, y) yields

µ1 = O(‖x′ − x‖+ ‖y′ − y‖).
Also, since w2(x, y) 6= 0, by the product and quotient rules for differentiation, the function

x′1 + y′1 −
[2(x′1x

′
2 + y′1y

′
2) + (τ − 2)(x′1y

′
2 + y′1x

′
2)]T (x′2 + y′2)

‖2(x′1x
′
2 + y′1y

′
2) + (τ − 2)(x′1y

′
2 + y′1x

′
2)‖ (3.81)

is differentiable at (x′, y′) =(x, y), and it has value 0 at (x′, y′) = (x, y) due to

x1 + y1 −
[x1x2 + y1y2 + (τ − 2)x1y2]T (x2 + y2)

‖x1x2 + y1y2 + (τ − 2)x1y2‖
= x1 − xT2

w2

‖w2‖
+ y1 − yT2

w2

‖w2‖
= 0.

Hence, the function in (3.81) is O(‖x′−x‖+‖y′−y‖) in magnitude, which together with

µ1 = O(‖x′ − x‖+ ‖y′ − y‖) shows that the second term on the right-hand side of (3.80)

is

O((‖x′ − x‖+ ‖y′ − y‖)3/2) = o(‖x′ − x‖+ ‖y′ − y‖).
Thus, we have shown that ψτ is differentiable at (x, y). Moreover, we see that 2∇ψτ (x, y)

is the sum of the gradient of ‖x′‖2 + ‖y′‖2 + (τ − 2)〈x′, y′〉+ ‖x′ + y′‖2 and the gradient

of the first term on the right-hand side of (3.80), evaluated at (x′, y′) = (x, y).

The gradient of ‖x′‖2 + ‖y′‖2 + (τ − 2)〈x′, y′〉 + ‖x′ + y′‖2 with respect to x′, evaluated

at (x′, y′) = (x, y), is 2x + (τ − 2)y + 2(x + y). The derivative of the first term on the
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right-hand side of (3.80) with respect to x′1, evaluated at (x′, y′) = (x, y), works out to

be

1√
λ2(w)

[(
x1 +

τ − 2

2
y1

)
+

(
x2 +

τ − 2

2
y2

)T
w2

‖w2‖

](
x1 + y1 + (x2 + y2)T

w2

‖w2‖

)
+
√
λ2(w)

[
1 +

(x2 + τ−2
2
y2)T(x2 + y2)

‖x1x2 + y1y2 + (τ − 2)x1y2‖
− wT2 (x2 + y2) · wT

2 (x2 + τ−2
2
y2)

‖x1x2 + y1y2 + (τ − 2)x1y2‖ · ‖w2‖2

]
=

2(x1 + τ−2
2
y1)(x1 + y1)√

x2
1 + y2

1 + (τ − 2)x1y1

+ 2
√
x2

1 + y2
1 + (τ − 2)x1y1,

where the equality follows from Lemma 3.16. Similarly, the gradient of the first term on

the right of (3.80) with respect to x′2, evaluated at (x′, y′) = (x, y), works out to be

1√
λ2(w)

[(
x2 +

τ − 2

2
y2

)
+

(
x1 +

τ − 2

2
y1

)
w2

‖w2‖

](
x1 + y1 + (x2 + y2)T

w2

‖w2‖

)
+
√
λ2(w)

[
(2x1 + (τ − 2)y1)x2 + τ

2
(x1 + y1)y2

‖x1x2 + y1y2 + (τ − 2)x1y2‖
− wT

2 (x2 + y2) · (x1 + τ−2
2
y1)w2

‖x1x2 + y1y2 + (τ − 2)x1y2‖ · ‖w2‖2

]
= 2

(2x1 + (τ − 2)y1)x2 + τ
2
(x1 + y1)y2√

x2
1 + y2

1 + (τ − 2)x1y1

.

Then, combining the last two gradient expressions yields that

2∇xψτ (x, y)

= 2x+ (τ − 2)y + 2(x+ y)−
[

2
√
x2

1 + y2
1 + (τ − 2)x1y1

0

]
− 2√

x2
1 + y2

1 + (τ − 2)x1y1

[
(x1 + τ−2

2
y1)(x1 + y1)

(2x1 + (τ − 2)y1)x2 + τ
2
(x1 + y1)y2

]
.

Using the fact that x1y2 = y1x2 and noting that φτ can be simplified as the one in (3.76)

under this case, we readily rewrite the above expression for ∇xψτ (x, y) in the form of

(3.79). By symmetry, ∇yψτ (x, y) also holds as the form of (3.79). �

Proposition 3.16 establishes that ψτ is differentiable and admits a computable gradi-

ent. To further demonstrate the continuity of this gradient, and thereby the smoothness

of ψτ , we require the two essential technical lemmas.

Lemma 3.18. For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, if w2 6= 0, then[(
x1 +

τ − 2

2
y1

)
+ (−1)i

(
x2 +

τ − 2

2
y2

)T
w2

‖w2‖

]2

≤
∥∥∥∥(x2 +

τ − 2

2
y2

)
+ (−1)i

(
x1 +

τ − 2

2
y1

)
w2

‖w2‖

∥∥∥∥2

≤ λi(w)

for i = 1, 2. Furthermore, these relations also hold when interchanging x and y.
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Proof. The first inequality can be established by expanding the squares on both sides

and applying the Cauchy–Schwarz inequality. It remains to verify the second inequality.

To this end, observe that the left-hand side of the second inequality simplifies to

‖x‖2 +
(τ − 2)2

4
‖y‖2 + (τ − 2)xTy + 2(−1)i

(
x1 +

τ − 2

2
y1

)(
x2 +

τ − 2

2
y2

)T
w2

‖w2‖
,

whereas the right hand side equals to

‖x‖2 + ‖y‖2 + (τ − 2)xTy + (−1)i‖w2‖,
we only need to prove the following inequality

(−1)i

[
2

(
x1 +

τ − 2

2
y1

)(
x2 +

τ − 2

2
y2

)T
w2

‖w2‖
− ‖w2‖

]
≤ τ(4− τ)

4
‖y‖2.

Considering that τ(4−τ)
4

> 0 and ‖w2‖ > 0, the last inequality is actually equivalent to∣∣∣∣∣2
(
x1 +

τ − 2

2
y1

)(
x2 +

τ − 2

2
y2

)T

w2 − ‖w2‖2

∣∣∣∣∣ ≤ τ(4− τ)

4
‖y‖2‖w2‖. (3.82)

By using w2 = 2(x1x2 + y1y2) + (τ − 2)(x1y2 + y1x2), we can compute

2
(
x1 + ((τ − 2)/2)y1

)(
x2 + ((τ − 2)/2)y2

)T
w2

=

[
4x1y1 + 4(τ − 2)x2

1 + 2(τ − 2)y2
1 + 3(τ − 2)2x1y1 +

(τ − 2)3

2
y2

1

]
xT2 y2

+

[
2(τ − 2)x1y1 + (τ − 2)2x2

1 + (τ − 2)2y2
1 +

(τ − 2)3

2
x1y1

]
‖y2‖2

+
[
4x2

1 + 4(τ − 2)x1y1 + (τ − 2)2y2
1

]
‖x2‖2

and

‖w2‖2 =
[
8x1y1 + 2(τ − 2)2x1y1 + 4(τ − 2)x2

1 + 4(τ − 2)y2
1

]
xT2 y2

+
[
4y2

1 + (τ − 2)2x2
1 + 4(τ − 2)x1y1

]
‖y2‖2

+
[
4x2

1 + 4(τ − 2)x1y1 + (τ − 2)2y2
1

]
‖x2‖2.

Applying these two equalities, it then follows that

2
(
x1 + ((τ − 2)/2)y1

)(
x2 + ((τ − 2)/2)y2

)T
w2 − ‖w2‖2

=
[(

(τ − 2)2 − 4
)
x1y1 +

(
(τ − 2)3/2− 2(τ − 2)

)
y2

1

]
xT2 y2

+
[(

(τ − 2)2 − 4
)
y2

1 +
(

(τ − 2)3/2− 2(τ − 2)
)
x1y1

]
‖y2‖2

= (τ 2 − 4τ)

[
x1y1x

T
2 y2 +

τ − 2

2
y2

1x
T
2 y2 + y2

1‖y2‖2 +
τ − 2

2
x1y1‖y2‖2

]
.
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From this, to show the inequality in (3.82), it suffices to prove that∣∣∣4x1y1x
T
2 y2 + 2(τ − 2)x1y1‖y2‖2 + 4y2

1‖y2‖2 + 2(τ − 2)y2
1x

T
2 y2

∣∣∣ ≤ ‖y‖2‖w2‖. (3.83)

Let L and R denote, respectively, the square of the left-hand side and the right-hand side

of (3.83). We argue the assertion (3.83) by verifying that R− L ≥ 0. Since

L =
(

2x1 + (τ − 2)y1

)2

4y2
1(xT2 y2)2 +

(
2y1 + (τ − 2)x1

)2

4y2
1‖y2‖4

+8y2
1‖y2‖2xT2 y2

(
4x1y1 + 2(τ − 2)x2

1 + 2(τ − 2)y2
1 + (τ − 2)2x1y1

)
,

and

R = ‖y‖4
[
(2x1 + (τ − 2)y1)2‖x2‖2 + (2y1 + (τ − 2)x1)2‖y2‖2

]
+‖y‖4

[
8x1y1 + 2x1y1(τ − 2)2 + 4(τ − 2)(x2

1 + y2
1)
]
xT2 y2.

Taking the difference between R and L leads to

R− L =
(

2x1 + (τ − 2)y1

)2(
‖y‖4‖x2‖2 − 4y2

1(xT2 y2)2
)

+
(

2y1 + (τ − 2)x1

)2(
‖y‖4‖y2‖2 − 4y2

1‖y2‖4
)

+ 8x1y1x
T
2 y2

(
‖y‖4 − 4y2

1‖y2‖2
)

+4(τ − 2)xT2 y2x
2
1

(
‖y‖4 − 4y2

1‖y2‖2
)

+ 4(τ − 2)xT2 y2y
2
1

(
‖y‖4 − 4y2

1‖y2‖2
)

+2(τ − 2)2x1y1x
T
2 y2

(
‖y‖4 − 4y2

1‖y2‖2
)

≥
(
‖y‖4 − 4y2

1‖y2‖2
)[(

2x1 + (τ − 2)y1

)2

‖x2‖2 +
(

2y1 + (τ − 2)x1

)2

‖y2‖2

+8x1y1x
T
2 y2 + 4(τ − 2)xT2 y2x

2
1 + 4(τ − 2)xT2 y2y

2
1 + 2(τ − 2)2x1y1x

T
2 y2

]
=

(
y2

1 − ‖y2‖2
)2∥∥∥2x1x2 + (τ − 2)y1x2 + 2y1y2 + (τ − 2)x1y2

∥∥∥2

≥ 0.

By the symmetry between x and y, the above results remain valid upon interchanging x

and y. �

Lemma 3.19. For all (x, y) satisfying (x− y)2 + τ(x ◦ y) ∈ int(Kn), there holds∥∥∥Lx+ τ−2
2
yL
−1
z

∥∥∥
F
≤ C and

∥∥∥Ly+ τ−2
2
xL
−1
z

∥∥∥
F
≤ C (3.84)

where C > 0 is a constant independent of x, y and τ , and ‖ · ‖F denotes the Frobenius

norm.
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Proof. Due to the symmetry between x and y, it suffices to establish the first inequality

in (3.84). Let x = (x1, x2) ∈ IR×IRn−1 and y = (y1, y2) ∈ IR×IRn−1, where the expression

(x − y)2 + τ(x ◦ y) lies within int(Kn). We divide the proof into two cases: (1) w2 = 0,

and (2) w2 6= 0.

Case (1): w2 = 0. In this case, z2 = 0 and z1 =
√
‖x‖2 + ‖y‖2 + (τ − 2)xTy > 0. Hence,

Lx+ τ−2
2
yL
−1
z =

1√
‖x‖2 + ‖y‖2 + (τ − 2)xTy

[
x1 + τ−2

2
y1 xT2 + τ−2

2
yT2

x2 + τ−2
2
y2 (x1 + τ−2

2
y1)I

]
.

Notice that ‖x‖2 + ‖y‖2 + (τ − 2)xTy = ‖x+ τ−2
2
y‖2 + τ(4−τ)

4
‖y‖2. Therefore,

|x1 + τ−2
2
y1|√

‖x‖2 + ‖y‖2 + (τ − 2)xTy
≤ 1 and

‖x2 + τ−2
2
y2‖√

‖x‖2 + ‖y‖2 + (τ − 2)xTy
≤ 1.

This demonstrates that every entry of Lx+ τ−2
2
yL
−1
z is uniformly bounded, with the bound

independent of x, y, and τ . Consequently, the first inequality in (3.84) holds in this case.

Case (2): w2 6= 0. Now let λ1 and λ2 be the spectral values of w. By (3.71) and Lemma

3.17,

Lx+ τ−2
2
yL
−1
z =

[
bs1 + csT2 w̄2 cs1w̄

T
2 + asT2 + (b− a)sT2 w̄2w̄

T
2

bs2 + cs1w̄2 cs2w̄
T
2 + as1I + (b− a)s1w̄2w̄

T
2

]
,

where w̄2 = w2

‖w2‖ , s = (s1, s2) = x+ τ−2
2
y, and a, b and c are given by

a =
2√

λ2 +
√
λ1

,

b =

√
λ2 +

√
λ1

2
√
λ2λ1

,

c =

√
λ1 −

√
λ2

2
√
λ2λ1

.
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Using Lemma 3.18 and noting that s1 = x1 + τ−2
2
y1 and s2 = x2 + τ−2

2
y2, we have∣∣bs1 + csT2 w̄2

∣∣ ≤ 1

2
√
λ2

|s1 + sT2 w̄2|+
1

2
√
λ1

|s1 − sT2 w̄2| ≤ 1,

‖bs2 + cs1w̄2‖ ≤
1

2
√
λ2

‖s2 + s1w̄2‖+
1

2
√
λ1

‖s2 − s1w̄2‖ ≤ 1,∥∥cs1w̄
T
2 + bsT2 w̄2w̄

T
2

∥∥ =

∥∥∥∥ 1

2
√
λ2

(
s1 + sT2 w̄2

)
w̄T

2 −
1

2
√
λ1

(
s1 − sT2 w̄2

)
w̄T

2

∥∥∥∥
≤ 1

2
√
λ2

∣∣s1 + sT2 w̄2

∣∣+
1

2
√
λ1

∣∣s1 − sT2 w̄2

∣∣ ≤ 1,

∥∥asT2 − asT2 w̄2w̄
T
2

∥∥ ≤ ∥∥∥∥ 2sT2√
λ2 +

√
λ1

∥∥∥∥ · ∥∥I − w̄2w̄
T
2

∥∥
F
≤ 2(n+ 1),

∥∥cs2w̄
T
2 + bs1w̄2w̄

T
2

∥∥
F

=

∥∥∥∥ 1

2
√
λ2

(s2 + s1w̄2) w̄T
2 −

1

2
√
λ1

(s2 − s1w̄2) w̄T
2

∥∥∥∥
F

≤ 1

2
√
λ2

‖s2 + s1w̄2‖+
1

2
√
λ1

‖s2 − s1w̄2‖ ≤ 1,∥∥as1I − as1w̄2w̄
T
2

∥∥
F
≤

∥∥∥∥ 2s1√
λ2 +

√
λ1

∥∥∥∥ · ∥∥I − w̄2w̄
T
2

∥∥
F
≤ 2(n+ 1).

The inequalities above imply that each entry of Lx+ τ−2
2
yL
−1
z is uniformly bounded, with

the bound independent of x, y and τ . Therefore, the first inequality in (3.84) also holds

in this case. �

Proposition 3.17. The function ψτ defined by (3.63) is smooth everywhere on IRn×IRn.

Proof. By Proposition 3.16 and the symmetry of x and y in ∇ψτ , it suffices to show

that ∇xψτ is continuous at every (a, b) ∈ IRn × IRn. If (a− b)2 + τ(a ◦ b) ∈ int(Kn), the

conclusion has been shown in Proposition 3.16. We next consider the other two cases.

Case (1): (a, b) = (0, 0). By Proposition 3.16, we need to show that ∇xψτ (x, y) → 0 as

(x, y)→ (0, 0). If (x−y)2+τ(x◦y) ∈ int(Kn), then∇xψτ (x, y) is given by (2.20), whereas

if (x, y) 6= (0, 0) and (x − y)2 + τ(x ◦ y) /∈ int(Kn), then ∇xψτ (x, y) is given by (3.79).

Notice that Lx+ τ−2
2
yL
−1
z and

x1+ τ−2
2
y1√

x21+y21+(τ−2)x1y1
are bounded with bound independent of

x, y and τ , using the continuity of φτ (x, y) immediately yields the desired result.

Case (2): (a, b) 6= (0, 0) and (a − b)2 + τ(a ◦ b) /∈ int(Kn). We will demonstrate that

∇xψτ (x, y) → ∇xψτ (a, b) by considering the following two subcases: (2a) (x, y) 6= (0, 0)

and (x− y)2 + τ(x ◦ y) /∈ int(Kn) and (2b) (x− y)2 + τ(x ◦ y) ∈ int(Kn). In subcase (2a),

∇xψτ (x, y) is given by (3.79). Noting that the right hand side of (3.79) is continuous at

(a, b), the desired result follows.

Next, we prove that ∇xψτ (x, y)→ ∇xψτ (a, b) in subcase (2b). From (3.78), we have

∇xψτ (x, y) =

(
x+

τ − 2

2
y

)
− Lx+ τ−2

2
yL
−1
z (x+ y)− φτ (x, y). (3.85)
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On the other hand, since (a, b) 6= (0, 0) and (a− b)2 + τ(a ◦ b) /∈ int(Kn),

‖a‖2 + ‖b‖2 + (τ − 2)aTb = ‖2(a1a2 + b1b2) + (τ − 2)(a1b2 + b1a2)‖ 6= 0, (3.86)

and moreover from (3.73) it follows that

‖a‖2 + ‖b‖2 + (τ − 2)aTb = 2(a2
1 + b2

1 + (τ − 2)a1b1)

= 2(‖a2‖2 + ‖b2‖2 + (τ − 2)aT2 b2)

= 2‖(a1a2 + b1b2) + (τ − 2)a1b2‖. (3.87)

Using the equalities in (3.87), it is not hard to verify that

a1 + τ−2
2
b1√

a2
1 + b2

1 + (τ − 2)a1b1

(
(a− b)2 + τ(a ◦ b)

)1/2

= a+
τ − 2

2
b.

This together with the expression of ∇xψτ (a, b) given by (3.79) yields

∇xψτ (a, b) =

(
a+

τ − 2

2
b

)
− a1 + τ−2

2
b1√

a2
1 + b2

1 + (τ − 2)a1b1

(a+ b)− φτ (a, b). (3.88)

Comparing (3.85) with (3.88), we see that if we wish to prove ∇xψτ (x, y) → ∇xψτ (a, b)

as (x, y)→ (a, b), it suffices to show that

Lx+ τ−2
2
yL
−1
z (x+ y)→ a1 + τ−2

2
b1√

a2
1 + b2

1 + (τ − 2)a1b1

(a+ b), (3.89)

which is also equivalent to proving the following three relations

Lx+ τ−2
2
yL
−1
z

(
x+

τ − 2

2
y

)
→ a1 + τ−2

2
b1√

a2
1 + b2

1 + (τ − 2)a1b1

(
a+

τ − 2

2
b

)
, (3.90)

Ly+ τ−2
2
xL
−1
z

(
y +

τ − 2

2
x

)
→ b1 + τ−2

2
a1√

a2
1 + b2

1 + (τ − 2)a1b1

(
b+

τ − 2

2
a

)
, (3.91)

4− τ
2

Lx−yL
−1
z

(
y +

τ − 2

2
x

)
→

4−τ
2

(a1 − b1)√
a2

1 + b2
1 + (τ − 2)a1b1

(
b+

τ − 2

2
a

)
. (3.92)

By the symmetry of x and y in (3.90) and (3.91), we only prove (3.90) and (3.92). Let

(ζ1, ζ2) := Lx+ τ−2
2
yL
−1
z

(
x+

τ − 2

2
y

)
, (ξ1, ξ2) := Lx−yL

−1
z

(
y +

τ − 2

2
x

)
. (3.93)

Then showing (3.90) and (3.92) reduces to proving the following relations hold as (x, y)→
(a, b):

ζ1 →
(
a1 + τ−2

2
b1

)2√
a2

1 + b2
1 + (τ − 2)a1b1

, ζ2 →
a1 + τ−2

2
b1√

a2
1 + b2

1 + (τ − 2)a1b1

(
a2 +

τ − 2

2
b2

)
, (3.94)

ξ1 →
(a1 − b1)

(
b1 + τ−2

2
a1

)√
a2

1 + b2
1 + (τ − 2)a1b1

, ξ2 →
(a1 − b1)√

a2
1 + b2

1 + (τ − 2)a1b1

(
b2 +

τ − 2

2
a2

)
. (3.95)
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To verify (3.94), we take (x, y) sufficiently near to (a, b). By (3.86), we may assume that

w2 = w2(x, y) 6= 0. Let s = (s1, s2) = x+ τ−2
2
y. Using Lemma 3.1(c) and (3.93), we can

calculate that

ζ1 =
1

det(z)

(
s2

1z1 − 2s1s
T
2 z2 +

det(z)

z1

‖s2‖2 +
(zT2 s2)2

z1

)
,

=
‖s2‖2

z1

+
(s1z1 − sT2 z2)2

z1 det(z)
, (3.96)

ζ2 =
1

det(z)

(
s1z1s2 − zT2 s2s2 − s2

1z2 +
s1 det(z)

z1

s2 +
s1

z1

zT2 s2z2

)
=

s1

z1

s2 +
(s1z1 − sT2 z2)

det(z)

(
s2 −

s1

z1

z2

)
. (3.97)

Notice that, as (x, y)→ (a, b), from equations (3.70) and (3.86)-(3.87) it follows that

λ1(w)→ 0 and λ2(w)→ 4(a2
1 + b2

1 + (τ − 2)a1b1). (3.98)

In addition, by the proof of Lemma 3.16, we also have(
a1 +

τ − 2

2
b1

)2

=

∥∥∥∥a2 +
τ − 2

2
b2

∥∥∥∥2

and b2
1 = ‖b2‖2.

Thus, from the last two equations and the expression of z given by (3.71), we have

‖s2‖2

z1

=
2‖s2‖2√

λ2(w) +
√
λ1(w)

→
(
a1 + τ−2

2
b1

)2√
a2

1 + b2
1 + (τ − 2)a1b1

. (3.99)

On the other hand, for the second term in the right-hand side of (3.96), we can compute

that

(s1z1 − sT2 z2)2

z1 det(z)
=

1

z1

√
λ2(w)

[
s2

1

√
λ1(w) + s1

(√
λ2(w)−

√
λ1(w)

)(
s1 −

sT2w2

‖w2‖

)
+

1

4

(√
λ2(w)−

√
λ1(w)

)2

· 1√
λ1(w)

(
s1 −

sT2w2

‖w2‖

)2
]
. (3.100)

Since s2
1

√
λ1(w), s1 − sT2w2

‖w2‖ → 0 as (x, y) → (a, b) and |s1 − sT2w2

‖w2‖ | ≤
√
λ1(w) by Lemma

3.18, the right hand side of (3.100) tends to 0 as (x, y)→ (a, b). Combining with (3.99),

we prove the first relation in (3.94). We next prove the second relation in (3.94). Note

that ζ2 is given by (3.97). From (3.98) and (3.74), it follows that, as (x, y)→ (a, b),

s1

z1

s2 =
2s1s2√

λ2(w) +
√
λ1(w)

→ a1 + τ−2
2
b1√

a2
1 + b2

1 + (τ − 2)a1b1

(
a2 +

τ − 2

2
b2

)
, (3.101)

s2 −
s1

z1

z2 →
(
a2 +

τ − 2

2
b2

)
− (a2

1 + b2
1 + (τ − 2)a1b1)

(
a2 + τ−2

2
b2

)
a2

1 + b2
1 + (τ − 2)a1b1

= 0. (3.102)
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In addition, by the expression of z, we can compute that

(s1z1 − sT2 z2)

det(z)
=

s1√
λ2(w)

+
1−

√
λ1(w)/

√
λ2(w)

2
√
λ1(w)

(
s1 −

sT2w2

‖w2‖

)
. (3.103)

By (3.98), the first term on the right-hand side of (3.103) tends to
a1+ τ−2

2
b1

2
√
a21+b21+(τ−2)a1b2

as (x, y) → (a, b), while the second term is bounded since |s1 − sT2w2

‖w2‖ | ≤
√
λ1(w) by

Lemma 3.18. Combining (3.101), (3.102), and (3.97) yields the second relation in (3.94).

Consequently, (3.90) is established.

Now, we focus on the proof of (3.95). Let u= x − y and v = y + τ−2
2
x. From Lemma

3.1(c) and (3.93), we know

ξ1 =
1

det(z)

(
u1z1v1 − u1z

T
2 v2 − v1u

T
2 z2 +

det(z)

z1

uT2 v2 +
uT2 z2(zT2 v2)

z1

)
=

uT2 v2

z1

+
(u1z1 − uT2 z2)(v1z1 − vT2 z2)

z1 det(z)
, (3.104)

ξ2 =
1

det(z)

(
z1v1u2 − zT2 v2u2 − u1v1z2 +

u1 det(z)

z1

v2 +
u1

z1

zT2 v2z2

)
=

u1

z1

v2 +
(z1v1 − zT2 v2)

det(z)

(
u2 −

u1

z1

z2

)
. (3.105)

Since (a− b)2 + τ(a ◦ b) /∈ int(Kn), we have aT2 b2 = a1b1, a2
1 = ‖a2‖2 and b2

1 = ‖b2‖2 due

to Lemma 3.16. This together with (3.98) implies that

uT2 v2

z1

=
2(x2 − y2)Tv2√
λ2(w) +

√
λ1(w)

→ (a1 − b1)
(
b1 + τ−2

2
a1

)√
a2

1 + b2
1 + (τ − 2)a1b1

as (x, y)→ (a, b). (3.106)

We next prove that the second term in the right-hand side of (3.104) tends to 0. By

computing,

(u1z1 − uT2 z2)(v1z1 − vT2 z2)

z1 det(z)

=

√
λ1(w)λ2(w)

z1

[
u1√
λ2(w)

+

√
λ2(w)−

√
λ1(w)

2
√
λ1(w)λ2(w)

(
u1 −

uT2w2

‖w2‖

)]
[

v1√
λ2(w)

+

√
λ2(w)−

√
λ1(w)

2
√
λ1(w)λ2(w)

(
v1 −

vT2w2

‖w2‖

)]
.
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When (x, y)→ (a, b), we have 1
z1

√
λ1(w)λ2(w)→ 0. In addition, by Lemma 3.18,∣∣∣∣u1 −

uT2w2

‖w2‖

∣∣∣∣ =
2

4− τ

∣∣∣∣[(x1 +
τ − 2

2
y1

)
−
(
x2 +

τ − 2

2
y2

)T w2

‖w2‖

]
−
[(
y1 +

τ − 2

2
x1

)
−
(
y2 +

τ − 2

2
x2

)T w2

‖w2‖

]∣∣∣∣
≤ 4

√
λ1(w)

4− τ ,

∣∣∣∣v1 −
vT2w2

‖w2‖

∣∣∣∣ =

∣∣∣∣(y1 +
τ − 2

2
x1

)
−
(
y2 +

τ − 2

2
x2

)T w2

‖w2‖

∣∣∣∣ ≤√λ1(w).

This means that 1√
λ1(w)

(
u1− uT2w2

‖w2‖

)
and 1√

λ1(w)

(
v1− vT2w2

‖w2‖

)
are uniformly bounded. Notice

that u1√
λ2(w)

, v1√
λ2(w)

and

√
λ2(w)−

√
λ1(w)√

λ2(w)
are also uniformly bounded. Therefore,

(u1z1 − uT2 z2)(v1z1 − vT2 z2)

z1 det(z)
→ 0 as (x, y)→ (a, b).

Together with (3.106), this establishes the first relation in (3.95). It remains to verify the

second relation in (3.95). Note that ξ2 is given by (3.105). When (x, y) → (a, b), from

(3.98) and (3.74), there have

u1

z1

v2 →
(a1 − b1)√

a2
1 + b2

1 + (τ − 2)a1b1

(
b2 +

τ − 2

2
a2

)
, (3.107)

u2 −
u1

z1

z2 → (a2 − b2)− (a2
1 + b2

1 + (τ − 2)a1b1) (a2 − b2)

a2
1 + b2

1 + (τ − 2)a1b1

= 0. (3.108)

In addition, by the expression of z, we can compute that

(z1v1 − zT2 v2)

det(z)
=

v1√
λ2(w)

+
1−

√
λ1(w)/

√
λ2(w)

2
√
λ1(w)

(
v1 −

vT2w2

‖w2‖

)
. (3.109)

From (3.98), the first term on the right-hand side of (3.109) converges to
b1+ τ−2

2
a1

2
√
a21+b21+(τ−2)a1b2

when (x, y) → (a, b), while the second term is bounded since |v1 − vT2w2

‖w2‖ | ≤
√
λ1(w) by

Lemma 3.18. Combining with (3.107), (3.108) and (3.105), we obtain the second relation

in (3.95) which implies (3.92) holds. Thus, the proof is complete. �

We now turn our attention to the monotone SOCCP and show that every station-

ary point of the unconstrained minimization problem (3.67) is indeed a solution of the

SOCCP. To begin, we establish the following key properties of ∇ψτ , which extend Propo-

sition 3.6 to the general case where τ ∈ (0, 4).
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Lemma 3.20. For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, we have

〈x,∇xψτ (x, y)〉+ 〈y,∇yψτ (x, y)〉 = ‖φτ (x, y)‖2 , (3.110)

〈∇xψτ (x, y),∇yψτ (x, y)〉 ≥ 0. (3.111)

Furthermore, the equality in (3.111) holds if and only if φτ (x, y) = 0.

Proof. When (x, y) = (0, 0), it follows from Proposition 3.16 that∇xψτ (x, y) = ∇yψτ (x, y) =

0, and the conclusion is immediate. We now proceed to examine the remaining two cases.

Case (1): (x− y)2 + τ(x ◦ y) ∈ int(Kn). By Proposition 3.16, we can compute that

〈x,∇xψτ (x, y)〉+ 〈y,∇yψτ (x, y)〉
=

〈
x,
(
Lx+ τ−2

2
yL
−1
z − I

)
φτ

〉
+
〈
y,
(
Ly+ τ−2

2
xL
−1
z − I

)
φτ

〉
=

〈(
L−1
z Lx+ τ−2

2
y − I

)
x, φτ

〉
+
〈(
L−1
z Ly+ τ−2

2
x − I

)
y, φτ

〉
=

〈
L−1
z

[
(x2 + y2) + (τ − 2)(x ◦ y)

]
− (x+ y), φτ

〉
= 〈L−1

z z2 − (x+ y), φτ 〉 = ‖φτ‖2,

where, for simplicity, φτ (x, y) is written as φτ . This proves (3.110). Notice that

〈∇xψτ (x, y),∇yψτ (x, y)〉 =
〈(
Ly+ τ−2

2
x − Lz

)(
Lx+ τ−2

2
y − Lz

)
L−1
z φτ , L

−1
z φτ

〉
.

Let S be the symmetric part of (Ly+ τ−2
2
x − Lz)(Lx+ τ−2

2
y − Lz). Then,

S =
1

2

[(
Ly+ τ−2

2
x − Lz

)(
Lx+ τ−2

2
y − Lz

)
+
(
Lx+ τ−2

2
y − Lz

)(
Ly+ τ−2

2
x − Lz

)]
=

1

2

[
LyLx +

τ − 2

2
L2
x − LzLx +

τ − 2

2
L2
y +

(τ − 2)2

4
LxLy −

τ − 2

2
LzLy

−LyLz −
τ − 2

2
LxLz + L2

z + LxLy +
τ − 2

2
L2
y − LzLy

+
τ − 2

2
L2
x +

(τ − 2)2

4
LyLx −

τ − 2

2
LzLx − LxLz −

τ − 2

2
LyLz + L2

z

]
=

τ

4
(Lz − Lx − Ly)2 +

4− τ
4

(L2
z − L2

x̃ − L2
ỹ),

where x̃ := x+ τ−2
2
y and ỹ := 1

2

√
τ(4− τ) y. Noting that z ∈ Kn and z2 = x̃2 + ỹ2, we

have L2
z − L2

x̃ − L2
ỹ � O by Proposition 3.4 of [78]. Consequently,

〈∇xψτ (x, y),∇yψτ (x, y)〉 = 〈SL−1
z φτ , L

−1
z φτ 〉

≥ τ

4

〈
(Lz − Lx − Ly)2L−1

z φτ , L
−1
z φτ

〉
(3.112)

=
τ

4

∥∥LφτL−1
z φτ

∥∥2
,
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where the equality is due to Lz − Lx − Ly = Lφτ . This implies (3.111). If the inequality

in (3.111) holds with equality, then the above relation yields ‖LφτL−1
z φτ‖2 = 0, which

says

LφτL
−1
z φτ = φτ ◦ (L−1

z φτ ) = 0.

By the definition of Jordan product, 〈φτ , L−1
z φτ 〉 = 0. This implies φτ = 0 since L−1

z � O.

Conversely, if φτ = 0, then it follows from (3.78) that 〈∇xψτ (x, y),∇yψτ (x, y)〉 = 0.

Case (2): (x, y) 6= (0, 0) and (x− y)2 + τ(x ◦ y) /∈ int(Kn). By (3.79), we can compute

〈x,∇xψτ (x, y)〉+ 〈y,∇yψτ (x, y)〉

=

〈
x1x+ y1y + τ−2

2
(y1x+ x1y)

x2
1 + y2

1 + (τ − 2)x1y1

− (x+ y), φτ (x, y)

〉
= ‖φτ (x, y)‖2,

where the last equality uses (3.76). This proves (3.110). Equation (3.111) holds since

〈∇xψτ (x, y),∇yψτ (x, y)〉

=

[
x1 + τ−2

2
y1√

x2
1 + y2

1 + (τ − 2)x1y1

− 1

][
y1 + τ−2

2
x1√

x2
1 + y2

1 + (τ − 2)x1y1

− 1

]
‖φτ (x, y)‖2

≥ 0,

where the inequality is due to
x1+ τ−2

2
y1√

x21+y21+(τ−2)x1y1
≤ 1 and

y1+ τ−2
2
x1√

x21+y21+(τ−2)x1y1
≤ 1. If (3.111)

holds with equality, then either φτ (x, y) = 0 or
x1+ τ−2

2
y1√

x21+y21+(τ−2)x1y1
= 1 or

y1+ τ−2
2
x1√

x21+y21+(τ−2)x1y1
=

1. In the second case, we have y1 = 0 and x1 ≥ 0, so that Lemma 3.16 yields y2 = 0 and

x1 = ‖x2‖. In the third case, we have x1 = 0 and y1 ≥ 0, so that Lemma 3.16 yields

x2 = 0 and y1 = ‖y2‖. Thus, in the two cases, we have 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn.

Consequently, φτ (x, y) = 0 by Proposition 3.15. Conversely, if φτ = 0, then from (3.78)

it follows that 〈∇xψτ (x, y),∇yψτ (x, y)〉 = 0. The proof is thus complete. �

We are now prepared to establish another key result sated as in Proposition 3.18:

every stationary point of fτ solves the SOCCP under the condition

∇F (ζ) and −∇G(ζ) are column monotone for any ζ ∈ IRn. (3.113)

From [63, page 1014] or [143, page 222], A,B ∈ IRn×n are column monotone if

Au+Bv = 0 =⇒ uTv ≥ 0 for any u, v ∈ IRn.

In light of this, it is not hard to verify that, if ∇G(ζ) is invertible, the condition (3.113)

is equivalent to requiring ∇G(ζ)−1∇F (ζ) � O for any ζ ∈ IRn. This implies that, for the

SOCCP (3.4), the condition (3.113) is actually equivalent to F being monotone.
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Proposition 3.18. Let fτ be given by (3.67). If F and G satisfies the condition (3.113),

then for every ζ ∈ IRn, either fτ (ζ) = 0 or ∇fτ (ζ) 6= 0. If ∇fτ (ζ) 6= 0 and ∇G(ζ) is

invertible, then 〈d(ζ),∇fτ (ζ)〉 < 0, where d(ζ) := − (∇G(ζ)−1)
T ∇xψτ (F (ζ), G(ζ)).

Proof. By Lemma 3.20, applying the same arguments as in [41, Proposition 3], with ψ
FB

and f
FB

replaced by ψτ and fτ , respectively, yields the desired result. We therefore omit

the details. �

Lemma 3.21. Let ẑ(x, y, ε) be defined by

ẑ(x, y, ε) :=
[
(x− y)2 + τ(x ◦ y) + εe

]1/2
.

Then, for any ε > 0, the function ẑ(x, y, ε) is continuously differentiable everywhere, and

there exists a scalar C > 0 such that

‖∇xẑ(x, y, ε)‖F ≤ C, ‖∇yẑ(x, y, ε)‖F ≤ C (3.114)

for all (x, y) ∈ IRn × IRn, where ‖A‖F denotes the Frobenius norm of the matrix A.

Proof. Since (x− y)2 + τ(x ◦ y) + εe ∈ int(Kn) for any (x, y) ∈ IRn × IRn and ε > 0, by

Lemma 3.17 the function ẑ(x, y, ε) is continuously differentiable everywhere and

∇xẑ(x, y, ε) =

(
Lx +

τ − 2

2
Ly

)
L−1
ẑ , ∇yẑ(x, y, ε) =

(
Ly +

τ − 2

2
Lx

)
L−1
ẑ . (3.115)

We next prove the bound in (3.114) by the two cases: w2 6= 0 and w2 = 0. Let

ŵ = (ŵ1, ŵ2) = ŵ(x, y, ε) := (x− y)2 + τ(x ◦ y) + εe.

Case (1). w2 6= 0. Then, ŵ2 6= 0 since ŵ2 = w2. Let g = (g1, g2) := x+ τ−2
2
y. By (3.115)

and the formula of L−1
ẑ given by Lemma 3.17, we can compute that

∇xẑ(x, y, ε) =

[
b̂g1 + ĉgT2 w̄2 ĉg1w̄2 + âgT2 + (b̂− â)gT2 w̄2w̄

T
2

b̂g2 + ĉg1w̄2 ĉg2w̄
T
2 + âg1I + (b̂− â)g1w̄2w̄2

]
,

where â, b̂ and ĉ are defined as in (3.77) with w = ŵ. Notice that

g1 = x1 +
τ − 2

2
y1, g2 = x2 +

τ − 2

2
y2; λ1(ŵ) = λ1(w) + ε, λ2(ŵ) = λ2(w) + ε.
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Using the expression of â, b̂ and ĉ and the result of Lemma 3.18 then yields that∣∣∣b̂g1 + ĉgT2 w̄2

∣∣∣ ≤ 1

2
√
λ2(w)

∣∣g1 + gT2 w̄2

∣∣+
1

2
√
λ1(w)

∣∣g1 − gT2 w̄2

∣∣ ≤ 1,∥∥∥ĉg1w̄
T
2 + b̂gT2 w̄2w̄

T
2

∥∥∥ ≤ 1

2
√
λ2(w)

∣∣g1 + gT2 w̄2

∣∣+
1

2
√
λ1(w)

∣∣g1 − gT2 w̄2

∣∣ ≤ 1,

∥∥âgT2 − âgT2 w̄2w̄
T
2

∥∥ ≤ ‖2g2‖√
‖x‖2 + ‖y‖2 + (τ − 2)xTy

(1 + ‖w̄2‖) ≤ 4,∥∥∥b̂g2 + ĉg1w̄2

∥∥∥ ≤ 1

2
√
λ2(w)

‖g2 + g1w̄2‖+
1

2
√
λ1(w)

‖g2 − g1w̄2‖ ≤ 1,∥∥∥ĉg2w̄
T
2 + b̂g1w̄2w̄

T
2

∥∥∥
F
≤ 1

2
√
λ2(w)

‖g2 + g1w̄2‖+
1

2
√
λ1(w)

‖g2 − g1w̄2‖ ≤ 1,

∥∥âg1I − âg1w̄2w̄
T
2

∥∥
F
≤ 2|g1|√

‖x‖2 + ‖y‖2 + (τ − 2)xTy
·
∥∥I − w̄2w̄

T
2

∥∥
F
≤ 2(n− 1).

The above inequalities imply that the first inequality in (3.114) holds under this case.

Case (2). w2 = 0. In this case, from Lemma 3.17, it follows that

∇xẑ(x, y, ε) =
1√
ŵ1

(
Lx +

τ − 2

2
Ly

)
=

1√
ŵ1

Lg.

Since ŵ1 = ‖x + τ−2
2
y‖2 + τ(4−τ)

4
‖y‖2 + ε, we have |g1|/

√
ŵ1 ≤ 1 and ‖g2‖/

√
ŵ1 ≤ 1,

which implies the first inequality in (3.114). Thus, we complete the proof for the first

inequality. By the symmetry of x and y in ẑ(x, y, ε), the second inequality clearly holds.

�

Proposition 3.19. The function φτ defined as in (3.64) has the following properties.

(a) φτ is (continuously) differentiable at (x, y) if and only if w(x, y) ∈ int(Kn). Also,

∇xφτ (x, y) = Lx+ τ−2
2
yL
−1
z − I, ∇yφτ (x, y) = Ly+ τ−2

2
xL
−1
z − I.

(b) φτ is globally Lipschitz continuous with the Lipschitz constant independent of τ .

(c) φτ is strongly semismooth at any (x, y) ∈ IRn × IRn.

Proof. (a) The proof directly follows from (3.78) and the following fact that

φτ (x, y) = z(x, y)− (x+ y).

(b) It suffices to prove that z(x, y) is globally Lipschitz continuous since φτ (x, y) =

z(x, y)− (x+ y). To proceed, we denote

ẑ = ẑ(x, y, ε) :=
[
(x− y)2 + τ(x ◦ y) + εe

]1/2
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for any ε > 0 and x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1. Then, applying Lemma 3.21

and the Mean-Value Theorem, we have∥∥∥z(x, y)− z(a, b)
∥∥∥ =

∥∥∥∥ lim
ε→0+

ẑ(x, y, ε)− lim
ε→0+

ẑ(a, b, ε)

∥∥∥∥
≤ lim

ε→0+
‖ẑ(x, y, ε)− ẑ(a, y, ε) + ẑ(a, y, ε)− ẑ(a, b, ε)‖

≤ lim
ε→0+

∥∥∥∥∫ 1

0

∇xẑ(a+ t(x− a), y, ε)(x− a)dt

∥∥∥∥
+ lim

ε→0+

∥∥∥∥∫ 1

0

∇yẑ(a, b+ t(y − b), ε)(y − b)dt
∥∥∥∥

≤
√

2C‖(x, y)− (a, b)‖

for any (x, y), (a, b) ∈ IRn × IRn, where C > 0 is a constant independent of τ .

(c) From the definition of φτ and φ
FB

, it is not hard to check that

φτ (x, y) = φ
FB

(
x+

τ − 2

2
y,

√
τ(4− τ)

2
y

)
+

1

2

(
τ − 4 +

√
τ(4− τ)

)
y.

Note that φ
FB

is strongly semismooth by Proposition 3.3, and the functions x + τ−2
2
y,

1
2

√
τ(4− τ)y and 1

2
(τ − 4 +

√
τ(4− τ))y are also strongly semismooth. Therefore, φτ

is a strongly semismooth function since by [73, Theorem 19] the composition of strongly

semismooth functions is strongly semismooth. �

Proposition 3.19(c) suggests that when a smoothing or nonsmooth Newton method

is applied to solve the system (3.65), a fast convergence rate, at least superlinear, can

be expected. To develop a semismooth Newton method for the SOCCP, it is essential

to characterize the B-subdifferential ∂Bφτ (x, y) at a general point (x, y). While the B-

subdifferential of φ
FB

has been discussed in [163], we extend the analysis here to φτ for

any τ ∈ (0, 4).

Proposition 3.20. Given a general point (x, y) ∈ IR× IRn−1, each element in ∂Bφτ (x, y)

is of the form V = [Vx − I Vy − I] with Vx and Vy having the following representation:

(a) If (x− y)2 + τ(x ◦ y) ∈ int(Kn), then Vx = L−1
z Lx+ τ−2

2
y and Vy = L−1

z Ly+ τ−2
2
x.

(b) If (x− y)2 + τ(x ◦ y) ∈ bdKn and (x, y) 6= (0, 0), then

Vx ∈
{

1

2
√

2w1

[
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

](
Lx +

τ − 2

2
Ly

)
+

1

2

[
1

−w̄2

]
uT
}

Vy ∈
{

1

2
√

2w1

[
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

](
Ly +

τ − 2

2
Lx

)
+

1

2

[
1

−w̄2

]
vT
}

(3.116)

for some u = (u1, u2), v = (v1, v2) ∈ IR × IRn−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and

|v1| ≤ ‖v2‖ ≤ 1, where w̄2 = w2

‖w2‖ .
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(c) If (x, y) = (0, 0), then Vx ∈ {Lû}, Vy ∈ {Lv̂} for some û = (û1, û2), v̂ = (v̂1, v̂2) ∈
IR× IRl−1 satisfying ‖û‖, ‖v̂‖ ≤ 1 and û1v̂2 + v̂1û2 = 0, or

Vx ∈
{

1

2

[
1

w̄2

]
ξT +

1

2

[
1

−w̄2

]
uT + 2

[
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

]}
Vy ∈

{
1

2

[
1

w̄2

]
ηT +

1

2

[
1

−w̄2

]
vT + 2

[
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

]}
(3.117)

for some u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2) ∈ IR × IR−1 satisfying

|u1| ≤ ‖u2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, |ξ1| ≤ ‖ξ2‖ ≤ 1 and |η1| ≤ ‖η2‖ ≤ 1, w̄2 ∈
IRn−1 satisfying ‖w̄2‖ = 1, and s = (s1, s2), ω = (ω1, ω2) ∈ IR × IRn−1 such that

‖s‖2 + ‖ω‖2 ≤ 1.

Proof. Throughout the proof, let Dφτ denote the set of points where φτ is differentiable.

Recall that this set is characterized by Proposition 3.19(a). For convenience, we write

φ′τ,x(x, y) = ∇xφτ (x, y)T and φ′τ,y(x, y) = ∇yφτ (x, y)T.

From Proposition 3.19(a), it then follows that for any (x, y) ∈ Dφτ ,

φ′τ,x(x, y) = L−1
z Lx+ τ−2

2
y − I, φ′τ,x(x, y) = L−1

z Ly+ τ−2
2
x − I. (3.118)

Moreover, we observe from Lemma 3.1(c) that, when w2 6= 0, L−1
z can be expressed as

the sum of

L1(w) =
1

2
√
λ1(w)

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
and

L2(w) =
1

2
√
λ2(w)

 1 w̄T
2

w̄2

4
√
λ2(w)(I − w̄2w̄

T
2 )√

λ2(w) +
√
λ1(w)

+ w̄2w̄
T
2

 ,
and consequently φ′τ,x and φ′τ,y in (3.118) can be rewritten as

φ′τ,x(x, y) = (L1(w) + L2(w))Lx+ τ−2
2
y − I,

φ′τ,x(x, y) = (L1(w) + L2(w))Ly+ τ−2
2
x − I. (3.119)

(a) Under the given assumption, φτ is continuously differentiable at (x, y) by Proposition

3.19 (a). Consequently, the B-subdifferential ∂Bφτ (x, y) consists of only one element,

φ′τ (x, y) =
[
φ′τ,x(x, y) φ′τ,x(x, y)

]
.

Substituting the formulas in (3.118) into it, we immediately obtain the conclusion.

(b) Assume that (x, y) 6= (0, 0) satisfies (x− y)2 + τ(x ◦ y) ∈ bdKn. Let {(xk, yk)} ⊆ Dφτ

be an arbitrary sequence converging to (x, y). Let wk = (wk1 , w
k
2) = w(xk, yk) and zk =
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z(xk, yk), where w(x, y) and z(x, y) are defined as in (3.69). From the given assumption

on (x, y), we have w ∈ bdKn and w1 > 0, which means that λ2(w) > λ1(w) = 0 and

‖w2‖ = w1 > 0. Hence, we assume without loss of generality that wk2 6= 0 for each k.

Using the formulas in (3.119), it then follows that

φ′τ,x(x
k, yk) =

(
L1(wk) + L2(wk)

)
Lxk+ τ−2

2
yk − I,

φ′τ,y(x
k, yk) =

(
L1(wk) + L2(wk)

)
Lyk+ τ−2

2
xk − I. (3.120)

Notice that limk→+∞ λ2(wk) = 2w1 > 0 and limk→+∞ λ1(wk) = λ1(w) = 0, which,

together with limk→+∞ Lxk = Lx, limk→+∞ Lyk = Ly and limk→+∞w
k
2 = w2, yields

lim
k→+∞

L2(wk)Lxk+ τ−2
2
yk = C(w)

(
Lx +

τ − 2

2
Ly

)
,

lim
k→+∞

L2(wk)Lyk+ τ−2
2
xk = C(w)

(
Ly +

τ − 2

2
Lx

)
,

where C(w) is defined as follows:

C(w) =
1

2
√

2w1

[
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

]
with w̄2 =

w2

‖w2‖
.

In addition, by a simple computation, we have

L1(wk)Lxk+ τ−2
2
yk =

1

2

[
uk1 (uk2)T

−uk1w̄k2 −w̄k2(uk2)T

]
,

L1(wk)Lyk+ τ−2
2
xk =

1

2

[
vk1 (vk2)T

−vk1 w̄k2 −w̄k2(vk2)T

]
,

where w̄k2 = wk2/‖wk2‖ for each k, and

uk1 =
1√

λ1(wk)

[(
xk1 +

τ − 2

2
yk1

)
−
(
xk2 +

τ − 2

2
yk2

)T

w̄k2

]
,

uk2 =
1√

λ1(wk)

[(
xk2 +

τ − 2

2
yk2

)
−
(
xk1 +

τ − 2

2
yk1

)
w̄k2

]
,

vk1 =
1√

λ1(wk)

[(
yk1 +

τ − 2

2
xk1

)
−
(
yk2 +

τ − 2

2
xk2

)T

w̄k2

]
,

vk2 =
1√

λ1(wk)

[(
yk2 +

τ − 2

2
xk2

)
−
(
yk1 +

τ − 2

2
xk1

)
w̄k2

]
.

By Lemma 3.18, |uk1| ≤ ‖uk2‖ ≤ 1 and |vk1 | ≤ ‖vk2‖ ≤ 1. Then, taking the limit (possibly

on a subsequence) on L1(wk)Lxk+ τ−2
2
yk and L1(wk)Lyk+ τ−2

2
xk , we have

L1(wk)Lxk+ τ−2
2
yk →

1

2

[
u1 uT2
−u1w̄2 −w̄2u

T
2

]
=

1

2

[
1

−w̄2

]
uT

L1(wk)Lyk+ τ−2
2
xk →

1

2

[
v1 vT2
−v1w̄2 −w̄2v

T
2

]
=

1

2

[
1

−w̄2

]
vT (3.121)
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for some u = (u1, u2), v = (v1, v2) ∈ IR× IRn−1 with |u1| ≤ ‖u2‖ ≤ 1 and |v1| ≤ ‖v2‖ ≤ 1,

where w̄2 = w2/‖w2‖. In fact, u and v are some accumulation point of the sequences

{uk} and {vk}, respectively. From (3.120)-(3.121), we obtain

φ′τ,x(x
k, yk) → C(w)

(
Lx +

τ − 2

2
Ly

)
+

1

2

[
1

−w̄2

]
uT − I,

φ′τ,y(x
k, yk) → C(w)

(
Ly +

τ − 2

2
Lx

)
+

1

2

[
1

−w̄2

]
vT − I.

This shows that as k → +∞, φ′τ (x
k, yk)→ [Vx− I Vy − I] with Vx, Vy satisfying (3.116).

(c) Assume (x, y) = (0, 0). Let {(xk, yk)} ⊆ Dφτ be an arbitrary sequence converging to

(x, y). Let wk = (wk1 , w
k
2) and zk be defined as in Case (b). From the given assumptions,

we have w = 0. Therefore, we may assume without any loss of generality that wk2 = 0

for all k or wk2 6= 0 for all k. We proceed the arguments by the two cases.

Case (1): wk2 = 0 for all k. From equation (3.118) and Lemma 3.17, it follows that

φ′τ,x(x
k, yk) =

1√
wk1

[
xk1 + τ−2

2
yk1

(
xk2 + τ−2

2
yk2
)T

xk2 + τ−2
2
yk2

(
xk1 + τ−2

2
yk1
)
I

]
− I,

φ′τ,y(x
k, yk) =

1√
wk1

[
yk1 + τ−2

2
xk1

(
yk2 + τ−2

2
xk2
)T

yk2 + τ−2
2
xk2

(
yk1 + τ−2

2
xk1
)
I

]
− I.

Since

wk1 =

∥∥∥∥xk +
τ − 2

2
yk
∥∥∥∥2

+
τ(4− τ)

4

∥∥yk∥∥2
=

∥∥∥∥yk +
τ − 2

2
xk
∥∥∥∥2

+
τ(4− τ)

4

∥∥xk∥∥2
,

every element in the above φ′τ,x(x
k, yk) and φ′τ,y(x

k, yk) are bounded. Thus, taking limit

(possibly on a subsequence) on φ′τ,x(x
k, yk) and φ′τ,y(x

k, yk), respectively, gives

∇xφτ (x
k, yk)→

[
û1 ûT2
û2 û1I

]
− I, ∇yφτ (x

k, yk)→
[
v̂1 v̂T2
v̂2 v̂1I

]
− I

for some û = (û1, û2), v̂ = (v̂1, v̂2) ∈ IR × IRl−1 satisfying ‖û‖ ≤ 1, ‖v̂‖ ≤ 1 and û1v̂2 +

v̂1û2 = 0. This shows that φ′τ (x
k, yk)→ [Vx − I Vy − I] with Vx ∈ {Lû}, Vy ∈ {Lv̂}.

Case (2): wk2 6= 0 for all k. Now φ′τ,x(x
k, yk) and φ′τ,y(x

k, yk) are given as in (3.120).

Using the same arguments as part (b) and noting that {w̄k2} is bounded, we have

L1(wk)Lxk+ τ−2
2
yk →

1

2

[
1

−w̄2

]
uT, L1(wk)Lyk+ τ−2

2
xk →

1

2

[
1

−w̄2

]
vT (3.122)

for some vectors u = (u1, u2), v = (v1, v2) ∈ IR × IRn−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and

|v1| ≤ ‖v2‖ ≤ 1, and w̄2 ∈ IRn−1 satisfying ‖w̄2‖ = 1. We next compute the limit of
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L2(wk)Lxk+ τ−2
2
yk and L2(wk)Lyk+ τ−2

2
xk . By the definition of L2(w),

L2(wk)Lxk+ τ−2
2
yk =

1

2

[
ξk1 (ξk2 )T

ξk1 w̄
k
2 + 4(I − w̄k2(w̄k2)T)sk2 w̄k2(ξk2 )T + 4(I − w̄k2(w̄k2)T)sk1

]
,

L2(wk)Lyk+ τ−2
2
xk =

1

2

[
ηk1 (ηk2)T

ηk1 w̄
k
2 + 4(I − w̄k2(w̄k2)T)ωk2 w̄k2(ηk2)T + 4(I − w̄k2(w̄k2)T)ωk1

]
where

ξk1 =
1√

λ2(wk)

[(
xk1 +

τ − 2

2
yk1

)
+

(
xk2 +

τ − 2

2
yk2

)T

w̄k2

]
,

ξk2 =
1√

λ2(wk)

[(
xk2 +

τ − 2

2
yk2

)
+

(
xk1 +

τ − 2

2
yk1

)
w̄k2

]
,

ηk1 =
1√

λ2(wk)

[(
yk1 +

τ − 2

2
xk1

)
+

(
yk2 +

τ − 2

2
xk2

)T

w̄k2

]
,

ηk2 =
1√

λ2(wk)

[(
yk2 +

τ − 2

2
xk2

)
+

(
yk1 +

τ − 2

2
xk1

)
w̄k2

]
,

and

sk1 =

(
xk1 + τ−2

2
yk1
)√

λ2(wk) +
√
λ1(wk)

, sk2 =

(
xk2 + τ−2

2
yk2
)√

λ2(wk) +
√
λ1(wk)

;

ωk1 =

(
yk1 + τ−2

2
xk1
)√

λ2(wk) +
√
λ1(wk)

, ωk2 =

(
yk2 + τ−2

2
xk2
)√

λ2(wk) +
√
λ1(wk)

.

By Lemma 3.18, |ξk1 | ≤ ‖ξk2‖ ≤ 1 and |ηk1 | ≤ ‖ηk2‖ ≤ 1. In addition,

‖sk‖2 + ‖ωk‖2 =
‖xk + τ−2

2
yk‖2 + ‖yk + τ−2

2
xk‖2

2[‖xk‖2 + ‖yk‖2 + (τ − 2)(xk)Tyk] + 2
√
λ2(wk)

√
λ1(wk)

≤ 1.

Taking the limit on L2(wk)Lxk+ τ−2
2
yk and L2(wk)Lyk+ τ−2

2
xk , we have

L2(wk)Lxk+ τ−2
2
yk →

1

2

[
ξ1 ξ2

ξ1w̄2 + 4(I − w̄2w̄
T
2 )s2 w̄2ξ

T
2 + 4(I − w̄2w̄

T
2 )s1

]
=

1

2

[
1

w̄2

]
ξT + 2

[
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

]
(3.123)

L2(wk)Lyk+ τ−2
2
xk →

1

2

[
η1 η2

η1w̄
T
2 + 4(I − w̄2w̄

T
2 )ω2 w̄2η

T
2 + 4(I − w̄2w̄

T
2 )ω1

]
=

1

2

[
1

w̄2

]
ηT + 2

[
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

]
(3.124)
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for some vectors ξ = (ξ1, ξ2), η = (η1, η2) ∈ IR × IRn−1 satisfying |ξ1| ≤ ‖ξ2‖ ≤ 1 and

|η1| ≤ ‖η2‖ ≤ 1, and s = (s1, s2), ω = (ω1, ω2) ∈ IR × IRn−1 satisfying ‖s‖2 + ‖ω‖2 ≤ 1.

From equations (3.122), (3.123) and (3.124), it follows that as k → +∞,

φ′τ,x(x
k, yk) → 1

2

[
1

w̄2

]
ξT +

1

2

[
1

−w̄2

]
uT + 2

[
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

]
− I,

φ′τ,x(x
k, yk) → 1

2

[
1

w̄2

]
ηT +

1

2

[
1

−w̄2

]
vT + 2

[
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

]
− I.

This shows that as k → +∞, φ′τ (x
k, yk) → [Vx − I Vy − I] with Vx and Vy satisfying

(3.117). Combining with Case (1), the desired result then follows. �

Proposition 3.21. The operator Φτ : IRn → IRn given by (3.65) is semismooth. More-

over, it is strongly semismooth if F ′ and G′ are locally Lipschitz continuous.

Proof. Note that Φτ is (strongly) semismooth if and only if each of its component

functions is (strongly) semismooth. Since the composition of (strongly) semismooth

functions remains (strongly) semismooth, as established in [73, Theorem 19], the desired

conclusion follows directly from Proposition 3.19(c). �

To characterize the B-subdifferential of Φτ , we write Fi(ζ) = (Fi1(ζ), Fi2(ζ)) and

Gi(ζ) = (Gi1(ζ), Gi2(ζ)), and denote wi and zi for i = 1, 2, . . . ,m by

wi = (wi1(ζ), wi2(ζ)) = w(Fi(ζ), Gi(ζ)),

zi = (zi1(ζ), zi2(ζ)) = z(Fi(ζ), Gi(ζ)).

For simplicity, we sometimes suppress in Fi(ζ) and Gi(ζ) the dependence on ζ.

Proposition 3.22. Let Φτ : IRn → IRn be defined as in (3.65). Then, for any ζ ∈ IRn,

∂BΦτ (ζ)T ⊆ ∇F (ζ) (A(ζ)− I) +∇G(ζ) (B(ζ)− I) ,

where A(ζ) and B(ζ) are possibly multivalued n × n block diagonal matrices whose ith

blocks Ai(ζ) and Bi(ζ) for i = 1, 2, . . . ,m have the following representation.

(a) If (Fi(ζ)−Gi(ζ))2 + τ (Fi(ζ) ◦Gi(ζ)) ∈ intKni, then

Ai(ζ) = LFi+ τ−2
2
Gi
L−1
zi

and Bi(ζ) = LGi+ τ−2
2
Fi
L−1
zi
.

(b) If (Fi(ζ), Gi(ζ)) 6= (0, 0) and (Fi(ζ)−Gi(ζ))2 + τ (Fi(ζ) ◦Gi(ζ)) ∈ bdKni, then

Ai(ζ) ∈
{

1

2
√

2wi1

(
LFi +

τ − 2

2
LGi

)[
1 w̄T

i2

w̄i2 4I − 3w̄i2w̄
T
i2

]
+

1

2
ui(1,−w̄T

i2)

}
Bi(ζ) ∈

{
1

2
√

2wi1

(
LGi +

τ − 2

2
LFi

)[
1 w̄T

i2

w̄i2 4I − 3w̄i2w̄
T
i2

]
+

1

2
vi(1,−w̄T

i2)

}
for some ui = (ui1, ui2), vi = (vi1, vi2) ∈ IR× IRni−1 satisfying |ui1| ≤ ‖ui2‖ ≤ 1 and

|vi1| ≤ ‖vi2‖ ≤ 1, where w̄i2 = wi2
‖wi2‖ .
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(c) If (Fi(ζ), Gi(ζ)) = (0, 0), then

Ai(ζ) ∈
{
Lûi

}
∪
{

1

2
ξi
(
1, w̄T

i2

)
+

1

2
ui
(
1,−w̄T

i2

)
+

[
0 2sTi2(I − w̄i2w̄T

i2)

0 2si1(I − w̄i2w̄T
i2)

]}
Bi(ζ) ∈

{
Lv̂i

}
∪
{

1

2
ηi
(
1, w̄T

i2

)
+

1

2
vi
(
1,−w̄T

i2

)
+

[
0 2ωT

i2(I − w̄i2w̄T
i2)

0 2ωi1(I − w̄i2w̄T
i2)

]}
for some ûi = (ûi1, ûi2), v̂i = (v̂i1, v̂i2) ∈ IR × IRni−1 satisfying ‖ûi‖, ‖v̂i‖ ≤ 1

and ûi1v̂i2 + v̂i1ûi2 = 0, some ui = (ui1, ui2), vi = (vi1, vi2), ξi = (ξi1, ξi2), ηi =

(ηi1, ηi2) ∈ IR × IRni−1 with |ui1| ≤ ‖ui2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1, |ξi1| ≤ ‖ξi2‖ ≤ 1

and |ηi1| ≤ ‖ηi2‖ ≤ 1, w̄i2 ∈ IRni−1 satisfying ‖w̄i2‖ = 1, and si = (si1, si2),

ωi = (ωi1, ωi2) ∈ IR× IRni−1 such that ‖si‖2 + ‖ωi‖2 ≤ 1.

Proof. Let Φτ,i(ζ) denote the ith subvector of Φτ , i.e. Φτ,i(ζ) = φτ (Fi(ζ), Gi(ζ)) for all

i = 1, 2, . . . ,m. From [52, Proposition 2.6.2], it follows that

∂BΦτ (ζ)T ⊆ ∂BΦτ,1(ζ)T × ∂BΦτ,2(ζ)T × · · · × ∂BΦτ,m(ζ)T, (3.125)

where the latter denotes the set of all matrices whose (ni−1 + 1) to nith columns with

n0 = 0 belong to ∂BΦτ,i(ζ)T. Using the definition of B-subdifferential and the continuous

differentiability of F and G, it is not difficult to verify that

∂BΦτ,i(ζ)T = [∇Fi(ζ) ∇Gi(ζ)]∂Bφτ (Fi(ζ), Gi(ζ))T, i = 1, . . . ,m. (3.126)

By applying Proposition 3.20 in conjunction with the preceding two equations, the desired

result follows immediately. �

Proposition 3.23. For any ζ ∈ IRn, let A(ζ) and B(ζ) be the multi-valued block diagonal

matrices given as in Proposition 3.22. Then, for any i ∈ {1, 2, . . . ,m},

〈(Ai(ζ)− I)Φτ,i(ζ), (Bi(ζ)− I)Φτ,i(ζ)〉 ≥ 0,

and the equality holds if and only if Φτ,i(ζ) = 0. Particularly, for the index i such that

(Fi(ζ)−Gi(ζ))2 + τ(Fi(ζ) ◦Gi(ζ) ∈ intKni, we have

〈(Ai(ζ)− I)υi, (Bi(ζ)− I)υi〉 ≥ 0, for any υi ∈ IRni .

Proof. From [52, Theorem 2.6.6] and Proposition 3.19 (d), we have

∇ψτ (x, y) = ∂Bφτ (x, y)Tφτ (x, y).

Hence, for any i = 1, 2, . . . ,m, it follows that

∇ψτ (Fi(ζ), Gi(ζ)) = ∂Bφτ (Fi(ζ), Gi(ζ))Tφτ (Fi(ζ), Gi(ζ)).
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In addition, from Proposition 3.20 and Proposition 3.22, it is not hard to see that[
Ai(ζ)T − I Bi(ζ)T − I

]
∈ ∂Bφτ (Fi(ζ), Gi(ζ)).

Combining with the last two equations yields that for any i = 1, 2, . . . ,m,

∇xψτ (Fi(ζ), Gi(ζ)) = (Ai(ζ)− I)Φτ,i(ζ)

∇yψτ (Fi(ζ), Gi(ζ)) = (Bi(ζ)− I)Φτ,i(ζ). (3.127)

Consequently, the first part of the conclusions is direct by Proposition 4.1 of [37]. Notice

that for any i such that (Fi(ζ)−Gi(ζ))2 + τ(Fi(ζ) ◦Gi(ζ) ∈ intKni and any υi ∈ IRni ,

〈(Ai(ζ)− I)υi, (Bi(ζ)− I)υi〉
=

〈(
LFi+ τ−2

2
Gi
− Lzi

)
L−1
zi
υi,
(
LGi+ τ−2

2
Fi
− Lzi

)
L−1
zi
υi

〉
=

〈(
LGi+ τ−2

2
Fi
− Lzi

)(
LFi+ τ−2

2
Gi
− Lzi

)
L−1
zi
υi, L

−1
zi
υi

〉
.

Therefore, by employing the same reasoning as in Case (2) of [37, Proposition 4.1], we

arrive at the second part of the conclusions. �

Lemma 3.22. Let ψτ : IRn × IRn → IR+ be given by (3.63). Then, for any x, y ∈ IRn,

φτ (x, y) 6= 0 ⇐⇒ ∇xψτ (x, y) 6= 0, ∇yψτ (x, y) 6= 0.

Proof. The sufficiency follows directly from Proposition 3.16. Now suppose φτ (x, y) 6= 0.

If either∇xψτ (x, y) = 0 or∇yψτ (x, y) = 0, then it follows that 〈∇xψτ (x, y),∇yψτ (x, y)〉 =

0. However, by Proposition 3.15, this would imply φτ (x, y) = 0, leading to a contradic-

tion. �

Proposition 3.24. Let Ψτ : IRn → IR+ be given as (3.66). Suppose ∇G is invertible and

∇G(ζ)−1∇F (ζ) at any ζ ∈ IRn has the Cartesian P0-property. Then, every stationary

point of Ψτ is a solution of the SOCCP (3.4).

Proof. Let ζ be an arbitrary stationary point of fτ (ζ). Since Ψτ is continuously differ-

entiable as established in Proposition 3.19(d), and Φτ is locally Lipschitz continuous, it

follows from [52, Theorem 2.6.6] that for any V ∈ ∂Φτ (ζ)T, we have

0 = ∇Ψτ (ζ) = V Φτ (ζ).

Let V be an element of ∂BΦτ (ζ)T(⊆ ∂Φτ (ζ)T). Then, from (3.125) it follows that there

exist matrices Vi ∈ ∂BΦτ,i(ζ)T such that

V = V1 × V2 × · · · × Vm.
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In addition, for each Vi ∈ IRn×ni , by Proposition 3.20 there exist matrices Ai(ζ) ∈ IRni×ni

and Bi(ζ) ∈ IRni×ni , as characterized by Proposition 3.22, such that

Vi = ∇Fi(ζ)(Ai(ζ)− I) +∇Gi(ζ)(Bi(ζ)− I), i = 1, 2, . . . ,m.

Let A(ζ) = diag(A1(ζ), . . . , Am(ζ)) and B(ζ) = diag(B1(ζ), . . . , Bm(ζ)). Combining the

last three equations, it then follows that

[∇F (ζ)(A(ζ)− I) +∇G(ζ)(B(ζ)− I)] Φτ (ζ) = 0,

which, by the invertibility of ∇G(ζ), is equivalent to[
∇G(ζ)−1∇F (ζ)(A(ζ)− I) + (B(ζ)− I)

]
Φτ (ζ) = 0. (3.128)

Suppose that Φτ (ζ) 6= 0. Then, there necessarily exists an index ν ∈ {1, 2, . . . ,m} such

that Φτ,ν(ζ) = φτ (Fν(ζ), Gν(ζ)) 6= 0. Using Lemma 3.22 and equation (3.127) then yields

(Aν(ζ)− I)Φτ,ν(ζ) 6= 0 and (Bν(ζ)− I)Φτ,ν(ζ) 6= 0. (3.129)

In addition, from (3.128) it follows that[
∇G(ζ)−1∇F (ζ)(A(ζ)− I)Φτ (ζ)

]
ν

+ (Bν(ζ)− I)Φτ,ν(ζ) = 0.

Making the inner product with (Aν(ζ)− I)Φτ,ν(ζ) on both sides, we obtain〈
(Aν(ζ)− I)Φτ,ν(ζ),

[
∇G(ζ)−1∇F (ζ)(A(ζ)− I)Φτ (ζ)

]
ν

〉
+
〈

(Aν(ζ)− I)Φτ,ν(ζ), (Bν(ζ)− I)Φτ,ν(ζ)
〉

= 0.

Observe that the first term on the left-hand side is nonnegative by (3.129) and the

assumption that ∇G(ζ)−1∇F (ζ) possesses the Cartesian P0-property at any ζ ∈ IRn.

The second term is strictly positive by Lemma 3.23, given that Φτ,ν(ζ) 6= 0. This yields

a contradiction. �

Remark 3.3. (i) It is easy to verify that ∇G(ζ)−1∇F (ζ) � O implies the Cartesian P0-

property of ∇G(ζ)−1∇F (ζ). While, by [37], the column monotonicity of ∇F (ζ) and

−∇G(ζ) is now equivalent to ∇G(ζ)−1∇F (ζ) � O. This means that the condition

in Proposition 3.24 is weaker than the one (3.113) used in Proposition 3.18.

(ii) For the SOCCP (3.1), the condition stated in Proposition 3.24 is equivalent to re-

quiring that F satisfies the Cartesian P0-property. If n1 = n2 = · · · = nm = 1, this

condition reduces to the classical requirement in the NCPs that F is a P0-function.

Lemma 3.23. Let ψτ be given by (3.63). Then, for any (x, y) ∈ IRn × IRn, we have

4ψτ (x, y) ≥ 2 ‖[φτ (x, y)]+‖2 ≥ (4− τ)2

4

[
‖(−x)+‖2 + ‖(−y)+‖2

]
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Proof. Note that z(x, y) − (x + τ−2
2
y) ∈ Kn and z(x, y) − (y + τ−2

2
x) ∈ Kn. Following

the same proof line as Lemma 3.7 immediately yields the desired result. �

Lemma 3.24. Let ψτ be defined as in (3.63). For any sequence {(xk, yk)} ⊆ IRn × IRn,

let λk1 ≤ λk2 and µk1 ≤ µk2 denote the spectral values of xk and yk, respectively.

(a) If λk1 → −∞ or µk1 → −∞, then ψτ (x
k, yk)→ +∞.

(b) If {λk1} and {µk1} are bounded below, but λk2 → +∞, µk2 → +∞, and xk

‖xk‖ ◦
yk

‖yk‖ 9 0,

then ψτ (x
k, yk)→ +∞.

Proof. Part (a) is direct by Lemma 3.23 and the following fact that

∥∥(−xk)+

∥∥2
=

1

2

2∑
i=1

(
min{0, λki }

)2
,
∥∥(−yk)+

∥∥2
=

1

2

2∑
i=1

(
min{0, µki }

)2
.

We next prove part (b) by contradiction. Suppose that {ψτ (xk, yk)} is bounded. Since

xk + yk = zk − φτ (xk, yk) ∀k,

where zk = z(xk, yk) with z(x, y) defined as in (3.69). Squaring the two sides of the last

equality then yields that

(4− τ)xk ◦ yk = −2zk ◦ φτ (xk, yk) + (φτ (x
k, yk))2. (3.130)

Noting that, for each k,

0 ≤ zk1
‖xk‖‖yk‖ ≤

√
2wk1

‖xk‖‖yk‖ =

√
‖xk‖2 + ‖yk‖2 + (τ − 2)(xk)Tyk

‖xk‖2‖yk‖2
,

we can verify that limk→+∞
zk1

‖xk‖‖yk‖ = 0. Combining with
zk

‖xk‖‖yk‖ ∈ K
l yields

lim
k→+∞

zk

‖xk‖‖yk‖ = 0.

Using equation (3.130) and the boundedness of {φτ (xk, yk)}, it then follows that

lim
k→+∞

xk

‖xk‖ ◦
yk

‖yk‖ = 0,

which clearly contradicts the given assumption. The proof is complete. �

Now, invoking Lemma 3.24 and employing the same reasoning as in [163, Proposition

5.2], we can establish the boundedness of the level sets of Ψτ (ζ) for the SOCCP (3.1),
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under the assumption that F possesses the uniform Cartesian P -property and satisfies

the following condition:

Condition A. For any sequence {ζk} ⊆ IRn such that ‖ζk‖ → +∞, if there exists

i ∈ {1, . . . ,m} such that λ1(ζki ), λ1(Fi(ζ
k)) > −∞ and λ2(ζki ), λ2(Fi(ζ

k))→ +∞, then

lim sup
k→+∞

〈
ζki
‖ζki ‖

,
Fi(ζ

k)

‖Fi(ζk)‖

〉
> 0.

Proposition 3.25. For the SOCCP (3.1), if F : IRn → IRn has the uniform Cartesian

P -property and satisfies Condition A, then the merit function Ψτ has bounded level sets.

3.1.2 The functions φp
FB

and ψp
FB

in SOC setting

In this section, we study the generalized Fischer-Burmeister (FB) merit function associ-

ated with the SOC. Within this framework, it is natural to define

ψp
FB

(x, y) :=
1

2
‖φp

FB
(x, y)‖2, (3.131)

where p is a fixed real number from (1,+∞), and φp
FB

: IRn × IRn → IRn is defined by

φp
FB

(x, y) := p
√
|x|p + |y|p − (x+ y) (3.132)

with |x|p being the vector-valued SOC function (or Löwner function) associated with

|t|p (t ∈ IR). In other words, given a real-valued function g : IR → IR, recall that the

vector-valued function gsoc : IRn→ IRn by

gsoc(x) := g(λ1(x))u(1)
x + g(λ2(x))u(2)

x .

If g is defined on a subset of IR, then gsoc is defined on the corresponding subset of IRn.

The definition of gsoc is unambiguous whether x2 6= 0 or x2 = 0. As mentioned, if we use

the vector-valued functions associated with |t|p (t ∈ IR) and p
√
t (t ≥ 0), then we obtain

|x|p := |λ1(x)|p u(1)
x + |λ2(x)|p u(2)

x ∀x ∈ IRn,
p
√
x := p

√
λ1(x) u(1)

x + p
√
λ2(x) u(2)

x ∀x ∈ Kn,

respectively. The two functions enhance that φp
FB

in (3.132) is well defined for any

x, y ∈ IRn. Clearly, when p = 2, ψp
FB

reduces to the FB merit function

ψ
FB

(x, y) :=
1

2
‖φ

FB
(x, y)‖2,
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where φ
FB

: IRn × IRn → IRn is the C-function associated with SOC defined by

φ
FB

(x, y) :=
√
x2 + y2 − (x+ y).

Likewise, we denote Φp
FB

: IRn → IRm as

Φp
FB

(ζ) :=


φp

FB
(F1(ζ), G1(ζ))

...

φp
FB

(Fi(ζ), Gi(ζ))
...

φp
FB

(Fq(ζ), Gq(ζ))


where φp

FB
is defined as in (3.132) with a suitable dimension. Accordingly, its squared

norm induces a merit function, given by

Ψp
FB

(ζ) :=
1

2
‖Φp

FB
(ζ)‖2 =

q∑
i=1

ψp
FB

(Fi(ζ), Gi(ζ)). (3.133)

Lemma 3.25. For any given 0 ≤ r ≤ 1, ξr �Kn ηr whenever ξ �Kn η �Kn 0.

Proof. This is an immediate consequence of [28, Proposition 2.7] since f(t) = tr for

0 ≤ r ≤ 1 is SOC-monotone on [0,∞). �

Lemma 3.26. For any nonnegative real numbers a and b, the following results hold.

(a) (a+ b)ρ ≥ aρ + bρ if ρ > 1, and the equality holds if and only if ab = 0;

(b) (a+ b)ρ ≤ aρ + bρ if 0 < ρ < 1, and the equality holds if and only if ab = 0.

Proof. Without loss of generality, we assume that a ≤ b and b > 0. Consider the function

f(t) = (t+ 1)ρ− (tρ + 1) (t ≥ 0). It is easy to verify that f is increasing on [0,+∞) when

ρ > 1. Hence, f(a/b) ≥ f(0) = 0, i.e., (a + b)ρ ≥ aρ + bρ. Also, f(a/b) = f(0) if and

only if a/b = 0. That is, (a + b)ρ = aρ + bρ if and only if ab = 0. This proves part (a).

Note that f is decreasing on [0,+∞) when 0 < ρ < 1, and a similar argument leads to

part(b). �

Lemma 3.27. For any ξ, η ∈ Kn, if ξ + η ∈ bdKn, then one of the following cases must

hold: (i) ξ = 0, η ∈ bdKn; (ii) ξ ∈ bdKn, η = 0; (iii) ξ = γη for some γ > 0 with

η ∈ bd+Kn.

Proof. Since ξ, η ∈ Kn and ξ + η ∈ bdKn, it follows that ‖ξ2‖ + ‖η2‖ ≥ ‖ξ2 + η2‖ =

ξ1 + η1 ≥ ‖ξ2‖+ ‖η2‖. This shows that ξ2 = 0; or η2 = 0; or ξ2 = γη2 6= 0 for some γ > 0.

Substituting ξ2 = 0, or η2 = 0; or ξ2 = γη2 into ‖ξ2 +η2‖ = ξ1 +η1 yields the result. �
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Proposition 3.26. Let φp
FB

be defined by (3.132). Then, the function φp
FB

is a C-function

associated with the SOC. In other words, for any x, y ∈ IRn, there holds

φp
FB

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.

Proof. “⇐”. From [85, Proposition 6], there exists a Jordan frame
{
u(1), u(2)

}
such that

x = λ1u
(1) + λ2u

(2) and y = µ1u
(1) + µ2u

(2) with λi, µi ≥ 0 for i = 1, 2. Then,

(x+ y)p = (λ1 + µ1)pu(1) + (λ2 + µ2)pu(2),

xp + yp = (λp1 + µp1)u(1) + (λp2 + µp2)u(2).

Since 0 = 2〈x, y〉 = λ1µ1 + λ2µ2 implies λ1µ1 = λ2µ2 = 0, from the last two equalities

and Lemma 3.26(a) we obtain (x+ y)p = xp + yp, and consequently φp
FB

(x, y) = 0.

“⇒”. Since φp(x, y) = 0, we have x =
√
|x|p + |y|p − y �Kn |y| − y ∈ Kn, where the

inequality is due to Lemma 3.25. Similarly, we have y = p
√
|x|p + |y|p−x �Kn |x|−x ∈ Kn.

Now from φp(x, y) = 0, we have (x+ y)p = xp + yp, and then

(λ1(x+ y))p + (λ2(x+ y))p = (λ1(x))p + (λ2(x))p + (λ1(y))p + (λ2(y))p.

Noting that f(t) = (t0 + t)p + (t0 − t)p for a fixed t0 ≥ 0 is increasing on [0, t0], we also

have[
λ1(x+ y)

]p
+
[
λ2(x+ y)

]p ≥ (x1 + y1 − ‖x2‖+ ‖y2‖)p + (x1 + y1 + ‖x2‖ − ‖y2‖)p
= (λ1(x) + λ2(y))p + (λ2(x) + λ1(y))p

≥ (λ1(x))p + (λ2(y))p + (λ2(x))p + (λ1(y))p, (3.134)

where the last inequality is due to Lemma 3.26(a) and x, y ∈ Kn. The last two equa-

tions imply that all the inequalities on the right hand side of (3.134) become equalities.

Therefore,

‖x2 + y2‖ = ‖x2‖ − ‖y2‖, λ1(x)λ2(y) = 0, λ2(x)λ1(y) = 0. (3.135)

Assume that x2 6= 0 and y2 6= 0. Since x, y ∈ Kn, from the equalities in (3.135), we obtain

x1 = ‖x2‖, y1 = ‖y2‖, and x2 = γ̂y2 for some γ̂ < 0, which in turn implies 〈x, y〉 = 0.

When x2 = 0 or y2 = 0, using the continuity of the inner product yields 〈x, y〉 = 0. �

Unless otherwise specified, throughout the remainder of this section, we assume that

K = Kn (all analysis is easily carried over to the general K as in (3.2)), p > 1 with

q = (1 −p−1)−1, and gsoc is the vector-valued function associated with |t|p (t ∈ IR), i.e.,

gsoc(x) = |x|p. For brevity, we consistently write

w = w(x, y) := |x|p + |y|p and z = z(x, y) := p
√
|x|p + |y|p ∀x, y ∈ IRn.
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By definitions of |x|p and |y|p, clearly,

w1 := w1(x, y) =
|λ2(x)|p + |λ1(x)|p

2
+
|λ2(y)|p + |λ1(y)|p

2
,

w2 := w2(x, y) =
|λ2(x)|p − |λ1(x)|p

2
x2 +

|λ2(y)|p − |λ1(y)|p
2

y2, (3.136)

where x2 = x2
‖x2‖ if x2 6= 0, and otherwise x2 is an arbitrary vector in IRn−1 with ‖x2‖ = 1,

and y2 has the similar definition. Noting that z(x, y) = p
√
w(x, y), we have

z1 = z1(x, y) =
p
√
λ2(w) + p

√
λ1(w)

2
, z2 = z2(x, y) =

p
√
λ2(w)− p

√
λ1(w)

2
w2, (3.137)

where w2 = w2

‖w2‖ if w2 6= 0, and otherwise w2 is an arbitrary vector in IRn−1 with

‖w2‖ = 1.

To analyze the differentiability of ψp
FB

, we present two essential lemmas. The first

establishes key properties of points (x, y) for which w(x, y) ∈ bdKn, while the second

offers a sufficient condition characterizing the points at which z(x, y) is continuously

differentiable.

Lemma 3.28. For any (x, y) with w(x, y) ∈ bdKn, we have the following equalities:

w1(x, y) = ‖w2(x, y)‖ = 2p−1(|x1|p + |y1|p),
x2

1 = ‖x2‖2, y2
1 = ‖y2‖2, x1y1 = xT2 y2, x1y2 = y1x2. (3.138)

If, in addition, w2(x, y) 6= 0, the following equalities hold with w2(x, y) = w2(x,y)
‖w2(x,y)‖ :

xT2w2(x, y) = x1, x1w2(x, y) = x2, yT2w2(x, y) = y1, y1w2(x, y) = y2. (3.139)

Proof. Fix any (x, y) with w(x, y) ∈ bdKn. Since |x|p, |y|p ∈ Kn, applying Lemma

3.27 with ξ = |x|p and η = |y|p, we have |x|p ∈ bdKn and |y|p ∈ bdKn. This means

that |λ2(x)|p · |λ1(x)|p = 0 and |λ2(y)|p · |λ1(y)|p = 0. So, x2
1 = ‖x2‖2 and y2

1 = ‖y2‖2.

Substituting this into w1(x, y), we readily obtain w1(x, y) = 2p−1(|x1|p + |y1|p).
To prove other equalities in (3.138) and (3.139), we first consider the case where x1 +

‖x2‖ = 0 and y1 − ‖y2‖ = 0 with x2 6= 0 and y2 6= 0. Under this case,

w1 =
|λ1(x)|p + |λ2(y)|p

2
=

∥∥∥∥ |λ1(x)|p
2

x2

‖x2‖
− |λ2(y)|p

2

y2

‖y2‖

∥∥∥∥ = ‖w2‖,

which implies that xT2 y2 = −‖x2‖‖y2‖ = x1y1. Together with x2
1 = ‖x2‖2 and y2

1 = ‖y2‖2,

we have that x1y2 = y1x2. From the definition of w2, it then follows that

xT2w2 = −|λ1(x)|p
2
‖x2‖+

|λ2(y)|p
2

x1y1

‖y2‖
= 2p−1 (|x1|p + |y1|p)x1 = ‖w2‖x1,

x1w2 = −|λ1(x)|p
2

x1x2

‖x2‖
+
|λ2(y)|p

2

y1x2

‖y2‖
= 2p−1 (|x1|p + |y1|p)x2 = ‖w2‖x2.
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Similarly, we also have yT2w2 = ‖w2‖y1 and yT1w2 = ‖w2‖y2. The above arguments show

that equations (3.138) and (3.139) hold under the case where x1 = −‖x2‖, y1 = ‖y2‖.
Using the same arguments, we can prove that (3.138) and (3.139) hold under any one

of the following cases: (1) x1 = ‖x2‖, y1 = ‖y2‖; (2) x1 = −‖x2‖, y1 = ‖y2‖; (3) x1 =

−‖x2‖, y1 = −‖y2‖. �

Lemma 3.29. Let z(x, y) be defined as in (3.137). Then, z(x, y) is continuously differ-

entiable at (x, y) with w(x, y) ∈ int(Kn), and

∇xz(x, y) = ∇gsoc(x)∇gsoc(z)−1 and ∇yz(x, y) = ∇gsoc(y)∇gsoc(z)−1,

where ∇gsoc(z)−1 = (p q
√
w1)−1I if w2 = 0, and otherwise

∇gsoc(z)−1 =
1

2p


1

q
√
λ2(w)

+
1

q
√
λ1(w)

wT2
q
√
λ2(w)

− wT
2

q
√
λ1(w)

w2

q
√
λ2(w)

− w2

q
√
λ1(w)

2p(I − w2w
T
2 )

a(z)
+

w2w
T
2

q
√
λ2(w)

+
w2w

T
2

q
√
λ1(w)

 .
Proof. Since |t|p (t ∈ IR) and p

√
t (t > 0) are continuously differentiable, by [78, Propo-

sition 5.2] or [29, Proposition 5], the functions gsoc(x) and
√
x are continuously differ-

entiable in IRn and int(Kn), respectively. This implies the first part of this lemma. A

simple calculation gives the expression of ∇z(x, y). By the formula in [78, Proposition

5.2],

∇gsoc(x) =


p sgn(x1)|x1|p−1I if x2 = 0;[

b(x) c(x)xT2
c(x)x2 a(x)I + (b(x)− a(x))x2x

T
2

]
if x2 6= 0,

(3.140)

where

x2 =
x2

‖x2‖
, a(x) =

|λ2(x)|p − |λ1(x)|p
λ2(x)− λ1(x)

,

b(x) =
p

2

[
sgn(λ2(x))|λ2(x)|p−1 + sgn(λ1(x))|λ1(x)|p−1

]
,

c(x) =
p

2

[
sgn(λ2(x))|λ2(x)|p−1 − sgn(λ1(x))|λ1(x)|p−1

]
. (3.141)

We next derive the formula of ∇gsoc(z)−1. When w2 = 0, we have λ1(w) = λ2(w) =

w1 > 0, which by (3.137) implies z1 = p
√
w1 and z2 = 0. From formula (3.140), it then

follows that ∇gsoc(z) = p|z1|p−1I = p q
√
w1I. Consequently, ∇gsoc(z)−1 = 1

p q
√
w1
I. When

w2 6= 0, since p
√
λ2(w) > p

√
λ1(w), we have z2 6= 0 and z2 = z2

‖z2‖ = w2 by (3.137). Using

the expression of ∇gsoc(z), it is easy to verify that b(z) + c(z) and b(z) − c(z) are the

eigenvalues of ∇gsoc(z) with (1, w2) and (1,−w2) being the corresponding eigenvectors,

and a(z) is the eigenvalue of multiplicity n − 2 with corresponding eigenvectors of the
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form (0, vi), where v1, . . . , vn−2 are any unit vectors in IRn−1 that span the subspace

orthogonal to w2. Hence,

∇gsoc(z) = Udiag (b(z)− c(z), a(z), . . . , a(z), b(z) + c(z))UT,

where U = [u1 v1 · · · vn−2 u2] ∈ IRn×n is an orthogonal matrix with

u1 =

[
1

−w2

]
, u2 =

[
1

w2

]
, vi =

[
0

vi

]
for i = 1, . . . , n− 2.

By this, we know that ∇gsoc(z)−1 has the expression given as in the lemma. �

Lemma 3.30. Suppose that w(x, y) is given by (3.136) and assume that p ≥ 2. Let

x, y ∈ IRn satisfy w(x, y) ∈ bd+Kn where bd+Kn = bdKn\{0}. Then, we have

∇x′w1(x′, y′) |(x′,y′)=(x,y) = ∇x′‖w2(x′, y′)‖ |(x′,y′)=(x,y) =

[
2p−2p sgn(x1)|x1|p−1

2p−2p sgn(x1)|x1|p−1w2

]
.(3.142)

Proof. Assume that x2 6= 0. By the expressions of w1(x′, y′) and w2(x′, y′), we calculate

∇x′w1(x′, y′) |(x′,y′)=(x,y) =
p

2

(
sgn(λ2(x))|λ2(x)|p−1 + sgn(λ1(x))|λ1(x)|p−1

(sgn(λ2(x))|λ2(x)|p−1 − sgn(λ1(x))|λ1(x)|p−1) x2
‖x2‖

)
,

∇x′‖w2(x′, y′)‖ |(x′,y′)=(x,y) =
p

2

(
sgn(λ2(x))|λ2(x)|p−1 − sgn(λ1(x))|λ1(x)|p−1

(sgn(λ2(x))|λ2(x)|p−1 + sgn(λ1(x))|λ1(x)|p−1) x2
‖x2‖

)

xT2w2

‖x2‖‖w2‖
+
|λ2(x)|p − |λ1(x)|p

2

 0
w2

‖x2‖‖w2‖
− x2x

T
2w2

‖x2‖3‖w2‖

 .

Using the equalities in (3.139), the last two equalities can be simplified as

∇x′w1(x′, y′) |(x′,y′)=(x,y) = ∇x′‖w2(x′, y′)‖ |(x′,y′)=(x,y) =

[
2p−2p sgn(x1)|x1|p−1

2p−2p sgn(x1)|x1|p−1w2

]
.

If x2 = 0, using the result for x2 6= 0 and the continuity of ∇w1(x′, y′) and ∇‖w2(x′, y′)‖
at (x, y), we easily obtain equation (3.142). �

Proposition 3.27. Let ψp
FB

be defined by (3.131). Then, the function ψp
FB

for p ∈ (1, 4)

is differentiable everywhere. For any given x, y ∈ IRn, if w(x, y) = 0, then ∇xψ
p
FB

(x, y) =

∇yψ
p
FB

(x, y) = 0; if w(x, y) ∈ int(Kn), then

∇xψ
p
FB

(x, y) =
(
∇gsoc(x)∇gsoc(z)−1 − I

)
φp

FB
(x, y),

∇yψ
p
FB

(x, y) =
(
∇gsoc(y)∇gsoc(z)−1 − I

)
φp

FB
(x, y); (3.143)
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and if w(x, y) ∈ bd+Kn, then

∇xψ
p
FB

(x, y) =

(
sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

− 1

)
φp

FB
(x, y),

∇yψ
p
FB

(x, y) =

(
sgn(y1)|y1|p−1

q
√
|x1|p + |y1|p

− 1

)
φp

FB
(x, y). (3.144)

Proof. Fix any (x, y) ∈ IRn×IRn. If w(x, y) ∈ int(Kn), the result is direct by Lemma 3.29

since φp
FB

(x, y) = z(x, y)− (x+ y). In fact, in this case, ψp
FB

is continuously differentiable

at (x, y). Hence, it suffices to consider the cases w(x, y) = 0 and w(x, y) ∈ bd+Kn. In

the following arguments, x′ and y′ are arbitrary vectors in IRn, and µ1(x′, y′), µ2(x′, y′)

are the spectral values of w(x′, y′) with ξ(1), ξ(2) ∈ IRn being the corresponding spectral

vectors.

Case (1): w(x, y) = 0. Since (x, y) = (0, 0) now, we only need to prove, for any

x′, y′ ∈ IRn,

ψp
FB

(x′, y′)− ψp
FB

(0, 0) =
1

2
‖z(x′, y′)− (x′ + y′)‖2

= O(‖(x′, y′)‖), (3.145)

which shows that ψp is differentiable at (0, 0) with ∇xψ
p
FB

(0, 0) = ∇yψ
p
FB

(0, 0) = 0.

Indeed,

‖z(x′, y′)− (x′ + y′)‖ =
∥∥∥ p
√
µ1(x′, y′) ξ(1) + p

√
µ2(x′, y′) ξ(2) − (x′ + y′)

∥∥∥
≤
√

2 p
√
µ2(x′, y′) + ‖x′‖+ ‖y′‖. (3.146)

From the definition of w1(x, y) and w2(x, y), it is easy to obtain that

µ2(x′, y′) = w1(x′, y′) + w2(x′, y′) ≤ |λ2(x′)|p + |λ1(x′)|p + |λ2(y′)|p + |λ1(y′)|p.

Using the nondecreasing of p
√
t and Lemma 3.26(b), it then follows that

p
√
µ2(x′, y′) ≤ (|λ2(x′)|p + |λ1(x′)|p + |λ2(y′)|p + |λ1(y′)|p)1/p

≤ |λ2(x′)|+ |λ1(x′)|+ |λ2(y′)|+ |λ1(y′)| ≤ 2(‖x′‖+ ‖y′‖).

This, together with (3.146), implies that equation (3.145) holds.

Case (2): w(x, y) ∈ bd+Kn. Now w1(x, y) = ‖w2(x, y)‖ 6= 0, and one of x2 and y2 must

be nonzero by equation (3.139). We proceed the arguments by three steps as shown

below.

Step 1: to prove that w1(x′, y′) and w2(x′, y′) are dpe times differentiable at (x′, y′) =

(x, y), where dpe denotes the maximum integer not greater than p. Since one of x2 and y2

is nonzero, we prove this result by considering three possible cases: (i) x2 6= 0, y2 6= 0; (ii)

x2 = 0, y2 6= 0; and (iii) x2 6= 0, y2 = 0. For case (i), since
x′2
‖x′2‖

,
y′2
‖y′2‖

, λ2(x′), λ1(x′), λ2(y′)
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and λ1(y′) are infinite times differentiable at (x, y), and |t|p is dpe times continuously

differentiable in IR, it follows that w1(x′, y′) and w2(x′, y′) are dpe times differentiable at

(x, y). Now assume that case (ii) is satisfied. From the arguments in case (i), we know

that
|λ2(y′)|p + |λ1(y′)|p

2
and

|λ2(y′)|p − |λ1(y′)|p
2

y′2
‖y′2‖

are dpe times differentiable at (x, y). In addition, since |λi(x′)|p ≤ 2
p
2‖x′‖p for i = 1, 2,

and x = 0 in this case, we have that |λ2(x′)|p + |λ1(x′)|p and 1
2
(|λ2(x′)|p − |λ1(x′)|p)x′2

are dpe times differentiable at x with the first dpe−1 order derivatives being zero. Thus,

w1(x′, y′) and w2(x′, y′) are dpe times differentiable at (x, y). By the symmetry of x′, y′

in w(x′, y′) and the arguments in case (ii), the result also holds for case (iii).

Step 2: to show that ψp
FB

is differentiable at (x, y). By the definition of ψp
FB

, we have

2ψp
FB

(x′, y′) = ‖x′ + y′‖2 + ‖z(x′, y′)‖2 − 2 〈z(x′, y′), x′ + y′〉 .

Since ‖x′ + y′‖2 is differentiable, it suffices to argue that the last two terms on the right

hand side are differentiable at (x, y). By formula (1.8), it is not hard to calculate that

2 ‖z(x′, y′)‖2
= (µ2(x′, y′))

2
p + (µ1(x′, y′))

2
p ,

2 〈z(x′, y′), x′ + y′〉 = p
√
µ2(x′, y′)

(
x′1 + y′1 +

(w2(x′, y′))T(x′2 + y′2)

‖w2(x′, y′)‖

)
+ p
√
µ1(x′, y′)

(
x′1 + y′1 −

(w2(x′, y′))T(x′2 + y′2)

‖w2(x′, y′)‖

)
. (3.147)

Since w2(x, y) 6= 0, µ2(x, y) = λ2(w) > 0, and w1(x′, y′) and w2(x′, y′) are differentiable

at (x, y) by Step 1, we have that (µ2(x′, y′))
2
p and the first term on the right hand side

of (3.147) are differentiable at (x, y). Thus, it suffices to prove that (µ1(x′, y′))
2
p and the

last term on the right hand side of (3.147) are differentiable at (x, y).

We first argue that (µ1(x′, y′))
2
p is differentiable at (x, y). Since w2(x, y) 6= 0, and

w1(x′, y′) and w2(x′, y′) are dpe times differentiable at (x, y) by Step 1, the function

µ1(x′, y′) is dpe times differentiable at (x, y). When p < 2, by the mean-value theorem

and µ1(x, y) = λ1(w) = 0, it follows that µ1(x′, y′) = O(‖x′−x‖+‖y′−y‖) for any (x′, y′)

sufficiently close to (x, y), and so (µ1(x′, y′))
2
p = O[(‖x′ − x‖ + ‖y′ − y‖) 2

p ]. This shows

that (µ1(x′, y′))
2
p is differentiable at (x, y) with zero derivative. When p ≥ 2, µ1(x′, y′) is

infinite times differentiable at (x, y), and its first-derivative equals zero by the result in

Appendix. From the second-order Taylor expansion of µ1(x′, y′) at (x, y), it follows that

(µ1(x′, y′))
2
p = O

[
(‖x′ − x‖+ ‖y′ − y‖) 4

p

]
.

This implies that (µ1(x′, y′))
2
p is differentiable at (x, y) with zero gradient when 2 ≤ p <

4. Thus, we prove that (µ1(x′, y′))
2
p is differentiable at (x, y) with zero gradient when

p ∈ (1, 4).
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We next consider the last term on the right hand side of (3.147). Observe that

x′1 + y′1 −
(w2(x′, y′))T(x′2 + y′2)

‖w2(x′, y′)‖

is differentiable at (x, y), and its function value at (x, y) equals zero by (3.139). Hence,

this term is O(‖x′−x‖+ ‖y′− y‖), which, along with µ1(x′, y′) = O(‖x′−x‖+ ‖y′− y‖),
means that the last term of (3.147) is O((‖x′−x‖+‖y′−y‖)1+ 1

p ) = o(‖x′−x‖+‖y′−y‖).
This shows that the last term of (3.147) is differentiable at (x, y) with zero derivative.

Step 3: to derive the formula of ∇xψ
p
FB

(x, y). From Step 2, we see that 2∇ψp
FB

(x, y)

equals the difference between the gradient of 1
2
(µ2(x′, y′))

2
p + ‖x′ + y′‖2 and that of the

first term on the right side of (3.147), evaluated at (x, y). By Lemma 3.30, the gradients

of (µ2(x′, y′))1/p and (µ2(x′, y′))2/p with respect to x′, evaluated at (x′, y′) = (x, y), are

∇x′(µ2(x′, y′))1/p|(x′,y′)=(x,y) = (λ2(w))
1
p
−12p−1 sgn(x1)|x1|p−1

[
1

w2

]
, (3.148)

∇x′(µ2(x′, y′))2/p|(x′,y′)=(x,y) = (λ2(w))
2
p
−12p sgn(x1)|x1|p−1

[
1

w2

]
. (3.149)

By the product and quotient rules for differentiation, the gradient of x′1+y′1+
(w2(x′,y′))T(x′2+y′2)

‖w2(x′,y′)‖
with respect to x′, evaluated at (x′, y′) = (x, y), works out to be[

1

w2

]
+∇x′w2(x′, y′)|(x′,y′)=(x,y)

(
x2 + y2

‖w2‖
− w2w

T
2 (x2 + y2)

‖w2‖

)
=

[
1

w2

]
,

where the equality is using (3.139). Along with (3.148), the gradient of the first term on

the right side of (3.147) with respect to x′, evaluated at (x′, y′) = (x, y), is

(λ2(w))
1
p
−1(x1 + y1)2p sgn(x1)|x1|p−1

[
1

w2

]
+ (λ2(w))

1
p

[
1

w2

]
. (3.150)

In addition, the gradient of ‖x′ + y′‖2 with respect to x′, evaluated at (x′, y′) = (x, y), is

2(x+ y). Together with equations (3.149)-(3.150), we obtain that

2∇xψ
p
FB

(x, y)

= 2(x+ y) + (λ2(w))
2
p
−12p−1 sgn(x1)|x1|p−1

[
1

w2

]
−(λ2(w))

1
p
−1(x1 + y1)2p sgn(x1)|x1|p−1

[
1

w2

]
− (λ2(w))

1
p

[
1

w2

]
.

Since λ1(w) = 0, from (3.137) it follows that

φp
FB

(x, y) = z(x, y)− (x+ y) =
1

2
(λ2(w))

1
p

[
1

w2

]
− (x+ y).
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Combining the last two equations and using x1w2 = x2 and y1w2 = y2, we obtain

2∇xψ
p
FB

(x, y) = (λ2(w))
1
p
−12p sgn(x1)|x1|p−1(φp

FB
(x, y) + (x+ y))

−(λ2(w))
1
p
−12p sgn(x1)|x1|p−1(x+ y)− 2φp

FB
(x, y)

= 2

[
sgn(x1)|x1|p−1

(|x1|p + |y1|p)1/q
− 1

]
φp

FB
(x, y),

where the last equality is from λ2(w) = 2w1 = 2p(|x1|p + |y1|p). This proves the first

equality in (3.144). By the symmetry of x and y in ψp
FB

, the second equality in (3.144)

also holds. �

Based on the analysis in Step 2 of Case (2), we observe that the function ψp
FB

is differentiable for all p ≥ 4 provided that the first dp
2
e derivatives of µ1(x′, y′) :=

w1(x′, y′) − |w2(x′, y′)|, evaluated at (x′, y′) = (x, y), vanish. At present, however, it re-

mains unclear whether this condition indeed holds. Proposition 3.27 confirms that ψp
FB

is differentiable for all p ∈ (1, 4). A natural question then arises: is the gradient ∇ψp
FB

continuous? In what follows, we answer this question affirmatively by establishing three

technical lemmas, each valid for all p > 1.

Lemma 3.31. There exists a constant c1 > 0 such that for all (x, y) with w(x, y) ∈
int(Kn), ∥∥L|x|p−1L−1

zp−1

∥∥
F
≤ c1 and

∥∥L|y|p−1L−1
zp−1

∥∥
F
≤ c1

where c is independent of x and y, and ‖A‖F means the Frobenius norm of matrix A.

Proof. Due to the symmetry of x and y in z(x, y), it suffices to prove the first inequality.

To this end, we first prove that for any (x, y) with w(x, y) ∈ int(Kn), it holds that

0 ≤ λ
(
L|x|p−1L−1

zp−1

)
≤ 1, (3.151)

where, for a matrix A ∈ IRn×n, λ(A) ∈ IRn denotes the vector of eigenvalues of A, and

1 means a vector with all components being 1. Indeed, since z �Kn 0 and |x|p−1 �Kn 0,

we have Lz � 0 and L|x|p−1 � 0. Applying [94, Theorem 7.6.3] with A = L−1
zp−1 and

B = L|x|p−1 yields that λ(L−1
zp−1L|x|p−1) ≥ 0, and then λ(L|x|p−1L−1

zp−1) ≥ 0. In addition,

since zp �Kn |x|p, from Lemma 3.25 it follows that (zp)
p−1
p �Kn (|x|p)

p−1
p , i.e., zp−1 �Kn

|x|p−1. Then Lzp−1 − L|x|p−1 � 0. Applying the result of Exercise 7 in [94, Page 468]

with A = Lzp−1 and B = −L|x|p−1 , we have that λ
(
−L−1

zp−1L|x|p−1

)
≥ −1. Consequently,

λ
(
L|x|p−1L−1

zp−1

)
≤ 1. Together with λ(L|x|p−1L−1

zp−1) ≥ 0, we prove that (3.151) holds.

Next we prove that there exists a constant c1 > 0 such that for all (x, y) satisfying

w(x, y) ∈ int(Kn), ‖L|x|p−1L−1
zp−1‖F ≤ c1 where c1 is independent of x and y. Suppose

on the contrary that such c1 does not exist. Then, there exists a sequence {(xk, yk)} ⊂
IRn×IRn with w(xk, yk) ∈ int(Kn) such that ‖L|xk|p−1L−1

(zk)p−1‖F is unbounded. We assume
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(taking a subsequence if necessary) that limk→∞ ‖L|xk|p−1L−1
(zk)p−1‖F = +∞. For each k,

let Ak = L|xk|p−1 and Bk = L−1
(zk)p−1 . Subsequencing if necessary, we may assume that

lim
k→∞

Ak

‖Ak‖F
= A∗ and lim

k→∞

Bk

‖Bk‖F
= B∗.

In the following arguments, for any A,B ∈ IRn×n with all eigenvalues in IR, we let

λ↓(A) and λ↑(A) be the vectors obtained by rearranging the coordinates of λ(A) in the

decreasing and increasing orders, respectively. That is, if λ↓(A) = (λ↓1(A), · · · , λ↓n(A)),

then λ↓1(A) ≥ · · · ≥ λ↓n(A). Similarly, if λ↑(A) = (λ↑1(A), · · · , λ↑n(A)), then λ↑1(A) ≤

· · · ≤ λ↑n(A). We write λ(A) ≺ λ(B) if
l∑

j=1

λ↓j(A) ≤
l∑

j=1

λ↓j(B) for any 1 ≤ l ≤ n and

n∑
j=1

λ↓j(A) =
n∑
j=1

λ↓j(B). Since Ak � 0 and Bk � 0 for each k, applying the result of [11,

Problem III.6.14] gives that

λ↓
(

Ak

‖Ak‖F

)
· λ↑

(
Bk

‖Bk‖F

)
≺ λ

(
AkBk

‖Ak‖F‖Bk‖F

)
≺ λ↓

(
Ak

‖Ak‖F

)
· λ↓

(
Bk

‖Bk‖F

)
where “·” denotes the componentwise product of vectors. Since limk→∞ ‖Ak‖F‖Bk‖F =

+∞, taking the limit k → +∞ and using equation (3.151) and the continuity of λ(·), we

obtain

λ↓(A∗) · λ↑(B∗) ≺ 0 ≺ λ↓(A∗) · λ↓(B∗). (3.152)

Since A∗ � 0 and B∗ � 0, each component of λ↓(A∗) and λ↑(B∗) is nonnegative, and

the first relation of (3.152) then implies λ↓(A∗) · λ↑(B∗) = 0. Note that for each k, all

eigenvalues of Ak and Bk are respectively given as follows:

|λ1(xk)|p−1,
[
|λ1(xk)|p−1 + |λ2(xk)|p−1

]
, · · · ,

[
|λ1(xk)|p−1 + |λ2(xk)|p−1

]︸ ︷︷ ︸
n−2

, |λ2(xk)|p−1,

1

[λ1(zk)]p−1
,

1

[λ1(zk)]p−1 + [λ2(zk)]p−1
, · · · , 1

[λ1(zk)]p−1 + [λ2(zk)]p−1︸ ︷︷ ︸
n−2

,
1

[λ2(zk)]p−1
,

which, by the positive homogeneousness of eigenvalue function, means that

λ↓1(A∗) ≥ λ↓2(A∗) = · · · = λ↓n−1(A∗) ≥ λ↓n(A∗) ≥ 0,

0 ≤ λ↑1(B∗) ≤ λ↑2(B∗) = · · · = λ↑n−1(B∗) ≤ λ↑n(B∗).

Then, from λ↓(A∗) · λ↑(B∗) = 0, we deduce that λ↑1(B∗) = 0 and λ↓1(A∗) > 0 (If not, we

will have λ↓1(A∗) = 0, which implies λ(A∗) = 0, and then A∗ = 0 follows by the positive

semidefiniteness of A∗. This contradicts the fact that ‖A∗‖F = 1). Similarly, we can
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deduce that λ↑n(B∗) > 0 and λ↓n(A∗) = 0. Also, either of λ↓2(A∗) and λ↑2(B∗) is zero.

Without loss of generality, we assume that λ↓2(A∗) = 0. Thus, the above arguments show

that

λ↓1(A∗) > λ↓2(A∗) = 0 = · · · = 0 = λ↓n(A∗),

λ↑n(B∗) ≥ λ↑n−1(B∗) = · · · = λ↑2(B∗) ≥ λ↑1(B∗) = 0 and λ↑n(B∗) > 0.

However, from the second relation of (3.152) and the last two equations, we have

0 =
∑n

j=1 λ
↓
j(A

∗)λ↓j(B
∗) = λ↓1(A∗)λ↑n(B∗) + (n− 1)λ↓2(A∗)λ↑2(B∗) + λ↓n(A∗)λ↑1(B∗)

= λ↓1(A∗)λ↑n(B∗) > 0,

which is clearly impossible. Thus, the constant c1 satisfying the requirement exists. �

Lemma 3.31 extends the result of Lemma 3.4 for the case p = 2, where the conclu-

sion was previously obtained via direct computation. In contrast, our current approach

employs a different proof technique. By combining Lemma 3.31 with the explicit forms

of L|x|p−1L−1
zp−1 and L|y|p−1L−1

zp−1 , we arrive at the following result.

Lemma 3.32. For any x, y with w(x, y) ∈ int(Kn), let x̃ = |x|p−1 and ỹ = |y|p−1. Then,

x̃1 + (−1)ix̃T2w2

q
√
λi(w)

= O(1),
x̃2 + (−1)ix̃1w2

q
√
λi(w)

= O(1),

ỹ1 + (−1)iỹT2w2

q
√
λi(w)

= O(1),
ỹ2 + (−1)iỹ1w2

q
√
λi(w)

= O(1) (3.153)

for i = 1, 2, where w2 = w2(x,y)
‖w2(x,y)‖ , and O(1) denotes a term that is uniformly bounded.

Proof. Fix any (x, y) satisfying w ∈ int(Kn). We write λ1 = λ1(w) and λ2 = λ2(w) for

simplicity. From (3.136), we have q
√
λ2 ≥ q

√
w1 ≥ q

√
|λ2(x)|p+|λ1(x)|p

2
. Note that

q

√
|λ2(x)|p + |λ1(x)|p

2
≥
(

max(|λ2(x)|, |λ1(x)|)
p
√

2

) p
q

≥
(√
|λ2(x)|2 + |λ1(x)|2

2
1
p

+1

) p
q

=
‖x‖

p
q

2
p+2
2q

for p > 2, and for 1 < p ≤ 2,

q

√
|λ2(x)|p + |λ1(x)|p

2
≥ q

√
(|λ2(x)|2 + |λ1(x)|2)

p
2

2
= 2

p−2
2q ‖x‖

p
q .

Therefore,

q
√
λ2 ≥

{
2−

p+2
2q ‖x‖

p
q if p > 2;

2
p−2
2q ‖x‖

p
q if p ∈ (1, 2].

(3.154)
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Since x̃1 = 1
2
(|λ2(x)|p−1 + |λ1(x)|p−1) and x̃2 = 1

2
(|λ2(x)|p−1 −|λ1(x)|p−1), we have

x̃1 =
1

2
(|λ2(x)|

p
q +|λ1(x)|

p
q ) ≤ ‖x‖

p
q and ‖x̃2‖ ≤

1

2
(|λ2(x)|

p
q +|λ1(x)|

p
q ) ≤ ‖x‖

p
q . (3.155)

Together with (3.154), we obtain the first two relations in (3.153) for i = 2. Notice that

zp−1 = q
√
w =

(
q
√
λ2 + q

√
λ1

2
,
q
√
λ2 − q

√
λ1

2
w2

)
.

By Lemma 3.1(c) and x̃ = |x|p−1, we calculate that L|x|p−1L−1
zp−1 equals

x̃1 + x̃T2w2

2 q
√
λ2

+
x̃1 − x̃T2w2

2 q
√
λ1

(
x̃1w

T
2

2 q
√
λ2

− x̃1w
T
2

2 q
√
λ1

)
+

2x̃T2
q
√
λ2 + q

√
λ1

+

q√λ2
q√λ1
− 2 +

q√λ1
q√λ2

2( q
√
λ2 + q

√
λ1)

x̃T2w2w
T
2

x̃2 + x̃1w2

2 q
√
λ2

+
x̃2 − x̃1w2

2 q
√
λ1

(
x̃2w

T
2

2 q
√
λ2

− x̃2w
T
2

2 q
√
λ1

)
+

2x̃1I
q
√
λ2 + q

√
λ1

+

q√λ2
q√λ1
− 2 +

q√λ1
q√λ2

2( q
√
λ2 + q

√
λ1)

x̃1w2w
T
2

 .
Substituting the first two relations in (3.153) for i = 2 into the last equation and noting

that
x̃1w

T
2

2 q
√
λ2

,
x̃2w

T
2

2 q
√
λ2

,
x̃T2

q
√
λ2 + q

√
λ1

, and
x̃1

q
√
λ2 + q

√
λ1

are all uniformly bounded by equations (3.154)-(3.155), we obtain that

L|x|p−1L−1
zp−1 =

 O(1) +
x̃1 − x̃T2w2

2 q
√
λ1

O(1)− x̃1w
T
2

2 q
√
λ1

+
q
√
λ2

2( q
√
λ2 + q

√
λ1) q
√
λ1

x̃T2w2w
T
2

O(1) +
x̃2 − x̃1w2

2 q
√
λ1

O(1)− x̃2w
T
2

2 q
√
λ1

+
q
√
λ2

2( q
√
λ2 + q

√
λ1) q
√
λ1

x̃1w2w
T
2



=

 O(1) +
x̃1 − x̃T2w2

2 q
√
λ1

O(1)− x̃1w
T
2

2( q
√
λ2 + q

√
λ1)
−

q
√
λ2(x̃1 − x̃T2w2)

2( q
√
λ2 + q

√
λ1) q
√
λ1

wT
2

O(1) +
x̃2 − x̃1w2

2 q
√
λ1

O(1)− x̃2w
T
2

2( q
√
λ2 + q

√
λ1)

+
q
√
λ2(x̃2 − x̃1w2)

2( q
√
λ2 + q

√
λ1) q
√
λ1

wT
2

 .
This, along with Lemma 3.31, implies that the first two relations in (3.153) hold for i = 1.

By the symmetry of x and y in w(x, y), the last two relations in (3.153) also hold. �

Remark 3.4. The first relation of (3.153) for i = 1 is equivalent to saying that

|λ2(x)|p−1(1− xT2w2) + |λ1(x)|p−1(1 + xT2w2)
q
√
λ1(w)

= O(1), (3.156)

whereas the second relation for i = 1 is equivalent to saying that∥∥∥∥∥(|λ2(x)|p−1 − |λ1(x)|p−1)x2 − (|λ2(x)|p−1 + |λ1(x)|p−1)w2

q
√
λ1(w)

∥∥∥∥∥
2

,

=
|λ2(x)|2p−2(1− xT2w2) + |λ1(x)|2p−2(1 + xT2w2)

( q
√
λ1(w))2

= O(1). (3.157)

Equations (3.156) and (3.157) play an important role in the proof of the following lemma.
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Lemma 3.33. There exists a constant c2 > 0 such that for all (x, y) with w(x, y) ∈
int(Kn), ∥∥∇gsoc(x)∇gsoc(z)−1

∥∥
F
≤ c2 and

∥∥∇gsoc(y)∇gsoc(z)−1
∥∥
F
≤ c2,

where c2 is independent of x and y.

Proof. By the symmetry of x and y in ∇gsoc(z), it suffices to prove the first inequality.

Fix any (x, y) with w = w(x, y) ∈ int(Kn). Suppose w2 6= 0 and x2 6= 0. By the

expressions of ∇gsoc(x) and ∇gsoc(z)−1 given by Lemma 3.29, it is not hard to calculate

that

2p∇gsoc(x)∇gsoc(z)−1 =

[
a1(x, z) aT2 (x, z)

b2(x, z) A1(x, z)

]
,

where

a1(x, z) =
1

q
√
λ2(w)

(
b(x) + c(x)xT2w2

)
+

1
q
√
λ1(w)

(
b(x)− c(x)xT2w2

)
,

a2(x, z) =

(
b(x) + c(x)xT2w2

)
w2

q
√
λ2(w)

−
(
b(x)− c(x)xT2w2

)
w2

q
√
λ1(w)

+
2pc(x)

(
x2 − xT2w2w2

)
a(z)

,

b2(x, z) =
1

q
√
λ2(w)

[
c(x)x2 + a(x)w2 + (b(x)− a(x))xT2w2x2

]
+

1
q
√
λ1(w)

[
c(x)x2 − a(x)w2 − (b(x)− a(x))xT2w2x2

]
,

A1(x, z) =
1

q
√
λ2(w)

[
c(x)x2w

T
2 + a(x)w2w

T
2 + (b(x)− a(x))xT2w2x2w

T
2

]
− 1

q
√
λ1(w)

[
c(x)x2w

T
2 − a(x)w2w

T
2 − (b(x)− a(x))xT2w2x2w

T
2

]
+

2p

a(z)

[
a(x)(I − w2w

T
2 ) + (b(x)− a(x))

(
x2x

T
2 − xT2w2x2w

T
2

)]
.

From the definitions of a(x), b(x) and c(x) in (3.141), it follows that

max(|b(x)|, |c(x)|) ≤ p

2

(
|λ2(x)|p−1 + |λ1(x)|p−1

)
,

|a(x)| = p
∣∣t1λ2(x) + (1− t1)λ1(x)

∣∣p−1 ≤ pmax(|λ2(x)|p−1, |λ1(x)|p−1) (3.158)

for some t1 ∈ (0, 1), where the equality is using the mean-value theorem. Therefore,

|a(x)| ≤ p‖x‖
p
q , |b(x)| ≤ p‖x‖

p
q and |c(x)| ≤ p‖x‖

p
q . (3.159)

Noting that 0 ≤ λ1(w)/λ2(w) < 1 and p
√
λ1(w)/λ2(w) ≥ λ1(w)/λ2(w), we have

a(z) =
λ2(w)− λ1(w)

p
√
λ2(w)− p

√
λ1(w)

= q
√
λ2(w)

1− λ1(w)/λ2(w)

1− p
√
λ1(w)/λ2(w)

≥ q
√
λ2(w). (3.160)
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By equations (3.159), (3.160) and (3.154), we can simplify a1(x, z), a2(x, z), b1(x, z) and

A1(x, z) as

a1(x, z) = O(1) +
1

q
√
λ1(w)

(
b(x)− c(x)xT2w2

)
,

a2(x, z) = O(1)− 1
q
√
λ1(w)

(
b(x)− c(x)xT2w2

)
w2, (3.161)

b2(x, z) = O(1) +
1

q
√
λ1(w)

[(
c(x)− b(x)xT2w2

)
x2 + a(x)(xT2w2x2 − w2)

]
,

A1(x, z) = O(1)− 1
q
√
λ1(w)

[(
c(x)− b(x)xT2w2

)
x2w

T
2 + a(x)(xT2w2x2w

T
2 − w2w

T
2 )
]
.

By the definitions of b(x) and c(x), it is easy to verify that∣∣b(x)− c(x)xT2w2

∣∣ ≤ p

2

[
|λ2(x)|p−1(1− xT2w2) + |λ1(x)|p−1(1 + xT2w2)

]
,∣∣c(x)− b(x)xT2w2

∣∣ ≤ p

2

[
|λ2(x)|p−1(1− xT2w2) + |λ1(x)|p−1(1 + xT2w2)

]
,

which, together with (3.156), implies

b(x)− c(x)xT2w2

q
√
λ1(w)

= O(1),
c(x)− b(x)xT2w2

q
√
λ1(w)

= O(1).

In addition, it is easy to compute that

‖a(x)(xT2w2x2 − w2)‖2 = a2(x)(1− xT2w2)(1 + xT2w2),∥∥a(x)(xT2w2x2w
T
2 − w2w

T
2 )
∥∥2

F
≤ a2(x)(1− xT2w2)(1 + xT2w2).

By equation (3.158), we have a2(x) ≤ p2 max(|λ2(x)|2p−2, |λ1(x)|2p−2). Using (3.157) and

noting that 0 ≤ 1− xT2w2 ≤ 2 and 0 ≤ 1 + xT2w2 ≤ 2, we obtain

‖a(x)(xT2w2x2 − w2)‖
q
√
λ1(w)

= O(1) and
‖a(x)(xT2w2x2w

T
2 − w2w

T
2 )‖F

q
√
λ1(w)

= O(1). (3.162)

From (3.161)-(3.162), a1(x, z), a2(x, z), b2(x, z) and A1(x, z) are all uniformly bounded,

and hence there exists a constant C2 > 0 such that ‖∇gsoc(x)[∇gsoc(z)]−1‖F ≤ C2.

Suppose x2 = 0 or w2 = 0. Then there exists a sequence {(xk, yk)} ⊂ IRn × IRn with

xk2 6= 0, w2(xk, yk) 6= 0 and w(xk, yk) ∈ int(Kn) for all k such that xk → x and wk → w

as k → ∞. From the above result,
∥∥∇gsoc(xk)∇gsoc(zk)−1

∥∥
F
≤ c2 for all k. Noting

that ∇gsoc(x) is continuous since |t|p is continuously differentiable, and ∇gsoc(z)−1 is

continuous at any z(x, y) ∈ int(Kn), we have ‖∇gsoc(x)∇gsoc(z)−1‖F ≤ c2. The proof is

complete. �
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Proposition 3.28. Let ψp
FB

be defined by (3.131). Then, the function ψp
FB

with p ∈ (1, 4)

is smooth everywhere on IRn × IRn.

Proof. By Proposition 3.27 and the symmetry of x and y in ∇ψp
FB

, it suffices to prove

that ∇xψ
p
FB

is continuous at every (x, y) ∈ IRn × IRn. Choose a point (x, y) ∈ IRn × IRn

arbitrarily. When w(x, y) ∈ int(Kn), the conclusion has been shown in Proposition

3.27. We next consider the other two cases where w(x, y) = 0 and w(x, y) ∈ bd+Kn,

respectively.

Case (1): w(x, y) = 0. Now we have (x, y) = (0, 0), and ∇xψ
p
FB

(0, 0) = 0 by Propo-

sition 3.27. Thus, it suffices to show that ∇x′ψ
p
FB

(x′, y′) → 0 as (x′, y′) → (0, 0). If

w(x′, y′) ∈ int(Kn), then ∇x′ψ
p
FB

(x′, y′) is given by (3.143); and if w(x′, y′) ∈ bd+Kn,

then ∇x′ψ
p
FB

(x′, y′) is given by (3.144). Since ∇gsoc(x′)∇gsoc(z′)−1 − I and
sgn(x′1)|x′1|p−1

q
√
|x′1|p+|y′1|p

are uniformly bounded, where the uniform boundedness of the former is due to Lemma

3.33, using the continuity of φp
FB

and noting that φp
FB

(0, 0) = 0 immediately yields that

∇x′ψ
p
FB

(x′, y′)→ 0 as (x′, y′)→ (0, 0).

Case (2): w(x, y) ∈bd+Kn. For any (x′, y′) sufficiently close to (x, y), in order to prove

that ∇xψ
p
FB

(x′, y′) → ∇xψ
p
FB

(x, y), we only need to consider the cases where w(x′, y′) ∈
int(Kn) and w(x′, y′) ∈ bd+Kn. When w(x′, y′) ∈ bd+Kn, ∇xψ

p
FB

(x′, y′) has an expression

of (3.144) which is continuous at (x, y) since |x1|p + |y1|p > 0 by Lemma 3.28, and then

∇xψ
p
FB

(x′, y′) → ∇xψ
p
FB

(x, y). We next concentrate on the case w(x′, y′) ∈ int(Kn), for

which case

∇xψ
p
FB

(x′, y′) (3.163)

= ∇gsoc(x′)∇gsoc(z′)−1z′ −∇gsoc(x′)∇gsoc(z′)−1(x′ + y′)− φp
FB

(x′, y′).

We next proceed the arguments by the following two subcases: x2 6= 0 and x2 = 0.

Subcase (2.1): x2 6= 0. Under this case, by the expression of ∇xψ
p
FB

(x, y) in (3.144), we

have

∇xψ
p
FB

(x, y) =
sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

φp
FB

(x, y)− φp
FB

(x, y)

=
sgn(x1)|x1|p−1 p

√
|x1|p+ |y1|p

q
√
|x1|p + |y1|p

[
1

w2

]
− sgn(x1)|x1|p−1

q
√
|x1|p+ |y1|p

(x+ y)−φp
FB

(x, y)

where the second equality is by z(x, y) = p
√
|x1|p + |y1|p

[
1

w2

]
. Comparing it with

(3.163), we see, to prove ∇xψ
p
FB

(x′, y′) → ∇xψ
p
FB

(x, y) as (x′, y′) → (x, y), it suffices to

argue that

∇gsoc(x′)∇gsoc(z′)−1z′ → sgn(x1)|x1|p−1 p
√
|x1|p+ |y1|p

q
√
|x1|p + |y1|p

[
1

w2

]
as (x′, y′)→ (x, y)(3.164)
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and

∇gsoc(x′)∇gsoc(z′)−1x′ → sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

x as (x′, y′)→ (x, y),

∇gsoc(x′)∇gsoc(z′)−1y′ → sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

y as (x′, y′)→ (x, y). (3.165)

First of all, let us prove (3.164). Since w(x, y) ∈ bd+Kn implies |x|p ∈ bdKn, we have

a(x) = 2p−1sgn(x1)|x1|p−1, b(x) = 2p−2p sgn(x1)|x1|p−1, c(x) = 2p−2p|x1|p−1.(3.166)

Since w2(x, y) 6= 0 (if not, w(x, y) = 0), we have w′2 = w2(x′, y′) 6= 0. By the expressions

of ∇gsoc(x′) and ∇gsoc(z′)−1, it is not hard to calculate that ∇gsoc(x′)∇gsoc(z′)−1z′ equals

λ2(w′)
1
p
− 1
q

2p
∇gsoc(x′)

[
1

w′2

]
+

p
√
λ1(w′)

2
∇gsoc(x′)∇gsoc(z′)−1

[
1

−w′2

]
where z′ = z(x′, y′), w′ = w(x′, y′) and w′2 =

w′2
‖w′2‖

. Note that λ1(w′) → 0 and w′2 → w2

with w2 = w2

‖w2‖ as (x′, y′) → (x, y). By Lemma 3.33, the last term on the right

hand side tends to 0, whereas by the continuity of ∇gsoc the first term approaches

1
2p
λ2(w)

1
p
− 1
q∇gsoc(x)

[
1

w2

]
. Thus, together with λ2(w) = 2w1 = 2p(|x1|p + |y1|p), it

holds that as (x′, y′)→ (x, y),

∇gsoc(x′)∇gsoc(z′)−1z′ → p−12−
p
q (|x1|p + |y1|p)

1
p
− 1
q∇gsoc(x)

[
1

w2

]
. (3.167)

In addition, using equations (3.166) and (3.140), we readily obtain that

∇gsoc(x) = 2p−2p sgn(x1)|x1|p−1

 1
xT2
x1

x2

x1

2

p
I +

(
1− 2

p

)
x2x

T
2

x2
1

 .
This along with (3.167) means that as (x′, y′)→ (x, y), ∇gsoc(x′)∇gsoc(z′)−1z′ approaches

1

2
sgn(x1)|x1|p−1(|x1|p + |y1|p)

1
p
− 1
q

 1
xT2
x1

x2

x1

2

p
I +

(
1− 2

p

)
x2x

T
2

x2
1

[ 1

w2

]
,

= sgn(x1)|x1|p−1(|x1|p + |y1|p)
1
p
− 1
q

[
1

w2

]
where the equality is using Lemma 3.28. This shows that equation (3.164) holds.
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Next, we prove the second relation of (3.165), and an analogous argument can be used to

prove the first relation. Let (ζ1, ζ2) := ∇gsoc(x′)∇gsoc(z′)−1y′. We only need to establish

ζ1 →
sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

y1, ζ2 →
sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

y2 as (x′, y′)→ (x, y). (3.168)

Note that x′2 6= 0 for (x′, y′) sufficiently close to (x, y). By equation (3.140) and the

expression of ∇gsoc(z′)−1 in Lemma 3.29, a direct calculation yields that

2p ζ1 =
1

q
√
λ2(w′)

[
b(x′) + c(x′)(x′2)Tw′2

]
[y′1 + (w′2)Ty′2]

+
1

q
√
λ1(w′)

[
b(x′)− c(x′)(x′2)Tw′2

]
[y′1 − (w′2)Ty′2] (3.169)

+
2p

a(z′)
c(x′)

[
(x′2)Ty′2 − (x′2)Tw′2(w′2)Ty′2

]
,

2p ζ2 =
1

q
√
λ2(w′)

[
c(x′)x′2 + a(x′)w′2 + (b(x′)− a(x′))(x′2)Tw′2x

′
2

]
y′1

+
1

q
√
λ2(w′)

[
c(x′)x′2(w′2)T + a(x′)w′2(w′2)T + (b(x′)− a(x′))(x′2)Tw′2x

′
2(w′2)T

]
y′2

+
2p

a(z′)

[
a(x′)(I − w′2(w′2)T) + (b(x′)− a(x′))

(
x′2(x′2)T − (x′2)Tw′2x

′
2(w′2)T

)]
y′2

+
1

q
√
λ1(w′)

[
c(x′)x′2 − a(x′)w′2 − (b(x′)− a(x′))(x′2)Tw′2x

′
2

]
y′1, (3.170)

− 1
q
√
λ1(w′)

[
c(x′)x′2(w′2)T − a(x′)w′2(w′2)T − (b(x′)− a(x′))(x′2)Tw′2x

′
2(w′2)T

]
y′2

where a(x′), b(x′) and c(x′) are defined as in (3.141) with x replaced by x′. Since q
√
λ2(w′),

b(x′), c(x′), x′2 and w′2 are continuous at (x, y), it follows that

q
√
λ2(w′) → q

√
2w1 = 2

p
q (|x1|p + |y1|p)

1
q ,[

b(x′) + c(x′)(x′2)Tw′2
]

[y′1 + (w′2)Ty′2]→
(
b(x) + c(x)xT2w2

)
(y1 + yT2w2)

as (x′, y′)→ (x, y). This, along with Lemma 3.28 and equation (3.166), implies that the

first term on the right hand side of (3.169) tends to 2p sgn(x1)|x1|p−1

q
√
|x1|p+|y1|p

y1. Since

y′1 − (w′2)Ty′2 → y1 − yT2w2 = 0,

(x′2)Ty′2 − (x′2)Tw′2(w′2)Ty′2 → xT2 y2 − xT2w2w
T
2 y2 = 0,

whereas (b(x′)− c(x′)(x′2)Tw′2)/ q
√
λ1(w′) and 2pc(x′)/a(z′) are uniformly bounded by the

proof of Lemma 3.32, the last two terms of (3.169) tend to 0 as (x′, y′)→ (x, y), and we

prove the first relation in (3.168). We next prove the second relation of (3.168). From
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the above discussions, the first three terms on the right hand side of (3.170) respectively

tend to

1
q
√

2w1

[
c(x)x2 + a(x)w2 + (b(x)− a(x))xT2w2x2

]
y1,

1
q
√

2w1

[
c(x)x2 + a(x)w2 + (b(x)− a(x))xT2w2x2

]
wT2 y2,

2p

a(z)

[
a(x)(I − w2w

T
2 ) + (b(x)− a(x))

(
x2x

T
2 − xT2w2x2w

T
2

)]
y2,

as (x′, y′)→ (x, y), whose sum, by Lemma 3.28 and formula (3.166), can be simplified as

2
q
√

2w1

[sgn(x1)c(x) + b(x)] y2 =
2p sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

y2.

Observe that the sum of the last two terms on the right side of (3.170) can be rewritten

as
1

q
√
λ1(w′)

[
c(x′)x′2 − a(x′)w′2 − (b(x′)− a(x′))(x′2)Tw′2x

′
2

]
(y′1 − (w′2)Ty′2),

which clearly tends to zero as (x′, y′)→ (x, y), since the first term is uniformly bounded

by the proof of Lemma 3.32, whereas the term y′1 − (w′2)Ty′2 → y1 −wT
2 y2 = 0. Thus, we

complete the proof of the second relation in (3.168). Consequently, the second relation

in (3.164) follows. This shows that ∇x′ψp(x
′, y′)→ ∇xψp(x, y) as (x′, y′)→ (x, y).

Subcase (2.2): x2 = 0. Now we have x = 0 from |x|p ∈ bdKn, and ∇gsoc(x) = 0.

Hence,

∇xψ
p
FB

(x, y) =
sgn(x1)|x1|p−1

q
√
|x1|p + |y1|p

φp
FB

(x, y)− φp
FB

(x, y) = −φp
FB

(0, y). (3.171)

On the other hand, since ∇gsoc(x) = 0, it follows from (3.167) that

∇gsoc(x′)∇gsoc(z′)−1z′ → 0 as (x′, y′)→ (x, y);

while using Lemma 3.33 and x = 0, we have

∇gsoc(x′)∇gsoc(z′)−1x′ → 0 as (x′, y′)→ (x, y);

and from the continuity of φp
FB

and x = 0, it follows that

φp
FB

(x′, y)′ → φp
FB

(0, y) as (x′, y′)→ (x, y).

Using the last three equations and comparing (3.163) with (3.171), we see, in order to

prove that ∇xψ
p
FB

(x′, y′)→ ∇xψ
p
FB

(x, y) as (x′, y′)→ (x, y), it suffices to show that

∇gsoc(x′)∇gsoc(z′)−1y′ → 0 as (x′, y′)→ (x, y). (3.172)
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Next, for any (x′, y′) sufficiently close to (x, y), we write (ζ1, ζ2) := ∇gsoc(x′)∇gsoc(z′)−1y′.

If x′2 6= 0, then 2pζ1 and 2pζ2 are given by (3.169) and (3.170), respectively. Using the

same arguments as Subcase (2.1), we have that the second term of (3.169) and the sum of

the last two terms of (3.170) tend to 0 as (x′, y′)→ (x, y). Since q
√
λ2(w′), a(z′), b(x′), c(x′)

and w′2 are continuous at (x, y), ‖x′2‖ = 1, and b(x) = c(x) = 0 from (3.166) and x = 0,

the first term and the third term of (3.169) also tend to 0. This proves that 2pζ1 → 0 as

(x′, y′)→ (x, y). We next prove that the first three terms of (3.170) also tend to 0. From

the mean-value theorem, |a(x′)| = p |t1λ2(x′) + (1− t1)λ1(x′)|p−1 for some t1 ∈ (0, 1).

Note that the function |t|p−1 (p > 1) is continuous on IR, whereas λ2(x′) → 0 and

λ1(x′) → 0 as (x′, y′) → (x, y). So, |a(x′)| → 0 when (x′, y′) → (x, y). In addition, as

(x′, y′)→ (x, y),

b(x′)→ 0, c(x′)→ 0, q
√
λ2(w′)→ q

√
2w1 > 0, and a(z′)→ a(z) > 0.

This implies that the first three terms of (3.170) also tend to 0. Consequently, 2pζ2 → 0

as (x′, y′)→ (x, y). Thus, (3.172) holds for this case.

If x′2 = 0, then using (3.140) and the expression of ∇gsoc(z′)−1 in Lemma 3.29, we

have

ζ1 =
p sgn(x′1)|x′1|p−1

q
√
λ2(w′)

[
y′1 + (w′2)Ty′2

]
+
p sgn(x′1)|x′1|p−1

q
√
λ1(w′)

[
y′1 − (w′2)Ty′2

]
,

ζ2 =
p sgn(x′1)|x′1|p−1

q
√
λ2(w′)

[
y′1 + (w′2)Ty′2

]
w′2 −

p sgn(x′1)|x′1|p−1

q
√
λ1(w′)

[
y′1 − (w′2)Ty′2

]
w′2

+
2p2 sgn(x′1)|x′1|p−1

a(z′)

[
y′2 − w′2(w′2)Ty′2

]
.

Since sgn(x′1)|x′1|p−1 is continuous and q
√
λ2(w) > 0, we have, as (x′, y′)→ (x, y),

p sgn(x′1)|x′1|p−1

q
√
λ2(w′)

[y′1 + (w′2)Ty′2] → psgn(x1)|x1|p−1

q
√
λ2(w)

(y1 + wT
2 y2) = 0.

In addition, |x′1|p−1/ q
√
λ1(w′) is bounded with the bound independent of x′ and y′ because

λ1(w′) = w′1−‖w′2‖ ≥ |x′1|p by (3.136) when x′2 = 0. Besides, y′1−(w′2)Ty′2 → y1−wT2 y2 = 0

as (x′, y′)→ (x, y), where the equality is due to Lemma 3.28. Hence we have

p sgn(x′1)|x′1|p−1

q
√
λ1(w′)

(y′1 − (w′2)Ty′2)→ 0 as (x′, y′)→ (x, y).

Thus, we prove that ζ1 → 0 and the first two terms of ζ2 tend to 0 as (x′, y′) → (x, y).

Since a(z′) = λ2(w′)−λ1(w′)
p
√
λ2(w′)− p

√
λ1(w′)

and (y′2 − w′2(w′2)Ty′2) are continuous, we have

a(z′)→ λ2(w)− λ1(w)
p
√
λ2(w)− p

√
λ1(w)

= q
√
λ2(w) and

[
y′2 − w′2(w′2)Ty′2

]
→ y2 − w2w

T
2 y2 = 0
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as (x′, y′) → (x, y), where the last equality is due to Lemma 3.28. This, together with

sgn(x′1)|x′1|p−1 → sgn(x1)|x1|p−1 = 0, means that the last term of ζ2 also tends to 0.

Thus, we show that ζ2 tends to 0 as (x′, y′)→ (x, y). Consequently, (3.172) holds in this

case. �

Remark 3.5. It is worth noting that the proof of Proposition 3.28 remains valid for all

p ≥ 4. Consequently, if the differentiability of the function ψp for p ≥ 4 can be established,

a question that remains open, then it would follow that ψp is continuously differentiable.

We now examine the conditions under which Ψp
FB

is coercive; that is,

lim sup
‖x‖→∞

Ψp
FB

(x) =∞.

Establishing this property is essential for analyzing the global convergence of both merit

function methods and equation-based approaches built upon φp
FB

. To this end, we first

present two technical lemmas that form the foundation of our analysis.

Lemma 3.34. Let φp
FB

and ψp
FB

be given by (3.132) and (3.131), respectively. Then, for

any x, y ∈ IRn, there hold

(a)

〈x,∇xψp(x, y)〉+ 〈y,∇yψp(x, y)〉 = ‖φp(x, y)‖2.

(b)

4ψp
FB

(x, y) ≥ 2
∥∥[φp

FB
(x, y)]+

∥∥2 ≥ max
(
‖(−x)+‖2, ‖(−y)+‖2

)
,

where (·)+ means the minimum Euclidean distance projection onto Kn.

Proof. Noting the fact that p
√
|x|p + |y|p− x ∈ Kn and p

√
|x|p + |y|p− y ∈ Kn, the proof

of part(a) is similar to Proposition 3.6 whereas the proof of part(b) is similar to Lemma

3.7. We omit them here. �

Lemma 3.35. Assume that {(xk, yk)} ⊆ IRn × IRn satisfies either of the conditions

(a) λ1(xk)→ −∞ or λ1(yk)→ −∞;

(b) {λ1(xk)} and {λ1(yk)} are bounded below, λ2(xk), λ2(yk)→ +∞, and 〈 xk

‖xk‖ ,
yk

‖yk‖〉9
0.

Then, when p is a rational number, it holds that lim supk→∞ ψ
p
FB

(xk, yk) = +∞.

Proof. If {(xk, yk)} satisfies condition (a), the result follows from Lemma 3.34 and the

fact

2‖(−xk)+‖2 = min
(
0, λ1(xk)

)2
+ min

(
0, λ2(xk)

)2
.
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It remains to consider the case where {(xk, yk)} satisfies condition(b). Now from the

given assumptions we have (taking a subsequence if necessary) xk1 → +∞ and yk1 → +∞.

Without loss of generality, we assume (subsequencing if necessary) that

lim
k→∞

xk/‖xk‖ = x∗ and lim
k→∞

yk/‖yk‖ = y∗. (3.173)

Since {λ1(xk)} and {λ1(yk)} are bounded below, there exists a fixed element d ∈ IRn such

that xk−d ∈ int(Kn) and yk−d ∈ int(Kn) for each k (Indeed, letting γ be the lower bound

of {λ1(xk)} and {λ1(yk)}, we have xk − (γ − 1)e ∈ int(Kn) and yk − (γ − 1)e ∈ int(Kn)

since λ1(zk − (γ − 1)e) ≥ λ1(zk) + λ1((1 − γ)e) ≥ γ + 1 − γ = 1 for zk = xk or yk).

Thus, xk−d
‖xk‖ ∈ int(Kn) and yk−d

‖yk‖ ∈ int(Kn) for each k. This implies that xk

‖xk‖ ∈ Kn and
yk

‖yk‖ ∈ Kn, and consequently xk ∈ Kn and yk ∈ Kn, for all sufficiently large k. We will

proceed the arguments by three cases as shown below, where all k are assumed to be

sufficiently large.

Case (1): the sequence {‖xk‖/‖yk‖} is unbounded. Since p is a rational number, we

may write p = n/m with n,m being natural numbers and n > m. Suppose that the

conclusion does not hold, i.e., {φp
FB

(xk, yk)} is bounded. From the definition of φp
FB

and

xk, yk ∈ Kn, we have (xk)
n
m + (yk)

n
m =

[
xk + yk + φp

FB
(xk, yk)

] n
m , which is equivalent to[

(xk)
n
m + (yk)

n
m

]m
=
[
xk + yk + φp

FB
(xk, yk)

]n
. (3.174)

Since {‖xk‖/‖yk‖} is unbounded, ‖xk‖ → +∞, ‖yk‖ → +∞ and n > m, by ex-

panding
[
(xk)

n
m + (yk)

n
m

]m
=
[
(xk)

n
m + (yk)

n
m

]
◦ · · · ◦

[
(xk)

n
m + (yk)

n
m

]︸ ︷︷ ︸
m

, we obtain that

the left hand side of (3.174) is (xk)n + (yk)n + o(‖xk‖n−1‖yk‖), whereas by expanding[
xk + yk + φp

FB
(xk, yk)

]n
and noting that {φp

FB
(xk, yk)} is bounded and {‖xk‖/‖yk‖} is

unbounded, the right hand side of (3.174) is (xk + yk)n + o(‖xk‖n−1‖yk‖), which can be

further written as

(xk)n + (yk)n + (xk)n−1 ◦ yk + (xk) ◦ ((xk)n−2 ◦ yk) + · · ·+ xk ◦ (xk ◦ (· · · ((xk)2 ◦ yk ) · · · )︸ ︷︷ ︸
n−3

+2xk ◦ (xk ◦ (xk ◦ (· · · (xk ◦ yk ) · · · )︸ ︷︷ ︸
n−2

+o(‖xk‖n−1‖yk‖).

Here, o(‖xk‖n−1‖yk‖) denotes the term ek satisfying limk→∞
‖ek‖

‖xk‖n−1‖yk‖ = 0. Therefore,

(xk)n−1 ◦ yk + (xk) ◦ ((xk)n−2 ◦ yk) + · · ·+ xk ◦ (xk ◦ (· · · ((xk)2 ◦ yk ) · · · )︸ ︷︷ ︸
n−3

+2xk ◦ (xk ◦ (xk ◦ (· · · (xk ◦ yk ) · · · )︸ ︷︷ ︸
n−2

= o(‖xk‖n−1‖yk‖).

Making the inner product with the unit element e for the both sides then gives

n〈(xk)n−1, yk〉 = o(‖xk‖n−1‖yk‖).
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Dividing the both sides by ‖xk‖n−1‖yk‖ and taking the limit k →∞, we obtain 〈(x∗)n−1, y∗〉 =

0. Noting that x∗, y∗ ∈ Kn and ‖x∗‖ = ‖y∗‖ = 1, from 〈(x∗)n−1, y∗〉 = 0 we deduce that

y∗1 = ‖y∗2‖ and (x∗)n−1 = α(y∗1,−y∗2) for some α > 0.

From this, it is easy to get 〈x∗, y∗〉 = 0, which by (3.173) contradicts the given condition

that 〈 xk

‖xk‖ ,
yk

‖yk‖〉 9 0. Thus, we prove that the conclusion lim supk→∞ ψp(x
k, yk) = +∞

holds.

Case (2): the sequence {‖yk‖/‖xk‖} is unbounded. By the symmetry of x and y in

φp(x, y), using the same arguments as in Case (1) leads to the desired result.

Case (3): the sequences {‖yk‖/‖xk‖} and {‖xk‖/‖yk‖} are bounded. In this case, taking

subsequences of {xk} and {yk} if necessary, we may assume that limk→∞
‖yk‖
‖xk‖ = c for some

0 < c < +∞. By the definition of φp
FB

and xk, yk ∈ Kn, we have

(xk)p + (yk)p =
[
xk + yk + φp

FB
(xk, yk)

]p
.

Suppose that the conclusion does not hold. Then, dividing the both sides of last equality

by ‖xk‖ and taking the limit k →∞, it is not hard to obtain

(x∗)p + (cy∗)p = (x∗ + cy∗)p,

which is equivalent to saying that φp
FB

(x∗, cy∗) = 0 since x∗, y∗ ∈ Kn. Therefore, x∗◦cy∗ =

0. This clearly contradicts the given condition 〈 xk

‖xk‖ ,
yk

‖yk‖〉 9 0, and the result follows.

�

Remark 3.6. At present, we are unable to prove Lemma 3.35 for irrational values of p,

despite attempts to exploit the density of rational numbers in IR. Nevertheless, numerical

evidence strongly supports the validity of the result in such cases.

Proposition 3.29. Let Ψp
FB

be defined as in (3.133). Suppose that G is an identity

mapping, and F has the uniform Jordan P -property and satisfies the linear growth (see

Definition 1.11(d) and (e)). Then, Ψp
FB

(ζ) is coercive for a rational p.

Proof. Suppose on the contrary that there is a constant γ > 0 and a sequence {ζk} ⊂ IRn

with ‖ζk‖ → ∞ such that Ψp
FB

(ζk) ≤ γ for all k. Let ζk = (ζk1 , . . . , ζ
k
m) with ζki ∈ IRni

for i = 1, 2, . . . ,m. Let I :=
{
i ∈ {1, 2, . . . ,m} | {ζki } is unbounded

}
. Clearly, I 6= ∅.

Define

ξki =

{
0 if i ∈ I;

ζki otherwise,
i = 1, 2, . . . ,m.

Then, the sequence {ξk} ⊆ IRn is bounded. Since F has the uniform Jordan P -property

(see Definition 1.11(d)), there holds

λ2

[
(ζk − ξk) ◦ (F (ζk)− F (ξk))

]
≥ %‖ζk − ξk‖2
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for some % > 0. Let zk = (ζk − ξk) ◦ (F (ζk) − F (ξk)) for each k. Suppose that each zk

has the spectral decomposition λ1(zk)uk1 + λ2(zk)uk2. Then, from the last inequality,

%‖ζk − ξk‖2 ≤ 2〈zk, uk2〉 = 2
〈
(ζk − ξk) ◦ (F (ζk)− F (ξk)), uk2

〉
≤ 2‖ζk − ξk‖‖F (ζk)− F (ξk)‖. (3.175)

This implies ‖F (ζk)‖ → ∞. Since Ψp
FB

(ζk) ≤ γ for each k, from Lemma 3.35(a) it

follows that {λ1(ζk)} and {λ1(F (ζk))} are bounded below. Together with ‖ζk‖ → ∞
and ‖F (ζk)‖ → ∞, we obtain λ2(ζk), λ2(F (ζk)) → +∞. In addition, from (3.175) and

the linear growth of F , we necessarily have limk→∞
ζk

‖ζk‖ ◦
F (ζk)
‖F (ζk)‖ 6= 0. If not, on one hand,

from the boundedness of {ξk}, we have limk→∞
(ζk−ξk)◦(F (ζk)−F (ξk))

‖ζk‖‖F (ζk)‖ = 0; and on the other

hand

lim
k→∞

%‖ζk − ξk‖2

‖ζk‖‖F (ζk)‖ ≥ lim
k→∞

%‖ζk − ξk‖2

‖ζk‖(‖F (0)‖+ c‖ζk‖) =
%

c
> 0,

which is impossible by (3.175). By Lemma 3.35(b), lim supk→∞ ‖ψpFB
(ζk, F (ζk))‖ = ∞.

This gives a contradiction to Ψp
FB

(ζk) ≤ γ for all k. Thus, we prove that Ψp
FB

is coercive.

�

3.1.3 The functions φp
NR

and φp
D−FB

in SOC setting

Another widely adopted C-function in the SOC setting is the vector-valued natural resid-

ual function , defined as

φ
NR

(x, y) := x− (x− y)+

where (·)+ denotes the Euclidean projection onto Kn. This function induces the natural

residual merit function ψ
NR

, given by

ψ
NR

(x, y) :=
1

2
‖φ

NR
(x, y)‖2,

where φ
NR

: IRn× IRn → IRn. According to Proposition 1.3, φ
NR

qualifies as a C-function

associated with SOC and has been further analyzed in [78, 91] in the context of smoothing

methods for SOCCPs. In comparison with the Fischer-Burmeister (FB) merit function

ψ
FB

, a notable limitation of ψ
NR

is its lack of differentiability. A natural generalization

of φ
NR

is the function φp
NR

: IRn × IRn → IRn, defined by

φp
NR

(x, y) = xp − [(x− y)+]p. (3.176)

Again, it is based on the idea of “discrete generalization”; and p > 1 needs to be positive

integer. Applying the same idea back to the Fischer-Burmeister function, we can define

φp
D−FB

: IRn× → IRn as

φp
D−FB

(x, y) =
(√

x2 + y2
)p
− (x+ y)p, (3.177)
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where p > 1 is a positive odd integer, (x, y) ∈ IRn× IRn, x2 = x ◦x is the Jordan product

of x with itself and
√
x with x ∈ Kn being the unique vector such that

√
x ◦ √x = x.

Notice that when p = 1, φp
D−FB

reduces to the Fischer-Burmeister function. In other

words, we extend the new function φp
NR

and φp
D−FB

, constructed by discrete generalization

in Section 2.2, to the SOC setting. In particular, we show that the function φp
D−FB

and

φp
NR

are C-functions associated with Kn. In addition, we present the computing formulas

for their Jacobian matrices.

Lemma 3.36. For p = 2m + 1 with m = 1, 2, 3, · · · and x = (x1, x2), y = (y1, y2) ∈
IR× IRn−1, suppose that xp and yp represent (x◦x◦ · · ·◦x) and (y ◦y ◦ · · ·◦y) for p-times,

respectively. Then, xp = yp if and only if x = y.

Proof. “⇐” This direction is trivial.

“⇒” Suppose that xp = yp. By the spectral decomposition (1.8), we write

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

y = λ1(y)u
(1)
y + λ2(y)u

(2)
y .

Then, xp = (λ1(x))pu
(1)
x + (λ2(x))pu

(2)
x and yp = (λ1(y))pu

(1)
y + (λ2(y))pu

(2)
y . Since xp = yp

and eigenvalues are unique, we obtain (λ1(x))p = (λ1(y))p and (λ2(x))p = (λ2(y))p. By

Lemma 2.16, this implies λ1(x) = λ1(y) and λ2(x) = λ2(y). Moreover, {u(1)
x , u

(2)
x } and

{u(1)
y , u

(2)
y } are Jordan frames, we have u

(1)
x +u

(2)
x = u

(1)
y +u

(2)
y = e, where e is the identity

element. From xp = yp and u
(1)
x + u

(2)
x = u

(1)
y + u

(2)
y , we obtain

[(λ1(x))p − (λ2(x))p] (u(1)
x − u(1)

y ) = 0.

If (λ1(x))p = (λ2(x))p, we have λ1(x) = λ2(x) and λ1(y) = λ2(y), that is, x = λ1(x)e = y.

Otherwise, if (λ1(x))p 6= (λ2(x))p, we must have u
(1)
x = u

(1)
y , which implies u

(2)
x = u

(2)
y .

�

Proposition 3.30. Let φp
D−FB

be defined by (3.177). Then, the function φp
D−FB

is a C-

function associated with Kn, i.e., it satisfies

φp
D−FB

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0,

where p > 1 is a positive odd integer .

Proof. Since φp
D−FB

(x, y) = 0 , we have
(√

x2 + y2
)p

= (x+y)p. Using p being a positive

odd integer and applying Lemma 3.36 yield(√
x2 + y2

)p
= (x+ y)p ⇐⇒

√
x2 + y2 = x+ y.

By Proposition 3.2, it is known that φ
FB

(x, y) :=
√
x2 + y2−(x+y) is a complementarity

function associated with Kn. This indicates that φp
D−FB

is a complementarity function

associated with Kn. �
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With similar technique, we can prove that φp
NR

can be extended as a C-function in

SOC setting.

Proposition 3.31. Let φp
NR

be defined as in (3.176). Then, the function φp
NR

is a C-

function associated with Kn, i.e., it satisfies

φp
NR

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0,

where p > 1 is a positive odd integer.

Proof. From Lemma 3.36, we see that φp
NR

(x, y) = 0 if and only if x = (x − y)+. On

the other hand, by Proposition 1.3, it is known that φ
NR

(x, y) = x − (x − y)+ is a

complementarity function associated with Kn, which implies x− (x−y)+ = 0 if and only

if x ∈ Kn, y ∈ Kn, and 〈x, y〉 = 0. Hence, φp
NR

is a C-function associated with Kn. �

In order to compute the Jacobian of φp
D−FB

, we need to introduce some notations for

convenience. For any x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1, we define

w(x, y) := x2 + y2 = (w1(x, y), w2(x, y)) ∈ IR× IRn−1 and v(x, y) := x+ y.

Then, it is clear that w(x, y) ∈ Kn and λi(w) ≥ 0, i = 1, 2.

Proposition 3.32. Let φp
D−FB

be defined as in (3.177) and gsoc(x) = (
√
|x|)p, hsoc(x) =

xp are the vector-valued functions corresponding to g(t) = |t| p2 and h(t) = tp for t ∈
IR, respectively. Then, φp

D−FB
is continuously differentiable at any (x, y) ∈ IRn × IRn.

Moreover, we have

∇xφ
p
D−FB

(x, y) = 2Lx∇gsoc(w)−∇hsoc(v),

∇yφ
p
D−FB

(x, y) = 2Ly∇gsoc(w)−∇hsoc(v),

where w := w(x, y) = x2 + y2, v := v(x, y) = x+ y, t 7→ sign(t) is the sign function, and

∇gsoc(w) =


p

2
|w1|

p
2
−1 · sign(w1)I if w2 = 0;[

b1(w) c1(w)w̄T
2

c1(w)w̄2 a1(w)I + (b1(w)− a1(w)) w̄2w̄
T
2

]
if w2 6= 0;

w̄2 =
w2

‖w2‖
,

a1(w) =
|λ2(w)| p2 − |λ1(w)| p2
λ2(w)− λ1(w)

,

b1(w) =
p

4

[
|λ2(w)| p2−1 + |λ1(w)| p2−1

]
,

c1(w) =
p

4

[
|λ2(w)| p2−1 − |λ1(w)| p2−1

]
,
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and

∇hsoc(v) =


pvp−1

1 I if v2 = 0;[
b2(v) c2(v)v̄T2
c2(v)v̄2 a2(v)I + (b2(v)− a2(v)) v̄2v̄

T
2

]
if v2 6= 0;

(3.178)

v̄2 =
v2

‖v2‖
,

a2(v) =
(λ2(v))p − (λ1(v))p

λ2(v)− λ1(v)
, (3.179)

b2(v) =
p

2

[
(λ2(v))p−1 + (λ1(v))p−1

]
,

c2(v) =
p

2

[
(λ2(v))p−1 − (λ1(v))p−1

]
,

Proof. From the definition of φp
D−FB

, it is clear to see that for any (x, y) ∈ IRn × IRn,

φp
D−FB

(x, y) =
(√

x2 + y2
)p
− (x+ y)p

=
(√
|x2 + y2|

)p
− (x+ y)p

=
[
|λ1(w)| p2u(1)(w) + |λ2(w)| p2u(2)(w)

]
(3.180)

−
[
(λ1(v))pu(1)(v) + (λ2(v))pu(2)(v)

]
= gsoc(w)− hsoc(v).

For p ≥ 3, since both |t| p2 and tp are continuously differentiable on IR, by [29, Proposition

5] and [78, Proposition 5.2], we know that the function gsoc and hsoc are continuously

differentiable on IRn. Moreover, it is clear that w(x, y) = x2 +y2 is continuously differen-

tiable on IRn× IRn, then we conclude that φp
D−FB

is continuously differentiable. Moreover,

from the formula in [29, Proposition 4] and [78, Proposition 5.2], we have

∇gsoc(w) =


p

2
|w1|

p
2
−1 · sign(w1)I if w2 = 0;[

b1(w) c1(w)w̄T
2

c1(w)w̄2 a1(w)I + (b1(w)− a1(w)) w̄2w̄
T
2

]
if w2 6= 0;

∇hsoc(v) =


pvp−1

1 I if v2 = 0;[
b2(v) c2(v)v̄T2
c2(v)v̄2 a2(v)I + (b2(v)− a2(v)) v̄2v̄

T
2

]
if v2 6= 0;

where

w̄2 = w2

‖w2‖ , v̄2 = v2
‖v2‖

a1(w) = |λ2(w)|
p
2−|λ1(w)|

p
2

λ2(w)−λ1(w)
, a2(v) = (λ2(v))p−(λ1(v))p

λ2(v)−λ1(v)
,

b1(w) = p
4

[
|λ2(w)| p2−1 + |λ1(w)| p2−1

]
, b2(v) = p

2
[(λ2(v))p−1 + (λ1(v))p−1] ,

c1(w) = p
4

[
|λ2(w)| p2−1 − |λ1(w)| p2−1

]
, c2(v) = p

2
[(λ2(v))p−1 − (λ1(v))p−1] .
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By taking differentiation on both sides about x and y for (3.180), respectively, and

applying the chain rule for differentiation, it follows that

∇xφ
p
D−FB

(x, y) = 2Lx∇gsoc(w)−∇hsoc(v),

∇yφ
p
D−FB

(x, y) = 2Ly∇gsoc(w)−∇hsoc(v).

Hence, we complete the proof. �

With Lemma 3.36 and Proposition 3.30, we can construct more C-functions associated

with SOC, which are variants of φp
D−FB

(x, y). More specifically, consider that k and

m are positive integers and f
soc

(x, y) : IRn × IRn → IRn is the vector-valued function

corresponding to a given real-valued function f , the following functions are new variants

of φp
D−FB

(x, y).

φ̃1(x, y) =
[√

x2 + y2 + f soc(x, y)
] 2k+1

2m+1 − [x+ y + f soc(x, y)]
2k+1
2m+1 .

φ̃2(x, y) =
[√

x2 + y2 − x− y
] k
m
.

φ̃3(x, y) =
[√

x2 + y2 − x+ f soc(x, y)
] 2k+1

2m+1 − [y + f soc(x, y)]
2k+1
2m+1 .

φ̃4(x, y) =
[√

x2 + y2 − y + f soc(x, y)
] 2k+1

2m+1 − [x+ f soc(x, y)]
2k+1
2m+1 .

Proposition 3.33. All the above functions φ̃i for i ∈ {1, 2, 3, 4} are C-functions associ-

ated with Kn.

Proof. The results follow from applying Lemma 3.36 and Proposition 3.30. �

In general, for complementarity functions associated with Kn, we have the following

parallel result to Proposition 2.70 in the NCP setting.

Proposition 3.34. Suppose that φ(x, y) = ϕ1(x, y) − ϕ2(x, y) is a C-function asso-

ciated with Kn on IRn × IRn, and k,m are positive integers. Then,
[
φ(x, y)

] k
m and[

ϕ1(x, y)
] 2k+1

2m+1 − [ϕ2(x, y)]
2k+1
2m+1 are C-functions associated with Kn.

Proof. According to k and m are positive integers and by using Lemma 3.36, we have[
φ(x, y)

] k
m = 0

⇐⇒
{[
φ(x, y)

] k
m

}m
= 0

⇐⇒
[
φ(x, y)

]k
= 0

⇐⇒ φ(x, y) = 0.
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Similarly, we have [
ϕ1(x, y)

] 2k+1
2m+1 − [ϕ2(x, y)]

2k+1
2m+1 = 0

⇐⇒
[
ϕ1(x, y)

] 2k+1
2m+1 = [ϕ2(x, y)]

2k+1
2m+1

⇐⇒
{[
ϕ1(x, y)

] 2k+1
2m+1

}2m+1

=
{

[ϕ2(x, y)]
2k+1
2m+1

}2m+1

⇐⇒
[
ϕ1(x, y)]2k+1 =

[
ϕ2(x, y)]2k+1

⇐⇒ ϕ1(x, y) = ϕ2(x, y)

⇐⇒ φ(x, y) = 0.

From the above arguments and the assumption, the proof is complete. �

Remark 3.7. We elaborate more about Proposition 3.34.

(a) Based existing complementarity functions, we can construct new C-functions asso-

ciated with Kn in light of Proposition 3.34.

(b) When k is a positive odd integer, φ(x, y)k is a C-function associated with Kn. This

means that perturbing the odd integer parameter k, we obtain the new complemen-

tarity functions associated with Kn. In addition, if φ(x, y) is a C-function, then

for any positive integer m,
[
φ(x, y)

] k
m is also a C-function. We can determine

nice complementarity functions associated with Kn among these functions by their

numerical performance.

Finally, we establish formula for Jacobian of φp
NR

and the smoothness of φp
NR

. To this

aim, we need the following technical lemma.

Lemma 3.37. Let p > 1. Then, the real-valued function f(t) = (t+)p is continuously

differentiable with f ′(t) = p(t+)p−1 where t+ = max{0, t}.

Proof. By the definition of t+, we have

f(t) = (t+)p =

{
tp if t ≥ 0,

0 if t < 0,

which implies

f ′(t) =

{
p tp−1 if t ≥ 0,

0 if t < 0.

Then, it is easy to see that f ′(t) = p(t+)p−1 is continuous for p > 1. �
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Proposition 3.35. Let φp
NR

be defined as in (3.176) and hsoc(x) = xp, lsoc(x) = (x+)p be

the vector-valued functions corresponding to the real-valued functions h(t) = tp and l(t) =

(t+)p, respectively. Then, φp
NR

is continuously differentiable at any (x, y) ∈ IRn× IRn, and

its Jacobian is given by

∇xφ
p
NR

(x, y) = ∇hsoc(x)−∇lsoc(x− y),

∇yφ
p
NR

(x, y) = ∇lsoc(x− y),

where ∇hsoc satisfies (3.178)-(3.179) and

∇lsoc(u) =


p((u1)+)p−1I if u2 = 0;[

b3(u) c3(u)ūT2
c3(u)ū2 a3(u)I + (b3(u)− a3(u)) ū2ū

T
2

]
if u2 6= 0;

ū2 =
u2

‖u2‖
,

a3(u) =
(λ2(u)+)p − (λ1(u)+)p

λ2(u)− λ1(u)
,

b3(u) =
p

2

[
(λ2(u)+)p−1 + (λ1(u)+)p−1

]
,

c3(u) =
p

2

[
(λ2(u)+)p−1 − (λ1(u)+)p−1

]
,

Proof. In light of [29, Proposition 5] and [78, Proposition 5.2], the results follow from

applying Lemma 3.37 and using the chain rule for differentiation. �

3.1.4 Other C-functions in SOC setting

A. YF type of merit functions

It was also shown in the paper [41] that, like the NCP case, ψ
FB

is smooth and, when

∇F is positive semi-definite, every stationary point of (3.7) solves SOCCP. For SDCP,

which is a natural extension of NCP where IRn
+ is replaced by the cone of positive semi-

definite matrices Sn+ and the partial order ≤ is also changed by �Sn+ (a partial order

associated with Sn+ where A �Sn+ B means B −A ∈ Sn+ ) accordingly, the above features

hold for the following analog of the SDCP merit function studied by Yamashita and

Fukushima [220]:

ψ
YF

(x, y) := ψ1(〈x, y〉) + ψ
FB

(x, y), (3.181)

where ψ1 : IR→ IR+ is any smooth function satisfying

ψ1(t) = 0 ∀t ≤ 0 and ψ′1(t) > 0 ∀t > 0. (3.182)

In [220], ψ1(t) = 1
4
(max{0, t})4 was considered. In fact, the function ψ

YF
, which was

recently studied in [41], is also a SOCCP version merit function that enjoys favorable
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properties as what ψ
YF

has and possesses additional properties including bounded level

sets and error bound.

Proposition 3.36. Let ψ
YF

be defined as in (3.181)-(3.182). Then, the function ψ
YF

is

a smooth C-function in the SOC setting.

Proof. From the definition, it is clear that ψ
YF

is a C-function. By Proposition 3.5, ψ
FB

is smooth and ψ1 is smooth due to (3.182), hence ψ
YF

is smooth. �

In order to show properties of error bound and bounded level set, we need its merit

function as below:

f
YF

(ζ) := ψ
YF

(F (ζ), G(ζ)). (3.183)

Proposition 3.37. Let ψ
YF

be defined as in (3.181)-(3.182) and f
YF

be given by (3.183).

Then, for every ζ ∈ IRn where ∇F (ζ),−∇G(ζ) are column monotone, either (i) f
YF

(ζ) =

0 or (ii) ∇f
YF

(ζ) 6= 0. In case (ii), if ∇G(ζ) is invertible, then 〈d
YF

(ζ),∇f
YF

(ζ)〉 < 0,

where

d
YF

(ζ) := −(∇G(ζ)−1)T
(
ψ′1(〈F (ζ), G(ζ)〉)G(ζ) +∇xψFB

(F (ζ), G(ζ))

)
.

Proof. Fix any ζ ∈ IRn where ∇F (ζ),−∇G(ζ) are column monotone. By Proposition

3.36, we know that ψ
YF

is smooth. Then, the chain rule for differentiation yields

∇f
YF

(ζ) = α

(
∇F (ζ)G(ζ) +∇G(ζ)F (ζ)

)
+∇F (ζ)∇xψFB

(F (ζ), G(ζ)) +∇G(ζ)∇yψFB
(F (ζ), G(ζ)),

where we let α := ψ′1

(
〈F (ζ), G(ζ)〉

)
. In what follows we consider the case of N = 1, i.e.,

ψ
FB

(x, y) = 1
2
‖φ

FB
(x, y)‖2. Extending the proof to the case of N ≥ 2 is straightforward.

Suppose ∇f
YF

(ζ) = 0. Then, dropping the argument “(ζ)” for simplicity, we have

α

(
∇FG+∇GF

)
+∇F ∇xψFB

(F,G) +∇G∇yψFB
(F,G) = 0.

The column monotone property of ∇F,−∇G gives

〈αG+∇xψFB
(F,G, αF +∇yψFB

(F,G)〉 ≤ 0.

Upon collecting terms on the left-hand side, we have

α2〈F,G〉+ α (〈F,∇xψFB
(F,G)〉+ 〈G,∇yψFB

(F,G)〉) + 〈∇xψFB
(F,G),∇yψFB

(F,G)〉 ≤ 0.

Our assumption (3.182) on ψ1 implies the first term is nonnegative. By Proposition 3.6,

the second and the third terms are also nonnegative. Thus, the third term must be zero,

so Proposition 3.6(b) implies φ
FB

(F,G) = 0. Thus, f
FB

(ζ) = 1
2
‖φ

FB
(F (ζ), G(ζ))‖2 = 0.
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Suppose ∇f
YF

(ζ) 6= 0 and ∇G(ζ) is invertible. Again, we drop the argument “(ζ)” for

simplicity. Then,

〈d
YF
,∇f

YF
〉

=

〈
− (∇G−1)T(αG+∇xψFB

(F,G)), ∇F (αG+∇xψFB
(F,G)) +∇G(αF +∇yψFB

(F,G))

〉
= −

〈
αG+∇xψFB

(F,G), ∇G−1∇F (αG+∇xψFB
(F,G))

〉
−
〈
αG+∇xψFB

(F,G), αF +∇yψFB
(F,G)

〉
≤ −

〈
αG+∇xψFB

(F,G), αF +∇yψFB
(F,G)

〉
= −α2〈F,G〉 − α

(
〈F, ∇xψFB

(F,G)〉+ 〈G, ∇yψFB
(F,G)〉

)
− 〈∇xψFB

(F,G), ∇yψFB
(F,G)〉,

where the first inequality follows from ∇G−1∇F � 0. We argued earlier that all three

terms on the right-hand side are non-positive. Moreover, by Proposition 3.6(b), the third

term is zero if and only if φ
FB

(F,G) = 0, i.e., ζ is a global minimum of f
YF

and hence a

stationary point of f
YF

. Since ∇f
YF

(ζ) 6= 0, the right-hand side cannot equal zero, so it

must be negative. �

Proposition 3.38. Suppose that F and G are jointly strongly monotone mappings from

IRn to IRn. Also, suppose that the general SOCCP (3.4) has a solution ζ∗. Then, there

exists a scalar τ > 0 such that

τ‖ζ − ζ∗‖2 ≤ max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ∀ζ ∈ IRn. (3.184)

Moreover,

τ‖ζ − ζ∗‖2 ≤ ψ−1
1 (f

YF
(ζ)) + 2

√
2f

YF
(ζ)1/2 ∀ζ ∈ IRn, (3.185)

where f
YF

is given by (3.183) with N = 1, ψ1 : IR→ [0,∞) is a smooth function satisfying

(3.182), and ψ−1
1 denotes the inverse function of ψ1 on [0,∞).

Proof. First, we observe that ψ−1
1 is well defined since, by (3.182), ψ1 is strictly increasing

on [0,∞). Because F and G are jointly strongly monotone, there exists a scalar ρ > 0

such that, for any ζ ∈ IRn,

ρ‖ζ − ζ∗‖2

≤ 〈F (ζ)− F (ζ∗), G(ζ)−G(ζ∗)〉
= 〈F (ζ), G(ζ)〉+ 〈−F (ζ), G(ζ∗)〉+ 〈F (ζ∗),−G(ζ)〉
≤ max{0, 〈F (ζ), G(ζ)〉}+ 〈(−F (ζ))+, G(ζ∗)〉+ 〈F (ζ∗), (−G(ζ))+〉
≤ max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖ ‖G(ζ∗)‖+ ‖F (ζ∗)‖ ‖(−G(ζ))+‖

≤ max{1, ‖F (ζ∗)‖, ‖G(ζ∗)‖}
(

max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖
)
,
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where the second inequality uses Lemma 1.1(b). Setting τ :=
ρ

max{1, ‖F (ζ∗)‖, ‖G(ζ∗)‖}
yields (3.184). Moreover, using (3.181), (3.182) and (3.183), we have

max {0, 〈F (ζ), G(ζ)〉} ≤ ψ−1
1 (f

YF
(ζ)) and ψ

FB
(F (ζ), G(ζ)) ≤ f

YF
(ζ).

Using Lemma 3.7 and the second inequality, we have

‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ≤
√

2
(
‖(−F (ζ))+‖2 + ‖(−G(ζ))+‖2

)1/2

≤ 2
√

2ψ
FB

(F (ζ), G(ζ))1/2

≤ 2
√

2 f
YF

(ζ)1/2.

Thus, there holds

max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ≤ ψ−1
1 (f

YF
(ζ)) + 2

√
2f

YF
(ζ)1/2.

This together with (3.184) yields (3.185). �

If in addition F is continuous and G(ζ) = ζ for all ζ ∈ IRn, then the assumption that

the SOCCP has a solution can be dropped from Proposition 3.38, see, e.g.,[63, Proposition

2.2.7]. Moreover, the exponent 2 in the definition of joint strong monotonicity can be

replaced by any q > 1, and Proposition 3.38 would generalize accordingly.

By using Lemma 3.8 and Proposition 3.37, we have the following analog of [220,

Theorem 4.1] on solution existence and boundedness of the level sets of f
YF

.

Proposition 3.39. Suppose that F and G are differentiable, jointly monotone mappings

from IRn to IRn satisfying

lim
‖ζ‖→∞

‖F (ζ)‖+ ‖G(ζ)‖ =∞. (3.186)

Suppose also that SOCCP is strictly feasible, i.e., there exists ζ̄ ∈ IRn such that F (ζ̄), G(ζ̄) ∈
int(Kn). Then, the level set

L(γ) := {ζ ∈ IRn | f
YF

(ζ) ≤ γ}

is nonempty and bounded for all γ ≥ 0, where f
YF

is given by (3.181)-(3.182) with N = 1,

and ψ1 : IR→ [0,∞) is a smooth function satisfying (3.182).

Proof. For any γ ≥ 0, if {ζk}∞k=1 ⊆ L(γ), then f
YF

(ζk)} is bounded and the joint

monotonicity of F and G yields

〈F (ζk), G(ζ̄)〉+ 〈F (ζ̄), G(ζk)〉 ≤ 〈F (ζk), G(ζk)〉+ 〈F (ζ̄), G(ζ̄)〉, k = 1, 2, ...

Using this together with Lemma 3.8 and an argument analogous to the proof of [220,

Theorem 4.1], we obtain that {‖F (ζk)‖ + ‖G(ζk)‖} is bounded. Then, (3.186) implies

{ζk} is bounded. This shows that L(γ) is bounded.
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The proof of L(γ) 6= ∅ uses Proposition 3.37 and is nearly identical to the proof of [220,

Theorem 4.1]. �

We point out that there is a result presented in Section 4.1 (see Lemma 4.1), which

is analogous to Proposition 3.39 and uses R01-function. The condition of R01-function

is weaker than strong monotonicity, and it is also weaker than monotonicity plus strict

feasibility in certain sense, see [140, 204].

As below, we make a slight modification of ψ
YF

, for which ψ1 is replaced by the

mapping ψ0 : IRn × IRn → IR+ that is given by

ψ0(x, y) :=
1

2
‖(x ◦ y)+‖2, (3.187)

where (·)+ denotes the orthogonal projection onto Kn. If we observe closely, we may see

there is some relation between ψ0 and ψ1 : both are smooth functions. Moreover, if we

let ψ̂1 : IRn× IRn → IR be ψ̂1(x, y) := ψ1(x, y), then the graphs of ψ0 and ψ̂1 share similar

features. In other words, our new merit function ψnew : IRn × IRn → IR+ is defined as

ψnew(x, y) := α ψ0(x, y) + ψ
FB

(x, y), (3.188)

where α > 0. When α = 0, ψnew reduces to ψ
FB

which is the squared norm of Fischer-

Burmeister function (3.11). Thus, this new merit function can be viewed as the extension

of the squared norm of Fischer-Burmeister function. We shall show that the SOCCP (3.1)

is equivalent to the following global minimization via the new merit function ψnew :

min
ζ∈IRn

fnew(ζ) where fnew(ζ) := ψnew(F (ζ), ζ). (3.189)

Indeed, this new merit function ψnew was studied by Yamada, Yamashita, and Fukushima

in [217] for the NCP setting. We are motivated by their work and wish to explore its

extension to the SOCCP (3.1). Analogous to the additional properties that ψ
YF

, given

as (3.181)-(3.182), possesses and as will be seen later, if F is strongly monotone [63]

then fnew provides a global error bound which plays an important role in analyzing

the convergence rate of some iterative methods for solving the SOCCP (3.1); and if

F is monotone and a strictly feasible solution exists then fnew has bounded level sets,

which will ensure that the sequence generated by a descent algorithm has at least one

accumulation point. All these properties will make it possible to construct a descent

algorithm for solving the equivalent unconstrained reformulation of the SOCCP (3.1). In

contrast, the merit function induced by ψ
FB

lacks these properties. In addition, we will

show that ψnew is continuously differentiable and its gradient has a computable formula.

All the aforementioned features are significant reasons for choosing and studying this

new merit function ψnew .
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Lemma 3.38. Let ψ0 : IRn × IRn → IR+ be given by (3.187). Then, ψ0 is continuously

differentiable and
∇xψ0(x, y) = Ly · (x ◦ y)+,

∇yψ0(x, y) = Lx · (x ◦ y)+.
(3.190)

Proof. For any z ∈ IRn, we can factor z as z = λ1u
(1) + λ2u

(2). Then let g : IRn → IRn

be defined as

g(z) :=
1

2
((z)+)2 = ĝ(λ1)u(1) + ĝ(λ2)u(2),

where ĝ : IR→ IR is given by ĝ(λ) := 1
2
(max(0, λ))2. From the continuous differentiability

of ĝ and [29, Proposition 5.2], the vector-valued function g is also continuously differen-

tiable. Hence, the first component g1(z) := 1
2
‖(z)+‖2 of g(z) is continuously differentiable

as well. By an easy computation, we have ∇g1(z) = (z)+. Now, let

z(x, y) := x ◦ y = (〈x, y〉 , x1y2 + y1x2),

then we have ψ0(x, y) = g1(z(x, y)). Applying the chain rule, we obtain

∇xψ0 = ∇xz · ∇g1(z) = Ly · (x ◦ y)+,

∇yψ0 = ∇yz · ∇g1(z) = Lx · (x ◦ y)+,

where

∇xz(x, y) =

[
y1 yT2
y2 y1I

]
= Ly and ∇yz(x, y) =

[
x1 xT2
x2 x1I

]
= Lx.

Thus, the desired result (3.190) is achieved. �

Proposition 3.40. Let ψnew : IRn × IRn → IR+ be defined as in (3.187)-(3.188). Then,

the following results hold.

(a) ψnew(x, y) ≥ 0 for all (x, y) ∈ IRn × IRn.

(b) ψnew(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, x ◦ y = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.

(c) ψnew is continuously differentiable at every (x, y) ∈ IRn×IRn. Moreover, ∇xψnew(0, 0) =

∇yψnew(0, 0) = 0. If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), then

∇xψnew(x, y) = α Ly · (x ◦ y)+ +

(
LxL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y),

∇yψnew(x, y) = α Lx · (x ◦ y)+ +

(
LyL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y).

If (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn), then x2
1 + y2

1 6= 0 and

∇xψnew(x, y) = 2α |x1| · (y)2
+ +

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y),

∇yψnew(x, y) = 2α |y1| · (x)2
+ +

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y).
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Proof. (a) It is clear by definition.

(b) We only need to prove the first equivalence since the second one is a known result in

[78]. Suppose ψnew(x, y) = 0, it yields ψ
FB

(x, y) = 0. Thus, the desirable result follows by

Proposition 3.4(a). On the other hand, x ∈ Kn, y ∈ Kn, x ◦ y = 0 imply ψ
FB

(x, y) = 0;

and ψ0(x, y) = 0 from x ◦ y = 0. Therefore, ψnew(x, y) = 0.

(c) If (x, y) = (0, 0), it is easy to know ∇xψ0(0, 0) = ∇yψ0(0, 0) = 0 by Lemma 3.38.

Hence ∇xψnew(0, 0) = ∇yψnew(0, 0) = 0. If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), then

the results follow by Proposition 3.4(b) and Lemma 3.38. If (x, y) 6= (0, 0) and x2 + y2 6∈
int(Kn), then by applying Lemma 3.2, we have

x ◦ y = (〈x, y〉 , x1y2 + y1x2)

= (x1y1 + xT2 y2 , x1y2 + y1x2)

= (2x1y1 , 2x1y2)

= 2x1y.

Therefore,

Ly · (x ◦ y)+ = Ly · (2x1y)+ = 2|x1| Ly · (y)+ = 2|x1| · (y ◦ (y)+) = 2|x1| · (y)2
+,

where the last equality is due to

y ◦ y+ = [(y)+ + (y)−] ◦ (y)+ = (y)2
+ + (y)− ◦ (y)+ = (y)2

+.

Similarly, we have Lx · (x ◦ y)+ = 2|y1| · (x)2
+. This together with Proposition 3.4 lead to

the desired results. �

Proposition 3.41. Let fnew be defined as (3.187)-(3.189). Then, fnew is smooth with

fnew(ζ) ≥ 0 for all ζ ∈ IRn and fnew(ζ) = 0 if and only if ζ solves the SOCCP. Moreover,

suppose that the SOCCP (3.1) has at least one solution. Then, ζ is a global minimization

of fnew if and only if ζ solves the SOCCP (3.1).

Proof. The results follow by Proposition 3.40 and definition of fnew . �

The error bound is an important concept that indicates how close an arbitrary point

is to the solution set of the SOCCP (3.1). Thus, an error bound may be used to provide

stopping criterion for an iterative method. As below, we establish a proposition about

the error bound of fnew given as (3.187)-(3.189). We need the next technical lemma to

prove the error bound property.

Proposition 3.42. Suppose that F is strongly monotone mapping from IRn to IRn. Also,

suppose that the SOCCP (3.1) has a solution ζ∗. Then ,there exists a scalar τ > 0 such

that

τ‖ζ − ζ∗‖2 ≤ ‖(F (ζ) ◦ ζ)+‖+ ‖(−F (ζ))+‖+ ‖(−ζ)+‖ ∀ζ ∈ IRn. (3.191)
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Moreover,

τ‖ζ − ζ∗‖2 ≤
√

2

(
1

α
+ 2

)
fnew(ζ)1/2 ∀ζ ∈ IRn, (3.192)

where α > 0, and fnew is given by (3.187)-(3.189) .

Proof. Since F is strongly monotone, there exists a scalar ρ > 0 such that, for any

ζ ∈ IRn,

ρ‖ζ − ζ∗‖2

≤ 〈F (ζ)− F (ζ∗), ζ − ζ∗〉
= 〈F (ζ), ζ〉+ 〈−F (ζ), ζ∗〉+ 〈F (ζ∗),−ζ〉
≤ 〈F (ζ), ζ〉+ 〈(−F (ζ))+, ζ

∗〉+ 〈F (ζ∗), (−ζ)+〉
≤ 〈F (ζ), ζ〉+ ‖(−F (ζ))+‖ ‖ζ∗‖+ ‖F (ζ∗)‖ ‖(−ζ)+‖
≤
√

2‖(F (ζ) ◦ ζ)+‖+ ‖(−F (ζ))+‖ ‖ζ∗‖+ ‖F (ζ∗)‖ ‖(−ζ)+‖

≤ max{
√

2, ‖F (ζ∗)‖, ‖ζ∗‖}
(
‖(F (ζ) ◦ ζ)+‖+ ‖(−F (ζ))+‖+ ‖(−ζ)+‖

)
,

where the second inequality uses Lemma 1.1(b) while the fourth inequality is from (3.18).

Then, setting τ :=
ρ

max{
√

2, ‖F (ζ∗)‖, ‖ζ∗‖}
yields (3.191).

Moreover, we have

‖(F (ζ) ◦ ζ)+‖ =
√

2 ψ0(F (ζ), ζ)1/2 ≤
√

2

α
fnew(ζ)1/2,

and

‖(−F (ζ))+‖+ ‖(−ζ)+‖ ≤
√

2
(
‖(−F (ζ))+‖2 + ‖(−ζ)+‖2)1/2

≤ 2
√

2ψ
FB

(F (ζ), ζ)1/2

≤ 2
√

2 fnew(ζ)1/2,

where the second inequality is true by Lemma 3.7. Thus,

‖(F (ζ) ◦ ζ)+‖+ ‖(−F (ζ))+‖+ ‖(−ζ)+‖ ≤
√

2

(
1

α
+ 2

)
fnew(ζ)1/2.

This together with (3.191) yield (3.192). �

The boundedness of level sets of a merit function is also important since it ensures

that the sequence generated by a descent method has at least one accumulation. The

following proposition gives conditions under which fnew has bounded level sets. Similar

properties based on other slightly modified merit functions of ψ
YF

and ψnew can be found

in [26].



3.1. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SOC 289

Proposition 3.43. Suppose that F is a monotone mapping from IRn to IRn and that

SOCCP is strictly feasible, i.e., there exists ζ̂ ∈ IRn such that F (ζ̂), ζ̂ ∈ int(Kn). Then,

the level set

L(γ) := {ζ ∈ IRn | fnew(ζ) ≤ γ}
is bounded for all γ ≥ 0, where fnew is given by (3.187)-(3.189) with α > 0.

Proof. We will prove this result by contradiction. Suppose there exists an unbounded

sequence {ζk} ⊂ L(γ) for some γ ≥ 0. It can be seen that the sequence of the smaller

spectral values of {ζk} and {F (ζk)} are bounded below. In fact, if not, it follows form

Lemma 3.8(a) that fnew(ζk) → ∞, which contradicts {ζk} ⊂ L(γ). Therefore, the un-

boundedness of {ζk} leads to that the sequence of the bigger spectral values of {ζk} tends

to infinity. Now, let ζ̂ be a strictly feasible solution of the SOCCP. Since F is monotone,

we have

〈F (ζk)− F (ζ̂) , ζk − ζ̂〉 ≥ 0,

which yields 〈
F (ζk), ζ̂

〉
+
〈
F (ζ̂), ζk

〉
≤
〈
F (ζk), ζk

〉
+
〈
F (ζ̂), ζ̂

〉
. (3.193)

Then, by Lemma 3.8(b) and F (ζ̂), ζ̂ ∈ int(Kn), we obtain 〈F (ζk), ζ̂〉 + 〈F (ζ̂), ζk〉 → ∞,

which together with (3.193) lead to
〈
F (ζk), ζk

〉
→ ∞. Thus, by Lemma 3.6(c) and

(3.188)-(3.189), we have∥∥(F (ζk) ◦ ζk)+

∥∥→∞ =⇒ ψnew(F (ζk), ζk)→∞ =⇒ fnew(ζk)→∞.

But, this contradicts {ζk} ⊂ L(γ). Therefore, the proof is complete. �

B. LT type of merit functions.

Next, we study another two classes of merit functions for the SOCCP (3.4). The first

class is

f
LT

(ζ) := ψ0(〈F (ζ), G(ζ)〉) + ψ(F (ζ), G(ζ)), (3.194)

where ψ0 : IR→ IR+ satisfies

ψ0(t) = 0 ∀t ≤ 0 and ψ
′

0(t) > 0 ∀t > 0, (3.195)

and ψ : IRn × IRn → IR+ satisfies

ψ(x, y) = 0, 〈x, y〉 ≤ 0 ⇐⇒ (x, y) ∈ Kn ×Kn, 〈x, y〉 = 0. (3.196)

The function f
LT

was proposed by Luo and Tseng for NCP case in [143] and was extended

to the SDCP case by Tseng in [207]. In addition, we make a slight modification of f
LT

which forms another class of merit function as below.

f̂
LT

(ζ) := ψ∗0(F (ζ) ◦G(ζ)) + ψ(F (ζ), G(ζ)), (3.197)
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where ψ∗0 : IRn → IR+ is given as

ψ∗0(w) =
1

2
‖(w)+‖2. (3.198)

and ψ : IRn × IRn → IR+ satisfies (3.196). We notice that ψ∗0 possesses the following

property:

ψ∗0(w) = 0 ⇐⇒ w �Kn 0,

which is a similar feature to (3.195) in some sense. Examples of ψ0 and ψ will be given

later. The second class of merit functions for SDCP case was recently studied in [82] and

a variant of f̂
LT

was also studied by the author in [24].

We will show that both f
LT

and f̂
LT

provide global error bound (Proposition 3.48 and

Proposition 3.49), which plays an important role in analyzing the convergence rate of

some iterative methods for solving the SOCCP, if F and G are jointly strongly monotone.

We will also prove that if F and G are jointly monotone and a strictly feasible solution

exists then both f
LT

and f̂
LT

have bounded level sets (Proposition 3.50 and Proposition

3.51), which will ensure that the sequence generated by a descent algorithm has at least

an accumulation point. All these properties will make it possible to construct a descent

algorithm for solving the equivalent unconstrained reformulation of the SOCCP. In con-

trast, the merit function induced by ψ
FB

lacks these properties. In addition, we will show

that both f
LT

and f̂
LT

are differentiable and their gradients have computable formulas.

All the aforementioned features are significant reasons for choosing and studying these

new merit functions.

First, we notice that ψ0 is differentiable and strictly increasing on [0,∞). An example

of ψ0 is ψ0(t) = 1
4
(max{0, t})4. Let Ψ+ (we adopt the notation used as in [207]) denote

the collection of ψ : IRn× IRn → IR+ satisfying (3.196) that are differentiable and satisfy

the following conditions:{
〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, ∀(x, y) ∈ IRn × IRn.

〈x,∇xψ(x, y)〉+ 〈y,∇yψ(x, y)〉 ≥ 0, ∀(x, y) ∈ IRn × IRn.
(3.199)

We will give an example of ψ belonging to Ψ+ in Proposition 3.44. Before that,

we need couple technical lemmas, which will be used for proving Proposition 3.44 and

Proposition 3.45.

Proposition 3.44. Let ψ1 : IRn × IRn → IR+ be given by

ψ1(x, y) :=
1

2

(
‖(−x)+‖2 + ‖(−y)+‖2

)
. (3.200)

Then, the following results hold.

(a) ψ1 satisfies (3.196).
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(b) ψ1 is convex and differentiable at every (x, y) ∈ IRn × IRn with ∇xψ1(x, y) = (x)−
and ∇yψ1(x, y) = (y)−.

(c) For every (x, y) ∈ IRn × IRn, we have

〈∇xψ1(x, y),∇yψ1(x, y)〉 ≥ 0.

(d) For every (x, y) ∈ IRn × IRn, we have

〈x,∇xψ1(x, y)〉+ 〈y,∇yψ1(x, y)〉 = ‖(x)−‖2 + ‖(y)−‖2.

(e) ψ1 belongs to Ψ+.

Proof. (a) Suppose ψ1(x, y) = 0 and 〈x, y〉 ≤ 0. Then by definition of ψ1 as (3.200),

we have (−x)+ = 0, (−y)+ = 0 which implies x ∈ Kn, y ∈ Kn. Since Kn is self-dual,

x, y ∈ Kn leads to 〈x, y〉 ≥ 0 by (3.17). This together with 〈x, y〉 ≤ 0 yields 〈x, y〉 = 0.

The other direction is clear from the above arguments. Hence, we proved that ψ1 satisfies

(3.196).

(b) For any x ∈ IRn, we have the decomposition x = (x)+ +(x)− = (x)+− (−x)+. Hence,

1

2
‖(−x)+‖2 =

1

2
‖(x)+ − x‖2 = min

w∈Kn
1

2
‖w − x‖2,

which is convex and differentiable in x (see [184, page 255]). Moreover, the chain rule

gives

∇x

[
1

2
‖(−x)+‖2

]
= −(−x)+ = (x)−.

Similar formula holds for y. Thus, ψ1 is convex and differentiable at every (x, y) ∈
IRn × IRn with ∇xψ1(x, y) = −(−x)+ = (x)− and ∇yψ1(x, y) = −(−y)+ = (y)−.

(c) From part(b), we have

〈∇xψ1(x, y),∇yψ1(x, y)〉 = 〈(x)−, (y)−〉 = 〈(−x)+, (−y)+〉 ≥ 0,

where the inequality is true by (3.17).

(d) By applying Lemma 3.6(a), we obtain

〈x,∇xψ1(x, y)〉 = 〈x, (x)−〉 = ‖(x)−‖2.

Similarly, 〈y,∇xψ1(x, y)〉 = ‖(y)−‖2 and hence the desired result holds.

(e) This is an immediate consequence of (a) through (d). �
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Next, we consider a further restriction on ψ. Let Ψ++ denote the collection of ψ ∈ Ψ+

satisfying the following conditions:

ψ(x, y) = 0 ∀(x, y) ∈ IRn × IRn whenever 〈∇xψ(x, y),∇yψ(x, y)〉 = 0. (3.201)

We notice that the ψ1 defined as (3.200) in Proposition 3.44 does not belong to Ψ++. An

example of such ψ belonging to Ψ++ is given in Proposition 3.45.

Proposition 3.45. Let ψ2 : IRn × IRn → IR+ be given by

ψ2(x, y) :=
1

2
‖φ

FB
(x, y)+‖2, (3.202)

where φ
FB

is defined as (3.10). Then, the following results hold.

(a) ψ2 satisfies (3.196).

(b) ψ2 is differentiable at every (x, y) ∈ IRn × IRn Moreover, ∇xψ2(0, 0) = ∇yψ2(0, 0) =

0. If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), then

∇xψ2(x, y) =

(
LxL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y)+,

∇yψ2(x, y) =

(
LyL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y)+.

If (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn), then x2
1 + y2

1 6= 0 and

∇xψ2(x, y) =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+,

∇yψ2(x, y) =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+. (3.203)

(c) For every (x, y) ∈ IRn × IRn, we have

〈∇xψ2(x, y),∇yψ2(x, y)〉 ≥ 0,

and the equality holds whenever ψ2(x, y) = 0.

(d) For every (x, y) ∈ IRn × IRn, we have

〈x,∇xψ2(x, y)〉+ 〈y,∇yψ2(x, y)〉 = ‖φ
FB

(x, y)+‖2.

(e) ψ2 belongs to Ψ++.
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Proof. (a) Suppose ψ2(x, y) = 0 and 〈x, y〉 ≤ 0. Let z := −φ
FB

(x, y). Then (−z)+ =

φ
FB

(x, y)+ = 0 which says z ∈ Kn. Since x + y = (x2 + y2)1/2 + z, squaring both sides

and simplifying yield

2(x ◦ y) = 2

(
(x2 + y2)1/2 ◦ z

)
+ z2.

Now, taking trace of both sides and using the fact tr(x ◦ y) = 2〈x, y〉, we obtain

4〈x, y〉 = 4〈(x2 + y2)1/2, z〉+ 2‖z‖2. (3.204)

Since (x2 +y2)1/2 ∈ Kn and z ∈ Kn, then we know 〈(x2 +y2)1/2, z〉 ≥ 0 by Lemma 3.6(b).

Thus, the right hand-side of (3.204) is nonnegative, which togethers with 〈x, y〉 ≤ 0

implies 〈x, y〉 = 0. Therefore, with this, the equation (3.204) says z = 0 which is

equivalent to φ
FB

(x, y) = 0. Then by Proposition 3.2, we have x, y ∈ Kn. Conversely,

if x, y ∈ Kn and 〈x, y〉 = 0, then again Proposition 3.2 yields φ
FB

(x, y) = 0. Thus,

ψ2(x, y) = 0 and 〈x, y〉 ≤ 0.

(b) For the proof of part(b), we need to discuss three cases.

Case (1): If (x, y) = (0, 0), then for any h, k ∈ IRn, let µ1 ≤ µ2 be the spectral values and

let v(1), v(2) be the corresponding spectral vectors of h2 + k2. Hence, by Lemma 3.1(b),

‖(h2 + k2)1/2 − h− k‖ = ‖√µ1v
(1) +

√
µ2v

(2) − h− k‖
≤ √

µ1‖v(1)‖+
√
µ2‖v(2)‖+ ‖h‖+ ‖k‖

= (
√
µ1 +

√
µ2)/
√

2 + ‖h‖+ ‖k‖.

Also

µ1 ≤ µ2 = ‖h‖2 + ‖k‖2 + 2‖h1h2 + k1k2‖
≤ ‖h‖2 + ‖k‖2 + 2|h1|‖h2‖+ 2|k1|‖k2‖
≤ 2‖h‖2 + 2‖k‖2.

Combining the above two inequalities yields

ψ2(h, k)− ψ2(0, 0) =
1

2
‖φ

FB
(h, k)+‖2

≤ ‖φ
FB

(h, k)‖2

= ‖(h2 + k2)1/2 − h− k‖2

≤
(

(
√
µ1 +

√
µ2)/
√

2 + ‖h‖+ ‖k‖
)2

≤
(

2
√

2‖h‖2 + 2‖k‖2/
√

2 + ‖h‖+ ‖k‖
)2

= O(‖h‖2 + ‖k‖2),

where the first inequality is from Lemma 3.7. This shows that ψ2 is differentiable at

(0, 0) with

∇xψ2(0, 0) = ∇yψ2(0, 0) = 0.
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Case (2): If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), let z be factored as z = λ1u
(1) + λ2u

(2)

for any z ∈ IRn. Now, let g : IRn → IRn be defined as

g(z) :=
1

2
((z)+)2 = ĝ(λ1)u(1) + ĝ(λ2)u(2),

where ĝ : IR→ IR is given by ĝ(λ) := 1
2
(max(0, λ))2. From the continuous differentiability

of ĝ and Prop. 5.2 of [29], the vector-valued function g is also continuously differentiable.

Hence, the first component g1(z) = 1
2
‖(z)+‖2 of g(z) is continuously differentiable as well.

By an easy computation, we have ∇g1(z) = (z)+. Since ψ2(x, y) = g1(φ
FB

(x, y)) and φ
FB

is differentiable at (x, y) 6= (0, 0) with x2 + y2 ∈ int(Kn) (see [78, Corollary 5.2]). Hence,

the chain rule yields

∇xψ2(x, y) = ∇xφFB
(x, y)∇g1(φ

FB
(x, y)) =

(
LxL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y)+,

∇yψ2(x, y) = ∇yφFB
(x, y)∇g1(φ

FB
(x, y)) =

(
LyL

−1
(x2+y2)1/2

− I
)
φ

FB
(x, y)+.

Case (3): If (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn), by direct computation, we know

‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖ under this case. Since (x, y) 6= (0, 0), this also implies

x1x2 + y1y2 6= 0. We notice that we can not apply the chain rule as in case(2) since

φ
FB

is no longer differentiable at such (x, y) of case(3). By the spectral factorization, we

observe that

φ
FB

(x, y)+ = φ
FB

(x, y) ⇐⇒ φ
FB

(x, y) ∈ Kn
φ

FB
(x, y)+ = 0 ⇐⇒ φ

FB
(x, y) ∈ −Kn (3.205)

φ
FB

(x, y)+ = λ2u
(2) ⇐⇒ φ

FB
(x, y) 6∈ Kn ∪ −Kn,

where λ2 is the bigger spectral value of φ
FB

(x, y) and u(2) is the corresponding spectral

vector. Indeed, by applying Lemma 3.2, under this case, we have (as in [41, eq. (26)])

φ
FB

(x, y) =

(√
x2

1 + y2
1 − (x1 + y1),

x1x2 + y1y2√
x2

1 + y2
1

− (x2 + y2)

)
. (3.206)

Therefore, λ2 and u(2) are given as below:

λ2 =
√
x2

1 + y2
1 − (x1 + y1) + ‖w2‖, (3.207)

u(2) =
1

2

(
1,

w2

‖w2‖

)
,

where w2 = x1x2+y1y2√
x21+y21

− (x2 + y2). To prove the differentiability of ψ2 under this case, we

shall discuss the following three subcases according to the above observation (3.205).
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(i) If φ
FB

(x, y) 6∈ Kn ∪ −Kn then φ
FB

(x, y)+ = λ2u
(2) where λ2 and u(2) are given as in

(3.207). From the fact that ‖u(2)‖ = 1√
2
, we obtain

ψ2(x, y) =
1

2
‖φ

FB
(x, y)+‖2 =

1

4
λ2

2

=
1

4

[(√
x2

1 + y2
1 − (x1 + y1)

)2

+ 2

(√
x2

1 + y2
1 − (x1 + y1)

)
· ‖w2‖+ ‖w2‖2

]
.

Since (x, y) 6= (0, 0) in this case, ψ2 is differentiable clearly. Moreover, using the product

rule and chain rule for differentiation, the derivative of ψ2 with respect to x1 works out

to be

∂

∂x1

ψ2(x, y) =
1

4

[
2

(√
x2

1 + y2
1 − (x1 + y1)

)(
x1√
x2

1 + y2
1

− 1

)
+ 2

(
x1√
x2

1 + y2
1

− 1

)
‖w2‖

+2

(√
x2

1 + y2
1 − (x1 + y1)

)
· w

T
2∇x1w2

‖w2‖
+ 2wT

2∇x1w2

]
=

1

2

[(
x1√
x2

1 + y2
1

− 1

)(√
x2

1 + y2
1 − (x1 + y1) + ‖w2‖

)]
.

The last equality of the above expression is true because of

∇x1w2 =
x2 ·

√
x2

1 + y2
1 − (x1x2 + y1y2) · x1√

x21+y21

(x2
1 + y2

1)

=

1√
x21+y21

[
x2(x2

1 + y2
1)− (x2

1x2 + x1y1y2)

]
(x2

1 + y2
1)

=
x2

1x2 + y2
1x2 − x2

1x2 − x1y1y2

(
√
x2

1 + y2
1)3

= 0,

where the last equality holds by Lemma 3.2. Similarly, the gradient of ψ2 with respect

to x2 works out to be

∇x2ψ2(x, y) =
1

4

[
2

(√
x2

1 + y2
1 − (x1 + y1)

)∇x2w2 · w2

‖w2‖
+ 2∇x2w2 · w2

]
=

1

2

[(√
x2

1 + y2
1 − (x1 + y1)

)(
x1√
x2

1 + y2
1

− 1

)
w2

‖w2‖
+

(
x1√
x2

1 + y2
1

− 1

)
w2

]

=
1

2

[(
x1√
x2

1 + y2
1

− 1

)(√
x2

1 + y2
1 − (x1 + y1) + ‖w2‖

)
w2

‖w2‖

]
.
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Then, we can rewrite ∇xψ2(x, y) as

∇xψ2(x, y) =

[
∂
∂x1
ψ2(x, y)

∇x2ψ2(x, y)

]
:=

[
Ξ1

Ξ2

]
=

(
x1√
x2

1 + y2
1

− 1

)
λ2u

(2)

=

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+, (3.208)

where

Ξ1 :=
1

2

(
x1√
x2

1 + y2
1

− 1

)(√
x2

1 + y2
1 − (x1 + y1) + ‖w2‖

)
∈ IR

Ξ2 :=
1

2

(
x1√
x2

1 + y2
1

− 1

)(√
x2

1 + y2
1 − (x1 + y1) + ‖w2‖

)
w2

‖w2‖
∈ IRn−1.

(ii) If φ
FB

(x, y) ∈ Kn then φ
FB

(x, y)+ = φ
FB

(x, y) and hence ψ2(x, y) = 1
2
‖φ

FB
(x, y)+‖2 =

1
2
‖φ

FB
(x, y)‖2. Thus, by [41, Prop. 3.1(b)], we know that the gradient of ψ2 under this

subcase is as below:

∇xψ2(x, y) =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y) =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+(3.209)

∇yψ2(x, y) =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y) =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+.

If there is (x′, y′) such that φ
FB

(x′, y′) 6∈ Kn ∪−Kn and φ
FB

(x′, y′)→ φ
FB

(x, y) ∈ Kn (the

neighborhood of point belonging to this subcase). From (3.208) and (3.209), it can be

seen that

∇xψ2(x′, y′)→ ∇xψ2(x, y), ∇yψ2(x′, y′)→ ∇yψ2(x, y).

Thus, ψ2 is differentiable under this subcase.

(iii) If φ
FB

(x, y) ∈ −Kn then φ
FB

(x, y)+ = 0. Thus, ψ2(x, y) = 1
2
‖φ

FB
(x, y)+‖2 = 0 and it

is clear that its gradient under this subcase is

∇xψ2(x, y) = 0 =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+, (3.210)

∇yψ2(x, y) = 0 =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+.
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Again, if there is (x′, y′) such that φ
FB

(x′, y′) 6∈ Kn ∪ −Kn and φ
FB

(x′, y′)→ φ
FB

(x, y) ∈
−Kn (the neighborhood of point belonging to this subcase). From (3.208) and (3.210),

it can be seen that

∇xψ2(x′, y′)→ 0 = ∇xψ2(x, y), ∇yψ2(x′, y′)→ 0 = ∇yψ2(x, y).

Thus, ψ2 is differentiable under this subcase.

From the above, we complete the proof of this case and therefore the proof for part(b) is

done.

(c) We wish to show that 〈∇xψ2(x, y),∇yψ2(x, y)〉 ≥ 0 and the equality holds if and only

if ψ2(x, y) = 0. We follow the three cases as above.

Case (1): If (x, y) = (0, 0), by part (b), we know∇xψ2(x, y) = ∇yψ2(x, y) = 0. Therefore,

the desired equality holds.

Case (2): If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), by part (b), we have

〈∇xψ2(x, y), ∇yψ2(x, y)〉 = 〈(LxL−1
z − I)(φ

FB
)+, (LyL

−1
z − I)(φ

FB
)+〉

= 〈(Lx − Lz)L−1
z (φ

FB
)+, (Ly − Lz)L−1

z (φ
FB

)+〉(3.211)

= 〈(Ly − Lz)(Lx − Lz)L−1
z (φ

FB
)+, L

−1
z (φ

FB
)+〉.

Let S be the symmetric part of (Ly − Lz)(Lx − Lz). Then

S =
1

2

(
(Ly − Lz)(Lx − Lz) + (Lx − Lz)(Ly − Lz)

)
=

1

2

(
LxLy + LyLx − Lz(Lx + Ly)− (Lx + Ly)Lz + 2L2

z

)
=

1

2
(Lz − Lx − Ly)2 +

1

2
(L2

z − L2
x − L2

y).

Since z ∈ Kn and z2 = x2 + y2, Lemma 3.5 implies L2
z − L2

x − L2
y � O. Then (3.211)

yields

〈∇xψ2(x, y), ∇yψ2(x, y)〉
= 〈SL−1

z (φ
FB

)+, L
−1
z (φ

FB
)+〉

=
1

2
〈(Lz − Lx − Ly)2L−1

z (φ
FB

)+, L
−1
z (φ

FB
)+〉+

1

2
〈(L2

z − L2
x − L2

y)L
−1
z (φ

FB
)+, L

−1
z (φ

FB
)+〉

≥ 1

2
〈(Lz − Lx − Ly)2L−1

z (φ
FB

)+, L
−1
z (φ

FB
)+〉

=
1

2
‖Lφ

FB
L−1
z (φ

FB
)+‖2,

where the last equality uses Lz − Lx − Ly = Lz−x−y = Lφ
FB

. If the equality holds, then

the above relation yields ‖Lφ
FB
L−1
z (φ

FB
)+‖2 = 0 and, by Lemma 3.1(d),

Lφ
FB
L−1
z (φ

FB
)+ = φ

FB
◦ (L−1

z (φ
FB

)+) = L−1
z (φ

FB
)+ ◦ φFB

= 0.
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Since z = (x2 + y2)1/2 ∈ int(Kn) so that L−1
z � O (see Lemma 3.1(d)), multiplying L−1

z

both sides gives φ
FB
◦ (φ

FB
)+ = 0. From definition of Jordan product (1.2) and Lemma

3.6(a), it implies (φ
FB

)+ = 0; and hence ψ2 = 0. Conversely, if (φ
FB

)+ = 0, then it is

clear that 〈∇xψ2(x, y),∇yψ2(x, y)〉 = 0.

Case (3): If (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn), by part (b), we have

〈∇xψ2(x, y), ∇yψ2(x, y)〉 =

(
x1√
x2

1 + y2
1

− 1

)(
y1√
x2

1 + y2
1

− 1

)
‖φ

FB
(x, y)+‖2 ≥ 0.

If the equality holds, then either φ
FB

(x, y)+ = 0 or x1√
x21+y21

= 1 or y1√
x21+y21

= 1. In the

second case, we have y1 = 0 and x1 ≥ 0, so that Lemma 3.2 yields y2 = 0 and x1 = ‖x2‖.
In the third case, we have x1 = 0 and y1 ≥ 0, so that Lemma 3.2 yields x2 = 0 and

y1 = ‖y2‖. Thus, in these two cases, we have x ◦ y = 0, x ∈ Kn, y ∈ Kn. Then, by

(3.196), ψ2(x, y) = 0 .

(d) Again, we need to discuss the three cases as below.

Case (1): If (x, y) = (0, 0), by part (b), we know∇xψ2(x, y) = ∇yψ2(x, y) = 0. Therefore,

the desired equality holds.

Case (2): If (x, y) 6= (0, 0) and x2 + y2 ∈ int(Kn), by part (b), we have

∇xψ2(x, y) =

(
LxL

−1
z − I

)
φ

FB
(x, y)+,

∇yψ2(x, y) =

(
LyL

−1
z − I

)
φ

FB
(x, y)+,

where we let z := (x2 + y2)1/2. For simplicity, we will write φ(x, y)+ as φ+. Thus,

〈x,∇xψ2(x, y)〉+ 〈y,∇yψ2(x, y)〉 = 〈x, (LxL−1
z − I)(φ

FB
)+〉+ 〈y, (LyL−1

z − I)(φ
FB

)+〉
= 〈(L−1

z Lx − I)x, (φ
FB

)+〉+ 〈(L−1
z Ly − I)y, (φ

FB
)+〉

= 〈L−1
z Lxx+ L−1

z Lyy − x− y, (φFB
)+〉

= 〈L−1
z (x2 + y2)− x− y, (φ

FB
)+〉

= 〈L−1
z z2 − x− y, (φ

FB
)+〉

= 〈z − x− y, (φ
FB

)+〉
= ‖(φ

FB
)+‖2,

where the next-to-last equality follows from Lzz = z2, so that L−1
z z2 = z and the last

equality is from Lemma 3.6(a).
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Case (3): If (x, y) 6= (0, 0) and x2 + y2 6∈ int(Kn), by part(b), we have

∇xψ2(x, y) =

(
x1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+,

∇yψ2(x, y) =

(
y1√
x2

1 + y2
1

− 1

)
φ

FB
(x, y)+.

Thus,

〈x,∇xψ2(x, y)〉+ 〈y,∇yψ2(x, y)〉

=

(
x1√
x2

1 + y2
1

− 1

)
〈x, (φ

FB
)+〉+

(
y1√
x2

1 + y2
1

− 1

)
〈y, (φ

FB
)+〉

=

〈(
x1√
x2

1 + y2
1

− 1

)
x+

(
y1√
x2

1 + y2
1

− 1

)
y, (φ

FB
)+

〉

=

〈
x1x+ y1y√
x2

1 + y2
1

− x− y, (φ
FB

)+

〉
= 〈φ

FB
, (φ

FB
)+〉

= ‖(φ
FB

)+‖2,

where the next-to-last equality uses (3.206) and the last equality is from Lemma 3.6(a)

again.

(e) This is an immediate consequence of (a) through (d). �

We notice that (3.203) can be rewritten as

∇xψ2(x, y) = L−1
z

[
[z − x− y]+

]
◦ (x− z),

∇yψ2(x, y) = L−1
z

[
[z − x− y]+

]
◦ (y − z),

where z = (x2 + y2)1/2. This is a similar form as in [207, Lemma 7.2]. Nonetheless,

(3.203) cannot be rewritten as the above form since L−1
z does not exist whenever x2 + y2

is on the boundary of Kn. The next proposition is a result which is an extension of [207,

Proposition 7.1] for SDCP to the case of SOCCP. Though the ideas for arguments are

similar, we present the proof for completion.

Proposition 3.46. Let f
LT

: IRn → IR+ be given as (3.194) with ψ0 satisfying (3.195)

and ψ satisfying (3.196). Then, the following results hold.

(a) For all ζ ∈ IRn, we have f
LT

(ζ) ≥ 0 and f
LT

(ζ) = 0 if and only if ζ solves the

SOCCP.
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(b) If ψ0, ψ and F,G are differentiable, then so is f
LT

and

∇f
LT

(ζ) = ψ
′

0(〈F (ζ), G(ζ)〉)
[
∇F (ζ)G(ζ) +∇G(ζ)F (ζ)

]
+∇F (ζ)∇xψ(F (ζ), G(ζ))

+∇G(ζ)∇yψ(F (ζ), G(ζ)).

(c) Assume F,G are differentiable on IRn and ψ belongs to Ψ+ (respectively, Ψ++).

Then, for every ζ ∈ IRn where ∇G(ζ)−1∇F (ζ) is positive definite (respectively, pos-

itive semi-definite), either (i) f
LT

(ζ) = 0 or (ii) ∇f
LT

(ζ) 6= 0 with 〈d(ζ),∇f
LT

(ζ)〉 <
0, where

d(ζ) := −(∇G(ζ)−1)T
[
ψ
′

0(〈F (ζ), G(ζ)〉)G(ζ) +∇xψ(F (ζ), G(ζ))

]
.

Proof. (a) This consequence follows from (3.194) and (3.195)-(3.196).

(b) By direct computation and chain rule, the result follows.

(c) First, we consider the case of ψ ∈ Ψ++ and fix ζ ∈ IRn where ∇G(ζ)−1∇F (ζ)

is positive semi-definite. Let α := ψ
′
0(〈F (ζ), G(ζ)〉) and drop the argument “(ζ)” for

simplicity. Then

〈d,∇f
LT
〉

= 〈−(∇G−1)T (αG+∇xψ(F,G)),∇F (αG+∇xψ(F,G)) +∇G(αF +∇yψ(F,G))〉
= −〈αG+∇xψ(F,G),∇G−1∇F (αG+∇xψ(F,G))〉
−〈αG+∇xψ(F,G), αF +∇yψ(F,G)〉

≤ −〈αG+∇xψ(F,G), αF +∇yψ(F,G)〉

= −α2〈F,G〉 − α
(
〈F,∇xψ(F,G)〉+ 〈G,∇yψ(F,G)〉

)
− 〈∇xψ(F,G),∇yψ(F,G)〉

= −α2〈F,G〉 − 〈∇xψ(F,G),∇yψ(F,G)〉,

where the first inequality holds since∇G−1∇F is positive semi-definite and the inequality

follows from α ≥ 0 and equation (3.199). Now, we observe that tψ
′
0(t) > 0 if and only if

t > 0 since ψ0 is strictly increasing on [0,∞). Therefore, the first term on the right-hand

side is non-positive and equals zero if 〈F,G〉 ≤ 0. In addition, by equations (3.199)

and (3.201), the second term on the right-hand side is non-positive and equals zero only

if ψ(F,G) = 0. Thus, we have 〈d(ζ),∇f
LT

(ζ)〉 ≤ 0 and the equality holds only when

〈F (ζ), G(ζ)〉 ≤ 0 and ψ(F (ζ), G(ζ)) = 0, in which equation (3.196) implies ζ satisfies

(3.4), i.e., f
LT

(ζ) = 0.

Similar arguments can be applied for the case of ψ ∈ Ψ+ and ∇G(ζ)−1∇F (ζ) being

positive definite. �
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Next, we further consider another class of merit functions by modifying f
LT

a bit where

ψ0 is replaced by ψ∗0 : IRn → IR+ given as (3.198), i.e., ψ∗0(w) = 1
2
‖(w)+‖2. It is known

that the function ψ∗0 given in (3.198) is continuously differentiable (see [184, p. 255])

with ∇ψ∗0(w) = [w]+ (by the chain rule). In other words, we will study f̂
LT

: IRn → IR+

defined as (3.197)-(3.198):

f̂
LT

(ζ) := ψ∗0(F (ζ) ◦G(ζ)) + ψ(F (ζ), G(ζ)),

where ψ∗0 is given as (3.198) and ψ satisfies (3.196). By imitating the steps for proving

Proposition 3.46 and using Lemma 3.38 as below, we obtain Proposition 3.47, which is a

result analogous to Prop. 3.46. We omit its proof.

Proposition 3.47. Let f̂
LT

: IRn → IR+ be given as (3.197)-(3.198). Then, the following

results hold.

(a) For all x ∈ IRn, we have f̂
LT

(ζ) ≥ 0 and f̂
LT

(ζ) = 0 if and only if ζ solves the

SOCCP.

(b) If ψ∗0, ψ and F,G are differentiable, then so is f̂
LT

and

∇f̂
LT

(ζ) =

[
∇F (ζ)LG(ζ) +∇G(ζ)LF (ζ)

]
(F (ζ) ◦G(ζ))+

+∇F (ζ)∇xψ(F (ζ), G(ζ))

+∇G(ζ)∇yψ(F (ζ), G(ζ)).

We originally thought there should have parallel results to Proposition 3.46(c) for f̂
LT

and whose proofs are also similar. In other words, we wish to have the following:

Assume F,G are differentiable on IRn and ψ belongs to Ψ+ (respectively, Ψ++). Then,

for every ζ ∈ IRn where ∇G(ζ)−1∇F (ζ) is positive definite (respectively, positive semi-

definite), either (i) f̂
LT

(ζ) = 0 or (ii) ∇f̂
LT

(ζ) 6= 0 with 〈d(ζ),∇f̂
LT

(ζ)〉 < 0, where

d(ζ) := −(∇G(ζ)−1)T
[
LG(ζ) · (F (ζ) ◦G(ζ))+ +∇xψ(F (ζ), G(ζ))

]
.

However, we are not able to complete the arguments even though ψ∗0 is in relation to ψ0

in certain sense. We thank a referee for pointing this out. We suspect that there needs

more subtle properties of ψ∗0 to finish it.

The error bound is an important concept that indicates how close an arbitrary point

is to the solution set of SOCCP. Thus, an error bound may be used to provide stopping

criterion for an iterative method. As below, we establish propositions about the error

bound properties of f
LT

, f̂
LT

given as (3.194) and (3.197). We need some technical lemmas

as below to prove the error bound properties.
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Lemma 3.39. Let ψ1, ψ2 be given as (3.200) and (3.202), respectively. Then, ψ1 and

ψ2 satisfy the following inequality.

ψi(x, y) ≥ α

(
‖(−x)+‖2 + ‖(−y)+‖2

)
∀(x, y) ∈ IRn × IRn, (3.212)

for some positive constant α and i = 1, 2.

Proof. For ψ1, it is clear by definition (3.200) where α = 1
2
. For ψ2, the inequality is

still true, where α = 1
4
, due to Lemma 3.7. �

Lemma 3.40. Let ψ∗0 be given as (3.198). Then, ψ∗0 satisfies

ψ∗0(w) ≥ β‖(w)+‖2 ∀w ∈ IRn,

for some positive constant β.

Proof. It is clear by definition of ψ∗0 given as (3.198) where β = 1
2
. �

Proposition 3.48. Let f
LT

be given by (3.194)-(3.196) with ψ satisfying (3.212). Sup-

pose that F and G are jointly strongly monotone mapping from IRn to IRn and SOCCP

has a solution ζ∗. Then, there exists a scalar τ > 0 such that

τ‖ζ − ζ∗‖2 ≤ max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ∀ζ ∈ IRn. (3.213)

Moreover,

τ‖ζ − ζ∗‖2 ≤ ψ−1
0 (f

LT
(ζ)) +

√
2√
α
f
LT

(ζ)1/2 ∀ζ ∈ IRn, (3.214)

where α is a positive constant .

Proof. Since F and G are jointly strongly monotone, there exists a scalar ρ > 0 such

that, for any ζ ∈ IRn,

ρ‖ζ − ζ∗‖2

≤ 〈F (ζ)− F (ζ∗), G(ζ)−G(ζ∗)〉
= 〈F (ζ), G(ζ)〉+ 〈−F (ζ), G(ζ∗)〉+ 〈F (ζ∗),−G(ζ)〉
≤ max{0, 〈F (ζ), G(ζ)〉}+ 〈(−F (ζ))+, G(ζ∗)〉+ 〈F (ζ∗), (−G(ζ))+〉
≤ max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖ ‖G(ζ∗)‖+ ‖F (ζ∗)‖ ‖(−G(ζ))+‖

≤ max{1, ‖F (ζ∗)‖, ‖G(ζ∗)‖}
(

max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖
)
,

where the second inequality uses Lemma 1.1(b). Setting τ :=
ρ

max{1, ‖F (ζ∗)‖, ‖G(ζ∗)‖}
yields (3.213).
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Notice that ψ−1
0 is well-defined by (3.195), and by using that ψ0 is strictly increasing

on [0,∞), we thus have

max{0, 〈F (ζ), G(ζ)〉} ≤ ψ−1
0 (f

LT
(ζ)) .

In addition, it is clear that

ψ(F (ζ), G(ζ)) ≤ f
LT

(ζ).

Now using Lemma 3.39 and the above inequality, we obtain

‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ≤
√

2
(
‖(−F (ζ))+‖2 + ‖(−G(ζ))+‖2

)1/2

≤
√

2√
α
ψ(F (ζ), G(ζ))1/2

≤
√

2√
α
f
LT

(ζ)1/2.

Thus,

max{0, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ≤ ψ−1
0 (f

LT
(ζ)) +

√
2√
α
f
LT

(ζ)1/2.

This together with (3.213) yields (3.214). �

Proposition 3.49. Let f̂
LT

be given by (3.197)-(3.198) with ψ satisfying (3.212). Sup-

pose that F and G are jointly strongly monotone mapping from IRn to IRn and the SOCCP

has a solution ζ∗. Then, there exists a scalar τ > 0 such that

τ‖ζ − ζ∗‖2 ≤ ‖(F (ζ) ◦G(ζ))+‖+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ∀ζ ∈ IRn. (3.215)

Moreover,

τ‖ζ − ζ∗‖2 ≤
(

1√
β

+

√
2√
α

)
f̂
LT

(ζ)1/2 ∀ζ ∈ IRn, (3.216)

where α and β are positive constants.

Proof. Since F and G are jointly strongly monotone, there exists a scalar ρ > 0 such

that, for any ζ ∈ IRn,

ρ‖ζ − ζ∗‖2

≤ 〈F (ζ)− F (ζ∗), G(ζ)−G(ζ∗)〉
= 〈F (ζ), G(ζ)〉+ 〈−F (ζ), G(ζ∗)〉+ 〈F (ζ∗),−G(ζ)〉
≤ 〈F (ζ), G(ζ)〉+ 〈(−F (ζ))+, G(ζ∗)〉+ 〈F (ζ∗), (−G(ζ))+〉
≤ 〈F (ζ), G(ζ)〉+ ‖(−F (ζ))+‖ ‖G(ζ∗)‖+ ‖F (ζ∗)‖ ‖(−G(ζ))+‖
≤
√

2‖(F (ζ) ◦G(ζ))+‖+ ‖(−F (ζ))+‖ ‖G(ζ∗)‖+ ‖F (ζ∗)‖ ‖(−G(ζ))+‖

≤ max{
√

2, ‖F (ζ∗)‖, ‖G(ζ∗)‖}
(
‖(F (ζ) ◦G(ζ))+‖+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖

)
,
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where the second inequality uses Lemma 1.1(b) while the fourth inequality is from (3.18).

Then, setting τ :=
ρ

max{
√

2, ‖F (ζ∗)‖, ‖G(ζ∗)‖}
yields (3.215).

Moreover, by Lemma 3.40, we have

‖(F (ζ) ◦G(ζ))+‖ ≤
1√
β
ψ∗0(F (ζ) ◦G(ζ))1/2 ≤ 1√

β
f̂
LT

(ζ)1/2,

and (as in Proposition 3.48)

‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ≤
√

2
(
‖(−F (ζ))+‖2 + ‖(−G(ζ))+‖2

)1/2

≤
√

2√
α
ψ(F (ζ), G(ζ))1/2

≤
√

2√
α
f̂
LT

(ζ)1/2,

where the second inequality is true by Lemma 3.39. Thus,

‖(F (ζ) ◦G(ζ))+‖+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖ ≤
(

1√
β

+

√
2√
α

)
f̂
LT

(ζ)1/2.

This together with (3.215) yields (3.216). �

Now, we give conditions under which f
LT

, f̂
LT

has bounded level sets in Proposition

3.50 and Proposition 3.51, respectively. We need the next lemma which is key to proving

the properties of bounded level sets.

Lemma 3.41. Let ψ1, ψ2 be given by (3.200) and (3.202), respectively. For any {(xk, yk)}∞k=1 ⊆
IRn × IRn, let λk1 ≤ λk2 and µk1 ≤ µk2 denote the spectral values of xk and yk, respectively.

Then, the following results hold.

(a) If λk1 → −∞ or µk1 → −∞, then ψi(x
k, yk)→∞, for i = 1, 2.

(b) Suppose that {λk1} and {µk1} are bounded below. If λk2 → ∞ or µk2 → ∞, then

〈x, xk〉+ 〈y, yk〉 → ∞ for any x, y ∈ int(Kn).

Proof. (a) For ψ1, the proof follows by the fact that

2‖(−xk)+‖2 =
2∑
i=1

(
max{0,−λki }

)2

and similarly for ‖(−yk)+‖2; see [78, Property 2.2 and Proposition 3.3].

For ψ2, using the same fact plus Lemma 3.7 leads to the desired result.
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(b) Fix any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1 with ‖x2‖ < x1, ‖y2‖ < y1. Using the

spectral decomposition

xk =

(
λk1 + λk2

2
,
λk2 − λk1

2
wk2

)
with ‖wk2‖ = 1,

we have

〈x, xk〉 =

(
λk1 + λk2

2

)
x1 +

(
λk2 − λk1

2

)
xT2w

k
2 =

λk1
2

(x1−xT2wk2) +
λk2
2

(x1 +xT2w
k
2). (3.217)

Since ‖wk2‖ = 1, we have x1 − xT2wk2 ≥ x1 − ‖x2‖ > 0 and x1 + xT2w
k
2 ≥ x1 − ‖x2‖ > 0.

Since {λk1} is bounded below, the first term on the right-hand side of (3.217) is bounded

below. If {λk2} → ∞, then the second term on the right-hand side of (3.217) tends to

infinity. Hence, 〈x, xk〉 → ∞. A similar argument shows that 〈y, yk〉 is bounded below.

Thus, 〈x, xk〉+ 〈y, yk〉 → ∞. If {µk2} → ∞, the argument is symmetric to the one above.

�

Proposition 3.50. Let f
LT

be given as (3.194)-(3.196) with ψ satisfying the condition

of Lemma 3.41(a). Suppose that F,G are differentiable, jointly monotone mappings from

IRn to IRn satisfying

lim
‖ζ‖→∞

(
‖F (ζ)‖+ ‖G(ζ)‖

)
=∞. (3.218)

Suppose also that SOCCP is strictly feasible, i.e., there exists ζ̄ ∈ IRn such that F (ζ̄), G(ζ̄) ∈
int(Kn). Then, the level set

L(γ) := {ζ ∈ IRn | f
LT

(ζ) ≤ γ}

is bounded for all γ ≥ 0.

Proof. Suppose there exists an unbounded sequence {ζk} ⊆ L(γ) for some γ ≥ 0. It

can be seen that the sequence of the smaller spectral values of {F (ζk)} and {G(ζk)} are

bounded below. In fact, if not, it follows from Lemma 3.41(a) that ψ(F (ζk), G(ζk))→∞.

Thus, we have f
LT

(ζk)→∞, which contradicts {ζk} ⊆ L(γ). Therefore, the unbounded-

ness of {ζk} and (3.218) yield that the sequence of the bigger spectral values of {F (ζk)}
or {G(ζk)} tends to infinity. Since F,G are jointly monotone, we have

〈F (ζk)− F (ζ̄) , G(ζk)−G(ζ̄)〉 ≥ 0,

which is equivalent to

〈F (ζk), G(ζ̄)〉+ 〈F (ζ̄), G(ζk)〉 ≤ 〈F (ζk), G(ζk)〉+ 〈F (ζ̄), G(ζ̄)〉. (3.219)

Then, by Lemma 3.41(b) and F (ζ̄), G(ζ̄) ∈ int(Kn), we obtain 〈F (ζk), G(ζ̄)〉+〈F (ζ̄), G(ζk)〉 →
∞, which together with (3.219) lead to 〈F (ζk), G(ζk)〉 → ∞. Thus, f

LT
(ζk)→∞. But,

this contradicts {ζk} ⊆ L(γ). Hence, we proved that L(γ) is bounded. �
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Proposition 3.51. Let f̂
LT

be given as (3.197)-(3.198) with ψ satisfying the condition

of Lemma 3.41(a). Suppose that F,G are differentiable, jointly monotone mappings from

IRn to IRn satisfying

lim
‖ζ‖→∞

(
‖F (ζ)‖+ ‖G(ζ)‖

)
=∞.

Suppose also that the SOCCP is strictly feasible, i.e., there exists ζ̄ ∈ IRn such that

F (ζ̄), G(ζ̄) ∈ int(Kn). Then, the level set

L(γ) := {ζ ∈ IRn | f̂
LT

(ζ) ≤ γ}
is bounded for all γ ≥ 0.

Proof. The arguments are similar to those in Proposition 3.50, so we omit the proof.

�

3.2 Complementarity Functions associated with Pos-

itive Semidefinite cone

The study of C-functions associated with the positive semidefinite cone has received

considerable attention in the literature. A foundational contribution is due to Tseng

[207], who investigated several important instances, including the gap function, the reg-

ularized gap function, the implicit Lagrangian function, the squared Fischer-Burmeister

(FB) function, and the LT-type functions. Further developments include the work of

Yamashita and Fukushima [220], who explored a variant of the LT-type C-function, and

Kanzow and Nagel [117], who examined FB-type variants tailored to the positive semidef-

inite cone. The differential properties of these functions were subsequently analyzed

by Zhang, Zhang, and Pang [231]. Notably, Sun and Sun [198] established the strong

semismoothness of the FB function, while Bonnans, Pang, and Cominetti [9] discussed

nonsingularity conditions for semidefinite programming based on FB-type C-functions.

In recent years, however, there has been limited advancement in the construction or

extension of C-functions specifically for the positive semidefinite cone. This is largely

because many developments within the broader framework of symmetric cones in the

past decade naturally encompass the positive semidefinite case as a special instance. In

what follows, we present a selection of representative C-functions within this setting.

Let Sn be the space of n×n real symmetric matrices endowed with the inner product

〈X, Y 〉 := tr(XY ), for any X, Y ∈ Sn,

where “tr” denotes the trace, that is, the sum of the diagonal entries. Then, the SDCP

(standing for positive semidefinite complementarity problem) is to find a matrix X ∈ Sn
such that

G(X) ∈ Sn+, F (X) ∈ Sn+, 〈G(X), F (X)〉 = 0, (3.220)
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where G,F : Sn → Sn and Sn+ represents the positive semidefinite cone. If G is the

identity mapping, then (3.220) reduces to

X ∈ Sn+, F (X) ∈ Sn+, 〈X,F (X)〉 = 0. (3.221)

When F : Sn → Sn is affine, the SDCP (3.221) is called the positive semidefinite linear

complementarity problem (SDLCP). Moreover, when Sn is restricted to the space of

diagonal matrices, the SDCP (3.221) reduces to an NCP again.

Proposition 3.52. Let the gap function ψgap : Sn → IR be defined as

ψgap(X) = max
Z∈Sn+

{〈F (X), X − Z〉} . (3.222)

Then, the function ψgap defined as in (3.222) is a C-function associated with positive

semidefinite cone. In other words,

ψgap(X) = 0 ⇐⇒ X ∈ Sn+, F (X) ∈ Sn+, 〈X,F (X)〉 = 0.

Proof. Please see Proposition 3.1 and Proposition 3.2 in [207]. �

Proposition 3.53. For any α ∈ (0,∞), define the regularized gap function ψr−gap :

Sn × Sn → IR as

ψr−gap(X, Y ) = max
Z∈Sn+

{
〈X, Y − Z〉 − 1

2α
‖Y − Z‖2

}
. (3.223)

Then, the function ψr−gap defined as in (3.223) is a differentiable C-function associated

with positive semidefinite cone. In other words,

ψr−gap(X, Y ) = 0 ⇐⇒ X ∈ Sn+, Y ∈ Sn+, 〈X, Y 〉 = 0.

Proof. Please see Lemma 4.1 and Proposition 4.1 in [207]. �

Proposition 3.54. For any α ∈ (0,∞), define the Implicit Lagrangian function ψ
MS

:

Sn × Sn → IR as

ψ
MS

(X, Y )

= max
Z1,Z2∈Sn+

{
〈X, Y − Z1〉 − 〈Z2, Y 〉 −

1

2α

(
‖X − Z2‖2 + ‖Y − Z1‖2

)}
= 〈X, Y 〉+

1

2α

(
‖(X − αY )+‖2 − ‖X‖2 + ‖(Y − αX)+‖2 − ‖Y ‖2

)
. (3.224)

Then, the function ψ
MS

defined as in (3.224) is a differentiable C-function associated with

positive semidefinite cone. In other words,

ψ
MS

(X, Y ) = 0 ⇐⇒ X ∈ Sn+, Y ∈ Sn+, 〈X, Y 〉 = 0.
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Proof. Please see Lemma 5.1 and Proposition 5.1 in [207]. �

Proposition 3.55. Let the Fischer-Burmeister function φ
FB

: Sn × Sn → Sn be defined

as

φ
FB

(X, Y ) =
√
X2 + Y 2 − (X + Y ), ∀X, Y ∈ Sn. (3.225)

Its induced merit function ψ
FB

: Sn × Sn → IR is given by

ψ
FB

(X, Y ) =
1

2
‖φ

FB
(X, Y )‖2 . (3.226)

Then, both function φ
FB

and ψ
FB

are C-function associated with positive semidefinite

cone. In other words,

ψ
FB

(X, Y ) = 0 ⇐⇒ φ
FB

(X, Y ) = 0 ⇐⇒ X ∈ Sn+, Y ∈ Sn+, 〈X, Y 〉 = 0.

Proof. The proof is first proposed by Tseng, please see Lemma 6.1 and Proposition 6.1

in [207]. There is an alternative proof by using the simple result that for X, Y ∈ Sn+,

there holds

XY = 0 ⇐⇒ X • Y = 0

where X • Y = tr(XY ) = 1
2
(XY + Y X). Please refer to [117, Proposition 2.2] for more

details. �

The directional derivatives, the B-subdifferential, and the generalized Jacobian of the

Fischer-Burmeister function φ
FB

, as defined in (3.225), were thoroughly characterized in

[231]. These results provide a foundational basis for analyzing the convergence behavior

of nonsmooth function approaches to solving the semidefinite complementarity problem

(SDCP) (3.220). Furthermore, the equivalent conditions for the nonsingularity of the

generalized Jacobian of φ
FB

were established in [9]. In addition, the associated merit

function ψ
FB

, defined as in (3.226), was shown in [199] to be an LC1 function, that is, it

is continuously differentiable and possesses a Lipschitz continuous gradient mapping.

Proposition 3.56. Let the LT-type function ψ
LT

: Sn × Sn → IR be defined by

ψ
LT

(X, Y ) = ψ0 (〈X, Y 〉) + ψ(X, Y ), (3.227)

where ψ0 : IR→ IR+ satisfies

ψ0(t) = 0 ⇐⇒ t ≤ 0, (3.228)

and ψ : Sn × Sn → IR+ satisfies

ψ(X, Y ) = 0, 〈X, Y 〉 ≤ 0 ⇐⇒ X ∈ Sn+, Y ∈ Sn+, 〈X, Y 〉 = 0. (3.229)

Then, the function ψ
LT

defined as in (3.227)-(3.228) is a differentiable C-function asso-

ciated with positive semidefinite cone. In other words,

ψ
LT

(X, Y ) = 0 ⇐⇒ X ∈ Sn+, Y ∈ Sn+, 〈X, Y 〉 = 0.
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Proof. Two examples of ψ satisfying (3.229) were considered in [207]:

ψ(X, Y ) =
1

2

(
‖(X)−‖2 + ‖(Y )−‖2

)
, ψ(X, Y ) =

1

2

∥∥(φ
FB

(X, Y ))+

∥∥2
.

Although both functions satisfy (3.229), they still have different features. For instance,

while both choices are differentiable, only the first one is convex. For detailed arguments,

please see Lemma 7.1, Lemma 7.2, and Proposition 5.1 in [207]. �

Proposition 3.57. Let the function ψ
YF

: Sn × Sn → IR be defined by

ψ
YF

(X, Y ) =
1

4
max

{
0, 〈X, Y 〉

}4
+

1

2
‖φ

FB
(X, Y )‖2 . (3.230)

Then, the function ψ
YF

defined as in (3.230) is a differentiable C-function associated with

positive semidefinite cone. In other words,

ψ
YF

(X, Y ) = 0 ⇐⇒ X ∈ Sn+, Y ∈ Sn+, 〈X, Y 〉 = 0.

Proof. Please see Lemma 2.2, Lemma 2.3, Theorem 3.1, and Theorem 3.2 in [220]. �

It was noted in [220] that if the second term in (3.230) is replaced by 1
2
|φ

FB
(X, Y )+|2,

the resulting function falls within the class of LT-type functions as defined in (3.227).

In the context of NCP, the function ψ
LT

is known to exhibit convexity under certain

conditions [143]. However, this favorable property does not extend to the setting of the

positive semidefinite cone. From the authors’ perspective, the function ψ
YF

is structurally

simpler than ψ
LT

, as it avoids the projection onto the cone of positive semidefinite matri-

ces, Sn+. Moreover, [220] also investigated the boundedness of level sets and established

error bound results based on the merit function ψ
FB

.

Proposition 3.58. Let the function φ
NR

: Sn × Sn → Sn be defined as

φ
NR

(X, Y ) = X − (X − Y )+. (3.231)

Then, the function φ
NR

defined as in (3.231) satisfies

φ
NR

(X, Y ) = 0 ⇐⇒ X ∈ Sn+, Y ∈ Sn+, XY = 0.

Moreover, if we define φτ
NR

: Sn × Sn → Sn as

φτ
NR

(X, Y ) =
√

(X − Y )2 + 4τ 2I − (X + Y ), τ > 0. (3.232)

Then, the function φτ
NR

defined as in (3.232) satisfies

φτ
NR

(X, Y ) = 0 ⇐⇒ X � O, Y � O, XY = τ 2I.
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Proof. The function φτ
NR

is a smmoothed NR function, which is also called Chen-Harker-

Kanzow-Smale smoothing function in the literature. It is defined by observing

ϕ(a, b) = 2 min{a, b} = (a+ b)− |a− b| = (a+ b)−
√

(a− b)2.

Please see Proposition 2.3 and Proposition 2.4 in [117] for the proof. �

As noted in Section 3.1, the second-order cone complementarity problem (SOCCP)

can be reformulated as a semidefinite complementarity problem (SDCP) by observing

that, for any x = (x1, x2) ∈ IR× IRn−1, the condition x ∈ Kn holds if and only if

Lx :=

[
x1 xT2
x2 x1I

]
is positive semidefinite (see also [78, p. 437] and [190]). However, this reformulation comes

at the cost of a dimensional increase from n to n(n+1)/2, and it remains unclear whether

this increase can be efficiently alleviated by exploiting the special “arrow” structure of Lx.

For this reason, it remains meaningful, particularly from the standpoint of applications,

to study C-functions tailored separately to the second-order cone and the cone of positive

semidefinite matrices Sn+.

3.3 Complementarity Functions associated with Sym-

metric Cone

It is natural to pursue the extension of the C-functions discussed in Chapter 2 and Section

3.1 to the broader setting of general symmetric cones. At first glance, such extensions

may appear straightforward, given the unifying framework provided by Euclidean Jordan

algebras, which encompass second-order cones, positive semidefinite cones, and symmet-

ric cones. However, the analytical challenges are often greater than expected, primarily

due to the lack of an explicit spectral decomposition formula in the general symmetric

cone setting. When an extension avoids reliance on spectral decomposition, the anal-

ysis is relatively tractable. In what follows, we begin with a few merit functions and

C-functions that are more amenable to such treatment.

Several researchers have contributed to the development of merit and C-functions

for symmetric cones. Notably, Liu, Zhang, and Wang [140] extended a class of merit

functions originally proposed in [120] to the symmetric cone complementarity problem

(SCCP) (3.234). Kong, Tuncel, and Xiu [127] studied the extension of the implicit

Lagrangian function introduced by Mangasarian and Solodov [147] to the symmetric

cone setting. In addition, Kong, Sun, and Xiu [126] proposed a regularized smoothing

method for solving the SCCP (3.234), based on the natural residual complementarity

function associated with symmetric cones.
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3.3.1 Existing C-functions associated with Symmetric Cone

Given a Euclidean Jordan algebra (V, ◦, 〈·, ·〉) where V is a finite dimensional vector space

over the real field IR endowed with the inner product 〈·, ·〉 and “◦” denotes the Jordan

product. Let K be a symmetric cone in V and G,F : V → V be nonlinear transforma-

tions assumed to be continuously differentiable throughout this section. Consider the

symmetric cone complementarity problem (SCCP) of finding ζ ∈ V such that

G(ζ) ∈ K, F (ζ) ∈ K, 〈G(ζ), F (ζ)〉 = 0. (3.233)

If G is the identity mapping, then the SCCP (3.233) reduces to

ζ ∈ K, F (ζ) ∈ K, 〈ζ, F (ζ)〉 = 0, (3.234)

The model provides a simple, natural and unified framework for various existing comple-

mentarity problems such as the nonnegative orthant nonlinear complementarity problem

(NCP), the second-order cone complementarity problem (SOCCP), and the semidefinite

complementarity problem (SDCP). In addition, the model itself is closely related to the

KKT optimality conditions for the convex symmetric cone program (CSCP):

min g(x)

s.t. 〈ai, x〉 = bi, i = 1, 2, . . . ,m,

x ∈ K,

where ai ∈ V, bi ∈ IR for i = 1, 2, . . . ,m, and g : V→ IR is a convex twice continuously

differentiable function. Therefore, the SCCP has wide applications in engineering, eco-

nomics, management science and other fields; see [5, 63, 141, 210] and references therein.

Recall the differentiable NCP function φ
MS

introduced in (2.11), originally proposed

by Mangasarian and Solodov. This function also serves as a merit function and is defined

as

φ
MS

(a, b) = ab+
1

2α

(
[a− αb]2+ − a2 + [b− αa]2+ − b2

)
, α > 1.

As in the SOC setting, see (3.8) and (3.9), there are two natural approaches to extend this

function to the framework of symmetric cones. In this context, for any α > 0 with α 6= 1,

we define the associated real-valued implicit Lagrangian function ψ
MS

: IRn × IRn → IR+

as follows:

ψ
MS

(x, y) = 〈x, y〉+
1

2α

(
‖(x− αy)+‖2 − ‖x‖2 + ‖(y − αx)+‖2 − ‖y‖2

)
. (3.235)

and the vector-valued implicit Lagrangian function, φ
MS

: IRn × IRn → IRn, by

φ
MS

(x, y) := x ◦ y +
1

2α

[
(x− αy)2

+ − x2 + (y − αx)2
+ − y2

]
. (3.236)
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Here, [·]+ denotes the metric projection onto K and x2 = x ◦ x. The requirement of the

parameter α > 0 with α 6= 1 is due to the below observation in [127]. When α = 1, it is

noted that

φ
MS

(x, y) = x ◦ y +
1

2

[
(x− y)2

+ − x2 + (y − x)2
+ − y2

]
= x ◦ y +

1

2

[
(x− y)2

+ − x2 + (x− y)2
− − y2

]
= x ◦ y +

1

2

[
(x− y)2 − x2 − y2

]
= 0.

Proposition 3.59 establishes that both the real-valued and vector-valued implicit La-

grangian functions qualify as C-functions associated with the symmetric cone. It also

outlines several of their key properties.

Proposition 3.59. Let ψ
MS

and φ
MS

be defined as in (3.235) and (3.236), respectively.

Then, the following hold.

(a) Both ψ
MS

and φ
MS

are C-functions associated with symmetric cone. In other words,

ψ
MS

(x, y) = 0 ⇐⇒ φ
MS

(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0,

(b) For α > 1, ψ
MS

(x, y) ≥ 0, whereas ψ
MS

(x, y) ≤ 0, for 0 < α < 1.

(c) ψ
MS

(x, y) = 〈e, φ
MS

(x, y)〉, where e is the identity element of V.

(d) φ
MS

is strongly semismooth.

(e) ψ
MS

is continuously differentiable with ∇ψ
MS

(x, y) = ∇φ
MS

(x, y)Te.

Proof. Part(a) uses the fact that (x− αy)+ is the unique solution to the problem:

min
z∈K
〈αy, z − x〉+

1

2
‖z − x‖2.

Then, in terms of the so-called regularized gap function, the arguments proceed. Please

see [127, Theorem 3.2] and [127, Theorem 4.1] for details.

Parts (b)–(c) are derived from [127, Theorem 4.1], part (d) from [127, Theorem 3.4], and

part (e) from [127, Lemma 4.2]. �

Likewise, the vector-valued Fischer Burmeister function in the setting of symmetric

cone is defined by

φ
FB

(x, y) := (x2 + y2)1/2 − (x+ y), (3.237)

and the vector-valued natural residual function is

φ
NR

(x, y) := x− (x− y)+, (3.238)
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where (·)+ denotes the metric projection on K. Here, x2 = x ◦ x, x1/2 is a vector such

that (x1/2)2 = x, and x + y means the usual componentwise addition of vectors. Note

that φ
NR

is already a C-function associated with symmetric cone due to Proposition 1.3.

Nonetheless, both φ
FB

and φ
NR

functions were shown to be C-functions in [85, Proposition

6].

Proposition 3.60. [85, Proposition 6] Let φ
FB

and φ
NR

be defined as in (3.237) and

(3.238), respectively. Then, both φ
FB

and φ
NR

are C-functions associated with symmetric

cone. In other words,

φ
FB

(x, y) = 0 ⇐⇒ φ
NR

(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0,

Proof. Using the following equivalent properties [85, Proposition 6]:

x ∈ K, y ∈ K, 〈x, y〉 = 0

⇐⇒ x ∈ K, y ∈ K, x ◦ y = 0

⇐⇒ x+ y = (x2 + y2)1/2

⇐⇒ x = [x− y]+

Then, the desired results follow. �

Proposition 3.61. [10, Theorem 3.1] Let φ
FB

and φ
NR

be defined as in (3.237) and

(3.238), respectively. Then, there holds

(2−
√

2) ‖φ
NR

(x, y)‖ ≤ ‖φ
FB

(x, y)‖ ≤ (2 +
√

2) ‖φ
NR

(x, y)‖ .

Proof. The proof proceeds by considering various values of the rank r associated with

the Euclidean Jordan algebra. For detailed arguments, please refer to [10, Theorem 3.1].

�

The strong semismoothness of φ
NR

has already been established in [197], whereas

the corresponding property for φ
FB

remains an open question. In particular, Chang,

Chen, and Pan investigated this issue in [17] and demonstrated that φ
FB

is strongly

semismooth in the Euclidean Jordan algebras Ln, Sn, Hn, and Qn. This constitutes

an almost complete resolution, with the sole exception being the algebra O3, the space

of 3 × 3 Hermitian matrices over octonions, also known as the Albert algebra. The

inability to draw a definitive conclusion in this case arises from the non-associativity of

the octonion algebra O, which prevents representing its elements as real matrices. For

further details, the reader is referred to [17].

According to φ
NR

, φ
FB

, and ψ
MS

given as in (3.238), (3.237), and (3.235), respectively,
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there induce merit functions ψ
NR

(ζ), ψ
FB

(ζ), and ψ
MS

(ζ) as below:

ψ
NR

(ζ) := ‖φ
NR

(ζ, F (ζ))‖2, (3.239)

ψ
FB

(ζ) :=
1

2
‖φ

FB
(ζ, F (ζ))‖2 ,

ψ
MS

(ζ) := 2α〈ζ, F (ζ)〉+
{
‖(−αF (ζ) + ζ)+‖2 − ‖ζ‖2

+‖(−αζ + F (ζ))+‖2 − ‖F (ζ)‖2
}
. (3.240)

Proposition 3.62. Let ψ
NR

and ψ
MS

be defined as in (3.239) and (3.240), respectively.

For each α > 1, the following holds:

2(α− 1)ψ
NR

(ζ) ≤ ψ
MS

(ζ) ≤ 2α(α− 1)ψ
NR

(ζ), ∀ζ ∈ V. (3.241)

Proof. For convenience, we denote

f(ζ, α) := −〈αF (ζ), (ζ − αF (ζ))+ − ζ〉 −
1

2
‖(ζ − αF (ζ))+ − ζ‖2 .

We point out that there is another expression for f(x, α) as given below, see [77, Theorem

3.1].

f(x, α) = max
y∈K
−
〈
αF (ζ) +

1

2
(y − ζ), y − ζ

〉
= −

〈
αF (ζ) +

1

2
((ζ − αF (ζ))+ − ζ), (ζ − αF (ζ))+ − ζ

〉
(3.242)

≥ −
〈
αF (ζ) +

1

2
((ζ − F (ζ))+ − ζ), (ζ − F (ζ))+ − ζ

〉
.

Now, we compute

1

α
f(ζ, α) = −〈F (ζ), (ζ − αF (ζ))+ − ζ〉 −

1

2α
‖(ζ − αF (ζ))+ − ζ‖2

= 〈ζ, F (ζ)〉+
1

α
〈ζ − αF (ζ), (ζ − αF (ζ))+〉 −

1

2α
‖(ζ − αF (ζ))+‖2 − 1

2α
‖ζ‖2

= 〈ζ, F (ζ)〉+
1

2α

(
‖(ζ − αF (ζ))+‖2 − ‖ζ‖2

)
.

Likewise,

f(ζ, 1) = −
〈
F (ζ) +

1

2
((ζ − F (ζ))+ − ζ), (ζ − F (ζ))+ − ζ

〉
and

αf(ζ,
1

α
) = − 1

2α

(
‖(−αζ + F (ζ))+‖2 − ‖F (ζ)‖2

)
.
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Combining the above two equations, we obtain an identity for ψ
MS

(x)

ψ
MS

(ζ) = 2α

(
1

α
f(ζ, α)− αf(ζ,

1

α
)

)
. (3.243)

To show the desired two inequalities, we proceed by two steps. The first step is to verify

the left-hand side of (3.241). To see this,

ψ
MS

(ζ) = 2α

(
1

α
f(ζ, α)− αf(ζ,

1

α
)

)
= 2α

(
1

α
f(ζ, α)− f(ζ, 1)

)
+ 2α

(
f(ζ, 1)− αf(ζ,

1

α
)

)
≥ 2α

[
− 〈F (ζ), (ζ − F (ζ))+ − ζ〉 −

1

2α
‖(ζ − F (ζ))+ − ζ‖2

+〈F (ζ), (ζ − F (ζ))+ − ζ〉+
1

2
‖(ζ − F (ζ))+ − ζ‖2

]
+ 2α

(
f(ζ, 1)− αf(ζ,

1

α
)

)
= 2α

α− 1

2α
ψ

NR
(ζ) + 2α

(
f(ζ, 1)− αf(ζ,

1

α
)

)
= (α− 1)ψ

NR
(ζ) + 2α

[
− 〈F (ζ), (ζ − F (ζ))+ − ζ〉 −

1

2
‖(ζ − F (ζ))+ − ζ‖2

+
〈
F (ζ), (ζ − 1

α
F (ζ))+ − ζ

〉
+
α

2
‖(ζ − 1

α
F (ζ))+ − ζ‖2

]
≥ (α− 1)ψ

NR
(ζ) + 2α

α− 1

2α
ψ

NR
(ζ)

= 2(α− 1)ψ
NR

(ζ),

where the first inequality follows from (3.242). Next, we verify the right-hand side of
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(3.241). To this end, we observe two things:

1

α
f(ζ, α)− f(x, 1)

= −〈F (ζ), (ζ − αF (ζ))+ − ζ〉 −
1

2α
‖(ζ − αF (ζ))+ − ζ‖2

+〈F (ζ), (ζ − F (ζ))+ − ζ〉+
1

2
‖(ζ − F (ζ))+ − ζ‖2

=
α− 1

2α
ψ

NR
(ζ) +

1

2α
ψ

NR
(ζ)− 1

2α
‖(ζ − αF (ζ))+ − ζ‖2

+〈F (ζ), (ζ − F (ζ))+ − (ζ − αF (ζ))+〉

=
α− 1

2
ψ

NR
(ζ)− (α− 1)2

2α
ψ

NR
(ζ)

− 1

2α
‖(ζ − αF (ζ))+ − (ζ − F (ζ))+‖2 +

1

α
‖(ζ − F (ζ))+ − ζ‖2

− 1

α
〈(ζ − αF (ζ))+ − ζ, (ζ − F (ζ))+ − ζ〉

+〈F (ζ), (ζ − F (ζ))+ − (ζ − αF (ζ))+〉
=

α− 1

2
ψ

NR
(ζ)

− 1

2α
‖(α− 1)(ζ − (ζ − F (ζ))+) + (ζ − αF (ζ))+ − (ζ − F (ζ))+‖2

−〈(ζ − F (ζ))+ − ζ + F (ζ), (ζ − αF (ζ))+ − (ζ − F (ζ))+〉
≤ α− 1

2
ψ

NR
(ζ)

and

f(ζ, 1)− αf(ζ,
1

α
)

= −〈F (ζ), (x− F (ζ))+ − ζ〉 −
1

2
‖(ζ − F (ζ))+ − ζ‖2

+〈F (ζ), (x− 1

α
F (ζ))+ − ζ〉+

α

2

∥∥∥∥(ζ − 1

α
F (ζ))+ − ζ

∥∥∥∥2

= max
y∈K
−〈F (ζ) +

1

2
(y − ζ), y − ζ〉+ αmin

y∈K
〈 1
α
F (ζ) +

1

2
(y − ζ), y − ζ〉

≤ −
〈
F (ζ) +

1

2
((ζ − F (ζ))+ − ζ), (ζ − F (ζ))+ − ζ

〉
+
〈
F (ζ) +

α

2
((ζ − F (ζ))+ − ζ), (ζ − F (ζ))+ − ζ

〉
=

α− 1

2
‖(ζ − F (ζ))+ − ζ‖2

=
α− 1

2
ψ

NR
(ζ).
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The above two expressions together with the identity (3.243) yield

ψ
MS

(ζ) ≤ 2α

(
α− 1

2
ψ

NR
(ζ) +

α− 1

2
ψ

NR
(ζ)

)
= 2α(α− 1)ψ

NR
(ζ).

Thus, the proof is complete. �

Propositions 3.61 and 3.62 show that ψ
FB

, ψ
NR

, and ψ
MS

exhibit similar growth be-

havior in the general symmetric cone setting. These functions can also be effectively used

to characterize the boundedness of level sets and to establish local error bounds for the

SCCPs.

Definition 3.1. For the residual function r(ζ) = ‖φ
NR

(ζ, F (ζ))‖, the function r(ζ) is

said to be a local error bound if there exist constants c > 0 and δ > 0 such that for each

ζ ∈ {ζ ∈ V | d(ζ, S) ≤ δ}, there holds

d(ζ, S) ≤ c r(ζ),

where S denote the solution set of the SCCP (3.234) and d(ζ, S) = infy∈S ‖ζ − y‖.

Lemma 3.42. Let φ
FB

be defined as in (3.237). Then, for any x, y ∈ V,

‖(φ
FB

(x, y))+‖2 ≥ 1

2

(
‖(−x)+‖2 + ‖(−y)+‖2

)
.

Proof. This is a special case of Lemma 3.51 when τ = 2. �

Lemma 3.43. Let φ
NR

be defined as in (3.238). Then, for any x, y ∈ V, there is a

constant β > 0 such that

‖φ
NR

(x, y)‖2 ≥ β

2

(
‖(−x)+‖2 + ‖(−y)+‖2

)
.

Proof. By applying Proposition 3.61 and Lemma 3.42, the desired result is obtained

immediately. �

Proposition 3.63. Consider the residual function r(ζ) = ‖φ
NR

(ζ, F (ζ))‖. If F is an

Rw
0 -function, then the level set L(γ) := {ζ ∈ V | r(ζ) ≤ γ} is bounded for all γ ≥ 0.

Proof. Suppose there is an unbounded sequence {ζk} ⊆ L(γ) for some γ > 0. If

lim supω((−ζk)+) =∞, then (through a subsequence) ‖(−ζk)+‖ → ∞, by Lemma 3.43,

which implies that r(ζk)→∞. This contradicts the boundness of L(γ). A similar contra-

diction ensues if lim supω((F (−ζk))+) =∞. Thus, for the specified unbounded sequence

{ζk} satisfying the condition in Definition 1.14, by Definition 1.14, we also obtain that
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ω(φ
NR

(ζk, F (ζk)))→∞. With r(ζk) = ‖φ
NR

(ζk, F (ζk))‖, it is easy to see that r(ζk)→∞.

This leads to a contradiction. Consequently, the level set L(γ) := {ζ ∈ V | r(ζ) ≤ γ} is

bounded for all γ ≥ 0. �

Proposition 3.63 establishes that the residual function r(ζ) possesses the bounded level

set property under the R0-type condition. However, this condition alone is insufficient

for r(ζ) to serve as a local error bound, even in the simpler case of the NCPs, which are

special cases of the SCCPs. An illustrative counterexample is provided in [19], showing

that r(x) fails to act as a local error bound for an R0-type NCP. Specifically, consider

the mapping F : IR → IR defined by F (ζ) = ζ3. It is straightforward to verify that F

is an Rs
0-function and that the corresponding NCP has a bounded solution set S = 0.

Nonetheless, r(ζ) does not qualify as a local error bound. This raises a natural question:

under what additional condition can r(x) serve as a local error bound for the SCCPs?

The next proposition addresses this by providing a sufficient condition.

Proposition 3.64. Consider the residual function r(ζ) = ‖φ
NR

(ζ, F (ζ))‖. Suppose that

the solution set S of the SCCPs is nonempty and that φ
NR

is BD-regular at all solutions

of the SCCPs. Then, r(ζ) is a local error bound if it has a local bounded level set.

Proof. Since r(ζ) has a local bounded level set, there exists ε > 0 such that the level

set L(ε) = {ζ | r(ζ) ≤ ε} is bounded. Thus, the set L(ε) = {ζ | r(ζ) ≤ ε} is compact.

Suppose that the conclusion is wrong. Then, there exists a sequence {ζk} ⊂ L(ε) such

that
r(ζk)

dist(ζk, S)
→ 0 as k →∞.

Here dist(ζk, S) denotes the distance between ζk and S. Therefore, r(ζk) → 0 and it

follows from compactness of L(ε) that there is a convergent subsequence. Without loss

of generality, let {ζk} be a convergent sequence, and ζ̄ be its limit, that is, ζk → ζ̄ ∈ L(ε).

Then, r(ζ̄) = 0, which implies ζ̄ ∈ S. It turns out that

r(ζk)

‖ζk − ζ̄‖
→ 0 as k →∞. (3.244)

From [197], we know that φ
NR

(ζ, F (ζ)) is semismooth. By applying [171, Proposition 3]

and BD-regular property of φ
NR

(ζ, F (ζ)), there exist constants c > 0 and δ > 0 such

that r(ζ) ≥ c‖ζ− ζ̄‖ for any ζ with ‖ζ− ζ̄‖ < δ. This contradicts (3.244). Consequently,

the residual function r(ζ) is a local error bound for the SCCPs. �

Results analogous to Proposition 3.64 can also be established for the other two merit

functions. In light of Propositions 3.61 and 3.62, we may conclude that both ψ
FB

and

ψ
MS

also serve as local error bounds for the SCCPs.

We now turn to the derivation of a global error bound for SCCPs by leveraging an

R0-type condition together with a BD-regularity condition. To this end, we introduce

the following definition and a technical lemma.
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Definition 3.2. For the residual function r(ζ) = ‖φ
NR

(ζ, F (ζ))‖, the function r(ζ) is

said to be a global error bound if there exist constant c > 0 such that for each ζ ∈ V,

d(ζ, S) ≤ c r(ζ),

where S denote the solution set of the SCCP (3.234) and d(ζ, S) = infy∈S ‖ζ − y‖.

Lemma 3.44. Let {ζk} be any sequence such that ‖ζk‖ → ∞. If F is an Rs
0-function,

then

lim inf
k→∞

r(ζk)

‖ζk‖
> 0.

Proof. Suppose that the result is false. There exists a subsequence ζnk with ‖ζnk‖ → ∞
such that

r(ζnk)

‖ζnk‖
→ 0. (3.245)

From Lemma 3.43, it follows that

(−ζnk)+

‖ζnk‖
→ 0 and

(−F (ζnk))+

‖ζnk‖
→ 0.

This together with the definition of Rs
0-function implies

lim inf
k→∞

ω(φ
NR

(ζnk , F (ζnk)))

‖ζnk‖
> 0,

which contradicts the formula (3.245). Consequently, we have the desired result. �

Proposition 3.65. Suppose that F is an Rs
0-function and that φ

NR
is BD-regular at all

solutions of SCCPs. Then, there exists a κ > 0 such that for any ζ ∈ V

dist(ζ, S) ≤ κ r(ζ),

where S is the solution set of SCCPs, dist(ζ, S) denotes the distance between ζ and S.

Proof. By the definition of Rs
0-function, Proposition 3.63 and Proposition 3.64, we claim

that r(x) is a local error bound so there exist c > 0 and δ > 0 such that

r(ζ) < δ =⇒ d(ζ, S) ≤ c r(ζ).

Suppose r(ζ) does not have the global error bound property. Then, there exists ζk such

that for any fixed ζ̄ ∈ S,

‖ζk − ζ̄‖ ≥ dist(ζk, S) > k r(ζk)
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for all k. Clearly, the inequality r(ζk) < δ cannot hold for infinitely many k′s, else

kr(ζk) < d(ζk, S) ≤ c r(ζk) implies that k ≤ c for infinitely many k′s. Therefore, r(ζk) ≥ δ

for all large k. Now,

‖ζk − ζ̄‖ ≥ d(ζk, S) ≥ k r(ζk) ≥ kδ

for infinitely many k′s. This implies that ‖ζk‖ → ∞. Now divide the inequality and take

the limit k →∞, we have

1 = lim
k→∞

‖ζk − ζ̄‖
‖ζk‖

≥ lim
k→∞

k
r(ζk)

‖ζk‖
→ ∞,

where the last implication holds because F is an Rs
0-function and Lemma 3.44. This

clearly is a contradiction. �

Proposition 3.66. Under the same conditions as in Proposition 3.65, both the merit

function ψ
FB

(ζ) and the implicit Lagrangian function ψ
MS

(ζ) are global error bounds for

SCCPs.

When F : V → V is a linear mapping of the form F (ζ) = L(ζ) + q with q ∈ V, and

the linear operator L possesses the R0-property, then the residual function r(ζ) not only

serves as a local error bound but can, in fact, be strengthened to a global error bound

for the SCLCPs, as shown in the result below.

Proposition 3.67. Suppose that r(ζ) is a local error bound for SCLCPs and the linear

transformation L has R0-property. Then, there exists k > 0 such that dist(ζ, S) ≤ k r(ζ)

for every ζ ∈ V.

Proof. Suppose that the conclusion is false. Then, for any integer k > 0, there exists an

ζk ∈ IRn such that dist(ζk, S) > k r(ζk). Let z(ζk) denote the closest solution of SCLCPs

to ζk. Choosing a fixed solution ζ0 ∈ S, we have

‖ζk − ζ0‖ ≥ ‖ζk − z(ζk)‖ ≥ dist(ζk, S) > k r(ζk). (3.246)

Since r(ζ) is a local error bound, it implies that there exist some integer K > 0 and δ > 0

such that for all k > K, r(ζk) > δ. If not, then for every integer K > 0 and any δ > 0,

there exist some k > K such that r(ζk) ≤ δ. By property of local error bound of r(ζ),

we have
δ

k
‖ζk − z(ζk)‖ > δ r(ζk) ≥ ‖ζk − z(ζk)‖.

Thus, we obtain δ
k
> 1. As k goes to infinity, this leads to a contradiction. Consequently,

r(xk) > δ. This together with (3.246) implies that ‖ζk − ζ0‖ ≥ ‖ζk − z(ζk)‖ > kδ which

says that ‖ζk‖ → ∞ as k → ∞. Now, we consider the sequence { ζk
‖ζk‖
}. There exist a

subsequence {ζki} such that

lim
i→∞

ζki
‖ζki‖

= ζ.
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Hence, it follows from (3.246) that

1 = lim
i→∞

‖ζki − ζ0‖
‖ζki‖

≥ lim
i→∞

ki
r(ζki)

‖ζki‖

= lim
i→∞

ki

∥∥∥∥ ζki
‖ζki‖

−
(

ζki
‖ζki‖

− L ζki
‖ζki‖

− q

‖ζki‖

)
+

∥∥∥∥
= lim

i→∞
ki‖ζ − (ζ − L(ζ))+‖.

This implies that ‖ζ − (ζ − L(ζ))+‖ = 0, which shows that ζ is a nonzero solution of

SCLCPs with q ∈ V. It contradicts the R0-property of L. Then, the proof is complete.

�

It is worth noting an important point: if the R0-property of the linear transformation

L is replaced with the weaker condition of monotonicity, the conclusion of Proposition

3.67 may no longer hold. This limitation can be illustrated through the following example,

which employs the implicit Lagrangian function ψ
MS

.

Example 3.2. Let L : IR2 → IR2 be defined as

L :=

[
1√
2
− 1√

2

− 1√
2

1√
2

]
and q :=

[
2

0

]
.

It is easy to prove that the symmetric cone is IR2
+ and the corresponding SCLCP has a

unique solution x∗ = (0, 0)T. Choosing ζk =
(

k√
2
, k√

2

)T
, k ≥ 0 gives F (ζk) = L(ζk) + q =

(2, 0)T. Then, for any k > 2
√

2α with α > 1, we have

ψ
MS

(ζk) = 4α

(
k√
2

)
+

(
−2α +

k√
2

)2

+

(
k√
2

)2

− 2

(
k√
2

)2

− 4

= 4
(
α2 − 1

)
.

However, dist(ζk, S) = ‖ζk‖ = k. This implies dist(ζk, S) > ψ
MS

(ζk) as k → ∞, which

explains that ψ
MS

(ζ) cannot serve as global error bound for the SCLCPs.

Building on Proposition 3.60, Kum and Lim further demonstrated that their penalized

functions remain C-functions associated with the symmetric cone; see [132, Theorem 3.4

and Theorem 3.6].

Proposition 3.68. For λ ∈ (0, 1), we define

φλ
FB

(x, y) = λφ
FB

(x, y) + (1− λ)(x+ ◦ y+), (3.247)

and

φλ
NR

(x, y) = λφ
NR

(x, y) + (1− λ)(x+ ◦ y+). (3.248)

Then, φλ
FB

and φλ
NR

are C-functions associated with symmetric cone.
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Proof. The results follow directly from the application of the Lowner–Heinz inequality

and Proposition 3.60. For detailed arguments, see Theorems 3.4 and 3.6 in [132]. �

Following this direction, we consider the extension of the one-parameter class of func-

tions originally proposed by Kanzow and Kleinmichel [116], along with a corresponding

class of regularized functions. Specifically, we define the one-parameter family of vector-

valued functions φτ : V× V→ V as follows:

φτ (x, y) :=
(
x2 + y2 + (τ − 2)(x ◦ y)

)1/2 − (x+ y), (3.249)

where τ ∈ (0, 4) is an arbitrary but fixed parameter. Consequently, its squared norm

yields a merit function associated with K

ψτ (x, y) :=
1

2
‖φτ (x, y)‖2, (3.250)

where ‖ · ‖ is the norm induced by 〈·, ·〉, and the SCCP can be reformulated as

min
ζ∈V

fτ (ζ) := ψτ (G(ζ), F (ζ)). (3.251)

When τ = 2, the function φτ reduces to the vector-valued FB function given in (3.237),

while in the limit as τ → 0, it becomes a scalar multiple of the vector-valued natural

residual function defined in (3.238). In this sense, the one-parameter family of vector-

valued functions φτ unifies two widely used C-functions associated with the symmetric

cone K. We shall now prove that for any τ ∈ (0, 4), both φτ and its corresponding merit

function ψτ are C-functions associated with K. To see this, we use the definition of the

Jordan product to derive the identity

x2 + y2 + (τ − 2)(x ◦ y) =

(
x+

τ − 2

2
y

)2

+
τ(4− τ)

4
y2

=

(
y +

τ − 2

2
x

)2

+
τ(4− τ)

4
x2 ∈ K (3.252)

for any x, y ∈ V. This confirms that the function φτ is well-defined. These functions φτ
and ψτ were previously extended to the SOC setting in Section 3.1; see (3.64) and (3.63).

Although the results below resemble those in the SOC context, the analysis here differs

significantly: rather than relying on direct computations, it is grounded in the structure

of Euclidean Jordan algebras and their associated properties.

Proposition 3.69. For any x, y ∈ V and τ ∈ (0, 4), let φτ and ψτ be given by (3.249)

and (3.250), respectively. Then, φτ and ψτ are C-functions associated with the symmetric

cone. In other words,

ψτ (x, y) = 0 ⇐⇒ φτ (x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0,
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Proof. The first equivalence is clear by the definition of ψτ , and we only need to prove

the second equivalence. Suppose that φτ (x, y) = 0. Then,[
x2 + y2 + (τ − 2)(x ◦ y)

]1/2
= (x+ y). (3.253)

Squaring the two sides of (3.253) yields

x2 + y2 + (τ − 2)(x ◦ y) = x2 + y2 + 2(x ◦ y),

which implies x ◦ y = 0 since τ ∈ (0, 4). Substituting x ◦ y = 0 into (3.253), we have

x =
(
x2 + y2

)1/2 − y and y =
(
x2 + y2

)1/2 − x.

Since x2 + y2 ∈ K, x2 ∈ K and y2 ∈ K, from [85, Proposition 8] or [138, Corollary 9] it

follows that x, y ∈ K. Consequently, the necessity holds. For the other direction, suppose

x, y ∈ K and x ◦ y = 0. Then, (x+ y)2 = x2 + y2. This, together with x ◦ y = 0, implies[
x2 + y2 + (τ − 2)(x ◦ y)

]1/2 − (x+ y) = 0.

Consequently, the sufficiency follows. The proof is thus complete. �

Lemma 3.45. For any x, y ∈ V, let u(x, y) := (x2 +y2)1/2. Then, the function u(x, y) is

continuously differentiable at any point (x, y) such that x2 + y2 ∈ int(K). Furthermore,

∇xu(x, y) = L(x)L−1(u(x, y)) and ∇yu(x, y) = L(y)L−1(u(x, y)). (3.254)

Proof. The first part is due to Theorem 1.4, and hence it remains to derive the formulas

in (3.254). From the definition of u(x, y), it follows that

u2(x, y) = x2 + y2, ∀ x, y ∈ V. (3.255)

By the formula (1.20), it is easy to verify that ∇x(x
2) = 2L(x). Differentiating on both

sides of (3.255) with respect to x then yields that

2∇xu(x, y)L(u(x, y)) = 2L(x).

This implies that ∇xu(x, y) = L(x)L−1(u(x, y)) since, by u(x, y) ∈ int(K), L(u(x, y)) is

positive definite on V. Similarly, we have that ∇yu(x, y) = L(y)L−1(u(x, y)). �

To present another lemma, we first introduce some related notations. For any 0 6=
z ∈ K and z /∈ int(K), suppose that z has the spectral decomposition z =

∑r
j=1 λj(z)cj,

where {c1, c2, · · · , cr} is a Jordan frame and λ1(z), · · · , λr(z) are the eigenvalues arranged

in the decreasing order λ1(z) ≥ λ2(z) ≥ · · · ≥ λr(z) = 0. Define the index

j∗ := min
{
j
∣∣λj(z) = 0, j = 1, 2, · · · , r

}
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and let

cJ :=

j∗−1∑
l=1

cl.

Clearly, j∗ and cJ are well-defined since 0 6= z ∈ K and z /∈ int(K). Since cJ is an

idempotent and cJ 6= 0 (otherwise z = 0), V can be decomposed as the orthogonal direct

sum of the subspaces V(cJ , 1), V(cJ ,
1
2
) and V(cJ , 0). In the sequel, we write P1(cJ),

P 1
2
(cJ) and P0(cJ) as the orthogonal projection onto V(cJ , 1), V(cJ ,

1
2
) and V(cJ , 0),

respectively. From [140], we know that L(z) is positive definite on V(cJ , 1) and is a one-

to-one mapping from V(cJ , 1) to V(cJ , 1). This means that L(z) an inverse L−1(z) on

V(cJ , 1), i.e., for any u ∈ V(cJ , 1), L−1(z)u is the unique v ∈ V(cJ , 1) such that z ◦v = u.

Lemma 3.46. For any x, y ∈ V, let z : V× V→ V be the mapping defined as

z = z(x, y) :=
[
x2 + y2 + (τ − 2)(x ◦ y)

]1/2
. (3.256)

If (x, y) 6= (0, 0) such that z(x, y) /∈ int(K), then the following results hold:

(a) The elements x, y, x+ y, x+ τ−2
2
y and y + τ−2

2
x belong to the subspace V(cJ , 1).

(b) For any h ∈ V such that z2(x, y)+h ∈ K, let w = w(x, y) := [z2(x, y)+h]1/2−z(x, y).

Then, P1(cJ)w = 1
2
L−1(z(x, y))[P1(cJ)h] + o(‖h‖).

Proof. From identity (3.252) and the definition of z, it is evident that z(x, y) ∈ K for

all x, y ∈ V. Therefore, by applying arguments similar to those in [140, Lemma 11], the

desired result follows. �

Proposition 3.70. The function ψτ defined by (3.250) is differentiable everywhere on

V× V. Furthermore, ∇xψτ (0, 0) = ∇yψτ (0, 0) = 0, and if (x, y) 6= (0, 0), then

∇xψτ (x, y) =

[
L
(
x+

τ − 2

2
y
)
L−1(z(x, y))− I

]
φτ (x, y),

∇yψτ (x, y) =

[
L
(
y +

τ − 2

2
x
)
L−1(z(x, y))− I

]
φτ (x, y), (3.257)

where z(x, y) is given by (3.256).

Proof. We prove the conclusion by the following three cases.

Case (1): (x, y) = (0, 0). For any u, v ∈ V, suppose that u2 + v2 + (τ − 2)(u ◦ v) has the

spectrum decomposition u2 + v2 + (τ − 2)(u ◦ v) =
∑r

j=1 µjdj, where {d1, d2, . . . , dr} is
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the corresponding Jordan frame. Then, for j = 1, 2, . . . , r, we have

µj =
1

‖dj‖2

〈∑r
j=1 µjdj, dj

〉
=

〈
u2 + v2 + (τ − 2)(u ◦ v), dj

〉
=

〈(
u+

τ − 2

2
v

)2

+
τ(4− τ)

4
v2, dj

〉

≤
〈(

u+
τ − 2

2
v

)2

+
τ(4− τ)

4
v2, e

〉
= ‖u‖2 + (τ − 2)〈u, v〉+ ‖v‖2

≤ (τ/2)(‖u‖2 + ‖v‖2), (3.258)

where the second equality is by ‖dj‖ = 1, the first inequality is due to e =
∑r

j=1 dj and

dj ∈ K for j = 1, 2, . . . , r, and the last inequality is due to

〈x, y〉 ≤ 1

2
(‖x‖2 + ‖y‖2) and ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2). (3.259)

Therefore, we have

ψτ (u, v)− ψτ (0, 0) =
1

2

∥∥∥[u2 + v2 + (τ − 2)(u ◦ v)]1/2 − (u+ v)
∥∥∥2

=
1

2

∥∥∥∑r
j=1

√
µj dj − (u+ v)

∥∥∥2

≤
∥∥∥∑r

j=1

√
µj dj

∥∥∥2

+ ‖u+ v‖2

≤
r∑
j=1

µj‖dj‖2 + 2(‖u‖2 + ‖v‖2)

≤
(

1

2
τr + 2

)(
‖u‖2 + ‖v‖2

)
,

where the first two inequalities are due to (3.259), and the last one is from (3.258). This

shows that ψτ is differentiable at (0, 0) with ∇xψτ (0, 0) = ∇yψτ (0, 0) = 0.

Case (2): z(x, y) ∈ int(K). Since φτ (x, y) = z(x, y)− (x+ y), we have from Theorem 1.4

that φτ is continuously differentiable under this case. Notice that

ψτ (x, y) =
1

2

〈
e, φ2

τ (x, y)
〉
,

and hence the function ψτ is continuously differentiable. Applying the chain rule yields

∇xψτ (x, y) = ∇xφτ (x, y)L(φτ (x, y))e = ∇xφτ (x, y)φτ (x, y). (3.260)

On the other hand, from (3.252) it follows that

φτ (x, y) =

[(
x+

τ − 2

2
y
)2

+
τ(4− τ)

4
y2

]1/2

− (x+ y),
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and therefore using the formulas in (3.254) gives

∇xφτ (x, y) = L
(
x+

τ − 2

2
y
)
L−1(z(x, y))− I.

This, together with (3.260), immediately implies

∇xψτ (x, y) =

[
L
(
x+

τ − 2

2
y

)
L−1(z(x, y))− I

]
φτ (x, y).

For symmetry of x and y in ψτ (x, y), we also have

∇yψτ (x, y) =

[
L
(
y +

τ − 2

2
x

)
L−1(z(x, y))− I

]
φτ (x, y).

Case (3): (x, y) 6= (0, 0) and z(x, y) /∈ int(K). For any u, v ∈ V, define

ẑ := 2x̂ ◦ u+ 2ŷ ◦ v + u2 + v2 + (τ − 2)u ◦ v
with x̂ = x+ τ−2

2
y and ŷ = y + τ−2

2
x. It is not difficult to verify that

z2(x, y) + ẑ =

(
(x+ u) +

τ − 2

2
(y + v)

)2

+
τ(4− τ)

4
(y + v)2

= z2(x+ u, y + v) ∈ K.
Let

w(x, y) :=
(
z2(x, y) + ẑ

)1/2 − z(x, y).

From the definitions of ψτ and z(x, y), it then follows that

ψτ (x+ u, y + v)− ψτ (x, y)

=
1

2

[∥∥[z2(x, y) + ẑ]1/2 − (x+ u+ y + v)
∥∥2 − ‖z(x, y)− (x+ y)‖2

]
(3.261)

=
1

2

[
〈ẑ, e〉+ ‖u+ v‖2

]
− 〈w(x, y), x+ u+ y + v〉+ 〈x+ y − z(x, y), u+ v〉

= −〈w(x, y), x+ y〉+ 〈x+ y − z(x, y), u+ v〉+ 〈x̂, u〉+ 〈ŷ, v〉+ o(‖(u, v)‖).
By Lemma 3.46(a), x+ y ∈ V(cJ , 1). Thus, using Lemma 3.46(b), we have

〈w(x, y), x+ y〉 = 〈P1(cJ)w(x, y), x+ y〉

=

〈
1

2
L−1(z(x, y))[P1(cJ)ẑ] + o(‖ẑ‖), x+ y

〉
=

1

2

〈
P1(cJ)ẑ, L−1(z(x, y))[x+ y]

〉
+ o(‖ẑ‖)

=
〈
P1(cJ) [x̂ ◦ u+ ŷ ◦ v] ,L−1(z(x, y))[x+ y]

〉
+ o(‖(u, v)‖)

=
〈
x̂ ◦ u+ ŷ ◦ v, P1(cJ)[L−1(z(x, y))(x+ y)]

〉
+ o(‖(u, v)‖)

=
〈
x̂ ◦ u+ ŷ ◦ v, L−1(z(x, y))(x+ y)

〉
+ o(‖(u, v)‖)

=
〈[
L−1(z(x, y))(x+ y)

]
◦ x̂, u

〉
+
〈[
L−1(z(x, y))(x+ y)

]
◦ ŷ, v

〉
+ o(‖(u, v)‖) (3.262)
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where the first equality is since V = V(cJ , 1) ⊕ V(cJ ,
1
2
) ⊕ V(cJ , 0), the fifth one is due

to P1(cJ) = P ∗1 (cJ), and the sixth is from the fact that L−1(z(x, y))(x + y) ∈ V(cJ , 1).

Combining (3.261) with (3.262), we obtain that

ψτ (x+ u, y + v)− ψτ (x, y)

=
〈
x̂+ x+ y − z(x, y)−

[
L−1(z(x, y))(x+ y)

]
◦ x̂, u

〉
+
〈
ŷ + x+ y − z(x, y)−

[
L−1(z(x, y))(x+ y)

]
◦ ŷ, v

〉
+ o(‖(u, v)‖).

This implies that the function ψτ is differentiable at (x, y), and furthermore,

∇xψτ (x, y) = x̂+ x+ y − z(x, y)−
[
L−1(z(x, y))(x+ y)

]
◦ x̂,

∇yψτ (x, y) = ŷ + x+ y − z(x, y)−
[
L−1(z(x, y))(x+ y)

]
◦ ŷ.

Notice that

x̂+ x+ y − z(x, y)−
[
L−1(z(x, y))(x+ y)

]
◦ x̂

= x̂− φτ (x, y)−
[
L−1(z(x, y))(x+ y)

]
◦
(
x+

τ − 2

2
y

)
= x+

τ − 2

2
y − φτ (x, y)− L

(
x+

τ − 2

2
y

)[
L−1(z(x, y))(x+ y)

]
= L

(
x+

τ − 2

2
y

)
L−1(z(x, y))[z(x, y)− x− y]− φτ (x, y)

=

[
L
(
x+

τ − 2

2
y
)
L−1(z(x, y))− I

]
φτ (x, y),

where the third equality is due to L−1(z(x, y))z(x, y) = e and the fact that

x+
τ − 2

2
y = L

(
x+

τ − 2

2
y

)
e = L

(
x+

τ − 2

2
y

)
L−1(z(x, y))z(x, y).

Therefore,

∇xψτ (x, y) =

[
L
(
x+

τ − 2

2
y
)
L−1(z(x, y))− I

]
φτ (x, y).

Similarly, we also have

∇yψτ (x, y) =

[
L
(
y +

τ − 2

2
x

)
L−1(z(x, y))− I

]
φτ (x, y).

This shows that the conclusion holds under this case. The proof is thus complete. �

It should be pointed out that the formula (3.257) is well-defined even if z(x, y) /∈
int(K) since in this case φτ (x, y) ∈ V(cJ , 1) by Lemma 3.46(a). When V is specified as
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the Lorentz algebra (IRn, ◦, 〈·, ·〉IRn), the formula reduces to the one of [37, Proposition

3.2]; whereas when V is specified as (Sn, ◦, 〈·, ·〉Sn) and τ = 2, the formula is same as the

one in [207, Lemma 6.3(b)] by noting that z(x, y) = (x2 + y2)1/2 and

∇xψτ (x, y) = L(x)L−1(z(x, y))φ
FB

(x, y)− φ
FB

(x, y)

= x ◦ [L−1(z(x, y))φ
FB

(x, y)]− L(z(x, y))L−1(z(x, y))φ
FB

(x, y)

= x ◦ [L−1(z(x, y))φ
FB

(x, y)]− z(x, y) ◦ [L−1(z(x, y))φ
FB

(x, y)]

= [L−1(z(x, y))φ
FB

(x, y)] ◦ (x− z(x, y)).

Thus, the formula (3.257) provides a unified framework for the SOCCP and the SDCP

settings.

From Proposition 3.70, we immediately derive several properties of the gradient ∇ψτ ,
which were previously established in the contexts of the NCPs [116] and the SOCCPs

[37], respectively.

Proposition 3.71. Let ψτ be given as in (3.250). Then, for any (x, y) ∈ V×V, we have

(a) 〈x,∇xψτ (x, y)〉+ 〈y,∇yψτ (x, y)〉 = ‖φτ (x, y)‖2.

(b) ∇ψτ (x, y) = 0 if and only if x ∈ K, y ∈ K, 〈x, y〉 = 0.

Proof. (a) If (x, y) = (0, 0), the result is clear. Otherwise, from (3.257) it follows that

〈x,∇xψτ (x, y)〉+ 〈y,∇yψτ (x, y)〉

=

〈
x,

(
x+

τ − 2

2
y

)
◦ [L−1(z(x, y))φτ (x, y)]

〉
− 〈x, φτ (x, y)〉

+

〈
y,

(
y +

τ − 2

2
x

)
◦ [L−1(z(x, y))φτ (x, y)]

〉
− 〈y, φτ (x, y)〉

=

〈
x ◦
(
x+

τ − 2

2
y

)
,L−1(z(x, y))φτ (x, y)

〉
− 〈x, φτ (x, y)〉

+

〈
y ◦
(
y +

τ − 2

2
x

)
,L−1(z(x, y))φτ (x, y)

〉
− 〈y, φτ (x, y)〉

= 〈z2(x, y),L−1(z(x, y))φτ (x, y)〉 − 〈x+ y, φτ (x, y)〉
= 〈z(x, y), φτ (x, y)〉 − 〈x+ y, φτ (x, y)〉
= ‖φτ (x, y)‖2,

where the next to last equality is by z2 = L(z)z and the symmetry of L(z).

(b) The proof is direct by part(a), Proposition 3.69 and Proposition 3.70. �

Next, we investigate the continuity of the gradients ∇xψτ (x, y) and ∇yψτ (x, y). To

this end, for any ε > 0, we define the mapping zε : V× V→ V by

zε = zε(x, y) :=
(
x2 + y2 + (τ − 2)(x ◦ y) + εe

)1/2
. (3.263)
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From (3.252), clearly, zε(x, y) ∈ int(K) for any x, y ∈ V, and hence the operator

L(zε(x, y)) is positive definite on V. Since the spectral function induced by ϕ(t) =√
t (t ≥ 0) is continuous, therefore from Theorem 1.4, it follows that zε(x, y) → z(x, y)

as ε → 0+ for any (x, y) ∈ V × V, where z(x, y) is given by (3.256). This means

that L(zε(x, y)) → L(z(x, y)) as ε → 0+. In what follows, we prove that the gradients

∇xψτ (x, y) and ∇yψτ (x, y) are Lipschitz continuous by arguing the Lipschitz continuity

of zε(x, y) and the mapping

Hε(x, y) := L
(
x+

τ − 2

2
y
)
L−1(zε(x, y))(x+ y). (3.264)

To establish the Lipschitz continuity of zε(x, y), we need the following crucial lemma.

Lemma 3.47. For any (x, y) ∈ V × V and ε > 0, let zε(x, y) be defined as in (3.263).

Then the function zε(x, y) is continuously differentiable everywhere with

∇xzε(x, y) = L
(
x+

τ − 2

2
y
)
L−1(zε(x, y)),

∇yzε(x, y) = L
(
y +

τ − 2

2
x
)
L−1(zε(x, y)). (3.265)

Furthermore, there exists a constant C > 0, independent of x, y and ε, τ , such that

‖∇xzε(x, y)‖ ≤ C and ‖∇yzε(x, y)‖ ≤ C.

Proof. The first part follows from Lemma 3.45 and the following fact that

zε(x, y) =

[(
x+

τ − 2

2
y
)2

+
τ(4− τ)

4
y2 + εe

]1/2

=

[(
y +

τ − 2

2
x
)2

+
τ(4− τ)

4
x2 + εe

]1/2

.

We next prove that the operator ∇xzε(x, y) is bounded for any x, y ∈ V and ε > 0. Let

{u1, u2, . . . , un} be an orthonormal basis of V. For any x, y ∈ V, let L(z2), L(x + τ−2
2
y),

L(zε) and L((x + τ−2
2
y)2) be the corresponding matrix representation of the operators

L(z2),L(x + τ−2
2
y), L(zε) and L((x + τ−2

2
y)2) with respect to the basis {u1, u2, . . . , un}.

Then, by the formula (3.265), it suffices to prove that the matrix L(x+ τ−2
2
y)L−1(zε) is

bounded for any x, y ∈ V and ε > 0. The verifications are given as below.

Suppose that z = z(x, y) has the spectral decomposition z =
∑r

j=1 λj(z)cj, where λ1(z) ≥
λ2(z) ≥ · · · ≥ λr(z) ≥ 0 are the eigenvalue of z and {c1, c2, . . . , cr} is the corresponding

Jordan frame. From Theorem 1.5, L(z) has the spectral decomposition

L(z) =
r∑
j=1

λj(z)Cjj(z) +
∑

1≤j<l≤r

1

2
(λj(z) + λl(z)) Cjl(z)
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with the spectrum σ(L(z)) consisting of all distinct numbers in {1
2
(λj(z) + λl(z)) | j, l =

1, 2, . . . , r}, and L(z2) has the spectral decomposition

L(z2) =
r∑
j=1

λ2
j(z)Cjj(z) +

∑
1≤j<l≤r

1

2

(
λ2
j(z) + λ2

l (z)
)
Cjl(z) (3.266)

with σ(L(z2)) consisting of all distinct numbers in {1
2

(
λ2
j(z) + λ2

l (z)
)
| j, l = 1, 2, . . . , r}.

By the definition of zε(x, y), it is easy to verify that zε =
∑r

j=1

√
λ2
j(z) + ε cj, and

consequently the symmetric operator L(zε) has the spectral decomposition

L(zε) =
r∑
j=1

√
λ2
j(z) + ε Cjj(z) +

∑
1≤j<l≤r

1

2

(√
λ2
j(z) + ε+

√
λ2
l (z) + ε

)
Cjl(z) (3.267)

with the spectrum σ(L(zε)) consisting of all distinct numbers in{
1

2

(√
λ2
j(z) + ε+

√
λ2
l (z) + ε

) ∣∣ j, l = 1, 2, . . . , r

}
.

We first prove that the matrix L(x+ τ−2
2
y) (L(z2) + εI)

−1/2
is bounded for any x, y ∈ V

and ε > 0. For this purpose, let P be an n× n orthogonal matrix such that

PL(z2)PT = diag
(
λ1(L(z2)), λ2(L(z2)), · · · , λn(L(z2))

)
(3.268)

where λ1(L(z2)) ≥ λ2(L(z2)) · · · ≥ λn(L(z2)) ≥ 0 are the eigenvalues of L(z2). Then, it

is not hard to verify that for any ε > 0,

P
(
L(z2) + εI

)−1/2
PT = diag

(
1√

λ1(L(z2)) + ε
, · · · , 1√

λn(L(z2)) + ε

)
.

Denote Ũ := PL
(
x+ τ−2

2
y
)
PT. We can compute that

L
(
x+

τ − 2

2
y
)(
L(z2) + εI

)−1/2

= PTŨdiag

(
1√

λ1(L(z2)) + ε
, · · · , 1√

λn(L(z2)) + ε

)
P

= PT

[
Ũik√

λk(L(z2)) + ε

]
1≤i≤n
1≤k≤n

P. (3.269)

Since L(z2) = L
(
(x+ τ−2

2
y)2
)

+ L
(
τ(4−τ)

4
y2
)

and L(y2) is positive semidefinite, we

obtain

L(z2)− L
(

(x+
τ − 2

2
y)2

)
� O,
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In addition, by Proposition 1.2, L[(x + τ−2
2
y)2] − L(x + τ−2

2
y)L(x + τ−2

2
y) is positive

semidefinite, and hence we have

L

((
x+

τ − 2

2
y

)2
)
− L

(
x+

τ − 2

2
y

)
L

(
x+

τ − 2

2
y

)
� O.

The last two equations thus imply

L(z2)− L
(
x+

τ − 2

2
y

)
L

(
x+

τ − 2

2
y

)
� O. (3.270)

Now, for any given k ∈ {1, 2, . . . , n}, from (3.268) and (3.270), it follows that

λk(L(z2)) =
[
PL(z2)PT

]
kk

≥
[
PL
(
x+

τ − 2

2
y
)
L
(
x+

τ − 2

2
y
)
PT

]
kk

=
[
Ũ Ũ
]
kk

=
n∑
i=1

Ũ2
ik,

where the inequality is by the fact that the diagonal entries of a positive semidefinite

matrix are nonnegative. This immediately yields√
λk(L(z2)) + ε ≥

√∑n
i=1 Ũ

2
ik ≥ Ũik ∀ i = 1, 2, . . . , n.

Combining with equation (3.269), there exists a constant C1 > 0 such that∥∥∥∥L(x+
τ − 2

2
y

)(
L(z2) + εI

)−1/2

∥∥∥∥ ≤ C1 ∀ x, y ∈ V and ε > 0. (3.271)

Next, we prove that the matrix (L(z2) + εI)
1/2
L−1(zε) is bounded for any x, y ∈ V and

ε > 0. Let Cjl(z) for 1 ≤ j, l ≤ r be the matrix representation of Cjl(z) with respect to

the basis {u1, u2, . . . , un}. From equations (3.266)–(3.267), it then follows that

(L(z2) + εI)1/2 =
r∑
j=1

√
λ2
j(z) + ε Cjj(z) +

∑
1≤j<l≤r

1

2

√
2(λ2

j(z) + λ2
l (z) + 2ε) Cjl(z),

L−1(zε) =
r∑
j=1

1√
λ2
j(z) + ε

Cjj(z) +
∑

1≤j<l≤r

1(√
λ2
j(z) + ε+

√
λ2
l (z) + ε

)
/2

Cjl(z).

Using the last two equalities and (1.21), it is easy to compute

(
L(z2) + εI

)1/2
L−1(zε) =

r∑
j=1

Cjj(z) +
∑

1≤j<l≤r

√
2(λ2

j(z) + λ2
l (z) + 2ε)√

λ2
j(z) + ε+

√
λ2
l (z) + ε

Cjl(z).(3.272)
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Notice that the projection matrix Cjl(z) with 1 ≤ j, l ≤ r is bounded for any x, y ∈ V,

and for any x, y ∈ V and ε > 0

√
λ2
j(z) + ε+

√
λ2
l (z) + ε ≥

√
λ2
j(z) + λ2

l (z) + 2ε ∀ 1 ≤ j, l ≤ r.

Hence, from (3.272) we can deduce that (L(z2)+εI)1/2L−1(zε) is bounded for any x, y ∈ V
and ε > 0, i.e., there exists a positive constant C2 such that

∥∥∥(L(z2) + εI
)1/2

L−1(zε)
∥∥∥ ≤ C2 ∀ x, y ∈ V and ε > 0. (3.273)

Combining (3.273) and (3.271), we have that the matrix L
(
x+ τ−2

2
y
)
L−1(zε) is bounded

for any x, y ∈ V and ε > 0, because

∥∥∥∥L(x+
τ − 2

2
y

)
L−1(zε)

∥∥∥∥
=

∥∥∥∥L(x+
τ − 2

2
y

)[(
L(z2) + εI

)−1/2 (
L(z2) + εI

)1/2
]
L−1(zε)

∥∥∥∥
=

∥∥∥∥[L(x+
τ − 2

2
y

)(
L(z2) + εI

)−1/2
] [(

L(z2) + εI
)1/2

L−1(zε)
]∥∥∥∥

≤
∥∥∥∥L(x+

τ − 2

2
y

)(
L(z2) + εI

)−1/2

∥∥∥∥ · ∥∥∥(L(z2) + εI
)1/2

L−1(zε)
∥∥∥

≤ C1C2, ∀ x, y ∈ V and ε > 0.

Consequently, there exists a constant C > 0 such that ‖∇xzε(x, y)‖ ≤ C for any x, y ∈ V
and ε > 0. For the symmetry, ‖∇yzε(x, y)‖ ≤ C also holds for any x, y ∈ V and ε > 0.

From the discussions above, we see that the constant C is also independent of τ . �

Invoking Lemma 3.47 and the Mean Value Theorem, we establish global Lipschitz

continuity of the mapping zε(x, y), as stated in the following proposition.

Proposition 3.72. For any x, y ∈ V and ε > 0, let zε(x, y) be defined as in (3.263).

Then, the function zε(x, y) is globally Lipschitz continuous.
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Proof. For any (x, y), (a, b) ∈ V× V, by applying Mean-Value Theorem yields

‖zε(x, y)− zε(a, b)‖ = ‖[zε(x, y)− zε(a, y)] + [zε(a, y)− zε(a, b)]‖

=

∥∥∥∥∫ 1

0

∇xzε(a+ t(x− a), y)(x− a)dt

+

∫ 1

0

∇yzε(a, b+ t(y − b))(y − b)dt
∥∥∥∥

≤
√

2

∫ 1

0

‖∇xzε(a+ t(x− a), y)‖ · ‖x− a‖dt

+
√

2

∫ 1

0

‖∇yzε(a, b+ t(y − b))‖ · ‖y − b‖dt

≤
√

2C(‖x− a‖+ ‖y − b‖)
≤ 2C‖(x, y)− (a, b)‖,

where the last two inequalities are respectively by Lemma 3.47 and (3.259). This shows

that the function zε(x, y) is globally Lipschitz continuous. �

We now turn our attention to the Lipschitz continuity of the mapping Hε defined in

(3.264). To this end, we show that the partial derivatives ∇xHε(x, y) and ∇yHε(x, y)

remain bounded for all x, y ∈ V and ε > 0. The computation of these derivatives relies

on the following lemma.

Lemma 3.48. For any x, y ∈ V and ε > 0, let h ∈ V be such that z2
ε(x, y) + h ∈ K and

write w := [z2
ε(x, y) + h]1/2 − zε(x, y). Then, w = 1

2
L−1

(
zε(x, y)

)
h+ o(‖h‖).

Proof. From the definition of w, it immediately follows that

[w + zε(x, y)]2 = z2
ε(x, y) + h,

which is equivalent to saying

w2 + 2w ◦ zε(x, y) = h (3.274)

or

h = 2L
(
zε(x, y)

)
w + w2. (3.275)

We claim that, as ‖h‖ → 0, there must have ‖w‖ → 0. Indeed, let ‖h‖ → 0, then we

obtain from (3.274) that w2 + 2w ◦ zε(x, y) = 0. Adding z2
ε(x, y) to both sides gives(

w + zε(x, y)
)2

= z2
ε(x, y).

This, by the fact that w + zε(x, y) ∈ K and zε(x, y) ∈ int(K), implies

w + zε(x, y) = zε(x, y),
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and hence w = 0. Since L(zε(x, y)) is invertible on V and ‖w‖ → 0 as ‖h‖ → 0, using

the implicit function theorem and equation (3.275) yields

wε =
1

2
L−1

(
zε(x, y))h+ o(‖h‖

)
.

Thus, the proof is complete. �

Lemma 3.49. For any x, y ∈ V and ε > 0, let Hε(x, y) be given as in (3.264). Then,

Hε(x, y) is differentiable everywhere. Moreover, for any given u, v ∈ V,

∇xHε(x, y)u =
[
L−1

(
zε(x, y)

)
(x+ y)

]
◦ u+ L

(
x+

τ − 2

2
y
)
L−1(zε(x, y))[

u− L−1
(
zε(x, y)

)
(x+ y) ◦ L−1(zε(x, y))L

(
x+

τ − 2

2
y
)
u

]
,

∇yHε(x, y)v =
τ − 2

2

[
L−1

(
zε(x, y)

)
(x+ y)

]
◦ v + L

(
x+

τ − 2

2
y
)
L−1(zε(x, y))[

v − L−1
(
zε(x, y)

)
(x+ y) ◦ L−1(zε(x, y))L

(
y +

τ − 2

2
x
)
v

]
.(3.276)

Proof. For any x, y ∈ V and any given u, v ∈ V, let x′ = x+ τ−2
2
y, y′ = y + τ−2

2
x and

h := 2x′ ◦ u+ 2y′ ◦ v + u2 + v2 + (τ − 2)u ◦ v.

It is easy to verify that

z2
ε(x, y) + h = (x+ u)2 + (y + v)2 + (τ − 2)[(x+ u) ◦ (y + v)] + εe

= z2
ε(x+ u, y + v) ∈ int(K).

Let

w :=
[
z2
ε(x, y) + h

]1/2 − zε(x, y).

Then,

w + zε(x, y) =
[
z2
ε(x, y) + h

]1/2
= zε(x+ u, y + v) ∈ int(K).

Applying Lemma 3.48 then leads to

w =
1

2
L−1(zε(x, y))h+ o(‖(u, v)‖), (3.277)

which implies that w → 0 as u→ 0, v → 0 and w = O(‖(u, v)‖). Write

g := L−1(zε(x, y))(x+ y) and g + s := L−1(zε(x, y) + w)(x+ u+ y + v). (3.278)

We next express s in terms of g, w, u, v and zε(x, y). By (3.278), it is clear that

L(zε(x, y))g = x+ y and L(zε(x, y) + w)(g + s) = x+ u+ y + v,
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which in turn implies

L(zε(x, y))s = u+ v − w ◦ g − w ◦ s,

and

s = L−1(zε(x, y))(u+ v − w ◦ g − w ◦ s). (3.279)

Using (3.277) and (3.279), we have that ‖s‖ → 0 as ‖(u, v)‖ → 0. This, together with

(3.277), means that w ◦ s = o(‖w‖) = o(‖(u, v)‖). Therefore,

L−1(zε(x, y))(w ◦ s) = o(‖(u, v)‖)

and

s = L−1(zε(x, y))(u+ v − w ◦ g) + o(‖(u, v)‖).

Now, from the above discussions and the definition of Hε, it follows that

Hε(x+ u, y + v)−Hε(x, y)

= L
(
x+ u+

τ − 2

2
(y + v)

)
L−1(zε(x, y) + w)(x+ u+ y + v)

−L
(
x+

τ − 2

2
y

)
L−1(zε(x, y))(x+ y)

= L
(
x+ u+

τ − 2

2
(y + v)

)
(g + s)− L

(
x+

τ − 2

2
y

)
g

= L
(
x+

τ − 2

2
y

)
s+ L

(
u+

τ − 2

2
v

)
(g + s)

= L
(
x+

τ − 2

2
y

)[
L−1(zε(x, y))(u+ v − g ◦ w)

]
+ L

(
u+

τ − 2

2
v

)
g + o(‖(u, v)‖)

= L
(
x+

τ − 2

2
y

)
L−1(zε(x, y))(u+ v)− L

(
x+

τ − 2

2
y

)
L−1(zε(x, y))[

L−1(zε(x, y))(x+ y) ◦
(
L−1(zε(x, y))L(x′)u+ L−1(zε(x, y))L(y′)v

)]
+L

(
u+

τ − 2

2
v

)
L−1(zε(x, y))(x+ y) + o(‖(u, v)‖).

This means that Hε is differentiable at the point (x, y). Also, the formulas of∇xHε(x, y)u

and ∇xHε(x, y)v are exactly given by (3.276). The proof is then complete. �

Lemma 3.50. For any x, y ∈ V and ε > 0, let Hε(x, y) be defined as in (3.264). Then,

for any given u, v ∈ V, there exists a constant C > 0 independent of x, y and ε, τ such

that

‖∇xHε(x, y)u‖ ≤ Cτ−1‖u‖ and ‖∇yHε(x, y)v‖ ≤ Cτ−1‖v‖.
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Proof. By Lemma 3.47, there exists a constant C̄ > 0 independent of x, y, ε, τ such that∥∥∥∥L(x+
τ − 2

2
y
)
L−1(zε(x, y))

∥∥∥∥ ≤ C̄ and

∥∥∥∥L(y +
τ − 2

2
x
)
L−1(zε(x, y))

∥∥∥∥ ≤ C̄.

Hence, their adjoint operators L−1(zε(x, y))L(x+ τ−2
2
y) and L−1(zε(x, y))L(y+ τ−2

2
x) are

also bounded for any x, y ∈ V and ε > 0, i.e.,∥∥∥∥L−1
(
zε(x, y)

)
L
(
x+

τ − 2

2
y
)∥∥∥∥ ≤ C̄ and

∥∥∥∥L−1
(
zε(x, y)

)
L
(
y +

τ − 2

2
x
)∥∥∥∥ ≤ C̄.

Noting that

L−1
(
zε(x, y)

)
(x+ y) =

2

τ
L−1(zε(x, y))

[
L
(
x+

τ − 2

2
y
)
e+ L

(
y +

τ − 2

2
x
)
e

]
,

we also have ∥∥L−1
(
zε(x, y)

)
(x+ y)

∥∥ ≤ 4C̄τ−1. (3.280)

Thus, by the formulas of ∇xHε(x, y)u and ∇yHε(x, y)v, we get the desired result. �

By applying Lemmas 3.49 and 3.50, and following the same reasoning as in the proof of

Proposition 3.72, we establish the global Lipschitz continuity of Hε(x, y), as summarized

in Proposition 3.73. Moreover, the Lipschitz continuities of ∇xψτ and ∇yψτ are also

shown in Proposition 3.74.

Proposition 3.73. For any x, y ∈ V and ε > 0, let Hε(x, y) be defined as in (3.264).

Then the function Hε(x, y) is globally Lipschitz continuous with the Lipschitz constant

being Cτ−1, where C > 0 is independent of x, y and ε, τ .

Proposition 3.74. The function ψτ has a Lipschitz continuous gradient with the Lips-

chitz constant being positive multiple of 1 + τ−1, i.e., there exists a constant C > 0 such

that

‖∇xψτ (x, y)−∇xψτ (a, b)‖ ≤ C(1 + τ−1)‖(x, y)− (a, b)‖,
‖∇yψτ (x, y)−∇yψτ (a, b)‖ ≤ C(1 + τ−1)‖(x, y)− (a, b)‖,

for any (x, y), (a, b) ∈ V × V, where C is independent of (x, y), (a, b) and ε, τ . In other

words, ψτ is an LC1 function.

Proof. For the symmetry, we only need to prove the first inequality. By (3.257), we

know

∇xψτ (x, y) = 2x+
τ

2
y − z(x, y)− L

(
x+

τ − 2

2
y
)
L−1(z(x, y))(x+ y).
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For any ε > 0, let Gε : V× V→ V be the mapping defined by

Gε(x, y) := 2x+
τ

2
y − zε(x, y)−Hε(x, y).

Then, from Proposition 3.72 and Proposition 3.73, it follows that Gε(x, y) is glob-

ally Lipschitz continuous with the Lipschitz constant being C(1 + τ−1), i.e., for all

(x, y), (a, b) ∈ V× V,

‖Gε(x, y)−Gε(a, b)‖ ≤ C(1 + τ−1)‖(x, y)− (a, b)‖. (3.281)

We next show that for any (x, y) ∈ V × V, Gε(x, y) → ∇xψτ (x, y) as ε → 0+. Indeed,

if (x, y) = (0, 0), then Hε(0, 0) → 0 by (3.264) and (3.280), and so Gε(0, 0) → 0 =

∇xψτ (0, 0). If (x, y) 6= (0, 0), noting that zε(x, y) → z(x, y) as ε → 0+, it suffices to

prove that

L−1
(
zε(x, y)

)
(x+ y) → L−1(z(x, y))(x+ y). (3.282)

If (x, y) 6= (0, 0) such that z ∈ int(K), then L(z) is positive definite on V. If (x, y) 6= (0, 0)

such that z /∈ int(K), then from Section 3 it follows that L(z) is positive definite on the

subspace V(cJ , 1). By the proof of [101, Lemma 4.1(ii)], L−1(z) is then continuous on V or

V(cJ , 1), which implies the result of (3.282). Thus, we show that Gε(x, y)→ ∇xψτ (x, y)

as ε→ 0+ for any (x, y) ∈ V×V. Now taking ε→ 0+ in (3.281) and applying the relation

between Gε(x, y) and ∇xψτ (x, y) shown as above, we get the desired result. �

Besides (3.251), we also consider a class of regularized functions for fτ defined as

f̂τ (ζ) := ψ0(G(ζ) ◦ F (ζ)) + ψτ (G(ζ), F (ζ)), (3.283)

where ψ0 : V→ IR+ is continuously differentiable and satisfies

ψ0(u) = 0 ∀u ∈ −K and ψ0(u) ≥ β‖(u)+‖ ∀u ∈ V (3.284)

for some constant β > 0. Using the properties of ψ0 in (3.284), it is not hard to verify

that f̂τ is a merit function for the SCCP (3.233). The class of functions will reduce to

the one studied in [140] if τ = 2 and G degenerates into an identity transformation. As

below, we show that the class of merit functions provide a global error bound for the

solution of the SCCP under the condition that G and F have the joint uniform Cartesian

P -property.

Lemma 3.51. For any x, y ∈ V, let ψτ be defined as in (3.250). Then, there holds

4ψτ (x, y) ≥ 2 ‖[φτ (x, y)]+‖2 ≥ 4− τ
2

[
‖(−x)+‖2 + ‖(−y)+‖2

]
.

Proof. The first inequality is due to Lemma 1.1(a) and the definition of ψτ . We next

prove the second inequality. From (3.252) and Lemma 1.1(b), it follows that[
x2 + y2 + (τ − 2)(x ◦ y)

]1/2

−
(
x+

τ − 2

2
y
)
∈ K,[

x2 + y2 + (τ − 2)(x ◦ y)
]1/2

−
(
y +

τ − 2

2
x
)
∈ K.
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Combining with Lemma 1.1(c), we then obtain

2
∥∥∥[(x2 + y2 + (τ − 2)x ◦ y)1/2 − x− y

]
+

∥∥∥2

=

∥∥∥∥[(x2 + y2 + (τ − 2)(x ◦ y)
)1/2 −

(
x+

τ − 2

2
y

)
− 4− τ

2
y

]
+

∥∥∥∥2

+

∥∥∥∥[(x2 + y2 + (τ − 2)(x ◦ y)
)1/2

−
(
y +

τ − 2

2
x

)
− 4− τ

2
x

]
+

∥∥∥∥2

≥ 4− τ
2
‖(−y)+‖2 +

4− τ
2
‖(−x)+‖2.

Thus, the proof is complete. �

We now demonstrate that the regularized merit function f̂τ furnishes a global error

bound for the solution of the SCCP, provided that the pair (G,F ) satisfies the joint

uniform Cartesian P -property.

Proposition 3.75. Let f̂τ be defined as in (3.283)–(3.284). Suppose that G and F have

the joint uniform Cartesian P -property and the SCCP (3.233) has a solution, denoted by

ζ∗. Then, there exists a constant κ > 0 such that for any ζ ∈ V,

κ‖ζ − ζ∗‖2 ≤ β−1f̂τ (ζ) +
4√

4− τ
(
f̂τ (ζ)

)1/2

. (3.285)

Proof. Since G and F have the joint uniform Cartesian P -property, there exists a con-

stant ρ > 0 such that, for any ζ ∈ V, there is an index i ∈ {1, 2, . . . ,m} such that

ρ‖ζ − ζ∗‖2 ≤ 〈Gi(ζ)−Gi(ζ
∗), Fi(ζ)− Fi(ζ∗)〉

= 〈Gi(ζ), Fi(ζ)〉+ 〈Fi(ζ∗),−Gi(ζ)〉+ 〈−Fi(ζ), Gi(ζ
∗)〉

≤ 〈Gi(ζ), Fi(ζ)〉+ 〈[−Gi(ζ)]+, Fi(ζ
∗)〉+ 〈[−Fi(ζ)]+, Gi(ζ

∗)〉
≤ λmax[Gi(ζ) ◦ Fi(ζ)] + ‖Fi(ζ∗)‖‖[−Gi(ζ)]+‖+ ‖Gi(ζ

∗)‖‖[−Fi(ζ)]+‖
≤ max {1, ‖Gi(ζ

∗)‖, ‖Fi(ζ∗)‖}
×
[
λmax[(Gi(ζ) ◦ Fi(ζ))+] + ‖[−Gi(ζ)]+‖+ ‖[−Fi(ζ)]+‖

]
≤ max {1, ‖G(ζ∗)‖, ‖F (ζ∗)‖}
×
[
‖[Gi(ζ) ◦ Fi(ζ)]+‖+ ‖[−Gi(ζ)]+‖+ ‖[−Fi(ζ)]+‖

]
where the equality is since 〈Gi(ζ

∗), Fi(ζ
∗)〉 = 0, the second inequality is due to Lemma

1.1(b), and the third one follows from Proposition 2.1 of [204] and the Cauchy-Schwartz

inequality. Setting κ :=
ρ

max{1, ‖G(ζ∗)‖, ‖F (ζ∗)‖} , we immediately obtain

κ‖ζ − ζ∗‖2 ≤ ‖[Gi(ζ) ◦ Fi(ζ)]+‖+ ‖[−Gi(ζ)]+‖+ ‖[−Fi(ζ)]+‖.
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From the conditions given by (3.284), clearly, for any i ∈ {1, 2, . . . ,m}, we have

‖[Gi(ζ) ◦ Fi(ζ)]+‖ ≤ β−1ψ0 (Gi(ζ) ◦ Fi(ζ)) ≤ β−1f̂τ (ζ).

In addition, applying Lemma 3.51, we achieve

‖[−Gi(ζ)]+‖+ ‖[−Fi(ζ)]+‖ ≤
√

2
(
‖[−G(ζ)]+‖2 + ‖[−F (ζ)]+‖2

)1/2

≤ 4√
4− τ ψτ (G(ζ), F (ζ))1/2

≤ 4√
4− τ

(
f̂τ (ζ)

)1/2

.

Combining the last three inequalities immediately yields the desired result (3.285). �

For the NCP, Kanzow and Kleinmichel [116] established that the merit function fτ
provides a global error bound when the mapping F is a Lipschitz continuous uniform

P function. In contrast, Proposition 3.75 reveals that the regularized merit function f̂τ
does not require the Lipschitz continuity of F . This distinction arises because the former

relies on the global error bound property of ψ
NR

, along with the similar growth behavior

shared by ψτ and ψ
NR

, whereas the regularized merit function f̂τ achieves the same goal

through the inclusion of the regularization term ψ0. When the SCCP (3.233) reduces to

the special case (3.234), that is,

ζ ∈ K, F (ζ) ∈ K, 〈ζ, F (ζ)〉 = 0,

Proposition 3.2 and Corollary 3.1 of [204] indicate that the assumption of the existence

of a solution x∗ can be omitted from Proposition 3.75, due to the fact that the uniform

Cartesian P -property implies the uniform Jordan P -property. Moreover, we note that for

the SCCP (3.234), a similar global error bound result was previously established in [140]

under the stronger assumption that F possesses the uniform P ∗-property. This condition

can be more restrictive than the uniform Cartesian P -property in certain settings. For

instance, when F is an affine mapping of the form F (ζ) = Mζ + q, and V is the Lorentz

algebra with dim(V) ≥ 5, Sun showed that F satisfies the uniform P ∗-property if and

only if M is positive definite. It is evident that the positive definiteness of M ensures

the Cartesian P -property of F , but the converse does not necessarily hold. For example,

for V = V1 × V2 × V3 with dim(V1) = dim(V2) = 2 and dim(V3) = 1, let M be a

block diagonal matrix composed of

[
1 0

0 1

]
,

[
1 1

−1 1

]
and 1. It is easy to verify that

F (ζ) = Mζ+q for any q ∈ V has the Cartesian P -property, but M is not positive definite.

Now, we provide a condition to guarantee the boundedness of the level sets

Lf̂τ (γ) :=
{
ζ ∈ V

∣∣ f̂τ (ζ) ≤ γ
}
,

for any γ ≥ 0. Specifically, we will prove that the following condition is sufficient.
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Assumption 3.1. For any sequence {ζk} ⊆ V such that

‖ζk‖ → +∞,
∥∥[−G(ζk)]+

∥∥ < +∞,
∥∥[−F (ζk)]+

∥∥ < +∞, (3.286)

there holds that

max
1≤i≤m

λmax

[
Gi(ζ

k) ◦ Fi(ζk)
]
→ +∞. (3.287)

Proposition 3.76. If the mappings G and F satisfy Assumption 3.1, then the level sets

Lf̂τ (γ) of f̂τ for all γ ≥ 0 are bounded.

Proof. Assume on the contrary that there is an unbounded sequence {ζk} ⊆ Lf̂τ (γ) for

some γ ≥ 0. Then, fτ (ζ
k) ≤ f̂τ (ζ

k) ≤ γ for all k. By Lemma 3.51, G and F satisfy

(3.286). Hence, there is ν ∈ {1, . . . ,m} such that λmax

[
Gν(ζ

k) ◦ Fν(ζk)
]
→ +∞. Noting

that

λmax

[
Gν(ζ

k) ◦ Fν(ζk)
]
≤ λmax

[
(Gν(ζ

k) ◦ Fν(ζk))+

]
≤
∥∥[Gν(ζ

k) ◦ Fν(ζk)]+
∥∥ ≤ β−1f̂τ (ζ

k),

we have f̂τ (ζ
k)→ +∞. This contradicts the fact that {ζk} ⊆ Lf̂τ (γ). �

Assumption 3.1 is a relatively mild condition that nonetheless ensures the bound-

edness of the level sets of f̂τ . In fact, this assumption is satisfied by SCCPs involving

jointly monotone mappings with a strictly feasible point, as well as those possessing the

joint Cartesian R02-property. To substantiate this claim, we present the following tech-

nical lemma, which may be viewed as an extension of Lemma 3.8(b) to the context of

symmetric cones.

Lemma 3.52. Let {xk} ⊆ V be any sequence satisfying ‖xk‖ → +∞. If the sequence

{λmin(xk)} is bounded below, then 〈(xk)+, x̂〉 → +∞ for any x̂ ∈ int(K).

Proof. For every k, let xk have the spectral decomposition xk =
∑r

j=1 λj(x
k)qkj with

{qk1 , . . . , qkr} being the corresponding Jordan frame. Let x̂ have the spectral decomposition

x =
∑r

j=1 λj(x̂)cj with {c1, . . . , cr} being the corresponding Jordan frame. Without loss

of generality, suppose that λlk(x
k) = λmax(xk), where 1 ≤ lk ≤ r. Then, for every k,

〈(xk)+, x̂〉 =

〈
r∑
j=1

(λj(x
k))+q

k
j ,

r∑
j=1

λj(x̂)cj

〉
≥ λmax((xk)+)λmin(x̂)

〈
qklk ,

∑r
j=1 cj

〉
= λmax((xk)+)λmin(x̂)〈qklk , e〉, (3.288)

where the inequality holds since qkj , cj ∈ K and λj((x
k)+), λj(x̂) ≥ 0 for all j = 1, 2, . . . , r.

Notice that ‖(xk)−‖ < +∞ as k →∞ since {λmin(xk)} is bounded below. Using the fact
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that ‖xk‖2 = ‖(xk)+‖2 + ‖(xk)−‖2 and ‖xk‖ → +∞, we then have that ‖(xk)+‖ → +∞.

This, together with (xk)+ ∈ K, immediately implies

λmax((xk)+)→ +∞. (3.289)

Since {qklk} is bounded, we assume (subsequencing if necessary) that limk→+∞ q
k
lk

= q∗.

By the closedness of K and ‖qklk‖ = 1 for each k, we have q∗ ∈ K \ {0}. From [66,

Proposition I.1.4], it then follows that 〈q∗, e〉 > 0 since e ∈ int(K). Thus, taking the

limit on the both sides of (3.288) and using the equation (3.289), we readily obtain that

〈(xk)+, x̂〉 → +∞. �

Proposition 3.77. Assumption 3.1 is satisfied if one of the following statements holds:

(a) G and F are jointly monotone mappings with ‖G(ζ)‖+‖F (ζ)‖ → +∞ as ‖ζ‖ → +∞
and there exists a point ζ̂ ∈ V such that G(ζ̂), F (ζ̂) ∈ int(K);

(b) G and F have the joint Cartesian R02-property.

Proof. (a) Let {ζk} be a sequence satisfying (3.286). Since G and F are jointly monotone,〈
G(ζk)−G(ζ̂), F (ζk)− F (ζ̂)

〉
≥ 0,

which by Lemma 1.1(a) is equivalent to〈
G(ζk), F (ζk)

〉
+
〈
G(ζ̂), F (ζ̂)

〉
≥
〈

[G(ζk)]+, F (ζ̂)
〉

+
〈

[G(ζk)]−, F (ζ̂)
〉

+
〈

[F (ζk)]+, G(ζ̂)
〉

+
〈

[F (ζk)]−, G(ζ̂)
〉
.

Notice that the sequences {λmin(G(ζk))} and {λmin(F (ζk))} are bounded below by (3.286),

‖G(ζk)‖+ ‖F (ζk)‖ → +∞ and G(ζ̂), F (ζ̂) ∈ int(K). Using Lemma 3.52 then yields〈
[G(ζk)]+, F (ζ̂)

〉
+
〈

[F (ζk)]+, G(ζ̂)
〉
→ +∞.

In addition, by (3.286) it is easy to verify〈
[G(ζk)]−, F (ζ̂)

〉
> −∞ and

〈
[F (ζk)]−, G(ζ̂)

〉
> −∞

Therefore, from the last three equations it follows that

m∑
i=1

〈
Gi(ζ

k), Fi(ζ
k)
〉

=
〈
G(ζk), F (ζk)

〉
→ +∞,

which in turn implies that there exists an index ν such that 〈Gν(ζ
k), Fν(ζ

k)〉 → +∞. By

[204, Proposition 2.1(ii)], we have λmax

[
Gν(ζ

k) ◦ Fν(ζk)
]
→ +∞, which implies (3.287).
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(b) The proof is direct by Definition 1.15. �

When G(ζ) = ζ for any ζ ∈ V, Liu, Zhang and Wang [140] established the boundness

of the level sets of Lf̂τ (γ) for τ = 2 under the condition that F is a R02-function. The

condition, in view of Proposition 1.10, is stronger than the one of Proposition 3.77(b).

Thus, Proposition 3.77(b) generalizes the result of [140, Theorem 7].

Regarding the LT-type complementarity functions associated with SOC, f
LT

and f̂
LT

studied in (3.194) and (3.197), there was an extension to symmetric cone setting in [140].

More specifically, Liu, Zhang, and Wang considered the following merit function:

φsc
LT

(ζ) := ϕ(ζ ◦ F (ζ)) + ψ(ζ, F (ζ)), (3.290)

where ϕ : V→ IR+ satisfies

ϕ(t) = 0 ⇐⇒ −t ∈ K, (3.291)

and ψ : V× V→ IR+ satisfies

ψ(u, v) = 0, u ◦ v ∈ −K ⇐⇒ u ∈ K, v ∈ K, 〈u, v〉 = 0. (3.292)

Proposition 3.78. [140, Lemma 3.1] Let φsc
LT

: V× V→ IR+ be defined as

φsc
LT

(x, y) := ϕ(x ◦ y) + ψ(x, y) (3.293)

where ϕ and ψ satisfy (3.291) and (3.292), respectively. Then, φsc
LT

is a C-function

associated with symmetric cone.

Proof. “⇒” Suppose that φsc
LT

(x, y) = 0 holds. From (3.293), it is clear that ϕ(x, y) = 0

and ψ(x, y) = 0. Then, applying (3.291) and (3.292) leads to x ∈ K, y ∈ K and 〈x, y〉 = 0.

“⇐” Suppose that x ∈ K, y ∈ K and 〈x, y〉 = 0. Then, from (3.292), it yields ψ(x, y) = 0

and x ◦ y ∈ −K. This together with (3.291) says that ϕ(x, y) = 0. Thus, we conclude

that φsc
LT

(x, y) = 0. �

An example of ϕ is given in [140], which is

ϕ(t) =
1

2
‖[t]+‖2 ,

and three examples of ψ are provided:

ψ1(x, y) =
1

2

(
‖[−x]+‖2 + ‖[−y]+‖2)

ψ2(x, y) =
1

2

(∥∥∥√x2 + y2 − (x+ y)
∥∥∥2
)

ψ3(x, y) =
1

2

(∥∥∥[√x2 + y2 − (x+ y)
]

+

∥∥∥2
)
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The function φsc
LT

(ζ) by plugging the above ϕ and ψ1 into (3.290) was proved continuously

differentiable in [140, Theorem 6.1] provided F is continuously differentiable, whereas the

functions φsc
LT

(ζ) by plugging the above ϕ with ψ1 and ψ2 were shown differentiable in

[140, Theorem 6.2] provided F is differentiable. Please refer to [140] for their detailed

gradient expressions.

There is another type of merit functions, similar to the aforementioned LT-type C-

function associated with symmetric cone. It so-called EP-type functions, which were

originally proposed by Evtushenko and Purtov [61]. Kong and Xiu [130] extended them

to symmetric cone setting. In particular, they define

φsc
α−EP

(x, y) := −(x ◦ y) +
1

2α

(
[x+ y]−

)2
, 0 < α ≤ 1, (3.294)

φsc
β−EP

(x, y) := −(x ◦ y) +
1

2β

(
[x]2− + [y]2−

)
, 0 < β < 1, (3.295)

Note that the parameter α could be 1 in defining φsc
α−EP

, but β 6= 1 is needed for

defining φsc
β−EP

. This is because, by choosing 0 6= x = y ∈ −K, there occurs

φsc
1−EP

(x, y) = −(x ◦ x) +
1

2β

(
[x]2− + [x]2−

)
= −x2 + [x]2− = 0.

Proposition 3.79. [130, Theorem 3.2] Let φsc
α−EP

and φsc
β−EP

be defined as in (3.294)

and (3.295), respectively. Then, φsc
α−EP

and φsc
β−EP

are smooth C-functions associated with

symmetric cone.

Proof. The projection formula is unknown for general symmetric cone, so the Peirce

Decomposition Theorem (Theorem 1.2) is employed. Please refer to [130, Theorem 3.2]

for the arguments for showing they are C-functions, and see [130, Theorem 3.3] for their

smoothness. �

In light of φ
MS

given as in (3.236), φsc
α−EP

given as in (3.294), and φsc
β−EP

given as in

(3.295), there induce the following functions:

f
MS

(ζ) :=
1

2
‖φ

MS
(ζ, F (ζ))‖2 , (3.296)

fα(ζ) :=
1

2

∥∥∥φsc
α−EP

(ζ, F (ζ))
∥∥∥2

, (3.297)

fβ(ζ) :=
1

2

∥∥∥φsc
β−EP

(ζ, F (ζ))
∥∥∥2

. (3.298)

We will study the growth behavior of these three functions, for which we need a few

technical lemmas.
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Lemma 3.53. For a given Jordan frame {c1, c2, . . . , cq}, if z ∈ V can be written as

z =

q∑
i=1

zici +
∑

1≤i<j≤q

zij

with zi ∈ IR for i = 1, 2, . . . , q and zij ∈ Vij for 1 ≤ i < j ≤ q, then

z+ =

q∑
i=1

sici +
∑

1≤i<j≤q

sij, z− =

q∑
i=1

wici +
∑

1≤i<j≤q

wij,

where si ≥ (zi)+ ≥ 0, 0 ≥ (zi)− ≥ wi with si + wi = zi for i = 1, . . . , q, and sij, wij ∈ Vij

with sij + wij = zij for 1 ≤ i < j ≤ q.

Proof. Please see [130, Lemma 3.1]. �

Lemma 3.54. For any x, y ∈ V, the following inequalities always hold:

(a) λmin(x)‖c‖2 ≤ 〈x, c〉 ≤ λmax(x)‖c‖2 for any nonzero idempotent c;

(b) |λmax(x+ y)− λmax(x)| ≤ ‖y‖ and |λmin(x+ y)− λmin(x)| ≤ ‖y‖;

(c) λmax(x+ y) ≤ λmax(x) + λmax(y) and λmin(x+ y) ≥ λmin(x) + λmin(y).

Proof. Please see [188, Lemma 14] and [204, Proposition 2.1]. �

Proposition 3.80. Let φsc
α−EP

and φsc
β−EP

be defined as in (3.294) and (3.295), respectively.

Then, for any x, y ∈ V, there hold∥∥∥φsc
α−EP

(x, y)
∥∥∥ ≥ (

2α− α2

2α

)
max

{
[(λmin(x))−]2, [(λmin(y))−]2

}
, (3.299)∥∥∥φsc

β−EP
(x, y)

∥∥∥ ≥ (
1− β2

2β

)
max

{
[(λmin(x))−]2, [(λmin(y))−]2

}
. (3.300)

Proof. Suppose that x has the spectral decomposition x =
∑q

i=1 xici with xi ∈ IR and

{c1, c2, . . . , cq} being a Jordan frame. From Theorem 1.2, y ∈ V can be expressed by

y =

q∑
i=1

yici +
∑

1≤i<j≤q

yij, (3.301)

where yi ∈ IR for i = 1, 2, . . . , q and yij ∈ Vij. Therefore, for any l ∈ {1, 2, . . . , q},

〈cl, x ◦ y〉 = 〈cl ◦ x, y〉 =

〈
xlcl,

q∑
i=1

yici +
∑

1≤i<j≤q

yij

〉

= xl

〈
cl,

q∑
i=1

yici

〉
+ xl

〈
cl,

∑
1≤i<j≤q

yij

〉
= xlyl, (3.302)
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where the last equality is since 〈cl,
∑

1≤i<j≤q yij
〉

= 0 by the orthogonality of Vij (i ≤ j).

We next prove the inequality (3.299). From (3.301) and the spectral decomposition of x,

x+ y =

q∑
i=1

(xi + yi)ci +
∑

1≤i<j≤q

yij.

which together with Lemma 3.53 implies

(x+ y)− =

q∑
i=1

uici +
∑

1≤i<j≤q

uij,

where ui ≤ (xi + yi)− ≤ 0 for i = 1, 2, . . . , q and uij ∈ Vij. By this, we can compute

〈
cl, [(x+ y)−]2

〉
=

〈
cl ◦

(
q∑
i=1

uici +
∑

1≤i<j≤q

uij

)
, (x+ y)−

〉

=

〈
ulcl +

(
cl ◦

∑
1≤i<j≤q

uij

)
,

q∑
i=1

uici +
∑

1≤i<j≤q

uij

〉

= u2
l + ul

〈
cl,

∑
1≤i<j≤q

uij

〉
+

〈 ∑
1≤i<j≤q

uij, cl ◦
q∑
i=1

uici

〉

+

〈
cl ◦

∑
1≤i<j≤q

uij,
∑

1≤i<j≤q

uij

〉

= u2
l +

〈
cl,

( ∑
1≤i<j≤q

uij

)2〉
, ∀ l = 1, 2, . . . , q, (3.303)

where the last equality is since 〈cl,
∑

1≤i<j≤q uij
〉

= 0 by the orthogonality of Vij (i ≤ j).

Now, using equations (3.302)-(3.303), we achieve

〈cl,−φsc
α−EP

(x, y)〉 =
〈
cl, x ◦ y − (1/2α) [(x+ y)−]2

〉
= xlyl − (1/2α)

u2
l +

〈
cl,

( ∑
1≤i<j≤q

uij

)2〉
≤ xlyl − (1/2α) [(xl + yl)−]2 , ∀ l = 1, 2, . . . , q, (3.304)

where the inequality is due to the following facts

ul ≤ (xl + yl)− ≤ 0 and

〈
cl,

( ∑
1≤i<j≤q

uij

)2〉
≥ 0.
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On the other hand, from Lemma 3.54(a) we have

〈cl,−φsc
α−EP

(x, y)〉 ≥ λmin

(
− φsc

α−EP
(x, y)

)
‖cl‖2 = λmin

(
− φsc

α−EP
(x, y)

)
, ∀ l = 1, 2, . . . , q.

(3.305)

Thus, combining (3.304) with (3.305), it follows that

2αλmin(−φsc
α−EP

(x, y)) ≤ 2αxlyl − [(xl + yl)−]2, ∀ l = 1, 2, . . . , q.

Let λmin(x) = xν with ν ∈ {1, 2, . . . , q}. Then, we particularly have that

2αλmin(−φsc
α−EP

(x, y)) ≤ 2αλmin(x)yν − [(λmin(x) + yν)−]2. (3.306)

We next proceed the proof by the two cases: λmin(x) ≤ 0 and λmin(x) > 0.

Case (i): λmin(x) ≤ 0. Under this case, we will prove the below inequality:

2αλmin(x)yν − [(λmin(x) + yν)−]2 ≤ −(2α− α2)[(λmin(x))−]2, (3.307)

which, together with (3.306), immediately implies∥∥∥φsc
α−EP

(x, y)
∥∥∥ ≥ ∣∣∣λmin(−φsc

α−EP
(x, y))

∣∣∣ ≥ [(2α− α2)/(2α)
]

[(λmin(x))−]2. (3.308)

In fact, if λmin(x) + yν ≥ 0, then we can deduce that

2αλmin(x)yν − [(λmin(x) + yν)−]2 = 2α(λmin(x))−(yν)+ ≤ −(2α− α2)[(λmin(x))−]2;

and otherwise we will have

2αλmin(x)yν − [(λmin(x) + yν)−]2

= 2αλmin(x)yν − [(λmin(x) + yν)]
2

≤ −(2α− α2)[λmin(x)]2

= −(2α− α2)[(λmin(x))−]2.

Case (ii): λmin(x) > 0. Under this case, the inequality (3.308) clearly holds.

Summing up the above discussions, the inequality (3.308) holds for any x, y ∈ V. In view

of the symmetry of x and y in φsc
α−EP

(x, y), we also have∥∥∥φsc
α−EP

(x, y)
∥∥∥ ≥ [(2α− α2)/(2α)

]
[(λmin(y))−]2

for any x, y ∈ V. Thus, the proof of the inequality (3.299) is complete.

We next prove the inequality (3.300). By the spectral decomposition of x, we have that

(x−)2 =
∑q

i=1[(xi)−]2ci, which in turn implies

〈cl, (x−)2〉 = [(xl)−]2, ∀ l = 1, 2, . . . , q. (3.309)
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In addition, from Lemma 3.53 and the expression of y given by (3.301), it follows that

y− =

q∑
i=1

vici +
∑

1≤i<j≤q

vij,

where vi ≤ (yi)− ≤ 0 for i = 1, 2, . . . , q and vij ∈ Vij. By the same arguments as (3.303),

〈cl, (y−)2〉 = v2
l +

〈
cl,

( ∑
1≤i<j≤q

vij

)2〉
, ∀ l = 1, 2, . . . , q. (3.310)

Now, from equations (3.302), (3.309) and (3.310), it follows that〈
cl,−φsc

β−EP
(x, y)

〉
=

〈
cl, x ◦ y − (1/2β)

[
(x−)2 + (y−)2

]〉
= xlyl − (1/2β)

[
((xl)−)2 + v2

l +

〈
cl,
(∑

1≤i<j≤q vij

)2
〉]

≤ xlyl − (1/2β)
[
((xl)−)2 + (vl)

2
]

≤ xlyl − (1/2β)
[
((xl)−)2 + ((yl)−)2

]
, ∀ l = 1, 2, . . . , q,

where the first inequality is due to the nonnegativity of 〈cl, (
∑

1≤i<j≤q vij)
2〉, and the

second one is due to vl ≤ (yl)− ≤ 0. On the other hand, by Lemma 3.54(a),〈
cl,−φsc

β−EP
(x, y)

〉
≥ λmin(−φsc

β−EP
(x, y))‖cl‖2 = λmin(−φsc

β−EP
(x, y)), ∀ l = 1, 2, . . . , q.

Combining the last two inequalities immediately leads to

λmin(−φsc
β−EP

(x, y)) ≤ xlyl − (1/2β)
[
((xl)−)2 + ((yl)−)2

]
, ∀ l = 1, 2, . . . , q.

Let λmin(x) = xν with ν ∈ {1, 2, . . . , q} and suppose that λmin(x) ≤ 0. Then,

λmin(−φsc
β−EP

(x, y)) ≤ λmin(x)yν − (1/2β)
[
((λmin(x))−)2 + ((yν)−)2

]
≤

[
(λmin(x))−

][
(yν)−

]
− (1/2β)

[
((λmin(x))−)2 + ((yν)−)2

]
= −(1/2β)

{
[β(λmin(x))− − (yν)−]2 + (1− β2)

[
(λmin(x))−

]2}
≤ −

(
1− β2

2β

)[
(λmin(x))−

]2
,

which in turn implies∥∥∥φsc
β−EP

(x, y)
∥∥∥ ≥ ∣∣∣λmin(−φsc

β−EP
(x, y))

∣∣∣ ≥ (1− β2

2β

)[
(λmin(x))−

]2
. (3.311)

If λmin(x) = xν > 0, then the inequality (3.311) is obvious. Thus, (3.311) holds for any

x, y ∈ V . In view of the symmetry of x and y in φsc
β−EP

(x, y), we also have∥∥∥φsc
β−EP

(x, y)
∥∥∥ ≥ ∣∣∣λmin(−φsc

β−EP
(x, y))

∣∣∣ ≥ (1− β2

2β

)[
(λmin(y))−

]2
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for any x, y ∈ V. Consequently, the desired result follows. �

The following proposition characterizes an important property for the smooth EP-

type C-functions φsc
α−EP

and φsc
β−EP

under a unified framework.

Proposition 3.81. Let φsc
α−EP

and φsc
β−EP

be defined as in (3.294) and (3.295), respectively.

Suppose that {xk} ⊂ V and {yk} ⊂ V are the sequences satisfying one of the following

conditions:

(i) either λmin(xk)→ −∞ or λmin(yk)→ −∞;

(ii) λmin(xk), λmin(yk) > −∞, λmax(xk), λmax(yk)→ +∞ and ‖xk ◦ yk‖ → +∞.

Then,
∥∥∥φsc

α−EP
(xk, yk)

∥∥∥→ +∞ and
∥∥∥φsc

β−EP
(xk, yk)

∥∥∥→ +∞.

Proof. If Case (i) is satisfied, then the assertion is direct by Proposition 3.80. In what

follows, we will prove the assertion under Case (ii). Notice that in this case the sequences

{xk}, {yk} and {xk + yk} are all bounded below since λmin(xk), λmin(yk) > −∞ and

λmin(xk + yk) ≥ λmin(xk) + λmin(yk) > −∞. Therefore, the sequences
{

[(xk + yk)−]2
}

,{([
xk
]
−

)2
}

and

{([
yk
]
−

)2
}

are bounded. In addition, we have λmin(xk ◦ yk) → −∞
or λmax(xk ◦ yk)→ +∞ since ‖xk ◦ yk‖ → +∞.

If λmin(xk ◦ yk)→ −∞ as k →∞, then by Lemma 3.54(c) there hold

λmin(−φsc
α−EP

(x, y)) = λmin

[
(xk ◦ yk)− (1/2α)((xk + yk)−)2

]
≤ λmin(xk ◦ yk) + (1/2α)

∥∥((xk + yk)−)2
∥∥ ,

λmin(−φsc
β−EP

(x, y)) = λmin

[
(xk ◦ yk)− (1/2β)

(
((xk)−)2 + ((yk)−)2

)]
≤ λmin(xk ◦ yk) + (1/2β)

∥∥((xk)−)2 + ((yk)−)2
∥∥ ,

which, together with the boundedness of ‖((xk + yk)−)2‖ and ‖((xk)−)2 + ((yk)−)2‖,
implies λmin(−φsc

α−EP
(xk, yk))→ −∞ and λmin(−φsc

β−EP
(xk, yk))→ −∞. Since∥∥∥φsc

α−EP
(xk, yk)

∥∥∥ ≥ ∣∣∣λmin(−φsc
α−EP

(x, y))
∣∣∣ and

∥∥∥φsc
β−EP

(xk, yk)
∥∥∥ ≥ ∣∣∣λmin(−φsc

β−EP
(x, y))

∣∣∣ ,
we immediately obtain

∥∥∥φsc
α−EP

(xk, yk)
∥∥∥→ +∞ and

∥∥∥φsc
β−EP

(xk, yk)
∥∥∥→ +∞.

If λmax(xk ◦ yk)→ +∞ as k →∞, from Lemma 3.54(c) it then follows that

λmax(−φsc
α−EP

(x, y)) = λmax

[
(xk ◦ yk)− (1/2α)((xk + yk)−)2

]
≥ λmax(xk ◦ yk)− (1/2α)

∥∥((xk + yk)−)2
∥∥ ,

λmax(−φsc
β−EP

(x, y)) = λmax

[
(xk ◦ yk)− (1/2β)

(
((xk)−)2 + ((yk)−)2

)]
≥ λmax(xk ◦ yk)− (1/2β)

∥∥((xk)−)2 + ((yk)−)2
∥∥ ,
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which, by the boundedness of ‖((xk + yk)−)2‖ and ‖((xk)−)2 + ((yk)−)2‖, implies that

λmax(−φsc
α−EP

(xk, yk))→ +∞ and λmax(−φsc
β−EP

(xk, yk))→ +∞. Noting that∥∥∥φsc
α−EP

(xk, yk)
∥∥∥ ≥ ∣∣∣λmax(−φsc

α−EP
(xk, yk))

∣∣∣ and
∥∥∥φsc

β−EP
(xk, yk)

∥∥∥ ≥ ∣∣∣λmax(−φsc
β−EP

(xk, yk))
∣∣∣ ,

we readily obtain
∥∥∥φsc

α−EP
(xk, yk)

∥∥∥→ +∞ and
∥∥∥φsc

β−EP
(xk, yk)

∥∥∥→ +∞. �

When V = IRn with “◦” being the componentwise product of the vectors, ‖xk ◦yk‖ →
+∞ automatically holds if λmax(xk), λmax(yk) → +∞, and Proposition 3.81 reduces to

the result of [109, Lemma 2.5] for the NCPs. However, for the general Euclidean Jordan

algebra, this condition is necessary as illustrated by the following example.

Example 3.3. Consider the Lorentz algebra Ln = (IRn, ◦, 〈·, ·〉IRn). Assume that n = 3

and take the sequences {xk} and {yk} as follows:

xk =

 k

k

0

 and yk =

 k

−k
0

 for each k.

It is easy to verify that λmin(xk) = 0, λmin(yk) = 0, λmax(xk), λmax(yk) → +∞, but

‖xk ◦ yk‖9 +∞. For such {xk} and {yk}, by computation we have
∥∥∥φsc

α−EP
(xk, yk)

∥∥∥ = 0

and
∥∥∥φsc

β−EP
(xk, yk)

∥∥∥ = 0, i.e. the conclusion of Proposition 3.81 does not hold.

Lemma 3.55. [102, Lemma 4.1] Let {xk} and {yk} be the sequences such that xk → x̄

and yk → ȳ when k →∞. Then, we have that xk ◦ yk → x̄ ◦ ȳ.

Proof. Please see [102, Lemma 4.1] for detailed arguments. �

Now we are in a position to establish the coerciveness of fα and fβ. Assume that

(V, ◦, 〈·, ·〉) is a general Euclidean Jordan algebra. We first consider the SCLCP case.

Proposition 3.82. Let fα and fβ be defined as in (3.297) and (3.298), respectively. If

F (ζ) = L(ζ) + b with the linear transformation L having the P -property, then fα and fβ
are coercive.

Proof. Let {ζk} be a sequence such that ‖ζk‖ → +∞. We only need to prove that

fα(ζk)→ +∞ and fβ(ζk)→ +∞. (3.312)

By passing to a subsequence if necessary, we assume that ζk/‖ζk‖ → ζ̄, and consequently

(L(ζk) + b)/‖ζk‖ → L(ζ̄). If λmin(ζk)→ −∞, then from Proposition 3.81 it follows that∥∥∥φsc
α−EP

(ζk, L(ζk) + b)
∥∥∥→ +∞, and

∥∥∥φsc
β−EP

(ζk, L(ζk) + b)
∥∥∥→ +∞, which in turn implies

(3.312).
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Now assume that {ζk} is bounded below. We argue that the sequence {L(ζk) + b} is

unbounded by contradiction. Suppose that {L(ζk) + b} is bounded. Then,

L(ζ̄) = lim
k→∞

[
(L(ζk) + b)/‖ζk‖

]
= 0 ∈ K.

Since {ζk} is bounded below and λmax(ζk) → +∞ by ‖ζk‖ → +∞, there is an element

d̄ ∈ V such that (ζk − d̄)/‖ζk − d̄‖ ∈ K for each k. Noting that K is closed, and we have

lim
k→∞

(ζk − d̄)/‖ζk − d̄‖ = ζ̄/‖ζ̄‖ = ζ̄ ∈ K.

Thus, ζ̄ ∈ K, L(ζ̄) ∈ K and ζ̄ ◦ L(ζ̄) = 0. From [85, Proposition 6], it follows that ζ̄ and

L(ζ̄) operator commute. This, together with ζ̄ ◦L(ζ̄) = 0 ∈ −K and the P -property of L,

implies that ζ̄ = 0, yielding a contradiction to ‖ζ̄‖ = 1. Hence, the sequence {L(ζk) + b}
is unbounded. Without loss of generality, assume that ‖L(ζk) + b‖ → +∞.

If λmin(L(ζk)+b)→ −∞, then using Proposition 3.81 yields the desired result of (3.312).

We next assume that the sequence {L(ζk) + b} is bounded below. We prove that

(ζk/‖ζk‖) ◦
[
(L(ζk) + b)/‖ζk‖

]
9 0. (3.313)

Suppose that (3.313) does not hold, then from Lemma 3.55, it follows that

ζ̄ ◦ L(ζ̄) = lim
k→+∞

[
(ζk − d)/‖ζk‖

]
◦
[
(L(ζk) + b− d)/‖ζk‖

]
= 0 ∀d ∈ V. (3.314)

Since {ζk} and {L(ζk) + b} are bounded below and λmax(ζk), λmax(L(ζk) + b) → +∞,

there is an element d̃ such that ζk − d̃ ∈ K and L(ζk) + b− d̃ ∈ K for each k. Therefore,[
(ζk − d̃)/‖ζk‖

]
∈ K and

[
(L(ζk) + b− d̃)/‖ζk‖

]
∈ K, ∀ k.

Noting that K is closed and ζ̄ = limk→∞(ζk − d̃)/‖ζk‖ and L(ζ̄) = limk→∞[(L(ζk) + b−
d̃)/‖ζk‖], we have

ζ̄ ∈ K and L(ζ̄) ∈ K. (3.315)

From (3.314) and (3.315) and [85, Proposition 6], it follows that ζ̄ and L(ζ̄) operator

commute. Using the P -property of L and noting that ζ̄ ◦L(ζ̄) = 0 ∈ −K, we then obtain

ζ̄ = 0, which clearly contradicts ‖ζ̄‖ = 1. Therefore, (3.313) holds. Since ‖ζk‖ → +∞,

we have ‖ζk ◦ (L(ζk) + b)‖ → +∞. Combining with λmin(ζk), λmin(L(ζk) + b) > −∞
and ‖ζk‖, ‖L(ζk) + b‖ → +∞, it follows that the sequences {ζk} and {L(ζk) + b} satisfy

condition(ii) of Proposition 3.81. This means that the result (3.312) holds. �

Proposition 3.83. Let fα and fβ be defined as in (3.297) and (3.298), respectively. If

the mapping F has the uniform Jordan P -property, then fα and fβ are coercive.
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Proof. The proof technique is similar to that in [114, Theorem 4.1]. For completeness,

we include it. Let {ζk} be a sequence such that ‖ζk‖ → +∞. Corresponding to the

Cartesian structure of V, let ζk = (ζk1 , . . . , ζ
k
m) with ζki ∈ Vi for each k. Define

J :=
{
i ∈ {1, 2, . . . ,m} | {ζki } is unbounded

}
.

Clearly, the set J 6= ∅ since {ζk} is unbounded. Let {ξk} be a bounded sequence with

ξk = (ξk1 , . . . , ξ
k
m) and ξki ∈ Vi for i = 1, 2, . . . ,m, where ξki for each k is defined as follows:

ξki =

{
0 if i ∈ J ;

ζki otherwise,
i = 1, 2, . . . ,m.

Since F has the uniform Jordan P -property, there is a constant ρ > 0 such that

ρ‖ζk − ξk‖2 ≤ max
i=1,...,m

λmax

[
(ζki − ξki ) ◦ (Fi(ζ

k)− Fi(ξk))
]

= λmax

[
ζkν ◦ (Fν(ζ

k)− Fν(ξk))
]

≤ ‖ζkν ◦ (Fν(ζ
k)− Fν(ξk))‖

≤ ‖ζkν ‖‖Fν(ζk)− Fν(ξk)‖, (3.316)

where ν is an index from {1, 2, . . . ,m} for which the maximum is attained and the last

inequality is due to (1.5). Clearly, ν ∈ J by the definition of {ξk}, and consequently,

{ζkν } is unbounded. Without loss of generality, we assume that

‖ζkν ‖ → +∞. (3.317)

Since

‖ζk − ξk‖2 ≥ ‖ζkν − ξkν‖2 = ‖ζkν ‖2, for each k, (3.318)

dividing the both sides of (3.316) by ‖ζkν ‖ then yields that

ρ‖ζkν ‖ ≤ ‖Fν(ζk)− Fν(ξk)‖ ≤ ‖Fν(ζk)‖+ ‖Fν(ξk)‖.

Notice that {F (ξk)} is bounded since the mapping F is continuous and {ξk} is bounded.

Hence, the last inequality immediately implies

‖Fν(ζk)‖ → +∞. (3.319)

In addition, we can verify by contradiction that

‖ζkν ◦ Fν(ζk)‖ → +∞. (3.320)

In fact, if {‖ζkν ◦ Fν(ζk)‖} is bounded, then on the one hand, we have

lim
k→∞
‖ζkν ◦ (Fν(ζ

k)− Fν(ξk))‖/‖ζkν ‖2 = 0.
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But, on the other hand, the inequality (3.318) yields

lim
k→+∞

ρ‖ζk − ξk‖2/‖ζkν ‖2 ≥ ρ > 0,

which clearly contradicts the third inequality in (3.316). Thus, from equations (3.317),

(3.319) and (3.320), the sequences {ζkν } and {Fν(ζk)} satisfy the conditions of Propo-

sition 3.1. Therefore, there necessarily holds that

∥∥∥∥(φsc
α−EP

)(ν)

(ζkν , Fν(ζ
k))

∥∥∥∥ → +∞

and

∥∥∥∥(φsc
β−EP

)(ν)

(ζkν , Fν(ζ
k))

∥∥∥∥ → +∞, which in turn implies that fα(ζk) → +∞ and

fβ(ζk)→ +∞ as k →∞. �

From Definition 1.10 and Lemma 3.54(a), clearly, the uniform Cartesian P -property

implies the uniform Jordan P -property. Hence, the functions fα and fβ are also coercive

if F has the uniform Cartesian P -property. In addition, when V = IRn with “◦” being

the componentwise product of the vectors, the uniform Cartesian P -property and the

uniform Jordan P -property of F are equivalent to saying that F is a uniform P -function;

(see [63, Page 299] and discussions in Section 1.4), and now Proposition 3.83 recovers the

known result [206, Theorem 2.3].

In order to establish the coerciveness of the implicit Lagrangian merit function f
MS

,

we need the help of the natural residual complementarity function over symmetric cones

rα(x, y) := x− (x− (1/α)y)+ , ∀ x, y ∈ V and α > 0. (3.321)

To this end, we first characterize the growth behavior of the residual function rα .

Lemma 3.56. Let rα be defined as in (3.321). Then, for any x, y ∈ V, we have

λmin(rα(x, y)) ≤ min
{
λmin(x), (1/α)λmin(y)

}
.

Proof. For any x, y ∈ V, from the definition of rα in (3.321) and Lemma 3.54(c), we

have

λmin(x) = λmin

[
rα(x, y) + (x− (1/α)y)+

]
≥ λmin(rα(x, y)) + λmin [(x− (1/α)y)+] ,

which implies

λmin(rα(x, y)) ≤ λmin(x)− λmin

[
(x− (1/α)y)+

]
≤ λmin(x). (3.322)

On the other hand, we notice that the function rα can be rewritten as

rα(x, y) = (x− (1/α)y)− + (1/α)y.
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Consequently, it leads to

(1/α)λmin(y) = λmin [rα(x, y)− (x− (1/α)y)−]

≥ λmin(rα(x, y)) + λmin [−(x− (1/α)y)−]

= λmin(rα(x, y)) + λmin [(−x+ (1/α)y)+] .

This implies that

λmin(rα(x, y)) ≤ (1/α)λmin(y)− λmin [(−x+ (1/α)y)+] ≤ (1/α)λmin(y). (3.323)

From equations (3.322) and (3.323), we prove the desired inequality. �

Proposition 3.84. Let rα be defined as in (3.321). Suppose {xk} ⊂ V and {yk} ⊂ V be

the sequences satisfying one of the following conditions

(i) either λmin(xk)→ −∞ or λmin(yk)→ −∞;

(ii) λmin(xk), λmin(yk) > −∞, λmax(xk), λmax(yk)→ +∞ and (xk/‖xk‖)◦(yk/‖yk‖) 9 0.

Then,
∥∥rα(xk, yk)

∥∥→ +∞.

Proof. If Case (i) holds, the result is direct by Lemma 3.56 and the fact that

‖rα(xk, yk)‖ ≥ |λmin[rα(xk, yk)]|.

It remains to prove the desired result under Case (ii). Suppose that the sequence

{rα(xk, yk)} is bounded. From the definition of rα , we have

rα(xk, yk) = xk − (1/2)
(
xk − (1/α)yk

)
− (1/2)

∣∣xk − (1/α)yk
∣∣

= (1/2)
(
xk + (1/α)yk

)
− (1/2)

∣∣xk − (1/α)yk
∣∣ .

Therefore, ∣∣xk − (1/α)yk
∣∣ =

(
xk + (1/α)yk

)
− 2rα(xk, yk).

Squaring two sides of the last equation then yields

(1/α)xk ◦ yk = rα(xk, yk) ◦
(
xk + (1/α)yk

)
− [rα(xk, yk)]2.

Dividing the two sides by ‖xk‖‖yk‖ and using the boundedness of {rα(xk, yk)}, we obtain

lim
k→∞

(xk/‖xk‖) ◦ (yk/‖yk‖) = 0.

This contradicts the given assumption that (xk/‖xk‖) ◦ (yk/‖yk‖) 9 0. �

When V = IRn with “◦” being the componentwise product of the vectors, the con-

dition λmax(xk), λmax(yk) → +∞ implies (xk/‖xk‖) ◦ (yk/‖yk‖) 9 0, and consequently

Proposition 3.84 gives an important property of the natural residual NCP function or the

minimum NCP function; see [109, Lemma 2.5]. But, for the general Euclidean Jordan

algebra, the following example illustrates that (xk/‖xk‖) ◦ (yk/‖yk‖) 9 0 is necessary.
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Example 3.4. Consider the Lorentz algebra Ln = (IRn, ◦, 〈·, ·〉IRn) with n = 3. Take the

sequences {xk} and {yk} as follows:

xk =

 k

−(k + 1)

(1/α)

 and yk =

 k

k − 1

1

 for each k.

It is easy to verify that λmin(xk)→ −1, λmin(yk) = 1 and λmax(xk), λmax(yk)→ +∞, but

xk/‖xk‖ →

 1/
√

2

−1/
√

2

0

 , yk/‖yk‖ →

 1/
√

2

1/
√

2

0

 , and (xk/‖xk‖) ◦ (yk/‖yk‖)→ 0.

Therefore, the sequences {xk} and {yk} do not satisfy the assumption (xk/‖xk‖)◦(yk/‖yk‖) 9
0. For such sequences, by computation, we have that

rα(xk, yk) =

 k

−(k + 1)

(1/α)

−
 k + (1/2)− (1/2α)

−k − (1/2) + (1/2α)

0

 =

 (1/2α)− (1/2)

−(1/2α)− (1/2)

(1/α)

 .

Clearly, ‖rα(xk, yk)‖9 +∞, i.e., the conclusion of Proposition 3.84 does not hold.

Lemma 3.57. Let φ
MS

and rα be defined as in (3.236) and (3.321), respectively. Then,

for any x, y ∈ V, there holds

‖φ
MS

(x, y)‖ ≥ max

{(
α2 − 1

2α‖e‖

)
‖rα(x, y)‖2,

(
1− α2

2α‖e‖

)
‖r1/α(x, y)‖2

}
.

Proof. First, for any x, y ∈ V, the following identity always holds:

〈e, φ
MS

(x, y)〉 = 〈x, y〉+ (1/2α)
{
‖(x− αy)+‖2 − ‖x‖2 + ‖(y − αx)+‖2 − ‖y‖2

}
= 〈y, (x− (1/α)y)+〉+ (α/2)‖x− (x− (1/α)y)+‖2

−〈y, (x− αy)+〉 − (1/2α) ‖x− (x− αy)+‖2 . (3.324)

In fact, for any x, y ∈ V, we can compute

〈y, (x− (1/α)y)+〉+ (α/2)‖x− (x− (1/α)y)+‖2

= 〈y, (1/α)(αx− y)+ − x〉+ 〈y, x〉+ (α/2)‖(1/α)(αx− y)+ − x‖2

= (α/2)‖(1/α)(αx− y)+ − x+ (1/α)y‖2 + 〈y, x〉 − (1/2α)‖y‖2

= (1/2α)‖ − (y − αx)− + (y − αx)‖2 + 〈y, x〉 − (1/2α)‖y‖2

= (1/2α)‖(y − αx)+‖2 + 〈y, x〉 − (1/2α)‖y‖2
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and

〈y, (x− αy)+〉+ (1/2α) ‖x− (x− αy)+‖2

= (1/2α)‖(x− αy)+‖2 − (1/α) 〈x− αy, (x− αy)+〉+ (1/2α)‖x‖2

= −(1/2α) ‖(x− αy)+‖2 + (1/2α)‖x‖2.

These two equalities immediately implies (3.324). Now consider the optimization problem

min
z∈K

〈y, z〉+ (1/2α)〈z − x, z − x〉.

It is easy to verify that z∗ = (x − αy)+ is the unique optimal solution, whereas (x −
(1/α)y)+ is a feasible solution. Therefore, we have

〈y, (x− αy)+〉+
1

2α
‖x− (x− αy)+‖2 ≤ 〈y, (x− (1/α)y)+〉+

1

2α
‖x− (x− (1/α)y)+‖2.

Combining this inequality with (3.324) yields

〈e, φ
MS

(x, y)〉 ≥
(
α2 − 1

2α

)
‖x− (x− (1/α)y)+‖2 ,

which implies

‖φ
MS

(x, y)‖ ≥ 〈e/‖e‖, φ
MS

(x, y)〉 ≥
(
α2 − 1

2α‖e‖

)
‖rα(x, y)‖2. (3.325)

In addition, consider the following strictly convex optimization problem

min
z∈K

〈y, z〉+ (α/2)〈z − x, z − x〉.

We can verify that z∗ = (x− (1/α)y)+ is the unique optimal solution, whereas (x−αy)+

is a feasible solution. Consequently, we have

〈y, (x− (1/α)y)+〉+
α

2
‖x− (x− (1/α)y)+‖2 ≤ 〈y, (x− αy)+〉+

α

2
‖x− (x− αy)+‖2.

Combining this inequality with (3.324) then yields

〈e, φ
MS

(x, y)〉 ≤
(
α2 − 1

2α

)
‖x− (x− αy)+‖2,

which in turn implies

‖φ
MS

(x, y)‖ ≥ − 〈e/‖e‖, φ
MS

(x, y)〉 ≥
(

1− α2

2α‖e‖

)∥∥∥r 1
α
(x, y)

∥∥∥2

. (3.326)

From (3.325) and (3.326), we establish the desired result. The proof is thus complete.

�

Note that in Lemma 3.57 there holds ‖e‖ =
√
q since the rank of V is assume to be

q. Now, in light of Proposition 3.84 and Lemma 3.57, we have the following property of

φ
MS

.
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Proposition 3.85. Let φ
MS

be defined as in (3.236). Suppose {xk} ⊂ V and {yk} ⊂ V
be the sequences satisfying one of the following conditions

(i) either λmin(xk)→ −∞ or λmin(yk)→ −∞;

(ii) λmin(xk), λmin(yk) > −∞, λmax(xk), λmax(yk)→ +∞ and (xk/‖xk‖)◦(yk/‖yk‖) 9 0.

Then,
∥∥φ

MS
(xk, yk)

∥∥→ +∞.

Similar to Proposition 3.84, when V = IRn with ◦ being the componentwise product,

the assumption (xk/‖xk‖)◦(yk/‖yk‖) 9 0 is automatically satisfied, and from Proposition

3.85, we readily obtain the result [113, Lemma 6.2] for the NCPs. However, for the

general Euclidean Jordan algebra, the following example shows that the assumption

(xk/‖xk‖) ◦ (yk/‖yk‖) 9 0 is also necessary.

Example 3.5. Consider the Lorentz algebra Ln = (IRn, ◦, 〈·, ·〉IRn) with n = 3 and take

the sequences {xk} and {yk} as follows:

xk =

 k

−k
0

 and yk =

 k2

k2 + 1

0

 for each k.

It is easy to verify that λmin(xk) = 0, λmin(yk) = −1 and λmax(xk), λmax(yk)→ +∞, but

(
xk/‖xk‖

)
→ 1√

2

 1

−1

0

 ,
(
yk/‖yk‖

)
→ 1√

2

 1

1

0

 ,
(
xk/‖xk‖

)
◦
(
yk/‖yk‖

)
→ 0.

This shows that the sequences {xk} and {yk} do not satisfy the assumption (xk/‖xk‖) ◦
(yk/‖yk‖) 9 0. For such {xk} and {yk}, we can compute

((xk − αyk)+)2 − (xk)2 =

 2kα + (α2/2)

−2kα− (α2/2)

0

 , ((yk − αxk)+)2 − (yk)2 =

 −(1/2)

(1/2)

0

 ,

and

φ
MS

(xk, yk) =

 −kk
0

+ (1/2α)

 2kα + (α2/2)

−2kα− (α2/2)

0

+

 −(1/2)

(1/2)

0


=

 (α/4)− (1/4α)

−(α/4) + (1/4α)

0

 .

Clearly, ‖φ
MS

(xk, yk)‖9∞, i.e., the result of Proposition 3.85 does not hold.
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Now assume that (V, ◦, 〈·, ·〉) is a general Euclidean Jordan algebra. We establish the

coercive properties of the merit function f
MS

for the SCLCP and the SCCP.

Proposition 3.86. Let f
MS

be given by (3.297). If F (ζ) = L(ζ) + b with the linear

transformation L having the P -property, then the function f
MS

is coercive.

Proof. Let {ζk} be a sequence such that ‖ζk‖ → +∞. By passing to a subsequence if

necessary, we can assume that ζk/‖ζk‖ → ζ̄, and hence (L(ζk) + b)/‖ζk‖ → L(ζ̄). By

the proof of Proposition 3.82, L(ζ̄) 6= 0 and {L(ζk) + b} is unbounded. Without loss of

generality, assume that ‖L(ζk) + b‖ → +∞.

If λmin(ζk)→ −∞ or λmin(L(ζk) + b)→ −∞, then using Proposition 3.85 yields

‖φ
MS

(ζk, L(ζk) + b)‖ → +∞ and f
MS

(ζk)→ +∞.

We next assume that the sequences {ζk} and {L(ζk) + b} are bounded below. Since

λmax(ζk), λmax(L(ζk) + b) → +∞ by ‖ζk‖, ‖L(ζk) + b‖ → +∞, there is necessarily an

element d such that ζk − d ∈ K and L(ζk) + b− d ∈ K for each k, which implies

(ζk − d)/‖ζk‖ ∈ K and (L(ζk) + b− d)/‖L(ζk) + b‖ ∈ K for each k.

Using the fact that K is a closed convex cone and noting that

ζ̄ = lim
k→∞

(ζk − d)/‖ζk‖, L(ζ̄)/‖L(ζ̄)‖ = lim
k→∞

(L(ζk) + b− d)/‖L(ζk) + b‖,

we have ζ̄ ∈ K and L(ζ̄)/‖L(ζ̄)‖ ∈ K. Suppose (ζk/‖ζk‖) ◦ (L(ζk) + b)/‖L(ζk) + b‖ → 0.

Then, from Lemma 3.55, it follows that ζ̄ ◦ (L(ζ̄)/‖L(ζ̄)‖) = 0. Consequently,

ζ̄ ∈ K, L(ζ̄) ∈ K and ζ̄ ◦ L(ζ̄) = 0.

By [85, Proposition 6], ζ̄ and L(ζ̄) operator commute. This, together with ζ̄ ◦L(ζ̄) = 0 ∈
−K and the P -property of L, means that ζ̄ = 0, which is impossible since ‖ζ̄‖ = 1. Thus,

(ζk/‖ζk‖) ◦ (L(ζk) + b)/‖L(ζk) + b‖) 9 0. Notice that λmin(ζk), λmin(L(ζk) + b) > −∞
and ‖ζk‖, ‖L(ζk) + b‖ → +∞, and hence the sequences {ζk} and {L(ζk) + b} satisfy the

condition(ii) of Proposition 3.85, which implies that f
MS

(ζk)→ +∞. �

Proposition 3.87. Let f
MS

be given by (3.297). The function f
MS

is coercive under one

of the following conditions:

(C.1) the mapping F has the uniform Jordan P -property and the Lipschitz continuity;

(C.2) F has the uniform Jordan P -property and, for any {ζk}, if there exists an index

i ∈ {1, 2, . . . ,m} such that λmax(ζki )→ +∞ and λmax(Fi(ζ
k))→ +∞, then

lim sup
k→∞

〈
ζki
‖ζki ‖

,
Fi(ζ

k)

‖Fi(ζk)‖

〉
> 0. (3.327)
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Proof. The proof is similar to that for [114, Theorem 4.1], and we here include it for

completeness. Let {ζk} ⊂ V be any sequence such that ‖ζk‖ → +∞. Corresponding to

the structure of V, we write ζk = (ζk1 , . . . , ζ
k
m) with ζki ∈ Vi for each k. Define

J :=
{
i ∈ {1, 2, . . . ,m} | {ζki } is unbounded

}
.

Clearly, the set J 6= ∅ since {ζk} is unbounded. Let {ξk} be a bounded sequence with

ξk = (ξk1 , . . . , ξ
k
m) and ξki ∈ Vi for i = 1, 2, . . . ,m, where ξki for each k is defined as:

ξki =

{
0 if i ∈ J,
ζki otherwise,

i = 1, 2, . . . ,m.

If Condition C.1 holds, then by the uniform Jordan P -property, there is ρ > 0 such that

ρ‖ζk − ξk‖2 ≤ max
i=1,...,m

λmax

[
(ζki − ξki ) ◦ (Fi(ζ

k)− Fi(ξk))
]

= λmax

[
ζkν ◦ (Fν(ζ

k)− Fν(ξk))
]

≤ ‖ζkν ◦ (Fν(ζ
k)− Fν(ξk))‖

≤ ‖ζkν ‖‖Fν(ζk)− Fν(ξk)‖, (3.328)

where ν is an index from {1, 2, . . . ,m} for which the maximum is attained, and by the

definition of {ξk}, clearly, ν ∈ J , and the last inequality is due to (1.5). Since ν ∈ J ,

{ζkν } is unbounded. Without loss of generality, assume that

‖ζkν ‖ → +∞. (3.329)

Notice that

‖ζk − ξk‖2 ≥ ‖ζkν − ξkν‖2 = ‖ζkν ‖2, ∀k.
Dividing the both sides of (3.328) by ‖ζkν ‖ then yields

ρ‖ζkν ‖ ≤ ‖Fν(ζk)− Fν(ξk)‖ ≤ ‖Fν(ζk)‖+ ‖Fν(ξk)‖,

which, together with the boundedness of {Fν(ξk)}, implies

‖Fν(ζk)‖ → +∞. (3.330)

From equations (3.329) and (3.330), we thus obtain

‖ζkν ‖ → +∞, ‖Fν(ζk)‖ → +∞. (3.331)

We next show that (ζkν /‖ζkν ‖)◦(Fν(ζk)/‖Fν(ζk)‖) 9 0. If it does not hold, by the continu-

ity of λmax(·), we will have that λmax

[
(ζkν /‖ζkν ‖) ◦ (Fν(ζ

k)/‖Fν(ζk)‖
]
→ 0. Consequently,

lim
k→∞

λmax

[
ζkν ◦ (Fν(ζ

k)− Fν(ξk))
]
/[‖ζkν ‖‖Fν(ζk)‖]

≤ lim
k→∞

λmax

[
(ζkν /‖ζkν ‖) ◦ (Fν(ζ

k)/‖Fν(ζk)‖)
]

+ lim
k→∞

λmax

[
−ζkν ◦ Fν(ξk)

]
/
[
‖ζkν ‖‖Fν(ζk)‖

]
= 0 (3.332)
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where the inequality is due to Lemma 3.54(c). On the other hand, from the Lipschitz

continuity of the mapping F , there exists a scalar γ > 0 such that

‖F (ζk)− F (0)‖ ≤ γ‖ζk − 0‖ = γ‖ζk‖ for each k,

which in turn implies

‖Fν(ζk)‖ ≤ ‖Fν(ζk)− Fν(0)‖+ ‖Fν(0)‖ ≤ γ‖ζk‖+ ‖Fν(0)‖, ∀k.
From the last inequality, we obtain

lim
k→∞

ρ‖ζk − ξk‖2/[‖ζkν ‖‖Fν(ζk)‖]

≥ lim
k→∞

ρ‖ζk − ξk‖2/[‖ζk‖(γ‖ζk‖+ ‖Fν(0)‖)] =
ρ

γ
> 0.

This, together with (3.332), gives a contradiction to the first inequality of (3.328). Thus,

the sequences {ζkν } and {Fν(ζk)} satisfy the conditions of Proposition 3.85. Consequently,∥∥φ(ν)
MS

(ζkν , Fν(ζ
k))
∥∥→ +∞ and f

MS
(ζk)→ +∞.

If Condition C.2 is satisfied, then from the above discussions we see that equations

(3.328)-(3.331) still hold. If λmin(ζkν )→ −∞ or λmin(Fν(ζ
k))→ −∞, then using Lemma

3.56 and Lemma 3.57 gives that φ(ν)
MS

(ζkν , Fν(ζ
k)) → +∞, and hence f

MS
(ζk) → +∞.

Otherwise, by equation (3.331), we will have λmax(ζkν )→ +∞ and λmax(Fν(ζ
k))→ +∞.

From the given assumption, it then follows that

lim sup
k→∞

〈
ζkν /‖ζkν ‖, Fν(ζk)/‖Fν(ζk)‖

〉
> 0,

which, by Lemma 3.54(a), leads to

lim sup
k→∞

λmax

[
(ζkν /‖ζkν ‖) ◦ (Fν(ζ

k)/‖Fν(ζk)‖)
]
> 0.

This shows that (ζkν /‖ζkν ‖) ◦ (Fν(ζ
k)/‖Fν(ζk)‖) 9 0. Hence, the sequences {ζkν } and

{Fν(ζk)} satisfy the conditions of Proposition 3.85. Consequently,
∥∥φ(ν)

MS
(ζkν , Fν(ζ

k))
∥∥ →

+∞ and f
MS

(ζk)→ +∞. The proof is then complete. �

Notice that, when V = IRn with ◦ being the componentwise product of the vectors,

the assumption (3.327) is automatically satisfied and the uniform Jordan P -property of

F is equivalent to saying that F is a uniform P -function. Thus, Proposition 3.87 reduces

to the known result [114, Theorem 4.1] for the NCPs. However, for the general Euclidean

Jordan algebra, besides the uniform Jordan P -property of F , it require that F is Lipschitz

continuous or satisfies the assumption (3.327) so that (ζkν /‖ζkν ‖)◦(Fν(ζ
k)/‖Fν(ζk)‖) 9 0.

In addition, using Proposition 3.84 and the same arguments as in Proposition 3.86 and

Proposition 3.87, we can achieve the coerciveness of the natural residual merit function

for the SCCP:

Rα(ζ) :=
1

2
‖rα(ζ, F (ζ))‖2 . (3.333)
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Proposition 3.88. The function Rα defined by (3.333) is coercive under Condition C.1

or C.2 of Proposition 3.87. If F (ζ) = L(ζ) + b with the linear transformation L having

the P -property, then Rα is also coercive.

Furthermore, from Lemma 3.57, we conclude that the growth rate of f
MS

is higher

than that of the natural residual merit function Rα.

Proposition 3.89. Let {ζk} be a sequence such that ‖ζk‖ → +∞. If F satisfies Condi-

tion C.1 or C.2 of Proposition 3.87, then Rα(ζk)→ +∞, f
MS

(ζk)→ +∞ and

f
MS

(ζk)

[Rα(ζk)]1+σ → +∞ with 0 ≤ σ < 1.

3.3.2 Constructions of C-functions associated with Symmetric

Cone

Building upon the preceding discussions, two natural questions arise concerning the con-

struction of C-functions for the symmetric cone complementarity problem:

(i) Is there a systematic framework for constructing complementarity functions associ-

ated with symmetric cones?

(ii) Can existing NCP functions be adapted to generate C-functions in the symmetric

cone setting?

These questions have long stood as central challenges in the study of complementarity

functions. In this section, we offer affirmative answers to both. Specifically, we propose

two distinct methods for constructing C-functions tailored to symmetric cones. The first

approach is inspired by a class of NCP functions originally examined by Mangasarian in

[146], as detailed below.

Property 3.1. Assume that θ : IR → IR is a strictly increasing function, that is, a >

b⇐⇒ θ(a) > θ(b), and let θ(0) = 0. Then, the function

φ(a, b) := θ(|a− b|)− θ(a)− θ(b)

is an NCP function.

In [146], Mangasarian provided two examples of θ, namely θ(z) = z|z| and θ(z) = z.

Accordingly, they induce the following NCP-functions:

φ
Man1

(a, b) = (a− b)2 − b|b| − a|a|,
φ

Man2
(a, b) = |a− b| − b− a.
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Motivated by Property 3.1, as will be demonstrated later, we introduce a class of vector-

valued functions designed to induce C-functions associated with symmetric cones. Fur-

thermore, we develop several compositional forms of such C-functions, expanding the

repertoire of available constructions.

The second method builds upon existing NCP functions. As noted earlier, numer-

ous researchers have explored the extension of NCP functions to serve as C-functions

for the symmetric cone complementarity problem (SCCP). Our novel approach lies in

utilizing these existing NCP functions, originally defined as real-valued functions, to

construct vector-valued C-functions within the symmetric cone framework. With nearly

sixty NCP functions documented in the literature, this idea introduces a powerful and

versatile mechanism for generating a rich variety of C-functions. We believe this contribu-

tion represents a significant breakthrough, laying a solid foundation for future analytical

developments on the SCCP via NCP-based techniques. In particular, we present gen-

eral formulations of C-functions derived from NCP functions and apply this framework

to two prominent symmetric cones: the second-order cone and the positive semidefinite

cone. These constructions are based on explicit expressions of the inner (Jordan) product,

further highlighting the potential of this methodology. This innovative direction opens

new avenues for addressing complementarity problems through minimization approaches

grounded in NCP function theory.

Lemma 3.58. For any x, y ∈ K, if x �K 0, y �K 0 and x �K y, then x1/2 �K y1/2.

Proof. Please see [85, Proposition 8]. �

Lemma 3.59. Let X, Y be n× n matrices in Sn×n. Then, the following hold:

(a) X � 0 ⇒ UXUT � 0 for any orthogonal matrix U .

(b) X � 0, Y � 0 ⇒ 〈X, Y 〉 ≥ 0.

(c) X � 0, Y � 0, 〈X, Y 〉 = 0 ⇒ XY = Y X = 0.

(d) If X � 0, Y � 0, then 〈X, Y 〉 = 0 ⇐⇒ XY = 0.

(e) Given X and Y in Sn×n with XY = Y X, there exists an orthogonal matrix U ,

diagonal matrices D and E such that X = UDUT and Y = UEUT.

Proof. Please see [84, 183]. �

Lemma 3.60. Let x = (x1, x̄2) ∈ IR× IRn−1 and y = (y1, ȳ2) ∈ IR× IRn−1. Then,

x �Ln+ 0, y �Ln+ 0 and x ◦ y = 0

if and only if the following hold
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(i) If x̄2 6= 0 and ȳ2 6= 0, then x, y are both on the boundary of Ln+, share the same

spectral vectors, and can be expressed as

x = λ2(x) · u(2)
x = 2x1 ·

1

2

(
1,

x̄2

||x̄2||

)
,

y = λ2(y) · u(2)
y = 2y1 ·

1

2

(
1,− x̄2

||x̄2||

)
,

with 〈u(2)
x , u

(2)
y 〉 = 0 or u

(2)
x ◦ u(2)

y = 0.

(ii) If x̄2 = 0 or ȳ2 = 0, then it goes to the trivial cases that x = 0 and y ∈ Ln+ or x ∈ Ln+
and y = 0.

Proof. The proof follows an approach similar to that of [78, Proposition 2.1]. For the

sake of completeness, we include the full details below.

“⇐” The proof of this direction is trivial.

“⇒” From x �Ln+ 0, y �Ln+ 0 and x ◦ y = (〈x, y〉, x1ȳ2 + y1x̄2) = 0, we have

〈x, y〉 = x1y1 + x̄T2 ȳ2 = 0, x1 ≥ ||x̄2||, y1 ≥ ||ȳ2||. (3.334)

To proceed, we discuss two cases.

(i) If x̄2 6= 0 and ȳ2 6= 0, then equation (3.334) implies −x̄T2 ȳ2 = x1y1 ≥ ||x̄2||||ȳ2||. Since

−x̄T2 ȳ2 ≤ ||x̄2||||ȳ2||, it leads to x1y1 = −x̄T2 ȳ2 = ||x̄2||||ȳ2||. Hence x1 = ||x̄2||, y1 = ||ȳ2||;
otherwise, if x ∈ int(Ln+) or y ∈ int(Ln+) then x1y1 > ||x̄2||||ȳ2||, which is impossible.

This means x and y are both on the boundary of Ln+. Using the facts that the second

component of x ◦ y is zero, i.e x1ȳ2 + y1x̄2 = 0, and the fact that x1 = ||x̄2||, y1 = ||ȳ2||,
these yield that

x = λ2(x) · u(2)
x = (x1 + ||x̄2||) ·

1

2
(1,

x̄2

||x̄2||
) = 2x1 ·

1

2
(1,

x̄2

||x̄2||
)

and

y = λ2(y) · u(2)
y = (y1 + ||ȳ2||) ·

1

2
(1,

ȳ2

||ȳ2||
) = 2y1 ·

1

2
(1,− x̄2

||x̄2||
),

where x and y can be viewed as sharing the same spectral vectors {u(2)
x , u

(2)
y } with u

(2)
x =

1
2
(1, x̄2
||x̄2||), u

(2)
y = 1

2
(1,− x̄2

||x̄2||) = u
(1)
x and 〈u(2)

x , u
(2)
y 〉 = u

(2)
x ◦ u(2)

y = 0.

(ii) If x̄2 = 0, from equation (3.334), we obtain x1y1 = 0. It leads to x1 = 0 or y1 = 0.

For x1 = 0, then we have x = 0 and y can be any element in Ln+. For y1 = 0, then ȳ2

must be 0 from the third inequality of (3.334), which means y = 0 and x can be any

element in Ln+ in this case. Similar to the case ȳ2 = 0. �
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Lemma 3.61. Let x = (x1, x̄2) ∈ IR × IRn−1 and y = (y1, ȳ2) ∈ IR × IRn−1 with x̄2 6= 0,

ȳ2 6= 0. Then,

x �Ln+ 0, y �Ln+ 0 and x ◦ y = 0

if and only if x1 = ‖x̄2‖, y1 = ‖ȳ2‖, and x1ȳ2 + y1x̄2 = 0.

Proof. This is an immediate consequence of Lemma 3.60. �

Lemma 3.62. Let x = (x1, x̄2) ∈ IR × IRn−1 and y = (y1, ȳ2) ∈ IR × IRn−1 with x̄2 6= 0,

ȳ2 6= 0. If x �Ln+ 0, y �Ln+ 0 and x ◦ y = 0, then ȳ2 = −mx̄2, where m := ‖ȳ2‖
‖x̄2‖ . Moreover,

ȳ2 = −mx̄2 ⇐⇒ there exists k ∈ {2, · · · , n} such that yk = −mxk 6= 0

and ylxk = xlyk for all l ∈ {2, · · · , n}. (3.335)

Proof. From case (i) in the proof of Lemma 3.60, we see that x̄T2 ȳ2 = −||x̄2||||ȳ2||, which

further implies

x̄T2 ȳ2

||ȳ2||
= −||x̄2|| ⇐⇒

x̄T2 ȳ2

||ȳ2||
= − x̄

T
2 x̄2

||x̄2||
⇐⇒ ȳ2

||ȳ2||
= − x̄2

||x̄2||
⇐⇒ ȳ2 = −||ȳ2||

||x̄2||
x̄2.

Letting m := ‖ȳ2‖
‖x̄2‖ , it implies ȳ2 = −mx̄2.

Next, we prove the relation (3.335).

“⇒” Since ȳ2 = −mx̄2, and x̄2 6= 0, ȳ2 6= 0, there exists k ∈ {2, · · · , n} such that xk 6= 0,

yk 6= 0 and yk = −mxk. In addition, yl = −mxl for all l ∈ {2, · · · , n}. Multiplying by

−mxk both sides of this equation, we have

yl(−mxk) = −mxl(−mxk) = −mxlyk.
Thus, we prove that ylxk = xlyk.

“⇐” Since ylxk = xlyk and yk = −mxk 6= 0, it yields ylxk = xl(−mxk). This implies

that yl = −mxl for all l ∈ {2, · · · , n}. Hence, ȳ2 = −mx̄2. �

A. First construction method of C-functions.

As discussed in Chapter 2, several systematic approaches exist for NCP functions,

typically relying on the property that a ≥ 0, b ≥ 0, ab = 0 implies either a = 0 or b = 0.

Unfortunately, this implication does not hold in the setting of symmetric cones. Recall

from (1.28) (see also [85, Proposition 6]) that

x �K 0, y �K 0, x ◦ y = 0 ⇐⇒ x �K 0, y �K 0, 〈x, y〉 = 0.

The core difficulty with symmetric cones K lies in the fact that

x �K 0, y �K 0, x ◦ y = 0 does not imply that x = 0 or y = 0.

Nonetheless, as we shall see, the following assumption may help to compensate for this

limitation.
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Assumption 3.2. A function θ : IRn → IRn is said to satisfy Assumption 3.2 if

(i) x �K 0 if and only if θ(x) �K 0.

(ii) for any x, y �K 0, x ◦ y = 0 if and only if θ(x) ◦ θ(y) = 0.

Assumption 3.2(i) is a slightly weaker than the strictly increasing property mentioned

in Property 3.1, whereas Assumption 3.2(ii) is used to adjust the expression in a general

symmetric cone setting.

Proposition 3.90. Suppose that θ : IRn → IRn satisfies Assumption 3.2. Then, the

function ϕ : IRn × IRn → IRn defined by

ϕ(x, y) := |θ(x)− θ(y)| − θ(x)− θ(y)

is a C-function in the symmetric cone setting.

Proof. It suffices to verify that ϕ(x, y) = 0 if and only if x �K 0, y �K 0, x ◦ y = 0.

“⇒” Assume that ϕ(x, y) = 0, we observe

ϕ(x, y) = |θ(x)− θ(y)| − θ(x)− θ(y) = 0

⇐⇒ |θ(x)− θ(y)| = θ(x) + θ(y)

⇐⇒ |θ(x)− θ(y)|2 = (θ(x) + θ(y))2

⇐⇒ θ(x)2 − 2θ(x) ◦ θ(y) + θ(y)2 = θ(x)2 + 2θ(x) ◦ θ(y) + θ(y)2

⇐⇒ θ(x) ◦ θ(y) = 0.

(3.336)

Letting ω = |θ(x)−θ(y)| gives ω2 = θ(x)2−2θ(x)◦θ(y)+θ(y)2 = θ(x)2 +θ(y)2. Thus, we

have ω2 �K θ(x)2 and ω2 �K θ(y)2. This leads to ω �K θ(x) and ω �K θ(y) by applying

Lemma 3.58. Since ϕ(x, y) = 0, ω = θ(x) + θ(y), it follows that θ(x) = ω − θ(y) �K 0

and θ(y) = ω − θ(x) �K 0. Using Assumption 3.2(i) of θ, we obtain x, y �K 0. Then, we

further have x ◦ y = 0 from Assumption 3.2(ii).

“⇐” Suppose that x �K 0, y �K 0, x ◦ y = 0 and θ satisfies Assumption 3.2. Then it

is clear to see that θ(x) �K 0, θ(y) �K 0 and θ(x) ◦ θ(y) = 0. This fact together with

(3.336) shows ϕ(x, y) = 0. �
What are some examples of θ(·) function that satisfy Assumption 3.2? Indeed, in

light of Theorem 1.1 and note that x ∈ K if and only if λi(x) ≥ 0 for all i = 1, · · · , r, we

can confirm that the following functions satisfy Assumption 3.2 in their domain:

θ1(z) = z,

θ2(z) = zp, where p is positive odd integer,

θ3(z) = z|z|,
θ4(z) = z1/2, where θ4 : K → K.
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Hence, by Proposition 3.90, these functions corresponds to C-functions ϕ1, ϕ2, ϕ3, and

ϕ4 which are listed below.

ϕ1(x, y) = |x− y| − (x+ y) = −1

2
φ

NR
(x, y);

ϕ2(x, y) = |xp − yp| − xp − yp, where p is positive odd integer;

ϕ3(x, y) =
∣∣x|x| − y|y|∣∣− x|x| − y|y|;

ϕ4(x, y) =
∣∣x1/2 − y1/2

∣∣− x1/2 − y1/2, where ϕ4 : K ×K → K.

Next, we explore composition forms of C-functions. More specifically, given a θ(·)
function satisfying Assumption 3.2 and any C-function ϕ, the composition function

ϕ(θ(x), θ(y)) is a C-function as well.

Proposition 3.91. Suppose that θ : IRn → IRn satisfies Assumption 3.2. Then, for

any C-function ϕ : IRn × IRn → IRn, the composition function ϕ(θ(x), θ(y)) is also a

C-function.

Proof. “⇐” If x �K 0, y �K 0, x ◦ y = 0 and θ satisfies Assumption 3.2, we have

θ(x) �K 0 and θ(y) �K 0 by Assumption 3.2(i) and θ(x) ◦ θ(y) = 0 by Assumption

3.2(ii). Then, it follows that ϕ(θ(x), θ(y)) = 0 since ϕ is a C-function.

“⇒” If ϕ(θ(x), θ(y)) = 0, we have θ(x), θ(y) �K 0 and θ(x) ◦ θ(y) = 0 since ϕ is a

C-function. Again, applying Assumption 3.2 yields x, y �K 0 and x ◦ y = 0. �

Since those functions θ1, θ2, θ3, θ4 satisfy Assumption 3.2, we can employ them and

apply Theorem 3.91 to obtain more C-functions. For example, if we take the Fischer-

Burmeister function

ϕ
FB

(x, y) = (x2 + y2)1/2 − (x+ y),

then we achieve the following C-functions accordingly:

ϕ̃1(x, y) = φ
FB

(x, y);

ϕ̃2(x, y) = (x2p + y2p)1/2 − (xp + yp), where p is positive odd integer;

ϕ̃3(x, y) = ((x|x|)2 + (y|y|)2)1/2 − (x|x|+ y|y|);
ϕ̃4(x, y) = (x+ y)1/2 − (x1/2 + y1/2), where ϕ̃4 : K ×K → K.

In fact, item(i) and(ii) in Assumption 3.2 can be combined together as a complemen-

tarity property, which is slightly weaker than Assumption 3.2.

Assumption 3.3. A function θ : IRn → IRn is said to satisfy Assumption 3.3 if

x �K 0, y �K 0, x ◦ y = 0 ⇐⇒ θ(x) �K 0, θ(y) �K 0, θ(x) ◦ θ(y) = 0.

It is clear that Assumption 3.2 implies Assumption 3.3, but the reverse direction is

not true. It is noted that Assumption 3.3 is sufficient for Proposition 3.91. The following

is a weaker version of the composition form.
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Proposition 3.92. Suppose that θ : IRn → IRn satisfies Assumption 3.3. Then, for

any C-function ϕ : IRn × IRn → IRn, the composition function ϕ(θ(x), θ(y)) is also a

C-function.

Proof. The proof is straightforward. Since ϕ is a C-function and θ satisfies Assumption

3.3, we have

ϕ(θ(x), θ(y)) = 0

⇐⇒ θ(x) �K 0, θ(y) �K 0, θ(x) ◦ θ(y) = 0

⇐⇒ x �K 0, y �K 0, x ◦ y = 0.

Hence, ϕ(θ(x), θ(y)) is also a C-function. �

If we choose θ(z) = z, then the composition function ϕ(θ(x), θ(y)) in Proposition 3.92

goes back to the original C-function ϕ(x, y). If we choose ϕ1(x, y) = x − (x − y)+ =

φ
NR

(x, y), ϕ2(x, y) = (x2 + y2)1/2 − (x + y) = φ
FB

(x, y), composing them with different

θ(·) leads to various C-functions.

1. Let θ(z) = zp where p is positive odd integer. Then, applying Proposition 3.92

implies

ϕ1(θ(x), θ(y)) = xp − (xp − yp)+,

ϕ2(θ(x), θ(y)) =
(
x2p + y2p

)1/2 − (xp + yp),

are also C-functions.

2. Let θ(z) = z|z|. Then, applying Proposition 3.92 implies

ϕ1(θ(x), θ(y)) = x|x| −
(
x|x| − y|y|

)
+
,

ϕ2(θ(x), θ(y)) =
(
(x|x|)2 + (y|y|)2

)1/2 − (x|x|+ y|y|),

are also C-functions.

We now introduce a special class of functions that also satisfy Assumption 3.3. This

enables us to generate a broad family of functions θ(·), which can be effectively employed

in conjunction with Proposition 3.92.

Proposition 3.93. For any real-valued function f : IR → IR with the following proper-

ties:

(i) t ≥ 0 if and only if f(t) ≥ 0;

(ii) t = 0 if and only if f(t) = 0,
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the vector-valued function f sc : IRn → IRn associated with K, defined by

f sc(x) = f(λ1(x))e1 + · · ·+ f(λr(x))er ∀x ∈ V,

satisfies Assumption 3.3. Here, λi(x) and {ei} for i = 1, 2, · · · , r are the spectral values

and the spectral vectors of x, respectively.

Proof. Let x, y ∈ V, the spectral decompositions of x and y are given by

x =
r∑
i=1

λi(x)ei and y =
r∑
i=1

λi(y)fi.

Then, we have

f
sc

(x) =
r∑
i=1

f(λi(x))ei and f
sc

(y) =
r∑
i=1

f(λi(y))fi.

From the above properties (i)-(ii) of f , we obtain

x �K 0, y �K 0, x ◦ y = 0

⇐⇒ x �K 0, y �K 0, 〈x, y〉 = 0

⇐⇒ λi(x) ≥ 0, λi(y) ≥ 0,
r∑
i,j

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ λi(x) ≥ 0, λi(y) ≥ 0, λi(x)λj(y) = 0 or 〈ei, fj〉 = 0

⇐⇒ f(λi(x)) ≥ 0, f(λi(y)) ≥ 0, f(λi(x))f(λj(y)) = 0 or 〈ei, fj〉 = 0

⇐⇒ f
sc

(x) �K 0, f
sc

(y) �K 0,
r∑
i,j

f(λi(x))f(λj(y)) 〈ei, fj〉 = 0

⇐⇒ f
sc

(x) �K 0, f
sc

(y) �K 0, 〈f sc(x), f sc(y)〉 = 0

⇐⇒ f
sc

(x) �K 0, f
sc

(y) �K 0, f sc(x) ◦ f sc

(y) = 0,

where i = 1, 2, · · · , r and j = 1, 2, · · · , r. Thus, it is clear to see that Assumption 3.3 is

satisfied and the proof is complete. �

We list a couple of examples of f mentioned in Proposition 3.93. The first one is

f(t) = tp with positive odd number p. It is clear that the properties (i) and (ii) are held.

Hence, its corresponding SC-function reduces to the regular function f sc(x) = xp. The

second one is f(t) =
t

t2 + 1
, which also possesses (i) t ≥ 0 if and only if f(t) ≥ 0; and (ii)

t = 0 if and only if f(t) = 0. Then, in light of Proposition 3.93, its SC-function satisfies

Assumption 3.3. This means we can employ this f sc function as a choice of θ(·) function

in Proposition 3.92 to generate C-functions below:

θ(x) = f
sc

(x) =
λ1(x)

λ1(x)2 + 1
e1 + · · ·+ λr(x)

λr(x)2 + 1
er.
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where x ∈ V, λi(x) for i = 1, 2, · · · , r are spectral values of x, and {ei}ri=1 is a Jordan

frame. Note that the expression is not explicit.

Indeed, by applying Lemma 3.60, we can omit property(ii) in Proposition 3.93 in the

special case of the second-order cone.

Proposition 3.94. For any real-valued function f : IR → IR with t ≥ 0 if and only

if f(t) ≥ 0, the following vector-valued function associated with Ln+ (also called SOC-

function for short), defined by

f
soc

(x) = f(λ1(x))u(1)
x + f(λ2(x))u(2)

x ,

satisfies Assumption 3.3. Here, λi(x) and u
(i)
x , for i = 1, 2 are the spectral values and the

spectral vectors of x = (x1, x̄2) ∈ IR× IRn−1.

Proof. Let x = (x1, x̄2) ∈ IR× IRn−1 and y = (y1, ȳ2) ∈ IR× IRn−1.

For x̄2 = 0 or ȳ2 = 0, it can be seen that x = 0 or y = 0 by Lemma 3.60. It follows that

f
soc

(x) = 0 or f
soc

(y) = 0 when x̄2 = 0 or ȳ2 = 0. Hence, f
soc

(y) automatically satisfies

Assumption 3.3.

For x̄2 6= 0 and ȳ2 6= 0, from Lemma 3.60, we have

x �Ln+ 0, y �Ln+ 0, x ◦ y = 0

⇐⇒ λi(x) ≥ 0, λi(y) ≥ 0, i = 1, 2, and x = λ2(x)u(2)
x , y = λ2(y)u(1)

x

⇐⇒ f(λi(x)) ≥ 0, f(λi(y)) ≥ 0, i = 1, 2, and f
soc

(x) = f(λ2(x))u(2)
x , f

soc

(y) = f(λ2(y))u(1)
x

⇐⇒ f
soc

(x) �Ln+ 0, f
soc

(y) �Ln+ 0, f
soc

(x) ◦ f soc

(y) = 0,

where the desired result follows. Thus, the proof is complete. �

A trivial example of f mentioned in Proposition 3.94 is f(t) = t3, where it is easy to

check t ≥ 0 if and only if f(t) ≥ 0. Therefore, from Proposition 3.94, its SOC-function

becomes

f
soc

(x) = (λ1(x))3u(1)
x + (λ2(x))3u(2)

x ,

and satisfies Assumption 3.3. Note that this expression is explicit due to (1.9)-(1.10).

Again, we can plug in θ(x) := f
soc

(x) in Proposition 3.92 to construct C-functions in the

SOC setting.

In fact, Assumption 3.3 can be extended to the following two-function version.

Assumption 3.4. The functions θ1, θ2 : IRn → IRn is said to satisfy Assumption 3.4 if

x �K 0, y �K 0, x ◦ y = 0 ⇐⇒ θ1(x) �K 0, θ2(y) �K 0, θ1(x) ◦ θ2(y) = 0.

By invoking Assumption 3.4, Proposition 3.92 can be naturally extended to a more

general setting, as presented below.
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Proposition 3.95. Suppose that θ1, θ2 : IRn → IRn satisfy Assumption 3.4. Then, for

any C-function ϕ : IRn × IRn → IRn, the composition function ϕ
(
θ1(x), θ2(y)

)
is also a

C-function.

Proof. The proof is straightforward. Since ϕ is a C-function and θ1, θ2 satisfy Assump-

tion 3.4, it is easy to verify that

ϕ(θ1(x), θ2(y)) = 0

⇐⇒ θ1(x) �K 0, θ2(y) �K 0, θ1(x) ◦ θ2(y) = 0

⇐⇒ x �K 0, y �K 0, x ◦ y = 0.

Hence, we show that ϕ
(
θ1(x), θ2(y)

)
is also a C-function. �

Here are examples of θ1(·) and θ2(·) in Proposition 3.95:

θ1(x) = x3 + x and θ2(y) = y|y|.

Composing these two functions with the natural residual function ϕ
NR

(x, y) = x−(x−y)+

yields

ϕ
NR

(θ1(x), θ2(y)) = x3 + x− (x3 + x− y|y|)+

which is a C-function due to Proposition 3.95. Note that it is true that if we exchange

the position of θ1 and θ2 in the composition. There is another surprising result that if

we switch the roles of ϕ and θ in Proposition 3.95, the goal is still achieved.

Proposition 3.96. Suppose that θ : IRn → IRn satisfies z = 0 if and only if θ(z) = 0.

Then, for any C-function ϕ : IRn× IRn → IRn, the composition function θ
(
ϕ(·, ·)

)
is also

a C-function.

Proof. Since ϕ is a C-function and θ satisfies z = 0 if and only if θ(z) = 0, we have

θ
(
ϕ(x, y)

)
= 0 ⇐⇒ ϕ(x, y) = 0 ⇐⇒ x �K 0, y �K 0, x ◦ y = 0.

This proves that θ(ϕ(x, y)) is also a C-function. �

Below are several examples of functions θ(·) as referenced in Proposition 3.96:

1. θ(z) = zp, where p is a positive integer;

2. θ(z) = |z|;

3. θ(z) = f
sc

(z) where f
sc

(z) is the SC-function induced from a real-valued function

f with t = 0 if and only if f(t) = 0.
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B. Second construction method of C-functions.

The central idea of the second construction method for C-functions lies in utilizing

existing NCP functions, originally real-valued, to generate C-functions, which are vector-

valued. This represents a novel and promising direction, revealing that the extensive

collection of known NCP functions (approximately sixty) can be systematically employed

to produce a rich variety of C-functions.

It is important to emphasize that a C-function is vector-valued, whereas an NCP

function is typically real-valued. The challenge of extending an NCP function to a C-

function has remained an open problem for several decades. In what follows, we present

a detailed exposition of how this extension can be achieved in the setting of symmetric

cones.

Proposition 3.97. Let φ : IR2 → IR be an NCP-function. For any x ∈ V and y ∈ V,

the following Φ : V× V→ V defined by

Φ(x, y) :=
r∑

i,j=1

φ2(λi(x), λj(y))ei ◦ fj

is a C-function, where {ei}ri=1, {fj}rj=1 are Jordan frames of x and y, respectively.

Proof. Let x ∈ V and y ∈ V, the spectral decompositions of x and y are given by

x =
r∑
i=1

λi(x)ei and y =
r∑
j=1

λj(y)fj.

By definition of C-function, it suffices to show that Φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈
K, 〈x, y〉 = 0.

“⇒” Since 〈ei, fj〉 ≥ 0, it yields

Φ(x, y) = 0 ⇐⇒
r∑

i,j=1

φ2(λi(x), λj(y))ei ◦ fj = 0

=⇒
〈

r∑
i,j=1

φ2(λi(x), λj(y))ei ◦ fj, e
〉

= 0

⇐⇒
r∑

i,j=1

φ2(λi(x), λj(y)) 〈ei, fj〉 = 0

⇐⇒ φ2(λi(x), λj(y)) = 0 or 〈ei, fj〉 = 0

⇐⇒ φ(λi(x), λj(y)) = 0 or 〈ei, fj〉 = 0

⇐⇒ λi(x) ≥ 0, λj(y) ≥ 0, λi(x)λj(y) = 0 or 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K,
r∑

i,j=1

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0.
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“⇐” By the above equivalences, we obtain

x ∈ K, y ∈ K, 〈x, y〉 = 0

⇐⇒ φ2(λi(x), λj(y)) = 0 or 〈ei, fj〉 = 0

⇐⇒ φ2(λi(x), λj(y)) = 0 or ei ◦ fj = 0

=⇒
r∑

i,j=1

φ2(λi(x), λj(y))ei ◦ fj = 0

⇐⇒ Φ(x, y) = 0.

Thus, we achieve the desired result. �

In fact, if V ≡ IR, then a C-function Φ(x, y) reduces to an NCP function φ2(x, y). It

is clear that we can write out components of Φ(x, y) shown as in Proposition 3.97 in the

second-order cone setting. Let x = (x1, x̄2) ∈ IR× IRn−1 and y = (y1, ȳ2) ∈ IR× IRn−1.

Φ(x, y) =

(
a+ būT2 v̄2

cū2 + dv̄2

)
, (3.337)

where

ū2 =

{
x̄2
‖x̄2‖ if x̄2 6= 0

ω otherwise,
v̄2 =

{
ȳ2
‖ȳ2‖ if ȳ2 6= 0

ϑ otherwise,

with any vector ω, ϑ ∈ IRn−1 such that ‖ω‖ = 1, ‖ϑ‖ = 1, and

a =
φ2(λ1(x), λ1(y)) + φ2(λ1(x), λ2(y)) + φ2(λ2(x), λ1(y)) + φ2(λ2(x), λ2(y))

4
,

b =
φ2(λ1(x), λ1(y))− φ2(λ1(x), λ2(y))− φ2(λ2(x), λ1(y)) + φ2(λ2(x), λ2(y))

4
,

c =
−φ2(λ1(x), λ1(y))− φ2(λ1(x), λ2(y)) + φ2(λ2(x), λ1(y)) + φ2(λ2(x), λ2(y))

4
,

d =
−φ2(λ1(x), λ1(y)) + φ2(λ1(x), λ2(y))− φ2(λ2(x), λ1(y)) + φ2(λ2(x), λ2(y))

4
.

Example 3.6. Consider the Fischer-Burmeister function φ
FB

(a, b) =
√
a2 + b2− (a+ b)

for all (a, b) ∈ IR× IR. Then the corresponding C-function is

Φ
FB

(x, y) =
r∑

i,j=1

φ2
FB

(λi(x), λj(y))ei ◦ fj.

It is easy to see that

Φ
FB

(x, y) = 0 ⇐⇒ φ
FB

(x, y) = (x2 + y2)1/2 − (x+ y) = 0.



372 CHAPTER 3. GENERAL COMPLEMENTARITY FUNCTIONS

As noted in [169, Section 3], the component-wise expression of φ
FB

(x, y) is quite intricate,

which implies that its subgradient formula is also complex. In contrast, by employing the

explicit formula for Φ(x, y) provided in (3.337), the computation of the subgradient of

Φ
FB

(x, y) becomes more tractable. Consequently, Φ
FB

(x, y) may offer greater ease of im-

plementation in numerical experiments compared to φ
FB

(x, y) when solving the SOCCP.

Proposition 3.98. Let φ : IR2 → IR be an NCP function. Suppose that x ∈ V and

y ∈ V with {ei}ri=1, {fj}rj=1 as their corresponding Jordan frames, respectively. Then,

the following Φ1,Φ2 : V× V→ V defined by

Φ1(x, y) :=
r∑

(i,j)/∈I

φ2(λi(x), λj(y))ei ◦ fj

Φ2(x, y) :=
r∑

(i,j)/∈I

φ2(λi(x), λj(y))ei

are C-functions, where I = {(i, j) ∈ {1, · · · , r} | 〈ei, fj〉 = 0}.

Proof. Using the proof of Proposition 3.97, it is easy to show that Φ1(x, y) is a C-

function. We will now prove Φ2(x, y) is a C-function. Note the fact that ei ∈ K and
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〈ei, ei〉 > 0 for all i = 1, · · · , r. Therefore, we have

Φ2(x, y) = 0

⇐⇒
r∑

(i,j)/∈I

φ2(λi(x), λj(y))ei = 0

⇐⇒
〈

r∑
(i,j)/∈I

φ2(λi(x), λj(y))ei, e

〉
= 0

⇐⇒
〈

r∑
(i,j)/∈I

φ2(λi(x), λj(y))ei,
r∑
i=1

ei

〉
= 0

⇐⇒
r∑

(i,j)/∈I

φ2(λi(x), λj(y)) 〈ei, ei〉 = 0

⇐⇒ φ2(λi(x), λj(y)) = 0, (i, j) /∈ I
⇐⇒ φ(λi(x), λj(y)) = 0, (i, j) /∈ I
⇐⇒ λi(x) ≥ 0, λj(y) ≥ 0, λi(x)λj(y) = 0, (i, j) /∈ I

⇐⇒ x ∈ K, y ∈ K,
r∑

(i,j)/∈I

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K,
r∑

(i,j)/∈I

λi(x)λj(y) 〈ei, fj〉+
r∑

(i,j)∈I

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K,
r∑

i,j=1

λi(x)λj(y) 〈ei, fj〉 = 0

⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0.

Then, the desired result follows. �

Note that from Φ2(x, y) in Proposition 3.98, we obtain that

Φ2
1(x, y) :=

r∑
(i,j)/∈I

φ2(λi(x), λj(y))fj and Φ2
2(x, y) :=

r∑
(i,j)/∈I

φ2(λi(x), λj(y))(ei + fj).

are also C-functions.

We now establish C-functions for the special case of two commutative operators x and

y which recover the existing C-functions. In particular, x and y share the same Jordan

frame, that is,

x = λ1(x)e1 + · · ·+ λr(x)er and y = λσ(1)(y)e1 + · · ·+ λσ(r)(y)er,

where σ : {1, · · · , r} → {1, · · · , r}. Moreover, xp = λp1(x)e1 + · · · + λpr(x)er for any

positive number p.
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Proposition 3.99. Let φ : IR2 → IR be an NCP-function. For any x ∈ V and y ∈ V,

the following Φ̃ : V× V→ V defined by

Φ̃(x, y) :=
r∑
i=1

φ(λi(x), λσ(i)(y))ei

is a C-function, where {e1, e2, · · · , er} is a Jordan frame of x and y.

Proof. It suffices to show that Φ̃(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0. Indeed, we

have

Φ̃(x, y) = 0

⇐⇒
r∑
i=1

φ(λi(x), λσ(i)(y))ei = 0

⇐⇒
〈

r∑
i=1

φ(λi(x), λσ(i)(y))ei,
r∑
i=1

φ(λi(x), λσ(i)(y))ei

〉
= 0

⇐⇒
r∑
i=1

φ2(λi(x), λσ(i)(y)) 〈ei, ei〉 = 0

⇐⇒ φ2(λi(x), λσ(i)(y)) = 0, i = 1, · · · , r
⇐⇒ φ(λi(x), λσ(i)(y)) = 0, i = 1, · · · , r
⇐⇒ λi(x) ≥ 0, λi(y) ≥ 0, λi(x)λσ(i)(y) = 0, i = 1, · · · , r

⇐⇒ x ∈ K, y ∈ K,
r∑
i=1

λi(x)λσ(i)(y) 〈ei, ei〉 = 0

⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0,

where 〈ei, ei〉 > 0 and 〈ei, ej〉 = 0 whenever i 6= j. Then, the proof is complete. �

Note that if σ(i) = i for i = 1, · · · , r then

y = λ1(y)e1 + · · ·+ λr(y)er.

Since 〈ei, ei〉 > 0, we have

x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇐⇒ λi(x) ≥ 0 λi(y) ≥ 0, λi(x)λi(y) = 0 =⇒ x = 0 or y = 0.

Based on Proposition 3.99, we will show that Φ̃(x, y) retrieves the existing C-functions

in the special case of two commutative operators x and y. In particular, we focus on two

popular NCP functions, which are the FB and NR functions

φ
FB

(a, b) =
(
a2 + b2

)1/2 − (a+ b),

φ
NR

(a, b) = a− (a− b)+
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for any (a, b) ∈ IR× IR. The corresponding C-functions are

Φ̃
FB

(x, y) =
r∑
i=1

φ
FB

(λi(x), λσ(i)(y))ei,

Φ̃
NR

(x, y) =
r∑
i=1

φ
NR

(λi(x), λσ(i)(y))ei.

Then, there have

Φ̃
FB

(x, y) ≡ ϕ
FB

(x, y),

Φ̃
NR

(x, y) ≡ ϕ
NR

(x, y).

Since x and y operator commute, it implies

x2 + y2 =
r∑
i=1

λ2
i (x)ei +

r∑
i=1

λ2
σ(i)(y)ei and

(
x2 + y2

)1/2
=

r∑
i=1

(
λ2
i (x) + λ2

σ(i)(y)
)1/2

ei,

and

(x− y)+ =
r∑
i=1

(
λi(x)− λσ(i)(y)

)
+
ei.

Hence, we obtain

Φ̃
FB

(x, y) =
r∑
i=1

((
λ2
i (x) + λ2

σ(i)(y)
)1/2 − (λi(x) + λσ(i)(y))

)
ei

=
r∑
i=1

(
λ2
i (x) + λ2

σ(i)(y)
)1/2

ei − (
r∑
i=1

λi(x)ei +
r∑
i=1

λσ(i)(y))ei)

=
(
x2 + y2

)1/2 − (x+ y) = ϕ
FB

(x, y),

and

Φ̃
NR

(x, y) =
r∑
i=1

(
λi(x)−

(
λi(x)− λσ(i)(y)

)
+

)
ei

=
r∑
i=1

λi(x)ei −
r∑
i=1

(
λi(x)− λσ(i)(y)

)
+
ei

= x− (x− y)+ = ϕ
NR

(x, y).

Similar arguments apply for other existing C-functions in the literature.

Remark 3.8. We point out a few comments to understand more about the construction

of C-functions by using NCP functions.
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(i) From Proposition 3.99 and [85, Proposition 6], we obtain that for any x ∈ V, y ∈ V,

x 6= 0, y 6= 0, there holds

x ∈ K, y ∈ K, 〈x, y〉 = 0 ⇐⇒ λ1(x) = 0, λ1(y) = 0, 〈x, y〉 = 0, (3.338)

where λi(x) and λi(y), i = 1, · · · , r are arranged in the increasing order λ1(x) ≤
· · · ≤ λr(x) and λ1(y) ≤ · · · ≤ λr(y), respectively. Indeed, it is enough to prove

that x ∈ K, y ∈ K, 〈x, y〉 = 0 =⇒ λ1(x) = 0, λ1(y) = 0, 〈x, y〉 = 0. According

to [85, Proposition 6], we have that x and y operator commute which together with

the proof of Proposition 3.99 indicate

λi(x) ≥ 0, λi(y) ≥ 0, λi(x)λσ(i)(y) = 0, i = 1, · · · , r
=⇒ λ1(x)λσ(1)(y) + · · ·+ λr(x)λσ(r)(y) = 0.

Using the rearrangement inequality, we obtain

0 = λ1(x)λσ(1)(y) + · · ·+ λr(x)λσ(r)(y) ≥ λ1(x)λr(y) + · · ·+ λr(x)λ1(y) ≥ 0

which yields

λ1(x)λr(y) = 0, λr(x)λ1(y) = 0 =⇒ λ1(x) = 0, λ1(y) = 0,

where λr(x) > 0 and λr(y) > 0 due to x 6= 0, y 6= 0.

(ii) Using the relation (3.338), for any x ∈ V and y ∈ V and assume that λi(x) and

λi(y), i = 1, · · · , r are listed in the increasing order, the following holds

x ∈ K, y ∈ K, 〈x, y〉 = 0

⇐⇒ φ(λ1(x), λ1(y)) = 0, 〈x, y〉 = 0 or (3.339)

φ(λ1(x), λr(y)) = 0, φ(λr(x), λ1(y)) = 0, 〈x, y〉 = 0,

where φ is an NCP function.

(iii) We observe that constructing a general class of C-functions based on NCP functions

opens a novel avenue for addressing the SCCP, leveraging spectral eigenvalues and

spectral vectors (Jordan frames). In particular, we have identified a new direction

for solving the SOCCP and SDCP by formulating them as minimization problems

via the relation (3.339). Moreover, in the cases of two special symmetric cones, the

second-order cone and the positive semidefinite cone, the Jordan product admits

explicit expressions. This enables the construction of simplified C-functions for

these cases through the same relation (3.339).

As noted in Remark 3.8(iii), a simplified form of C-functions can be constructed for

both the second-order cone and the positive semidefinite cone by exploiting the rela-

tion (3.339). To illustrate this approach, we begin with the second-order cone setting,

employing Lemma 3.60, Lemma 3.61, and Lemma 3.62.
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Proposition 3.100. Let φ : IR2 → IR be an NCP-function. For any x = (x1, x̄2) ∈
IR × IRn−1 and y = (y1, ȳ2) ∈ IR × IRn−1, the following two vector-valued functions

Φ1,Φ2 : IRn × IRn → IRn defined by

Φ1(x, y) :=

(
φ(λ1(x), λ1(y))

x1ȳ2 + y1x̄2

)

Φ2(x, y) :=

φ(λ1(x), λ2(y))

φ(λ2(x), λ1(y))

ȳ3xk − x̄3yk


are C-functions in the second-order cone setting. Here, k ∈ {2, · · · , n} and

x̄3 := (x2, · · · , xk−1, xk+1, · · · , xn)T ∈ IRn−2, ȳ3 := (y2, · · · , yk−1, yk+1, · · · , yn)T ∈ IRn−2;

and λi(x), λi(y) for i = 1, 2 are the spectral values of x and y associated with second-

order cone, respectively. In particular, there holds ‖x̄2‖yk = −‖ȳ2‖xk 6= 0 for some

k ∈ {2, · · · , n} when x̄2 6= 0 and ȳ2 6= 0.

Proof. For x̄2 = 0 or ȳ2 = 0, from Lemma 3.60, we know that x = 0 or y = 0. Then, it

is easy to verify

x �Ln+ 0, y �Ln+ 0, x ◦ y = 0 ⇐⇒ Φ1(x, y) = 0 and Φ2(x, y) = 0.

Therefore, we only focus on the case of x̄2 6= 0 and ȳ2 6= 0.

(i) We first prove that Φ1(x, y) is a C-function. To proceed, we note a fact that for any

x ∈ Ln+, y ∈ Ln+, there holds

λ1(x) = 0, x1ȳ2 + y1x̄2 = 0 ⇐⇒ λ1(y) = 0, x1ȳ2 + y1x̄2 = 0.

This fact together with Lemma 3.61 yields

Φ1(x, y) = 0 ⇐⇒
{
φ(λ1(x), λ1(y)) = 0

x1ȳ2 + y1x̄2 = 0

⇐⇒
{
λ1(x)λ1(y) = 0, λ1(x) ≥ 0, λ1(y) ≥ 0

x1ȳ2 + y1x̄2 = 0

⇐⇒
{
λ1(x) = 0, λ1(y) = 0

x1ȳ2 + y1x̄2 = 0

⇐⇒ x �Ln+ 0, y �Ln+ 0, x ◦ y = 0.

Thus, Φ1(x, y) is a C-function.
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(ii) We now show that Φ2(x, y) is a C-function. Applying Lemma 3.61 and Lemma 3.62,

it follows that

x �Ln+ 0, y �Ln+ 0, x ◦ y = 0

=⇒


λ1(x) = 0

λ1(y) = 0

ȳ2 = − ‖ȳ2‖‖x̄2‖ x̄2

=⇒


φ(λ1(x), λ2(y)) = 0

φ(λ2(x), λ1(y)) = 0

‖x̄2‖yk = −‖ȳ2‖xk 6= 0 for some k ∈ {2, · · · , n}
ylxk = xlyk for all l ∈ {2, · · · , n}

=⇒


φ(λ1(x), λ2(y)) = 0

φ(λ2(x), λ1(y)) = 0

‖x̄2‖yk = −‖ȳ2‖xk 6= 0 for some k ∈ {2, · · · , n}
ȳ3xk − x̄3yk = 0

=⇒ Φ2(x, y) = 0.

Conversely, suppose that Φ2(x, y) = 0. Due to φ being an NCP function, we obtain
φ(λ1(x), λ2(y)) = 0

φ(λ2(x), λ1(y)) = 0

ȳ3xk − x̄3yk = 0

=⇒


λ1(x) ≥ 0, λ2(x) ≥ 0, λ1(y) ≥ 0, λ2(y) ≥ 0

λ1(x)λ2(y) = 0

λ2(x)λ1(y) = 0

=⇒
{
x ∈ Ln+, y ∈ Ln+
λ1(x)λ2(y) + λ2(x)λ1(y) = 0.

(3.340)

Note that λi(x) = x1 + (−1)i‖x̄2‖ and λi(y) = y1 + (−1)i‖ȳ2‖ for i = 1, 2. Hence, we

have

λ1(x)λ2(y) = x1y1 − ‖x̄2‖‖ȳ2‖+ x1‖ȳ2‖ − y1‖x̄2‖,
λ2(x)λ1(y) = x1y1 − ‖x̄2‖‖ȳ2‖ − x1‖ȳ2‖+ y1‖x̄2‖.

This fact together with (3.340) leads to

λ1(x)λ2(y) + λ2(x)λ1(y) = 2(x1y1 − ‖x̄2‖‖ȳ2‖) = 2(x1y1 + x̄T2 ȳ2) = 0,

which says that 〈x, y〉 = 0. Thus, Φ2(x, y) is a C-function. �

Note that in Proposition 3.100, the component x1ȳ2 + y1x̄2 of Φ1(x, y) is a vector in

IRn−1 while the component ȳ3xk − x̄3yk of Φ2(x, y) is a vector in IRn−2. Therefore, both
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ranges of Φ1(x, y) and Φ2(x, y) are in IRn. It is well-known that there have plenty of

NCP functions in the literature. According to Proposition 3.100, we can convert them

into C-functions associated with second-order cone. We illustrate this using two NCP

functions in the following example.

Example 3.7. We consider two popular NCP functions as follows:

φ
FB

(a, b) =
√
a2 + b2 − (a+ b) and φ

NR
(a, b) = a− (a− b)+, ∀(a, b) ∈ IR× IR.

In light of Proposition 3.100, it is not hard to see that

Φ1
FB

(x, y) =

(
φ

FB
(λ1(x), λ1(y))

x1ȳ2 + y1x̄2

)
, Φ1

NR
(x, y) =

(
φ

NR
(λ1(x), λ1(y))

x1ȳ2 + y1x̄2

)
and

Φ2
FB

(x, y) =

φFB
(λ1(x), λ2(y))

φ
FB

(λ2(x), λ1(y))

ylxk − xlyk

 , Φ2
NR

(x, y) =

φNR
(λ1(x), λ2(y))

φ
NR

(λ2(x), λ1(y))

ȳ3xk − x̄3yk


are C-functions, where ‖x̄2‖yk = −‖ȳ2‖xk 6= 0 for some k ∈ {2, · · · , n} when x̄2 6= 0 and

ȳ2 6= 0,

x̄3 = (x2, · · · , xk−1, xk+1, · · · , xn)T ∈ IRn−2, ȳ3 = (y2, · · · , yk−1, yk+1, · · · , yn)T ∈ IRn−2,

and λi(x), λi(y) for i = 1, 2 are spectral values of x and y, respectively.

Indeed, we can further conclude that

Φi
FB

(x, y) = 0, i = 1, 2 ⇐⇒ ϕ
FB

(x, y) = (x2 + y2)1/2 − (x+ y) = 0

and

Φi
NR

(x, y) = 0, i = 1, 2 ⇐⇒ ϕ
NR

(x, y) = x− (x− y)+ = 0.

To see this, by definition of C-function and Lemma 3.61, for x̄2 6= 0 and ȳ2 6= 0, we have

ϕ
FB

(x, y) = 0 ⇐⇒ x ∈ Ln+, y ∈ Ln+, x ◦ y = 0

⇐⇒ λ1(x) = 0, λ1(y) = 0, x1ȳ2 + y1x̄2 = 0

⇐⇒ Φ1
FB

(x, y) = 0.

For x̄2 = 0 or ȳ2 = 0, it is easy to check ϕ
FB

(x, y) = 0 ⇐⇒ Φ1
FB

(x, y) = 0 by defi-

nition of C-function and Lemma 3.60. Similar arguments apply for other cases. The

above discussions indicate that Φi
FB

(x, y) are C-functions and equivalent to the tradi-

tional complementarity function ϕ
FB

(x, y); Φi
NR

(x, y) are C-functions and equivalent to

the traditional complementarity function ϕ
NR

(x, y).

Remark 3.9. We elaborate more about Proposition 3.100 as below.
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(i) In Proposition 3.100, if φ is a continuously differentiable NCP function, then Φ1(x, y)

and Φ2(x, y) are continuously differentiable C-functions when x̄2 6= 0 and ȳ2 6= 0.

Let y = F (x), where F : IRn → IRn is continuously differentiable. Then, the first

row of the Jacobian JΦ1(x, F (x)) and the first and second row of the Jacobian

JΦ2(x, F (x)) are described by

(
JΦ1(x, F (x))

)
1

=
∂φ

∂λ1(x)
∇λ1(x)T +

∂φ

∂λ1(F (x))
(DF (x)∇λ1(F (x)))T ,(

JΦ2(x, F (x))
)

1
=

∂φ

∂λ1(x)
∇λ1(x)T +

∂φ

∂λ2(F (x))
(DF (x)∇λ2(F (x)))T ,(

JΦ2(x, F (x))
)

2
=

∂φ

∂λ2(x)
∇λ2(x)T +

∂φ

∂λ1(F (x))
(DF (x)∇λ1(F (x)))T ,

when x ∈ bd(Ln+)\{0} and F (x) ∈ bd(Ln+)\{0}. Since φ is continuously differen-

tiable, it can be seen that

∂φ

∂λ1(x)
(0, 0) = 0,

∂φ

∂λ1(F (x))
(0, 0) = 0,

∂φ

∂λ2(x)
(λ2(x), 0) 6= 0, and

∂φ

∂λ2(F (x))
(0, λ2(F (x))) 6= 0,

when x ∈ bd(Ln+)\{0} and F (x) ∈ bd(Ln+)\{0}. Thus, for x ∈ bd(Ln+)\{0} and

F (x) ∈ bd(Ln+)\{0}, the first row of the Jacobian JΦ1(x, F (x)) is zero and the

first and second row of the Jacobian JΦ2(x, F (x)) are nonzero. In summary, when

we apply Newton method to solve the SOCCP, Φ2(x, F (x)) is a better choice than

Φ1(x, F (x)).

(ii) It is generally difficult to derive explicit component-wise formulas for many of the

existing C-functions in the literature. However, Proposition 3.100 provides explicit

expressions for the components of Φ1(x, y) and Φ2(x, y), making the computation

of their subgradients significantly more tractable. This contrasts with the complex

formulation of the B-subgradient of the Fischer-Burmeister C-function, as shown

in [163, Proposition 3.1]. Consequently, employing Φ1(x, y) and Φ2(x, y) for solving

the SOCCP may facilitate easier implementation in numerical simulations.

(iii) Regarding Remark 3.8(ii)-(iii), we propose a new direction to tackle the SOCCP

which can be solved by the following unconstrained minimization problem

min
x∈IRn

φ2(λ1(x), λ1(F (x))) + 〈x, F (x)〉2

or

min
x∈IRn

φ2(λ1(x), λ2(F (x))) + φ2(λ2(x), λ1(F (x))) + 〈x, F (x)〉2 ,

where F : IRn → IRn is a map.
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Similar to Proposition 3.94, the SOC-function defined in (1.11) plays a pivotal role

in our second construction approach. The significance of certain special SOC-functions

within this framework is demonstrated in Proposition 3.101.

Proposition 3.101. Let φ : IR2 → IR be an NCP function. Suppose that F (x) is a

SOC-function induced from function f : IR→ IR, which means F (x) can be written:

F (x) = f(λ1(x))u(1)
x + f(λ2(x))u(2)

x or F (x) = f(λ2(x))u(1)
x + f(λ1(x))u(2)

x .

Then, there holds

x ∈ Ln+, F (x) ∈ Ln+, 〈x, F (x)〉 = 0

⇐⇒ Φ3(x, F (x)) :=

φ(λ1(x), f(λ1(x)))

φ(λ2(x), f(λ2(x)))

0

 = 0 or

Φ4(x, F (x)) :=

φ(λ1(x), f(λ2(x)))

φ(λ2(x), f(λ1(x)))

0

 = 0,

where x = (x1, x̄2) ∈ IR× IRn−1 and λi(x), u
(i)
x for i = 1, 2 are the spectral values and the

spectral vectors of x, respectively.

Proof. We will prove for the case Φ3(x, F (x)). Assume that F (x) can be written as

F (x) = f(λ1(x))u(1)
x + f(λ2(x))u(2)

x .

Hence, we have

x ∈ Ln+, F (x) ∈ Ln+, 〈x, F (x)〉 = 0

⇐⇒ λi(x) ≥ 0, f(λi(x)) ≥ 0, λ1(x)f(λ1(x)) + λ2(x)f(λ2(x)) = 0

⇐⇒ λi(x) ≥ 0, f(λi(x)) ≥ 0, λ1(x)f(λ1(x)) = 0, λ2(x)f(λ2(x)) = 0

⇐⇒ φ(λ1(x), f(λ1(x))) = 0, φ(λ2(x), f(λ2(x))) = 0

⇐⇒ Φ3(x, F (x)) = 0.

Similar arguments apply to the case when Φ4(x, F (x)) = 0. �

Next, by using Lemma 3.59 and noting that Sn×n ∼= IR
n(n+1)

2 , we show how to construct

C-functions based on given NCP functions in the setting of positive semidefinite cone.

We introduce the following notations for convenience. For any X, Y ∈ Sn×n, we denote

X :=
[
x1 | · · · | xn

]
, Y :=

[
y1 | · · · | yn

]
,

where xi and yi for i = 1, · · · , n are column vectors of matrices X and Y , respectively.
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Proposition 3.102. Let φ : IR2 → IR be an NCP function. For any X, Y ∈ Sn×n, the

following two functions Φi : Sn×n × Sn×n → IR
n(n+1)

2 , i = 1, 2, given by

Φ1(X, Y ) :=


φ(λ1(X), λ1(Y ))

xT
1 y1
...

xT
nyn
0



Φ2(X, Y ) :=



φ(λ1(X), λn(Y ))

φ(λn(X), λ1(Y ))

xT
1 y1
...

xT
nyn
0


are C-functions. Here, the zero vector in Φ1(X, Y ) belongs to IR

(n+1)(n−2)
2 whereas the zero

vector in Φ2(X, Y ) belongs to IR
n2−n−4

2 . In addition, λi(X), λi(Y ) for i = 1, · · · , n are

eigenvalues of matrices X, Y , which are arranged in the increasing order λ1(X) ≤ · · · ≤
λn(X) and λ1(Y ) ≤ · · · ≤ λn(Y ), respectively.

Proof. First, according to Lemma 3.59 and λ1(X) ≤ · · · ≤ λn(X), λ1(Y ) ≤ · · · ≤ λn(Y ),

we have

X � 0, Y � 0, 〈X, Y 〉 = 0

⇐⇒ X � 0, Y � 0, XY = 0 (3.341)

⇐⇒ λ1(X) ≥ 0, λ1(Y ) ≥ 0, and XY = 0.

Suppose that X = 0 or Y = 0, it is easy to see that

X � 0, Y � 0, 〈X, Y 〉 = 0 ⇐⇒ Φ1(X, Y ) = 0 and Φ2(X, Y ) = 0.

Therefore, it suffices to consider the case of X 6= 0 and Y 6= 0. Suppose that Φ1(X, Y ) =

0. Noting that 〈X, Y 〉 = tr(XY ) =
∑n

i=1 xT
i yi, we have

Φ1(X, Y ) = 0 =⇒
{
φ(λ1(X), λ1(Y )) = 0

xT
i yi = 0, i = 1, · · · , n

=⇒
{
λ1(X) ≥ 0, λ1(Y ) ≥ 0∑n

i=1 xT
i yi = 0

=⇒ X � 0, Y � 0, 〈X, Y 〉 = 0.

Conversely, from (3.341), we know

X � 0, Y � 0, 〈X, Y 〉 = 0 =⇒ λ1(X) ≥ 0, λ1(Y ) ≥ 0, and XY = 0. (3.342)
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We now claim that

(3.342) =⇒ λ1(X) = 0, λ1(Y ) = 0, and XY = 0. (3.343)

By contradiction, suppose that λ1(X) > 0. Hence, λi(X) > 0 for all i = 1, · · · , n. It

follows that det(X) = λ1(X) · · ·λn(X) > 0, that is, X is nonsingular matrix. Multiplying

both sides of XY = 0 by X−1 leads to Y = 0, which contradicts the fact that Y 6= 0.

Thus, λ1(X) = 0. Similarly, we can argue that λ1(Y ) = 0. This says that λ1(X)λ1(Y ) =

0, and then φ(λ1(X), λ1(Y )) = 0. On the other hand, since XY = 0, xT
i yi = 0 for all

i = 1, · · · , n. All the above concludes Φ1(X, Y ) = 0.

For the case of Φ2(X, Y ), likewise, we also have

Φ2(X, Y ) = 0 =⇒


φ(λ1(X), λn(Y )) = 0

φ(λn(X), λ1(Y )) = 0

xT
i yi = 0, i = 1, · · · , n

=⇒
{
λ1(X) ≥ 0, λ1(Y ) ≥ 0∑n

i=1 xT
i yi = 0

=⇒ X � 0, Y � 0, 〈X, Y 〉 = 0.

Conversely, suppose that X � 0, Y � 0, and 〈X, Y 〉 = 0. Hence, λn(X) > 0 and

λn(Y ) > 0. From (3.342) and (3.343), we have

λ1(X) = 0, λ1(Y ) = 0, and XY = 0.

This yields λ1(X)λn(Y ) = 0 and λn(X)λ1(Y ) = 0, which further imply that φ(λ1(X), λn(Y )) =

0 and φ(λn(X), λ1(Y )) = 0. Moreover, since XY = 0, xT
i yi = 0 for all i = 1, · · · , n.

Thus, we conclude that Φ2(X, Y ) = 0. �

Note that both Φ1(X, Y ) and Φ2(X, Y ) yield vectors in IR
n(n+1)

2 . Therefore, they could

be viewed as matrix-valued function. In fact, there exist a lot of matrix expressions for

Φ1(X, Y ) and Φ2(X, Y ). For instance,

Φ1(X, Y ) ≡


xT

1 y1 φ(λ1(X), λ1(Y )) 0 · · · 0

φ(λ1(X), λ1(Y )) xT
2 y2 0 · · · 0

0 0 xT
3 y3 · · · 0

...
...

...
. . .

...

0 0 0 · · · xT
nyn



Φ2(X, Y ) ≡


xT

1 y1 φ(λ1(X), λn(Y )) φ(λn(X), λ1(Y )) · · · 0

φ(λ1(X), λn(Y )) xT
2 y2 0 · · · 0

φ(λn(X), λ1(Y )) 0 xT
3 y3 · · · 0

...
...

...
. . .

...

0 0 0 · · · xT
nyn

 .
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Example 3.8. We consider the FB function φ
FB

(a, b) =
√
a2 + b2 − (a + b) for all

(a, b) ∈ IR× IR. Their corresponding C-functions are

Φ1
FB

(X, Y ) =


φ

FB
(λ1(X), λ1(Y ))

xT
1 y1
...

xT
nyn
0



Φ2
FB

(X, Y ) =



φ
FB

(λ1(X), λn(Y ))

φ
FB

(λn(X), λ1(Y ))

xT
1 y1
...

xT
nyn
0


,

where λi(X), λi(Y ) for i = 1, · · · , n are eigenvalues of matrices X, Y , which are arranged

in the increasing order λ1(X) ≤ · · · ≤ λn(X) and λ1(Y ) ≤ · · · ≤ λn(Y ), respectively.

Likewise, in the setting of positive semidefinite cone, it is easy to see that

Φi
FB

(X, Y ) = 0, i = 1, 2 ⇐⇒ φ
FB

(X, Y ) = (X2 + Y 2)1/2 − (X + Y ) = 0.

This feature indicates that Φi
FB

(X, Y ) are C-functions and equivalent to the traditional

complementarity functions φ
FB

(X, Y ).

Remark 3.10. There are some other possible forms equivalent to Φ1(X, Y ) and Φ2(X, Y )

in Proposition 3.102 without having a lot of zeros. For instance, we could define

Φ̃1(X, Y ) :=


φ(λ1(X), λ1(Y ))

xT
1 y1
...

xT
nyn

v1
XY



Φ̃2(X, Y ) :=



φ(λ1(X), λn(Y ))

φ(λn(X), λ1(Y ))

xT
1 y1
...

xT
nyn

v2
XY


,
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where λi(X), λi(Y ) for i = 1, · · · , n are eigenvalues of matrices X, Y , which are arranged

in the increasing order. Here, v1
XY
∈ IR

(n+1)(n−2)
2 and v2

XY
∈ IR

n2−n−4
2 may have many

alternative forms, one pair of them is

v1
XY

:=
(
xT

1 y2, · · · ,xT
1 yn,x

T
2 y3, · · · ,xT

n−2yn
)T
,

v2
XY

:=
(
xT

1 y2, · · · ,xT
1 yn,x

T
2 y3, · · · ,xT

n−2yn−1

)T
.

Again, there are many matrix forms for Φ̃1(X, Y ) and Φ̃2(X, Y ). We hereby provide one

matrix form as follows:

Φ̃1(X, Y ) ≡


xT

1 y1 φ(λ1(X), λ1(Y )) xT
1 y2 · · · xT

1 yn−1

φ(λ1(X), λ1(Y )) xT
2 y2 xT

1 yn · · · xT
2 yn−1

xT
1 y2 xT

1 yn xT
3 y3 · · · xT

3 yn−1
...

...
...

. . .
...

xT
1 yn−1 xT

2 yn−1 xT
3 yn−1 · · · xT

nyn



Φ̃2(X, Y ) ≡


xT

1 y1 φ(λ1(X), λn(Y )) φ(λn(X), λ1(Y )) · · · xT
1 yn−2

φ(λ1(X), λn(Y )) xT
2 y2 xT

1 yn−1 · · · xT
2 yn−2

φ(λn(X), λ1(Y )) xT
1 yn−1 xT

3 y3 · · · xT
3 yn−2

...
...

...
. . .

...

xT
1 yn−2 xT

2 yn−2 xT
3 yn−2 · · · xT

nyn

 .

Note that it might be difficult in using Φ1(X, Y ) and Φ2(X, Y ) to define a merit

function 1
2
‖Φ(X, Y )‖2 for solving the SDCP due to the implicitness of eigenvalues of a

real symmetric matrix. Thus, we propose a new direction to deal with the SDCP through

NCP functions. More precisely, we will present a form of optimization problem for the

SDCP. Let F : Sn×n → Sn×n be a mapping. The SDCP is to find a matrix X ∈ Sn×n
such that

X ∈ Sn×n+ , F (X) ∈ Sn×n+ , 〈X,F (X)〉 = 0. (3.344)

According to the relation (3.338), the SDCP (3.344) is equivalent to find a matrix X ∈
Sn×n such that

λ1(X) = 0, λ1(F (X)) = 0, 〈X,F (X)〉 = 0

when X 6= 0 and F (X) 6= 0. Using the fact that

λ1(X) = min
‖u‖=1

uTXu and λ1(F (X)) = min
‖v‖=1

vTF (X)v.

Then, for the case X ∈ bd(Sn×n+ ) and F (X) ∈ bd(Sn×n+ ), the SDCP (3.344) becomes the

following bilevel optimization problem:{
min f(X,λ1(X), λ1(F (X))) := (λ1(X))2 + (λ1(F (X)))2 + 〈X,F (X)〉2
s.t. λ1(X) = min

‖u‖=1
uTXu and λ1(F (X)) = min

‖v‖=1
vTF (X)v, X ∈ Sn×n.
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If the minimal value is zero, then there exists a matrix X ∈ Sn×n satisfying

λ1(X) = 0, λ1(F (X)) = 0, 〈X,F (X)〉 = 0

which is a solution of the SDCP. We see that the above problem does not provide the

solution for the cases X = 0 and F (X) ∈ int(Sn×n+ ) or X ∈ int(Sn×n+ ) and F (X) =

0. However, this will not happen if we use the same technique for Φ1(X,F (X)) and

Φ2(X,F (X)). Note that

Φ1(X,F (X)) = 0 ⇐⇒ 〈X,F (X)〉 = 0

and φ(λ1(X), λ1(F (X))) = 0,

or

Φ2(X,F (X)) = 0 ⇐⇒ 〈X,F (X)〉 = 0,

φ(λ1(X), λn(F (X))) = 0 and φ(λn(X), λ1(F (X))) = 0,

where φ is a given NCP function. Then, we have the corresponding bilevel optimization

problems:{
min f(X,λ1(X), λ1(F (X))) := (φ(λ1(X), λ1(F (X))))2 + 〈X,F (X)〉2
s.t. λ1(X) = min

‖u‖=1
uTXu and λ1(F (X)) = min

‖v‖=1
vTF (X)v, X ∈ Sn×n.

or
min f(X,λ1(X), λ1(F (X))) := (φ(λ1(X), λn(F (X))))2 + (φ(λn(X), λ1(F (X))))2 + 〈X,F (X)〉2
s.t. λ1(X) = min

‖u‖=1
uTXu, λn(X) = max

‖u‖=1
uTXu, λ1(F (X)) = min

‖v‖=1
vTF (X)v,

and λn(F (X)) = max
‖u‖=1

uTF (X)u, X ∈ Sn×n.

Therefore, if the minimal value is zero, then there exists a matrix X ∈ Sn×n satisfying

λ1(X) ≥ 0, λ1(F (X)) ≥ 0, 〈X,F (X)〉 = 0 which means that we can obtain the solution

on the boundary and interior of Sn×n+ .

At last, we introduce C-functions based on a special type of matrix-valued functions.

For a real-valued function f : IR → IR, recall from (1.14) that there is a corresponding

matrix-valued function defined by

f
mat

(X) = f(λ1(X))U1 + · · ·+ f(λn(X))Un,

where X has the spectral decomposition X = λ1(X)U1 + · · ·+λn(X)Un. For more details

regarding this special matrix-valued functions, please refers to [45].

Proposition 3.103. Let φ : IR2 → IR be an NCP function. Suppose that F (X) is the

matrix-valued function induced by a function f : IR→ IR, that is, F (X) is written as

F (X) = f(λ1(X))U1 + · · ·+ f(λn(X))Un,
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with X = λ1(X)U1 + · · · + λn(X)Un, where λi(X), i = 1, · · · , n are eigenvalues of

X and {Ui}ni=1 is a Jordan frame. Then, for any X ∈ Sn×n, the following function

Φ3 : Sn×n × Sn×n → IR
n(n+1)

2 given by

Φ3(X,F (X)) :=


φ(λ1(X), f(λ1(X)))

...

φ(λn(X), f(λn(X)))

0


is a C-function, where the zero vector belongs to IR

n(n−1)
2 .

Proof. Again, applying Lemma 3.59 yields

X � 0, F (X) � 0, 〈X,F (X)〉 = 0

⇐⇒ X � 0, F (X) � 0, XF (X) = 0

⇐⇒ λi(X) ≥ 0, f(λi(X)) ≥ 0, i = 1, · · · , n, and
n∑
i=1

λi(X)f(λi(X))Ui = 0

⇐⇒ λi(X) ≥ 0, f(λi(X)) ≥ 0, λi(X)f(λi(X)) = 0, i = 1, · · · , n
⇐⇒ φ(λi(X), f(λi(X))) = 0, i = 1, · · · , n
⇐⇒ Φ3(X,F (X)) = 0.

This clearly proves that Φ3(X,F (X)) is a C-function. �

To close this section, we point out that there exists matrix forms for Φ3(X,F (X)) in

Proposition 3.103, one of them is

Φ3(X,F (X)) ≡


φ(λ1(X), f(λ1(X))) 0 · · · 0

0 φ(λ2(X), f(λ2(X))) · · · 0
...

...
. . .

...

0 0 · · · φ(λn(X), f(λn(X)))

 .
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Chapter 4

Optimization Algorithms using

Complementarity Functions

In this chapter, we present several optimization algorithms that utilize complementarity

functions. As discussed in Chapter 2, there are four well-established approaches for solv-

ing the NCP, each of which can be extended to broader settings such as the SOCCP, the

SDCP, and the SCCP. Accordingly, the chapter is organized into four sections, with each

section illustrating one or two representative algorithms within a given approach, accom-

panied by various complementarity functions to highlight the algorithmic applications of

C-functions. Numerous related algorithms employing C-functions can also be found in

the literature; for further reference, see [25, 38, 47, 48, 58, 106, 111, 219, 225].

4.1 Merit Function Approach

In this section, we present the merit function approach for solving the SOCCP (3.1).

As will be shown, the problem is reformulated as an unconstrained minimization of an

appropriately defined merit function over IRn. We then introduce a descent method to

solve this unconstrained reformulation. Recall the SOCCP (3.1): the goal is to find

ζ ∈ IRn such that

〈F (ζ), ζ〉 = 0, F (ζ) ∈ K, ζ ∈ K,

where 〈·, ·〉 is the Euclidean inner product, F : IRn → IRn is a smooth (i.e., continuously

differentiable) mapping, and K is the Cartesian product of second-order cones. In other

words,

K = Kn1 × · · · × Knm ,

where m,n1, . . . , nm ≥ 1, n1 + · · ·+ nm = n, and

Kni = {(x1, x2) ∈ IR× IRni−1 | ‖x2‖ ≤ x1},

389
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with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative reals IR+.

In addition, we also recall the YF complementarity function:

ψ
YF

(x, y) := ψ0(〈x, y〉) + ψ
FB

(x, y), (4.1)

where ψ0 : IR→ [0,∞) is any smooth function satisfying

ψ0(t) = 0 ∀t ≤ 0 and ψ′0(t) > 0 ∀t > 0. (4.2)

In [220], ψ0(t) = 1
4
(max{0, t})4 was considered. As shown in Section 3.1.4, the function

ψ
YF

, is a C-function as well as a merit function, which enjoys favorable properties as

what ψ
FB

has. Moreover, ψ
YF

possesses properties of bounded level sets and error bound.

In this section, we focus on the following equivalent reformulation of SOCCP, which

arises via the merit function ψ
YF

defined as in (4.1)-(4.2):

min
ζ∈IRn

f
YF

(ζ) where f
YF

(ζ) := ψ
YF

(F (ζ), ζ) . (4.3)

The algorithm is described as below, where the proposed method uses d(ζ) given in

Proposition 3.37, i.e.,

d(ζ) := − (ψ′0(〈F (ζ), ζ〉)ζ +∇xψFB
(F (ζ), ζ)) . (4.4)

as its direction.

Algorithm 4.1. (Step 0) Choose ζ0 ∈ IRn, ε ≥ 0, σ ∈ (0, 1/2), β ∈ (0, 1) and set

k := 0.

(Step 1) If f
YF

(ζk) ≤ ε, then stop.

(Step 2) Compute d(ζk) := −
(
ψ′0(〈F (ζk), ζk〉)ζk +∇xψFB

(F (ζk), ζk)
)
.

(Step 3) Find a step-size tk := βmk , where mk is the smallest nonnegative integer m

satisfying the Armijo’s rule:

f
YF

(
ζk + βmd(ζk)

)
≤ (1− σβ2m)f

YF
(ζk). (4.5)

(Step 4) Set ζk+1 := ζk + tk d(ζk), k := k + 1 and go to Step 1.

It is worth noting that the above algorithm is ∇F -free, that is, it does not require

computation of the Jacobian matrix of F . Furthermore, the computational effort per

iteration is minimal, involving only a few vector multiplications. This type of algorithm

has also been studied in the context of the NCP (see [81]) and the SDCP (see [220]). A

distinctive feature of such methods is that both the step size and the search direction are

adaptively adjusted via Armijo’s rule. In practical implementations, the parameter σ is
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typically chosen close to zero, while β is often selected in the interval ( 1
10
, 1

2
), depending

on the degree of confidence in the quality of the initial step size; see [8] for further

discussion.

We now proceed to establish the global convergence of Algorithm 4.1. Without loss

of generality, we assume ε = 0, so that the algorithm generates an infinite sequence ζk.

Proposition 4.1. Suppose that F is monotone and the SOCCP (3.1) is strictly feasible.

Then, the sequence {ζk} generated by Algorithm 4.1 has at least one accumulation point,

and any accumulation point is a solution of the SOCCP (3.1).

Proof. The proof is standard and can be found in [8]. For completeness, we here present

its proof by the following three steps.

(i) First, we show that, whenever ζk is not a solution, there exists a nonnegative integer

mk in Step 3 of Algorithm 4.1. Suppose not, then for any positive integer m, we have

f
YF

(
ζk + βm d(ζk)

)
− f

YF
(ζk) > −σβ2mf

YF
(ζk)

where d(ζ) is described as in (4.4). Dividing by βm on both sides and letting m → ∞
yields 〈

∇f
YF

(ζk), d(ζk)
〉
≥ 0. (4.6)

Since F is monotone which is equivalent to ∇F (ζ) is positive semidefinite, the inequality

(4.6) contradicts Proposition 3.37. Hence, we can find an integer mk in Step 3.

(ii) Secondly, we show that the sequence {ζk} generated by the algorithm has at least one

accumulation point. By the descent property of Algorithm 4.1, the sequence {f
YF

(ζk)}k∈N
is decreasing. Hence by Proposition 3.39, we obtain that {ζk} is bounded, and conse-

quently has at least one accumulation point.

(iii) Finally, we prove that any accumulation point of {ζk} is a solution of the SOCCP

(3.1). Let ζ∗ be an arbitrary accumulation point of {ζk}k∈N . In other words, there is

a subsequence {ζk}k∈K converging to ζ∗, where K is a subset of N . We know d(·) is

continuous (since ψ0 and ψ
FB

are smooth) which implies {d(ζk)}k∈K converges to d(ζ∗).

Next, we need to discuss two cases. First, we consider the case where there exists a

constant β̄ such that βmk ≥ β̄ > 0 for all k ∈ K. Then, from (4.5), we have

f
YF

(ζk+1) ≤ (1− σβ̄2)f
YF

(ζk)

for all k ∈ K and the entire sequence {f
YF

(ζk)}k∈K is decreasing. Thus, we obtain

f
YF

(ζ∗) = 0 (by taking the limit) which says ζ∗ is a solution of the SOCCP (3.1). Now,

we consider the other case where there exists a further subsequence such that βmk → 0.

Note that by Armijo’s rule (4.5) in Step 3, we have

f
YF

(ζk + βmk−1 d(ζk))− f
YF

(ζk) > −σβ2(mk−1)f
YF

(ζk).
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Dividing by βmk−1 both sides and passing the limit on the further subsequence, we obtain

〈∇f
YF

(ζ∗), d(ζ∗)〉 ≥ 0,

which yields that ζ∗ is a solution of the SOCCP (3.1) by Proposition 3.37. �

Proposition 4.2. Let F be a continuously differentiable and strongly monotone mapping.

Then, the sequence {ζk} generated by Algorithm 4.1 converges to the unique solution of

the SOCCP (3.1).

Proof. The proof is routine (see [63]), however, we present it for completeness. We know

that the property of bounded level sets is also held when F is strongly monotone, so

following the same arguments as in the proof of Proposition 4.1, we again obtain that

{ζk} has at least one accumulation point and any accumulation point is a solution of the

SOCCP (3.1).

On the other hand, the strong monotonicity of F implies that the SOCCP (3.1) has at

most one solution. To see this, say there are two solutions ζ∗, ξ∗ ∈ IRn such that{
〈F (ζ∗), ζ∗〉 = 0,

F (ζ∗) ∈ Kn, ζ∗ ∈ Kn and

{
〈F (ξ∗), ξ∗〉 = 0,

F (ξ∗) ∈ Kn, ξ∗ ∈ Kn.

Since F is strongly monotone, we have 〈F (ζ∗)− F (ξ∗), ζ∗ − ξ∗〉 > 0. However,

〈F (ζ∗)− F (ξ∗), ζ∗ − ξ∗〉
= 〈F (ζ∗), ζ∗〉+ 〈F (ξ∗), ξ∗〉 − 〈F (ζ∗), ξ∗〉 − 〈F (ξ∗), ζ∗〉
= −〈F (ζ∗), ξ∗〉 − 〈F (ξ∗), ζ∗〉
≤ 0,

where the inequality is due to F (ζ∗), ζ∗, F (ξ∗), ξ∗ are all in Kn. Hence, it is a contradiction

and therefore there is at most one solution for the SOCCP (3.1).

From all the above, it says there is a unique solution ζ∗, so the entire sequence {xk} must

converge to ζ∗. �

We observe that Proposition 3.39 plays a crucial role in establishing Proposition 4.1

and Proposition 4.2. Notably, the assumption of strict feasibility is essential for the valid-

ity of Proposition 3.39. For instance, if F (ζ) ≡ 0, then every ζ ∈ Kn is a solution to the

SOCCP (3.1), resulting in an unbounded solution set. In what follows, we explore a fur-

ther refinement by replacing the strict feasibility condition with a weaker one—namely,

the assumption that F is an R01-function. Under this framework, Proposition 3.39 and

Proposition 4.1 are improved and generalized as Lemma 4.1 and Proposition 4.3, respec-

tively. These results are of particular importance not only because they are novel but

also because they eliminate the need for strict feasibility assumptions.
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Lemma 4.1. Let f
YF

be given as in (4.3). Suppose that F is a R01-function. Then the

level set

L(γ) := {ζ ∈ IRn | f
YF

(ζ) ≤ γ}
is bounded for all γ ≥ 0.

Proof. We will prove this result by contradiction. Suppose there exists an unbounded

sequence {ζk} ⊂ L(γ) for some γ ≥ 0. It can be seen that the sequence of the smaller

spectral values of {ζk} and {F (ζk)} are bounded below. In fact, if not, it follows form

Lemma 3.15 that f
YF

(ζk) → ∞, which contradicts {ζk} ⊂ L(γ). Therefore, {(−ζk)+}
and {(−F (ζk))+} are bounded above, which says the conditions of R01-function given in

(1.51) are satisfied. Then, by the assumption of R01-function, we have

lim inf
k→∞

〈ζk, F (ζk)〉
‖ζk‖2

> 0.

This yields 〈ζk, F (ζk)〉 → ∞, and hence f
YF

(ζk) → ∞ by definition of f
YF

given as in

(4.3). Thus, it is a contradiction to {ζk} ⊂ L(γ). �

Proposition 4.3. Let F be a continuously differentiable mapping. Suppose that F is

R01-function. Then, the sequence {ζk} generated by Algorithm 4.1 has at least one accu-

mulation point, and any accumulation point is a solution of the SOCCP (3.1).

Proof. By applying Lemma 4.1 and follow the same arguments as in Proposition 4.1,

the desired results hold. �

As shown in [140, 204], the R01-function condition is weaker than strong monotonicity

and, in a certain sense, also weaker than the combination of monotonicity and strict

feasibility. However, it remains unclear whether the R01-function condition can be further

relaxed to that of an R02-function.

4.2 Nonsmooth Function Approach

In this section, we introduce a semismooth Newton method for solving the SOCCP.

Specifically, we formulate the problem as a nonlinear least-squares problem by employing

the Fischer-Burmeister function and the plus function. Consider the general SOCCP: find

ζ ∈ IRn such that

F (ζ) ∈ K, G(ζ) ∈ K, 〈F (ζ), G(ζ)〉 = 0, (4.7)

where 〈·, ·〉 denotes the Euclidean inner product, F : IRn → IRn and G : IRn → IRn are

assumed to be continuously differentiable throughout this section, and K is the Cartesian

product of second-order cones (SOCs), i.e.,

K = Kn1 ×Kn2 × · · · × Knq ,
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where q, n1, . . . , nq ≥ 1, n1 + n2 + · · ·+ nq = n, and

Kni :=
{

(xi1, xi2) ∈ IR× IRni−1 | xi1 ≥ ‖xi2‖
}
.

In the rest of this section, corresponding to the Cartesian structure of K, we write

F = (F1, . . . , Fq) and G = (G1, . . . , Gq) with Fi and Gi being mappings from IRn to

IRni .

As mentioned in Chapter 3, the SOCCP (4.7) can be reformulated as the following

system of nonsmooth equations

Φ
FB

(ζ) :=

 φ
FB

(F1(ζ), G1(ζ))
...

φ
FB

(Fq(ζ), Gq(ζ))

 = 0, (4.8)

which induces a natural merit function Ψ
FB

: IRn → IR+ for (4.7), defined by

Ψ
FB

(ζ) :=
1

2
‖Φ

FB
(ζ)‖2 =

q∑
i=1

ψ
FB

(Fi(ζ), Gi(ζ)) (4.9)

with

ψ
FB

(xi, yi) :=
1

2
‖φ

FB
(xi, yi)‖2. (4.10)

Recently, we analyzed in [163] that, to guarantee the boundedness of the level sets of the

FB merit function Ψ
FB

, it requires that the mapping F at least has the uniform Cartesian

P -property (also see Section 3.1). This means that φ
FB

has some limitations in handling

monotone SOCCPs.

Motivated by the work [118] for the NCP setting, we give a new reformulation for

(4.7) to overcome the disadvantage of φ
FB

. Let φ0 : IRni × IRni → IR+ be given by

φ0(xi, yi) := max
{

0, xTi yi
}
, (4.11)

and define the operator Φ : IRn → IRn+q as

Φ(ζ) :=



ρ1 φFB
(F1(ζ), G1(ζ))

...

ρ1 φFB
(Fq(ζ), Gq(ζ))

ρ2 φ0(F1(ζ), G1(ζ))
...

ρ2 φ0(Fq(ζ), Gq(ζ))


, (4.12)

where ρ1, ρ2 are arbitrary but fixed constants from (0, 1) used as the weights between

the first type of terms and the second one. In other words, we define Φ by appending q
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components to the mapping Φ
FB

. These additional components, as will be shown later,

play a crucial role in overcoming the disadvantage of Ψ
FB

mentioned above. Noting that

ζ∗ solves Φ(ζ) = 0 ⇐⇒ ζ∗ solves the SOCCP (4.7),

we have the following nonlinear least-square reformulation for the SOCCP (4.7)

min
ζ∈IRn

Ψ(ζ) :=
1

2
‖Φ(ζ)‖2 =

q∑
i=1

ψ(Fi(ζ), Gi(ζ)), (4.13)

where

ψ(xi, yi) := ρ2
1 ψFB

(xi, yi) +
1

2
ρ2

2 φ0(xi, yi)
2. (4.14)

This reformulation offers several advantages. First, the function Ψ belongs to the class

of merit functions f
YF

introduced in [41], which will be shown to possess more favorable

properties than Ψ
FB

. Second, the function Φ inherits the semismoothness of Φ
FB

, and even

exhibits strong semismoothness under certain conditions. Leveraging these properties,

we propose a semismooth Levenberg–Marquardt-type method for solving (4.13), and

establish superlinear, or even quadratic, convergence under the assumptions of strict

complementarity and a local error bound.

Lemma 4.2. Let φ0 : IRn × IRn → IR+ be defined as in (4.11). Then,

(a) the square of φ0 is continuously differentiable everywhere;

(b) φ0 is strongly semismooth everywhere on IRn × IRn;

(c) the B-subdifferential ∂Bφ0(x, y) of φ0 at any (x, y) ∈ IRn × IRn is given by

∂Bφ0(x, y) =
[
∂B(xTy)+y

T ∂B(xTy)+x
T
]
,

where

∂B
(
xTy

)
+

=


{1} if xTy > 0,

{1, 0} if xTy = 0,

{0} if xTy < 0.

Proof. The results come from direct computation. �

Using Proposition 3.3 (b) and Lemma 4.2 (b), we readily obtain the semismoothness

of Φ.

Proposition 4.4. The operator Φ : IRn → IRn+q defined by (4.12) is semismooth. If, in

addition, F ′ and G′ are Lipschitz continuous, then Φ is strongly semismooth.
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Proof. Let Φi denote the i-th component function of Φ for i = 1, 2, . . . , 2q, i.e., Φi(ζ) =

φ
FB

(Fi(ζ), Gi(ζ)) for i = 1, 2, . . . , q and Φi(ζ) = φ0(Fi(ζ), Gi(ζ)) for i = q + 1, . . . , 2q.

Then, the mapping Φ is (strongly) semismooth if every Φi is (strongly) semismooth. For

i = 1, 2, . . . , q, Φi : IRn → IRni is the composite of the strongly semismooth function φ
FB

and the smooth function ζ 7→ (Fi(ζ), Gi(ζ)), whereas Φq+i : IRn → IR is the composite

of the strongly semismooth function φ0 and the function ζ 7→ (Fi(ζ), Gi(ζ)). Moreover,

when F ′ and G′ are Lipschitz continuous, ζ 7→ (Fi(ζ), Gi(ζ)) is strongly semismooth.

By [73, Theorem 19], we have that every component function of Φ is semismooth, and

strongly semismooth if F ′ and G′ are Lipschitz continuous. �

Proposition 4.5. Let Φ : IRn → IRn+q be defined by (4.12). Then, for any given ζ ∈ IRn,

∂BΦ(ζ)T ⊆ ∇F (ζ)
[
ρ1 (A(ζ)− I) ρ2C(ζ)

]
+∇G(ζ)

[
ρ1 (B(ζ)− I) ρ2D(ζ)

]
where C(ζ) = diag(C1(ζ), . . . , Cq(ζ)) and D(ζ) = diag(D1(ζ), . . . , Dq(ζ)) with

Ci(ζ) ∈ Gi(ζ)∂B(Fi(ζ)TGi(ζ))+ and Di(ζ) ∈ Fi(ζ)∂B(Fi(ζ)TGi(ζ))+,

and A(ζ) = diag(A1(ζ), . . . , Aq(ζ)) and B(ζ) = diag(B1(ζ), . . . , Bq(ζ)) with the block

diagonals Ai(ζ), Bi(ζ) ∈ IRni×ni having the following representation:

(a) If Fi(ζ)2 +Gi(ζ)2 ∈ intKni, then Ai(ζ) = LFi(ζ)L
−1
zi(ζ)

and Bi(ζ) = LGi(ζ)L
−1
zi(ζ)

, where

zi(ζ) = (Fi(ζ)2 +Gi(ζ)2)1/2.

(b) If Fi(ζ)2 +Gi(ζ)2 ∈ bd+Kni, then [Ai(ζ), Gi(ζ)] belongs to the set{[
1

2
√

2wi1(ζ)
LFi(ζ)

(
1 w̄i2(ζ)T

w̄i2(ζ) 4I − w̄i2(ζ)w̄i2(ζ)T

)
+

1

2
ui
(
1,−w̄i2(ζ)T

)
,

1

2
√

2wi1(ζ)
LGi(ζ)

(
1 w̄i2(ζ)T

w̄i2(ζ) 4I − w̄i2(ζ)w̄i2(ζ)T

)
+

1

2
vi
(
1,−w̄i2(ζ)T

) ] ∣∣∣∣∣
ui = (ui1, ui2), vi = (vi1, vi2) satisfy |ui1| ≤ ‖ui2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1

}
,

where wi(ζ) = (wi1(ζ), wi2(ζ)) = Fi(ζ)2 +Gi(ζ)2 and w̄i2(ζ) = wi2(ζ)/‖wi2(ζ)‖.

(c) If (Fi(ζ), Gi(ζ)) = (0, 0), then [Ai(ζ), Bi(ζ)] ∈ {[Lûi , Lv̂i ] | ‖ûi‖2 +‖v̂i‖2 = 1} or{[
1

2
ξi
(
1, w̄Ti2

)
− 1

2
ui
(
−1, w̄Ti2

)
+ 2Lsi

(
0 0

0
(
I − w̄i2w̄T

i2

) ) ,
1

2
ηi
(
1, w̄T

i2

)
− 1

2
vi
(
−1, w̄T

i2

)
+ 2Lωi

(
0 0

0
(
I − w̄i2w̄T

i2

) )] ∣∣∣
w̄i2 ∈ IRni−1 satisfies ‖w̄i2‖ = 1 and ξi = (ξi1, ξi2), ui = (ui1, ui2), ηi = (ηi1, ηi2)

vi = (vi1, vi2), si = (si1, si2), ωi = (ωi1, ωi2) satisfy |ξ1| ≤ ‖ξ2‖ ≤ 1,

|ui1| ≤ ‖ui2‖ ≤ 1, |ηi1| ≤ ‖ηi2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1, ‖si‖2 + ‖ωi‖2 ≤ 1/2

}
.
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Proof. Let Φi denote the i-th component function of Φ, i.e., Φi(ζ) = φ
FB

(Fi(ζ), Gi(ζ))

and Φq+i(ζ) = φ0(Fi(ζ), Gi(ζ)) for i = 1, . . . , q. By the definition of the B-subdifferential,

∂BΦ(ζ)T ⊆ ∂BΦ1(ζ)T × ∂BΦ2(ζ)T × · · · × ∂BΦ2q(ζ)T, (4.15)

where the latter means the set of all matrices whose (ni−1 +1)-th to ni-th columns belong

to ∂BΦi(ζ)T with n0 = 0, and (n+ i)-th column belongs to ∂BΦq+i(ζ)T. Notice that

∂BΦi(ζ)T ⊆ ρ1

[
∇Fi(ζ) ∇Gi(ζ)

]
∂BφFB

(Fi(ζ), Gi(ζ))T,

∂BΦq+i(ζ)T ⊆ ρ2

[
∇Fi(ζ) ∇Gi(ζ)

]
∂Bφ0(Fi(ζ), Gi(ζ))T. (4.16)

Moreover, using Proposition 3.9 and Lemma 4.2 (c), each element in ∂BφFB
(Fi(ζ), Gi(ζ))T

and ∂Bφ0(Fi(ζ), Gi(ζ))T has the form of

[
Ai(ζ)− I
Bi(ζ)− I

]
and

[
Ci(ζ)

Di(ζ)

]
, respectively, with

Ai(ζ), Bi(ζ) and Ci(ζ), Di(ζ) for i = 1, 2, . . . , q characterized as in the proposition. There-

fore, combining with equations (4.15)-(4.16) yields the desired result. �

To prove the fast local convergence of nonsmooth Levenberg-Marquardt methods, we

need to know that under what assumptions every element H ∈ ∂BΦ(ζ∗) has full rank n,

where ζ∗ is an optimal solution of the SOCCP (4.7). To the end, define the index sets

I :=
{
i ∈ {1, 2, . . . , q} |Fi(ζ∗) = 0, Gi(ζ

∗) ∈ intKni
}
,

B :=
{
i ∈ {1, 2, . . . , q} |Fi(ζ∗) ∈ bd+Kni , Gi(ζ

∗) ∈ bd+Kni
}
,

J :=
{
i ∈ {1, 2, . . . , q} |Fi(ζ∗) ∈ intKni , Gi(ζ

∗) = 0
}
. (4.17)

If ζ∗ satisfies strict complementarity, i.e., Fi(ζ
∗)+Gi(ζ

∗) ∈ intKni for all i, then {1, 2, . . . , q}
can be partitioned as I ∪ B ∪ J . Thus, suppose that ∇G(ζ∗) is invertible, then by rear-

rangement the matrix P (ζ∗) = ∇G(ζ∗)−1∇F (ζ∗) can be rewritten as

P (ζ∗) =

 P (ζ∗)II P (ζ∗)IB P (ζ∗)IJ
P (ζ∗)BI P (ζ∗)BB P (ζ∗)BJ
P (ζ∗)JI P (ζ∗)JB P (ζ∗)JJ

 .

Now we have the following results for the full rank of every element H ∈ ∂BΦ(ζ∗).

Proposition 4.6. Let ζ∗ be a strictly complementary solution to the SOCCP (4.7) and

I, J , B be index sets described as in (4.17). Suppose that ∇G(ζ∗) is invertible and

let P (ζ∗) = ∇G(ζ∗)−1∇F (ζ∗). If P (ζ∗)II is nonsingular and its Schur-complement

P̂ (ζ∗)II := P (ζ∗)BB − P (ζ∗)BIP (ζ∗)−1
IIP (ζ∗)IB, in the matrix(

P (ζ∗)II P (ζ∗)IB
P (ζ∗)BI P (ζ∗)BB

)
has the Cartesian P -property, then every element H ∈ ∂BΦ(ζ∗) has full column rank n.
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Proof. Let H ∈ ∂BΦ(ζ∗). By Proposition 4.5, we know H =

(
ρ1H1

ρ2H2

)
with HT

1 from the

set ∂BΦ1(ζ∗)T×· · ·×∂BΦq(ζ
∗)T. From Proposition 3.12, it follows that HT

1 is nonsingular

under the given assumptions. This implies the desired result rank(H) = n. �

The proof of Proposition 4.6 relies on a key property of the first block H1. However,

even when H1 is singular, the second block H2 may still contribute to ensuring that the

overall matrix H attains full column rank n.

Lemma 4.3. Let ζ∗ be a solution of (4.7) such that all elements in ∂BΦ(ζ∗) have full

column rank. Then, there exist constants ε > 0 and c > 0 such that
∥∥(HTH)−1

∥∥ ≤ c for

all ‖ζ − ζ∗‖ < ε and all H ∈ ∂BΦ(ζ). Furthermore, for any given ν̄ > 0, HTH + νI are

uniformly positive definite for all ν ∈ [0, ν̄] and H ∈ ∂BΦ(ζ) with ‖ζ − ζ∗‖ < ε.

Proof. The proof is similar to [178, Lemma 2.6]. For completeness, we here include it.

Suppose that the claim of the lemma is not true. Then, there exists a sequence {ζk}
converging to ζ∗ and a corresponding sequence of matrices {Hk} with Hk ∈ ∂BΦ(ζk) for

all k ∈ N such that either HT
kHk is singular or

∥∥(HT
kHk)

−1
∥∥ → +∞ on a subsequence.

Noting that HT
kHk is symmetric positive semidefinite, for the nonsingular case, we have∥∥(HT

kHk)
−1
∥∥ =

1

λmin(HT
kHk)

,

which implies the condition
∥∥(HT

kHk)
−1
∥∥ → +∞ is equivalent to λmin(HT

kHk) → 0.

Since ζk → ζ∗ and the mapping ζ 7→ ∂BΦ(ζ) is upper semicontinuous, it follows that

the sequence {Hk} is bounded, and hence it has a convergent subsequence. Let H∗ be

a limit of such a sequence. Then, λmin(HT
∗ H∗) = 0 by the continuity of the minimum

eigenvalue. This means that HT
∗ H∗ is singular. However, from the fact that the mapping

ζ 7→ ∂BΦ(ζ) is closed, we have H∗ ∈ ∂BΦ(ζ∗), which by the given condition implies that

HT
∗ H∗ is nonsingular. Thus, we obtain a contradiction.

By the definition of matrix norm and the result of the first part, there exist constants

ε > 0 and c > 0 such that
[
λmin(HTH + νI)

]−1
=
∥∥(HTH + νI)−1

∥∥ ≤ c for all ν ∈ [0, ν̄]

and H ∈ ∂BΦ(ζ) with ζ with ‖ζ − ζ∗‖ < ε. This implies

uT
(
HTH + νI

)
u ≥ λmin

(
HTH + νI

)
‖u‖2 ≥ 1

c
‖u‖2 ∀ u ∈ IRn.

Therefore, the matrices HTH + νI are uniformly positive definite. �

Lemma 4.4. Let ψ : IRn × IRn → IR+ be defined as in (4.14). Then, for any x, y ∈ IRn,

(a) ψ(x, y) = 0 ⇐⇒ ψ
FB

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0;

(b) ψ(x, y) is continuously differentiable;
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(c) 〈x,∇xψ(x, y)〉+ 〈y,∇yψ(x, y)〉 ≥ 2ψ(x, y);

(d) 〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, and the equality holds if and only if ψ(x, y) = 0;

(e) ψ(x, y) = 0⇐⇒ ∇ψ(x, y) = 0⇐⇒ ∇xψ(x, y) = 0⇐⇒ ∇yψ(x, y) = 0.

Proof. Part (a) is direct by the definition of ψ, and part (b) is from Proposition 3.5 and

Lemma 4.2(a). We next consider part (c). By the definition of ψ, for any x, y ∈ IRn,

∇xψ(x, y) = ρ2
1∇xψFB

(x, y) + ρ2
2φ0(x, y)y,

∇yψ(x, y) = ρ2
1∇yψFB

(x, y) + ρ2
2φ0(x, y)x. (4.18)

From Proposition 3.6 and the definition of φ0(x, y), it then follows that

〈x,∇xψ(x, y)〉+ 〈y,∇yψ(x, y)〉
= ρ2

1 [〈x,∇xψFB
(x, y)〉+ 〈y,∇yψFB

(x, y)〉] + 2ρ2
2 φ0(x, y)xTy

= ρ2
1 ‖φFB

(x, y)‖2 + 2ρ2
2 φ0(x, y)2

= 2

(
ρ2

1 ψFB
(x, y) +

1

2
ρ2

2 φ0(x, y)2

)
+ ρ2

2 φ0(x, y)2

≥ 2ψ(x, y).

(d) Using the formulas in (4.18) and Proposition 3.6, it follows that

〈∇xψ(x, y),∇yψ(x, y)〉 = ρ4
1 〈∇xψFB

(x, y),∇yψFB
(x, y)〉+ ρ4

2x
Tyφ0(x, y)2

+ρ2
1ρ

2
2 φ0(x, y) [〈x,∇xψFB

(x, y)〉+ 〈y,∇yψFB
(x, y)〉]

= ρ4
1 〈∇xψFB

(x, y),∇yψFB
(x, y)〉+ ρ4

2 φ0(x, y)3

+2ρ2
1ρ

2
2 φ0(x, y)ψ

FB
(x, y). (4.19)

Note that for the second equality, we use the fact

(xTy)φ0(x, y)2 = (xTy)
(
max{0, xTy}

)2
=

{
(xTy)3 if xTy ≥ 0,

0 otherwise,

which says xTyφ0(x, y) = φ0(x, y)3. The first term on the right hand side of (4.19) is

nonnegative by Proposition 3.6, and the last two terms are also nonnegative. Therefore,

〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, and moreover, 〈∇xψ(x, y),∇yψ(x, y)〉 = 0 if and only if

〈∇xψFB
(x, y),∇yψFB

(x, y)〉 = 0 and φ0(x, y) = 0,

which, together with Proposition 3.6, implies the desired result.

(e) If ψ(x, y) = 0, then from the definition of ψ, we have φ
FB

(x, y) = 0 and φ0(x, y) =

0. From Proposition 3.4, we immediately obtain ∇xψFB
(x, y) = ∇yψFB

(x, y) = 0, and

consequently ∇xψ(x, y) = 0 and ∇yψ(x, y) = 0 by (4.18). If ∇ψ(x, y) = 0, then by part
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(c) and the nonnegativity of ψ we get ψ(x, y) = 0. Thus we prove the first equivalence.

For the second equivalence, it suffices to prove the sufficiency. Suppose that ∇xψ(x, y) =

0. From part (d), we readily obtain ψ(x, y) = 0, which together with part (a) and

(4.18) implies ∇ψ(x, y) = 0. Consequently, ∇ψ(x, y) = 0⇐⇒ ∇xψ(x, y) = 0. Similarly,

∇ψ(x, y) = 0⇐⇒ ∇yψ(x, y) = 0. This implies the last equivalence. �

From Lemma 4.4(b), it is clear that the function Ψ is continuously differentiable.

In addition, in light of Lemma 4.4(d), we shall prove that every stationary point of Ψ

is a solution of (4.7) under mild conditions. To this end, we recall that, two matrices

M1,M2 ∈ IRn×n are called column monotone if, for any u, v ∈ IRn, M1u + M2v = 0 ⇒
uTv = 0.

Proposition 4.7. Let Ψ : IRn → IR+ be defined by (4.13)-(4.14). Then, every stationary

point of Ψ is a solution of the SOCCP (4.7) under one of the following assumptions:

(a) ∇F (ζ) and −∇G(ζ) are column monotone for any ζ ∈ IRn.

(b) For any ζ ∈ IRn, ∇G(ζ) is invertible and ∇G(ζ)−1∇F (ζ) has Cartesian P0-property.

Proof. When the assumption (a) is satisfied, using the same arguments as those of [41,

Proposition 3] yields the desired result. Now suppose that the assumption (b) holds. Let

ζ̄ be an arbitrary stationary point of Ψ and write

∇xψ(F (ζ), G(ζ)) =
(
∇x1ψ(F1(ζ), G1(ζ)), . . . ,∇xqψ(Fq(ζ), Gq(ζ))

)
,

∇yψ(F (ζ), G(ζ)) =
(
∇y1ψ(F1(ζ), G1(ζ)), . . . ,∇yqψ(Fq(ζ), Gq(ζ))

)
.

Then,

∇Ψ(ζ̄) = ∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄)) +∇G(ζ̄)∇yψ(F (ζ̄), G(ζ̄)) = 0,

which, by the invertibility of ∇G, can be rewritten as

∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄)) +∇yψ(F (ζ̄), G(ζ̄)) = 0. (4.20)

Suppose that ζ̄ is not the solution of (4.7). By Lemma 4.4(e), we necessarily have

∇xψ(F (ζ̄), G(ζ̄)) 6= 0.

From the Cartesian P0-property of∇G(ζ̄)−1∇F (ζ̄), there exists an index ν ∈ {1, 2, . . . , q}
such that ∇xνψ(Fν(ζ̄), Gν(ζ̄)) 6= 0 and〈

∇xνψ(Fν(ζ̄), Gν(ζ̄)),
[
∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄))

]
ν

〉
≥ 0. (4.21)

In addition, notice that (4.20) is equivalent to[
∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄))

]
i
+∇yiψ(Fi(ζ̄), Gi(ζ̄)) = 0, i = 1, 2, . . . , q.
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Making the inner product with ∇xνψ(F (ζ̄), G(ζ̄)) for the νth equality, we obtain〈
∇xνψ(Fν(ζ̄), Gν(ζ̄)),

[
∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄))

]
ν

〉
+〈∇xνψ(Fν(ζ̄), Gν(ζ̄)),∇yνψ(Fν(ζ̄), Gν(ζ̄))〉 = 0.

The first term on the left hand side is nonnegative by (4.21), whereas the second term is

positive by Lemma 4.4(d) since ζ is not a solution of (4.7). This leads to a contradiction,

and consequently ζ̄ must be a solution of (4.7). �

When ∇G(ζ) is invertible for any ζ ∈ IRn, the assumption in Proposition 4.7(a)

is equivalent to the positive semidefiniteness of ∇G(ζ)−1∇F (ζ) at any ζ ∈ IRn, which

implies the Cartesian P0-property of ∇G(ζ)−1∇F (ζ). Thus, when it reduces to the

SOCCP (3.1), the assumption in Proposition 4.7(a) is stronger than the assumption in

Proposition 4.7(b), which is now equivalent to the Cartesian P0-property of F . Next we

provide a condition to guarantee the boundedness of the level sets of Ψ

LΨ(γ) := {ζ ∈ IRn |Ψ(ζ) ≤ γ}

for all γ ≥ 0. This property is important since it guarantees that the descent sequence

of Ψ must have a limit point, and furthermore, the solution set of (4.7) is bounded if it

is nonempty. It turns out that the following condition for F and G is sufficient.

Condition 4.1. For any sequence {ζk} satisfying ‖ζk‖ → +∞, whenever

lim sup
∥∥[−F (ζk)]+

∥∥ < +∞ and lim sup
∥∥[−G(ζk)]+

∥∥ < +∞, (4.22)

there exists an index ν ∈ {1, 2, . . . , q} such that lim sup
〈
Fν(ζ

k), Gν(ζ
k)
〉

= +∞.

Proposition 4.8. If the mappings F and G satisfy Condition 4.1, then the level sets

LΨ(γ) are bounded for all γ ≥ 0.

Proof. Assume that there is a unbounded sequence {ζk} ⊆ LΨ(γ) for some γ ≥ 0. Since

Ψ(ζk) ≤ γ for all k, the sequence {Ψ
FB

(ζk)} is bounded. By Lemma 3.7,

lim sup
∥∥[−Fi(xk)]+

∥∥ < +∞ and lim sup
∥∥[−Gi(x

k)]+
∥∥ < +∞

hold for all i ∈ {1, 2, . . . , q}. This shows that F and G satisfy Condition 4.1, and hence

there exists an index ν such that lim sup
〈
Fν(ζ

k), Gν(ζ
k)
〉

= +∞. From the definition of

Ψ, it follows that the sequence {Ψ(ζk)} is unbounded, which clearly contradicts the fact

that {ζk} ⊆ LΨ(γ). Thus, the proof is complete. �

Condition 4.1 is relatively mild for ensuring that Ψ has bounded level sets. As will be

shown below, this condition is satisfied under various settings, including jointly monotone

functions with a strictly feasible point, used in Section 3.1.4 for f
LT

and f
YF

, the jointly

uniform Cartesian P -functions with a feasible point, and the joint R̃01-functions (see

Definition 1.16).
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Proposition 4.9. Condition 4.1 is satisfied if one of the following assumptions holds:

(a) F and G are jointly monotone mappings satisfying lim
‖ζ‖→+∞

‖F (ζ)‖+ ‖G(ζ)‖ = +∞,

and there exists ζ̂ ∈ IRn such that F (ζ̂), G(ζ̂) ∈ int(K).

(b) F and G have jointly uniform Cartesian P -property, and there exists a point ζ̂ ∈ IRn

such that F (ζ̂), G(ζ̂) ∈ K.

(c) F and G have the joint R̃01-property.

Proof. In the proof, let {ζk} be a sequence such that ‖ζk‖ → +∞ and (4.22) holds.

(a) First, {λ1[F (ζk)]} and {λ1[G(ζk)]} must be bounded from below. If not, using

‖[−x]+‖2 = (max{0,−λ1(x)})2 + (max{0,−λ2(x)})2 ,

we obtain lim sup
∥∥[−F (ζk)]+

∥∥ = +∞ or lim sup
∥∥[−G(ζk)]+

∥∥ = +∞, which contradicts

the assumption that {ζk} satisfies (4.22). Noting that ‖F (ζk)‖+ ‖G(ζk)‖ → +∞ and

‖F (ζk)‖+ ‖G(ζk)‖ =

√
λ2

1[F (ζk)] + λ2
2[F (ζk)]

2
+

√
λ2

1[G(ζk)] + λ2
2[G(ζk)]

2
,

the lower boundness of {λi[F (ζk)]} and {λi[G(ζk)]} for i = 1, 2 implies

lim supλ2

[
F (ζk)

]
= +∞ or lim supλ2

[
G(ζk)

]
= +∞.

From the proof of Lemma 3.15 (b), it then follows that

lim sup
{
〈F (ζk), G(ζ̂)〉+ 〈F (ζ̂), G(ζk)〉

}
= +∞. (4.23)

Now suppose that Condition 4.1 is not satisfied. Then, we necessarily have

lim sup〈Fi(ζk), Gi(ζ
k)〉 < +∞ for all i = 1, 2, . . . , q.

In addition, from the joint monotonicity of F and G, we have

〈F (ζk), G(ζ̂)〉+ 〈F (ζ̂), G(ζk)〉 ≤ 〈F (ζk), G(ζk)〉+ 〈F (ζ̂), G(ζ̂)〉

=

q∑
i=1

〈Fi(ζk), Gi(ζ
k)〉+ 〈F (ζ̂), G(ζ̂)〉.

The last two equations imply lim sup{〈F (ζk), G(ζ̂)〉+ 〈F (ζ̂), G(ζk)〉} < +∞. This clearly

contradicts (4.23), and consequently the desired result follows.
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(b) From Definition 1.10, there exists a constant ρ > 0 such that

ρ‖ζk − ζ̂‖2 ≤ max
i∈{1,...,q}

{
〈Fi(ζk)− Fi(ζ̂), Gi(ζ

k)−Gi(ζ̂)〉
}

= 〈Fν(ζk), Gν(ζ
k)〉+ 〈Fν(ζ̂),−Gν(ζ

k)〉
+〈−Fν(ζk), Gν(ζ̂)〉+ 〈Fν(ζ̂), Gν(ζ̂)〉

≤ 〈Fν(ζk), Gν(ζ
k)〉+ 〈Fν(ζ̂), [−Gν(ζ

k)]+〉
+〈[−Fν(ζk)]+, Gν(ζ̂)〉+ 〈F (ζ̂), Gν(ζ̂)〉,

where ν is one of the indices for which the max is attained which we have, without loss

of generality, assumed to be independent of k, and the second inequality is since

Fν(ζ̂) ∈ Knν , Gν(ζ̂) ∈ Knν , [−Fν(ζk)]− ∈ −Knν , [−Gν(ζ
k)]− ∈ −Knν .

Dividing the last inequality by ‖ζk‖2 and taking the limit, it follows from (4.22) that

lim
k→+∞

〈Fν(ζk), Gν(ζ
k)〉

‖ζk‖2
≥ ρ > 0,

which immediately implies the result.

(c) Clearly, {ζk} satisfies (1.58), and the result then follows from the following implica-

tions:

lim inf
k→+∞

〈F (ζk), G(ζk)〉
‖ζk‖ > 0 =⇒ lim inf

k→+∞

maxi{〈Fi(ζk), Gi(ζ
k)〉}

‖ζk‖ > 0

=⇒ max
i
{〈Fi(ζk), Gi(ζ

k)〉} → +∞.

Thus, we complete the proof of this proposition. �

When G(ζ) ≡ ζ, if we replace (1.59) with lim inf
k→+∞

〈F (ζk), G(ζk)〉/‖ζk‖2 > 0, then

Definition 1.16 indicates that F is a R01 function. Thus, Proposition 4.8 and Proposition

4.9 (a) show that Ψ has bounded level sets under a weaker condition than the one given

by Proposition 3.39 for the class of merit functions f
YF

. Now, we show that the function

Ψ provides a global error bound for the solution of the SOCCP (4.7) under the jointly

uniform Cartesian P -property of F and G. Since the jointly strong monotonicity implies

the jointly uniform Cartesian P -property, the global error bound condition is weaker

than the ones for Proposition 3.38 and Proposition 3.48.

Proposition 4.10. Let ζ∗ be a solution of the SOCCP (4.7). Suppose that F and G

have the jointly uniform Cartesian P -property. Then, there exists a scalar κ > 0 such

that

‖ζ − ζ∗‖2 ≤ κΨ(ζ)1/2 ∀ζ ∈ IRn.
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Proof. Since F and G have the jointly uniform Cartesian P -property, there exists a

scalar ρ > 0 such that, for any ζ ∈ IRn, there is an index ν ∈ {1, 2, . . . , q} such that

ρ‖ζ − ζ∗‖2 ≤ 〈Fν(ζ)− Fν(ζ∗), Gν(ζ)−Gν(ζ
∗)〉

= 〈Fν(ζ), Gν(ζ)〉+ 〈−Fν(ζ), Gν(ζ
∗)〉+ 〈Fν(ζ∗),−Gν(ζ)〉

≤ 〈Fν(ζ), Gν(ζ)〉+ 〈[−Fν(ζ)]+, Gν(ζ
∗)〉+ 〈Fν(ζ∗), [−Gν(ζ)]+〉

≤ φ0(Fν(ζ), Gν(ζ)) + ‖[−Fν(ζ)]+‖‖Gν(ζ
∗)‖+ ‖Fν(ζ∗)‖‖[−Gν(ζ)]+‖

≤ c
(
φ0(Fν(ζ), Gν(ζ)) + ‖[−Fν(ζ)]+‖+ ‖[−Gν(ζ)]+‖

)
≤ c

(
φ0(Fν(ζ), Gν(ζ)) + 4ψ

FB
(Fν(ζ), Gν(ζ))1/2

)
≤ c

(√
2/ρ2 + 4/ρ1

)
Ψ(ζ)1/2,

where c := max{1, ‖Gν(ζ
∗)‖, ‖Fν(ζ∗)‖}, the second inequality is using the fact that

Gν(ζ
∗) ∈ Knν and Fν(ζ

∗) ∈ Knν , and the next to last inequality is due to Lemma

3.7. Letting κ := (c/ρ)(
√

2/ρ2 + 4/ρ1), we obtain the desired result. �

It is well known that the Levenberg–Marquardt method based on equation (4.12)

offers the advantage of reducing the complementarity gap 〈x, F (x)〉 for the NCP more

effectively than the traditional nonsmooth method using equation (4.8) (see [118]). This

observation motivates our adoption of a Levenberg–Marquardt-type method with line

search for solving the nonlinear least-squares problem (4.13). The iterative scheme is

presented below.

Algorithm 4.2. (Semismooth Levenberg-Marquardt Method)

(S.0) Choose a starting point ζ0 ∈ IRn, the parameters ρ1, ρ2 ∈ (0, 1), η, β ∈ (0, 1), and

σ ∈ (0, 1/2). Given a tolerance ε ≥ 0, and set k := 0.

(S.1) If
∥∥∇Ψ(ζk)

∥∥ ≤ ε, then stop.

(S.2) Choose Hk ∈ ∂BΦ(ζk) and νk > 0. Find a solution dk ∈ IRn of linear system(
HT
kHk + νkI

)
d = −∇Ψ(ζk), (4.24)

where νk > 0 is the Levenberg-Marquardt parameter.

(S.3) If dk satisfies ∥∥Φ(ζk + dk)
∥∥ ≤ η

∥∥Φ(ζk)
∥∥ , (4.25)

then ζk+1 := ζk + dk. Otherwise, compute tk = max{βl | l = 0, 1, 2, · · · } such that

Ψ(ζk + tkd
k) ≤ Ψ(ζk) + σtk∇Ψ(ζk)Tdk, (4.26)

and let ζk+1 := ζk + tkd
k.
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(S.4) Set k := k + 1, and go to (S.1).

Notice that the above method is different from the classical Levenberg-Marquardt

method for nonlinear least-square problems in that Φ is not continuously differentiable.

If νk ≡ 0, the solution of (4.24) is exactly the solution of the linear least-square problem

min
d∈IRn

1

2

∥∥Hkd+ Φ(ζk)
∥∥2
,

since ∇Ψ(ζk) = HT
k Φ(ζk). In this algorithm, we choose the parameter νk by

νk := min
{
p1, p2‖Φ(ζk)‖%

}
, (4.27)

where p1, p2 > 0 are given constants and % is a real number from interval [1, 2]. Such

choice is consistent with the requirements for local superlinear (quadratic) convergence

stated in Proposition 4.12 and Proposition 4.13 below, as well as adopted by our numerical

experiments.

In the following, we examine the convergence properties of the proposed algorithm.

To facilitate this analysis, we assume ε = 0. We begin by presenting a result on global

convergence.

Proposition 4.11. Let {ζk} be the sequence generated by Algorithm 4.2 with νk updated

by (4.27). Then every accumulation point of {ζk} is a stationary point of Ψ.

Proof. From the steps of Algorithm 4.2, {ζk} is well defined since νk > 0, and dk

determined by (4.24) is always a descent direction of Ψ at ζk. Let ζ∗ be any accumulation

point of {ζk} and {ζk}K be a subsequence converging to ζ∗. Suppose that ∇Ψ(ζ∗) 6= 0.

Since {Ψ(ζk)} is monotonically decreasing and bounded below, and {Ψ(ζk)}K converges

to Ψ(ζ∗), the entire sequence {Ψ(ζk)} converges to Ψ(ζ∗) > 0. This implies that (4.25)

holds for only finitely many k ∈ K, and the inequality (4.26) is satisfied for all sufficiently

large k. Since Ψ(ζk+1) − Ψ(ζk) ≤ σtk∇Ψ(ζk)Tdk ≤ 0 for all sufficiently large k, using

Ψ(ζk+1)−Ψ(ζk)→ 0 yields {
tk∇Ψ(ζk)Tdk

}
K
→ 0. (4.28)

We next prove
{
∇Ψ(ζk)Tdk

}
K

has a nonzero limit as k → +∞. By the definition of dk,

∇Ψ(ζk)Tdk = −∇Ψ(ζk)T
(
HT
kHk + νkI

)−1∇Ψ(ζk) ∀k. (4.29)

Since the B-subdifferential ∂BΦ(ζ) is a nonempty compact set for any ζ ∈ IRn, {Hk}K
is bounded. Without loss of generality, assume that {Hk}K → H∗. Considering that the

set-valued mapping ζ 7→ ∂BΦ(ζ) is closed and {ζk}K → ζ∗, we have H∗ ∈ ∂BΦ(ζ∗). In

addition, since Φ(ζ∗) 6= 0, we have νk → ν∗ with ν∗ = min{p1, p2‖Φ(ζ∗)‖%} > 0. Thus,

{HT
kHk + νkI}k∈K → HT

∗ H∗ + ν∗I � O. This, together with (4.29) and the continuity of

∇Ψ, implies that {∇Ψ(ζk)Tdk}K has a nonzero limit as k → +∞. From (4.28), it then
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follows that {tk}K → 0. Now, for all sufficiently large k, let lk ∈ {0, 1, . . .} be the unique

exponent such that tk = βlk . Since {tk}K → 0, we have {lk}k∈K →∞. From the Armijo

line search in (S.3), for all k ∈ K sufficiently large,

Ψ(ζk + βlk−1dk)−Ψ(ζk)

βlk−1
> σ∇Ψ(ζk)Tdk.

Taking the limit k → ∞ with k ∈ K and using {lk}K → ∞ and {ζk}K → ζ∗, we have

∇Ψ(ζ∗)Td∗ ≥ σ∇Ψ(ζ∗)Td∗. This means ∇Ψ(ζ∗)Td∗ ≥ 0. On the other hand, we learn

from (4.24) that {dk}K → d∗ with d∗ being the solution of(
HT
∗ H∗ + ν∗I

)
d = −∇Ψ(ζ∗),

which implies that ∇Ψ(ζ∗)Td∗ < 0 since
(
HT
∗ H∗ + ν∗I

)
� O. Thus, we obtain a contra-

diction. �

Observe that the sequence {ζk} generated by Algorithm 4.2 always belongs to the level

set LΨ(Ψ(ζ0)). By Proposition 4.8 and Proposition 4.9, the existence of accumulation

points of {ζk} is guaranteed by one of the assumptions of Proposition 4.9. Since, when

F and G have the jointly uniform Cartesian P -property, the SOCCP (4.7) has at most

one solution, {ζk} must have a unique accumulation point which is the unique solution

of (4.7) if F and G satisfies the assumption (c) of Proposition 4.9. For the SOCCP (3.1),

the sequence {ζk} has accumulation points and each of them is a solution under the

assumption that F is monotone and (3.1) is strictly feasible.

We now establish the superlinear (or quadratic) convergence rate of Algorithm 4.2

under the assumption of strict complementarity at the solution. While this condition

may appear somewhat stringent, we will subsequently relax it by employing a local error

bound assumption.

Proposition 4.12. Let {ζk} be generated by Algorithm 4.2 with νk given by (4.27).

Suppose that ζ∗ is an accumulation point of {ζk} with ζ∗ being a strictly complementary

solution of (4.7), and F and G at ζ∗ satisfy the condition of Proposition 4.6. Then,

(a) the entire sequence {ζk} converges to ζ∗.

(b) The full stepsize tk = 1 is always accepted for sufficiently large k and the rate of

convergence is Q-superlinear.

(c) The rate of convergence is Q-quadratic if, in addition, F ′ and G′ are locally Lipschitz

continuous around ζ∗ and νk = O(‖Φ(ζk)‖).

Proof. The proof is similar to the one given by [118]. For completeness, we include it.

(a) By the proof technique of [55, Theorem 3.1 (b)], it suffices to prove that ζ∗ is an

isolated solution. From Proposition 4.6 and Lemma 4.3, there exist ε1, κ1 > 0 such that

‖H(ζ − ζ∗)‖2 = (ζ − ζ∗)HTH(ζ − ζ∗) ≥ κ1‖ζ − ζ∗‖2
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for all ζ satisfying ‖ζ − ζ∗‖ < ε1 and all H ∈ ∂BΦ(ζ). In addition, the semismoothness

of Φ implies that there exists ε2 > 0 such that

‖Φ(ζ)− Φ(ζ∗)−H(ζ − ζ∗)‖ ≤ (
√
κ1/2)‖ζ − ζ∗‖

for all H ∈ ∂BΦ(ζ) with ζ satisfying ‖ζ − ζ∗‖ < ε2. Set ε = min{ε1, ε2}. Then, we have

‖Φ(ζ)‖ = ‖H(ζ − ζ∗) + (Φ(ζ)− Φ(ζ∗)−H(ζ − ζ∗))‖
≥ ‖H(ζ − ζ∗)‖ − ‖Φ(ζ)− Φ(ζ∗)−H(ζ − ζ∗)‖
≥ (
√
κ1/2)‖ζ − ζ∗‖

for all ζ with ‖ζ − ζ∗‖ < ε. This means that ζ∗ is an isolated solution of the SOCCP.

(b) We first prove that for all sufficiently large k,

‖ζk + dk − ζ∗‖ = o(‖ζk − ζ∗‖). (4.30)

By part (a), the sequence {ζk} converges to a solution ζ∗ satisfying the assumptions of

Theorem 4.6. From Lemma 4.3, there exists c > 0 such that
∥∥∥(HT

kHk + νkI
)−1
∥∥∥ ≤ c for

all k. Noting that the sequence {Hk} is bounded, there exists c1 > 0 such that
∥∥HT

k

∥∥ ≤ c1

for all k. Using Proposition 4.11 and the fact that Φ(ζ∗) = 0, we obtain

‖ζk + dk − ζ∗‖ = ‖ζk − (HT
kHk + νkI)−1∇Ψ(ζk)− ζ∗‖

≤ ‖(HT
kHk + νkI)−1‖‖∇Ψ(ζk)− (HT

kHk + νkI)(ζk − ζ∗)‖
≤ c‖HT

k Φ(ζk)−HT
kHk(ζ

k − ζ∗)− νk(ζk − ζ∗)‖
= c‖HT

k (Φ(ζk)− Φ(ζ∗)−Hk(ζ
k − ζ∗))− νk(ζk − ζ∗)‖

≤ c(c1‖Φ(ζk)− Φ(ζ∗)−Hk(ζ
k − ζ∗)‖+ νk‖ζk − ζ∗‖).

Notice that Φ(ζk) − Φ(ζ∗) − Hk(ζ
k − ζ∗) = o(‖ζk − ζ∗‖) by the semismoothness of Φ,

whereas νk → 0 by part (a) and the continuity of Φ. Thus, the inequality implies (4.30).

To prove that the full step is eventually accepted, by (4.25), it suffices to show that

lim
k→∞

Ψ(ζk + dk)

Ψ(ζk)
= 0.

Since all element V ∈ ∂BΦ
FB

(ζ∗) are nonsingular by Proposition 3.12, from Lemma 4.3

and the proof of part (a), there exists a constant α > 0 such that

‖Φ(ζk)‖ ≥ ρ1‖ΦFB
(ζk)‖ ≥ α‖ζk − ζ∗‖.

Using the locally Lipschitz continuity of Φ and (4.30) then yields

‖Φ(ζk + dk)‖
‖Φ(ζk)‖ ≤ ‖Φ(ζk + dk)− Φ(ζ∗)‖

α‖ζk − ζ∗‖ ≤ L‖ζk + dk − ζ∗‖
α‖ζk − ζ∗‖ → 0,
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where L > 0 denotes the locally Lipschitz constant of Φ. Thus, the step size tk = 1 is

eventually accepted in the line search criterion, i.e., ζk+1 = ζk +dk for all k large enough.

Consequently, Q-suplinear convergence of {ζk} to ζ∗ follows from (4.30).

(c) The proof is essentially same as for the superlinear convergence. We only note that

νk in (4.27) satisfies νk = O(‖Φ(ζk)‖) = O(‖ζk − ζ∗‖) for k large enough, and

Φ(ζk)− Φ(ζ∗)−Hk(ζ
k − ζ∗) = O(‖ζk − ζ∗‖2)

due to the strong semismoothness of Φ by Proposition 4.4. �

Assumption A. There exist constants κ2 > 0 and 0 < δ < 1 such that

κ2 dist(ζ, S∗) ≤ ‖Φ(ζ)‖ ∀ζ ∈ N (ζ∗, δ), (4.31)

where S∗ denotes the solution set of the SOCCP (4.7) and is assumed to be nonempty.

Lemma 4.5. Let ζk be generated by Algorithm 4.2 with νk given by (4.27). Suppose

that F ′ and G′ are Lipschitz continuous on N (ζ∗, δ) and Assumption A holds. If νk =

p2‖Φ(ζk)‖% and ζk ∈ N (ζ∗, δ/2), then there exists a constant c1 > 0 such that ‖dk‖ ≤
c1dist(ζk, S∗). If, in addition, ζk + dk ∈ N (ζ∗, δ/2), then there exists a constant c3 > 0

such that

dist
(
ζk + dk, S∗

)
≤ c3 dist

(
ζk, S∗

)(%+2)/2
.

Proof. Let ζ̄k ∈ S∗ be such that
∥∥ζk − ζ̄k∥∥ = dist(ζk, S∗). Then, ζ̄k ∈ N (ζ∗, δ) since∥∥ζ̄k − ζ∗∥∥ ≤ ∥∥ζ̄k − ζk∥∥+

∥∥ζk − ζ∗∥∥ ≤ 2
∥∥ζk − ζ∗∥∥ ≤ δ.

Noting that Φ is Lipschitz continuous on N (ζ∗, δ), there is a constant L1 > 0 such that∥∥Φ(ζk)
∥∥ =

∥∥Φ(ζk)− Φ(ζ̄k)
∥∥ ≤ L1

∥∥ζk − ζ̄k∥∥ .
Combining with the inequality (4.31), we have

p2 κ
%
2

∥∥ζ̄k − ζk∥∥% ≤ νk = p2

∥∥Φ(ζk)
∥∥% ≤ p2L

%
1

∥∥ζk − ζ̄k∥∥% . (4.32)

On the other hand, since Φ is strongly semismooth on N (ζ∗, δ) by Proposition 4.4, there

exists a constant ĉ > 0 such that∥∥Φ(ζk) +Hk(ζ̄
k − ζk)

∥∥ =
∥∥Φ(ζk)− Φ(ζ̄k)−Hk(ζ

k − ζ̄k)
∥∥ ≤ ĉ

∥∥ζk − ζ̄k∥∥2
. (4.33)

Now, define

ϕk(d) :=
∥∥Φ(ζk) +Hkd

∥∥2
+ νk‖d‖2. (4.34)

Then, from (4.34), it is clear to check that dk is a minimizer of ϕk(d). This, together

with (4.33) and (4.32) yield

‖dk‖2 ≤ ϕk(d
k)

νk
≤ ϕk(ζ̄

k − ζk)
νk

=

∥∥Φ(ζk) +Hk(ζ̄
k − ζk)

∥∥2
+ νk

∥∥ζ̄k − ζk∥∥2

νk

≤ ĉ2p−1
2 κ−%2

∥∥ζ̄k − ζk∥∥4−%
+
∥∥ζ̄k − ζk∥∥2

=
(
ĉ2p−1

2 κ−%2 + 1
) ∥∥ζ̄k − ζk∥∥2

,
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which implies the first part with c1 =
√
ĉ2p−1

2 κ−%2 + 1. Noting that

ϕk(d
k) ≤ ϕk(ζ̄

k − ζk) ≤
∥∥Φ(ζk) +Hk(ζ̄

k − ζk)
∥∥2

+ νk
∥∥ζ̄k − ζk∥∥2

≤ ĉ2
∥∥ζ̄k − ζk∥∥4

+ p2L
%
1

∥∥ζk − ζ̄k∥∥2+%

≤
(
ĉ2 + p2L

%
1

) ∥∥ζk − ζ̄k∥∥2+%
,

we have∥∥Φ(ζk + dk)
∥∥ =

∥∥Φ(ζk + dk)− Φ(ζk)−Hkd
k + Φ(ζk) +Hkd

k
∥∥

≤
∥∥Φ(ζk + dk)− Φ(ζk)−Hkd

k
∥∥+

√
ϕk(dk)

≤ ĉ ‖dk‖2 +
(
ĉ2 + p2L

%
1

)1/2 ∥∥ζk − ζ̄k∥∥(%+2)/2

≤ ĉ
(
ĉ2p−1

2 κ−%2 + 1
) ∥∥ζ̄k − ζk∥∥2

+
(
ĉ2 + p2L

%
1

)1/2 ∥∥ζk − ζ̄k∥∥(%+2)/2

≤ c2

∥∥ζk − ζ̄k∥∥(%+2)/2

with c2 = ĉ(ĉ2p−1
2 κ−%2 + 1) + (ĉ2 + p2L

%
1)1/2. Consequently,

dist(ζk + dk, S∗) ≤ 1

κ2

∥∥Φ(ζk + dk)
∥∥ ≤ c2

κ2

∥∥ζk − ζ̄k∥∥(%+2)/2
= c3 dist

(
ζk, S∗

)(%+2)/2
.

Thus, we complete the proof of the second part. �

Invoking Lemma 4.5 and following arguments similar to those in [65, Theorem 2.1]

and [221, Theorem 3.1], we derive the quadratic convergence rate of Algorithm 4.2 under

Assumption A.

Proposition 4.13. Let {ζk} be generated by Algorithm 4.2 with νk given by (4.27), and

ζ∗ be an accumulation point of {ζk}. If ζ∗ is a solution of (4.7), then the sequence {ζk}
converges to ζ∗ superlinearly, and moreover, quadratically when % = 2, provided that F ′

and G′ are locally Lipschitz continuous and Assumption A holds.

It remains unclear whether Assumption A is indeed weaker than the strict complemen-

tarity condition at the solution. While the assumptions in Proposition 4.13 are weaker

than those in Proposition 4.12, the latter ensures that every element of ∂BΦ(ζ∗) is nonsin-

gular, thereby guaranteeing that ‖Φ(ζ)‖ provides a local error bound in a neighborhood

of the solution ζ∗. In contrast, as noted in [221], the assumptions in Proposition 4.13 do

not imply the nonsingularity of each element in ∂BΦ(ζ∗). From the proof of Lemma 4.5,

we find that the condition (4.31) cannot be weakened to

κ2dist(ζ, S∗) ≤ ‖Φ(ζ)‖1/2 ∀ζ ∈ N (ζ∗, δ),

in order to guarantee the superlinear (or quadratic) convergence of Algorithm 4.2, and

therefore the global error bound result of Proposition 4.10 may not be applied for it. If let
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Ψ(ζ) = ‖Φ(ζ)‖4/4 instead of Ψ(ζ) = ‖Φ(ζ)‖2/2, then Assumption A holds automatically

under the jointly uniform Cartesian P -property of F and G, but this will bring difficulty

to numerical implementation due to the bad scaling of Ψ. Thus, it is worthwhile to study

what conditions of F and G are sufficient for Assumption A to hold.

Numerical experiments and performance results for Algorithm 4.2 can be found in

[168]. In general, it has been observed that the Levenberg–Marquardt semismooth

method outperforms the Fischer–Burmeister semismooth method primarily on more chal-

lenging problem instances.

4.3 Smoothing Function Approach

In this section, we present the smoothing function approach for solving the mixed com-

plementarity problem (MCP). The MCP arises in a wide range of applications, including

economics, engineering, and operations research [53, 70, 71, 89], and has garnered consid-

erable attention over the past few decades [12, 13, 67, 109, 118, 119]. A curated collection

of nonlinear mixed complementarity problems, known as MCPLIB, is available in [57].

Given a mapping F : [l, u]→ IRn with F = (F1, . . . , Fn)T, where l = (l1, . . . , ln)T and

u = (u1, . . . , un)T with li ∈ IR∪ {−∞} and ui ∈ IR∪ {+∞} being given lower and upper

bounds satisfying li < ui for i = 1, 2, . . . , n. The MCP is to find a vector x∗ ∈ [l, u] such

that each component x∗i satisfies exactly one of the following implications:

x∗i = li =⇒ Fi(x
∗) ≥ 0,

x∗i ∈ (li, ui) =⇒ Fi(x
∗) = 0,

x∗i = ui =⇒ Fi(x
∗) ≤ 0.

(4.35)

It is not hard to see that, when li = −∞ and ui = +∞ for all i = 1, 2, . . . , n, the MCP

(4.35) is equivalent to solving the nonlinear system of equations

F (x) = 0;

whereas when li = 0 and ui = +∞ for all i = 1, 2, . . . , n, it reduces to the NCP, which is

to find a point x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0.

In fact, from [56, Theorem 2], the MCP (4.35) is also equivalent to the famous variational

inequality problem (VIP) which is to find a vector x∗ ∈ [l, u] such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ [l, u].

In the rest of this section, we assume the mapping F to be continuously differentiable.
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Lemma 4.6. Let φp
FB

: IR × IR → IR be defined by (2.14). Then, the following limits

hold.

(a) lim
li→−∞

φp
FB

(
xi − li, φpFB

(ui − xi,−Fi(x))
)

= −φp
FB

(ui − xi,−Fi(x)).

(b) lim
ui→∞

φp
FB

(
xi − li, φpFB

(ui − xi,−Fi(x))
)

= φp
FB

(xi − li, Fi(x)).

(c) lim
li→−∞

lim
ui→∞

φp
FB

(
xi − li, φpFB

(ui − xi,−Fi(x))
)

= −Fi(x).

Proof. Let {ak} ⊆ IR be any sequence converging to +∞ as k → ∞ and b ∈ IR be

any fixed real number. We will prove lim
k→∞

φp
FB

(ak, b) = −b, and part(a) then follows by

continuity arguments. Without loss of generality, assume that ak > 0 for each k. Then,

φp
FB

(ak, b) = ak
(
1 + (|b|/ak)p

)1/p − ak − b

= ak

[
1 +

1

p

( |b|
ak

)p
+

1− p
2p2

( |b|
ak

)2p

+ · · ·+

(1− p) · · · (1− pn+ p)

n!pn

( |b|
ak

)np
+ o

(( |b|
ak

)pn)]
− ak − b

=
1

p

|b|p
(ak)p−1

+
1− p
2p2

|b|2p
(ak)2p−1

+ · · ·+ (1− p) · · · (1− pn+ p)

n!pn
|b|np

(ak)np−1

+
(ak)|b|np
(ak)np

o
(
|b|/ak

)pn
(|b|/ak)pn − b

where the second equality is using the Taylor expansion of the function (1+ t)1/p and the

notation o(t) means limt→0 o(t)/t = 0. Since ak → +∞ as k →∞, we have
|b|np

(ak)np−1
→ 0

for all n. This together with the last equation implies limk→∞ φp(a
k, b) = −b. This proves

part(a). Part (b) and (c) are direct by part(a) and the continuity of φp
FB

. �

Below, we summarize the monotonicity properties of two scalar-valued functions that

will be used in the subsequent section. As the proofs are straightforward, they are omitted

here.

Lemma 4.7. For any fixed 0 ≤ µ1 < µ2, the following functions

f1(t) := (t+ µ1)−
p−1
p − (t+ µ2)−

p−1
p (t > 0)

and

f2(t) := (t+ µ2)
p−1
p − (t+ µ1)

p−1
p (t ≥ 0)

are decreasing on (0,+∞), and furthermore, f2(t) ≤ f2(0) = µ
(p−1)/p
2 − µ(p−1)/p

1 .
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For convenience, we adopt the following notations of index sets:

Il := {i ∈ {1, 2, . . . , n} | −∞ < li < ui = +∞} ,
Iu := {i ∈ {1, 2, . . . , n} | −∞ = li < ui < +∞} ,
Ilu := {i ∈ {1, 2, . . . , n} | −∞ < li < ui < +∞} ,
If := {i ∈ {1, 2, . . . , n} | −∞ = li < ui = +∞} .

(4.36)

With the generalized FB function phifbp, we define an operator Φp
FB

: IRn → IRn com-

ponentwise as

(Φp
FB

)i(x) :=


φp

FB
(xi − li, Fi(x)) if i ∈ Il,

−φp
FB

(ui − xi,−Fi(x)) if i ∈ Iu,
φp

FB
(xi − li, φpFB

(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If ,

(4.37)

where the minus sign for i ∈ Iu and i ∈ If is motivated by Lemma 4.6. In fact, all results

of this paper would be true without the minus sign. Using the fact that φp
FB

is an NCP

function, it is not difficult to verify that the following result holds.

Proposition 4.14. Let Φp
FB

: IRn → IRn be defined as in (4.36)-(4.37). Then, x∗ ∈ IRn

is a solution to the MCP (4.35) if and only if x∗ solves the nonlinear system of equations

Φp
FB

(x) = 0.

We point out that, unlike for the NCP, when writing the generalized FB function φp
FB

as φp
FB

(a, b) = (a+ b)− ‖(a, b)‖p, the conclusion of Proposition 4.14 does not necessarily

hold since, if Il = {1, 2, . . . , n}, then x̄ = l satisfies Φp
FB

(x̄) = 0, but F (x̄) ≥ 0 does

not necessarily hold. Similar phenomenon also appears when replacing φp
FB

by the φ
NR

function.

Since φp
FB

is not differentiable at the origin, the system Φp
FB

(x) = 0 is nonsmooth. In

this paper, we will find a solution of nonsmooth system Φp
FB

(x) = 0 by solving a sequence

of smooth approximations Ψp
FB

(x, ε) = 0, where ε > 0 is a smoothing parameter and the

operator Ψp
FB

: IRn × IR++ → IRn is defined componentwise as

(Ψp
FB

)i(x, ε) :=


ψp

FB
(xi − li, Fi(x), ε) if i ∈ Il,

−ψp
FB

(ui − xi,−Fi(x), ε) if i ∈ Iu,
ψp

FB

(
xi − li, ψpFB

(ui − xi,−Fi(x), ε), ε
)

if i ∈ Ilu,
−Fi(x) if i ∈ If ,

(4.38)

with

ψp
FB

(a, b, ε) := p
√
|a|p + |b|p + εp − (a+ b). (4.39)

In the following, we focus on the favorable properties of the smoothing function ψp
FB

and

the associated operator Ψp
FB

. We begin by presenting the key properties of ψp
FB

.
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Lemma 4.8. Let ψp
FB

: IR3 → IR be defined by (4.39). Then, the following result holds.

(a) For any fixed ε > 0, ψp
FB

(a, b, ε) is continuously differentiable at all (a, b) ∈ IR2 with

−2 <
∂ψp

FB
(a, b, ε)

∂a
< 0, −2 <

∂ψp
FB

(a, b, ε)

∂b
< 0. (4.40)

(b) For any fixed (a, b) ∈ IR2, ψp
FB

(a, b, ε) is continuously differentiable, strictly increas-

ing and convex with respect to ε > 0. Moreover, for any 0 < ε1 ≤ ε2,

0 ≤ ψp
FB

(a, b, ε2)− ψp
FB

(a, b, ε1) ≤ (ε2 − ε1). (4.41)

In particular, |ψp
FB

(a, b, ε)− φp
FB

(a, b)| ≤ ε for all ε ≥ 0.

(c) For any fixed (a, b) ∈ IR2, let (ψp
FB

)0(a, b) :=

(
lim
ε↓0

∂ψp
FB

(a, b, ε)

∂a
, lim
ε↓0

∂ψp
FB

(a, b, ε)

∂b

)
.

Then,

lim
h=(h1,h2)→(0,0)

φp(a+ h1, b+ h2)− φp
FB

(a, b)− (ψp
FB

)0(a+ h1, b+ h2)Th

‖h‖ = 0.

(d) For any given ε > 0, if p ≥ 2, then ψp
FB

(a, b, ε) = 0 =⇒ a > 0, b > 0, 2ab ≤ ε2, and

whenever p > 1, ψp
FB

(a, b, ε) = 0 =⇒ a > 0, b > 0, min{a, b} ≤ ε
p
√

2p − 2
.

Proof. (a) Using an elementary calculation, we immediately obtain that

∂ψp
FB

(a, b, ε)

∂a
=

sgn(a)|a|p−1(
p
√
|a|p + |b|p + εp

)p−1 − 1,

∂ψp
FB

(a, b, ε)

∂b
=

sgn(b)|b|p−1(
p
√
|a|p + |b|p + εp

)p−1 − 1. (4.42)

For any fixed ε > 0, since
∂ψp

FB
(a, b, ε)

∂a
and

∂ψp
FB

(a, b, ε)

∂b
are continuous at all (a, b) ∈ IR2,

it follows that ψp
FB

(a, b, ε) is continuously differentiable at all (a, b) ∈ IR2. Noting that∣∣∣∣∣∣∣
sgn(a)|a|p−1(

p
√
|a|p + |b|p + εp

)p−1

∣∣∣∣∣∣∣ < 1 and

∣∣∣∣∣∣∣
sgn(b)|b|p−1(

p
√
|a|p + |b|p + εp

)p−1

∣∣∣∣∣∣∣ < 1,

we readily achieve the inequality (4.40).
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(b) For any ε > 0, an elementary calculation yields

∂ψp
FB

(a, b, ε)

∂ε
=

εp−1(
p
√
|a|p + |b|p + εp

)p−1 > 0,

∂2ψp
FB

(a, b, ε)

∂ε2
=

(p− 1)εp−2(
p
√
|a|p + |b|p + εp

)p−1

(
1− εp

|a|p + |b|p + εp

)
≥ 0.

Therefore, for any fixed (a, b) ∈ IR2, ψp
FB

(a, b, ε) is continuously differentiable, strictly

increasing and convex with respect to ε > 0. By the Mean-Value Theorem, for any

0 < ε1 ≤ ε2, there exists some ε0 ∈ (ε1, ε2) such that

ψp
FB

(a, b, ε2)− ψp
FB

(a, b, ε1) =
∂ψp

FB

∂ε
(a, b, ε0)(ε2 − ε1).

Since
∂ψp

FB

∂ε
(a, b, ε0) ≤ 1 by the proof of part(a), inequality (4.41) holds for all 0 < ε1 ≤ ε2.

Letting ε1 ↓ 0, the desired result then follows.

(c) Using the formula (4.42), it is easy to calculate that

lim
ε↓0

∂ψp
FB

(a, b, ε)

∂a
=


sgn(a)|a|p−1(

p
√
|a|p + |b|p

)p−1 − 1 if (a, b) 6= (0, 0),

−1 if (a, b) = (0, 0);

lim
ε↓0

∂ψp
FB

(a, b, ε)

∂b
=


sgn(b)|b|p−1(

p
√
|a|p + |b|p

)p−1 − 1 if (a, b) 6= (0, 0),

−1 if (a, b) = (0, 0).

From this, we see that (ψp
FB

)0(a, b) =
(
∂φp(a,b)

∂a
,
∂φp

FB
(a,b)

∂b

)
at (a, b) 6= (0, 0). Therefore, we

only need to check the case (a, b) = (0, 0). The desired result follows by

φp
FB

(h1, h2)− φp(0, 0)− ψ0
p(h1, h2)Th

= p
√
|h1|p + |h2|p −

|h1|p + |h2|p
( p
√
|h1|p + |h2|p)p−1

= p
√
|h1|p + |h2|p − p

√
|h1|p + |h2|p

= 0.

(d) From the definition of ψp
FB

(a, b, ε), clearly, ψp
FB

(a, b, ε) = 0 implies a + b ≥ 0, and

hence a ≥ 0 or b ≥ 0. Note that, whenever a ≥ 0, b ≤ 0 or a ≤ 0, b ≥ 0, there holds

p
√
|a|p + |b|p + εp > p

√
|a|p + |b|p ≥ max{|a|, |b|} ≥ a+ b,

i.e., ψp
FB

(a, b, ε) > 0. Hence, for any given ε > 0, ψp
FB

(a, b, ε) = 0 implies a > 0 and b > 0.
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(i) If p ≥ 2, using the nonincreasing of p-norm with respect to p leads to

ψp(a, b, ε) = 0 ⇐⇒ a+ b = p
√
|a|p + |b|p + εp ≤

√
|a|2 + |b|2 + ε2

=⇒ (a+ b)2 ≤ a2 + b2 + ε2 =⇒ 2ab ≤ ε2.

(ii) For p > 1, without loss of generality, we assume 0 < a ≤ b. For any fixed a ≥ 0,

consider f(t) = (t+ a)p − tp − ap − εp (t ≥ 0). It is easy to verify that the function f is

strictly increasing on [0,+∞). Since ψp
FB

(a, b, ε) = 0, we have f(b) = 0 which says f(a) =

(2p − 2)ap − εp ≤ f(b) = 0. From this inequality, we obtain min{a, b} = a ≤ ε
p
√

2p − 2
.

�

Proposition 4.15. Let Ψp
FB

be defined by (4.38). Then, the following results hold.

(a) For any fixed ε > 0, Ψp
FB

(x, ε) is continuously differentiable on IRn with

∇xΨ
p
FB

(x, ε) = Da(x, ε) +∇F (x)Db(x, ε),

where Da(x, ε) and Db(x, ε) are n×n diagonal matrices with the diagonal elements

(Da)ii(x, ε) and (Db)ii(x, ε) defined as follows:

(a1) For i ∈ Il,

(Da)ii(x, ε) =
sgn(xi − li)|xi − li|p−1

‖(xi − li, Fi(x), ε)‖p−1
p

− 1,

(Db)ii(x, ε) =
sgn(Fi(x))|Fi(x)|p−1

‖(xi − li, Fi(x), ε)‖p−1
p

− 1.

(a2) For i ∈ Iu,

(Da)ii(x, ε) =
sgn(ui − xi)|ui − xi|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

− 1,

(Db)ii(x, ε) =
−sgn(Fi(x))|Fi(x)|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

− 1.

(a3) For i ∈ Ilu,

(Da)ii(x, ε) = ai(x, ε) + bi(x, ε)ci(x, ε) and (Db)ii(x, ε) = bi(x, ε)di(x, ε)
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with

ai(x, ε) =
sgn(xi − li)|xi − li|p−1∥∥(xi − li, ψpFB

(ui − xi,−Fi(x), ε), ε)
∥∥p−1

p

− 1,

bi(x, ε) =
sgn(ψp

FB
(ui − xi,−Fi(x), ε))|ψp

FB
(ui − xi,−Fi(x), ε)|p−1∥∥(xi − li, ψpFB

(ui − xi,−Fi(x), ε), ε)
∥∥p−1

p

− 1,

ci(x, ε) = −sgn(ui − xi)|ui − xi|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

+ 1,

di(x, ε) =
sgn(Fi(x))|Fi(x)|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

+ 1.

(a4) For i ∈ If , (Da)ii(x, ε) = 0 and (Db)ii(x, ε) = −1.

Moreover, −2 < (Da)ii(x, ε) < 0 and −2 < (Db)ii(x, ε) < 0 or all i ∈ Il ∪ Iu, and

−6 < (Da)ii(x, ε) < 0 and −4 < (Db)ii(x, ε) < 0 for i ∈ Ilu.

(b) For any given ε1 > 0 and ε2 > 0, we have

‖Ψp
FB

(x, ε2)−Ψp
FB

(x, ε1)‖ ≤ √n
(

p
√

2 + 1
)
|ε2 − ε1|, ∀x ∈ IRn.

Particularly, for any given ε > 0,

‖Ψp
FB

(x, ε)− Φp
FB

(x)‖ ≤ √n
(

p
√

2 + 1
)
ε, ∀x ∈ IRn.

Proof. This is a direct consequence of Lemma 4.8 and the expression of Ψp
FB

. �

The Jacobian consistency property is fundamental to the analysis of local fast con-

vergence in smoothing algorithms [49]. To establish that the smoothing operator Ψp
FB

satisfies this property, we first present a characterization of the generalized Jacobian

∂CΦp
FB

(x), which follows directly from Proposition 2.1(f).

Proposition 4.16. For any given x ∈ IRn, ∂CΦp
FB

(x)T = {Da(x) +∇F (x)Db(x)}, where

Da(x), Db(x) are n× n diagonal matrices whose diagonal elements are given as below:

(a) For i ∈ Il, if (xi − li, Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sgn(xi − li) · |xi − li|p−1

‖(xi − li, Fi(x))‖p−1
p

− 1,

(Db)ii(x) =
sgn(Fi(x)) · |Fi(x)|p−1

‖(xi − li, Fi(x))‖p−1
p

− 1;

and otherwise

((Da)ii(x), (Db)ii(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1

}
.



4.3. SMOOTHING FUNCTION APPROACH 417

(b) For i ∈ Iu, if (ui − xi,−Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sgn(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖p−1
p

− 1,

(Db)ii(x) = − sgn(Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖p−1
p

− 1;

and otherwise

((Da)ii(x), (Db)ii(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1

}
.

(c) For i ∈ Ilu, (Da)ii(x) = ai(x) + bi(x)ci(x) and (Db)ii(x) = bi(x)di(x) where, if

(xi − li, φpFB
(ui − xi,−Fi(x))) 6= (0, 0), then

ai(x) =
sgn(xi − li) · |xi − li|p−1∥∥(xi − li, φpFB

(ui − xi,−Fi(x)
)∥∥p−1

p

− 1,

bi(x) =
sgn

(
φp

FB
(ui − xi,−Fi(x))

)
·
∣∣φp

FB
(ui − xi,−Fi(x))

∣∣p−1∥∥(xi − li, φpFB
(ui − xi,−Fi(x)

)∥∥p−1

p

− 1,

and otherwise

(ai(x), bi(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1

}
;

and if (ui − xi,−Fi(x)) 6= (0, 0), then

ci(x) =
−sgn(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖p−1
p

+ 1,

di(x) =
sgn (Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖p−1
p

+ 1,

and otherwise

(ci(x), di(x)) ∈
{

(ξ + 1, ζ + 1) ∈ IR2 | |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1

}
.

(d) For i ∈ If , (Da)ii(x) = 0 and (Db)ii(x) = −1.

Proposition 4.17. Let Ψp
FB

be defined by (4.38). Then, for any fixed x ∈ IRn,

lim
ε↓0

dist
(
∇xΨ

p
FB

(x, ε)T, ∂CΦp
FB

(x)
)

= 0.
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Proof. For the sake of notation, for any given x ∈ IRn, we define the index sets:

β1(x) := {i ∈ Il | (xi − li, Fi(x)) = (0, 0)}, β̄1(x) := Il \ β1(x),

β2(x) := {i ∈ Iu | (ui − xi, Fi(x)) = (0, 0)}, β̄2(x) := Iu \ β2(x), (4.43)

β3(x) := {i ∈ Ilu | (xi − li, φp(ui − xi,−Fi(x))) = (0, 0)}, β̄3(x) := Ilu \ β3(x),

β4(x) := {i ∈ β̄3(x) | (ui − xi, Fi(x)) = (0, 0)}, β̄4(x) := β̄3(x) \ β4(x).

We proceed the arguments by the cases i ∈ Il ∪ Iu, i ∈ Ilu and i ∈ If , respectively.

Case 1: i ∈ Il ∪ Iu. When i ∈ β1(x) ∪ β2(x), it is easy to see that

(Da)ii(x, ε) = −1 and (Db)ii(x, ε) = −1.

By Proposition 4.15 (a1) and (a2), ∇x(Ψ
p
FB

)i(x, ε)T = −eTi − F ′i (x) for all ε > 0. Since

(−1,−1) ∈
{

(ξ − 1, ζ − 1) ∈ IR2
∣∣ |ξ| p

p−1 + |ζ|
p
p−1 ≤ 1

}
,

from Proposition 4.16(a) and Proposition 4.16(b), we obtain∇x(Ψ
p
FB

)i(x, ε)T ∈ ∂C(Φp
FB

)i(x).

When i ∈ β̄1(x) ∪ β̄2(x),

lim
ε↓0

(Da)ii(x, ε) = (Da)ii(x) and lim
ε↓0

(Db)ii(x, ε) = (Db)ii(x),

which together with Proposition 4.15 (a1) and (a2) implies

lim
ε↓0
∇x(Ψ

p
FB

)i(x, ε)T = (Da)ii(x)eTi + (Db)ii(x)F ′i (x) ∈ ∂CΦp,i(x).

Since Il ∪ Iu = β1(x) ∪ β2(x) ∪ β̄1(x) ∪ β̄2(x), the last two subcases show that

lim
ε↓0
∇x(Ψ

p
FB

)i(x, ε)T ∈ ∂C(Φp
FB

)i(x), ∀ i ∈ Il ∪ Iu. (4.44)

Case 2: i ∈ Ilu. When i ∈ β3(x), we have xi− li = 0, φp
FB

(ui−xi,−Fi(x)) = 0, ui−xi > 0

and Fi(x) = 0. Hence, ci(x) = 0 and di(x) = 1. From Proposition 4.16(c), it follows that

∂C(Φp
FB

)i(x) =
{
ai(x)eTi + bi(x)F ′i (x)

}
with

(ai(x), bi(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2
∣∣ |ξ| p

p−1 + |ζ|
p
p−1 ≤ 1

}
.

On the other hand, since ai(x, ε) = −1, di(x, ε) = 1 and

bi(x, ε) =
|ψp(ui − xi,−Fi(x), ε)|p−1

(|ψp(ui − xi,−Fi(x), ε)|p + εp)
p−1
p

− 1,

ci(x, ε) = 1− |ui − xi|p−1

(|ui − xi|p + εp)(p−1)/p
,
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from Proposition 4.15(a3), it follows that

∇x(Ψ
p
FB

)i(x, ε)T = (−1 + bi(x, ε)ci(x, ε)) e
T
i + bi(x, ε)F

′
i (x).

Taking

ξ = 0 and ζ =
|ψp(ui − xi,−Fi(x), ε)|p−1

(|ψp(ui − xi,−Fi(x), ε)|p + εp)
p−1
p

,

it is not hard to verify that |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1, and consequently

−eTi + bi(x, ε)F
′
i (x) ∈ ∂C(Φp

FB
)i(x).

Noting that

lim
ε↓0

∥∥∇x(Ψ
p
FB

)i(x, ε)T −
(
−eTi + bi(x, ε)F

′
i (x)

)∥∥ = lim
ε↓0
‖bi(x, ε)ci(x, ε)eTi ‖ = 0,

it then follows that

lim
ε↓0

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)

= 0, i ∈ β3(x).

When i ∈ β̄3(x), we have limε↓0 ai(x, ε) = ai(x) and limε↓0 bi(x, ε) = bi(x). Also,

ci(x, ε) = 1, di(x, ε) = 1 for i ∈ β4(x)

and

lim
ε↓0

ci(x, ε) = ci(x), lim
ε↓0

di(x, ε) = di(x) for i ∈ β̄4(x).

Using Proposition 4.16(c) and noting that

(1, 1) ∈
{

(ξ + 1, ζ + 1) ∈ IR2
∣∣ |ξ| p

p−1 + |ζ|
p
p−1 ≤ 1

}
,

we obtain lim
ε↓0
∇x(Ψ

p
FB

)i(x, ε)T ∈ ∂C(Φp
FB

)i(x) for i ∈ β̄3(x). Along with the above discus-

sions,

lim
ε↓0
∇x(Ψ

p
FB

)i(x, ε)T ∈ ∂C(Φp
FB

)i(x) for i ∈ Ilu. (4.45)

Case 3: i ∈ If . By Proposition 4.15 (a4) and Proposition 4.16(d), it is obvious that

lim
ε↓0
∇x(Ψ

p
FB

)i(x, ε)T ∈ ∂C(Φp
FB

)i(x) for i ∈ If . (4.46)

Now the desired result follows from (4.44), (4.45), (4.46) and {1, 2, . . . , n} = If ∪ Il∪ Iu∪
Ilu. �

Proposition 4.17 implies that for any δ > 0, there exists an ε(x, δ) > 0 such that

dist
(
∇xΨ

p
FB

(x, ε)T, ∂CΦp
FB

(x)
)
≤ δ for all 0 < ε ≤ ε(x, δ).

The following lemma offers a way to choose such ε(x, δ).
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Lemma 4.9. Let Ψp
FB

be defined by (4.38). Suppose that x is not a solution of (4.35).

Let

α(x) := min {α1(x), α2(x), α3(x)} > 0, γ(x) := max {γ1(x), γ2(x), γ3(x)} ≥ 0

with

α1(x) := min
i∈β̄1(x)

|xi − li|p + |Fi(x)|p,

α2(x) := min
i∈β̄2(x)∪β̄4(x)

|ui − xi|p + |Fi(x)|p,

α3(x) := min
i∈β̄4(x)∪{i||xi−li|6=0}

|xi − li|p + |φp
FB

(ui − xi,−Fi(x))|p

γ1(x) := max
i∈β̄1(x)

∥∥sgn(xi − li)|xi − li|p−1ei + sgn(Fi(x))|Fi(x)|p−1∇Fi(x)
∥∥

γ2(x) := max
i∈β̄2(x)

∥∥sgn(Fi(x))|Fi(x)|p−1∇Fi(x)− sgn(ui − xi)|ui − xi|p−1ei
∥∥

γ3(x) := max
i∈β̄4(x)

|ui − xi|p−1 + |Fi(x)|p−1.

Then, for any δ > 0, there exists an ε(x, δ) > 0 such that

dist
(
∇xΨ

p
FB

(x, ε)T, ∂CΦp
FB

(x)
)
≤ δ for all 0 < ε ≤ ε(x, δ),

where

ε(x, δ) := min

{
ε0(x, δ), ε1(x, δ), ε2(x, δ), ε3(x, δ),

(
δ√

nM(x)

) p−1
p

}
with

ε0(x, δ) := min
i∈β3(x)

[
|ui − xi|p−1

(1− δ/√n)
p
p−1

− |ui − xi|p
]1/p

, ε2(x, δ) := min
i∈β4(x)

1

2
|xi − li|,

ε1(x, δ) :=

 1 if (
√
nγ(x)
δ

)
p
p−1 − α(x) ≤ 0,

α(x)2/p
(√

nγ(x)
δ

)p/(p−1) − α(x)
)−1/p

otherwise,

ε3(x, δ) :=

{
1 if φp

FB
(ui− xi,−Fi(x)) ≥ 0,

1

2
[(ui− xi −Fi(x))p − |ui− xi|p −|Fi(x)|p]1/p otherwise.

Proof. From equation (4.43), clearly, the index set {1, 2, . . . , n} can be partitioned as

If ∪ β1(x) ∪ β̄1(x) ∪ β2(x) ∪ β̄2(x) ∪ β3(x) ∪ β4(x) ∪ β̄4(x).

In view of this, we proceed the proof by the following several cases.

Case 1: i ∈ If . From Proposition 4.15 (a4) and Proposition 4.16 (d), we have

∇x(Ψ
p
FB

)i(x, ε)T = −F ′i (x) and ∂C(Φp
FB

)i(x) = −F ′i (x),
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which implies

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)

= 0 for all ε > 0.

Case 2: i ∈ β1(x) ∪ β2(x). From Proposition 4.15 (a1) and (a2), it follows that

∇x(Ψ
p
FB

)i(x, ε)T = −eTi − F ′i (x).

In addition, by Proposition 4.16 (a) and (b), we have ∇x(Ψ
p
FB

)i(x, ε)T ∈ ∂(Φp
FB

)i(x) since

(−1,−1) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1

}
.

Therefore, we have

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)

= 0 for all ε > 0.

Case 3: i ∈ β3(x). Under this case, xi − li = 0, φp(ui − xi,−Fi(x)) = 0, ui − xi > 0 and

Fi(x) = 0. Hence, ci(x) = 0 and di(x) = 1. From Proposition 4.16(c), it follows that

∂C(Φp
FB

)i(x) = {ai(x)eTi + bi(x)F ′i (x)}

with

(ai(x), bi(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1

}
.

On the other hand, since ai(x, ε) = −1, di(x, ε) = 1 and

bi(x, ε) =
|ψp

FB
(ui − xi,−Fi(x), ε)|p−1(

|ψp
FB

(ui − xi,−Fi(x), ε)|p + εp
) p−1

p

− 1,

ci(x, ε) = 1− |ui − xi|p−1

(|ui − xi|p + εp)(p−1)/p
,

from Proposition 4.15 (a3) it follows that

∇x(Ψ
p
FB

)i(x, ε)T = (−1 + bi(x, ε)ci(x, ε))e
T
i + bi(x, ε)F

′
i (x).

Taking

ξ = 0 and ζ =
|ψp

FB
(ui − xi,−Fi(x), ε)|p−1(

|ψp
FB

(ui − xi,−Fi(x), ε)|p + εp
) p−1

p

,

we can verify that |ξ|
p
p−1 +|ζ|

p
p−1 ≤ 1, and consequently −eTi +bi(x, ε)F

′
i (x) ∈ ∂C(Φp

FB
)i(x).

Using the definition of ε0(x, δ), it is easy to verify that, for all ε ≤ ε0(x, δ),∥∥∇x(Ψ
p
FB

)i(x, ε)T −
(
−eTi + bi(x, ε)F

′
i (x)

)∥∥ = ‖bi(x, ε)ci(x, ε)eTi ‖ ≤ |ci(x, ε)| ≤
δ√
n
.
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Therefore, for all 0 < ε ≤ ε0(x, δ),

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)
≤ δ√

n
.

Case 4: i ∈ β̄1(x). From Proposition 4.16 (a) and Proposition 4.15 (a1), it follows that

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)

(4.47)

=
∥∥∇x(Ψ

p
FB

)i(x, ε)T −∇(Φp
FB

)i(x)T
∥∥

=

(
1

‖(xi − li, Fi(x))‖p−1
p

− 1

‖(xi − li, Fi(x), ε)‖p−1
p

)
∥∥sgn(xi − li)|xi − li|p−1ei + sgn(Fi(x))|Fi(x)|p−1∇Fi(x)

∥∥
≤

(
α1(x)

1−p
p − (α1(x) + εp)

1−p
p

)
γ1(x)

≤
(
α(x)

1−p
p − (α(x) + εp)

1−p
p

)
γ(x)

=
(α(x) + εp)

p−1
p − α(x)

p−1
p

[α(x)(α(x) + εp)]
p−1
p

γ(x)

≤ εp−1

[α(x)(α(x) + εp)]
p−1
p

γ(x). (4.48)

where the inequalities are using Lemma 4.7 and the definition of α(x) and γ(x). Now

using equation (4.47), it is not hard to verify that for all 0 < ε ≤ ε1(x, δ)

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)
≤ δ√

n
. (4.49)

Indeed, if γ(x) = 0, this inequality obviously holds for all ε > 0. Suppose that γ(x) > 0.

Then, a simple calculation shows that

εp−1γ(x)

[α(x)(α(x) + εp)]
p−1
p

≤ δ√
n
⇐⇒ α(x)2 ≥ εp

((√
nγ(x)

δ

)p/(p−1)

− α(x)

)
.

Clearly, the inequality on the right hand side holds for all 0 < ε ≤ ε1(x, δ). Consequently,

the result in (4.49) follows from the above equivalence and (4.47).

Case 5: i ∈ β̄2(x). From Proposition 4.16(b) and Proposition 4.15 (a2), it follows that

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)

=

(
1

‖(ui − xi, Fi(x))‖p−1
p

− 1

‖(ui − xi, Fi(x), ε)‖p−1
p

)
∥∥sgn(Fi(x))|Fi(x)|p−1∇Fi(x)− sgn(ui − xi)|ui − xi|p−1ei

∥∥
≤

(
α2(x)

1−p
p − (α2(x) + εp)

1−p
p

)
γ2(x)

≤
(
α(x)

1−p
p − (α(x) + εp)

1−p
p

)
γ(x).
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where the inequalities are using Lemma 4.7 and the definition of α(x) and γ(x). Using

the same arguments as Case 4, we can prove that for all 0 < ε ≤ ε1(x, δ),

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)
≤ δ√

n
.

Case 6: i ∈ β4(x). Since (ui − xi,−Fi(x)) = (0, 0), we necessarily have

xi − li > 0, φp
FB

(ui − xi,−Fi(x)) = 0 and ψp
FB

(ui − xi,−Fi(x), ε) = ε,

which in turn implies ai(x) = 0 and bi(x) = −1. By Proposition 4.16 (c),

∂C(Φp
FB

)i(x) =
{
−ci(x)eTi − di(x)F ′i (x)

}
with

(ci(x), di(x)) ∈
{

(ξ + 1, ζ + 1) ∈ IR2 | |ξ|
p
p−1 + |ζ|

p
p−1 ≤ 1

}
.

In addition, we notice that under this case ci(x, ε) = 1, di(x, ε) = 1 and

ai(x, ε) =
|xi − li|p−1(

p
√
|xi − li|p + 2εp

)p−1 − 1, bi(x, ε) =
εp−1(

p
√
|xi − li|p + 2εp

)p−1 − 1.

Therefore, from Proposition 4.15(a3), it follows that

∇x(Ψ
p
FB

)i(x, ε)T = (ai(x, ε) + bi(x, ε))e
T
i + bi(x, ε)di(x, ε)F

′
i (x)

= −

1− |xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1 + 1

 eTi

−

− εp−1(
p
√
|xi − li|p + 2εp

)p−1 + 1

F ′i (x).

We next want to prove that for any 0 < ε ≤ ε2(x, δ),∣∣∣∣∣∣∣1−
|xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1

∣∣∣∣∣∣∣
p
p−1

+

∣∣∣∣∣∣∣
εp−1(

p
√
|xi − li|p + 2εp

)p−1

∣∣∣∣∣∣∣
p
p−1

≤ 1, (4.50)

and consequently ∇x(Ψ
p
FB

)i(x, ε)T ∈ ∂C(Φp
FB

)i(x). It is easily verified that the function

h1(ε) =
|xi − li|p−1 + εp−1

( p
√
|xi − li|p + 2εp )p−1



424CHAPTER 4. OPTIMIZATION ALGORITHMS USING COMPLEMENTARITY FUNCTIONS

is increasing on [0, ε2(x, δ)]. Since h1(0) = 1, we have h1(ε) ≥ 1 on [0, ε2(x, δ)]. Therefore,∣∣∣∣∣∣∣1−
|xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1

∣∣∣∣∣∣∣
p
p−1

+

∣∣∣∣∣∣∣
εp−1(

p
√
|xi − li|p + 2εp

)p−1

∣∣∣∣∣∣∣
p
p−1

=

 |xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1 − 1


p
p−1

+
εp

|xi − li|p + 2εp

:= h2(ε).

We can verify that h2(ε) is strictly increasing on [0, ε2(x, δ)] and

h2(ε2(x, δ)) = h2(|xi − li|/2) ≤
[(

1 +
1

2p−1

)1/p

− 1

] p
p−1

+ 1/2

≤
[
1 + (1/2)

p−1
p − 1

] p
p−1

+ 1/2 ≤ 1,

where the second inequality is since (1+ t)1/p ≤ 1+ t1/p for t ≥ 0. The last two equations

imply that the inequality (4.50) holds. Consequently,

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)
≤ δ√

n
for all 0 < ε ≤ ε2(x, δ).

Case 7: i ∈ β̄4(x). Since (ui−xi,−Fi(x)) 6= (0, 0), by Proposition 4.16(c) and Proposition

4.15(a3),

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)

= ‖(ai(x, ε)− ai(x)) ei + (bi(x, ε)ci(x, ε)− bi(x)ci(x)) ei

+ (bi(x, ε)di(x, ε)− bi(x)ci(x))∇Fi(x)‖
= ‖(ai(x, ε)− ai(x)) ei + (bi(x, ε)− bi(x)) ci(x)ei + (bi(x, ε)− bi(x)) di(x)∇Fi(x)

+bi(x, ε) (ci(x, ε)− ci(x)) ei + bi(x, ε) (di(x, ε)− di(x))∇Fi(x)‖ . (4.51)

In what follows, we will successively estimate the value of |ai(x, ε)−ai(x)|, |bi(x, ε)−bi(x)|,
|ci(x, ε)−ci(x)| and |di(x, ε)−di(x)| for 0 < ε < ε3(x, δ). Note that ψp

FB
(ui−xi,−Fi(x), ε)

and φp
FB

(ui − xi,−Fi(x)) have the same sign for all 0 < ε ≤ ε3(x, δ). Indeed, if φp
FB

(ui −
xi,−Fi(x)) ≥ 0, then ψp

FB
(ui − xi,−Fi(x), ε) > 0 clearly holds. Otherwise, since

ψp
FB

(ui − xi,−Fi(x), ε) < 0

⇐⇒ |ui − xi|p + |Fi(x)|p + εp < (ui − xi − Fi(x))p,

⇐⇒ ε < ((ui − xi − Fi(x))p − |ui − xi|p − |Fi(x)|p)1/p ,
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the definition of ε3(x, δ) implies ψp
FB

(ui − xi,−Fi(x), ε) < 0 for all 0 < ε ≤ ε3(x, δ).

Step1: to estimate |ai(x, ε)− ai(x)|. For 0 < ε ≤ ε3(x, δ), we first estimate

r(x, ε) :=

∣∣∣∣∣∣ 1∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥p−1

p

− 1∥∥(xi − li, φpFB
(ui − xi,−Fi(x)))

∥∥p−1

p

∣∣∣∣∣∣ .
Let

g1(ε) := |ψp
FB

(ui − xi,−Fi(x), ε)|p − |φp
FB

(ui − xi,−Fi(x))|p

and

∆(ε) := ψp
FB

(ui − xi,−Fi(x), ε)− φp
FB

(ui − xi,−Fi(x))

for 0 < ε ≤ ε3(x, δ). If φp(ui − xi,−Fi(x)) ≥ 0, then ψp
FB

(ui − xi,−Fi(x), ε) > 0, and

hence g1(ε) > 0. In addition, applying the Mean-Value Theorem and Lemma 4.8(c), we

have,

g1(ε) = ψp
FB

(ui − xi,−Fi(x), ε)p − φp
FB

(ui − xi,−Fi(x))p

= p
[
φp

FB
(ui − xi,−Fi(x)) + t1∆(ε)

]p−1
∆(ε) for some t1 ∈ (0, 1)

≤ p
[
φp

FB
(ui − xi,−Fi(x)) + ε3(x, δ)

]p−1
ε. (4.52)

Under this case, taking into account the definition of α3(x) and a(x), we have

r(x, ε) =
1∥∥(xi − li, φpFB

(ui − xi,−Fi(x)))
∥∥p−1

p

− 1∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥p−1

p

≤
[
α3(x)−

p−1
p − (α3(x) + g1(ε) + εp)−

p−1
p

]
≤

[
α(x)−

p−1
p − (α(x) + g1(ε) + εp)−

p−1
p

]
=

(α(x) + g1(ε) + εp)
p−1
p − α(x)

p−1
p

[α(x)(α(x) + g1(ε) + εp)]
p−1
p

≤ (g1(ε) + εp)
p−1
p

α(x)
2(p−1)
p

≤M1(x)ε
p−1
p

where the first three inequalities are due to Lemma 4.7, the last one is by (4.52), and

M1(x) :=

[
p
[
φp

FB
(ui − xi,−Fi(x)) + ε3(x, δ)

]p−1
+ ε3(x, δ)p−1

α(x)2/p

]p−1

.
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If φp
FB

(ui − xi,−Fi(x)) < 0, then ψp
FB

(ui − xi,−Fi(x), ε) < 0, and hence g1(ε) < 0. Now,

r(x, ε) ≤ 1∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥p−1

p

− 1∥∥(xi − li, φpFB
(ui − xi,−Fi(x)), ε)

∥∥p−1

p

+

∣∣∣∣∣∣ 1∥∥(xi − li, φpFB
(ui − xi,−Fi(x)), ε)

∥∥p−1

p

− 1∥∥(xi − li, φpFB
(ui − xi,−Fi(x)))

∥∥p−1

p

∣∣∣∣∣∣
≤

[
|φp

FB
(ui − xi,−Fi(x))|p−1 − |ψp

FB
(ui − xi,−Fi(x), ε)|p−1

]∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥p−1

p

∥∥(xi − li, φpFB
(ui − xi,−Fi(x)), ε)

∥∥p−1

p

+
[
α3(x)−

p−1
p − (α3(x) + εp)−

p−1
p

]
≤

[
|φp

FB
(ui − xi,−Fi(x))|p−1 − |ψp

FB
(ui − xi,−Fi(x), ε)|p−1

]∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥2p−2

p

+
[
α3(x)−

p−1
p − (α3(x) + εp)−

p−1
p

]
. (4.53)

Notice that

|φp
FB

(ui − xi,−Fi(x))|p−1 − |ψp(ui − xi,−Fi(x), ε)|p−1

=
[
−φp

FB
(ui − xi,−Fi(x))

]p−1 −
[
−ψp

FB
(ui − xi,−Fi(x), ε)

]p−1

= (p− 1)
[
−ψp

FB
(ui − xi,−Fi(x), ε) + t2∆(ε)

]p−2
∆(ε) for some t2 ∈ (0, 1)

≤
{

(p− 1)
[
−φp

FB
(ui − xi,−Fi(x))

]p−2
ε if p ≥ 2;

(p− 1)
[
−ψp

FB
(ui − xi,−Fi(x), ε3(x, δ))

]p−2
ε if 1 < p < 2,

and∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥
p
≥
∥∥(xi − li, ψpFB

(ui − xi,−Fi(x), ε3(x, δ)))
∥∥
p
.

Therefore,[
|φp

FB
(ui − xi,−Fi(x))|p−1 − |ψp

FB
(ui − xi,−Fi(x), ε)|p−1

]∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥2p−2

p

≤ (p− 1)

[
−φp

FB
(ui − xi,−Fi(x))

]p−2
ε+

[
−ψp

FB
(ui − xi,−Fi(x), ε3(x, δ))

]p−2
ε∥∥(xi − li, ψpFB

(ui − xi,−Fi(x), ε3(x, δ))
∥∥2p−2

p

≤ (p− 1)

 [
−φp

FB
(ui − xi,−Fi(x))

]p−2∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε3(x, δ)))

∥∥p−2

p

+ 1

 ε

:= M2(x)ε.
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This together with (4.53) and Lemma 4.7 yields

r(x, ε) ≤ M2(x)ε+
(α(x) + εp)

p−1
p − α(x)

p−1
p

[α(x)(α(x) + εp)]
p−1
p

≤ M2(x)ε+
εp−1

α(x)
2(p−1)
p

≤
{
M3(x)ε if p ≥ 2

M3(x)εp−1 if 1 < p < 2

where

M3(x) :=

 M2(x) +
ε3(x, δ)p−2

α(x)
2p−2
p

if p ≥ 2;

M2(x)ε3(x, δ)2−p + α(x)
2−2p
p if 1 < p < 2.

Summing up the above discussions, it then follows that

r(x, ε) ≤
{

max
{
M1(x),M3(x)ε3(x, δ)1/p

}
ε
p−1
p if p ≥ 2;

max
{
M1(x),M3(x)ε3(x, δ)(p+ 1

p
−2)
}
ε
p−1
p if 1 < p < 2,

≤ M4(x)ε
p−1
p ,

where

M4(x) := max
{
M1(x),M3(x)ε3(x, δ)1/p,M3(x)ε3(x, δ)(p+1/p−2)

}
.

Consequently, we establish

|ai(x, ε)− ai(x)| = r(x, ε)|xi − li|p−1 ≤M4(x)|xi − li|p−1ε
p−1
p .

Step 2: to estimate |bi(x, ε)− bi(x)|. From the expressions of bi(x, ε) and bi(x),

|bi(x, ε)− bi(x)| =

∣∣∣∣∣sgn(ψp
FB

(ui − xi,−Fi(x), ε))|ψp
FB

(ui − xi,−Fi(x), ε)|p−1

‖(xi − li, ψp(ui − xi,−Fi(x), ε), ε)‖p−1
p

−sgn(φp
FB

(ui − xi,−Fi(x)))|φp
FB

(ui − xi,−Fi(x))|p−1

‖(xi − li, ψp(ui − xi,−Fi(x), ε), ε)‖p−1
p

+
sgn(φp

FB
(ui − xi,−Fi(x)))|φp

FB
(ui − xi,−Fi(x))|p−1

‖(xi − li, ψp(ui − xi,−Fi(x), ε), ε)‖p−1
p

−sgn(φp
FB

(ui − xi,−Fi(x)))|φp
FB

(ui − xi,−Fi(x))|p−1∥∥(xi − li, φpFB
(ui − xi,−Fi(x))

)∥∥p−1

p

∣∣∣∣∣∣
≤ g2(ε)∥∥(xi − li, ψpFB

(ui − xi,−Fi(x), ε), ε)
∥∥p−1

p

+r(x, ε)|φp
FB

(ui − xi,−Fi(x))|p−1, (4.54)
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where r(x, ε) is same as above, and g2(ε) is defined by

g2(ε) :=
∣∣sgn(ψp

FB
(ui − xi,−Fi(x), ε))|ψp

FB
(ui − xi,−Fi(x), ε)|p−1

−sgn(φp
FB

(ui − xi,−Fi(x)))|φp
FB

(ui − xi,−Fi(x))|p−1
∣∣ .

If φp
FB

(ui − xi,−Fi(x)) ≥ 0, then ψp
FB

(ui − xi,−Fi(x), ε) > 0, and therefore

g2(ε) = ψp
FB

(ui − xi,−Fi(x), ε)p−1 − φp
FB

(ui − xi,−Fi(x))p−1

= (p− 1)
[
φp

FB
(ui − xi,−Fi(x)) + t34(ε)

]p−24(ε) for some t3 ∈ (0, 1)

≤
{

(p− 1)
[
φp

FB
(ui − xi,−Fi(x)) + ε3(x, δ)

]p−2
ε if p ≥ 2;

(p− 1)
[
φp

FB
(ui − xi,−Fi(x))

]p−2
ε if 1 < p < 2.

If φp
FB

(ui − xi,−Fi(x)) < 0, then ψp
FB

(ui − xi,−Fi(x), ε) < 0 and

|ψp
FB

(ui − xi,−Fi(x), ε)|p−1 < |φp
FB

(ui − xi,−Fi(x))|p−1 for 0 < ε ≤ ε3(x, δ).

Consequently,

g2(ε) =
[
−φp

FB
(ui − xi,−Fi(x))

]p−1 −
[
−ψp

FB
(ui − xi,−Fi(x), ε)

]p−1

= (p− 1)
[
−ψp

FB
(ui − xi,−Fi(x), ε) + t44(ε)

]p−24(ε) for some t4 ∈ (0, 1)

≤
{

(p− 1)
[
−φp

FB
(ui − xi,−Fi(x))

]p−2
ε if p ≥ 2;

(p− 1)
[
−ψp

FB
(ui − xi,−Fi(x), ε3(x, δ))

]p−2
ε if 1 < p < 2.

In addition, if φp
FB

(ui − xi,−Fi(x)) ≥ 0, then∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε

)∥∥p−1

p
>
∥∥(xi − li, φpFB

(ui − xi,−Fi(x)))
∥∥p−1

p
,

whereas if φp
FB

(ui − xi,−Fi(x)) < 0, then for all 0 < ε ≤ ε3(x, δ),∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε

)∥∥p−1

p
≥ |ψp

FB
(ui − xi,−Fi(x), ε)|p−1

≥ |ψp
FB

(ui − xi,−Fi(x), ε3(x, δ))|p−1.

The above discussions show that for all 0 < ε ≤ ε3(x, δ), we have

g2(ε)∥∥(xi − li, ψpFB
(ui − xi,−Fi(x), ε), ε)

∥∥p−1

p

≤ (p− 1)M5(x)ε,

where

M5(x) :=


[
|φp

FB
(ui − xi,−Fi(x))|+ ε3(x, δ)

]p−2∥∥(xi − li, φpFB
(ui − xi,−Fi(x)))

∥∥p−1

p

if p ≥ 2,

max{|φp
FB

(ui − xi,−Fi(x))|p−2, |ψp
FB

(ui − xi,−Fi(x), ε3(x, δ))|p−2}
|ψp

FB
(ui − xi,−Fi(x), ε3(x, δ))|p−1

if 1 < p < 2.
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This along with (4.54) and the result of Step 1 gives |bi(x, ε)− bi(x)| ≤M6(x)ε
p−1
p where

M6(x) := (p− 1)M5(x)ε3(x, δ)1/p +M4(x)|φp
FB

(ui − xi,−Fi(x))|p−1. (4.55)

Step 3: to estimate |ci(x, ε)− ci(x)| and |di(x, ε)− di(x)|. Using Lemma 4.7 gives

|ci(x, ε)− ci(x)| =

∣∣∣∣ sgn(ui − xi)|ui − xi|p−1

‖(ui − xi,−Fi(x), ε)‖p−1
p

− sgn(ui − xi)|ui − xi|p−1

‖(ui − xi,−Fi(x)‖p−1
p

∣∣∣∣
=

|ui − xi|p−1

‖(ui − xi,−Fi(x)‖p−1
p

− |ui − xi|p−1

‖(ui − xi,−Fi(x), ε)‖p−1
p

≤
[
α2(x)

1−p
p − (α2(x) + εp)

1−p
p

]
|ui − xi|p−1

≤
[
α(x)

1−p
p − (α(x) + εp)

1−p
p

]
|ui − xi|p−1

=
(α(x) + εp)

p−1
p − α(x)

p−1
p

[α(x)(α(x) + ε)]
p−1
p

|ui − xi|p−1

≤ |ui − xi|p−1εp−1

α(x)
2p−2
p

.

Using the similar arguments, we also have |di(x, ε)− di(x)| ≤ |Fi(x)|p−1εp−1

α(x)
2p−2
p

.

Now using (4.51) and the results of the above three steps, and noting that |bi(x, ε)| ≤ 1,

|di(x)| ≤ 1 and |ci(x)| ≤ 1, it follows that for all 0 < ε ≤ ε3(x, δ),

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)

≤ M4(x)|xi − li|ε
p−1
p +M6(x) (1 + ‖∇Fi(x)‖) ε

p−1
p

+
|ui − xi|p−1εp−1

α(x)
2p−2
p

+
|Fi(x)|p−1εp−1

α(x)
2p−2
p

≤ M(x)ε
p−1
p

where

M(x) := M4(x)|xi − li|+M6(x) (1 + ‖∇Fi(x)‖) +
γ3(x)

α(x)
2p−2
p

.

Therefore, when i ∈ β̄4(x), we have

dist
(
∇x(Ψ

p
FB

)i(x, ε)T, ∂C(Φp
FB

)i(x)
)
≤ δ√

n
for all 0 < ε ≤

(
δ√

nM(x)

) p−1
p

.

Based on the analysis of the preceding seven cases and the definition of ε(x, δ), the desired

result follows. �
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We are now prepared to describe the iterative steps of the smoothing algorithm, which

is based on the smooth approximation Ψp
FB

(x, ε) = 0 of the original equation Φp
FB

(x) = 0.

In addition, we will present both global and local convergence results for the algorithm.

To this end, we first introduce the following merit functions:

Θp(x) :=
1

2
‖Φp

FB
(x)‖2

and

Hp(x, ε) :=
1

2
‖Ψp

FB
(x, ε)‖2.

Algorithm 4.3. (Smoothing Algorithm)

(S.0) Given a starting point x0 ∈ IRn, the parameters ρ, α, η ∈ (0, 1) and ν ∈ (0,+∞).

Choose σ ∈ (0, (1− α)/2). Let β0 = ‖Φp
FB

(x0)‖ and ε0 := α
2
√
n

. Set k := 0.

(S.1) Solve the following linear system of equations

Φp
FB

(xk) + Ψp
FB

(xk, εk)d = 0,

and denote its solution by dk.

(S.2) Let mk be the smallest nonnegative integer m such that

Hp(x
k + ρmdk, εk)−Hp(x

k, εk) ≤ −2σρmΘp(x
k).

Set tk := ρmk and xk+1 := xk + tkd
k.

(S.3) If ‖Φp
FB

(xk+1)‖ = 0, then terminate. If

0 < ‖Φp
FB

(xk+1)‖ ≤ max
{
ηβk, α

−1‖Φp
FB

(xk+1)−Ψp
FB

(xk+1, εk)‖
}
, (4.56)

let βk+1 = ‖Φp
FB

(xk+1)‖ and choose an εk+1 satisfying

0 < εk+1 ≤ min

{
αβk+1

2
√
n
,
εk
2

}
(4.57)

and

dist
(
∇xΨ

p
FB

(xk+1, εk+1), ∂CΦp
FB

(xk+1)
)
≤ βk+1ν. (4.58)

If ‖Φp
FB

(xk+1)‖ > 0 but (4.56) does not hold, then let βk+1 = βk and εk+1 = εk.

(S.4) Set k := k + 1, and go to (S.1).



4.3. SMOOTHING FUNCTION APPROACH 431

In Algorithm 4.3, the parameter σ, chosen from the interval
(

0, (1−α)
2

)
, serves two

purposes: it ensures the existence of mk in step (S.2) and facilitates the superlinear con-

vergence analysis of the algorithm. The initial values β0 and ε0 are set to ‖Φ
FB

(x0)‖ and
α

2
√
n
, respectively, primarily for the purpose of establishing global convergence. These

parameter choices are also adopted in the numerical experiments. Algorithm 4.3 is com-

putationally efficient, requiring only the solution of a linear system at each iteration.

Owing to the Jacobian consistency property of the operator Ψp
FB

, it is always possible to

find an εk+1 > 0 that satisfies conditions (4.57) and (4.58), by construction. Moreover,

Lemma 4.9 provides explicit guidance on how to select such an εk+1 > 0 for the MCP

(4.35).

Lemma 4.10. For any fixed ε > 0, the Jacobian matrix of Ψp
FB

at any x ∈ IRn is non-

singular if F is a P0-function and the submatrix [F ′(x)]If If is nonsingular. Particularly,

if If = ∅, the Jacobian matrix of Ψp
FB

at any x ∈ IRn is nonsingular if and only if F is a

P0-function.

Proof. For any given ε > 0, the Jacobian matrix of Ψp
FB

at any x ∈ IRn is given by

∇xΨ
p
FB

(x, ε)T = Da(x, ε) +Db(x, ε)F
′(x)

whereDa(x, ε) andDb(x, ε) are n×n diagonal matrices whose diagonal elements (Da)ii(x, ε)

and (Db)ii(x, ε) are negative for i ∈ Il ∪ Iu ∪ Ilu, and (Da)ii(x, ε) = 0, (Db)ii(x, ε) = −1

for i ∈ If . Now suppose that ∇xΨ
p
FB

(x, ε)Tz = 0. Then,

zi = − (Db)ii(x, ε)

(Da)ii(x, ε)
(F ′(x)z)i , for i ∈ Il ∪ Iu ∪ Ilu

and

(F ′(x)z)i = 0, for i ∈ If . (4.59)

Since F is a continuously differentiable P0-function, F ′(x) is a P0-matrix. From Lemma

1.5, we obtain zi = 0 for i ∈ Il ∪ Iu ∪ Ilu. Substituting this into (4.59), we obtain[
F ′(x)If If

]
zIf = 0,

where zIf is a vector consisting of zi with i ∈ If . This along with the nonsingularity of

[F ′(x)]If If implies zi = 0 for i ∈ If . Thus, we prove z = 0, and consequently the first

part of the conclusions follows. The second part is implied by the above arguments. �

Remark 4.1. We want to point out when p → +∞, the diagonal elements (Da)ii(x, ε)

and (Db)ii(x, ε) for i ∈ Il ∪ Iu ∪ Ilu will tend to 0, though (Da)ii(x, ε) + (Db)ii(x, ε) < 0.

This implies that for a larger p the nonsingularity of ∇Ψp
FB

(x, ε) actually requires stronger

conditions than those given by Lemma 4.10.
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By Lemma 4.10 and [49, Lemma 3.1], Algorithm 4.3 is well-defined under the assump-

tions that F is a P0-function and the submatrix [F ′(x)]If If is nonsingular. The following

lemma provides a sufficient condition to ensure that the merit function Θp(x) possesses

bounded level sets.

Lemma 4.11. The level sets L(γ) :=
{
x ∈ IRn | ‖Φp

FB
(x)‖ ≤ γ

}
are bounded for all γ > 0

if one of the following two conditions is satisfied:

(a) l and u are both bounded.

(b) F is a uniform P -function.

Proof. Under the condition (a), we have {1, 2, . . . , n} = Ilu. The result is clear by the

definition of Φp
FB

and Lemma 2.1(d). Next we prove the boundedness of L(γ) under the

condition (b). Suppose that there exists some γ > 0 such that L(γ) is unbounded, i.e.,

there exists a sequence {xk} ⊆ L(γ) such that ‖xk‖ → ∞. Define the index set

J :=
{
i ∈ {1, 2, . . . , n} | {xki } is unbounded

}
.

Then J 6= ∅. We choose a bounded sequence yk with

yki =

{
0 if i ∈ J,
xki otherwise.

Since F is a uniform P -function, there is a constant µ > 0 such that

µ‖xk − yk‖2 ≤ max
1≤i≤n

(xki − yki )(Fi(x
k)− Fi(yk))

= max
i∈J

(xki )(Fi(x
k)− Fi(yk))

≤ |xkj0 ||Fj0(xk)− Fj0(yk)|

where j0 is an index from {1, 2, . . . , n} for which the maximum is attained, and without

loss of generality it is assumed to be independent of k. Clearly, j0 ∈ J , which means

that {xkj0} is unbounded. Consequently, there exists a subsequence, assumed to be {xkj0}
without loss of generality, such that |xkj0 | → ∞. Notice that

‖xk − yk‖2 ≥ |xkj0 − ykj0|2 = |xkj0|2 for each k.

Therefore, µ|xkj0|2 ≤ |xkj0||Fj0(xk)− Fj0(yk)| and

µ|xkj0| ≤ |Fj0(xk)− Fj0(yk)| ≤ |Fj0(xk)|+ |Fj0(yk)|,

which in turn implies |Fj0(xk)| → ∞ as |xkj0| → ∞. Thus, we prove that

|xkj0| → +∞ and |Fj0(xk)| → +∞. (4.60)
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On the other hand, we notice that (4.60) implies∣∣xkj0 − li∣∣→ +∞ and
∣∣Fj0(xk)∣∣→ +∞.

Combining the last two equations with Lemma 2.1 (d), we have
∣∣(Φp

FB
)j0(xk)

∣∣ → +∞
from the definition of Φp

FB
. This contradicts the fact that {xk} ⊆ L(γ). �

Proposition 4.18. Suppose that F is a uniform P -function. Then, the iteration sequence

{xk} generated by Algorithm 4.3 is well defined and converges to the unique solution x∗ of

the MCP (4.35) superlinearly. Furthermore, if F ′ is locally Lipschitz continuous around

x∗, then the convergence rate is quadratic.

Proof. Using Lemma 4.10 and Lemma 4.11, following the same arguments as in [49], the

desired global and local convergence results are obtained. �

Detailed numerical experiments related to Algorithm 4.3 are reported in [39]. In

general, it has been observed that using a smaller value of p, particularly with p < 2,

tends to yield greater robustness compared to larger values of p. However, as p approaches

1, the algorithm typically requires more iterations to converge. Based on these findings,

choosing p within the range [1.1, 2] is generally recommended for a good balance between

robustness and efficiency. Additionally, the parameter α also influences the numerical

performance of Algorithm 4.3; empirical results suggest that selecting α from the interval

[0.3, 0.7] tends to produce favorable outcomes.

4.4 Regularization Approach

It is well known that the regularization approach is developed to address ill-posed prob-

lems by replacing the original problem with a sequence of well-posed approximations,

whose solutions converge to that of the original problem; see [62, 100, 194] and refer-

ences therein. In this section, we present a regularization framework for solving com-

plementarity problems. Specifically, we consider two distinct settings: (i) applying the

regularization approach to the NCP using φp
FB

, and (ii) applying it to the SOCCP using

φ
FB

.

In the context of nonlinear complementarity problems (2.1), if we consider the so

called Tikhonov regularization, this scheme consists of solving a sequence of nonlinear

complementarity problems NCP(Fε):

x ≥ 0, Fε(x) ≥ 0, 〈x, Fε(x)〉 = 0, (4.61)

where ε > 0 is a parameter tending to zero and Fε is given by

Fε(x) := F (x) + εx. (4.62)
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Let Fε,i(x) denote the i-th component of Fε(x) given as in (4.62) and define the map

Φp,ε : IRn → IRn by

Φp,ε(x) :=


φp

FB
(x1, Fε,1(x))

·
·
·

φp
FB

(xn, Fε,n(x))

 . (4.63)

Then the regularized problem NCP(Fε) for any given ε > 0 (described as in (4.61)) can

be reformulated as

Φp,ε(x) = 0,

which leads to a merit function Ψp,ε : IRn → IR+ for the NCP(Fε):

Ψp,ε(x) :=
1

2
‖Φp,ε(x)‖2 =

1

2

n∑
i=1

φp
FB

(xi, Fε,i(x))2. (4.64)

Therefore, the original NCP (2.1) is effectively equivalent to solving a sequence of nons-

mooth systems of equations Φp,ε(x) = 0 as ε→ 0. In this context, the parameter ε serves

a role analogous to that of smoothing parameter in traditional smoothing methods for

the NCP, with the key distinction that ε is applied to the mapping F , rather than to the

NCP function φp
FB

.

As will be shown later, the sequence of subproblems Φp,ε(x) = 0, with ε → 0, will

be approximately solved using a generalized Newton method applied to an augmented

system of equations that is equivalent to the original NCP. Specifically, we let z := (ε, x) ∈
IR+ × IRn by viewing ε as a variable, and define the mapping Hp : IR+ × IRn → IRn+1 by

Hp(z) :=


ε

φp
FB

(x1, Fε,1(x))
...

φp
FB

(xn, Fε,n(x))

 . (4.65)

Notice that if the function Φp,ε(x) defined by (4.63) is viewed as a function of ε and x,

then we may denote it as Φp
FB

(z) := Φp
FB

(ε, x) = Φp,ε(x). Hence, (4.65) is the same as

Hp(z) =

[
ε

Φp
FB

(z)

]
.

It is easily verified that the NCP is equivalent to the augmented system of equations

Hp(z) = Hp(ε, x) = 0, (4.66)

which naturally induces a merit function Gp : IRn+1 → IR+ given by

Gp(z) =
1

2
‖Hp(z)‖2 =

1

2

(
ε2 + ‖Φp,ε(x)‖2

)
=

1

2
ε2 + Ψp

FB
(z). (4.67)
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The function Hp is locally Lipschitz continuous, owing to the Lipschitz continuity of

φp
FB

; see Proposition 2.1(e). Moreover, Hp is semismooth. Based on this, we employ

the generalized Newton method developed in [178, 181] to solve (4.66), thereby formu-

lating a regularized semismooth Newton-type algorithm in which each iteration approxi-

mately solves the regularized problem NCP(Fε). Compared with the semismooth Newton

method based on (2.16), this approach offers a notable advantage in handling P0-NCPs,

as the associated merit function Ψp,ε(x) possesses bounded level sets for such problems.

Proposition 4.19. The mapping Hp : IR+ × IRn → IRn defined as in (4.65) is semis-

mooth. Moreover, it is strongly semismooth if F ′ is locally Lipschitz continuous.

Proof. Since a function is (strongly) semismooth if and only if its component functions

are (strongly) semismooth, to prove that Hp is (strongly) semismooth we only need to

prove that Hp,i, i = 1, 2, · · · , n + 1 are (strongly) semismooth. Apparently, Hp,1 is

strongly semismooth by formula (1.42) since Hp,1(z) = ε. For Hp,i, i = 2, 3, · · · , n + 1,

since φp is strongly semismooth by Proposition 2.16 and the composite of two (strongly)

semismooth functions is (strongly) semismooth by [73, Theorem 19], we conclude that

Hp,i, i = 2, 3, · · · , n+ 1 are semismooth. If F ′ is locally Lipschitz continuous, then Fε is

strongly semismooth, and consequently, Hp,i, i = 2, 3, · · · , n+1 are strongly semismooth.

�

We next give the estimation of the generalized Jacobian of Hp by Proposition 2.1(f).

Proposition 4.20. Let Hp : IR+ × IRn → IRn be defined as in (4.65). For any z =

(ε, x) ∈ IR+ × IRn, we have

(∂Hp(z))T ⊆
[

1 xTB(z)

0 (A(z)− I) + (∇F (x) + εI)(B(z)− I)

]
, (4.68)

where A(z) and B(z) are possibly multi-valued n×n diagonal matrices with i-th diagonal

elements Aii(z) and Bii(z) given by

Aii(z) =
sgn(xi) · |xi|p−1

‖(xi, Fε,i(x))‖p−1
p

, Bii(z) =
sgn(Fε,i(x)) · |Fε,i(x)|p−1

‖(xi, Fε,i(x))‖p−1
p

if (xi, Fε,i(x)) 6= (0, 0); and otherwise given by

Aii(z) = ξi, Bii(z) = ζi for any (ξi, ζi) such that |ξi|
p
p−1 + |ζi|

p
p−1 ≤ 1.

Proof. According to the known rules on the evaluation of the generalized Jacobian (see

[52, Proposition 2.6.2(e)]), we have

∂Hp(z)T ⊆ ∂Hp,1(z)× ∂Hp,2(z)× · · · × ∂Hp,n+1(z)
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where the right-hand side denotes a set of matrices whose i-th column belongs to ∂Hp,i(z),

and Hp,i is the i-th component function of Hp. Clearly,

∂Hp,1(z) =

(
1

0

)
∈ IRn+1.

For j = 2, 3, · · · , n+ 1, letting i = j − 1 and applying Proposition 2.1(f) yield

∂Hp,j(z) =

(
sgn(xi) · |xi|p−1

‖(xi, Fε,i(x))‖p−1
p

− 1

)(
0

ei

)
+

(
xi

∇Fi(x) + εei

)(
sgn(Fε,i(x)) · |Fε,i(x)|p−1

‖(xi, Fε,i(x))‖p−1
p

− 1

)
if (xi, Fε,i(x)) 6= (0, 0); and otherwise

∂Hp,j(z) = (ξi − 1)

(
0

ei

)
+

(
xi

∇Fi(x) + εei

)
(ζi − 1)

with |ξi|
p
p−1 + |ζi|

p
p−1 ≤ 1, where ei denotes the vector whose i-th element is zero and

other elements are 1. From these equalities, the conclusion easily follows. �

Utilizing the estimation of ∂Hp(z) given in (4.68), we now present a sufficient condition

to ensure the nonsingularity of all generalized Jacobians of Hp at a solution z∗ of (4.66).

This result is crucial for establishing the superlinear (or quadratic) convergence of the

semismooth Newton method; see [64]. Let z∗ = (ε∗, x∗) ∈ IR+ × IRn be a solution of

(4.66). Clearly, ε∗ = 0 and x∗ is a solution of the NCP. For the sake of notation, let

I := {i ∈ {1, 2, · · · , n} |x∗i > 0, Fi(x
∗) = 0} ,

J := {i ∈ {1, 2, · · · , n} |x∗i = 0, Fi(x
∗) = 0} ,

K := {i ∈ {1, 2, · · · , n} |x∗i = 0, Fi(x
∗) > 0} .

By rearrangement we assume that ∇F (x∗) can be written as

∇F (x∗) =

 ∇FII(x∗) ∇FIJ (x∗) ∇FIK(x∗)

∇FJI(x∗) ∇FJJ (x∗) ∇FJK(x∗)

∇FKI(x∗) ∇FKJ (x∗) ∇FKK(x∗)

 . (4.69)

The NCP is called R-regular at x∗ if ∇FII(x∗) is nonsingular and its Schur-complement

in the matrix

[
∇FII(x∗) ∇FIJ (x∗)

∇FJI(x∗) ∇FJJ (x∗)

]
is a P -matrix.

Proposition 4.21. Suppose that z∗ = (ε∗, x∗) ∈ IR+ × IRn be a solution of (4.66) and

the NCP is R-regular at x∗, then all V ∈ ∂Hp(z
∗) are nonsingular.
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Proof. From Proposition 4.20, it is easy to see that for any V ∈ ∂Hp(z
∗)T , there exists

a vector u(z∗) ∈ IRn and a matrix W (z∗) ∈ IRn×n such that

V =

[
1 u(z∗)T

0 W (z∗)

]
,

where

W (z∗) = (A(z∗)− I) + (∇F (x∗) + ε∗I)(B(z∗)− I)

with A(z∗) and B(z∗) characterized as in Proposition 4.20. Therefore, proving that V is

nonsingular is equivalent to arguing that W (z∗) is nonsingular. Using the expression of

∇F (x∗) in (4.69) and noting that ε∗ = 0, we can rewrite W (z∗) in the partitioned form

W (z∗) =

 −∇FII ∇FIJ (BJJ − IJJ ) 0IK
−∇FJI ∇FIJ (BJJ − IJJ ) + (AJJ − IJJ ) 0JK
−∇FKI ∇FKJ (BJJ − IJJ ) −IKK

 .
where for convenience we dispense with the notations z∗ and x∗. The rest of the proof is

identical to that of [64, Proposition 3.2]. �

Proposition 4.22. For any ε ≥ 0, the function Ψp,ε defined by (4.64) is continuously

differentiable everywhere, and consequently, Gp defined as in (4.67) is continuously dif-

ferentiable everywhere and ∇Gp(z) = V THp(z) for any V ∈ ∂Hp(z).

Proof. By applying [35, Proposition 3.2(c)] and Theorem 2.6.6 from [52], we immediately

arrive at the conclusion. �

Proposition 4.23. Suppose that F is a P0-function and ε̂, ε̃ are two given positive

numbers such that ε̂ < ε̃. Then, the merit function Gp defined as in (4.67) has the

property:

lim
k→+∞

Gp(z
k) = +∞

for any sequence {zk = (εk, xk)} such that εk ∈ [ε̂, ε̃] and ‖xk‖ → +∞.

Proof. We prove this by contradiction which is a standard and common technique.

Suppose limk→+∞Gp(z
k) 6= +∞. Then from (4.67) and (4.64) it follows that there exists

an unbounded sequence {xk} such that {Ψp,εk(x
k)} is bounded. Let

J :=
{
i ∈ {1, 2, · · · , n} | {xki } is unbounded

}
.

Since {xk} is unbounded, we have J 6= ∅. Without loss of generality, we assume that

{|xkj |} → ∞ for any j ∈ J . Now, we define a bounded sequence by

yki :=

{
0 if i ∈ J,
xki if i 6∈ J.



438CHAPTER 4. OPTIMIZATION ALGORITHMS USING COMPLEMENTARITY FUNCTIONS

From the definition of {yk} and F being a P0-function, we have

0 ≤ max
1≤i≤n
xk
i
6=yk
i

(xki − yki )(Fi(x
k)− Fi(yk))

= max
i∈J

xki · (Fi(xk)− Fi(yk)) (4.70)

= xkj0 · (Fj0(xk)− Fj0(yk)),

where j0 is one of the indices for which the max is attained. Since j0 ∈ J , we have

that {|xkj0|} → +∞ as k → +∞. If xkj0 → −∞ as k → +∞, using Proposition (2.8)

immediately yields that φp
FB

(xkj0 , Fεk,j0(x
k)) → +∞. If xkj0 → +∞ as k → +∞, not-

ing that Fj0(y
k) is bounded by the continuity of Fj0 , we have from (4.70) that Fj0(x

k)

does not tend to −∞, which in turn implies that {Fj0(xk) + εkxkj0} → +∞. From

Proposition (2.8) where {xkj0} → +∞ and {Fj0(xk) + εkxkj0} → +∞, we also obtain

that φp
FB

(xkj0 , Fεk,j0(x
k)) → +∞. Thus, both cases yield φp

FB
(xkj0 , Fεk,j0(x

k)) → +∞
which is a contradiction to the boundedness of {Ψp,εk(x

k)}. Consequently, we prove

that limk→+∞Gp(z
k) = +∞. �

Remark 4.2. Proposition 4.23 establishes that Ψp,ε possesses bounded level sets under

the assumption that F is a P0-function. In contrast, as shown in [35, Proposition 3.5],

a stronger condition, namely, that F is a uniform P -function, is required to ensure the

boundedness of the level sets of Ψp
FB

.

We now present two results that will be instrumental in analyzing the global conver-

gence of the algorithm in the subsequent section. The first is adapted from [62, Theorem

5.4], while the second follows from Lemma 2.3 and employs arguments similar to those

used in [194, Proposition 2.2].

Proposition 4.24. Suppose that F is a P0-function and the solution set S∗ of the NCP

is nonempty and bounded. Suppose that {εk} and {xk} are two infinite sequences such

that for each k ≥ 0, εk > 0, ηk ≥ 0 satisfying limk→+∞ ε
k = 0, limk→+∞ η

k = 0. For each

k ≥ 0, let xk ∈ IRn satisfy
∥∥Φp

FB
(εk, xk)

∥∥ ≤ ηk. Then, {xk} remains bounded and every

accumulation point of {xk} is a solution of the NCP.

Proposition 4.25. Suppose that F is a monotone function and the solution set S∗ of

the NCP is nonempty. Suppose that {εk} and {xk} are two infinite sequences such that

for each k ≥ 0, εk > 0, ηk ≥ 0, ηk ≥ Cεk and limk→+∞ ε
k = 0, where C > 0 is

a constant. For each k ≥ 0, let xk ∈ IRn satisfy
∥∥Φp

FB
(εk, xk)

∥∥ ≤ ηk. Suppose that

x∗ = argminx∈S∗‖x‖ and F is Lipschitz continuous. Then, {xk} remains bounded and

every accumulation point of {xk} is a solution of the NCP.
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We are now ready to describe the specific algorithm, adopting notation that closely

follows that of [194]. Choose ε̄ ∈ (0,+∞) and γ ∈ (0, 1) such that γε̄ < 1. Let t ∈ [1/2, 1]

and z̄ := (ε̄, 0) ∈ IR++ × IRn. We define β : IR+ × IRn → IR+ by

β(z) := γmin
{

1, Gp(z)t
}

(4.71)

and denote

Ω := {z = (ε, x) ∈ IR+ × IRn | ε ≥ β(z)ε̄} . (4.72)

Note that β(z) ≤ γ for any z ∈ IR+× IRn by (4.71). Hence, (ε̄, x) ∈ Ω for any x ∈ IRn. In

addition, by the definition of β(z), it is easily verified that the following relation holds.

Proposition 4.26. Let Hp and β be defined as in (4.65) and (4.71), respectively. Then,

Hp(z) = 0 ⇐⇒ β(z) = 0 ⇐⇒ Hp(z) = β(z)z̄.

Algorithm 4.4. (The Regularization Newton Algorithm)

(Step 0) Given any p > 1 and choose constants δ ∈ (0, 1), t ∈ [1/2, 1] and σ ∈ (1, 1/2).

Let ε0 := ε̄ and x0 ∈ IRn be an arbitrary point. Set k := 0.

(Step 1) If Hp(z
k) = 0, then stop. Otherwise, let

βk := β(zk) = γmin
{

1, Gp(z
k)t
}
.

(Step 2) Choose Vk ∈ ∂Hp(z
k) and compute ∆zk = (∆εk,∆xk) ∈ IR× IRn by

Hp(z
k) + Vk∆z

k = βkz̄. (4.73)

(Step 3) Let lk be the smallest nonnegative integer l such that

Gp(z
k + δl∆zk) ≤

[
1− 2σ(1− γε̄)δl

]
Gp(z

k).

Set zk+1 := zk + δlk∆zk.

(Step 4) Set k := k + 1 and go to Step 1.

From Proposition 4.20, we know that for any V ∈ ∂Hp(z) with z = (ε, x) ∈ IR++×IRn,

there exists a W = (u(z) W (z)) ∈ ∂Φp
FB

(z) with u(z) ∈ IRn and W (z) ∈ IRn×n such that

V =

[
1 0

u(z) W (z)

]
.

Suppose that F is a P0-function. Then, by Proposition 1.6(a), F ′ε(x) is a P -matrix.

Hence, for any x ∈ IRn and ε > 0, W (z) is nonsingular by the proof of [105, Proposition
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3.2]. It thus follows that all V ∈ ∂Hp(z) with z = (ε, x) ∈ IR++ × IRn are nonsingular.

Therefore, the Newton step in (4.73) is well-defined, and moreover, from (4.73), for any

k ≥ 0 and εk > 0, there exists a Wk ∈ ∂Φp
FB

(zk) such that

(∇Ψp
FB

(zk))T∆zk = Φp
FB

(zk)TWk∆z
k = −Φp

FB
(zk)TΦp

FB
(zk) = −2Ψp

FB
(zk). (4.74)

Using the equality and Proposition 4.26, we next show that Algorithm 4.4 is well-defined.

Proposition 4.27. Suppose that F is a P0-function and zk = (εk, xk) ∈ IR++ × IRn for

k ≥ 0. Then, zk+1 ∈ IR++ × IRn and Algorithm 4.4 is well-defined.

Proof. Since εk > 0, from the definition of β(z) it follows that βk = β(zk) > 0. From

the first component in the relation (4.73) in Algorithm 4.4, we have

εk + ∆εk = βkε̄ =⇒ 4εk = −εk + βkε̄.

Then, for any α ∈ [0, 1], there has

εk + α∆εk = (1− α)εk + αβkε̄ > 0. (4.75)

Thus, combining the fact that β(z) ≤ γGp(z)1/2 with (4.73) and (4.75) yields

(
εk + α∆εk

)2
=

[
(1− α)εk + αβkε̄

]2
= (1− α)2(εk)2 + 2(1− α)αβkε

kε̄+ α2β2
k ε̄

2

≤ (1− α)2(εk)2 + 2αβkε
kε̄+O(α2)

≤ (1− α)2(εk)2 + 2αγGp(z
k)1/2‖Hp(z

k)‖ε̄+O(α2)

= (1− 2α)(εk)2 + 2
√

2αγε̄Gp(z
k) +O(α2). (4.76)

Now, we define

θ(α) := Ψp
FB

(zk + α∆zk)−Ψp
FB

(zk)− α(∇Ψp
FB

(zk))T∆zk.

Since Ψp
FB

is continuously differentiable at any zk ∈ IR++ × IRn by Proposition 4.22, we

obtain θ(α) = o(α). On the other hand, from (4.73) and (4.74), it follows that

1

2

∥∥Φp
FB

(zk + α∆zk)
∥∥2

= Ψp
FB

(zk + α∆zk)

= Ψp
FB

(zk) + α(∇Ψp
FB

(zk))T∆zk + θ(α) (4.77)

= Ψp
FB

(zk)− 2αΨp
FB

(zk) + o(α)

= (1− 2α)Ψp
FB

(zk) + o(α)
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for any α ∈ [0, 1]. Therefore, using equations (4.76) and (4.77), we obtain

Gp(z
k + α∆zk) =

1

2

∥∥Hp(z
k + α∆zk)

∥∥2

=
1

2
(εk + α∆εk)2 +

1

2
‖Φp

FB
(zk + α∆zk)‖2

≤ 1

2
(1− 2α)(εk)2 +

√
2αγε̄Gp(z

k) + (1− 2α)Ψp
FB

(zk) + o(α)

≤ (1− 2α)Gp(z
k) + 2αγε̄Gp(z

k) + o(α)

= [1− 2(1− γε̄)α]Gp(z
k) + o(α) (4.78)

for any α ∈ [0, 1]. The inequality (4.78) implies that there exists ᾱ ∈ (0, 1] such that

Gp(z
k + α∆zk) ≤ [1− 2σ(1− γε̄)α]Gp(z

k) ∀α ∈ [0, ᾱ],

which indicates that Algorithm 4.4 is well-defined. �

Proposition 4.28. Let Ω be defined as in (4.72). Suppose that F is a P0-function. For

each k ≥ 0, if εk > 0 and zk ∈ Ω, then for any α ∈ [0, 1] such that

Gp

(
zk + α∆zk

)
≤
[
1− 2σ(1− γε̄)α

]
Gp(z

k), (4.79)

there holds that zk + α∆zk ∈ Ω.

Proof. We prove this proposition by considering the following two cases:

Case (i): Gp(z
k) > 1. Then βk = γ. From zk ∈ Ω and β(z) = γmin{1, Gp(z)t} ≤ γ for

any z ∈ IR+ × IRn, it follows that for any α ∈ [0, 1],

(εk + α4εk)− β(zk + α∆zk)ε̄ ≥ (1− α)εk + αβkε̄− γε̄
≥ (1− α)βkε̄+ αβkε̄− γε̄
= 0. (4.80)

Case (ii): Gp(z
k) ≤ 1. Then, for any α ∈ [0, 1] satisfying (4.79), we have

Gp(z
k + α∆zk) ≤ [1− 2σ(1− γε̄)α]Gp(z

k) ≤ 1. (4.81)

Therefore, for any α ∈ [0, 1] satisfying (4.79),

β(zk + α∆zk) = γGp(z
k + α4zk)t.
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Using the fact that zk ∈ Ω and the first inequality in (4.81), we then obtain that for any

α ∈ [0, 1] satisfying (4.79),

(εk + α4εk)− β(zk + α∆zk)ε̄

≥ (1− α)εk + αβkε̄− γGp(z
k + α4zk)tε̄

≥ (1− α)βkε̄+ αβkε̄− γ[1− 2σ(1− γε̄)α]tGp(z
k)tε̄

= βkε̄− γ[1− 2σ(1− γε̄)α]tGp(z
k)tε̄

= γ Gp(z
k)tε̄− γ

[
1− 2σ(1− γε̄)α

]t
Gp(z

k)tε̄

= γ
{

1−
[
1− 2σ(1− γε̄)α

]t}
Gp(z

k)tε̄

≥ 0. (4.82)

Combining (4.80) and (4.82) immediately yields the desired result. �

Proposition 4.29. Suppose that F is a P0-function. Then, Algorithm 4.4 generates an

infinite sequence {zk} with zk ∈ Ω for all k and

0 < εk+1 ≤ εk ≤ ε̄ for all k. (4.83)

Proof. Since z0 = (ε̄, x0) ∈ Ω, the first part of the conclusions follows by repeatedly

resorting to Proposition 4.27 and Proposition 4.28. We next concentrate on the proof

of (4.83). First, ε0 = ε̄ > 0. From the design of Algorithm 4.4 and the fact that

β(z) = γmin{1, Gp(z)t} ≤ γ for any z ∈ IR+ × IRn, it then follows that

ε1 = (1− δl0)ε0 + δl0β(z0)ε̄ ≤ (1− δl0)ε̄+ δl0γε̄ ≤ ε̄.

Hence (4.83) holds for k = 0. Suppose that (4.83) holds for k = i − 1. We next prove

that (4.83) holds for k = i. From the design of Algorithm 4.4, we have

εi+1 = (1− δli)εi + δliβ(zi)ε̄.

Noting that εi ≥ β(zi)ε̄ since zi ∈ Ω, we then obtain

εi+1 ≤ (1− δli)εi + δliεi = εi

and

εi+1 ≥ (1− δli)β(zi)ε̄+ δliβ(zi)ε̄ = β(zi)ε̄ > 0.

Therefore, (4.83) holds for k = i. Thus, the proof is complete. �

Now, by applying Propositions 4.23–4.25 and Proposition 4.29, and following the

same line of reasoning as in [194], we derive the following global convergence results for

Algorithm 4.4.
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Proposition 4.30. Suppose that F is a P0-function and the solution set S∗ of the NCP

is nonempty and bounded. Then the infinite sequence {zk} generated by Algorithm 4.4 is

bounded and any accumulation point of {zk} is a solution of H(z) = 0.

Proposition 4.31. Suppose that F is a monotone function and in Algorithm 4.4 the

parameter t = 1
2
. Then, if the iteration sequence {zk} is bounded, then the solution set

S∗ of the NCP is nonempty. Conversely, if the solution set S∗ of the NCP is nonempty

and F is Lipschitz continuous, then the infinite sequence {zk} generated by Algorithm

4.1 is bounded and any accumulation point of {zk} is a solution of H(z) = 0.

In addition, by applying Proposition 4.19 and following a proof similar to that of

[194, Theorem 5.1], we establish the local superlinear (or quadratic) convergence results

for Algorithm 4.4.

Proposition 4.32. Suppose that F is a P0-function and the solution set S∗ of the NCP

is nonempty and bounded. Suppose that z∗ := (ε∗, x∗) ∈ IR × IRn is an accumulation

point of the infinite sequence {zk} generated by Algorithm 4.4 and all V ∈ ∂Hp(z
∗) are

nonsingular. Then, the whole sequence {zk} converges to z∗ with

‖zk+1 − z∗‖ = o(‖zk − z∗‖), εk+1 = o(εk).

Furthermore, if F ′ is locally Lipschitz continuous around x∗, then

‖zk+1 − z∗‖ = O(‖zk − z∗‖2), εk+1 = O(εk)2.

Moreover, Proposition 4.21 implies that all conclusions of Proposition 4.32 remain

valid if the assumption that all V ∈ ∂Hp(z
∗) are nonsingular is replaced by the condition

that the nonlinear complementarity problem is R-regular at x∗. Numerical performance

of Algorithm 4.4 is reported in [36], where the results indicate that choosing a smaller

value of p, particularly within the range p ∈ [1.1, 2], generally yields superior numerical

performance. In this regard, the generalized Fischer–Burmeister functions φp
FB

with p ∈
[1.1, 2) can serve as effective alternatives to the classical squared Fischer–Burmeister

function φ2
FB

.

Next, we demonstrate the regularization approach by using the Fischer-Burmeister

SOC complementarity function for solving the SOCCP (3.1). Again, in the context of

SOCCPs, the regularization scheme consists in solving a sequence of SOCCP(Fε):

ζ ∈ K, Fε(ζ) ∈ K, 〈ζ, Fε(ζ)〉 = 0, (4.84)

where ε is a positive parameter tending to zero and Fε : IRn → IRn is given by

Fε(ζ) := F (ζ) + εζ. (4.85)
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For convenience, we continue to use x(ε) in place of ζ(ε) to denote the solution trajectory.

Specifically, drawing parallels to the classical results of regularization methods in convex

optimization, we aim to extend, as broadly as possible, the following results to the general

class of SOCCPs in which F possesses the Cartesian P0-property

(a) The regularized problem SOCCP(Fε) has a unique solution for every ε > 0.

(b) The trajectory x(ε) is continuous for ε > 0.

(c) For ε→ 0, the trajectory x(ε) converges to the least l2-norm solution of SOCCP(F )

if the SOCCP(F ) has a nonempty solution set, and otherwise it diverges.

We now proceed to show that the regularized problem SOCCP(Fε) (4.84) admits a

unique solution x(ε) for every ε > 0, under the assumption that F satisfies the Cartesian

P0-property and the following condition:

Condition 4.2. For any sequence {xk} ⊆ IRn, when there exists i ∈ {1, 2, . . . ,m} such

that the sequences {‖xki ‖} and
{
‖Fi(xk)‖
‖xki ‖

}
are unbounded, there holds

lim sup
k→+∞

〈
xki
‖xki ‖

,
Fi(x

k)

‖Fi(xk)‖

〉
> 0.

Analogously, for the SOCCP(Fε), we define the operator Φε : IRn → IRn by

Φε(x) :=

 φ
FB

(x1, Fε,1(x))
...

φ
FB

(xm, Fε,m(x))

 , (4.86)

where Fε,i : IRn → IRni denotes the i-th subvector of Fε. The natural merit function

Ψε : IRn → IR+ corresponding to Φε given as (4.86) is then described by

Ψε(x) :=
1

2
‖Φε(x)‖2 =

1

2

m∑
i=1

‖φ
FB

(xi, Fε,i(x))‖2 . (4.87)

Proposition 4.33. Suppose that F : IRn → IRn has the Cartesian P0-property and

satisfies Condition 4.2. Then, the function Ψε given as (4.87) for any ε > 0 is coercive,

i.e.,

lim
‖xk‖→∞

Ψε(x
k) = +∞.

Proof. Suppose by contradiction that the conclusion does not hold. Then, we can find

an unbounded sequence {xk} ⊆ IRn with xk = (xk1, . . . , x
k
m) and xki ∈ IRni such that the

sequence {Ψε(x
k)} is bounded. Define the index set

J :=
{
i ∈ {1, 2, . . . ,m}

∣∣ {‖xki ‖} is unbounded
}
.
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Since {xk} is unbounded, J 6= ∅. Subsequencing if necessary, we assume without loss of

generality that {‖xki ‖} → +∞ for all i ∈ J . For each i ∈ J , we define

Ji :=
{
ν ∈ {1, 2, . . . , ni}

∣∣ {|xkiν |} is unbounded
}
.

Let {yk} be a bounded sequence with yk = (yk1 , . . . , y
k
m) and yki ∈ IRni defined as follows:

ykiν =

{
0 if i ∈ J and ν ∈ Ji;
xkiν otherwise.

From the definition of {yk} and the Cartesian P0-property of F , it follows that

0 ≤ max
1≤l≤m

〈
xkl − ykl , Fl(xk)− Fl(yk)

〉
=

〈
xki − yki , Fi(xk)− Fi(yk)

〉
≤ ni max

ν∈Ji
xkiν
[
Fiν(x

k)− Fiν(yk)
]

= nix
k
ij

[
Fij(x

k)− Fij(yk)
]
, (4.88)

where i is an index from J for which the first maximum is attained, and j is an index

from Ji for which the second maximum is attained. Without loss of generality, we assume

that i and j are independent of k. Since i ∈ J and j ∈ Ji,

|xkij| → +∞. (4.89)

We now consider the two cases where xkij → +∞ and xkij → −∞, respectively.

Case (1): xkij → +∞. In this case, since Fij(y
k) is bounded by the continuity of Fij(y),

the inequality (4.88) implies that Fij(x
k) does not tend to −∞. This in turn implies that{

Fij(x
k) + εxkij

}
→ +∞.

Case (2): xkij → −∞. Now, using the inequality (4.88) and the boundedness of Fij(y
k)

immediately yields that Fij(x
k) does not tend to +∞. This in turn implies that{
Fij(x

k) + εxkij
}
→ −∞. (4.90)

From equations (4.89)–(4.90) and the definition of Fε,i(x), we thus obtain

‖xki ‖ → +∞, ‖Fε,i(xk)‖ → +∞. (4.91)

If λ1(xki )→ −∞ or λ1[Fε,i(x
k)]→ −∞, then from Lemma 3.15(a) we readily obtain that

‖φ
FB

(xki , Fε,i(x
k))‖ → +∞. Otherwise, equation (4.91) implies that {xki } and {Fε,i(xk)}

are bounded below, but λ2(xki )→ +∞ and λ2[Fε,i(x
k)]→ +∞. We next prove that

lim
k→+∞

xki
‖xki ‖

◦ Fε,i(x
k)

‖Fε,i(xk)‖
9 0, (4.92)
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and consequently from Lemma 3.15(b) it follows that ‖φ
FB

(xki , Fε,i(x
k))‖ → +∞. From

the first two equations of (4.88) and the boundedness of {yk} and {Fi(yk)}, it is not hard

to verify that
〈

xki
‖xki ‖

, Fi(x
k)

‖Fε,i(xk)‖

〉
≥ 0 for all sufficiently large k. Notice that〈

xki
‖xki ‖

,
Fε,i(x

k)

‖Fε,i(xk)‖

〉
=

〈
xki
‖xki ‖

,
Fi(x

k)

‖Fε,i(xk)‖

〉
+

ε‖xki ‖
‖Fε,i(xk)‖

, ∀ k. (4.93)

Therefore, if the sequence
{
‖Fi(xk)‖
‖xki ‖

}
is bounded, then equality (4.93) implies that

lim sup
k→+∞

〈
xki
‖xki ‖

,
Fε,i(x

k)

‖Fε,i(xk)‖

〉
> 0. (4.94)

If the sequence
{
‖Fi(xk)‖
‖xki ‖

}
is unbounded, then using Condition A and equality (4.93), it

is easy to verify that (4.94) also holds. Clearly, equation (4.94) implies (4.92), and we

thus achieve ‖φ
FB

(xki , Fε,i(x
k))‖ → +∞. This contradicts the boundedness of {Ψε(x

k)}.
�

Notice that Proposition 4.33 is equivalent to saying that the level set

Lγ(x) := {x ∈ IRn |Ψε(x) ≤ γ}

is bounded for every γ ≥ 0.

Proposition 4.34. Assume that the mapping F : IRn → IRn has the Cartesian P0-

property and satisfies Condition 4.2. Then, for every ε > 0 the problem SOCCP(Fε) has

a unique bounded solution x(ε).

Proof. Let ε > 0. Then, the mapping Fε has the Cartesian P -property by Proposition

1.6(b). This means that the regularized problem SOCCP(Fε) has at most one solution.

Now let us prove the fact by contradiction. Suppose that x(ε) and x̂(ε) are two different

solutions of the SOCCP(Fε). Then, from the Cartesian P -property of Fε, there exists an

index i ∈ {1, 2, . . . ,m} such that

0 < 〈xi(ε)− x̂i(ε), Fε,i(x(ε))− Fε,i(x̂(ε))〉
= 〈xi(ε), Fε,i(x(ε))〉 − 〈xi(ε), Fε,i(x̂(ε))〉
−〈x̂i(ε), Fε,i(x(ε))〉+ 〈x̂i(ε), Fε,i(x̂(ε))〉

= −〈xi(ε), Fε,i(x̂(ε))〉 − 〈x̂i(ε), Fε,i(x(ε))〉, (4.95)

where the last equality is due to 〈xi(ε), Fε,i(x(ε))〉 = 0 and 〈x̂i(ε), Fε,i(x̂(ε))〉 = 0. Note

that the two terms on the right hand side of (4.95) are non-positive since xi(ε), x̂i(ε) ∈ Kni
and Fε,i(x(ε)), Fε,i(x̂(ε)) ∈ Kni . Then we obtain a contradiction with the inequality

(4.95).
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To prove the existence of a solution, let x0 ∈ IRn be an arbitrary point and define

γ := Ψε(x
0). By Proposition 4.33, the corresponding level set Lγ(x) is nonempty and

compact. Therefore, the continuous function Ψε(x) attains a global minimum x(ε) on

Lγ(x) which, by the definition of level sets, is also a global minimum of Ψε(x) on IRn.

Therefore, x(ε) is a stationary point of Ψε(x). Since the mapping Fε has the Cartesian P -

property, we have from Proposition 3.13 that x(ε) is a solution of the regularized problem

SOCCP(Fε). Furthermore, this solution is bounded. Combining with the discussions

above, we thus complete the proof. �

From Proposition 4.34, we learn that the regularized problem SOCCP(Fε) for every

ε > 0 has a unique solution x(ε) when the mapping F has the Cartesian P0-property and

satisfies Condition A. Thus, as the parameter ε tends to 0, the solution of the regularized

problem SOCCP(Fε) generates a solution path P := {x(ε) | ε > 0}. The aim of the

subsequent work is to study the properties of the trajectory P . Specifically, we prove

that the path P is bounded as ε→ 0 if F has the uniform Cartesian P -property, but the

bound is dependent on the constant ρ involved in the uniform Cartesian P -property. We

also illustrate that in this case the path P is not locally Lipschitz continuous as ε → 0.

Then, for the case that F has the Cartesian P0-property and satisfies Condition A, we

provide the condition to guarantee that x(ε) remains bounded as ε→ 0. The reason why

we are interested in the boundedness of x(ε) is due to the following evident result.

Proposition 4.35. Let {εk} be a sequence of positive values converging to 0. If {x(εk)}
converges to a point x̄, then x̄ solves the SOCCP(F ).

The following proposition establishes that the solution x(ε) of SOCCP(Fε) remains

bounded for all ε ≥ 0, provided that F possesses the uniform Cartesian P -property.

However, the bound on x(ε) depends on the constant ρ associated with this property.

Proposition 4.36. Suppose that the mapping F has the uniform Cartesian P -property.

Then, for any ε ≥ 0, we have

‖x(ε)‖ ≤ ρ−1 ‖[−F (0)]+‖ , (4.96)

where ρ > 0 is the constant involved in the uniform Cartesian P -property.

Proof. Since the uniform Cartesian P -property implies the Cartesian R02-property and

the P -property, from [204, Theorem 3.1] and the proof of Proposition 4.40(b) in the

sequel, it follows that x(ε) exists for any ε ≥ 0. If x(ε) ≡ 0 for any ε ≥ 0, then the

inequality (4.96) is direct. Suppose that x(ε) 6= 0 for some ε ≥ 0. Since x(ε) is the

solution of the SOCCP(Fε), it follows that

xi(ε) ∈ Kni , Fε,i(x(ε)) ∈ Kni and 〈xi(ε), Fε,i(x(ε))〉 = 0, i = 1, 2, . . . ,m.
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Using the fact and the uniform Cartesian P -property of F , we have that

ρ‖x(ε)‖2 ≤ max
1≤i≤m

〈xi(ε), Fi(x(ε))− Fi(0)〉
= max

1≤i≤m
〈xi(ε), −εxi(ε)− Fi(0)〉

≤ max
1≤i≤m

〈xi(ε), −Fi(0)〉
≤ max

1≤i≤m
〈xi(ε), [−Fi(0)]+〉

≤ ‖x(ε)‖ ‖[−Fi(0)]+‖ ,
where the third inequality is since xi(ε) ∈ Kni , −Fi(0) = [−Fi(0)]+ + [−Fi(0)]− and

[−Fi(0)]− ∈ −Kni . This leads to the desired result. �

Remark 4.3. (a) From Proposition 4.36, when F has the uniform Cartesian P -property,

the SOCCP(F ) has a unique bounded solution. Furthermore, if F (0) ∈ K, the reg-

ularized problem SOCCP(Fε) for every ε ≥ 0 has the unique solution x(ε) = 0.

(b) When F is an affine function Mx+ q with M ∈ IRn×n and q ∈ IRn, the assumption

of Proposition 4.36 is equivalent to requiring that M has the Cartesian P -property.

Proposition 4.37. Suppose that the mapping F has the uniform Cartesian P -property.

Then, for any ε1, ε2 ≥ 0, there holds that

‖x(ε1)− x(ε2)‖ ≤ ρ−1‖ε1x(ε1)− ε2x(ε2)‖,
where ρ > 0 is the constant same as Proposition 4.36.

Proof. Without loss of generality, we assume that ε1 6= ε2. Let

y(ε1) := Fε1(x(ε1)), y(ε2) := Fε2(x(ε2)).

Since x(ε1) and x(ε2) are the solution of the problem SOCCP(Fε1) and SOCCP(Fε2),

respectively, we have xi(ε1), yi(ε1) ∈ Kni with 〈xi(ε1), yi(ε1)〉 = 0 and xi(ε2), yi(ε2) ∈ Kni
with 〈xi(ε2), yi(ε2)〉 = 0 for all i = 1, 2, . . . ,m. From this, it then follows that

〈xi(ε1)− xi(ε2), Fi(x(ε1))− Fi(x(ε2))〉
= 〈xi(ε1)− xi(ε2), yi(ε1)− ε1xi(ε1)− yi(ε2) + ε2xi(ε2)〉
= −〈xi(ε1), yi(ε2)〉 − 〈xi(ε2), yi(ε1)〉+ 〈xi(ε1)− xi(ε2), ε2xi(ε2)− ε1xi(ε1)〉
≤ 〈xi(ε1)− xi(ε2), ε2xi(ε2)− ε1xi(ε1)〉

where the second inequality holds since −〈xi(ε1), yi(ε2)〉 ≤ 0 and −〈xi(ε2), yi(ε1)〉 ≤ 0.

Using the last inequality and the uniform Cartesian P -property of F , we have that

ρ‖x(ε1)− x(ε2)‖2 ≤ max
1≤i≤m

〈xi(ε1)− xi(ε2), Fi(x(ε1))− Fi(x(ε2))〉
≤ max

1≤i≤m
〈xi(ε1)− xi(ε2), ε2xi(ε2)− ε1xi(ε1)〉 ,

≤ max
1≤i≤m

‖xi(ε1)− xi(ε2)‖ ‖ε2xi(ε2)− ε1xi(ε1)‖
≤ ‖x(ε1)− x(ε2)‖ ‖ε2x(ε2)− ε1x(ε1)‖ ,



4.4. REGULARIZATION APPROACH 449

which immediately implies the desired result. Thus, we complete the proof. �

Propositions 4.36 and 4.37 characterize certain properties of the solution path P
as ε → 0, under the uniform Cartesian P -property of F . However, these results do

not guarantee the local Lipschitz continuity of P in the limit ε → 0. The following

counterexample illustrates this limitation.

Example 4.1. Let m = 2 and n1 = n2 = 2. Let F be given by F (x) = Mx+ q, where

M =


1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

 , q =


−1+ε

ε

0

0

0

 for any given ε > 0.

Since the matrix M has the Cartesian P -property, the mapping F has the uniform Carte-

sian P -property. For the SOCCP(Fε), i.e., to find x such that

x ∈ K2 ×K2, Fε(x) ∈ K2 ×K2, 〈x, Fε(x)〉 = 0,

we can verify that x(ε) = (1/ε, 0, 0, 0)T is the unique solution. Obviously, x(ε) is not

locally Lipschitz continuous as ε → 0. Furthermore, x(ε) even has no bound since the

constant ρ involved in the uniform Cartesian P -property of F approaches to 0.

We now focus on the case where F satisfies the Cartesian P0-property and Condition

A. Unlike the NCP setting, we are currently unable to establish the continuity of the

mapping ε → x(ε) at any ε > 0. The primary difficulty lies in the lack of an analogue

to [133, Theorem 3.1] under the Cartesian P -property of F . Although the Cartesian P -

property is preserved by every principal block of ∇F (x), and by the Schur complement

of a matrix possessing this property (as shown in Proposition 1.4), these facts alone are

insufficient to derive the desired continuity result. In this case, we state the following

result without proof.

Proposition 4.38. Suppose that the mapping F has the Cartesian P0-property and sat-

isfies Condition 4.2. If the solution set S∗ of the SOCCP(F ) is nonempty and bounded,

then the path Pε̄ = {x(ε) | ε ∈ (0, ε̄ ]} is bounded for any ε̄ > 0 and

lim
ε↓0

dist (x(ε)|S∗) = 0.

Proposition 4.39. Suppose that the mapping F has the Cartesian P0-property and sat-

isfies Condition 4.2. If the SOCCP(F ) has a unique solution x̄, then limε↓0 x(ε) = x̄.

Proof. This is an immediate consequence of Proposition 4.38. �

As demonstrated in [62, Example 4.6], the boundedness assumption of S∗ is essential,

removing it may result in the loss of boundedness of the solution path Pε̄. To this end,

we now present several conditions that ensure the nonemptiness and boundedness of S∗.



450CHAPTER 4. OPTIMIZATION ALGORITHMS USING COMPLEMENTARITY FUNCTIONS

Proposition 4.40. The SOCCP(F ) has a nonempty and bounded solution set S∗ if one

of the following conditions holds:

(a) The mapping F is monotone, and the SOCCP(F ) is strictly feasible, i.e., there exists

a point x̄ ∈ IRn satisfying x̄, F (x̄) ∈ int(K).

(b) The mapping F has the P0-property and the Cartesian R02-property.

Proof. (a) Since F (x) is monotone and ∇F (x) is positive semidefinite, the result directly

follows from Proposition 3.50.

(b) We prove that a stronger result holds for this case, i.e. the following SOCCP(F, q)

x ∈ K, F (x) + q ∈ K, 〈x, F (x) + q〉 = 0 (4.97)

has a nonempty and bounded solution set for all q ∈ IRn. By [204, Theorem 3.1], we only

need to prove that for any 4 > 0, the following set

{x : x solves (4.97) with ‖q‖ ≤ 4} (4.98)

is bounded. Suppose that the set is not bounded. Then there exists a sequence {qk}
with ‖qk‖ ≤ 4 and a sequence {xk} with ‖xk‖ → +∞ such that for any k,

xk ∈ K, yk = F (xk) + qk ∈ K and xk ◦ yk = 0. (4.99)

This is equivalent to saying that for any k,

1

2

m∑
i=1

∥∥φ
FB

(xki , y
k
i )
∥∥2

= 0.

Using Lemma 3.7 and the boundedness of qk, we then obtain

‖xk‖ → +∞, lim
k→+∞

[−xk]+
‖xk‖ → 0, lim

k→+∞

[−yk]+
‖xk‖ → 0, and lim

k→+∞

‖[qk]+‖
‖xk‖ → 0. (4.100)

Noting that ∥∥[qk]+
∥∥ =

∥∥[yk − F (xk)]+
∥∥ ≥ ∥∥[−F (xk)]+

∥∥ ,
where the inequality is due to Lemma 1.1(c), we have from the last term in (4.100) that

lim
k→+∞

∥∥[−F (xk)]+
∥∥

‖xk‖ → 0.

This together with the first two terms in (4.100) shows that {xk} satisfies the condition

(1.49). By the Cartesian R02-property of F , there exists a ν ∈ {1, 2, . . . ,m} such that

lim inf
k→+∞

λ2[xkν ◦ Fν(xk)]
‖xk‖2

> 0.
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However, from the equation (4.99) and the boundedness of qk, we have

λ2[xkν ◦ Fν(xk)]
‖xk‖2

=
λ2[−xkν ◦ qkν ]

‖xk‖2
→ 0.

This leads to a contradiction. Consequently, the set defined by (4.98) is bounded. �

It is worth noting that the Cartesian R02-property is implied by the R0-property as

discussed in [204]. Therefore, Proposition 4.40(b) offers a weaker condition under which

the solution set S∗ is guaranteed to be nonempty and bounded. Combining Proposition

4.34, Proposition 4.40(b), and Proposition 1.7(b), we obtain the following result.

Proposition 4.41. Suppose that F has the Cartesian P0-property and the Cartesian

R02-property and satisfies Condition 4.2. Then, the path Pε̄ =
{
x(ε) | ε ∈ (0, ε̄ ]

}
is

bounded for any ε̄ > 0 and lim
ε↓0

dist (x(ε) | S∗) = 0.

The preceding discussion demonstrates that the original SOCCP(F ) can, in princi-

ple, be solved by computing the exact solutions to a sequence of regularized problems

SOCCP(Fε). However, in practical settings, it is often infeasible to solve each SOCCP(Fε)

exactly for every ε > 0. To address this, we propose an inexact regularization algorithm

that allows for approximate solutions to the subproblems, while still preserving all the

convergence properties of its exact counterpart.

Algorithm 4.5. (Inexact Regularization Method)

(S.0) Choose ε0 > 0 and τ0 > 0, and set k := 0.

(S.1) Compute an approximate solution xk of SOCCP (Fε) such that

Ψε(x
k) ≤ τk.

(S.2) Terminate the iteration if a suitable criterion is satisfied.

(S.3) Choose εk+1 > 0 and τk+1 > 0, set k := k + 1, and go to (S.1).

Clearly, if we take τk = 0 at each iteration, then xk = x(εk). In addition, we note that

the point xk can be easily obtained by applying any effective gradient-type unconstrained

optimization algorithm to the minimization problem

min
x∈IRn

Ψε(x), (4.101)

because the objective function Ψε(x) in (4.101) is continuously differentiable everywhere

and has bounded level sets for those SOCCPs with F having the Cartesian P0-property

and satisfying Condition 4.2. In our numerical experiments, we adopt the BFGS algo-

rithm to compute xk.
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Lemma 4.12. Suppose that f : IRn → IR is smooth and coercive. Let C ⊆ IRn be a

nonempty compact set and denote c̄ by the least value of f on the boundary of C, i.e.,

c̄ := min
x∈∂C

f(x). If there have two points a ∈ C and b /∈ C such that f(a) < c̄ and f(b) < c̄,

then there exists a point z ∈ IRn such that ∇f(z) = 0 and f(z) ≥ c̄.

Proof. This is the well-known Mountain Pass Theorem [162], which will be employed in

the convergence analysis of Algorithm 4.5. �

We now proceed to establish the convergence results of Algorithm 4.5. To this end,

we assume that the algorithm generates an infinite sequence—that is, the termination

criterion in step (S.2) is never triggered.

Proposition 4.42. Let F be the mapping having the Cartesian P0-property and satisfying

Condition 4.2. Assume that the solution set S∗ of the SOCCP(F ) is nonempty and

bounded. If εk → 0 and τk → 0, then the sequence {xk} generated by Algorithm 4.5

remains bounded, and every accumulation point of {xk} is a solution of the SOCCP(F ).

Proof. Suppose that the sequence {xk} is unbounded. Then, passing to a subsequence

if necessary, we assume that {‖xk‖} → +∞. This together with the boundedness of S∗
means that there exists a compact set C ⊆ IRn with S∗ ⊂ intC and xk /∈ C for sufficiently

large k. Let x∗ ∈ S∗ be a solution of the SOCCP(F ). Then, we have

Ψ
FB

(x∗) = 0 and c̄ := min
x∈∂C

Ψ
FB

(x) > 0. (4.102)

Let δ := c̄/4. Notice that Ψε(x) viewed as the function of x and ε is continuous on the

compact set C × [0, ε̃], and so is uniformly continuous on C × [0, ε̃]. Hence, there exists

an ε̃ > 0 such that for all x ∈ C and ε ∈ [0, ε̃]

|Ψε(x)−Ψ
FB

(x)| ≤ δ. (4.103)

Combining (4.103) with (4.102), we have that for all sufficiently large k,

Ψεk(x
∗) ≤ 1

4
c̄ (4.104)

and

c := min
x∈∂C

Ψεk(x) ≥ 3

4
c̄. (4.105)

On the other hand, Ψεk(x
k) ≤ τk by Algorithm 4.5 and τk → 0, which means

Ψεk(x
k) ≤ 1

4
c̄ (4.106)

for all k large enough. Now using (4.104), (4.105), (4.106) and setting a = x∗ and b = xk

in Lemma 4.12, there exists a vector x̂ ∈ IRn such that

∇Ψεk(x̂) = 0 and Ψεk(x̂) ≥ 1

4
c̄ > 0.
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This says that x̂ is a stationary point of Ψεk(x), but not a solution of the SOCCP(Fεk).

However, by Proposition 3.13, we know that any stationary point of Ψεk(x) is a solution

of the SOCCP(Fεk). Thus, we obtain a contradiction. �

Clearly, Proposition 4.38 follows directly from Proposition 4.42 by setting τk = 0 for

all k. Moreover, Proposition 4.39 and Proposition 4.41 can be readily extended to the

inexact framework.

Proposition 4.43. Suppose that the mapping F has the Cartesian P0-property and sat-

isfies Condition 4.2. Let {xk} be the sequence generated by Algorithm 4.5. If εk → 0 and

τk → 0, and the SOCCP(F ) has a unique solution x̄, then we have limεk→0 x
k = x̄.

Proposition 4.44. Suppose that F has the Cartesian P0-property and the Cartesian R02-

property and satisfies Condition 4.2. Let {xk} be the sequence generated by Algorithm

4.5. If εk → 0 and τk → 0, then {xk} is bounded and its every accumulation point is a

solution of the SOCCP(F ).

Proposition 4.45. Suppose that F is a monotone mapping satisfying Condition 4.2 and

the SOCCP(F ) is strictly feasible. Let {xk} be the sequence generated by Algorithm 4.5.

If εk → 0 and τk → 0, then {xk} is bounded and every accumulation point is a solution

of the SOCCP(F ).

Proof. Applying Proposition 4.40(a), the desired result follows. �

Detailed numerical performance of Algorithm 4.5 is reported in [165]. We highlight

several aspects regarding its implementation. To assess the effectiveness of the regulariza-

tion method, we first applied the inexact regularization algorithm to a class of monotone

SOCCPs arising as the KKT optimality conditions of linear SOCPs from the DIMACS

Implementation Challenge library [174]. In addition, we tested the method on a class

of SOCCPs where the mapping F satisfies the Cartesian P0-property. Since suitable

benchmark examples are not readily available in the literature, we considered the case

F = Mx + q, where M ∈ IRn×n and q = (q1, . . . , qm) is generated randomly, with M

constructed to satisfy the Cartesian P0-property.

Several open questions merit further investigation in future work. First, for monotone

SOCCPs, it remains to establish sufficient conditions under which the solution path x(ε)

is continuous, and to determine whether the trajectory x(ε) converges to the least l2-norm

solution of the SOCCP(F ) when the solution set is nonempty and bounded. Second,

for SOCCPs with the Cartesian P0-property, it is of interest to identify appropriate

conditions that guarantee the continuity of the solution path x(ε), and to examine the

convergence behavior of the trajectory x(ε) under boundedness.
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Chapter 5

Dynamical Methods using

Complementarity Functions

In this chapter, we explore the applications of complementarity functions within neural

network methods. In particular, we present two classes of target problems, nonlinear com-

plementarity problems and optimization problems involving second-order cones (SOCs);

and demonstrate how they can be addressed using neural networks in conjunction with

complementarity functions.

Neural network approaches to optimization were first introduced in the 1980s by Hop-

field and Tank [93, 203]. Since then, they have been successfully applied to a wide range of

optimization problems, including linear and nonlinear programming, variational inequal-

ities, and both linear and nonlinear complementarity problems; see [54, 59, 60, 88, 97, 98,

121, 137, 213–215, 224, 226]. Moreover, neural networks have also found applications in

solving real-world problems across various domains, as discussed in [159, 189, 227]. The

central idea behind neural network approaches to optimization is to construct a nonnega-

tive energy function and to design a dynamic system—typically modeled by a first-order

ordinary differential equation (ODE), whose evolution simulates the behavior of an arti-

ficial neural network. The system is expected to converge to a steady state (equilibrium

point), which corresponds to a solution of the underlying optimization problem. Addi-

tionally, these neural networks are hardware implementable and can be realized using

integrated circuit technologies.

In essence, neural networks serve as ODE-based models whose trajectories represent

the solution paths of the target problems. Unlike traditional optimization algorithms,

the stability of these systems is interpreted as the analog of convergence and conver-

gence rate. To set the stage for subsequent discussions, we begin by reviewing a few

fundamental concepts related to trajectories and stability, which are standard in the the-

ory of ordinary differential equations; see, for instance, [156]. Consider the first order

differential equations (ODE):

ẋ(t) = H(x(t)), x(t0) = x0 ∈ IRn (5.1)

455
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where H : IRn → IRn is a mapping.

Definition 5.1. A point x∗ = x(t∗) is called an equilibrium point or a steady state of the

dynamic system (5.1) if H(x∗) = 0. If there is a neighborhood Ω∗ ⊆ IRn of x∗ such that

H(x∗) = 0 and H(x) 6= 0 ∀x ∈ Ω∗\{x∗}, then x∗ is called an isolated equilibrium point.

Lemma 5.1. Assume that H : IRn → IRn is a continuous mapping. Then, for any t0 ≥ 0

and x0 ∈ IRn, there exists a local solution x(t) for (5.1) with t ∈ [t0, τ) for some τ > t0.

If, in addition, H is locally Lipschitz continuous at x0, then the solution is unique; if H

is Lipschitz continuous in IRn, then τ can be extended to ∞.

If a local solution defined on [t0, τ) cannot be extended to a local solution on a larger

interval [t0, τ1), τ1 > τ , then it is called a maximal solution, and the interval [t0, τ) is the

maximal interval of existence. Clearly, any local solution has an extension to a maximal

one. We denote [t0, τ(x0)) by the maximal interval of existence associated with x0.

Lemma 5.2. Assume that H : IRn → IRn is continuous. If x(t) with t ∈ [t0, τ(x0)) is a

maximal solution and τ(x0) <∞, then lim
t↑τ(x0)

‖x(t)‖ =∞.

Definition 5.2. (Stability in the sense of Lyapunov) Let x(t) be a solution for (5.1).

An isolated equilibrium point x∗ is Lyapunov stable if for any x0 = x(t0) and any ε > 0,

there exists a δ > 0 such that ‖x(t)− x∗‖ < ε for all t ≥ t0 and ‖x(t0)− x∗‖ < δ.

Definition 5.3. (Asymptotic stability) An isolated equilibrium point x∗ is said to be

asymptotically stable if in addition to being Lyapunov stable, it has the property that

x(t)→ x∗ as t→∞ for all ‖x(t0)− x∗‖ < δ.

Definition 5.4. (Lyapunov function) Let Ω ⊆ IRn be an open neighborhood of x̄. A

continuously differentiable function W : IRn → IR is said to be a Lyapunov function at

the state x̄ over the set Ω for equation (5.1) if W (x̄) = 0, W (x) > 0, ∀x ∈ Ω\{x̄}.
dW (x(t))

dt
= ∇W (x(t))TH(x(t)) ≤ 0, ∀x ∈ Ω.

(5.2)

Lemma 5.3. (a) An isolated equilibrium point x∗ is Lyapunov stable if there exists a

Lyapunov function over some neighborhood Ω∗ of x∗.
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(b) An isolated equilibrium point x∗ is asymptotically stable if there is a Lyapunov func-

tion over some neighborhood Ω∗ of x∗ such that
dW (x(t))

dt
< 0 for all x ∈ Ω∗\{x∗}.

Definition 5.5. (Exponential stability) An isolated equilibrium point x∗ is exponentially

stable if there exists a δ > 0 such that arbitrary point x(t) of (5.1) with the initial

condition x(t0) = x0 and ‖x(t0)− x∗‖ < δ is well-defined on [0,+∞) and satisfies

‖x(t)− x∗‖2 ≤ ce−ωt‖x(t0)− x∗‖ ∀t ≥ t0,

where c > 0 and ω > 0 are constants independent of the initial point.

5.1 Neural Networks for NCP

5.1.1 Neural Network using ψp
FB

for NCP

In this section, we focus on a neural network approach to the NCP (2.1), utilizing Ψp
FB

(x)

as the energy function. As discussed in Chapter 2, the NCP can be reformulated as the

following unconstrained smooth minimization problem:

min
x∈IRn

Ψp
FB

(x) =
1

2
‖Φp

FB
(x)‖2.

Accordingly, it is natural to adopt the following steepest descent-based neural network

model for the NCP:
dx(t)

dt
= −ρ∇Ψp

FB
(x(t)), x(0) = x0, (5.3)

where ρ > 0 is a scaling factor. Most neural network models in the existing literature

are projection-based and rely on alternative NCP functions, such as the natural residual

function (e.g., [98, 215]) or the regularized gap function (e.g., [54]). More recently, neural

networks based on the Fischer–Burmeister (FB) function have been developed for linear

and quadratic programming, as well as for nonlinear complementarity problems [60, 137].

The model considered here is based on the generalized FB function, thereby extending

the approaches found in [60, 137].

We shall demonstrate that the neural network defined in (5.3) possesses desirable sta-

bility properties: it is Lyapunov stable, asymptotically stable, and exponentially stable.

Furthermore, as observed in [30], the parameter p significantly influences the numerical

performance of certain descent-type methods. Specifically, larger values of p tend to

improve convergence rates, while smaller values promote better global convergence. In

addition, we investigate whether similar phenomena arise in the context of our neural

network model.
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From Proposition 2.2(c), we know that the function Ψp
FB

is continuously differentiable

everywhere with

∇Ψp
FB

(x) = V TΦp
FB

(x) for any V ∈ ∂Φp
FB

(x) (5.4)

or

∇Ψp
FB

(x) = ∇aψ
p
FB

(x, F (x)) +∇F (x)∇bψ
p
FB

(x, F (x)) (5.5)

with

∇aψ
p
FB

(x, F (x)) :=
[
∇aψ

p
FB

(x1, F1(x)), . . . ,∇aψ
p
FB

(xn, Fn(x))
]T
,

∇bψ
p
FB

(x, F (x)) :=
[
∇bψ

p
FB

(x1, F1(x)), . . . ,∇bψ
p
FB

(xn, Fn(x))
]T
.

In view of the above, there have two ways to compute ∇Ψp
FB

(x), which is needed in the

network (5.3). One is to use formula (5.4), for which we give an algorithm (see Algorithm

5.1 below), to evaluate an element V ∈ ∂Φp
FB

(x), see Proposition 2.1 for ∂φp
FB

(xi, Fi(x)).

The other is to adopt formula (5.5).

Algorithm 5.1. (The procedure to evaluate an element V ∈ ∂Φp
FB

(x))

(S.0) Let x ∈ IRn be given, and let Vi denote the i-th row of a matrix V ∈ IRn×n.

(S.1) Set I(x) := {i ∈ {1, 2, . . . , n} |xi = Fi(x) = 0}.

(S.2) Set z ∈ IRn such that zi = 0 for i /∈ I(x), and zi = 1 for i ∈ I(x).

(S.3) For i ∈ I(x), let ui =
[
|zi|

p
p−1 + |∇Fi(x)Tz|

p
p−1

] p−1
p

, and

Vi =

(
zi
ui
− 1

)
eTi +

(∇Fi(x)Tz

ui
− 1

)
∇Fi(x)T.

(S.4) For i /∈ I(x), set

Vi =

(
sgn(xi) · |xi|p−1

‖(xi, Fi(x))‖p−1
p

− 1

)
eTi +

(
sgn(Fi(x)) · |Fi(x)|p−1

‖(xi, Fi(x))‖p−1
p

− 1

)
∇Fi(x)T.

The procedure outlined above represents the conventional approach to computing

∇Ψp
FB

(x(t)). For instance, the neural network model in [137] employs equation (5.4)

along with a similar algorithm to evaluate an element of V ∈ ∂Φ
FB

(x). In contrast, we

propose a simpler and more efficient method for computing ∇Ψp
FB

(x(t)): specifically, by

using the formula given in (5.5) rather than (5.4). This alternative formulation not only

simplifies computation but also provides valuable insight into how the neural network

(5.3) can be implemented in hardware. See Figure 5.1 below for an illustration.

We now assert that Ψp
FB

serves as a global error bound for the solution of the NCP.

This result is of fundamental importance, as it will be used to analyze the influence of

the parameter p on the convergence rate of the trajectory x(t) generated by the neural

network (5.3).
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Figure 5.1: A simplified block diagram for the neural network (5.3).

Proposition 5.1. Suppose F is a uniform P -function with modulus κ > 0 and Lipschitz

continuous with constant L > 0. Then, the NCP has a unique solution x∗, and

‖x− x∗‖2 ≤ 4L2

κ2(2− 21/p)2
Ψp

FB
(x) ∀x ∈ IRn.

Proof. Since F is a uniform P -function, by Proposition 2.5, there exists a global min-

imizer of Ψp
FB

(x) which says the NCP has a solution. Assume that the NCP has two

different solutions x∗ and y∗, then by Definition 1.7(f) we have

κ‖x∗ − y∗‖2 ≤ max
1≤i≤m

(x∗i − y∗i )(Fi(x∗)− Fi(y∗))

= max
1≤i≤m

{
− x∗iFi(y∗)− y∗i Fi(x∗)

}
≤ 0

where the equality is due to the fact that x∗iFi(x
∗) = y∗i Fi(y

∗) = 0 for i = 1, 2, . . . , n

(note that x∗ and y∗ are the solutions to the NCP), and the last inequality holds since

x∗, y∗ ≥ 0 and F (x∗), F (y∗) ≥ 0. This leads to a contradiction. Hence, the NCP has a

unique solution.

For any x ∈ IRn, let r(x) := (r1(x), . . . , rn(x))T with ri(x) = min{xi, Fi(x)} for i =

1, . . . , n. Since F is Lipschitz continuous with constant L > 0, by [113, Lemma 7.4] we

have

(xi − x∗i )(Fi(x)− Fi(x∗)) ≤ 2L|ri(x)|‖x− x∗‖,

for all x ∈ IRn and i = 1, 2, . . . , n. On the other hand, since F is a uniform P -function

with modulus κ > 0, from Definition 1.7(f) it follows that

κ‖x− x∗‖2 ≤ max
1≤i≤n

(xi − x∗i )(Fi(x)− Fi(x∗))
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for any x ∈ IRn. Combining the last two equations yields

‖x− x∗‖ ≤ (2L/κ) max
1≤i≤n

|ri(x)| ∀x ∈ IRn.

This together with Lemma 2.3 implies

‖x− x∗‖ ≤ 2L

κ(2− 21/p)
max
1≤i≤n

|φp
FB

(xi, Fi(x))| ≤ 2L

κ(2− 21/p)
‖Φp

FB
(x)‖.

Consequently, we obtain the desired result. �

Next, we turn to the convergence and stability properties of the neural network (5.3).

Our analysis focuses on the behavior of the solution trajectory, including its existence

and convergence, and we establish three types of stability for an isolated equilibrium

point. We begin by stating the relationship between an equilibrium point of (5.3) and a

solution to the NCP.

Proposition 5.2. (a) Every solution to the NCP is an equilibrium point of the neural

network (5.3).

(b) If F is an P0-function, then every equilibrium point of (5.3) is a solution to the

NCP.

Proof. (a) Suppose that x is a solution to the NCP. Then, from Proposition 2.3, it is

clear that Φp
FB

(x) = 0. Using Proposition 2.2(e) and (5.5), we then have ∇Ψp
FB

(x) = 0.

This, by Definition 5.1, shows that x is an equilibrium point of (5.3).

(b) This is a direct consequence of Proposition 2.4. �

Lemma 5.4. Let Ψp
FB

: IRn → IR+ be given by (2.17). Then, the function Ψp
FB

(x(t)) is

nonincreasing with respect to t.

Proof. By the definition of Ψp
FB

(x) and (5.3), it is not difficult to compute

dΨp
FB

(x(t))

dt
= ∇Ψp

FB
(x(t))T

dx(t)

dt
= ∇Ψp

FB
(x(t))T

(
−ρ∇Ψp

FB
(x(t))

)
(5.6)

= −ρ‖∇Ψp
FB

(x(t))‖2 ≤ 0.

Therefore, Ψp
FB

(x(t)) is a monotonically decreasing function with respect to t. �

Proposition 5.3. For any fixed p ≥ 2, the following hold.

(a) For any initial state x0 = x(t0), there exists exactly one maximal solution x(t) with

t ∈ [t0, τ(x0)) for the neural network (5.3).
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(b) If the level set L(x0) = {x ∈ IRn |Ψp
FB

(x) ≤ Ψp
FB

(x0)} is bounded or F is Lipschitz

continuous, then τ(x0) = +∞.

Proof. (a) Since F is continuously differentiable, ∇F (x) is continuous, and therefore,

∇F (x) is bounded on a local compact neighborhood of x. On the other hand, ∇aψ
p
FB

and

∇bψ
p
FB

are Lipschitz continuous by Lemma 2.5. These two facts together with formula

(5.5) show that∇Ψp
FB

(x) is locally Lipschitz continuous. Thus, applying Lemma 5.1 leads

to the desired result.

(b) We proceed the arguments by the two cases as shown below.

Case (i): The level set L(x0) is bounded. We prove the result by contradiction. Suppose

τ(x0) <∞. Then, by Lemma 5.2, lim
t↑τ(x0)

‖x(t)‖ =∞. Let Lc(x0) := IRn\L(x0) and

τ0 := inf{s ≥ 0 | s < τ(x0), x(s) ∈ Lc(x0)} <∞.

We know that x(τ0) lies on the boundary of L(x0) and Lc(x0). Moreover, L(x0) is

compact since it is bounded by assumption and it is also closed because of the continuity

of Ψp
FB

(x). Therefore, we have x(τ0) ∈ L(x0) and τ0 < τ(x0), implying that

Ψp
FB

(x(s)) > Ψp
FB

(x0) > Ψp
FB

(x(τ0)) for some s ∈ (τ0, τ(x0)). (5.7)

However, Lemma 5.4 says that Ψp
FB

(x(·)) is nonincreasing on [t0, τ(x0)), which contradicts

(5.7). This completes the proof of Case (i).

Case (ii): F is Lipschitz continuous. From the proof of part (a), we know that ∇Ψp
FB

(x)

is Lipschitz continuous. Thus, by Lemma 5.1, we have τ(x0) =∞. �

Proposition 5.4. (a) Let x(t) with t∈ [t0, τ(x0)) be the unique maximal solution to the

neural network (5.3). If τ(x0) =∞ and {x(t)} is bounded, then lim
t→∞
∇Ψp

FB
(x(t)) =

0.

(b) If F is strongly monotone or a uniform P -function, then L(x0) is bounded and every

accumulation point of the trajectory x(t) is a solution to the NCP.

Proof. With Proposition 2.4, Lemma 5.4, and Proposition 5.3 in place, the subsequent

arguments follow directly from those in [137, Corollary 4.3]. Therefore, we omit the

details here. �

From Proposition 5.2(a), every solution x∗ to the NCP corresponds to an equilibrium

point of the neural network (5.3). Moreover, if x∗ is an isolated equilibrium point of

(5.3), then it can be shown that x∗ is not only Lyapunov stable but also asymptotically

stable.

Proposition 5.5. Let x∗ be an isolated equilibrium point of the neural network (5.3).

Then, x∗ is Lyapunov stable for the neural network (5.3), and furthermore, it is asymp-

totically stable.
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Proof. Since x∗ is a solution to the NCP, Ψp
FB

(x∗) = 0. In addition, since x∗ is an isolated

equilibrium point of (5.3), there exists a neighborhood Ω∗ ⊆ IRn of x∗ such that

∇Ψp
FB

(x∗) = 0, and ∇Ψp
FB

(x) 6= 0 ∀x ∈ Ω∗\{x∗}.

Next, we argue that Ψp
FB

(x) is indeed a Lyapunov function at x∗ over the set Ω∗ for

(5.3) by showing that the conditions in (5.2) are satisfied. First, notice that Ψp
FB

(x) ≥ 0.

Suppose that there is an x̄ ∈ Ω∗\{x∗} such that Ψp
FB

(x̄) = 0. Then, by formula (5.5)

and Proposition 2.2(e), we have ∇Ψ(x̄) = 0, i.e., x̄ is also an equilibrium point of (5.3),

which clearly contradicts the assumption that x∗ is an isolated equilibrium point in Ω∗.

Thus, we prove that Ψp
FB

(x) > 0 for any x ∈ Ω∗\{x∗}. This together with (5.6) shows

that the conditions in (5.2) are satisfied, and hence Ψp
FB

(x) is a Lyapunov function at x∗

over the set Ω∗ for (5.3). Therefore, x∗ is Lyapunov stable by Lemma 5.3(a).

Now, we show that x∗ is asymptotically stable. Since x∗ is isolated, from (5.6) we have

dΨp
FB

(x(t))

dt
< 0, ∀ x(t) ∈ Ω∗\{x∗}.

This, by Lemma 5.3(b), implies that x∗ is asymptotically stable. �

Proposition 5.6. If x∗ is a regular solution of the NCP, then it is exponentially stable.

Proof. Recall that x∗ is a regular solution to the NCP if every element V ∈ ∂Φp
FB

(x∗)

is nonsingular. Then, using the same arguments, we can verify that the neural network

(5.3) is also exponentially stable if x∗ is a regular solution to the NCP. �

To conclude this section, we provide further elaboration on the various notions, con-

ditions, and related numerical issues.

1. Using arguments similar to those used in [64, Proposition 3.2], we can prove that

x∗ is regular if ∇Fαα is nonsingular and the Schur complement of ∇Fαα in[
∇Fαα(x∗) ∇Fαβ(x∗)

∇Fβα(x∗) ∇Fββ(x∗)

]
is an P -matrix, where α := {i | x∗i > 0} and β := {i | x∗i = Fi(x

∗) = 0}. Clearly, if

∇F is positive definite, then the conditions hold true.

2. From Definition 5.5, if an isolated equilibrium point x∗ is exponentially stable, then

there exists a δ > 0 such that x(t) with x0 = (t0), and ‖x(t0)− x∗‖ < δ satisfies

‖x(t)− x∗‖ ≤ ce−ωt‖x(t0)− x∗‖ ∀t ≥ t0,

which together with Proposition 5.1 implies that

‖x(t)− x∗‖ ≤ 2cL

κ(2− 21/p)

√
Ψp

FB
(x0)e−ωt ∀t ≥ t0. (5.8)
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Since the strong monotonicity of F implies that F is a uniform P -function and

that ∇F is positive definite, from (5.8), we obtain that the neural network (5.3)

can yield a trajectory with an exponential convergence rate under the condition

that F is strongly monotone and Lipschitz continuous.

3. From equation (5.8), we observe that as the parameter p increases, the coefficient

of the exponential term e−ωt on the right-hand side decreases. This indicates that a

larger p leads to a faster convergence rate, a conclusion consistent with the findings

of [30] for descent-type methods based on Ψp
FB

. Furthermore, (5.8) also reveals that

the energy of the initial state, Ψp
FB

(x0), affects the convergence behavior. Specifi-

cally, a higher initial energy tends to result in a slower convergence rate.

4. For detailed numerical simulations, please see [32].

5.1.2 Neural Network using φp
NR

, φp
S−NR

, and ψp
S−NR

for NCP

Analogous to what we do in Section 5.1.1, we consider the steepest descent-based neural

network :
dx(t)

dt
= −ρ∇Ψ(x(t)), x(t0) = x0, (5.9)

where ρ > 0 is a time-scaling factor. Here, we will employ different types of NCP

functions to work along with dynamical system (5.9). To this end, given an NCP function

φ ∈ {φp
NR
, φp

S−NR
, ψp

S−NR
}, we denote

ψ(a, b) :=
1

2
|φ(a, b)|2. (5.10)

Moreover, let Φ : IRn → IRn be defined by

Φ(x) =

 φ(x1, F1(x))
...

φ(xn, Fn(x))

 (5.11)

and Ψ : IRn → IR+ be given by

Ψ(x) =
1

2
‖Φ(x)‖2. (5.12)

To proceed, we first summarize several key lemmas and important properties of Ψ, as

defined in (5.12), for general NCP functions. These results can be found in Chapter 2.

Lemma 5.5. Let F be locally Lipschitzian. If all V ∈ ∂F (x) are nonsingular, then there

is a neighborhood N(x) of x and a constant C such that for any y ∈ N(x) and any

V ∈ ∂F (y), V is nonsingular and ‖V −1‖ ≤ C
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Proof. Please see [181, Propositions 3.1]. �

Proposition 5.7. Let Ψ : IRn → IR+ be defined as in (5.12) with φ being any NCP

function and ψ being given as in (5.10). Suppose that F is continuously differentiable.

Then, the following hold.

(a) Ψ(x) ≥ 0 for all x ∈ IRn. If the NCP (2.1) has a solution, x is a global minimizer

of Ψ(x) if and only if x solves the NCP.

(b) Ψ(x(t)) is a nonincreasing function of t, where x(t) is a solution of (5.9).

(c) Let x ∈ IRn, and suppose that φ is differentiable at (xi, Fi(x)) for each i = 1, . . . , n.

Then,

∇Ψ(x) = ∇aψ(x, F (x)) +∇F (x)∇bψ(x, F (x)) (5.13)

where

∇aψ(x, F (x)) := [∇aψ(x1, F1(x)), . . . ,∇aψ(xn, Fn(x))]T ,

∇bψ(x, F (x)) := [∇bψ(x1, F1(x)), . . . ,∇bψ(xn, Fn(x))]T .

(d) Let x be a solution to the NCP such that φ is differentiable at (xi, Fi(x)) for each

i = 1, . . . , n. Then, x is a stationary point of Ψ.

(e) Every accumulation point of a solution x(t) of neural network (5.9) is an equilibrium

point.

Proof. (a) It is clear that Ψ ≥ 0. Notice that Ψ(x) = 0 if and only if Φ(x) = 0,

which occurs if and only if φ(xi, Fi(x)) = 0 for all i. Since φ is an NCP-function, this is

equivalent to having xi ≥ 0, Fi(x) ≥ 0 and xiFi(x) = 0. Thus, Ψ(x) = 0 if and only if

x ≥ 0, F (x) ≥ 0 and 〈x, F (x)〉 = 0. This proves part (a).

(b) The desired result follows from

dΨ(x(t))

dt
= ∇Ψ(x(t))T

dx

dt
= ∇Ψ(x(t))T (−ρ∇Ψ(x(t)))

= −ρ‖∇Ψ(x(t))‖2 ≤ 0

for all solutions x(t).

(c) The formula is clear from chain rule.

(d) First, note that from equation (5.10), we have ∇ψ(a, b) = φ(a, b) · ∇φ(a, b). Thus, if

x is a solution to the NCP, it gives ∇ψ(xi, Fi(x)) = 0 for all i = 1, . . . , n. Then, it follows

from formula (5.13) in part(c) that ∇Ψ(x) = 0. That is, x is a stationary point of Ψ.

(e) Please see page 232 in [212] for a proof. �
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As mentioned, we adopt the neural network (5.9) with Ψ(x) = 1
2
‖Φ(x)‖2, where Φ

is given by (5.11) with φ ∈ {φp
NR
, φp

S−NR
, ψp

S−NR
}. The function Φ corresponding to φp

NR
,

φp
S−NR

and ψp
S−NR

is denoted, respectively, by Φp
NR

, Φp
S1−NR

and Φp
S2−NR

. Their corresponding

merit functions will be denoted by Ψp
NR

, Ψp
S1−NR

and Ψp
S2−NR

, respectively. We note that by

formula (5.13) and the differentiability of Ψ ∈ {Ψp
NR
,Ψp

S1−NR
,Ψp

S2−NR
}, the neural network

(5.9) can be implemented on hardware as in Figure 5.1.

Proposition 5.8. Let p > 1 be an odd integer. Then, the following hold.

(a) Ψp
NR

and Ψp
S2−NR

are both continuously differentiable on IRn.

(b) Ψp
S1−NR

is continuously differentiable on the open set Ω = {x ∈ IRn |xi 6= Fi(x),∀i =

1, 2, · · · , n}.

Consequently, the neural network (5.9) with Ψp
NR

or Ψp
S2−NR

has a unique solution for all

x0 ∈ IRn. The neural network (5.9) with Ψp
S1−NR

has a unique solution for all x0 ∈ Ω.

Proof. Parts (a) and (b) follow directly from Proposition 5.7(c), Proposition 2.23, Propo-

sition 2.27, and Proposition 2.33. The existence and uniqueness of the solutions are

guaranteed by Lemma 5.1, given the continuous differentiability of F , as well as that of

Ψp
NR

, Ψp
S1−NR

(on Ω), and Ψp
S2−NR

. �

As noted in Proposition 5.8(b), we restrict our consideration of the neural network

(5.9) with Ψ = Ψp
S1−NR

to the domain Ω, treating it as a dynamical system defined on

this set. Our next objective is to identify conditions under which the equilibrium points

of (5.9) coincide with the global minimizers of Ψ. When the underlying NCP function

satisfies the following properties:

(P1) ∇aψ(a, b) · ∇bψ(a, b) ≥ 0 for all (a, b) ∈ IR2; and

(P2) For all (a, b) ∈ IR2, ∇aψ(a, b) = 0⇐⇒ ∇bψ(a, b) = 0⇐⇒ φ(a, b) = 0.

an equilibrium point of the neural network corresponds to a global minimizer of Ψ,

provided that F is a P0-function. However, as discussed in Section 2.2, the functions φp
NR

,

φp
S−NR

, and ψp
S−NR

satisfy these properties only on a proper subset of IRn. Consequently,

we seek alternative conditions to achieve the desired characterization. We begin by

examining the merit function Ψp
NR

.

Proposition 5.9. If F is strongly monotone with modulus µ > 1, then every stationary

point of Ψp
NR

is a global minimizer.

Proof. Let x∗ be a stationary point of Ψp
NR

, that is, ∇Ψp
NR

(x∗) = 0. For convenience, we

denote by A(x∗) and B(x∗) the diagonal matrices such that for each i = 1, . . . , n,

Aii(x
∗) = (x∗i )

p−1 and Bii(x) = (x∗i − Fi(x∗))p−2(x∗i − Fi(x∗))+.
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Then, by formula (5.13) and Proposition 2.23, we have

p[A(x∗)−B(x∗)]Φp
NR

(x∗) + p∇F (x∗)B(x∗)Φp
NR

(x∗) = 0,

which yields

A(x∗)Φp
NR

(x∗) + (∇F (x∗)− I)B(x∗)Φp
NR

(x∗) = 0. (5.14)

Analogous to the technique in [81], pre-multiplying both sides of (5.14) by (B(x∗)Φp
NR

(x∗))T

leads to

Φp
NR

(x∗)T
[
B(x∗)A(x∗)

]
Φp

NR
(x∗) +

(
B(x∗)Φp

NR
(x∗)

)T
(∇F (x∗)− I)B(x∗)Φp

NR
(x∗) = 0.

(5.15)

Since p is odd integer, we have A(x∗) ≥ 0 and B(x∗) ≥ 0; and hence,

Φp
NR

(x∗)T[B(x∗)A(x∗)]Φp
NR

(x∗) ≥ 0.

On the other hand, since F is strongly monotone with modulus µ > 1, defining G(x) :=

F (x)− x gives

〈x− y,G(x)−G(y)〉 = 〈x− y, F (x)− x− F (y) + y〉
= 〈x− y, F (x)− F (y)〉 − ‖x− y‖2

≥ (µ− 1)‖x− y‖2

> 0,

for all x, y ∈ IRn. Note then that ∇G(x) = ∇F (x)− I is positive definite. Consequently,

each term of the left-hand side of (5.15) is non-negative. With (∇F (x∗)−I) being positive

definite, it yields B(x∗)Φp
NR

(x∗) = 0. In addition, from (5.14), we have A(x∗)Φp
NR

(x∗) = 0.

To sum up, we have proved that Aii(x
∗)φp

NR
(x∗i , Fi(x

∗)) = 0 and Bii(x
∗)φp

NR
(x∗i , Fi(x

∗)) =

0 for all i.

Now, if φp
NR

(x∗i , Fi(x
∗)) 6= 0 for some i, then we must have Aii(x

∗) = Bii(x
∗) = 0. Thus,

(x∗i )
p−1 = 0 (i.e., x∗i = 0), and x∗i ≤ Fi(x

∗). Since φp
NR

is an NCP-function, the latter

implies that φp
NR

(xi, Fi(x
∗)) = 0. Hence, φp

NR
(xi, Fi(x

∗)) = 0 for all i, that is, x∗ is a

global minimizer of Ψp
NR

. This completes the proof. �

The following proposition establishes a weaker condition on F under which any sta-

tionary point of Ψp
NR

is guaranteed to be a global minimizer.

Proposition 5.10. If (∇F − I) is a P -matrix, then every stationary point of Ψp
NR

is a

global minimizer.

Proof. Suppose that ∇Ψp
NR

(x∗) = 0. If B(x∗)Φp
NR

(x∗) = 0, then A(x∗)Φp
NR

(x∗) = 0 by

equation (5.14). As in the preceding proof, we obtain Φp
NR

(x∗) = 0, and hence we are

done. It remains to consider another case that B(x∗)Φp
NR

(x∗) 6= 0. Note that

(B(x∗)Φp
NR

(x∗))i

= (x∗i − Fi(x∗))p−2(x∗i − Fi(x∗))+φ
p
NR

(x∗i , Fi(x
∗))

=

{
0 if x∗i ≤ Fi(x

∗) or x∗i > Fi(x
∗) = 0,

(x∗i − Fi(x∗))p−1φp
NR

(x∗i , Fi(x
∗)) if x∗i > Fi(x

∗) and Fi(x
∗) 6= 0.
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Thus, the nonzero entries of B(x∗)Φp
NR

(x∗) appear at indices i where x∗i > Fi(x
∗) and

Fi(x
∗) 6= 0. To proceed, we denote

I1 = {i |x∗i 6= 0 and (B(x∗)Φp
NR

(x∗))i 6= 0},
I2 = {i |x∗i = 0 and (B(x∗)Φp

NR
(x∗))i 6= 0}.

With these notations, we observe the following facts.

(i) For i ∈ I1, since p is odd, it is clear that the i-th entry of A(x∗)Φp
NR

(x∗) and

B(x∗)Φp
NR

(x∗)) are both nonzero and have the same sign.

(ii) For i ∈ I2, then (B(x∗)Φp
NR

(x∗))i 6= 0 and (A(x∗)Φp
NR

(x∗))i = 0.

Because (∇F − I) is a P -matrix, it follows from Lemma 1.5 that there exists an index j

such that

(B(x∗)Φp
NR

(x∗))j[(∇F (x∗)− I)(B(x∗)Φp
NR

(x∗))]j > 0.

This says that (B(x∗)Φp
NR

(x∗))j 6= 0 and therefore j ∈ I1 ∪ I2. Note that by (i)

above, (A(x∗)Φp
NR

(x∗))i and (B(x∗)Φp
NR

(x∗))i have the same sign if j ∈ I1 which will

contradict equation (5.14). On the other hand, if j ∈ I2, we have from fact (ii) that

(A(x∗)Φp
NR

(x∗))j = 0. However, we also have that [(∇F (x∗) − I)(B(x∗)Φp
NR

(x∗))]j 6= 0.

This certainly violates equation (5.14). Thus, we conclude that B(x∗)Φp
NR

(x∗) = 0, and

hence Φp
NR

(x∗) = 0. Then, the proof is complete. �

Remark 5.1. In fact, if the function F is nonnegative (or if we at least have F (x∗) ≥ 0

for an equilibrium point x∗), then case (ii) in the above proof cannot happen. Thus, the

above result is valid even when (∇F − I) is a P0-matrix by Lemma 1.5.

As shown in Proposition 2.27 and Proposition 2.33, the structures of ∇Φp
S1−NR

and

∇Φp
S2−NR

, corresponding to the NCP functions φp
S−NR

and ψp
S−NR

, are inherently complex

due to the piecewise nature of these functions. This complexity presents significant chal-

lenges in identifying conditions on F that ensure a stationary point of Ψp
S1−NR

or Ψp
S2−NR

is also a global minimizer. Nevertheless, under the assumption that F is a nonnegative

function, we can establish the following result.

Proposition 5.11. Suppose that F is a nonnegative P0-function and x∗ ≥ 0. If x∗ is a

stationary point of Ψp
S1−NR

or Ψp
S2−NR

, then it is a global minimizer.

Proof. If we can show that the aforementioned properties (P1) and (P2) hold for φp
S−NR

and ψp
S−NR

on the nonnegative quadrant IR2
+, then we can proceed as in the proof of [35,

Proposition 3.4]. Thus, it is enough to show that (P1) and (P2) hold on IR2
+. Indeed,

they clearly follow from Proposition 2.28 and Proposition 2.35.

For completeness, we include the detailed arguments here. To simplify our notations, we

denote φ1 = φp
S−NR

, φ2 = ψp
S−NR

, and ψi = 1
2
|φi|2 (i = 1, 2). Note that the domain of
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∇Ψp
S1−NR

is {x |xi 6= Fi(x) or xi = Fi(x) = 0}. Thus, for ψ1, it suffices to check that it

has properties (P1) and (P2) only on the set {(a, b) ∈ IR2
+ | a 6= b or a = b = 0}.

To proceed, we observe that

∇aψi(a, b) = φi(a, b)∇aφi(a, b) and ∇bψi(a, b) = φi(a, b)∇bφi(a, b),

which imply

∇aψi(a, b) · ∇bψi(a, b) = (φi(a, b))
2 · ∇aφi(a, b) · ∇bφi(a, b), i = 1, 2.

If a ≥ b = 0 or b ≥ a = 0, then φi(a, b) = 0; and thus, the above product is zero.

Otherwise, the above product is positive by Proposition 2.24. This asserts (P1).

To show (P2), note that it is obvious that ∇aψi(a, b) = ∇bψi(a, b) = 0 if φi(a, b) = 0 for

i = 1, 2.

To show the converse, it is enough to argue that if ∇aφi(a, b) = 0 or ∇bφi(a, b) = 0,

then φi(a, b) = 0. First, we analyze the case for φ1. Suppose that ∇aφ1(a, b) = 0. From

Proposition 2.27, we know

1

p
∇aφ1(a, b) =


ap−1 − (a− b)p−1 if a > b

0 if a = b = 0

(b− a)p−1 if a < b

(5.16)

For a = b = 0, then φ1(a, b) = 0. For a > b, then a = |a − b| = a − b since p is an odd

integer. Thus, b = 0 and because a > b, we obtain φ1(a, b) = 0. For a < b, we have from

(5.16) that (b− a)p−1 = 0, which is impossible. This proves that ∇aφ1(a, b) = 0 implies

that φ1(a, b) = 0. Similarly, we can show that ∇bφ1(a, b) = 0 implies that φ1(a, b) = 0.

This asserts (P2) for the function ψ1.

Analogously, for ψ2, assume that ∇aφ2(a, b) = 0. From Proposition 2.33, we have

1

p
∇aφ2(a, b) =


ap−1bp − (a− b)p−1bp if a > b,

a2p−1 if a = b,

ap−1bp − (b− a)pap−1 + (b− a)p−1ap if a < b.

For a = b, then a2p−1 = 0, and hence a = 0 and φ2(a, b) = 0. For a > b, then

ap−1bp − (a − b)p−1bp = 0. For b = 0, we obtain φ2(a, b) = 0 by using a > b. Otherwise,

ap−1 − (a − b)p−1 = 0. Because p is odd and a > b, we have a = |a − b| = a − b.

consequently, b = 0 and φ2(a, b) = 0. For a < b, then we have from the above formula

for ∇aφ2 that ap−1bp − (b− a)pap−1 + (b− a)p−1ap = 0. For a = 0, then φ2(a, b) = 0 due
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to a < b. Otherwise, a > 0 and

0 = bp − (b− a)p + (b− a)p−1a

= bp − (b− a)p−1(b− 2a)

= (a+ k)p − kp−1(k − a) where k = b− a > 0

=

p−1∑
i=0

(
p

i

)
ap−iki + akp−1

> 0

which is a contradiction. To sum up, we have shown that ∇aφ2(a, b) = 0 implies that

φ2(a, b) = 0. Similarly, it can be verified φ2(a, b) = 0 provided ∇bφ2(a, b) = 0. Thus, ψ2

possesses the property (P2). This completes the proof. �

We now examine the properties of the neural network (5.9) concerning the behavior

of its solution trajectories. The following results follow directly from Proposition 5.7(a),

Proposition 5.7(d), Proposition 5.10, and Proposition 5.11.

Proposition 5.12. Consider the neural network (5.9) with Ψ ∈ {Ψp
NR
,Ψp

S1−NR
,Ψp

S2−NR
}.

(a) Every solution of the NCP is an equilibrium point.

(b) If (∇F−I) is a P -matrix, then every equilibrium point of (5.9) with Ψ = Ψp
NR

solves

the NCP.

(c) If F is a nonnegative P0-function, every equilibrium point x∗ ≥ 0 of (5.9) with

Ψ ∈ {Ψp
S1−NR

,Ψp
S2−NR

} solves the NCP.

Proposition 5.13. Let F be a uniform P -function and let Ψ ∈ {Ψp
NR
,Ψp

S1−NR
,Ψp

S2−NR
}.

(a) The level sets L(Ψ, γ) := {x ∈ IRn |Ψ(x) ≤ γ} of Ψ are bounded for any γ ≥ 0.

Consequently, the trajectory x(t) through any initial condition x0 ∈ IRn is defined

for all t ≥ 0.

(b) The trajectory x(t) of the neural network (5.9) through any x0 ∈ IRn converges to

an equilibrium point.

Proof. (a) Suppose otherwise. Then, there exists a sequence {xk}∞k=1 ⊆ L(Ψ, γ) such

that ‖xk‖ → ∞ as k → ∞. A similar argument as in [64] shows that there exists an

index i such that |xki | → ∞ and |Fi(xk)| → ∞ as k → ∞. By Proposition 2.36, we

have |φ(xki , Fi(x
k))| → ∞, where φ ∈ {φp

NR
, φp

S−NR
, ψp

S−NR
}. But, this is impossible since

Ψ(xk) ≤ γ for all k. Thus, the level set L(Ψ, γ) is bounded. The remaining part of the

theorem can be proved similar to Proposition 4.2(b) in [32].

(b) From part(a), the level sets of Ψ are compact and so by LaSalle’s Invariance Principle

[134], we reach the desired conclusion. �
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Proposition 5.14. Suppose x∗ is an isolated equilibrium point of the neural network

(5.9). Then, x∗ is asymptotically stable provided that either

(i) Ψ = Ψp
NR

and (∇F − I) is a P -matrix; or

(ii) Ψ ∈ {Ψp
S1−NR

,Ψp
S2−NR

}, F is a nonnegative P0-function, and the equilibrium point is

nonnegative.

Proof. Let x∗ be an isolated equilibrium point of (5.9). Then, it has a neighborhood O

such that

∇Ψ(x∗) = 0 and ∇Ψ(x) 6= 0 for all x ∈ O\{x∗}.
We claim that Ψ is a Lyapunov function at x∗ over Ω. To proceed, we note first that

Ψ(x) ≥ 0. By Proposition 5.12(b) and Proposition 5.12(c), Ψ(x∗) = 0. Further, if

Ψ(x) = 0 for some x ∈ O\{x∗}, then x solves the NCP and by Proposition 5.12(a), it

is an equilibrium point. This contradicts the isolation of x∗. Thus, Ψ(x) > 0 for all

x ∈ O\{x∗}. Finally, it is clear that

dΨ(x(t))

dt
= −ρ‖∇Ψ(x(t))‖2 < 0

over the set O\{x∗}. Then, applying Lemma 5.3 yields that x∗ is asymptotically stable.

�

Proposition 5.15. Consider the neural network (5.9) with Ψ ∈ {Ψp
NR
,Ψp

S1−NR
,Ψp

S2−NR
}.

If ∇Φ(x∗) is nonsingular for some isolated equilibrium point x∗, then x∗ solves the NCP

and x∗ is exponentially stable .

Proof. Let x∗ be an equilibrium point such that ∇Φ(x∗) is nonsingular. Note that

∇Ψ(x∗) = ∇Φ(x∗)Φ(x∗), and so ∇Ψ(x∗) = 0 implies that Φ(x∗) = 0. This proves

the first claim of this proposition. Further, using Ψ as a Lyapunov function as in the

preceding theorem, x∗ is asymptotically stable.

Note that since Φ is differentiable at x∗, we have

Φ(x) = ∇Φ(x)T(x− x∗) + o(‖x− x∗‖) as x→ x∗ (5.17)

By Lemma 5.5, there exists δ > 0 and a constant C such that ∇Φ(x) is nonsingular for

all x with ‖x− x∗‖ < δ, and ‖∇Φ(x)−1‖ ≤ C. Then, it gives

κ‖y‖2 ≤ ‖∇Φ(x)y‖2 (5.18)

for any x in the δ-neighborhood (call it Nδ) and any y ∈ IRn, where κ = 1/C2.

Let ε < 2ρκ. Since x∗ is asymptotically stable, we may choose δ small enough so that

o(‖x− x∗‖2) < ε‖x− x∗‖2 and x(t)→ x∗ as t→∞ for any initial condition x(0) ∈ Nδ.

Now, define g : [0,∞)→ IR by

g(t) := ‖x(t)− x∗‖2
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where x(t) is the unique solution through x(0) ∈ Nδ. Using equations (5.17) and (5.18),

we obtain

dg(t)

dt
= 2(x(t)− x∗)T dx(t)

dt
= −2ρ(x(t)− x∗)T ∇Ψ(x(t))

= −2ρ(x(t)− x∗)T ∇Φ(x(t))Φ(x(t))

= −2ρ(x(t)− x∗)T ∇Φ(x(t))∇Φ(x)T (x(t)− x∗) + o(‖x(t)− x∗‖2)

≤ (−2ρκ+ ε)‖x(t)− x∗‖2

= (−2ρκ+ ε)g(t).

Then, it follows that g(t) ≤ e(−2ρκ+ε)tg(0), which says

‖x(t)− x∗‖ ≤ e(−ρκ+ε/2)t‖x(0)− x∗‖,

where −ρκ+ ε/2 < 0. This proves that x∗ is exponentially stable. �

Detailed simulations involving the neural network (5.9) with Ψ ∈ {Ψp
NR
,Ψp

S1−NR
,Ψp

S2−NR
}

are provided in [2]. In addition, a variety of comparative analyses are presented, includ-

ing convergence rate comparisons across different values of p, as well as performance

comparisons between these networks and those based on φ
FB

and φp
FB

.

5.1.3 Neural Network using φ̃p
NR

, φ̃p
S−NR

, and ψ̃p
S−NR

for NCP

Following the same idea in Section 5.1.1 and Section 5.1.2, the neural network considered

for solving the NCP is the gradient dynamical system

dx

dt
= −ρ∇ΨF(x(t)), x(0) = x0, (5.19)

which is based on the unconstrained minimization problem minx∈IRn ΨF(x), where

ΨF(x) =
1

2
‖ΦF(x)‖2 =

1

2

n∑
j=1

φ(xj, Fj(x))2, (5.20)

In this section, we will employ three functions φ̃p
NR

, φ̃p
S−NR

and ψ̃p
S−NR

for the φ function

in (5.20). Note that p could be any positive real number and the case when p is an odd

integer greater than 1, the neural network (5.19) reduces to the neural network (5.9)

studied in previous section.

Proposition 5.16. Let p > 1 and consider (5.20). Then the following hold:

(a) If (∇F − I) is a P -matrix, then every stationary point of Ψ̃p
NR

is a global minimizer.
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(b) If F (x∗) ≥ 0, (∇F (x∗)− I) is a P0-matrix and x∗ is a stationary point of Ψ̃p
NR

, then

x∗ is a global minimizer of Ψ̃p
NR

.

(c) Suppose that x∗ ∈ ΩF and ∇F (x∗) is a P0-matrix. If x∗is a stationary point of

Ψ̃p
S1−NR

or Ψ̃p
S2−NR

, then x∗ is a global minimizer.

Proof. To prove (a) and (b), we define two diagonal matrices A(x∗) and B(x∗) where

Aii(x
∗) = |x∗i |p−1 and Bii(x

∗) = (x∗i − Fi(x∗))sgn(x∗i − Fi(x∗))+,

where x∗ is an equilibrium point of (5.19) with ΨF = Ψ̃p
NR

. Then, analogous arguments as

in the proof of Proposition 5.10 lead to the desired conclusion. To prove (c), we proceed

as in the proof of Proposition 5.11. That is, we verify the following properties:

(P1) ∀(a, b) ∈ IR2
+, we have ∇aψ(a, b) · ∇bψ(a, b) ≥ 0; and

(P2) ∀(a, b) ∈ IR2
+, we have ∇aψ(a, b) = 0⇐⇒ ∇bψ(a, b) = 0⇐⇒ φ(a, b) = 0,

where ψ := 1
2
φ2 and φ ∈ {φ̃p

S−NR
, ψ̃p

S−NR
}. Property (P1) can be easily verified. To show

(P2), we only need to show that given a, b ≥ 0, the following holds:

(i) ∇aφ̃
p
S−NR

(a, b) = 0 implies φ̃p
S−NR

(a, b) = 0; and

(ii) ∇aψ̃
p
S−NR

(a, b) = 0 implies ψ̃p
S−NR

(a, b) = 0.

We first prove (i). If ∇aφ̃
p
S−NR

(a, b) = 0, then we see from Proposition 2.38(b) that we

must have a > b or a = b = 0. Otherwise, ∇aφ̃
p
S−NR

(a, b) = p(b− a)p−1 would be positive.

If a = b = 0, then φ̃p
S−NR

(a, b) = 0 as desired. If a > b, then 0 = 1
p
∇aφ̃

p
S−NR

(a, b) =

ap−1 − (a − b)p−1. Since t 7→ tp−1 is strictly increasing on [0,∞), then a = a − b, i.e.

b = 0. Then, φ̃p
S−NR

(a, b) = 0 since a > b = 0 and φ̃p
S−NR

is an NCP function. To prove

(ii), assume that ∇aψ̃
p
S−NR

(a, b) = 0. From Proposition 2.38(c), we must have

0 =
1

p
∇aψ̃

p
S−NR

(a, b) =

{
ap−1bp − (a− b)p−1bp if a ≥ b,

ap−1bp − (b− a)pap−1 + (b− a)p−1ap if a < b.

If a ≥ b, then we can proceed as in Proposition 5.11. If a < b, then

0 = ap−1bp − (b− a)pap−1 + (b− a)p−1ap = ap−1(bp − (b− a)p + (b− a)p−1a). (5.21)

From here, we conclude that a = 0. Otherwise, we must have bp > (b − a)p and so

bp − (b− a)p + (b− a)p−1a > (b− a)p−1a > 0. This contradicts (5.21). Hence, a = 0 and

since b > a = 0, we obtain that ψ̃p
S−NR

(a, b) = 0 by definition of an NCP function. �

In light of the above proposition, we now present analogous stability results to those

established in Section 5.1.2. Due to the close similarity in the underlying arguments, the

proofs are omitted.
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Proposition 5.17. Let x∗ be an equilibrium point of dynamical system (5.19).

(a) If ΨF ∈ {Ψ̃p
NR
, Ψ̃p

S1−NR
, Ψ̃p

S2−NR
} and F is a uniformly P -function, then the solution

to (5.19) through any x0 ∈ IRn converges to x∗.

(b) If ΨF = Ψ̃p
NR

, then x∗ ∈ SOL(F ) provided that (∇F − I) is a P -matrix . If x∗ is

isolated, then it is asymptotically stable.

(c) If x∗ ∈ ΩF and ΨF = Ψ̃p
S1−NR

or ΨF = Ψ̃p
S2−NR

, then x∗ ∈ SOL(F ) provided that F is

a P0-function . If x∗ is isolated, then it is asymptotically stable.

(d) If ∇ΦF(x∗) is nonsingular, where φ ∈ {φ̃p
NR
, φ̃p

S−NR
, ψ̃p

S−NR
}, and x∗ is isolated, then

x∗ ∈ SOL(F ) and x∗ is exponentially stable.

The parameter p plays a crucial role in determining the convergence rate of the neural

network. For discrete-type families, numerical experiments conducted in [2] on a selected

set of test problems revealed that smaller values of p ∈ {3, 5, 7, . . . } often result in faster

convergence. However, there is currently no theoretical justification for this phenomenon.

In fact, as we shall observe later, the convergence behavior can vary significantly with

different choices of p. Specifically, a smaller value of p does not always guarantee faster

convergence; in some instances, higher values of p yield superior performance.

The numerical results presented in the later sections indicate that no simple or uniform

relationship can be established between the performance of the neural network (5.19)

and the parameter p, particularly when ΨF ∈ {Ψ̃p
NR
, Ψ̃p

S1−NR
, Ψ̃p

S2−NR
}. Moreover, the

suggest that the initial conditions have a significant influence on both the convergence

behavior and the sensitivity of the network to the choice of p. To better understand these

phenomena, we establish the following theorem. The first part of the proof derives an

error bound for the NCP(F ) (see equation (5.24)), assuming that F is a locally Lipschitz

uniformly P -function. The derivation technique follows a similar line of reasoning to that

employed in [63, Proposition 6.3.1].

Proposition 5.18. Consider the neural network (5.19) with ΨF = Ψ̃p
S1−NR

for a given

p > 1. Suppose that x∗ ∈ SOL(F ) is exponentially stable and F is a uniformly P -function

that is locally Lipschitz continuous. Then there exist positive constants K, ω and δ such

that for all t ≥ 0, we have

‖x(t)− x∗‖ ≤ K

(
p+ 1

p

√
2Ψ̃p

S1−NR
(x0)

) 1
p

e−ωt ∀x0 ∈ ΩF ∩Nδ(x
∗),

where Nδ(x
∗) = {y : ‖y − x∗‖ < δ}.

Proof. Suppose F is uniformly P with modulus κ > 0. Given x ∈ IRn, let j ∈ {1, . . . , n}
such that

(xj − x∗j)(Fj(x)− Fj(x∗)) ≥ (xi − x∗i )(Fi(x)− Fi(x∗)) ∀i = 1, . . . , n.
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Then

κ‖x− x∗‖2 ≤ (xj − x∗j)(Fj(x)− Fj(x∗)) = −xjFj(x∗)− (x∗j − xj)Fj(x). (5.22)

Meanwhile, note that (s−t+)(t+−t) ≥ 0 for any s ≥ 0 and t ∈ IR. Since min{xj, Fj(x)} =

xj − (xj − Fj(x))+, then taking s = x∗j ≥ 0 and t = xj − Fj(x), we have

(x∗j − xj + min{xj, Fj(x)})(Fj(x)−min{xj, Fj(x)}) ≥ 0

which implies that

(x∗j − xj)Fj(x) ≥ (x∗j − xj) min{xj, Fj(x)} − Fj(x) min{xj, Fj(x)}. (5.23)

Since xj ≥ min{xj, Fj(x)} and Fj(x
∗) ≥ 0, we have from inequalities (5.22) and (5.23)

that

κ‖x− x∗‖2 ≤ [(Fj(x)− Fj(x∗))− (x∗j − xj)] min{xj, Fj(x)}
≤ (‖F (x)− F (x∗)‖+ ‖x− x∗‖)|min{xj, Fj(x)}|

Since F is locally Lipschitz, we conclude that given any x ∈ IRn in some neighborhood

of x∗, there exists an index j = j(x) and L > 0 such that

κ‖x− x∗‖2 ≤ (1 + L) · |min{xj, Fj(x)}| · ‖x− x∗‖. (5.24)

Now, let x0 ∈ ΩF. We have from part (a) of the proof of Proposition 2.36 and using

Lemma 2.10 that φ̃p
S−NR

(a, b) ≥ p
p+1

(min{a, b})p for any a, b ≥ 0. By (5.24), there exists

j = j(x0) ∈ {1, . . . , n} such that

κ‖x0 − x∗‖ ≤ (1 + L) ·
[
p+ 1

p
φ̃p

S−NR
(x0

j , Fj(x
0))

] 1
p

. (5.25)

Since x∗ is exponentially stable, there exist positive constants δ, c and ω such that for any

t ≥ 0, ‖x(t) − x∗‖ ≤ ce−ωt‖x0 − x∗‖ for all x0 ∈ Nδ(x
∗). This, together with inequality

(5.25), gives the desired result with K :=
c

κ
(1 + L). �

Proposition 5.19. Consider the neural network (5.19) for a given p > 1, and let x∗ ∈
SOL(F ) be exponentially stable. Suppose that F is a uniformly P -function and locally

Lipschitz continuous. Then

(a) If ΨF = Ψ̃p
NR

, there exist positive constants K, ω and δ such that for all t ≥ 0, we

have

‖x(t)− x∗‖ ≤ K

(
p+ 1

p

√
2Ψ̃p

NR
(x0)

) 1
p

e−ωt ∀x0 ∈ ΩF ∩Nδ(x
∗).
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(b) If ΨF = Ψ̃p
S2−NR

, there exist positive constants K, ω and δ such that for all t ≥ 0, we

have

‖x(t)− x∗‖ ≤ K

(
p+ 1

p

√
2Ψ̃p

S2−NR
(x0)

) 1
2p

e−ωt ∀x0 ∈ ΩF ∩Nδ(x
∗).

Proof. For a ≥ b ≥ 0, then φ̃p
NR

(a, b) = φ̃p
S−NR

(a, b) ≥ p
p+1

bp as in part (a) of the proof

of Proposition 2.36. When 0 ≤ a < b, we have φ̃p
NR

(a, b) = ap ≥ p
p+1

ap. It follows

that φ̃p
NR

(a, b) ≥ p
p+1

(min{a, b})p. On the other hand, using the identity (2.49) and the

fact that φ̃p
S−NR

(a, b) ≥ p
p+1

(min{a, b})p for any a, b ≥ 0, we derive that ψ̃p
S−NR

(a, b) ≥
p
p+1

(min{a, b})2p. Using these identities and the same arguments as in Proposition 5.18,

we get the desired inequalities. �

As mentioned in the discussion before Proposition 5.18, there is no simple relation

describing the influence of p. To see this clearly, consider the function φ̃p
S−NR

. From the

proof of Proposition 5.18, there exists an index j = j(x0) given any x0 ∈ ΩF close enough

to x∗ such that

‖x(t)− x∗‖ ≤ c(1 + L)

κ

[
p+ 1

p
φ̃p

S−NR
(x0

j , Fj(x
0))

] 1
p

e−ωt, ∀t ≥ 0. (5.26)

For a fixed x0 ∈ ΩF ∩Nδ(x
∗), we define the function

ga,b(p) :=

[
p+ 1

p
φ̃p

S−NR
(a, b)

] 1
p

,

where a = x0
j and b = Fj(x

0) and p > 1. Without loss of generality, by taking into

account the symmetry of φ̃p
S−NR

, we may suppose that a ≥ b. Then

ga,b(p) =

[
p+ 1

p
(ap − (a− b)p)

] 1
p

.

Note that M := limp→∞ ga,b(p) = a. As we shall see in the following example, the function

ga,b is not necessarily monotonic, and the values of a and b have a significant effect on

the behavior of ga,b.

Example 5.1. In Figure 5.2, we see that ga,b(p) increases for increasing values of p for

(a, b) = (4, 0.5) on the interval (1, 25]. In view of the error bound (5.26), this indicates

that lower values of p ∈ (1, 25] will provide faster convergence rate. We shall note that

g4,0.5 does not continue to increase on [25,∞). In particular, it is increasing from p = 1

to p ≈ 34.4458, then decreases afterwards (see Figure 5.3). On the other hand, Figure

5.2 suggests that for (a, b) = (4, 3), higher values of p result to faster convergence rate.

Finally, the nonmonotonic graph depicted in Figure 5.2 for (a, b) = (4, 2) indicates dif-

ferent convergence behaviors for values of p on different intervals. However, observe too

that the values of g4,2(p) are close to the limit value M = 4 when p belongs to some

interval (1, 1 + ε), for some small ε > 0.
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Figure 5.2: Graph of upper bound for the error term ‖x(t) − x∗‖ for some values of a

and b with a, b ≥ 0 and a > b.
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Figure 5.3: Graph of g4,0.5(p) on the interval [30, 40].
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Remark 5.2.

(a) The preceding example clearly illustrates that the effect of varying the parameter

p on the upper bound is highly sensitive to the choice of initial condition for the

neural network (5.19). Nonetheless, it is important to note that the function ga,b(p)

exhibits minimal variation for large values of p. As a result, we expect that the

convergence behavior of the neural network remains largely unaffected as p becomes

large.

(b) We remark that these observed behaviors hold under the hypotheses of Proposition

5.18 and Proposition 5.19, which include very strong assumptions on F and on

the equilibrium point x∗. Hence, we expect more varying convergence behaviors for

other classes of functions F .

(c) Finally, note that for the generalized FB function φp
FB

we may define a similar upper

bound function ha,b (see [32]) as

ha,b(p) =
|φp

FB
(a, b)|

2− 21/p
, p > 1.

In contrast to the function ga,b, the function ha,b, as defined above, can be verified

to be strictly monotonically decreasing. Consistent with this observation, it was

reported in [32] that neural network approaches employing φp
FB

tend to achieve faster

convergence rates when larger values of p are used.

The preceding example and accompanying remarks highlight the complex and nu-

anced role of the parameter p, a phenomenon we will further illustrate through numerical

examples in the next section. Precisely characterizing the effect of p on the convergence

behavior of the ODE trajectories remains an open question. Nevertheless, we have pro-

vided theoretical justification for the observed non-monotonic relationship between p and

convergence rates when employing dynamical systems based on φ̃p
NR

, φ̃p
S−NR

and ψ̃p
S−NR

.

For further details and simulation results, we refer the reader to [3].

5.2 Neural Networks for Optimization Problems in-

volving SOC

In this section, we explore neural network methods for solving optimization problems

involving second-order cones (SOCs), including the standard second-order cone program-

ming (SOCP) problem, a more general class of SOCPs, and second-order cone constrained

variational inequality (SOCCVI) problems. To construct the neural networks for these

problems, we utilize certain C-functions introduced in Chapter 3. The section is orga-

nized into three subsections, each devoted to one of the aforementioned problem classes:

the standard SOCP, the generalized SOCP, and the SOCCVI, respectively.
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5.2.1 Neural Networks using φ
FB

and projection for standard

SOCP

The target problem that we will tackle is the second-order cone program in the form of

min f(x)

s.t. Ax = b, x ∈ K. (5.27)

Here f : IRn → IR is a nonlinear continuously differentiable function, A ∈ IRm×n is a full

row rank matrix, b ∈ IRm is a vector, and K is a Cartesian product of second-order cones

(or Lorentz cones) given as in (3.2). The KKT optimality conditions for (5.27) are given

by 
∇f(x)− ATy − λ = 0,

xTλ = 0, x ∈ K, λ ∈ K,
Ax = b,

(5.28)

where y ∈ IRm and λ ∈ IRn. When f is convex, these conditions are sufficient for

optimality. It also can be written as{
xT
(
∇f(x)− ATy

)
= 0, x ∈ K, ∇f(x)− ATy ∈ K,

Ax = b.
(5.29)

By solving the system (5.29), one can obtain a primal-dual optimal solution to the SOCP

(5.27). It is worth noting that the system (5.29) involves a second-order cone complemen-

tarity problem (SOCCP). To solve it efficiently, we propose neural network approaches

based on the Fischer–Burmeister function φ
FB

and the natural residual function φ
NR

, as

described below.

In [41], the system (5.29) is shown to be equivalent to an unconstrained smooth

minimization problem via the merit function approach, described by

minE(x, y) = Ψ
FB

(x,∇f(x)− ATy) +
1

2
‖Ax− b‖2, (5.30)

where E(x, y) is a merit function, Ψ
FB

(x, y) =
1

2

N∑
i=1

‖φ
FB

(xi, yi)‖2, x = (x1, · · · , xN)T,

y = (y1, · · · , yN)T ∈ IRn1 × · · · × IRnN , and φ
FB

is the Fischer-Burmeister function given

by (3.10). Based on the gradient of the objective E(x, y) in minimization problem (5.30),

we propose the first neural network for solving the SOCP, with the following dynamic

equation
d

dt

(
x

y

)
= ρ

(
−∇xE(x, y)

−∇yE(x, y)

)
, (5.31)

where ρ is a positive scaling factor and
∇xE(x, y) = ∇xΨFB

(x,∇f(x)− ATy) +∇2f(x) · ∇yΨFB
(x,∇f(x)− ATy)

+AT(Ax− b),
∇yE(x, y) = −A · ∇yΨFB

(x,∇f(x)− ATy).
(5.32)
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The neural network realization of the proposed model requires n + m integrators, n

processors for computing ∇f(x), n2 processors for ∇2f(x), n processors for ∇xΨFB
, m

processors for ∇yΨFB
, along with 4mn connection weights and several summing units.

Moreover, as shown in the analysis below, the neural network (5.31) is asymptotically

stable.

Proposition 5.20. If u∗ = (x∗, y∗) is an isolated equilibrium point of neural network

(5.31), then u∗ = (x∗, y∗) is asymptotically stable for (5.31).

Proof. We assume that u∗ = (x∗, y∗) is an isolated equilibrium point of neural network

(5.31) over a neighborhood Ω∗ ⊆ IRn of u∗ such that ∇E(x∗, y∗) = 0 and ∇E(x, y) 6= 0,

∀(x, y) ∈ Ω∗ \ {(x∗, y∗)}. First we show that E(x, y) is a Lyapunov function for u∗ at Ω∗.

Since

∇yE(x∗, y∗) = −A · ∇yΨFB
(x∗,∇f(x∗)− ATy∗) = 0,

from Proposition 3.2 and Proposition 3.4, we have

∇xΨFB
(x∗,∇f(x∗)− ATy∗) = ∇yΨFB

(x∗,∇f(x∗)− ATy∗) = 0.

Moreover, from Proposition 3.6(b) and Proposition 3.2, this says

Ψ
FB

(x∗,∇f(x∗)− ATy∗) = 0.

Then from equation (5.32),

∇xE(x∗, y∗) = ∇xΨFB
(x∗,∇f(x∗)− ATy∗)

+∇2f(x∗) · ∇yΨFB
(x∗,∇f(x∗)− ATy∗) + AT(Ax∗ − b) = 0,

which implies that AT(Ax∗ − b) = 0. Because A ∈ IRm×n is a full row rank matrix, we

must have Ax∗ − b = 0, which yields

E(x∗, y∗) = Ψ
FB

(x∗,∇f(x∗)− ATy∗) +
1

2
‖Ax∗ − b‖2 = 0.

Next, we claim that E(x, y) > 0, ∀(x, y) ∈ Ω∗ \ {(x∗, y∗)}. If not, there is an (x, y) ∈
Ω∗\{(x∗, y∗)} such that E(x, y) = 0, this says that Ψ

FB
(x,∇f(x)−ATy) = 0 and Ax = b,

then ∇xE(x, y) = 0 and ∇yE(x, y) = 0. Hence, (x, y) is an equilibrium point of neural

network (5.31), contradicting with that u∗ = (x∗, y∗) is an isolate equilibrium point.

Finally,

dE(x(t), y(t))

dt

=
[
∇(x(t),y(t))E(x(t), y(t))

]T (− ρ∇(x(t),y(t))E(x(t), y(t))
)

= −ρ
∥∥∇(x(t),y(t))E(x(t), y(t))

∥∥2

≤ 0.
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Therefore, the function E(x, y) is a Lyapunov function for neural network (5.31) over the

set Ω∗. Since u∗ = (x∗, y∗) is an isolated equilibrium point of neural network (5.31), we

have
dE(x(t), y(t))

dt
< 0, ∀(x(t), y(t)) ∈ Ω∗ \ {(x∗, y∗)}.

Thus, u∗ is asymptotically stable for neural network (5.31). �

Next, we consider an alternative neural network model based on the cone projection

function to solve the system (5.29) for obtaining the SOCP solution. We also examine the

stability of this network. In fact, as shown in (1.11), the projection onto the second-order

cone Kn admits a closed-form expression given by

ΠKn(z) = [λ1(z)]+u
(1)
z + [λ2(z)]+u

(2)
z , (5.33)

where [ · ]+ means the scalar projection, λ1(z), λ2(z) and u
(1)
z , u

(2)
z are the spectral values

and the associated spectral vectors of z = (z1, z2) ∈ IR× IRn−1, respectively, given by λi(z) = z1 + (−1)i‖z2‖,
u

(i)
z =

1

2

(
1, (−1)i

z2

‖z2‖

)
,

for i = 1, 2. Moreover using Proposition 1.3, the system (5.29) can be equivalently written

as {
φ

NR
(x,∇f(x)− ATy) = 0,

Ax− b = 0,
⇐⇒

{
x− ΠK(x−∇f(x) + ATy) = 0,

Ax− b = 0,
(5.34)

where x = (x1, · · · , xN)T ∈ IRn1×· · ·× IRnN with xi = (xi1, xi2, · · · , xini)T, i = 1, · · · , N ,

and ΠK(x) =
[
ΠKn1 (x1), · · · ,ΠKnN (xN)

]T
. Based on the equivalent formulation in (5.34)

and employing the similar idea as mentioned earlier, we consider the second neural net-

work for solving the SOCP, with the following dynamic equations:

d

dt

(
x

y

)
= ρ

(
−x+ ΠK(x−∇f(x) + ATy)

−Ax+ b

)
, (5.35)

where ρ is a positive scaling factor.

The dynamic equations can be implemented using a recurrent neural network incor-

porating the cone projection function, as illustrated in Figure 5.4. The neural network

realization requires n + m integrators, n processors for computing ∇f(x), N processors

for cone projection mapping ΠK, 2mn connection weights, and several summing units.

Compared to the first neural network described in (5.31), the second neural network

(5.35) does not require the computation of ∇2f(x), thereby reducing the overall model

complexity.

To analyze the stability of the neural network defined by (5.35), we begin by presenting

three lemmas and a key proposition.



5.2. NEURAL NETWORKS FOROPTIMIZATION PROBLEMS INVOLVING SOC481

Figure 5.4: Block diagram of the proposed neural network with projection function.

Lemma 5.6. Let F (u) be defined as

F (u) := F (x, y) :=

[
−x+ ΠK(x−∇f(x) + ATy)

−Ax+ b

]
. (5.36)

Then, F (u) is semi-smooth. Moreover, F (u) is strongly semi-smooth if ∇2f(x) is locally

Lipschitz continuous.

Proof. This is an immediate consequence of [112, Theorem 1]. �

Proposition 5.21. For any initial point u0 = (x0, y0) where x0 := x(t0) ∈ K, there exists

a unique solution u(t) = (x(t), y(t)) for neural network (5.35). Moreover, x(t) ∈ K.

Proof. For simplicity, we assume K = Kn. The analysis can be carried over to the

general case where K is the Cartesian product of second-order cones. From Lemma 5.6,

F (u) := F (x, y) is semi-smooth and Lipschitz continuous. Thus, there exists a unique

solution u(t) = (x(t), y(t)) for neural network (5.35). Therefore, it remains to show that

x(t) ∈ Kn. For convenience, we denote x(t) := (x1(t), x2(t)) ∈ IR × IRn−1. To complete

the proof, we need to verify two things: (i) x1(t) ≥ 0 and (ii) ‖x2(t)‖ ≤ x1(t). First,

from (5.35), we have

dx

dt
+ ρx(t) = ρΠKn(x−∇f(x) + ATy).

The solution of the first-order ordinary differential equation above is

x(t) = e−ρ(t−t0)x(t0) + ρe−ρt
∫ t

t0

eρsΠKn(x−∇f(x) + ATy)ds.

If we let x(t0) := (x1(t0), x2(t0)) ∈ IR × IRn−1 and denote z(t) := (z1(t0), z2(t0)) as the

term ΠKn(x− (∇f(x)− ATy)), which leads to

x1(t) = e−ρ(t−t0)x1(t0) + ρe−ρt
∫ t

t0

eρsz1(s)ds,

x2(t) = e−ρ(t−t0)x2(t0) + ρe−ρt
∫ t

t0

eρsz2(s)ds.
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Due to both x0(t) and z(t) belong to Kn, there have x1(t0) ≥ 0, ‖x2(t0)‖ ≤ x1(t0) and

z1(t) ≥ 0, ‖z2(t)‖ ≤ z1(t). Therefore, x1(t) ≥ 0 since both terms in the right-hand side

are nonnegative. In addition,

‖x2(t)‖ ≤ e−ρ(t−t0)‖x2(t0)‖+ ρe−ρt
∫ t

t0

eρs‖z2(s)‖ds

≤ e−ρ(t−t0)x1(t0) + ρe−ρt
∫ t

t0

eρsz1(s)ds

= x1(t),

which implies that x(t) ∈ Kn. �

Lemma 5.7. Let H(u) be defined as

H(u) := H(x, y) :=

[
∇f(x)− ATy

Ax− b

]
. (5.37)

Then, H is a monotone function if f is a convex function. Moreover, ∇H(u) is positive

semi-definite if and only if ∇2f(x) is positive semi-definite.

Proof. Let u = (x, y) and ũ = (x̃, ỹ). Then, the monotonicity of H holds since

(u− ũ)T(H(u)−H(ũ))

= (x− x̃)T(∇f(x)−∇f(x̃))− (x− x̃)T(AT(y − ỹ)) + (y − ỹ)T(A(x− x̃))

= (x− x̃)T(∇f(x)−∇f(x̃))

≥ 0,

where the last inequality is due to the convexity of f(x), see [160, Theorem 3.4.5]. Fur-

thermore, we observe that

∇H(u) =

[
∇2f(x) −AT

A 0

]
.

Thus, we have
uT∇H(u)u

=
[
xT yT

] [ ∇2f(x) −AT

A 0

] [
x

y

]
= xT∇2f(x)x,

which indicates that the positive semi-definiteness of ∇H(u) is equivalent to the positive

semi-definiteness of ∇2f(x). �

Lemma 5.8. Let F (u), H(u) be defined as in (5.36) and (5.37), respectively. Also, let

u∗ = (x∗, y∗) be an equilibrium point of neural network (5.35) with x∗ being an optimal

solution of SOCP. Then, the following inequalities hold:

(F (u) + u− u∗)T(−F (u)−H(u)) ≥ 0. (5.38)
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Proof. First, we denote λ := ∇f(x)− ATy. Then, we obtain

(F (u) + u− u∗)T(−F (u)−H(u))

=

[
−x+ ΠK(x− λ) + (x− x∗)

(−Ax+ b) + (y − y∗)

]T [
x− ΠK(x− λ)− λ

(Ax− b)− (Ax− b)

]
=

[
−x∗ + ΠK(x− λ)

(−Ax+ b) + (y − y∗)

]T [
(x− λ)− ΠK(x− λ)

0

]
= − (x∗ − ΠK(x− λ))T ((x− λ)− ΠK(x− λ)) .

Since x∗ ∈ K, applying Lemma 1.1(b) gives

(x∗ − ΠK(x− λ))T ((x− λ)− ΠK(x− λ)) ≤ 0.

Thus, inequality (5.38) is proved. �

We now investigate the stability and convergence properties of the neural network

(5.35). We begin by analyzing the behavior of its solution trajectories, including their

existence and convergence. Subsequently, we establish two forms of stability for an

isolated equilibrium point. In particular, it is known that every solution u∗ to the SOCP

corresponds to an equilibrium point of the neural network (5.35). Moreover, if u∗ is an

isolated equilibrium point, we show that it is Lyapunov stable.

Proposition 5.22. If f is convex and twice differentiable, then the solution of neural net-

work (5.35), with initial point u0 = (x0, y0) where x0 ∈ K, is Lyapunov stable. Moreover,

the solution trajectory of neural network (5.35) is extendable to the global existence.

Proof. Again, for simplicity, we assume K = Kn. From Proposition 5.21, there exists

a unique solution u(t) = (x(t), y(t)) for neural network (5.35) and x(t) ∈ Kn. Let

u∗ = (x∗, y∗) be an equilibrium point of neural network (5.35) with x∗ being an optimal

solution of SOCP. We define a Lyapunov function as below:

E(u) := E(x, y) := −H(u)TF (u)− 1

2
‖F (u)‖2 +

1

2
‖u− u∗‖2, (5.39)

where F (u) and H(u) are given as in (5.36) and (5.37), respectively. From [77, Theorem

3.2], we know that E is continuously differentiable with

∇E(u) = H(u)−
[
∇H(u)− I

]
F (u) + (u− u∗).

It is also trivial that E(u∗) = 0. Then, we have

dE(u(t))

dt
= ∇E(u(t))T

du

dt
=

{
H(u)−

[
∇H(u)− I

]
F (u) + (u− u∗)

}T
ρF (u)

= ρ
{[
H(u) + (u− u∗)

]T
F (u) + ‖F (u)‖2 − F (u)T∇H(u)F (u)

}
.
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Hence, inequality (5.38) in Lemma 5.8 implies

(H(u) + u− u∗)T F (u) ≤ −H(u)T(u− u∗)− ‖F (u)‖2,

which yields

dE(u(t))

dt
≤ ρ

{
−H(u)T(u− u∗)− F (u)T∇H(u)F (u)

}
= ρ

{
−H(u∗)T(u− u∗)− (H(u)−H(u∗))T(u− u∗)− F (u)T∇H(u)F (u)

}
.

(5.40)

On the other hand, we know that

(F (u∗) + u∗ − u)T(−F (u∗)−H(u∗))

= − (x− ΠK(x∗ − λ∗))T ((x∗ − λ∗)− ΠK(x∗ − λ∗)) .
Since x ∈ Kn, applying Lemma 1.1(d) gives

(x− ΠK(x∗ − λ∗))T ((x∗ − λ∗)− ΠK(x∗ − λ∗)) ≤ 0.

Thus, we have (F (u∗)+u∗−u)T(−F (u∗)−H(u∗)) ≥ 0. Note that F (u∗) = 0, we therefore

obtain −H(u∗)T(u−u∗)T ≤ 0. Also the monotonicity of H implies −(H(u)−H(u∗))T(u−
u∗) ≤ 0. In addition, f is convex and twice differentiable if and only if ∇2f(x) is positive

semidefinite and hence ∇H is positive semidefinite by Lemma 5.7, i.e., the second term

−F (u)T∇H(u)F (u) ≤ 0. The above discussions lead to dE(u(t))/dt ≤ 0.

To establish that E(u) serves as a Lyapunov function and that u∗ is Lyapunov stable, it

suffices to show the following inequality:

−H(u)TF (u) ≥ ‖F (u)‖2. (5.41)

To see this, we first observe that

‖F (u)‖2 +H(u)TF (u) = (x− ΠK(x− λ))T ((x− λ)− ΠK(x− λ)) .

Since x ∈ K, applying Lemma 1.1(d) again, there holds

(x− ΠK(x− λ))T ((x− λ)− ΠK(x− λ)) ≤ 0,

which yields the desired inequality (5.41). By combining equation (5.39) and inequality

(5.41), we have

E(u) ≥ 1

2
‖F (u)‖2 +

1

2
‖u− u∗‖2,

which says E(u) > 0 if u 6= u∗. Hence E(u) is indeed a Lyapunov function and u∗ is

Lyapunov stable. Moreover, it holds that

E(u0) ≥ E(u) ≥ 1

2
‖u− u∗‖2 for t ≥ t0, (5.42)

which means the solution trajectory u(t) is bounded. Hence, it can be extended to global

existence. �
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Proposition 5.23. Let u∗ = (x∗, y∗) be an equilibrium point of (5.35) with x∗ being an

optimal solution of SOCP. If f is twice differentiable and ∇2f(x) is positive definite, the

solution of neural network (5.35), with initial point u0 = (x0, y0) where x0 ∈ K, is globally

convergent to u∗ and has finite convergence time.

Proof. From (5.42), it is clear that the level set

L(u0) := {u |E(u) ≤ E(u0)}

is bounded. Then, the Invariant Set Theorem [83] implies the solution trajectory u(t)

converges to θ as t→∞ where θ is the largest invariant set in

S =

{
u ∈ L(u0)

∣∣∣∣ dE(u(t))

dt
= 0

}
.

We will show that du/dt = 0 if and only if dE(u(t))/dt = 0 which yields that u(t)

converges globally to the equilibrium point u∗ = (x∗, y∗). Suppose du/dt = 0, then

it is clear that dE(u(t))/dt = ∇E(u)T(du/dt) = 0. Let û = (x̂, ŷ) ∈ S which says

dE(û(t))/dt = 0. From (5.40), we know that

dE(û(t))

dt
≤ ρ

{
−(H(û)−H(u∗))T(û− u∗)− F (û)T∇H(û)F (û)

}
.

Both terms inside the big parenthesis are nonpositive as shown in Lemma 5.7, so (H(û)−
H(u∗))T(û− u∗) = 0, F (û)T∇H(û)F (û) = 0, and

F (û)T∇H(û)F (û)

= {−x̂+ ΠK(x̂−∇f(x̂) + ATŷ)}T∇2f(x̂){−x̂+ ΠK(x̂−∇f(x̂) + ATŷ)}
= 0.

The condition of ∇2f(x̂) being positive definite leads to

−x̂+ ΠK(x̂−∇f(x̂) + ATŷ) = 0,

which is equivalent to dx̂/dt = 0. On the other hand, similar to the arguments in Lemma

5.7, we have
(û− u∗)T(H(û)−H(u∗))

= (x̂− x∗)T(∇f(x̂)−∇f(x∗))

= (x̂− x∗)T∇2f(xs)(x̂− x∗)
= 0,

where xs ∈ [x∗, x̂]. Again, the condition of ∇2f(xs) being positive definite yields x̂ = x∗.

Hence dŷ/dt = 0 and therefore dû(t)/dt = 0. From above, u(t) converges globally to the

equilibrium point u∗ = (x∗, y∗). Moreover, with Proposition 5.22 and following the same

arguments as in [215, Theorem 2], the neural network (5.35) has finite convergence time.

�
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It is worth noting that the neural network employing the cone projection ΠK is equiv-

alent to the one based on the natural residual function φ
NR

, as shown in (5.34). In other

words, this section presents neural network approaches for solving SOCPs using both the

Fischer–Burmeister function φ
FB

and the natural residual function φ
NR

. For details on

simulation results, we refer the reader to [124]. Furthermore, these functions can also be

used to solve second-order cone constrained variational inequality (SOCCVI) problems;

see [193].

Since the KKT conditions of SOCPs can be reformulated as a variational inequal-

ity problem, the framework in [193] addresses a broader class of optimization problems.

In general, the neural networks considered therein differ from those studied in this sec-

tion. Specifically, the FB-based method in [193] utilizes a smoothed version of the Fis-

cher–Burmeister function, whereas the approach discussed here is based on the standard

(non-smoothed) FB function. Similarly, the cone projection method in [193] is derived

from a Lagrangian formulation which, even when specialized to SOCPs, is distinct from

the model explored here. Owing to these fundamental differences, the assumptions re-

quired to establish stability also differ. These distinctions will be elaborated upon in

Section 5.2.3.

5.2.2 Neural Networks for general SOCCP

We now turn our attention to a more general class of SOCPs beyond the standard for-

mulation (5.27), which was examined in Section 5.2.1. Specifically, we aim to find a

solution to the following nonlinear convex optimization problem subject to second-order

cone constraints:
min f(x)

s.t. Ax = b

−g(x) ∈ K
(5.43)

where A ∈ IRm×n has full row rank, b ∈ IRm, f : IRn → IR, g = [g1, · · · , gl]T : IRn → IRl

with f and gi’s being two order continuous differentiable and convex on IRn, and K is a

Cartesian product of second-order cones (also called Lorentz cones), expressed as

K = Kn1 ×Kn2 × · · · × KnN

with N, n1, · · · , nN ≥ 1, n1 + · · ·+ nN = l and

Kni :=
{

(xi1, xi2, · · · , xini)T ∈ IRni | ‖(xi2, · · · , xini)‖ ≤ xi1
}
.

Compared with (5.27), we see that the constraint −g(x) ∈ K in (5.43) extends the one

x ∈ K in (5.27). In fact, the problem (5.43) is equivalent to the following variational

inequality problem, which is to find x ∈ D satisfying

〈∇f(x), y − x〉 ≥ 0 ∀y ∈ D,
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where D = {x ∈ IRn |Ax = b, −g(x) ∈ K}. Many problems in the engineering, trans-

portation science, and economics communities can be solved by transforming the original

problems into the mentioned convex optimization problems or variational inequality prob-

lems, see [5, 54, 63, 107, 145]. Similarly, we first look into the KKT conditions of the

problem (5.43), which are presented as below:
∇f(x)− ATy +∇g(x)z = 0,

z ∈ K, −g(x) ∈ K, zTg(x) = 0,

Ax− b = 0,

(5.44)

where y ∈ IRm, ∇g(x) denotes the gradient matrix of g. According to the KKT condition,

it is well known that if the problem (5.43) satisfies Slater’s condition, which means

there exists a strictly feasible point for (5.43), i.e., there exists an x ∈ IRn such that

−g(x) ∈ int(K) and Ax = b. Then x∗ is a solution of the problem (5.43) if and only

if there exist y∗, z∗ such that (x∗, y∗, z∗) satisfies the KKT conditions (5.44). Hence, we

assume that the problem (5.43) satisfies the Slater’s condition in this section.

In view of the projection mapping onto SOC given as in (5.33) and the non-differentiability

of φ
NR

, we consider a class of smoothed NR complementarity function. To this end, we

employ a continuously differentiable convex function ĝ : IR→ IR such that

lim
a→−∞

ĝ(a) = 0, lim
a→∞

(ĝ(a)− a) = 0, and 0 < ĝ′(a) < 1. (5.45)

What kind of functions satisfies the condition (5.45)? Here we present two examples:

ĝ(a) =

√
a2 + 4 + a

2
and ĝ(a) = ln(ea + 1).

Suppose z = λ1u
(1)
z + λ2u

(2)
z , where λi and uiz for i = 1, 2 are the spectral values and

spectral vectors of z, respectively. By applying the function ĝ(·), we define the following

function:

Pµ(z) := µ ĝ

(
λ1

µ

)
u(1)
z + µ ĝ

(
λ2

µ

)
u(2)
z . (5.46)

Fukushima, Luo, and Tseng [78] show that Pµ is smooth for any µ > 0; moreover Pµ is

a smoothing function of the projection PK, i.e., limµ↓0 Pµ = PK. Hence, a smoothed NR

complementarity function is given in the form of

φµ(x, y) := x− Pµ(x− y).

In particular, from [78, Proposition 5.1], there exists a positive constant γ > 0 such that

‖φµ(x, y)− φ
NR

(x, y)‖ ≤ γµ

for any µ > 0 and (x, y) ∈ IRn × IRn.
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Now we look into the KKT conditions (5.44) again. Let

L(x, y, z) = ∇f(x)− ATy +∇g(x)z, H(u) :=


µ

Ax− b
L(x, y, z)

φµ(z,−g(x))


and

Ψµ(u) :=
1

2
‖H(u)‖2

=
1

2
‖φµ(z,−g(x))‖2 +

1

2
‖L(x, y, z)‖2 +

1

2
‖Ax− b‖2 +

1

2
µ2,

where u = (µ, x, y, z) ∈ IR+ × IRn × IRm × IRl. It is well known that Ψµ(u) serves

as a smoothing approximation of the merit function Ψ
NR

. This implies that the KKT

conditions (5.44) can be reformulated, via the merit function approach, as the following

unconstrained minimization problem:

min Ψµ(u) :=
1

2
‖H(u)‖2. (5.47)

Proposition 5.24. (a) Let Pµ be defined by (5.46). Then, ∇Pµ(z) and I −∇Pµ(z) are

positive definite for any µ > 0 and z ∈ IRl .

(b) Let Ψµ be defined as in (5.47). Then, the smoothed merit function Ψµ is continuously

differentiable everywhere with ∇Ψµ(u) = ∇H(u)H(u) where

∇H(u) =


1 0 0 −

(
∂Pµ(z+g(x))

∂µ

)T
0 AT ∇2f(x) +∇2g1(x) + · · ·+∇2gl(x) −∇xPµ(z + g(x))

0 0 −A 0

0 0 ∇g(x)T I −∇zPµ(z + g(x))

 .
Proof. For the function Pµ(z) defined as in (5.46), the gradient matrix of Pµ(z) is

described as below.

∇Pµ(z) =


ĝ′( z1

µ
)I if z2 = 0;[

bµ
cµzT2
‖z2‖

cµz2
‖z2‖ aµI + (bµ − aµ)

z2zT2
‖z2‖2

]
if z2 6= 0,

where

aµ =
ĝ(λ2

µ
)− ĝ(λ1

µ
)

λ2
µ
− λ1

µ

,

bµ =
1

2

(
ĝ′(
λ2

µ
) + ĝ′(

λ1

µ
)

)
,

cµ =
1

2

(
ĝ′(
λ2

µ
)− ĝ′(λ1

µ
)

)
,
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and I denotes the identity matrix. Form the proof of [91, Proposition 3.1], it is clear

that ∇Pµ(z) and I −∇Pµ(z) are positive definite for any µ > 0 and z ∈ IRl. With the

help of the definition of the smoothed merit function Ψµ, part(b) easily follows from the

chain rule. �

Following the core principles for constructing artificial neural networks (see [51] for

details), we formulate a specific first-order ordinary differential equation to define an

artificial neural network model. In particular, based on the gradient of the objective

function Ψµ in the minimization problem (5.47), we consider the following neural network

model for solving the KKT system (5.44) associated with the nonlinear SOCP (5.43):

du(t)

dt
= −ρ∇Ψµ(u), u(t0) = u0, (5.48)

where ρ > 0 is a time scaling factor. In fact, if τ = ρt, then du(t)
dt

= ρdu(τ)
dτ

. Hence, it

follows from (5.48) that du(τ)
dτ

= −∇Ψµ(u). In view of this, for simplicity and convenience,

we set ρ = 1. Indeed, the dynamical system (5.48) can be realized by an architecture

with the cone projection function shown in Figure 5.5. Moreover, the architecture of

this artificial neural network is categorized as a “recurrent” neural network according to

the classifications of artificial neural networks as in [51, Chapter 2.3.1]. The circuit for

(5.48) requires n+m+ l+ 1 integrators, n processors for ∇f(x), l processors for g(x), ln

processors for ∇g(x), (l+ 1)2n processors for ∇2f(x) +
l∑

i=1

∇2gi(x), 1 processor for φµ, 1

processor for
∂Pµ
∂µ

, n processors for ∇xPµ, l processors for ∇zPµ, n2 + 4mn+ 3ln+ l2 + l

connection weights and a few summers.

Figure 5.5: Block diagram of the proposed neural network with smoothed NR function.

To analyze the stability of the proposed neural network (5.48) for solving the problem

(5.43), we begin by introducing an assumption that will be essential for the subsequent

analysis.
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Assumption 5.1. (a) The problem (5.43) satisfies the Slater’s condition.

(b) The matrix ∇2f(x) +∇2g1(x) + · · ·+∇2gl(x) is positive definite for each x.

We briefly comment on Assumption 5.1(a) and (b). Assumption 5.1(a) corresponds

to Slater’s condition, a classical and widely adopted regularity condition in the field of

optimization. Although Assumption 5.1(b) may appear stringent at first glance, it is

readily satisfied in many practical cases. Specifically, if the objective function f and the

constraint functions gi are twice continuously differentiable and convex on IRn, then the

assumption holds provided that at least one of these functions is strictly convex.

Lemma 5.9. (a) For any u, we have

‖H(u)−H(u∗)− V (u− u∗)‖ = o(‖u− u∗‖) for u→ u∗ and V ∈ ∂H(u)

where ∂H(u) denotes the Clarke generalized Jacobian at u.

(b) Under Assumption 5.1, ∇H(u)T is nonsingular for any u = (µ, x, y, z) ∈ IR++ ×
IRn × IRm × IRl, where IR++ denotes the set {µ |µ > 0}.

(c) Under Assumption 5.1 and V ∈ ∂P0(w) being a positive definite matrix where ∂P0(w)

denotes the Clarke generalized Jacobian of the project function P at w, there has

T ∈ ∂H(u)

=




1 0 0 −
(
∂Pµ(z+g(x))

∂µ

)T
|µ=0

0 AT ∇2f(x) +∇2g1(x) + · · ·+∇2gl(x) −V T∇g(x)

0 0 −A 0

0 0 ∇g(x)T I − V


∣∣∣∣∣V ∈ ∂P0(W )


is nonsingular for any u = (0, x, y, z) ∈ {0} × IRn × IRm × IRl.

(d) Ψµ(u(t)) is nonincreasing with respect to t.

Proof. (a) This result follows directly from the definition of semismoothness of H, see

[171] for more details.

(b) From the expression of ∇H(u) in Proposition 5.24, it follows that ∇H(u)T is nonsin-

gular if and only if the following matrix

M :=

 A 0 0

∇2f(x) +∇2g1(x) + · · ·+∇2gl(x) −AT ∇g(x)

−∇xPµ(z + g(x))T 0 (I −∇zPµ(z + g(x)))T


is nonsingular. Suppose v = (x, y, z) ∈ IRn × IRm × IRl. To show the nonsingularity of

M , it is enough to prove that

Mv = 0 =⇒ x = 0, y = 0 and z = 0.
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Because−∇xPµ(z+g(x))T = −∇Pµ(w)T∇g(x)T, where w = z+g(x) ∈ IRl, from Mv = 0,

we have

Ax = 0,
(
∇2f(x) +∇2g1(x) + · · ·+∇2gl(x)

)
x− ATy +∇g(x)z = 0 (5.49)

and

−∇Pµ(w)T∇g(x)Tx+ (I −∇Pµ(w))Tz = 0. (5.50)

From (5.49), it follows that

xT
(
∇2f(x) +∇2g1(x) + · · ·+∇2gl(x)

)
x+

(
∇g(x)Tx

)T
z = 0. (5.51)

Moveover, equation (5.50) and Proposition 5.24 yield

∇g(x)Tx = (∇Pµ(w)T)−1(I −∇Pµ(w))Tz. (5.52)

Combining (5.51)-(5.52) and Proposition 5.24, under the condition of Assumption 5.1, it

is not hard to obtain that x = 0 and z = 0. By looking at equation (5.49) again, since A

is full row rank, we have y = 0. Therefore, ∇H(u)T is nonsingular.

(c) The proof of part(c) is similar to that of part(b), in which the only option is to replace

∇Pµ(w) with V ∈ ∂P0(w).

(d) According to the definition of Ψµ(u(t)) and Eq. (5.48), it is clear that

dΨµ(u(t))

dt
= ∇Ψµ(u(t))

du(t)

dt
= −ρ ‖∇Ψµ(u(t))‖2 ≤ 0.

Consequently, Ψµ(u(t)) is nonincreasing with respect to t. �

Proposition 5.25. Assume that ∇H(u) is nonsingular for any u ∈ IR+×IRn×IRm×IRl.

Then,

(a) (x∗, y∗, z∗) satisfies the KKT conditions (5.44) if and only if (0, x∗, y∗, z∗) is an equi-

librium point of the neural network (5.48);

(b) under the Slater’s condition, x∗ is a solution to the problem (5.43) if and only if

(0, x∗, y∗, z∗) is an equilibrium point of the neural network (5.48).

Proof. (a) Because φ0 = φ
NR

when µ = 0, it follows that (x∗, y∗, z∗) satisfies the KKT

conditions (5.44) if and only if H(u∗) = 0, where u∗ = (0, x∗, y∗, z∗)T. Since ∇H(u) is

nonsingular, we have that H(u∗) = 0 if and only if ∇Ψµ(u∗) = ∇H(u∗)TH(u∗) = 0.

Thus, the desired result follows.

(b) Under Slater’s condition, it is well known that x∗ is a solution to the problem (5.43)

if and only if there exist y∗ and z∗ such that (x∗, y∗, z∗) satisfies the KKT conditions

(5.44). Consequently, by part (a), it follows that (0, x∗, y∗, z∗) is an equilibrium point of

the neural network (5.48). �



492CHAPTER 5. DYNAMICALMETHODS USING COMPLEMENTARITY FUNCTIONS

Proposition 5.26. (a) For any initial point u0 = u(t0), there exists a unique contin-

uously maximal solution u(t) with t ∈ [t0, τ) for the neural network (5.48), where

[t0, τ) is the maximal interval of existence.

(b) If the level set L(u0) := {u |Ψµ(u) ≤ Ψµ(u0)} is bounded, then τ can be extended to

+∞.

Proof. The proof follows exactly the same reasoning as that of Proposition 5.3, and is

therefore omitted here. �

Proposition 5.27. Assume that ∇H(u) is nonsingular and that u∗ is an isolated equilib-

rium point of the neural network (5.48). Then, the solution of the neural network (5.48)

with any initial point u0 is Lyapunov stable.

Proof. From Lemma 5.3, we only need to argue that there exists a Lyapunov function

over some neighborhood Ω of u∗. Now, we consider the smoothed merit function

Ψµ(u) =
1

2
‖H(u)‖2.

Since u∗ is an isolated equilibrium point of (5.48), there is a neighborhood Ω of u∗ such

that

∇Ψµ(u∗) = 0 and ∇Ψµ(u(t)) 6= 0, ∀u(t) ∈ Ω\{u∗}.
By the nonsingularity of ∇H(u) and the definition of Ψµ, it is easy to obtain that

Ψµ(u∗) = 0. From the definition of Ψµ, we claim that Ψµ(u(t)) > 0 for any u(t) ∈ Ω\{u∗},
where Ω is a neighborhood of u∗. Suppose not, namely, Ψµ(u(t)) = 0. It follows that

H(u(t)) = 0. Then, we have ∇Ψµ(u(t)) = 0 which contradicts with the assumption that

u∗ is an isolated equilibrium point of (5.48). Thus, Ψµ(u(t)) > 0 for any u(t) ∈ Ω\{u∗}.
Furthermore, by the proof of Lemma 5.9(d), we know that for any u(t) ∈ Ω

dΨµ(u(t))

dt
= ∇Ψµ(u(t))

du(t)

dt
= −ρ ‖∇Ψµ(u(t))‖2 ≤ 0. (5.53)

Consequently, the function Ψµ is a Lyapunov function over Ω. This implies that u∗ is

Lyapunov stable for the neural network (5.48). �

Proposition 5.28. Assume that ∇H(u) is nonsingular and that u∗ is an isolated equi-

librium point of the neural network (5.48). Then, u∗ is asymptotically stable for neural

network (5.48).

Proof. From the proof of Proposition 5.27, we consider again the Lyapunov function Ψµ.

By Lemma 5.3 again, we only need to verify that the Lyapunov function Ψµ over some

neighborhood Ω of u∗ satisfies

dΨµ(u(t))

dt
< 0, ∀u(t) ∈ Ω\{u∗}. (5.54)

In fact, by using (5.53) and the definition of the isolated equilibrium point, it is not hard

to check that the equation (5.54) is true. Hence, u∗ is asymptotically stable. �
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Proposition 5.29. Assume that u∗ is an isolated equilibrium point of the neural network

(5.48). If ∇H(u)T is nonsingular for any u = (µ, x, y, z) ∈ IR+ × IRn × IRm × IRl, then

u∗ is exponentially stable for the neural network (5.48).

Proof. From the definition of H(u), we know that H is semismooth. Hence, by Lemma

5.9, we have

H(u) = H(u∗) +∇H(u(t))T(u− u∗) + o(‖u− u∗‖), ∀u ∈ Ω\{u∗}, (5.55)

where ∇H(u(t))T ∈ ∂H(u(t)) and Ω is a neighborhood of u∗. Now, we let

g(u(t)) = ‖u(t)− u∗‖2, t ∈ [t0,∞).

Then, we have

dg(u(t))

dt
= 2(u(t)− u∗)Tdu(t)

dt
= −2ρ(u(t)− u∗)T∇Ψµ(u(t)) (5.56)

= −2ρ(u(t)− u∗)T∇H(u)H(u).

Substituting Eq. (5.55) into Eq. (5.56) yields

dg(u(t))

dt
= −2ρ(u(t)− u∗)T∇H(u(t))(H(u∗) +∇H(u(t))T (u(t)− u∗) + o(‖u(t)− u∗‖))
= −2ρ(u(t)− u∗)T∇H(u(t))∇H(u(t))T(u(t)− u∗) + o(‖u(t)− u∗‖2).

Because ∇H(u) and ∇H(u)T are nonsingular, we claim that there exists an κ > 0 such

that

(u(t)− u∗)T∇H(u)∇H(u)T(u(t)− u∗) ≥ κ‖u(t)− u∗‖2. (5.57)

Otherwise, if (u(t)− u∗)T∇H(u(t))∇H(u(t))T(u(t)− u∗) = 0, it implies that

∇H(u(t))T(u(t)− u∗) = 0.

Indeed, from the nonsingularity of H(u), we have u(t) − u∗ = 0, i.e., u(t) = u∗ which

contradicts with the assumption of u∗ being an isolated equilibrium point. Consequently,

there exists an κ > 0 such that (5.57) holds. Moreover, for o(‖u(t)−u∗‖2), there is ε > 0

such that o(‖u(t)− u∗‖2) ≤ ε‖u(t)− u∗‖2. Hence,

dg(u(t))

dt
≤ (−2ρκ+ ε)‖u(t)− u∗‖2 = (−2ρκ+ ε)g(u(t)).

This implies

g(u(t)) ≤ e(−2ρκ+ε)tg(u(t0))



494CHAPTER 5. DYNAMICALMETHODS USING COMPLEMENTARITY FUNCTIONS

which means

‖u(t)− u∗‖ ≤ e−ρκ+ ε
2‖u(t0)− u∗‖.

Thus, u∗ is exponentially stable for the neural network (5.48). �

Next, we consider a neural network by using φp
FB

for solving (5.43). Recall that the

generalized FB merit function φp
FB

: IRn × IRn → IRn associated with second-order cone

is defined by

φp
FB

(x, y) := p
√
|x|p + |y|p − (x+ y).

In view of the KKT conditions (5.44) again, we denote

L(x, y, z) = ∇f(x)− ATy +∇g(x)z,

H(u) :=

 Ax− b
L(x, y, z)

φp
FB

(z,−g(x))

 .
Therefore, we consider the merit function as below

Ψp
FB

(u) :=
1

2
‖H(u)‖2

=
1

2
‖φp(z,−g(x))‖2 +

1

2
‖L(x, y, z)‖2 +

1

2
‖Ax− b‖2,

where u = (x, y, z)T ∈ IRn × IRm × IRl. From Proposition 3.26, we know that

φp
FB

(z,−g(x)) = 0⇐⇒ z ∈ K, −g(x) ∈ K, −zTg(x) = 0.

Hence, the KKT conditions (5.44) are equivalent to H(u) = 0, i.e., Ψp
FB

(u) = 0. Then,

it follows that the KKT conditions (5.44) are equivalent to the following unconstrained

minimization problem with zero optimal value via the merit function approach:

min Ψp
FB

(u) :=
1

2
‖H(u)‖2. (5.58)

Accordingly, the neural network for solving the nonlinear SOCP (5.43) is naturally con-

sidered as below:
du(t)

dt
= −ρ∇Ψp

FB
(u), u(t0) = u0, (5.59)

where ρ > 0 is a time scaling factor. In fact, if τ = ρt, then du(t)
dt

= ρ du(τ)
dτ

. Hence, it

follows from (5.59) that du(τ)
dτ

= −∇Ψp
FB

(u). For simplicity and convenience, one can set

ρ = 1 .

Lemma 5.10. For z = (z1, z2) ∈ IR× IRn−1 and x = (x1, x2) ∈ IR× IRn−1 with z �K x,

we have λi(z) ≥ λi(x) for i = 1, 2.
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Proof. Since z �K x, we may express z = x + y where x = (x1, x2) ∈ IR × IRn−1,

y = (y1, y2) ∈ IR× IRn−1 and y = z − x �K 0. This implies y1 ≥ ‖y2‖ and

λ1(z) = (x1 + y1)− ‖x2 + y2‖
≥ (x1 + y1)− ‖x2‖ − ‖y2‖
≥ x1 − ‖x2‖
= λ1(x).

Thus, we have

λ2(z) = (x1 + y1) + ‖x2 + y2‖ ≥ (x1 + y1) +
∣∣‖x2‖ − ‖y2‖

∣∣
=

{
x1 + y1 + ‖x2‖ − ‖y2‖, if ‖x2‖ ≥ ‖y2‖
x1 + y1 − ‖x2‖+ ‖y2‖, if ‖x2‖ < ‖y2‖

≥
{
x1 + ‖x2‖, if ‖x2‖ ≥ ‖y2‖
x1 + y1, if ‖x2‖ < ‖y2‖

≥ x1 + ‖x2‖
= λ2(x)

which is the desired result. �

Lemma 5.11. Let w := w(x, y) = |x|p + |y|p, t = t(x, y) := p
√
w and gsoc(x) := |x|p.

Then, the following three matrices

∇gsoc(t)−∇gsoc(x),

∇gsoc(t)−∇gsoc(y),

(∇gsoc(t)−∇gsoc(x)) (∇gsoc(t)−∇gsoc(y))

are all positive semi-definite for p = n
2

with n ∈ N.

Proof. From the expression of ∇gsoc(x) in Lemma 3.29, that is, (3.140)-(3.141), we know

that the eigenvalues of ∇gsoc(x) for x2 6= 0 are

b(x)− c(x), a(x), · · · , a(x), and b(x) + c(x).

Let w := (w1, w2) ∈ IR× IRn−1. Then, applying (3.136) gives

w1 =
|λ2(x)|p + |λ1(x)|p

2
+
|λ2(y)|p + |λ1(y)|p

2

w2 =
|λ2(x)|p − |λ1(x)|p

2
x̄2 +

|λ2(y)|p − |λ1(y)|p
2

ȳ2,

where x̄2 = x2
‖x2‖ if x2 6= 0, and otherwise x̄2 is an arbitrary vector in IRn−1 satisfying

‖x̄2‖ = 1. Similar situation applies for ȳ2. Thus, we will proceed the proof by discussing

two cases: w2 = 0 or w2 6= 0.
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Case 1. For w2 = 0, we have ∇gsoc(t) = p q
√
w1I where

w1 =
|λ2(x)|p + |λ1(x)|p

2
+
|λ2(y)|p + |λ1(y)|p

2
. (5.60)

Under the condition of w2 = 0, there are the following two subcases.

(i) If x2 = 0, then w1 = |x1|p+ |λ2(y)|p+|λ1(y)|p
2

, which implies that p q
√
w1 ≥ p sgn(x1)|x1|p−1.

Hence, we see that the matrix ∇gsoc(t) − ∇gsoc(x) is positive semi-definite. Indeed, if

x 6= 0, ∇gsoc(t)−∇gsoc(x) is positive definite.

(ii) If x2 6= 0, it follows from w2 = 0 that∣∣∣∣ |λ2(x)|p − |λ1(x)|p
2

∣∣∣∣ =

∣∣∣∣ |λ2(y)|p − |λ1(y)|p
2

∣∣∣∣ . (5.61)

We want to prove that the matrix ∇gsoc(t) − ∇gsoc(x) is positive semi-definite. It is

sufficient to show that

p q
√
w1 ≥ max {b(x)− c(x), a(x), b(x) + c(x)} .

It is obvious that p q
√
w1 − (b(x) − c(x)) > 0 when λ1(x) < 0. When λ1(x) ≥ 0, using

(5.60) and λ2(x) ≥ λ1(x), we have

p q
√
w1 − (b(x)− c(x))

≥ p q
√
|λ1(x)|p − p sgn(λ1(x))|λ1(x)|p−1

≥ 0.

Next, we verify that p q
√
w1−a(x) ≥ 0. For |λ1(x)| ≥ |λ2(x)|, it is clear that p q

√
w1−a(x) ≥

0. For |λ1(x)| < |λ2(x)|, it follows from λ2(x) ≥ λ1(x) that x1 > 0, which yields

|λ2(x)|p − |λ1(x)|p
λ2(x)− λ1(x)

≤ λ2(x)p − |λ1(x)|p
λ2(x)− |λ1(x)| .

Let p = n
m

(n,m ∈ N), a = λ2(x)
1
m and b = |λ1(x)| 1m . From p > 1, it follows that n > m.

Then, we have 0 ≤ b < a and

a(x) =
an − bn
am − bm =

an−1 + an−2b+ · · ·+ abn−2 + bn−1

am−1 + am−2b+ · · ·+ abm−2 + bm−1
.

Now, letting f(v) = an−vn
am−vm with v ∈ [0, a], we obtain

f ′(v) =
−nvn−1(am − vm) +mvm−1(an − vn)

(am − vm)2
.

In addition, it follows from f ′(v) = 0 that

an − vn
am − vm =

n

m
vn−m.
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Since f(0) = an

am
= an−m with v = 0 and f(a) = n

m
an−m with v = a, it is easy to verify

that f(b) ≤ n
m
an−m for 0 ≤ b < a, i.e.,

|λ2(x)|p − |λ1(x)|p
λ2(x)− λ1(x)

≤ p |λ2(x)|p−1.

Hence, we have

p q
√
w1 − a(x)

≥ p q
√

max{|λ2(x)|p, |λ1(x)|p}+ min{|λ2(y)|p, |λ1(y)|p}

−|λ2(x)|p − |λ1(x)|p
λ2(x)− λ1(x)

≥ p q
√
λ2(x)p − p|λ2(x)|p−1

≥ 0,

where the first inequality holds due to (5.61). Lastly, we also see that

p q
√
w1 − (b(x) + c(x))

≥ p q
√

max{|λ2(x)|p, |λ1(x)|p}+ min{|λ2(y)|p, |λ1(y)|p}
−p sgn(λ2(x))|λ2(x)|p−1

≥ p q
√

max{|λ2(x)|p, |λ1(x)|p} − p sgn(λ2(x))|λ2(x)|p−1

≥ 0.

To sum up, under this case x2 6= 0, we prove that the matrix ∇gsoc(t) − ∇gsoc(x) is

positive semi-definite.

Case 2. For w2 6= 0, from the expression of t(x, y) and the properties of the spectral

values of the vector-valued function |x|p with p = n
2

for n ∈ N, all the eigenvalues of the

matrix ∇gsoc(t) are

b(t)− c(t) ≤ a(t) ≤ b(t) + c(t). (5.62)

When x2 = 0, we note that

b(t)− c(t)− p sgn(x1)|x1|p−1

= p
[
p
√
λ1(w)

]p−1

− p sgn(x1)|x1|p−1

= p

[ |λ2(x)|p + |λ1(x)|p
2

+
|λ2(y)|p + |λ1(y)|p

2

−
∥∥ |λ2(x)|p − |λ1(x)|p

2
x̄2 +

|λ2(y)|p − |λ1(y)|p
2

ȳ2

∥∥] p−1
p

−p sgn(x1)|x1|p−1

≥ p |x1|p−1 − p sgn(x1)|x1|p−1

≥ 0,
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where ȳ2 denotes ȳ2 = y2
‖y2‖ when y2 6= 0, and otherwise ȳ2 is an arbitrary vector in IRn−1

satisfying ‖ȳ2‖ = 1. Now, applying the relation of the eigenvalues in (5.62), we have

b(t) + c(t) ≥ a(t) ≥ p sgn(x1)|x1|p−1,

which implies that the matrix ∇gsoc(t)−∇gsoc(x) is positive semi-definite.

When x2 6= 0, we also note that

b(t)− c(t)− (b(x)− c(x)) = p
[
p
√
λ1(w)

]p−1

− p sgn(λ1(x1)) |λ1(x1)|p−1 .

For λ1(x) < 0, it is clear that b(t) − c(t) − (b(x) − c(x)) ≥ 0. For λ1(x) ≥ 0, we have

λ2(x) ≥ λ1(x) ≥ 0, which leads to

λ1(w)

=
|λ2(x)|p + |λ1(x)|p

2
+
|λ2(y)|p + |λ1(y)|p

2

−
∥∥∥∥ |λ2(x)|p − |λ1(x)|p

2
x̄2 +

|λ2(y)|p − |λ1(y)|p
2

ȳ2

∥∥∥∥
≥ |λ2(x)|p + |λ1(x)|p

2
− |λ2(x)|p − |λ1(x)|p

2

+
|λ2(y)|p + |λ1(y)|p

2
−
∣∣∣∣ |λ2(y)|p − |λ1(y)|p

2

∣∣∣∣
≥ |λ1(x)|p.

Thus, it follows that b(t)− c(t)− (b(x)− c(x)) ≥ 0. Moreover, since t �K |x|, by Lemma

5.10 and the eigenvalue of |x| being |λ1(x)| and |λ2(x)|, we have

λ2(t) ≥ max{|λ1(x)|, |λ2(x)|} and λ1(t) ≥ min{|λ1(x)|, |λ2(x)|}. (5.63)

When p = n
2

with n ∈ N, then, we have

a(t)− a(x) =
λ2(t)

n
2 − λ1(t)

n
2

λ2(t)− λ1(t)
− |λ2(x)|n2 − |λ1(x)|n2

λ2(x)− λ1(x)
.

If |λ2(x)| < |λ1(x)|, it is obvious that a(t) − a(x) ≥ 0. If |λ2(x)| ≥ |λ1(x)|, in light of

λ2(x) ≥ λ1(x), we obtain that x1 ≥ 0 and λ2(x) ≥ 0. Now, let

a := λ2(t)
1
2 , b := λ1(t)

1
2 , c := λ2(x)

1
2 and d := |λ1(t)| 12 .
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Then, we obtain that

a(t)− a(x)

=
an − bn
a2 − b2

− cn − dn
c2 − d2

=
(an−1 + an−2b+ · · ·+ abn−2 + bn−1)(c+ d)

(a+ b)(c+ d)

− (a+ b)(cn−1 + cn−2d+ · · ·+ cdn−2 + dn−1)

(a+ b)(c+ d)

=
an−1c+ bc(an−2 + an−3b+ · · ·+ abn−3 + bn−2)

(a+ b)(c+ d)

+
ad(an−2 + an−3b+ · · ·+ abn−3 + bn−2) + bn−1d

(a+ b)(c+ d)

− ac
n−1 + ad(cn−2 + cn−3d+ · · ·+ cdn−3 + dn−2)

(a+ b)(c+ d)

− bc(c
n−2 + cn−3d+ · · ·+ cdn−3 + dn−2) + bdn−1

(a+ b)(c+ d)
,

which together with (5.63) implies that

a ≥ c, b ≥ d ≥ 0 and a(t)− a(x) ≥ 0.

In addition , we also verity that

b(t) + c(t)− (b(x) + c(x)) = p(λ2(t))p−1 − p sgn(λ2(x))|λ2(x)|p−1 ≥ 0.

Therefore, for any x ∈ IRn, we have

xT(∇gsoc(t)−∇gsoc(x))x

= xT∇gsoc(t)x− xT∇gsoc(x)x

= [b(t)− c(t) + (n− 2)a(t) + b(t) + c(t)]xTx

− [b(x)− c(x) + (n− 2)a(x) + b(x) + c(x)]xTx

≥ 0,

which shows that the matrix ∇gsoc(t)−∇gsoc(x) is positive semi-definite.

With the same arguments, we can verify that the matrix ∇gsoc(t) − ∇gsoc(y) is also

positive semi-definite.

Finally, using the properties of eigenvalues of symmetric matrix product, i.e.,

λi(AB) ≥ λi(A)λmin(B), i = 1, · · · , n, ∀A,B ∈ Sn×n,

where Sn×n denotes n order symmetric matrix, we easily achieve that the matrix (∇gsoc(t)−
∇gsoc(x))(∇gsoc(t)−∇gsoc(y)) is also positive semi-definite. �
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Remark 5.3. From the above proof of Lemma 5.11, when x 6= 0 and y 6= 0, we have the

matrices

∇gsoc(t)−∇gsoc(x), ∇gsoc(t)−∇gsoc(y), (∇gsoc(t)−∇gsoc(x)) (∇gsoc(t)−∇gsoc(y))

are all positive definite.

Proposition 5.30. Let Ψp
FB

be defined as in (5.58).

(a) The matrix ∇gsoc(x) is positive definite for all 0 6= x ∈ K.

(b) The function Ψp
FB

for p ∈ (1, 4) is continuously differentiable everywhere. Moreover,

∇Ψp
FB

(u) = ∇H(u)H(u) where

∇H(u) =

 AT ∇xL(x, y, z) −∇g(x)V1

0 −A 0

0 ∇g(x)T V2

 (5.64)

with

V1 =


0 if w(z,−g(x)) = |z|p + | − g(x)|p = 0,

∇gsoc(x)∇gsoc(t)−1 − I if w(z,−g(x)) ∈ int(K),
sgn(−g1(x))|−g1(x)|p−1

q
√
|−g1(x)|p+|z1|p

− 1 if w(z,−g(x)) ∈ ∂K\{0}.

and

V2 =


0 if w(z,−g(x)) = |z|p + | − g(x)|p = 0,

∇gsoc(z)∇gsoc(t)−1 − I if w(z,−g(x)) ∈ int(K),
sgn(z1)|z1|p−1

q
√
|−g1(x)|p+|z1|p

− 1 if w(z,−g(x)) ∈ ∂K\{0}.

with t := p
√
w(z,−g(x)).

Proof. (a) For all 0 6= x ∈ K, if x2 = 0, it is obvious that the matrix ∇gsoc(x) =

p sgn(x1)|x1|p−1I is positive definite. If x 6= 0, from the expression of ∇gsoc(x) in Lemma

3.29 and x ∈ K, we have b(x) > 0. In order to prove that the matrix ∇gsoc(x) is positive

definite, it suffices to show that the Schur complement of b(x) in the matrix ∇gsoc(x) is

positive definite. In fact, from the expression of ∇gsoc(x), the Schur complement has the

form

a(x)I + (b(x)− a(x))x̄2x̄
T
2 −

c2(x)

b(x)
x̄2x̄

T
2

= a(x)
(
I − x̄2 x̄

T
2

)
+ b(x)

(
1− c2(x)

b(x)

)
x̄2x̄

T
2 .
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Since x ∈ K, we have λ2(x) ≥ λ1(x) ≥ 0, which implies that a(x) > 0 and b(x) > c(x) ≥
0. Note that the matrices I − x̄2x̄

T
2 and x̄2x̄

T
2 are positive semi-definite. Thus, the Schur

complement is positive definite. Further, we obtain that ∇gsoc(x) is positive definite for

all 0 6= x ∈ K.

(b) From Proposition 3.28, we know that the function ψp
FB

for p ∈ (1, 4) is continuously

differentiable everywhere. Hence, in view of the definition of the function Ψp
FB

and the

chain rule, the expression of ∇Ψp
FB

(u) is obtained. �

Assumption 5.2. (a) The SOCP problem (5.43) satisfies the Slater’s condition.

(b) The matrix
[
AT ∇g(x)

]
is full column rank, and the matrix ∇xL(x, y, z) is positive

definite on the null space {u |Au = 0} of A.

We also briefly comment on Assumption 5.2(a) and (b). Assumption 5.2(a) corre-

sponds to Slater’s condition, a standard and widely used regularity condition in the field

of optimization. When the constraint function g is linear, Assumption 5.2(b) is equivalent

to the commonly used condition that ∇2f(x) is positive definite.

Proposition 5.31. Let p = n
2
∈ (1, 4) with n ∈ N. Then, the following hold.

(a) Under the condition of Assumption 5.2, ∇H(u) is nonsingular for u = (x, y, z) ∈
IRn × IRm × IRl with (z,−g(x)) 6= 0.

(b) Every stationary point of Ψp is a global minimizer of problem (5.58) for (z,−g(x)) 6=
0.

(c) Ψp(u(t)) is nonincreasing with respect to t.

Proof. (a) Suppose ξ = (s, t, v) ∈ IRn× IRm× IRl. From the expression (5.64) of ∇H(u)

in Proposition 5.30, to show the nonsingularity of ∇H(u), it is enough to prove that

∇H(u)ξ = 0 =⇒ s = 0, t = 0 and v = 0.

Indeed, by ∇H(u)ξ = 0, we have

−At = 0, ATs+∇xL(x, y, z) t−∇g(x)V1v = 0 (5.65)

and

∇g(x)Tt+ V2v = 0. (5.66)

From (5.65), it follows that

tT∇xL(x, y, z) t− tT∇g(x)V1v = 0. (5.67)

Moveover, by equation (5.66), we obtain

tT∇g(x) = −vTV T
2 . (5.68)
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Then, combining (5.67) and (5.68), this yields that

tT∇xL(x, y, z) t+ vTV T
2 V1v = 0.

By Lemma 5.11 and Assumption 5.2(b), it is not hard to see that t = 0. In addition,

from (5.65) and (5.66), we have

ATs−∇g(x)V1v = 0 and V2v = 0.

Due to Assumption 5.2(b) again, we also obtain

s = 0 and V1v = 0.

Thus, combining Lemma 5.11 with the expression V1 and V2 in Proposition 5.30, we have

v = 0. Therefore, ∇H(u)T is nonsingular.

(b) Suppose that u∗ is a stationary point of Ψp
FB

. This says ∇Ψp
FB

(u∗) = 0, and from

Proposition 5.30, we have ∇H(u∗)H(u∗) = 0. According to part(a), ∇H(u) is nonsin-

gular. Hence, it follows that H(u∗) = 0, i.e., Ψp
FB

(u∗) = 0, which says u∗ is a global

minimizer of (5.58).

(c) By the definition of Ψp
FB

(u(t)) and (5.59), it is clear that

dΨp
FB

(u(t))

dt
= ∇Ψp

FB
(u(t))

du(t)

dt
= −ρ

∥∥∇Ψp
FB

(u(t))
∥∥2 ≤ 0.

Therefore, Ψp
FB

(u(t)) is nonincreasing with respect to t. �

Proposition 5.32. Assume that ∇H(u) is nonsingular for any u ∈ IRn× IRm× IRl and

p = n
2
∈ (1, 4) with n ∈ N. Then,

(a) (x∗, y∗, z∗) satisfies the KKT conditions (5.44) if and only if (x∗, y∗, z∗) is an equi-

librium point of the neural network (5.59);

(b) under the Slater’s condition, x∗ is a solution of the problem (5.43) if and only if

(x∗, y∗, z∗) is an equilibrium point of the neural network (5.59).

Proof. (a) It is easy to prove that (x∗, y∗, z∗) satisfies the KKT conditions (5.44) if and

only if H(u∗) = 0 where u∗ = (x∗, y∗, z∗)T. According to the condition that ∇H(u) is

nonsingular, we have that H(u∗) = 0 if and only if ∇Ψp
FB

(u∗) = ∇H(u∗)TH(u∗) = 0.

Then, the desired result follows.

(b) Under Slater’s condition, it is well established that x∗ is a solution to the problem

(5.43) if and only if there exist y∗ and z∗ such that (x∗, y∗, z∗) satisfies the KKT conditions

(5.44). Therefore, by part (a), it follows that (x∗, y∗, z∗) is an equilibrium point of the

neural network (5.59). �
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Proposition 5.33. For any fixed p = n
2
∈ (1, 4) with n ∈ N, the following hold.

(a) For any initial point u0 = u(t0), there exists a unique continuously maximal solution

u(t) with t ∈ [t0, τ) for the neural network (5.59), where [t0, τ) is the maximal

interval of existence.

(b) If the level set L(u0) :=
{
u |Ψp

FB
(u) ≤ Ψp

FB
(u0)

}
is bounded, then τ can be extended

to +∞.

Proof. Again, the proof is exactly the same as the one for Proposition 5.3, and therefore

omitted here. �

Proposition 5.34. Assume that ∇H(u) is nonsingular and u∗ is an isolated equilibrium

point of the neural network (5.59). Then, the solution of the neural network (5.59) with

any initial point u0 is Lyapunov stable.

Proof. From Lemma 5.3, we only need to argue that there exists a Lyapunov function

over some neighborhood Ω of u∗. To this end, we consider the smoothed merit function

for p = n
2
∈ (1, 4) with n ∈ N

Ψp
FB

(u) =
1

2
‖H(u)‖2.

Since u∗ is an isolated equilibrium point of (5.59), there is a neighborhood Ω of u∗ such

that

∇Ψp
FB

(u∗) = 0 and ∇Ψp
FB

(u(t)) 6= 0, ∀u(t) ∈ Ω\{u∗}.
By the nonsingularity of∇H(u) and the definition of Ψp

FB
, it is easy to see that Ψp

FB
(u∗) =

0. In view of the definition of Ψp
FB

, we claim that Ψp
FB

(u(t)) > 0 for any u(t) ∈ Ω\{u∗},
where Ω is a neighborhood of u∗. If not, that is, Ψp(u(t)) = 0, it follows that H(u(t)) =

0. Then, we have ∇Ψp
FB

(u(t)) = 0, which contradicts with the assumption that u∗ is

an isolated equilibrium point of (5.59). Thus, Ψp
FB

(u(t)) > 0 for any u(t) ∈ Ω\{u∗}.
Moreover, by the proof of Lemma 5.31(c), we know that for any u(t) ∈ Ω

dΨp
FB

(u(t))

dt
= ∇Ψp

FB
(u(t))

du(t)

dt
= −ρ

∥∥∇Ψp
FB

(u(t))
∥∥2 ≤ 0. (5.69)

Therefore, the function Ψp
FB

is a Lyapunov function over Ω. This implies that u∗ is

Lyapunov stable for the neural network (5.59). �

Proposition 5.35. Assume that ∇H(u) is nonsingular and u∗ is an isolated equilibrium

point of the neural network (5.59). Then, u∗ is asymptotically stable for neural network

(5.59).

Proof. From the proof of Proposition 5.34, we consider again the Lyapunov function

Ψp
FB

for p = n
2
∈ (1, 4) with n ∈ N. By Lemma 5.3 again, we only need to verify that the

Lyapunov function Ψp
FB

over some neighborhood Ω of u∗ satisfies

dΨp
FB

(u(t))

dt
< 0, ∀u(t) ∈ Ω\{u∗}. (5.70)
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In fact, by using (5.69) and the definition of the isolated equilibrium point, it is not hard

to check that the equation (5.70) is true. Hence, u∗ is asymptotically stable. �

Proposition 5.36. Assume that u∗ is an isolated equilibrium point of the neural network

(5.59). If ∇H(u)T is nonsingular for any u = (x, y, z) ∈ IRn × IRm × IRl, then u∗ is

exponentially stable for the neural network (5.59).

Proof. From the definition of H(u), Proposition 3.27 and Proposition 3.28, we have

H(u) = H(u∗) +∇H(u(t))T(u− u∗) + o(‖u− u∗‖), ∀u ∈ Ω\{u∗}, (5.71)

where ∇H(u(t))T ∈ ∂H(u(t)) and Ω is the neighborhood of u∗. Now, letting

g(u(t)) = ‖u(t)− u∗‖2, t ∈ [t0,∞),

we have

dg(u(t))

dt
= 2(u(t)− u∗)T du(t)

dt
= −2ρ(u(t)− u∗)T∇Ψp

FB
(u(t)) (5.72)

= −2ρ(u(t)− u∗)T∇H(u)H(u).

Substituting (5.71) into (5.72) yields

dg(u(t))

dt
= −2ρ(u(t)− u∗)T∇H(u(t))(H(u∗)

+∇H(u(t))T(u(t)− u∗) + o(‖u(t)− u∗‖))
= −2ρ(u(t)− u∗)T∇H(u(t))∇H(u(t))T(u(t)− u∗)

+o(‖u(t)− u∗‖2).

Since ∇H(u) and ∇H(u)T are nonsingular, we claim that there exists an κ > 0 such that

(u(t)− u∗)T∇H(u)∇H(u)T(u(t)− u∗) ≥ κ‖u(t)− u∗‖2. (5.73)

Otherwise, if (u(t)− u∗)T∇H(u(t))∇H(u(t))T(u(t)− u∗) = 0, it implies that

∇H(u(t))T(u(t)− u∗) = 0.

Indeed, from the nonsingularity of H(u), we have u(t) − u∗ = 0, i.e., u(t) = u∗, which

contradicts with the assumption of u∗ that is an isolated equilibrium point. Therefore,

there exists an κ > 0 such that (5.73) holds. Moreover, for o(‖u(t)−u∗‖2), there is ε > 0

such that o(‖u(t)− u∗‖2) ≤ ε‖u(t)− u∗‖2. Hence,

dg(u(t))

dt
≤ (−2ρκ+ ε)‖u(t)− u∗‖2 = (−2ρκ+ ε)g(u(t)).
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This implies

g(u(t)) ≤ e(−2ρκ+ε)tg(u(t0)),

which means

‖u(t)− u∗‖ ≤ e−ρκ+ ε
2‖u(t0)− u∗‖.

Thus, u∗ is exponentially stable for the neural network (5.59). �

Proposition 5.32 suggests that the parameter p, typically set to p = n
2
∈ (1, 4), must

be chosen within this interval due to the theoretical smoothness of Ψp
FB

being established

only for p ∈ (1, 4) in the SOC setting. This raises a natural question: can the results be

extended to more general values of p? In other words, is it possible to relax the condition

p = n
2
∈ (1, 4) to include a broader range of real values? This remains an open question

and warrants further investigation.

For simulation results of the two neural networks considered in this section for solving

the general convex SOCP (5.43), we refer the reader to [151, 152]. In the next section, we

broaden our focus to the second-order cone constrained variational inequality (SOCCVI)

problem, which generalizes both SOCP formulations (5.27) and (5.43) as special cases.

5.2.3 Neural Networks for SOCCVI

The variational inequality (VI) problem, originally introduced by Stampacchia and col-

laborators [90, 139, 145, 191, 192], has garnered significant attention from researchers

across diverse fields, including engineering, mathematics, optimization, transportation

science, and economics; see, for example, [1, 108, 122]. It is well known that VIs encom-

pass a wide array of mathematical problems, such as systems of equations, complementar-

ity problems, and certain classes of fixed-point problems. For comprehensive discussions

on finite-dimensional VI problems and their associated solution methods, we refer the

interested reader to the authoritative survey by Facchinei and Pang [63], the monograph

by Patriksson [175], the survey article by Harker and Pang [89], and the Ph.D. thesis of

Hammond [87], along with the references therein.

In this section, we focus on solving the second-order cone constrained variational

inequality (SOCCVI) problem, in which the feasible set is defined by a Cartesian product

of second-order cones (SOCs). Specifically, the SOCCVI problem seeks a point x ∈ C
such that

〈F (x), y − x〉 ≥ 0, ∀y ∈ C, (5.74)

where the feasible set C is finitely representable as

C = {x ∈ IRn |h(x) = 0, −g(x) ∈ K}. (5.75)

Here 〈·, ·〉 denotes the Euclidean inner product, F : IRn → IRn, h : IRn → Rl and

g : IRn → IRm are continuously differentiable functions and K is a Cartesian product of



506CHAPTER 5. DYNAMICALMETHODS USING COMPLEMENTARITY FUNCTIONS

second-order cones, expressed as

K = Km1 ×Km2 × · · · × Kmp , (5.76)

where l ≥ 0, m1,m2, · · · ,mp ≥ 1, m1 +m2 + · · ·+mp = m, and

Kmi :=
{

(xi1, xi2, · · · , ximi)T ∈ IRmi | ‖(xi2, · · · , ximi)‖ ≤ xi1
}

with ‖ · ‖ denoting the Euclidean norm and K1 the set of nonnegative reals IR+. A

special case of equation (5.76) is K = IRn
+, namely the nonnegative orthant in IRn, which

corresponds to p = n and m1 = · · · = mp = 1. When h is affine, an important special case

of the SOCCVI problem corresponds to the KKT conditions of the convex second-order

cone program (CSOCP):

min f(x)

s.t. Ax = b, −g(x) ∈ K, (5.77)

where A ∈ IRl×n has full row rank, b ∈ IRl, g : IRn → IRm and f : IRn → IR. Furthermore,

when f is a convex twice continuously differentiable function, problem (5.77) is equivalent

to the following SOCCVI problem: Find x ∈ C satisfying

〈∇f(x), y − x〉 ≥ 0, ∀y ∈ C,

where

C = {x ∈ IRn |Ax− b = 0, −g(x) ∈ K}.
Analogous to other optimization problems, the SOCCVI problem (5.74)-(5.75) can be

solved by analyzing its KKT conditions:
L(x, µ, λ) = 0,

〈g(x), λ〉 = 0, −g(x) ∈ K, λ ∈ K,
h(x) = 0,

(5.78)

where

L(x, µ, λ) = F (x) +∇h(x)µ+∇g(x)λ (5.79)

is the variational inequality Lagrangian function, µ ∈ IRl and λ ∈ IRm.

Recall that the Fischer-Burmeister function associated with SOC, which is semis-

mooth and defined by

φ
FB

(a, b) =
(
a2 + b2

)1/2 − (a+ b).

Accordingly, we consider the smoothed Fischer-Burmeister function given by

φε
FB

(a, b) =
(
a2 + b2 + ε2e

)1/2 − (a+ b) (5.80)

with ε ∈ IR+ and e = (1, 0, · · · , 0)T ∈ IRn.
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Lemma 5.12. Let φε
FB

be defined as in (5.80) and ε 6= 0. Then, φε
FB

is continuously

differentiable everywhere and

∇εφ
ε
FB

(a, b) = eTL−1
z Lεe, ∇aφ

ε
FB

(a, b) = L−1
z La − I, ∇bφ

ε
FB

(a, b) = L−1
z Lb − I,

where z = (a2 + b2 + ε2e)
1/2
, I is identity mapping and La =

[
a1 aT2
a2 a1In−1

]
for a =

(a1; a2) ∈ IR× IRn−1.

Proof. The proof follows a similar argument to that of Lemma 3.10(a), which computes

the gradient of φε
FB

, and is therefore omitted here. �

By employing the smoothed Fischer–Burmeister function defined in (5.80), the KKT

system (5.78) can be reformulated as the following unconstrained smooth minimization

problem:

min Ψ(w) :=
1

2
‖S(w)‖2. (5.81)

Here Ψ(w), w = (ε, x, µ, λ) ∈ IR1+n+l+m, is a merit function, and S(w) is defined by

S(w) =



ε

L(x, µ, λ)

−h(x)

φε
FB

(−gm1(x), λm1)
...

φε
FB

(−gmp(x), λmp)


,

with gmi(x), λmi ∈ IRmi . In other words, Ψ(w) given in (5.81) is a smooth merit function

for the KKT system (5.78). Based on the smooth minimization problem (5.81), it is

natural to propose the following neural network model for solving the KKT system (5.78)

associated with the SOCCVI problem:

dw(t)

dt
= −ρ∇Ψ(w(t)), w(t0) = w0, (5.82)

where ρ > 0 is a scaling factor. In fact, we can also adopt another merit function which

is based on the FB function without the element ε. In other words, we can define

S(x, µ, λ) =


L(x, µ, λ)

−h(x)

φ
FB

(−gm1(x), λm1)
...

φ
FB

(−gmp(x), λmp)

 . (5.83)

The neural network model (5.82) can also be derived directly, owing to the smoothness

of the squared Fischer–Burmeister function ‖φ
FB
‖2. However, it is observed that the
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gradient mapping ∇Ψ involves more intricate expressions, particularly because the term

(−gmi(x))2 + λ2
mi

may lie either on the boundary or in the interior of the second-order

cone, as discussed in Proposition 3.4. This leads to increased computational cost in prac-

tical implementations. Therefore, introducing the one-dimensional smoothing parameter

ε not only leaves the theoretical results unaffected, but also simplifies the numerical

computations.

To facilitate the analysis of the properties of the neural network model (5.82), we

impose the following assumption, which is employed to avoid the singularity of ∇S(w);

see [201].

Assumption 5.3. (a) the gradients {∇hj(x) | j = 1, · · · , l} ∪ {∇gi(x) | i = 1, · · · ,m}
are linear independent.

(b) ∇xL(x, µ, λ) is positive definite on the null space of the gradients {∇hj(x) | j =

1, · · · , l}.

When the SOCCVI problem (5.74)–(5.75) arises as the KKT system of a convex

second-order cone program (CSOCP) of the form (5.77), where both h and g are linear

functions, Assumption 5.3(b) becomes equivalent to the commonly used condition that

∇2f(x) is positive definite; see, for example, [215, Corollary 1].

Proposition 5.37. Let Ψ : IR1+n+l+m → IR+ be defined as in (5.81). Then, Ψ(w) ≥ 0

for w = (ε, x, µ, λ) ∈ IR1+n+l+m and Ψ(w) = 0 if and only if (x, µ, λ) solves the KKT

system (5.78).

Proof. The proof is straightforward. �

Proposition 5.38. Let Ψ : IR1+n+l+m → IR+ be defined as in (5.81). Then, the following

results hold.

(a) The function Ψ is continuously differentiable everywhere with

∇Ψ(w) = ∇S(w)S(w),

where

∇S(w) =


1 0 0 diag

{
∇εφ

ε
FB

(−gmi(x), λmi)
}p
i=1

0 ∇xL(x, µ, λ)T −∇h(x) −∇g(x)diag
{
∇gmi

φε
FB

(−gmi(x), λmi)
}p
i=1

0 ∇h(x)T 0 0

0 ∇g(x)T 0 diag
{
∇λmi

φε
FB

(−gmi(x), λmi)
}p
i=1


.

(b) Suppose that assumption 5.3 holds. Then, ∇S(w) is nonsingular for any w ∈
IR1+n+l+m. Moreover, if (0, x, µ, λ) ∈ IR1+n+l+m is a stationary point of Ψ, then

(x, µ, λ) ∈ IRn+l+m is a KKT triple of the SOCCVI problem.
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(c) Ψ(w(t)) is nonincreasing with respect to t.

Proof. Part(a) follows from the chain rule. For part(b), we know that ∇S(w) is nonsin-

gular if and only if the following matrix∇xL(x, µ, λ)T −∇h(x) −∇g(x)diag
{
∇gmi

φε
FB

(−gmi(x), λmi)
}p
i=1

∇h(x)T 0 0

∇g(x)T 0 diag
{
∇λmi

φε
FB

(−gmi(x), λmi)
}p
i=1


is nonsingular. In fact, from [201, Theorem 3.1] and [201, Proposition 4.1], the above

matrix is nonsingular and (x, µ, λ) ∈ IRn+l+m is a KKT triple of the SOCCVI problem

if (0, x, µ, λ) ∈ IR1+n+l+m is a stationary point of Ψ. It remains to show part(c). By the

definition of Ψ(w) and (5.82), it is not difficult to compute

dΨ(w(t))

dt
= ∇Ψ(w(t))T

dw(t)

dt
= −ρ ‖∇Ψ(w(t))‖2 ≤ 0. (5.84)

Therefore, Ψ(w(t)) is a monotonically decreasing function with respect to t. �

We are now prepared to analyze the behavior of the solution trajectory of (5.82)

and to establish the properties corresponding to three types of stability for an isolated

equilibrium point.

Proposition 5.39. (a) If (x, µ, λ) ∈ IRn+l+m is a KKT triple of SOCCVI problem, then

(0, x, µ, λ) ∈ IR1+n+l+m is an equilibrium point of (5.82).

(b) If Assumption 5.3 holds and (0, x, µ, λ) ∈ IR1+n+l+m is an equilibrium point of (5.82),

then (x, µ, λ) ∈ IRn+l+m is a KKT triple of SOCCVI problem.

Proof. (a) From Proposition 5.37 and (x, µ, λ) ∈ IRn+l+m being a KKT triple of SOCCVI

problem, it is clear that S(0, x, µ, λ) = 0. Hence, ∇Ψ(0, x, µ, λ) = 0. Besides, by

Proposition 5.38, we know that if ε 6= 0, then ∇Ψ(ε, x, µ, λ) 6= 0. This shows that

(0, x, µ, λ) is an equilibrium point of (5.82).

(b) It follows from (0, x, µ, λ) ∈ IR1+n+l+m being an equilibrium point of (5.82) that

∇Ψ(0, x, µ, λ) = 0. In other words, (0, x, µ, λ) is the stationary point of Ψ. Then, the

result is a direct consequence of Proposition 5.38(b). �

Proposition 5.40. (a) For any initial state w0 = w(t0), there exists exactly one maxi-

mal solution w(t) with t ∈ [t0, τ(w0)) for the neural network (5.82).

(b) If the level set L(w0) = {w ∈ IR1+n+l+m |Ψ(w) ≤ Ψ(w0)} is bounded, then τ(w0) =

+∞.

Proof. (a) Since S is continuous differentiable, ∇S is continuous, and therefore, ∇S is

bounded on a local compact neighborhood of w. That means ∇Ψ(w) is locally Lipschitz

continuous. Thus, applying Lemma 5.1 leads to the desired result.

(b) This proof is similar to the one of Case(i) in Proposition 5.3(b). �
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Remark 5.4. We point out that whether the level sets

L(Ψ, γ) := {w ∈ IR1+n+l+m |Ψ(w) ≤ γ}

are bounded for all γ ∈ IR is still open. It seems that there needs more subtle properties

of F , h and g to finish it.

Proposition 5.41. (a) Let w(t) with t ∈ [t0, τ(w0)) be the unique maximal solution to

(5.82). If τ(w0) = +∞ and {w(t)} is bounded, then limt→∞∇Ψ(w(t)) = 0.

(b) If Assumption 5.3 holds and (ε, x, µ, λ) ∈ IR1+n+l+m is the accumulation point of the

trajectory w(t), then (x, µ, λ) ∈ IRn+l+m is a KKT triple of SOCCVI problem.

Proof. With Proposition 5.38(b) and (c) and Proposition 5.39, the arguments are exactly

the same as those for [137, Corollary 4.3]. Thus, we omit them. �

Proposition 5.42. Let w∗ be an isolated equilibrium point of the neural network (5.82).

Then, the following results hold.

(a) w∗ is asymptotically stable.

(b) If Assumption 5.3 holds, then it is exponentially stable.

Proof. Since w∗ is an isolated equilibrium point of (5.82), there exists a neighborhood

Ω∗ ⊆ IR1+n+l+m of w∗ such that

∇Ψ(w∗) = 0 and ∇Ψ(w) 6= 0 ∀w ∈ Ω∗ \ {w∗}.

Next, we argue that Ψ(w) is indeed a Lyapunov function at x∗ over the set Ω∗ for (5.82) by

showing that the conditions in (5.2) are satisfied. First, notice that Ψ(w) ≥ 0. Suppose

that there is an w̄ ∈ Ω∗ \ {w∗} such that Ψ(w̄) = 0. Then, we can easily obtain that

∇Ψ(w̄) = 0, i.e., w̄ is also an equilibrium point of (5.82), which clearly contradicts the

assumption that w∗ is an isolated equilibrium point in Ω∗. Thus, we prove that Ψ(w) > 0

for any w ∈ Ω∗ \ {w∗}. This together with (5.84) shows that the condition in (5.2) are

satisfied. Because w∗ is isolated, from (5.84), we have

dΨ(w(t))

dt
< 0, ∀w(t) ∈ Ω∗ \ {w∗}.

This implies that w∗ is asymptotically stable. Furthermore, if Assumption 5.3 holds, we

can obtain that ∇S is nonsingular. In addition, we have

S(w) = S(w∗) +∇S(w∗)(w − w∗) + o(‖w − w∗‖), ∀w ∈ Ω∗ \ {w∗}. (5.85)
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From ‖S(w(t))‖ being a monotonically decreasing function with respect to t and (5.85),

we can deduce that

‖w(t)− w∗‖ ≤ ‖(∇S(w∗))−1‖‖S(w(t))− S(w∗)‖+ o(‖w(t)− w∗‖)
≤ ‖(∇S(w∗))−1‖‖S(w(t0))− S(w∗)‖+ o(‖w(t)− w∗‖)
≤ ‖(∇S(w∗))−1‖ [‖(∇S(w∗))‖‖w(t0)− w∗‖+ o(‖w(t0)− w∗‖)]

+o(‖w(t)− w∗‖).

That is,

‖w(t)− w∗‖ − o(‖w(t)− w∗‖)
≤ ‖(∇S(w∗))−1‖ [‖(∇S(w∗))‖‖w(t0)− w∗‖+ o(‖w(t0)− w∗‖)] .

The above inequality implies that the neural network (5.82) is also exponentially stable.

�

As demonstrated in Section 5.2.1, the cone projection function can also be utilized

to construct a neural network for solving the SOCCVI problem (5.74)–(5.75). To this

end, we begin by introducing some notation. Specifically, we define the function U :

IRn+l+m → IRn+l+m and the vector w as follows:

U(w) =

 L(x, µ, λ)

−h(x)

−g(x)

 , w =

 x

µ

λ

 , (5.86)

where L(x, µ, λ) = F (x)+∇h(x)µ+∇g(x)λ is the Lagrange function. To avoid confusion,

we emphasize that, for any w ∈ IRn+l+m, we have

wi ∈ IR, if 1 ≤ i ≤ n+ l,

wi ∈ IRmi−(n+l) , if n+ l + 1 ≤ i ≤ n+ l + p.

Then, we may write (5.86) as

Ui = (U(w))i = (L(x, µ, λ))i, wi = xi, i = 1, . . . , n,

Un+j = (U(w))n+j = −hj(x), wn+j = µj, j = 1, . . . , l,

Un+l+k = (U(w))n+l+k = −gk(x) ∈ IRmk , wn+l+k = λk ∈ IRmk , k = 1, . . . , p,

p∑
k=1

mk = m.

With this, the KKT conditions (5.78) can be further recast as

Ui = 0, i = 1, 2, . . . , n, n+ 1, . . . , n+ l,

〈UJ , wJ〉 = 0, UJ = (Un+l+1, Un+l+2, · · · , Un+l+p)
T ∈ K,

wJ = (wn+l+1, wn+l+2, · · · , wn+l+p)
T ∈ K.

(5.87)



512CHAPTER 5. DYNAMICALMETHODS USING COMPLEMENTARITY FUNCTIONS

Thus, (x∗, µ∗, λ∗) is a KKT triple for (5.74) if and only if (x∗, µ∗, λ∗) is a solution to (5.87).

It is well known that the nonlinear complementarity problem, which is denoted by

NCP(F,K) and to find an x ∈ IRn such that

x ∈ K, F (x) ∈ K and 〈F (x), x〉 = 0

where K is a closed convex set of IRn, is equivalent to the following VI(F,K) problem:

finding an x ∈ K such that

〈F (x), y − x〉 ≥ 0 ∀y ∈ K.

Furthermore, if K = IRn, then NCP(F,K) becomes the system of nonlinear equations

F (x) = 0.

Based on the above, solution of (5.87) is equivalent to solution of the following VI prob-

lem: find w ∈ K such that

〈U(w), v − w〉 ≥ 0, ∀v ∈ K, (5.88)

where K = IRn+l×K. In addition, by applying the Lemma 1.1(d), its solution is equivalent

to solution of below projection formulation

ΠK(w − U(w)) = w with K = IRn+l ×K, (5.89)

where function U and vector w are defined in (5.86). Now, according to (5.89), we give

the following neural network:

dw

dt
= ρ {ΠK(w − U(w))− w} , (5.90)

where ρ > 0. Note that K is a closed and convex set. For any w ∈ IRn+l+m, ΠK means

ΠK(w) =
[
ΠK(w1),ΠK(w2), · · · ,ΠK(wn+l),ΠK(wn+l+1),ΠK(wn+l+2), · · · ,ΠK(wn+l+p)

]
,

where

ΠK(wi) = wi, i = 1, · · · , n+ l,

ΠK(wn+l+j) = [λ1(wn+l+j)]+ · u(1)
wn+l+j + [λ2(wn+l+j)]+ · u(2)

wn+l+j , j = 1, · · · , p.

Here, for the sake of simplicity, we denote the vector wn+l+j by v for the moment, and

[·]+ is the scalar projection, λ1(v), λ2(v) and u
(1)
v , u

(2)
v are the spectral values and the

associated spectral vectors of v = (v1; v2) ∈ IR× IRmj−1, respectively, given by{
λi(v) = v1 + (−1)i‖v2‖,
u

(i)
v = 1

2

(
1, (−1)i v2

‖v2‖

)
,
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for i = 1, 2, see [41, 166].

The dynamical system described by (5.90) can be interpreted as a recurrent neural

network with a single-layer structure. To analyze the stability properties of (5.90), we be-

gin by introducing the following lemmas and proposition, which will form the foundation

of our subsequent analysis.

Lemma 5.13. Let L(x, µ, λ) be the Lagrangian function defined as in (5.79). If the

gradient of L(x, µ, λ) is positive semi-definite (respectively, positive definite), then the

gradient of U in (5.86) is positive semi-definite (respectively, positive definite).

Proof. Since we have

∇U(x, µ, λ) =

∇xL(x, µ, λ)T −∇h(x) −∇g(x)

∇h(x)T 0 0

∇g(x)T 0 0

 ,
for any nonzero vector d = (pT, qT, rT)T ∈ IRn+l+m, we obtain that

dT∇U(x, µ, λ)d =
(
pT qT rT

)∇xL(x, µ, λ)T −∇h(x) −∇g(x)

∇h(x)T 0 0

∇g(x)T 0 0

pq
r


= pT∇xL(x, µ, λ)p.

This leads to the desired results. �

Proposition 5.43. For any initial point w0 = (x0, µ0, λ0) with λ0 := λ(t0) ∈ K, there

exist a unique solution w(t) = (x(t), µ(t), λ(t)) for neural network (5.90), Moreover,

λ(t) ∈ K.

Proof. For simplicity, we assume K = Km. The analysis can be carried over to the

general case where K is the Cartesian product of second-order cones. Since F, h, g are

continuous differentiable, the function

F (w) := ΠK(w − U(w))− w with K = IRn+l ×Km (5.91)

is semi-smooth and Lipschitz continuous. Thus, there exists a unique solution w(t) =

(x(t), µ(t), λ(t)) for neural network (5.90). Therefore, it remains to show that λ(t) ∈ Km.

For convenience, we denote λ(t) := (λ1(t), λ2(t)) ∈ IR × IRm−1. To complete the proof,

we need to verify two things: (i) λ1(t) ≥ 0 and (ii) ‖λ2(t)‖ ≤ λ1(t). First, from (5.90),

we have
dλ

dt
+ ρλ(t) = ρΠKm(λ+ g(x)).

The solution of the above first-order ordinary differential equation is

λ(t) = e−ρ(t−t0)λ(t0) + ρe−ρt
∫ t

t0

ρeρsΠKm(λ+ g(x))ds. (5.92)
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If we let λ(t0) := (λ1(t0), λ2(t0)) ∈ IR × IRm−1 and denote ΠKm(λ + g(x)) as z(t0) :=

(z1(t0), z2(t0)), then (5.92) leads to

λ1(t) = e−ρ(t−t0)λ1(t0) + ρe−ρt
∫ t

t0

ρeρsz1(s)ds, (5.93)

λ2(t) = e−ρ(t−t0)λ2(t0) + ρe−ρt
∫ t

t0

ρeρsz2(s)ds. (5.94)

Due to both λ(t0) and z(t) belong to Km, there have λ1(t0) ≥ 0, ‖λ2(t0)‖ ≤ λ1(t0) and

‖z2(t)‖ ≤ z1(t). Therefore, λ1(t) ≥ 0 since both terms in the right-hand side of (5.93)

are nonnegative. In addition, from (5.94), it can be verified

‖λ2(t)‖ ≤ e−ρ(t−t0)‖λ2(t0)‖+ ρe−ρt
∫ t
t0
ρeρs‖z2(s)‖ds

≤ e−ρ(t−t0)λ1(t0) + ρe−ρt
∫ t
t0
ρeρsz1(s)ds

= λ1(t),

which implies that λ(t) ∈ Km �

Lemma 5.14. Let U(w), F (w) be defined as in (5.86) and (5.91), respectively. Suppose

w∗ = (x∗, µ∗, λ∗) is an equilibrium point of neural network (5.90) with (x∗, µ∗, λ∗) being

an KKT triple of SOCCVI problem. Then, the following inequality holds:

(F (w) + w − w∗)T (−F (w)− U(w)) ≥ 0. (5.95)

Proof. Notice that

(F (w) + w − w∗)T (−F (w)− U(w))

= [−w + ΠK(w − U(w)) + w − w∗]T [w − ΠK(w − U(w))− U(w)]

= [−w∗ + ΠK(w − U(w))]T [w − ΠK(w − U(w))− U(w)]

= − [w∗ − ΠK(w − U(w))]T [w − U(w)− ΠK(w − U(w))] .

Since w∗ ∈ K, applying Lemma 1.1(d) gives

[w∗ − ΠK(w − U(w))]T [w − U(w)− ΠK(w − U(w))] ≤ 0.

Thus, we have

(F (w) + w − w∗)T (−F (w)− U(w)) ≥ 0,

which is the desired result. �

Proposition 5.44. Let L(x, µ, λ) be the Lagrangian function defined as in (5.79) and

w(t) := (x(t), µ(t), λ(t). If ∇xL(w) is positive semi-definite (respectively, positive defi-

nite), the the solution of neural network (5.90) with initial point w0 = (x0, µ0, λ0) where

λ0 ∈ K is Lyapunov stable (respectively, asymptotically stable). Moreover, the solution

trajectory of neural network (5.90) is extendable to the global existence.
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Proof. Again, for simplicity, we assume K = Km. From Proposition 5.43, there exists

a unique solution w(t) = (x(t), µ(t), λ(t)) for neural network (5.90) and λ(t) ∈ Km. Let

w∗ = (x∗, µ∗, λ∗) be an equilibrium point of neural network (5.90). We define a Lyapunov

function as below:

V (w) := V (x, µ, λ) := −U(w)TF (w)− 1

2
‖F (w)‖2 +

1

2
‖w − w∗‖2. (5.96)

From [77, Theorem 3.2], we know that V is continuously differentiable with

∇V (w) = U(w)−
[
∇U(w)− I

]
F (w) + (w − w∗).

It is also trivial that V (w∗) = 0. Then, we have

dV (w(t))

dt
= ∇V (w(t))T

dw

dt

= {U(w)− [∇U(w)− I]F (w) + (w − w∗)}T ρF (w)

= ρ
{

[U(w) + (w − w∗)]TF (w) + ‖F (w)‖2 − F (w)T∇U(w)F (w)
}
.

Inequality (5.95) in Lemma 5.14 implies

[U(w) + (w − w∗)]TF (w) ≤ −U(w)T(w − w∗)− ‖F (w)‖2,

which yields

dV (w(t))

dt
≤ ρ

{
−U(w)T(w − w∗)− F (w)T∇U(w)F (w)

}
= ρ

{
−U(w∗)T(w − w∗)− (U(w)− U(w∗))T(w − w∗)− F (w)T∇U(w)F (w)

}
.

Note that w∗ is the solution of the variational inequality (5.88). Since w ∈ K, we therefore

obtain −U(w∗)T(w − w∗) ≤ 0. Because U(w) is continuous differentiable and ∇U(w)

is positive semi-definite, by [160, Theorem 5.4.3], we obtain that U(w) is monotone.

Hence, we have −(U(w) − U(w∗))T(w − w∗) ≤ 0 and −F (w)T∇U(w)F (w) ≤ 0. The

above discussions lead to dV (w(t))
dt

≤ 0. Also, by [160, Theorem 5.4.3], we know that if

∇U(w) is positive definite, then U(w) is strictly monotone, which implies dV (w(t))
dt

< 0 in

this case.

In order to obtain V (w) is a Lyapunov function and w∗ is Lyapunov stable, we will show

the following inequality:

−U(w)TF (w) ≥ ‖F (w)‖2. (5.97)

To see this, we first observe that

‖F (w)‖2 + U(w)TF (w) = [w − ΠK(w − U(w))]T [w − U(w)− ΠK(w − U(w))] .
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Since w ∈ K, applying Lemma 1.1(b) again, there holds

[w − ΠK(w − U(w))]T [w − U(w)− ΠK(w − U(w))] ≤ 0,

which yields the desired inequality (5.97). By combining equation (5.96) and (5.97), we

have

V (w) ≥ 1

2
‖F (w)‖2 +

1

2
‖w − w∗‖2,

which says V (w) > 0 if w 6= w∗. Hence V (w) is indeed a Lyapunov function and w∗ is

Lyapunov stable. Furthermore, if ∇xL(w) is positive definite, we have w∗ is asymptoti-

cally stable. Moreover, it holds that

V (w0) ≥ V (w) ≥ 1

2
‖w − w∗‖2 for t ≥ t0, (5.98)

which tells us the solution trajectory w(t) is bounded. Hence, it can be extended to

global existence. �

Proposition 5.45. Let w∗ = (x∗, µ∗, λ∗) be an equilibrium point of (5.90). If ∇xL(w) is

positive definite, the solution of neural network (5.90) with initial point w0 = (x0, µ0, λ0)

where λ0 ∈ K is globally convergent to w∗ and has finite convergence time.

Proof. From (5.98), the level set

L(w0) := {w |V (w) ≤ V (w0)}

is bounded. Then, the Invariant Set Theorem [83] implies the solution trajectory w(t)

converges to θ as t→ +∞ where θ is the largest invariant set in

Λ =

{
w ∈ L(w0)

∣∣∣∣ dV (w(t))

dt
= 0

}
.

We will show that dw/dt = 0 if and only if dV (w(t))/dt = 0 which yields that w(t)

converges globally to the equilibrium point w∗ = (x∗, µ∗, λ∗). Suppose dw/dt = 0, then

it is clear that dV (w(t))/dt = ∇V (w)T(dw/dt) = 0. Let ŵ = (x̂, µ̂, λ̂) ∈ Λ which says

dV (ŵ(t))/dt = 0. From (5.95), we know that

dV (ŵ(t))/dt ≤ ρ
{

(−U(ŵ)− U(w∗))T(ŵ − w∗)− F (ŵ)T∇U(ŵ)F (ŵ)
}
.

Both terms inside the big parenthesis are nonpositive as shown in Proposition 5.44, so

(U(ŵ) − U(w∗))T(ŵ − w∗) = 0, F (ŵ)T∇U(ŵ)F (ŵ) = 0. The condition ∇xL(w) being

positive definite leads to ∇U(ŵ) being positive definite. Hence,

F (ŵ) = −ŵ + ΠK(ŵ − U(ŵ)) = 0,

which is equivalent to dŵ/dt = 0. From the above, w(t) converges globally to the

equilibrium point w∗ = (x∗, µ∗, λ∗). Moreover, with Proposition 5.44 and following the
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same argument as in [215, Theorem 2], the neural network (5.90) has finite convergence

time. �

Simulations and numerical reports can be found in [193]. In general, both neural

networks have merits of their own. In addition, using other discrete types of C-functions,

φp
NR

given by

φp
NR

(x, y) = xp − [(x− y)+]p, p > 1 being an odd integer,

and φp
D−FB

given by

φp
D−FB

(x, y) =
(√

x2 + y2
)p
− (x+ y)p, p > 1 being an odd integer,

for the same dynamic model (5.82) and the same SOCCVI problem (5.74)-(5.75) were

studied in [200]. Similar results—namely, Lyapunov stability, asymptotic stability, and

exponential stability—can be established for this neural network model. Since the argu-

ments closely mirror those presented earlier, we omit the details here. For comprehensive

simulation results and further discussions, we refer the reader to [200].

Next, we introduce another efficient neural network for solving the SOCCVI problem

(5.74)–(5.75), this time based on the smoothed cone projection mapping. The approach is

motivated by revisiting the KKT conditions (5.78), in a manner analogous to the neural

networks (5.82) and (5.90). However, before presenting the smoothed cone projection

mapping, we must first review a few notations and foundational concepts. Recall from

(5.33) that the projection mapping onto the second-order cone Km is defined by

ΠKm(x) = [λ1(x)]+C1(x) + [λ2(x)]+c2(x),

where [ · ]+ means the scalar projection, λ1(x), λ2(x) and c1(x), c2(x) are the spectral

values and the spectral vectors of x = (x0, x̄) ∈ IR×IRm−1, respectively. Indeed, plugging

in λi(x) as below

λi(x) = x0 + (−1)i ‖x̄‖ (i = 1, 2)

and ci(x) given by

ci(x) =

{
1
2
(1, (−1)i x̄

‖x̄‖), if x̄ 6= 0,
1
2
(1, (−1)iw), if x̄ = 0,

(i = 1, 2)

with w being an arbitrary unit vector in IRm−1, there is another expression for projection

mapping:

ΠKm(x) =


1
2
(1 + x0

‖x̄‖)(‖x̄‖ , x̄), if |x0| < ‖x̄‖ ,
(x0, x̄), if ‖x̄‖ 6 x0,

0, if ‖x̄‖ 6 −x0.

The following lemma provides a formula for the directional derivative of the cone

projection mapping ΠK, as defined in (5.33). Throughout the discussion, we use int(K),
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bd(K), and cl(K) to denote the interior, boundary, and closure of a set K ⊂ IRn,

respectively.

Lemma 5.15. [161, Lemma 2] The projection mapping ΠKm(·) is directionally differen-

tiable at x for any d ∈ IRm. Moreover, the directional derivative is described by

Π′Km(x; d) =



J ΠKm(x)d if x ∈ IRm\(Km ∪ −Km),

d if x ∈ int(Km),

d− 2
[
c(x)Td

]
− c1(x) if x ∈ bd(Km)\{0},

0 if x ∈ −int(Km),

2
[
c2(x)Td

]
+
c2(x) if x ∈ −bd(Km)\{0},

ΠKm(d) if x = 0,

where

J ΠKm(x) =
1

2

 1
x̄T

‖x̄‖
x̄

‖x̄‖ I +
x0

‖x̄‖I −
x0

‖x̄‖ ·
x̄x̄T

‖x̄‖2

 ,
[
c1(x)Td

]
− := min

{
0, c1(x)Td

}
,[

c2(x)Td
]

+
:= max

{
0, c2(x)Td

}
.

For convenience in the subsequent discussions, we recall the definitions of the tangent

cone, regular (Fréchet) normal cone, and limiting (Mordukhovich) normal cone of a closed

set at a given point. These foundational concepts are well established and can be found

in [186].

Definition 5.6. For a closed set K ⊆ IRn and a point x̄ ∈ K, we define the following

sets:

(a) the tangent (Bouligand) cone

TK(x̄) := lim sup
t↓0

K − x̄
t

;

(b) the regular (Fréchet) normal cone

N̂K(x̄) := {v ∈ IRn | 〈v, y − x̄〉 ≤ o(‖y − x̄‖), ∀y ∈ K} ;

(c) the limiting (in the sense of Mordukhovich) normal cone

NK(x̄) := lim sup
K

x→x̄

N̂K(x).
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When K is a closed convex set, it is known that TK(x̄) = cl(K + IRx̄) and

N̂K(x̄) = NK(x̄) = TK(x̄)◦ = {v ∈ K◦ | 〈v, x〉 ≤ 0} ,

where K◦ denotes the polar of K. The tangent cone and second-order tangent cone can

be explicitly characterized, as stated in the following result.

Lemma 5.16. [14, Lemma 2.5] The tangent and second-order tangent cones of Km at

x ∈ Km are described, respectively, by

TKm(x) =


IRm if x ∈ int(Km),

Km if x = 0,

{d = (d0, d̄) ∈ IR× IRm−1 | 〈d̄, x̄〉 − x0d0 ≤ 0} if x ∈ bd(Km)\{0}.

and

T 2
Km(x, d) =


IRm if x ∈ int(TKm(x)),

TKm(d) if x = 0,

{w = (w0, w̄) ∈ IR× IRm−1 | 〈w̄, s̄〉 − w0x0 ≤ d2
0 − ‖d̄‖2} otherwise.

We also review several notations that will be used throughout the remainder of this

section. Given a sequence {tn} ∈ IR, we write tn ↓ 0 to mean that {tn} is monotone

decreasing and converges to zero. The distance from a point x to a set K ⊂ IRn, denoted

by dist(x,K) is given by

dist(x̄, K) := inf{‖x̄− ȳ‖ | ∀ȳ ∈ K}.

By linK, we mean the linear subspace generated by K. Given x, y ∈ IRn, we write x ⊥ y

if and only if 〈x, y〉 = 0.

We now introduce the smoothed natural residual function as a foundation for design-

ing a neural network model. To begin, we define a smoothing metric projector function

Φ : IR+ × IRm → IRm as follows:

Φ(ε, u) :=
1

2

(
u+
√
ε2e+ u2

)
, ∀(ε, u) ∈ IR+ × IRm. (5.99)

Observe that Φ(0, u) = ΠKm(u), which means it is an extension of cone projection map-

ping. Moreover, Φ is continuously differentiable on any neighborhood of (ε, u) ∈ IR× IRm

provided that (ε2e+ u2)0 6= ‖ε2e+ u2‖. From [98], it is known that Φ is globally Lip-

schitz continuous and is strongly semismooth for all (0, u) ∈ IR × IRm. Furthermore,

applying the concept of SOC-functions in [28], it can be verified that the function Φ(ε, u)

given in (5.99) can alternatively be expressed as

Φ(ε, u) = φ(ε, λ1)c1 + φ(ε, λ2)c2, (5.100)
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where φ(ε, t) := 1
2
(t+
√
ε2 + t2), λi and ci are the spectral values and the spectral vectors,

respectively. Hence, we can write out the function Φ as

Φ(ε, u) =


1

2
u+

1

4

( √
ε2 + λ2

1 +
√
ε2 + λ2

2(√
ε2 + λ2

1 +
√
ε2 − λ2

2

)
ū
‖ū‖

)
, if ū 6= 0,

1

2

(
u0 +

√
ε2 + u2

0

0

)
, if ū = 0.

(5.101)

For (ε2e+ u2)0 6= ‖ε2e+ u2‖, we calculate the derivative of Φ with respect to ε as below:

∇εΦ(ε, u) =
1

2

(
∂

∂ε
φ(ε, λ1)cT1 +

∂

∂ε
φ(ε, λ2)cT2

)
=

1

2

(
εcT1√
ε2 + λ2

1

+
εcT2√
ε2 + λ2

2

)
As for the differentiability of Φ with respect to u, we have two cases:

Case(i): For u 6= 0,

∇uΦ(ε, u) =
1

2

 1 + 1
2

(
λ1√
ε2+λ21

+ λ2√
ε2+λ22

)
Y T

Y Z

 , (5.102)

where

Y =
1

2

(
λ2√
ε2 + λ2

2

− λ1√
ε2 + λ2

1

)
ū

‖ū‖
and

Z =

[
1 +

√
ε2 + λ2

2 −
√
ε2 + λ2

1

λ2 − λ1

]
Im−1

+

[
1

2

(
λ1√
ε2 + λ2

1

+
λ2√
ε2 + λ2

2

)
−
√
ε2 + λ2

2 −
√
ε2 + λ2

1

λ2 − λ1

]
ūūT

‖ū‖2 ;

Case(ii): For ū = 0,

∇uΦ(ε, u) =
1

2

(
1 +

u0√
ε2 + u2

0

)
Im.

For (ε2e + u2)0 = ‖ε2e+ u2‖, Φ is nonsmooth at (ε, u), but its B-subdifferential can

nevertheless be computed.

In light of the above Φ(ε, u) given in (5.99), (5.100) or (5.101), we are ready to present

the smoothing NR function, which is given by

φε
NR

(x, y) := x− Φ(ε, x− y). (5.103)
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It will be the basis of our neural network. More specifically, we define S : IR× IRn× IRl×
IRm → IR× IRn × IRl × IRm by

S(z) =



ε

L(x, µ, λ)

h(x)

φε
NR

(−gm1(x), λm1)
...

φε
NR

(
−gmp(x), λmp

)


,

where z = (ε, x, µ, λ) ∈ IR × IRn × IRl × IRm. Then, it is clear to see that solving the

KKT system (5.78) is equivalent to solving the problem

min Ψ(z) :=
1

2
‖S(z)‖2 . (5.104)

Clearly, Ψ defined as in (5.104) is a merit function for (5.78) and in turn, we consider

the dynamical system given by dz(t)

dt
= −ρ∇Ψ(z(t)) = −ρ∇S(z(t))S(z(t)),

z(t0) = z0,
(5.105)

where ρ > 0 is a scaling factor, for solving the SOCCVI. We refer to the above as

“the smoothed NR neural network”. The block diagram of the above neural network

is presented in Figure 5.6. The circuit for (5.105) requires n + l + m + 1 integrators,

n processors for F (x), m processors for g(x), mn processors for ∇g(x), l processors for

h(x), ln processors for ∇h(x), (1 +m+ l)n2 processors for ∇xL(x, µ, λ), 2m+ 2
∑p

i=1m
2
i

processors for Φ and its derivatives, and some analog multipliers and summers.

Figure 5.6: Block diagram of the neural network with φε
NR

.
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Let umi = −gmi(x)− λmi . For subsequent use in the numerical simulations, we note

that

∇S(z)

=


1 0 0 {−∇εΦ(ε, umi)}pi=1

0 ∇xL(x, µ, λ)T ∇h(x) −∇g(x)
(
I − diag{∇umi

Φ(ε, umi)}pi=1

)
0 ∇h(x)T 0 0

0 ∇g(x)T 0 diag{∇umi
Φ(ε, umi)}pi=1



=


1 0 0 {−∇εΦ(ε,−gmi(x)− λmi)}pi=1

0 ∇xL(x, µ, λ)T ∇h(x) −∇g(x)
(
I + diag{∇gmi

Φ(ε,−gmi(x)− λmi)}pi=1

)
0 ∇h(x)T 0 0

0 ∇g(x)T 0 −diag{∇λmi
Φ(ε,−gmi(x)− λmi)}pi=1


It is evident that Ψ is a nonnegative function, attaining the value zero at a point z =

(ε, x, µ, λ) if and only if (x, µ, λ) is a KKT point. Moreover, every KKT point corresponds

to an equilibrium point of the system (5.105), and the converse holds under the condition

that ∇S(z) is nonsingular. The stability analysis of the system (5.105) follows standard

techniques and is analogous to the analysis of the smoothed Fischer–Burmeister neural

network discussed earlier.

Nevertheless, our primary contributions, highlighted in the forthcoming analysis, are

twofold: (i) we investigate second-order sufficient conditions that ensure the nonsingu-

larity of ∇S(z); and (ii) we demonstrate that the proposed network exhibits superior

numerical performance compared to existing neural network models for SOCCVI prob-

lems. For completeness, we present below a fundamental stability result, the proof of

which is similar to earlier arguments and is therefore omitted.

Proposition 5.46. Isolated equilibrium points of (5.105) are asymptotically stable. More-

over, we obtain exponentially stability if ∇S(z) is nonsingular.

Proposition 5.46 highlights the critical role of the nonsingularity of the transposed

Jacobian ∇S(z). In what follows, we investigate sufficient conditions that ensure this

property holds. To this end, we write out the first-order optimality conditions for the

SOCCVI problem (5.74)-(5.75). Let L(x, µ, λ) be given by (5.79) and let (µ, λ) =

(µ, λm1 , · · · , λmp) ∈ IRl × IRm1 × · · · × IRmp = IRl × IRm. Suppose that x∗ is a solution of

the SOCCVI problem (5.74)-(5.75), and the Robinson’s constraint qualification(
∇h(x∗)T

−∇g(x∗)T

)
IRn + T{0l}×K (h(x∗),−g(x∗)) = IRl × IRm

holds at x∗. The first-order optimality condition is

〈F (x∗), d〉 ≥ 0, ∀d ∈ TC(x∗), (5.106)
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where

TC(x∗) =
{
d | ∇h(x∗)Td = 0, −∇g(x∗)Td ∈ TK(−g(x∗))

}
.

It is known that TC(x∗) is convex and

NC(x∗) = ∇h(x∗)IRl + {∇g(x∗)λ | − λ ∈ NK(−g(x∗))} ,

where NK(y) := NKm1 (ym1)×NKm2 (ym2)×· · ·×NKmp (ymp) for y = (ym1 , · · · , ymp) ∈ IRm,

and

NKmi (ymi) := {umi ∈ IRmi | 〈umi , v − ymi〉 ≤ 0, ∀v ∈ Kmi}
is the normal cone of Kmi at ymi . Note that (5.106) holds if and only if 0 ∈ F (x∗)+NC(x∗)

which is equivalent to ∃µ ∈ IRl, λ ∈ IRm such that

L(x∗, µ, λ) = 0, −λ ∈ NK(−g(x∗))

and the set of multipliers (µ, λ) denoted by Λ(x∗) is nonempty compact. Therefore, x∗

satisfies the following Karush-Kuhn-Tucker condition,
L(x∗, µ, λ) = 0,

h(x∗) = 0,

−λ ∈ NK(−g(x∗)).

Using the metric projector and the definition of the normal cone, the KKT conditions

can be expressed as

S(x, µ, λ) =

 L(x, µ, λ)

h(x)

−g(x)− ΠK(−g(x)− λ)

 = 0,

where

ΠK(−g(x)− λ) :=
(
ΠKm1 (−gm1(x)− λm1)

T, · · · ,ΠKmp (−gmp(x)− λmp)T
)T
.

It is particularly emphasized that

Π′K(−g(x)− λ; d) := diag{Π′Km1 (−gmi(x)− λmi ; dmi)}pi=1,

for d ∈ IRm.

Definition 5.7. [14] The critical cone at x∗ is defined by

C(x∗) = {d | d ∈ TC(x∗), d⊥F (x∗)} .
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Proposition 5.47. Suppose that x∗ is a feasible point of the SOCCVI problem (5.74)-

(5.75) such that Λ(x∗) = {(µ, λ)} is nonempty and compact. If JF (x∗) is positive semidef-

inite and Robinson’s CQ holds at x∗, then

sup
(µ,λ)∈Λ(x∗)

{
〈JxL(x∗, µ, λ)d, d〉 − δ∗(λ |T 2

K(−g(x∗),−∇g(x∗)Td))
}
> 0, ∀d ∈ C(x∗)\{0}

(5.107)

is the second-order sufficient condition of the SOCCVI problem (5.74)-(5.75), where

δ∗
(
λ |T 2

K(−g(x∗),−∇g(x∗)Td)
)

=

{
0 if λ ∈ NK(−g(x∗)) and 〈λ,−∇g(x∗)Td〉 = 0,

+∞ otherwise.

Proof. Let x∗ be a solution of the SOCCVI problem (5.74)-(5.75). Since JF (x∗) is

positive semidefinite, we see that for some small ε > 0,

〈F (x∗), x− x∗〉 > 0, ∀x ∈ Bε(x∗) ∩ C,

where Bε(x∗) denotes the ε-neighborhood of x∗. Equivalently,

x∗ ∈ arg min {〈F (x∗), x− x∗〉 | x ∈ Bε(x∗) ∩ C} (5.108)

Again, due to JF (x∗) being positive semidefinite, it is clear that (5.108) holds if and only

if

x∗ ∈ arg min {〈F (x∗), x− x∗〉+ 〈JF (x∗)(x− x∗), x− x∗〉 |x ∈ Bε(x∗) ∩ C} . (5.109)

Therefore, we turn to deduce the second-order sufficient condition of (5.109). To this

end, we consider the optimization problem

min 〈F (x∗), x− x∗〉+ 1
2
〈JF (x∗)(x− x∗), x− x∗〉

s.t. x ∈ Bε(x∗) ∩ C.
(5.110)

First, it is known that x∗ is the stationary point of problem (5.110) if and only if

0 ∈ F (x∗) + JF (x∗)(x− x∗) +NBε(x∗)∩C(x∗) (5.111)

where

NBε(x∗)∩C(x∗) = NBε(x∗)(x
∗) +NC(x∗) = NC(x∗) (5.112)

On the other hand, (5.111) and (5.112) imply that 0 ∈ F (x∗) + NC(x∗). Hence, if x∗ is

a solution of the SOCCVI problem (5.74)-(5.75), we conclude that x∗ is the stationary

point of problem (5.110).
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Now, we prove that the critical cones Cp(x∗) and C(x∗) of (5.110) and the SOCCVI

problem (5.74)-(5.75), respectively, are equal. Indeed,

Cp(x∗) =

{
d ∈ IRn

∣∣∣∣
 ∇h(x∗)Td

−∇g(x∗)Td

d

 ∈ T{0}×K×Bε(x∗)(h(x∗),−g(x∗), x∗),

and 〈d, F (x∗) + JF (x∗)(x− x∗)〉 = 0

}
.

Notice that

T{0}×K×Bε(x∗)(h(x∗),−g(x∗), x∗)

= T{0}×K(h(x∗),−g(x∗))× TBε(x∗)(x∗)
= T{0}×K(h(x∗),−g(x∗))× IRn.

This yields that

Cp(x∗) =

{
d ∈ IRn

∣∣∣∣ ( ∇h(x∗)Td

−∇g(x∗)Td

)
∈ T{0}×K(h(x∗),−g(x∗)), 〈d, F (x∗)〉 = 0

}
= C(x∗).

Next, the Lagrange function of problem (5.110) is

L(x∗, λ, µ, ν) = 〈F (x∗), (x− x∗)〉+
1

2
〈JF (x∗)(x− x∗), x− x∗〉

+ 〈h(x), µ〉+ 〈g(x), λ〉+ 〈x, ν〉

which gives

∇xL(x∗, λ, µ, ν) = F (x∗) + JF (x∗)(x− x∗) +∇h(x)µ+ ν +∇g(x)λ,

∇2
xxL(x∗, λ, µ, ν) = JF (x∗) +

l∑
i=1

µi∇2hi(x
∗) +

m∑
i=1

λi∇2gi(x
∗).

Here, we note that ∇2
xxL(x∗, λ, µ, ν) = JxL(x∗, λ, µ).

On the other hand, in light of [15, Proposition 3.269], we can check that {0} × K is

second order regular at (h(x∗),−g(x∗)) along the direction (∇h(x∗)Td,−∇g(x∗)Td) with

respect to the mapping

(
∇h(x∗)T

−∇g(x∗)T

)
for all d ∈ C(x∗). Then, using the definition of

the second-order regularity (see [15, Definition 3.85]) yields

yn =

(
h(x∗)

−g(x∗)

)
+ tn

(
∇h(x∗)Td

−∇g(x∗)Td

)
+

1

2
tn

2rn, ∀yn ∈ {0} × K,
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where tn ↓ 0, rn =

(
∇h(x∗)Twn
−∇g(x∗)Twn

)
+ an with an being a convergent sequence and

tnwn → 0, (n→ +∞) such that

lim
n→∞

dist
(
rn, T

2
{0}×K((h(x∗),−g(x∗)), (∇h(x∗)Td,−∇g(x∗)Td))

)
= 0.

According to the above result, for all Pn ∈ {0} × K × Bε(x∗), we have

Pn =

 h(x∗)

−g(x∗)

x∗

+ tn

 ∇h(x∗)Td

−∇g(x∗)Td

d

+
1

2
tn

2

(
rn
qn

)
,

where, tn ↓ 0,

(
rn
qn

)
=

 ∇h(x∗)Twn
−∇g(x∗)Twn

wn

 +

(
an
bn

)
with

(
an
bn

)
being a convergent

sequence and tnwn → 0, (n→ +∞). Therefore, we obtain

lim
n→∞

dist
(
rn, T

2
{0}×K

(
(h(x∗),−g(x∗)), (∇h(x∗)Td,−∇g(x∗)Td)

))
= 0

and

lim
n→∞

dist

{(
rn
qn

)
, T 2

{0}×K×Bε(x
∗)((h(x∗),−g(x∗), x∗), (∇h(x∗)Td,−∇g(x∗)Td, d))

}
= lim

n→∞
dist

{(
rn
qn

)
, T 2

{0}×K((h(x∗),−g(x∗)), (∇h(x∗)Td,−∇g(x∗)Td))× T 2
Bε(x

∗)(x∗, d)

}
= lim

n→∞
dist

{
rn, T

2
{0}×K

(
(h(x∗),−g(x∗)), (∇h(x∗)Td,−∇g(x∗)Td)

)}
= 0,

and thus, {0}×K×Bε(x∗) is second-order regular at the point (h(x∗),−g(x∗), x∗) along(
∇h(x∗)Td,−∇g(x∗)Td, d

)
with respect to the mapping

 ∇h(x∗)T

−∇g(x∗)T

I

 for all d ∈ C(x∗),

with I as the identity map.

This together with [15, Theorem 3.86] indicates that for (5.110), the second-order suffi-

cient condition is

sup
(λ,µ,ν)∈Λ̄(x∗)

{
∇2

xxL(x∗, λ, µ, ν)− δ∗
(
(µ, λ, ν), T 2

{0}×K×Bε(x∗)((h(x∗),−g(x∗), x∗),

(∇h(x∗)Td,−∇g(x∗)Td, d))
)}

> 0, ∀d ∈ Cp(x∗)\{0}.
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We can further simplify it as

sup
(λ,µ,ν)∈Λ̄(x∗)

{
∇2

xxL(x∗, λ, µ, ν)(d, d)− δ∗
(
(µ, λ, ν), T 2

{0}×K×Bε(x∗)((h(x∗),−g(x∗), x∗),

(∇h(x∗)Td,−∇g(x∗)Td, d))
)}

= sup
(λ,µ,ν)∈Λ̄(x∗)

{
∇2

xxL(x∗, λ, µ, ν)(d, d)− δ∗((µ, λ, ν), T 2
{0}(h(x∗),∇h(x∗)Td)

× T 2
K(−g(x∗),−∇g(x∗)Td)× T 2

Bε(x∗)(x
∗, d))

}
= sup

(λ,µ,ν)∈Λ̄(x∗)

{
∇2

xxL(x∗, λ, µ, ν)(d, d)− δ∗
(
(µ, λ, ν), {0} × T 2

K(−g(x∗),−∇g(x∗)Td× IRn
)}

= sup
(µ,λ)∈Λ(x∗)

{
JxL(x∗, λ, µ)(d, d)− δ∗

(
λ |T 2

K(−g(x∗),−∇g(x∗)Td)
)}

.

To sum up, the second-order sufficient condition of the SOCCVI problem (5.74)-(5.75)

is described by

sup
(µ,λ)∈Λ(x∗)

{
〈JxL(x∗, λ, µ)d, d〉 − δ∗

(
λ |T 2

K(−g(x∗),−∇g(x∗)Td)
)}

> 0 ∀d ∈ C(x∗)\{0},

as desired. �

As shown in Proposition 5.46, the nonsingularity of ∇S(0, x∗, µ∗, λ∗) is essential for

ensuring that the equilibrium point of the neural network corresponds to a solution of

the SOCCVI problem (5.74)–(5.75), and that it exhibits exponential stability. We now

present several conditions under which the nonsingularity of ∇S(0, x∗, µ∗, λ∗) can be

guaranteed.

Proposition 5.48. Suppose (x∗, µ∗, λ∗) is a KKT point of the SOCCVI problem (5.74)-

(5.75). Then, ∇S(0, x∗, µ∗, λ∗) is nonsingular if

(i) Λ(x∗) = {(µ, λ)} 6= ∅;

(ii) the second-order sufficient condition (5.107) holds;

(iii) −λ∗ ∈ intNK(−g(x∗)) holds; and

(iv) the following constraint nondegeneracy holds:(
∇h(x∗)T

−∇g(x∗)T

)
IRn + linT{0l}×K(h(x∗),−g(x∗)) = IRl × IRm.

Proof. It is enough to verify that M given by

M =

 ∇xL(x∗, µ∗, λ∗)T ∇h(x∗) −∇g(x∗)
(
I − diag{limε→0∇u∗mi

Φ(ε, u∗mi)}
p
i=1

)
∇h(x∗)T 0 0

∇g(x∗)T 0 diag{limε→0∇u∗mi
Φ(ε, u∗mi)}

p
i=1


T
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is nonsingular, where u∗mi = −gmi(x∗) − λ∗mi . From Lemma 5.15 and (5.102), we can

deduce

lim
ε→0

[
∇uΦ(ε, u)

]T
d = Π′Km(u; d)

for d ∈ IRm and u ∈ IRm\(Km ∪−Km) or u ∈ intKm. Then, for ε→ 0 and (dx, dµ, dλ) ∈
IRn × IRl × IRm, we have

M

 dx

dµ

dλ

 =

 JxL(x∗, µ∗, λ∗)dx+∇h(x∗)dµ+∇g(x∗)dλ

∇h(x∗)Tdx

H


where

H =
(
I − diag{lim

ε→0
∇u∗mi

Φ(ε, u∗mi)}
p
i=1

)T
(−∇g(x∗))Tdx

+
(

diag{lim
ε→0
∇u∗mi

Φ(ε, u∗mi)}
p
i=1

)T
dλ

= −∇g(x∗)Tdx−
(

diag{lim
ε→0
∇u∗mi

Φ(ε, u∗mi)}
p
i=1

)T [
−∇g(x∗)Tdx− dλ

]
= −∇g(x∗)Tdx− Π′K

(
−g(x∗)− λ∗;−∇g(x∗)Tdx− dλ

)
.

Therefore, we have

M

 dx

dµ

dλ

 =

 JxL(x∗, µ∗, λ∗)dx+∇h(x∗)dµ+∇g(x∗)dλ

∇h(x∗)Tdx

−∇g(x∗)Tdx− Π′K
(
−g(x∗)− λ∗;−∇g(x∗)Tdx− dλ

)
 (5.113)

Suppose that M

 dx

dµ

dλ

 = 0. We need to show that dx = 0, dµ = 0, dλ = 0. First,

from the 2nd and 3rd expressions of (5.113), we obtain{
∇h(x∗)Tdx = 0

−∇g(x∗)Tdx = Π′K
(
−g(x∗)− λ∗;−∇g(x∗)Tdx− dλ

) (5.114)

which implies that dx ∈ C(x∗). In addition, from the first expression of (5.113), we obtain

〈JxL(x∗, µ∗, λ∗)dx, dx〉+
〈
∇g(x∗)Tdx, dλ

〉
= 0. (5.115)

To proceed, we consider the following sets:

I∗ = {i | −gmi(x∗) ∈ int(Kmi), i = 1, · · · p} ;

B∗ = {i | −gmi(x∗) ∈ bd(Kmi), gmi(x∗) 6= 0} ;

Z∗ = {i | gmi(x∗) = 0} .

Note that

CK(−g(x∗)) =
{
d ∈ IRn | − ∇g(x∗)Td ∈ TK(−g(x∗))

}
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and

TK(−g(x∗)) =

{
d

∣∣∣∣∣ −∇gi0(x∗)Td− ∇ḡi(x∗)Td
gi0(x∗)

≥ 0, i ∈ B∗
−∇gi0(x∗)d+∇ḡi(x∗)Td ≥ 0, i ∈ Z∗

}
Since −λ⊥− g(x), we see that

λ =

λ
∣∣∣∣∣∣∣
λmi = 0, i ∈ I∗
λmi = σ(−gi0(x∗), ḡi(x∗)), σ > 0, i ∈ B∗
λmi ∈ int(Kmi), i ∈ Z∗


which further yields

[−g(x∗)− λ∗]mi =


−gmi(x∗) ∈ int(Kmi), i ∈ I∗
((1− σ)(−gi0(x∗)), (1 + σ)(−ḡi(x∗))), i ∈ B∗
λmi ∈ int(Kmi), i ∈ Z∗

On the other hand, Condition (iii) implies

C(x∗) =

{
d

∣∣∣∣∣∇h(x∗)Td = 0, −∇gmi(x∗)Td = 0, i ∈ Z∗
−∇gmi(x∗)Td ∈ TK(−gmi(x∗)),

〈
λmi ,−∇gmi(x∗)Td

〉
= 0, i ∈ B∗

}

and C(x∗) is a linear space. Therefore, we have

δ∗
(
λ |T 2

K
(−g(x∗),−∇g(x∗)Td)

)
=
∑
i∈B∗

λi0
−gi0(x∗)

[∥∥∇gi0(x∗)Tdx
∥∥2 −

∥∥∇ḡi(x∗)Tdx∥∥2
]

with λmi = (λi0, λ̄
i).

Case (1). If i ∈ B∗, we have λ∗mi = (−σgi0(x∗), σḡi(x∗)). Then, applying Lemma 5.15

and (5.114), we obtain

Π′Kmi
(
−gmi(x∗)− λ∗mi ;−Jgmi(x∗)dx− dλmi

)
=

1

2

[
1 wT

i

wi
2

1+σ
I − 1−σ

1+σ
wiw

T
i

] (
−∇gmi(x∗)Tdx− dλmi

)
(5.116)

= Ai
(
−∇gmi(x∗)Tdx− dλmi

)
= −∇gmi(x∗)Tdx,

where

Ai =
1

2

[
1 wT

i

wi
2

1+σ
I − 1−σ

1+σ
wiw

T
i

]
and wi = −ḡi(x∗)

‖ḡi(x∗)‖ . Now we need to prove that dx ∈ TC(x∗) and

−∇gi0(x∗)Tdx ≥ ḡi(x∗)T∇ḡi(x∗)Tdx
‖ḡi(x∗)‖ (5.117)
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From −gi0(x∗) = ‖ḡi(x∗)‖, we know

λ∗mi =

(
−σgi0(x∗)

+σḡi(x∗)

)
= −σgi0(x∗)

(
1

−wi

)
,

where ‖wi‖ = 1 and wi = ḡi(x∗)
gi0(x∗)

= −ḡi(x∗)
‖ḡi(x∗)‖ for i ∈ B∗. Hence, we achieve

λ∗miAi =

(
1− ‖wi‖2, wT

i −
2

1 + σ
wT
i +

1− σ
1 + σ

wT
i ‖wi‖2

)
= (0, 0). (5.118)

Combining (5.116) and (5.118) yields〈
λ∗mi ,−∇gmi(x∗)Tdx

〉
= 0

which means dx ∈ C(x∗). Then, it follows from (5.116) that

Ai
(
−∇gmi(x∗)Tdx− dλmi

)
= −∇gmi(x∗)Tdx

⇐⇒ (Ai − I)(−∇gmi(x∗)Tdx) = Aidλmi (5.119)

⇐⇒
(
1,−wT

i

) [ −1
2

1
2
wT
i

1
2
wi

−σ
1+σ

I − 1
2

1−σ
1+σ

wiw
T
i

](
−∇gi0(x∗)Tdx

−∇ḡi(x∗)dx

)
=
(
1,−wT

i

) [ 1
2

1
2
wT
i

1
2
wi

1
1+σ

I − 1
2

1−σ
1+σ

wiw
T
i

](
dλi0
dλ̄i

)
In summary, we deduce that(

−1,
1

2
wT
i +

σ

1 + σ
wT
i +

1

2
· 1− σ

1 + σ
wT
i

)(
−∇gi0(x∗)Tdx

−∇ḡi(x∗)Tdx

)
= 0

which is equivalent to (
−1, wT

i

)( −∇gi0(x∗)Tdx

−∇ḡi(x∗)Tdx

)
= 0

This indicates

−∇gi0(x∗)Tdx =
ḡi(x∗)T∇ḡi(x∗)Tdx

‖ḡi(x∗)‖ , (5.120)

and hence (5.117) holds.

Case (2). Let i ∈ Z∗. From the second equation of (5.114), we have

Π′Kmi

(
0− λmi ;−∇gmi(x∗)Tdx− dλmi

)
= −∇gmi(x∗)Tdx

Hence, −∇gmi(x∗)Tdx = 0.

Case (3). Let i ∈ I∗. Again, from the second equation of (5.114), we have

Π′Kmi

(
−gmi(x∗),−∇gmi(x∗)Tdx− dλmi

)
= −∇gmi(x∗)Tdx− dλmi = −∇gmi(x∗)Tdx
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which says dλmi = 0.

From all the above, we conclude that dx ∈ C(x∗) implies{
∇gmi(x∗)Tdx = 0, i ∈ Z∗
gi0(x∗)∇gi0(x∗)Tdx = ḡi(x∗)T∇ḡi(x∗)Tdx, i ∈ B∗.

Applying (5.113) and (5.114), we have the following three identities.

JxL(x∗, µ∗, λ∗)dx+∇h(x∗)dµ+∇g(x∗)dλ = 0 (5.121)

∇h(x∗)Tdx = 0 (5.122)

−∇g(x∗)Tdx− Π′K(−g(x∗)− λ∗;−∇g(x∗)Tdx− dλ) = 0 (5.123)

Using (5.121) and (5.122) gives

0 = 〈dx, JxL(x∗, µ∗, λ∗)dx+∇h(x∗)dµ+∇g(x∗)dλ〉
= 〈dx, JxL(x∗, µ∗, λ∗)dx〉 −

∑
i∈B∗
〈−∇gmi(x∗)dx, dλmi〉 .

Thus, for i ∈ B∗, 〈
−∇gmi(x∗)Tdx, dλmi

〉
= −∇gi0(x∗)dx dλi0 +

〈
−∇ḡi(x∗)dx, dλ̄i

〉
= ∇gi0(x∗)Tdx · ḡi(x∗)

‖ḡi(x∗)‖dλ̄
i −
〈
∇ḡi(x∗)dx, dλ̄i

〉
(5.124)

=
ḡi(x∗)T∇ḡi(x∗)dx
‖ḡi(x∗)‖2 · ḡi(x∗)Tdλ̄i −

〈
∇ḡi(x∗)dx, dλ̄i

〉
=

〈
(−∇ḡi(x∗)Tdx)T

[
I − ḡi(x∗)ḡi(x∗)T

‖ḡi(x∗)‖2

]
, dλ̄i

〉
On the other hand, from (5.119), we have(

1
2
∇gi0(x∗)Tdx+ 1

2
· ḡi(x∗)T‖ḡi(x∗)‖Jḡ

i(x∗)dx
1
2
wi
(
−∇gi0(x∗)Tdx− wT

i ∇ḡi(x∗)Tdx · 1−σ
1+σ

)
− σ

1+σ
(−∇ḡi(x∗)Tdx)

)

=

(
1
2
dλi0 + 1

2
wi

Tdλ̄i
1
2
wi(dλ

i
0 − 1−σ

1+σ
wT
i dλ̄

i) + 1
1+σ

dλ̄i

)
(5.125)

From (5.120), we can deduce that

1

2
wi

(
−∇gi0(x∗)Tdx− wT

i ∇ḡi(x∗)Tdx ·
1− σ
1 + σ

)
+

σ

1 + σ
∇ḡi(x∗)Tdx

=
1

2
wi

(
−∇gi0(x∗)Tdx− 1− σ

1 + σ
wT
i ∇ḡi(x∗)Tdx

)
+

σ

1 + σ
∇ḡi(x∗)Tdx

=
1

2
wi

(
−∇gi0(x∗)Tdx+

1− σ
1 + σ

∇gi0(x∗)Tdx

)
+

σ

1 + σ
∇ḡi(x∗)Tdx (5.126)

=
σ

1 + σ

(
wi(−∇gi0(x∗)Tdx) +∇ḡi(x∗)Tdx

)
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and

1

2
wi

(
dλi0 −

1− σ
1 + σ

wT
i dλ̄

i

)
+

1

1 + σ
dλ̄i

=
1

2
wi

(
dλi0 +

1− σ
1 + σ

dλi0

)
+

1

1 + σ
dλ̄i (5.127)

=
1

1 + σ
widλ

i
0 +

1

1 + σ
dλ̄i

=
1

1 + σ

(
widλ

i
0 + dλ̄i

)
.

Therefore, applying (5.125), (5.126) and (5.127) implies

1

1 + σ

(
widλ

i
0 + dλ̄i

)
=

σ

1 + σ

(
wi(−∇gi0(x∗)T)dx+∇ḡi(x∗)Tdx

)
,

which means

widλ
i
0 + dλ̄i = −σ

(
wi∇gi0(x∗)Tdx−∇ḡi(x∗)Tdx

)
. (5.128)

Note that

widλ
i
0 + dλ̄i =

(
I − wiwT

i

)
dλ̄i =

(
I − ḡi(x∗)ḡi(x∗)T

‖ḡi(x∗)‖2

)
dλ̄i (5.129)

Then, it follows from (5.124), (5.128) and (5.129) that

〈−∇gmi(x∗)dx, dλmi〉

=

〈
−∇ḡi(x∗)Tdx,

(
I − ḡi(x∗)ḡi(x∗)T

‖ḡi(x∗)‖2

)
dλ̄i
〉

= σ
(〈
−∇gi(x∗)Tdx, wi

(
−∇gi0(x∗)Tdx

)〉
−
∥∥∇ḡi(x∗)Tdx∥∥2

)
=

∑
i∈B∗

λi0
−gi0(x∗)

(∥∥∇gi0(x∗)Tdx
∥∥2 −

∥∥∇ḡi(x∗)Tdx∥∥2
)

= δ∗
(
λ |T 2

K(−g(x∗);−∇g(x∗)Tdx)
)
.

This together with (5.115) yields

〈JxL(x∗, µ∗, λ∗)dx, dx〉 − δ∗
(
λ |TK2(−g(x∗);−∇g(x∗)Tdx)

)
= 0.

Now using the second-order sufficient condition (condition (ii)), we reach dx = 0. Plug-

ging this into (5.121) leads to

∇h(x∗)dµ+∇g(x∗)dλ = 0.

Applying (5.123) together with condition (iv) yields dµ = 0 and dλ = 0. Thus, the

matrix M is nonsingular, and the proof is complete. �
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We illustrate the effectiveness of the smoothed natural residual (NR) neural network

in solving several representative SOCCVI problems defined by (5.74)–(5.75). In addition,

we provide a comprehensive numerical comparison between the neural network (5.105)

and other neural network models from the SOCCVI literature. Specifically, we consider

six standard benchmark problems for SOCCVI and employ the MATLAB solver ode23s

for all simulations. The stopping criterion is set to ‖∇Ψ(z(t)‖ ≤ 1 × 10−6. For each

example, the neural network (5.105) is simulated from five randomly generated initial

points z0. The solution trajectories for these test problems are displayed in Figure 5.7

– Figure 5.12. Notably, all trajectories successfully converge to the SOCCVI solution,

denoted by x∗.

Example 5.2. Let

F (x) =



2x1 + x2 + 1

x1 + 6x2 − x3 − 2

−x2 + 3x3 − 6
5
x4 + 3

−6
5
x3 + 2x4 + 1

2
sinx4 cosx5 sinx6 + 6

1
2

cosx4 sinx5 sinx6 + 2x5 − 5
2

−1
2

cosx4 cosx5 cosx6 + 2x6 + 1
4

cosx6 sinx7 cosx8 + 1
1
4

sinx6 cosx7 cosx8 + 4x7 − 2

−1
4

sinx6 sinx7 sinx8 + 2x8 + 1
2


C = {x ∈ IR4 | − g(x) = x ∈ K3 ×K3 ×K2}.

Here, x∗ = (0.3820, 0.1148,−0.3644, 0.0000, 0.0000, 0.0000, 0.5000,−0.2500) is the SOC-

CVI solution.

Example 5.3. Let 〈
1

2
Dx, y − x

〉
≥ 0, ∀y ∈ C

where

C = {x ∈ IRn |Ax− a = 0, Bx− b � 0},
A ∈ IRl×n, B ∈ IRm×n, D ∈ IRn×n is symmetric, d ∈ IRn, a ∈ IRl and b ∈ IRm, with

l +m ≤ n.

As in [201, Example 5.1], we let

D = (Dij)n×n, where Dij =


2, i = j

1, |i− j| = 1

0, otherwise

,

A =
[
Il×l 0l×(n−l)

]
l×n

, B =
[
0m×(n−m) Im×m

]
m×n

, a = 0l×1, b = (em1 , . . . , emp), where

emi = (1, 0, · · · , 0)T ∈ IRmi . We set l = m = 3 and n = 6 for the simulations, and the

SOCCVI has x∗ = (0, 0, 0, 0, 0, 0) as its solution.
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Figure 5.7: Convergence of x(t) to the SOCCVI solution in Example 5.2 using five random

initial points, where ρ = 103.
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Figure 5.8: Convergence of x(t) to the SOCCVI solution in Example 5.3 using five random

initial points, where ρ = 103 .
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Example 5.4. Let

F (x) =



x3exp(x1x3) + 6(x1 + x2)

6(x1 + x2) +
2(2x2 − x3)√

1 + (2x2 − x3)2

x1exp(x1x3)− 2x2 − x3√
1 + (2x2 − x3)2

x4

x5


and

C = {x ∈ R5 |h(x) = 0,−g(x) ∈ K3 ×K2},
with

h(x) = −62x3
1 + 58x2 + 167x3

3 − 29x3 − x4 − 3x5 + 11,

g(x) =


−3x3

1 − 2x2 + x3 − 5x3
3

5x3
1 − 4x2 + 2x3 − 10x3

3

−x3

−x4

−3x5

 .

Here, x∗ = (0.6287, 0.0039,−0.2717, 0.1761, 0.0587).

Example 5.5. Let

F (x) =


2x1 − 4

ex2 − 1

3x3 − 4,

− sin(x4)

x5


and

C =
{
x ∈ IR5 | − g(x) = x ∈ K5

}
.

Here, x∗ =
(
2, 0, 1.3333, 0, 0

)
.

Example 5.6. Consider the variational inequality

F (x) =


4x1 − sinx1 cosx2 + 1

− cosx1 sinx2 + 6x2 + 9
5
x3 + 2

9
5
x2 + 8x3 + 3

2x4 + 1


and

C =
{
x ∈ IR4 |h(x) = 0,−g(x) ∈ K2

}
.

with

h(x) =

(
x2

1 − 1
10
x2x3 + x3

x2
3 + x4

)
and g(x) =

(
−x1

−x2

)
.
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Figure 5.9: Convergence of x(t) to the SOCCVI solution in Example 5.4 using five random

initial points, where ρ = 103 .
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Figure 5.10: Convergence of x(t) to the SOCCVI solution in Example 5.5 using five

random initial points, where ρ = 103 .
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Figure 5.11: Convergence of x(t) to the SOCCVI solution in Example 5.6 using five

random initial points, where ρ = 103 .
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Here, x∗ = (0.2391,−0.2391,−0.0558,−0.0031).

Example 5.7. Consider the CSOCP [112]

min exp(x1 − x3) + 3(2x1 − x2)4 +
√

1 + (3x2 + 5x3)2

s.t. −g(x) =


4x1 + 6x2 + 3x3 − 1

−x1 + 7x2 − 5x3 + 2

x1

x2

x3

 ∈ K2 ×K3.

For this CSOCP, x∗ = (0.2324,−0.07309, 0.2206) is the approximate solution. This

problem can be recast as an SOCCVI problem as discussed in the beginning of Section

5.2.3.

Example 5.8. We consider the grasping-force optimization problem for multifingered

robotic hands [141, 216], which involves determining the minimum force that each finger

must exert on an object so as to maintain the finger’s grasp. In particular, we consider

the problem in [216] involving a three-fingered robotic hand with fingers positioned at

(0, 1, 0), (1, 0.5, 0) and (0,−1, 0). The optimization problem is given by

min 1
2
yTy

s.t. Gy = −fext√
y2
i1 + y2

i2 ≤ µiyi3 (i = 1, . . . ,m)

where y = (y11, y12, y13, . . . , ym3) ∈ IR3m, G ∈ IR6×3m is the grasping transformation

matrix, fext is the (time-varying) external wrench, and µi is the friction coefficient at

finger i. As in [216], we let µi = µ = 0.6 for all i,

G =



0 1 0 0 0 −1 1 0 0

0 0 −1 0 −1 0 0 0 1

−1 0 0 −1 0 0 0 −1 0

−1 0 0 −0.5 0 0 0 1 0

0 0 0 1 0 0 0 0 0

0 −1 0 0 −1 0.5 1 0 0

 ,

and fext = (0, fc sin θ(t),−Mg + fc cos θ(t), 0, 0, 0)T, where g = 9.8 m/s2, M is the mass

of the object (assumed to be 0.1 kg), fc = Mv2/r and θ(t) = vt/r. The hand moves along

a circular path of radius r = 0.5 m and constant velocity v = 0.4π m/s.

In order to use our neural network, we recast the above problem as an SOCCVI. First,

we let (xi1, xi2, xi3) = (µfi3, fi1, fi2). By this transformation, it can be shown that the

problem corresponds to the SOCCVI with F , g and h given as below:

F (x) = diag
(
1/µ2, 1, 1, 1/µ2, 1, 1, 1/µ2, 1, 1

)
x



5.2. NEURAL NETWORKS FOROPTIMIZATION PROBLEMS INVOLVING SOC539

−g(x) = x ∈ K3 ×K3 ×K3

h(x) = Ḡx+ fext

where

Ḡ =



0 0 1 −1/µ 0 0 0 1 0

−1/µ 0 0 0 0 −1 1/µ 0 0

0 −1 0 0 −1 0 0 0 −1

0 −1 0 0 −0.5 0 0 0 −1

0 0 0 0 1 0 0 0 0

0 0 −1 0.5/µ 0 −1 0 1 0

 .

We note that external wrench fext applied varies over time. In Figure 5.13, we show the

optimal force required as time varies from 0 sec to 1 sec.
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Figure 5.13: Time-varying optimal grasping force for the three-fingered robotic hand.

We now present a comparative analysis of the five neural network models discussed in

this section for solving the SOCCVI problem. The first model is based on the smoothed

Fischer–Burmeister (FB) function φε
FB

, where the smoothing parameter ε is gradually

reduced to zero. The second model, given by (5.90), is formulated using a projection-

based approach derived from an equivalent transformation of the KKT conditions. In

addition, two neural networks were proposed in [200], each constructed from discrete

generalizations of the FB and NR functions, namely, φp
D−FB

and φp
NR

, as defined in (3.177)

and (3.176), respectively. For clarity, we refer to these two networks as “DFB-NN” and

“DNR-NN”.
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Table 5.1: Summary of Successful and Unsuccessful Simulation Results for the Five

Neural Networks

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6

NN (5.105) by φε
NR

3 3 3 3 3 3

NN (5.82) by φε
FB

3 3 3 3 3 3

NN (5.90) by ΠK 3 3 7 7 7 3

DFB-NN by φp
D−FB

7 3 7 7 3 7

DNR-NN by φp
NR

7 3 7 7 7 7

We begin by summarizing our findings based on several numerical experiments that

assess the performance of the four previously studied neural networks, as reported in

[193] and [200]. Among these models, the smoothed FB neural network consistently

demonstrated the most robust numerical performance. It proved to be more reliable

in solving SOCCVI problems across a range of instances and exhibited less sensitivity

to variations in initial conditions. The projection-based neural network also performed

well numerically. In cases where both the smoothed FB and projection-based models

converged to the SOCCVI solution, the latter generally achieved faster convergence times.

However, it was also observed that the projection-based neural network failed to solve

certain problems that the smoothed FB neural network could handle successfully. Lastly,

the DFB-NN and DNR-NN models, constructed from discrete generalizations of the FB

and NR functions, were found to be considerably more sensitive to initial conditions,

which often hindered their convergence reliability in practice.

We now compare the performance of our proposed smoothed NR neural network

(5.105) with the four neural network models previously discussed. Overall, our model

demonstrates superior stability and convergence properties. To support this claim, we

conduct simulations on a suite of benchmark SOCCVI problems. Table 5.1 presents a

summary of the simulation results for our model and the four existing neural networks

from the literature. A check mark (“3”) indicates successful convergence to a solution

of the SOCCVI, while a cross (“7”) denotes failure to do so. To assess and compare con-

vergence rates, we simulate the solution trajectories z(t) = (x(t), µ(t), λ(t)) and compute

the error ‖x(t)− x∗‖, where x∗ denotes the known SOCCVI solution. The error trajec-

tories for each problem instance are displayed in Figures 5.14–5.19. Our key findings are

summarized as follows:

• As shown in Table 5.1, only the neural network (5.105) based on the smoothed

natural residual function φε
NR

and the smoothed FB neural network (5.82) based

on φε
FB

, successfully solved all the tested SOCCVI problems. The projection-based

neural network achieved moderate performance, solving approximately half of the

problems. In contrast, the two discrete-based neural networks, DFB-NN and DNR-

NN, demonstrated the lowest success rate across the test suite.
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• The projection-based neural network (5.90), constructed using the cone projection

operator ΠK, exhibits a notably fast convergence rate when it successfully ap-

proaches the SOCCVI solution, as observed in Example 5.2 and Example 5.7 (see

Figure 5.14 and Figure 5.19, respectively). However, in certain instances, specif-

ically, Example 5.4 and Example 5.6, its trajectories display oscillatory behavior,

ultimately failing to converge to the solution.

• Despite the rapid convergence exhibited by the projection-based neural network

(5.90) using ΠK, the smoothed NR neural network (5.105) based on φε
NR

still out-

performs it in certain cases, as illustrated in Figure 5.15. It is also worth noting

that while both DFB-NN (using φp
D−FB

) and DNR-NN (using φp
NR

) are able to solve

Example 5.3, their convergence rates are exceedingly slow.

• The error plots presented in Figure 5.14 – Figure 5.19 indicate that the smoothed

NR and smoothed FB neural networks exhibit nearly identical convergence rates.

Moreover, both models demonstrate a notable insensitivity to variations in initial

conditions. These observations suggest that the smoothed NR and smoothed FB

neural networks are particularly well-suited for designing robust and reliable neural

network frameworks for solving SOCCVI problems.

• Our numerical experiments indicate that the smoothed NR neural network (5.105),

based on φε
NR

, is less sensitive to initial conditions than the smoothed FB neural

network (5.82), based on φε
FB

. For example, in Example 5.2, it can be readily

verified that the smoothed FB neural network fails to converge when initialized at

z0 = (0, . . . , 0)T or z0 = (1, . . . , 1)T.

Based on the above observations, we conclude that the smoothed NR neural net-

work (5.105), based on φε
NR

, and the smoothed FB neural network (5.82), based on φε
FB

,

demonstrate the best overall performance in solving SOCCVI problems. However, as

previously noted, the smoothed FB neural network exhibits greater sensitivity to initial

conditions, with divergence more likely to occur from certain starting points compared

to the smoothed NR model.

Furthermore, a notable advantage of our smoothed NR neural network lies in its com-

putational efficiency. In contrast, the smoothed FB neural network incurs significantly

higher computational cost, primarily due to the complexity involved in evaluating the

derivatives of the smoothed FB function φε
FB

, as defined in (5.80). To see this, recall from

[193, Lemma 3.1] that for any ε 6= 0,

∇εφ
ε
FB

(a, b) = eTL−1
z Lεe,

∇aφ
ε
FB

(a, b) = L−1
z La − I,

∇bφ
ε
FB

(a, b) = L−1
z Lb − I,



542CHAPTER 5. DYNAMICALMETHODS USING COMPLEMENTARITY FUNCTIONS

where z = (a2 + b2 + ε2e)1/2 and La =

[
a1 aT2
a2 a1In−1

]
for a = (a1, a2)T ∈ IR× IRn−1. It

is important to note that all of the formulas discussed above involve the computation of

matrix inverses, which can be computationally intensive. In particular, the smoothed FB

neural network requires more extensive calculations during implementation, primarily

due to the complexity of its underlying function and associated derivatives.

Finally, we offer a few remarks regarding the computational complexity of the five

neural network models considered. While the architecture of the smoothed FB neural

network is structurally similar to that of the smoothed NR neural network (see [193]), our

findings indicate that the smoothed NR network offers superior convergence behavior.

In contrast, the DFB-NN and DNR-NN models, though slightly less complex (see [200]),

exhibit limited robustness and slower convergence. The projection-based neural network

has the simplest architecture and the lowest computational complexity. However, as

previously discussed, it suffers from stability issues and is not as reliable across problem

instances.
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Figure 5.14: Comparison of decay rates of ‖x(t) − x∗‖ for the five neural networks for

Example 5.2.

To conclude, we summarize the neural network models discussed in this section in

Table 5.2.
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Figure 5.15: Comparison of decay rates of ‖x(t) − x∗‖ for the five neural networks for

Example 5.3.
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Figure 5.16: Comparison of decay rates of ‖x(t) − x∗‖ for the five neural networks for

Example 5.4.
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Figure 5.17: Comparison of decay rates of ‖x(t) − x∗‖ for the five neural networks for

Example 5.5.
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Figure 5.18: Comparison of decay rates of ‖x(t) − x∗‖ for the five neural networks for

Example 5.6.
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Figure 5.19: Comparison of decay rates of ‖x(t) − x∗‖ for the five neural networks for

Example 5.7.
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