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Preface

Complementarity functions occupy a central role in the field of optimization, as they
enable the reformulation of the Karush-Kuhn-Tucker (KKT) conditions and the original
optimization problem into either an equivalent system of equations or an unconstrained
minimization problem. This reformulation opens the door to a wealth of novel approaches
aimed at solving these equivalent forms, thereby generating solution candidates for the
original problem. While two distinguished monographs have already addressed related
areas of complementarity problems - focusing primarily on the existence of solutions, their
stability, sensitivity analysis, and corresponding solution methods - this book adopts a
distinct perspective. Here, we devote our primary attention to the study of complemen-
tarity functions themselves. Specifically, our goal is to present a comprehensive overview
of their key properties and structural features, as well as to provide guiding principles
for the construction of new complementarity functions. Moreover, we will illustrate how
these functions can be effectively employed in algorithmic applications.

Chapter 1 offers an overview and essential background materials that lay the ground-
work for the analyses presented in the subsequent chapters. In Chapter 2, we delve
into the development of complementarity functions within the framework of nonlinear
complementarity problems (NCPs), introducing several novel ideas and systematic tech-
niques for constructing new NCP functions. Building upon these foundations, Chapter
3 extends the discussion to broader settings, encompassing second-order cones, positive
semidefinite cones, and symmetric cones. These two chapters form the core of this mono-
graph and are closely aligned with its central theme. Throughout Chapters 2 and 3, the
analysis is conducted within finite-dimensional spaces. Nevertheless, the development
requires the careful handling of various inequalities and intricate technical arrangements.
While the objectives in many instances may appear straightforward, the corresponding
arguments can be laborious and subtle. Readers may, however, find valuable techniques
and insights embedded within these detailed derivations.

In general, the unified analysis of certain C-functions presented in Section 3.3 encom-
passes and recovers the results discussed in Chapter 2, as well as Sections 3.1 and 3.2,
since symmetric cones naturally include the nonnegative orthant, the positive semidef-
inite cone, and the second-order cone as special cases. However, establishing certain
properties within this unified framework may necessitate additional conditions. At first
glance, one may observe parallel or analogous results across these various settings. This
resemblance arises from the progression of C-function developments - originating in the
classical NCP setting, advancing through the positive semidefinite and second-order cone
contexts, and culminating in the broader symmetric cone framework. From a historical
perspective, it is instructive to preserve this developmental pathway. Doing so not only
allows readers to trace the evolution of these ideas but also helps them discern the subtle



distinctions between settings and appreciate the diverse techniques required in each case.

In Chapter 4, we turn our attention to a selection of algorithms that employ comple-
mentarity functions. Broadly speaking, four distinct approaches are explored: the merit
function approach, the nonsmooth function approach, the smoothing function approach,
and the regularization approach. Within each framework, we present specially designed
optimization algorithms that leverage the properties of complementarity functions, illus-
trating their practical utility and adaptability in algorithmic development.

In Chapter 5, we showcase the applications of complementarity functions within the
framework of neural network methods, which differ fundamentally from traditional opti-
mization techniques. For these dynamical systems, the primary concerns lie in the behav-
ior of solution trajectories and the stability of the system, rather than the convergence
rate or iteration count typically emphasized in conventional optimization algorithms. In
particular, we focus on applying these methods to nonlinear complementarity problems
and optimization problems involving second-order cones, providing illustrative examples
to highlight their effectiveness in such contexts.

This book encapsulates my two decades of research on complementarity functions.
Much like my earlier Springer monograph, “SOC Functions and Their Applications”, it
is dedicated, once more, to the cherished memory of my supervisor, Professor Paul Tseng.
I am profoundly grateful to have had the privilege of his mentorship. His unwavering
encouragement and profound insight have continuously shaped and guided my academic
journey. Though he tragically went missing in 2009, his exemplary dedication to research
and his inspiring attitude remain etched in my heart. I wish to express my sincere ap-
preciation to all my esteemed co-authors whose collaborative efforts have contributed to
the material presented in this book: Professor Shaohua Pan, Professor Yu-Lin Chang,
Professor Chun-Hsu Ko, Professor Xinhe Miao, Professor Juhe Sun, Professor Chu-Chin
Hu, Dr. Ching-Yu Yang, Dr. Chien-Hao Huang, Dr. Thanh Chieu Nguyen, Dr. Harold
Alcantara, among others. Working alongside them has been not only intellectually re-
warding but also a source of great personal joy. My gratitude also extends to Xiaoni
Chi and others who kindly assisted with proofreading, ensuring the clarity and precision
of the text. Lastly, I owe my deepest thanks to my family-Vivian, Benjamin, and lan
along with Ian’s beloved Doggy, Olah and Lil Bos. Their unwavering support, love, and
encouragement have been a constant source of strength, empowering me to pursue and
persevere in my academic endeavors.

Jein-Shan Chen

Taipei, Taiwan
June, 2025
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LIST OF TABLES 1

Notations
e Throughout this book, an n-dimensional vector x = (x1, 22, -+ ,2,) € IR" means
a column vector, i.e.,
I
o)
Tr =
Tn
In other words, without ambiguity, we also write the column vector as z = (z1, 2, -+ , Z,,).
e R} means {z = (21,22,...,2,)|2; > 0, for alli = 1,2,...,n}, whereas IR" , de-
notes {x = (z1,x9,...,2,) |2; >0, Vi=1,2,... n}.

e (-,-) denotes the Euclidean inner product.

e || - || is the Euclidean norm.

e T means transpose of a vector or a matrix.

e B(z,d) denotes the neighborhood of x with radius § > 0.
e [IR™™ denotes the space of n x n real matrices.

e [ represents an identity matrix of suitable dimension.

e For any symmetric matrices A, B € IR"*", we write A = B (respectively, A = B)
to mean A — B is positive semidefinite (respectively, positive definite).

e S" denotes the space of n X n symmetric matrices; and S} means the space of n xn
symmetric positive semidefinite matrices.

e O denotes the set of P € IR"*" that are orthogonal, i.e., PT = P71,

e Given a set S, we denote S, int(S) and bd(S) by the closure, the interior and the
boundary of S, respectively.

e A function f : R" — (—o0,00] is said to be proper if f(¢) < oo for at least one
¢ € IR" and f(¢) > —oo for all ¢ € R™.

e For a mapping f : IR” — IR, Vf(x) denotes the gradient of f at .

e For a closed proper convex function f : R" — (—o0, oc], we denote its domain by

domf = { ¢ € R"| £(¢) < o}.

e For a closed proper convex function f : R" — (—o00, 00|, we denote the subdiffer-
ential of f at ( by

0f(Q) == {w e R £(0) = F(O) + {w,¢ = O), Ve R}



LIST OF TABLES

c® (J) denotes the family of functions which are defined on J C IR” to IR and have
continuous ¢-th derivative.

For any differentiable mapping F = (Fy, Fy,---,F,) : R* — IR™, VF(x) =
[VFi(z)---VF,(x)] is an x m matrix which denotes the transpose Jacobian of F
at x.

For a real valued function f : J — IR, f'(t) and f”(t) denote the first derivative
and second-order derivative of f at the differentiable point ¢t € J, respectively.

For a mapping F': S C IR" — IR™, 0F(z) denotes the subdifferential of F' at z,
while OpF'(x) denotes the B-subdifferential of F' at x.

For nonnegative scalars a and 3, we write « = O(f) to mean o < Cf, with C
independent of a and /.

We denote K* := {y|(z,y) > 0 Vz € K} the dual cone of K, given any closed
convex cone k.

For any z € IR™, (x), is used to denote the orthogonal projection of = onto I,
whereas (x)_ means the orthogonal projection of x onto —K.

For any z,y € R", we write z =, y if 2 —y € K", and write z >, y if
xr —y € int(K").



Chapter 1

Backgrounds and Overviews

In this chapter, we provide a concise overview of complementarity problems frequently
encountered in optimization, along with the various contexts from which complemen-
tarity functions naturally arise. Additionally, we revisit essential background material
pertinent to the study of complementarity functions. Notably, the framework of Fu-
clidean Jordan algebra offers a powerful and unifying approach for addressing a wide
range of complementarity problems. To this end, we introduce the fundamental concepts
of Euclidean Jordan algebra, beginning with the notion of symmetric cones, which play a
central role in both complementarity problems and the construction of complementarity
functions.

1.1 Symmetric cones, Spectral decomposition and
Lowner function

Let V be a Euclidean space endowed with an inner product (-,-). A subset K C V is
called a cone if

reK, AN>0 — MreK.

A cone K which contains no line is said to be pointed , namely, K N (—K) = {0}. If K is
also convex, then K is said to be a convex cone . Regarding convex cones, the following
facts are well known.

(a) A set K CV isa convex cone if and only if

MM CK VA>0 and K+ K CK.

(b) A set K C V is a convex cone if and only if it contains all nonnegative linear
combinations of points in K.
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(c) Let K be a convex set. The set
{\r|xze K,\>0}

is the smallest convex cone containing K.

For any set £ C V, the set
E°={yeV|(y,z) <1, VreEFE}

is called the polar set of E. If E is a closed convex cone, A\E C E for all A > 0. Hence,
the condition (y,z) < 1, Vx € E is equivalent to (y,z) < 0, Vo € E. Therefore, the polar
cone of a cone K is defined as

Ke={yeV|(y,x) <0, Vxe K}

To visualize the graph of K°, please see Figure 1.1. Let K be a nonempty closed convex
cone, it is also known that K = K°°. For a closed cone K C 'V, its dual cone K* is given
by

K :={yeV|(z,y) >0, VreK}.

K

K°
Figure 1.1: The graph of K°.

Let V be an n-dimensional vector space over the real field IR, endowed with a bilinear
mapping (z,y) — x oy from V x V into V. The pair (V,0) is called a Jordan algebra
(66, 125, 131] if the following two conditions are satisfied:

(i) zoy=yoxforal z,y €V,

(ii) zo (z20y) =220 (xoy) for all 7,y € V.
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Note that a Jordan algebra is not necessarily associative, i.e., x o (yoz) = (roy)oz
may not hold for all z,y,z € V. We refer an element e € V as the identity element if
roe=cox =z for all z € V. A Jordan algebra (V,o) with an identity element e is
called a Euclidean Jordan algebra if there is an inner product, (-, -), such that

(iii) (xoy,z) = (y,xoz) forall x,y,z € V.
Given a Euclidean Jordan algebra (V, o, (-,-)), we denote the set of squares as
K:={2*|z €V}, (1.1)

By [66, Theorem III.2.1], the set KC described by (1.1) is called a symmetric cone |,
which means that K is a self-dual closed convex cone with nonempty interior and for any

two elements x,y € int(K), there exists an invertible linear transformation 7 : V. — V
such that T'(K) = K and T'(z) = y.

Example 1.1. The vector space V.= IR™ with the usual inner product (z,y) = xTy can
be made into a Euclidean Jordan algebra by defining

Toy=x0Yy,
where ® denotes the Hadamard product operator, i.e. (x ®y); = x;y; fori =1,--+ n.
Then, the set of squares K is precisely the nonnegative orthant IRY , i.e, K = IR}

Example 1.2. For n > 1, another bilinear mapping o can be defined on V = IR" if we
write v € R™ as v = (11,T2) € R x R"™L. For any z,y € IR", we define

'y
rToy= . 1.2
Y {931?/2 + Y1T2 (1.2)

The resulting Euclidean Jordan algebra is known as the Jordan spin algebra which we
denote by ™. Its cone of squares is precisely the second-order cone (SOC for short), also
called Lorentz cone and denoted by IL7y. In other words,

K:Li = {(%1,.@2) cR x IRnily H.TQH Sfﬂl} (13)

Example 1.3. The vector space V.= S" with inner product (X,Y) = tr(X'Y) and the
bilinear map

1

forms a FEuclidean Jordan algebra. Its cone of squares is precisely the set of all positive
semidefinite matrices S'y. In other words,

K=St={XeS"|u"Xu>0, VueR"}.
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For any given x € V| let ((x) be the degree of the minimal polynomial of z, i.e.,
¢(x) := min {k ‘ {e,x, 2% -, 2"} are linearly dependent} )

Then, the rank of V is defined as max{((z) |z € V}. Here, we use r to denote the rank
of the underlying Euclidean Jordan algebra. Recall that an element ¢ € V is idempotent
if ¢ = ¢. Two idempotents ¢; and ¢; are said to be orthogonal if ¢; o ¢; = 0. One says
that {c1,co, ..., ¢} is a complete system of orthogonal idempotents if

k

G=cj, coc=0if j#iforalji=12---k and ) ¢ =e
j=1

An idempotent is primitive if it is nonzero and cannot be written as the sum of two other

nonzero idempotents. We call a complete system of orthogonal primitive idempotents

a Jordan frame . The following Spectral Decomposition Theorem is very important in

subsequent analysis under Euclidean Jordan algebra.

Theorem 1.1. [66, Theorem III.1.2] Suppose that V is a Fuclidean Jordan algebra with

the rank r. Then for any x € V, there exists a Jordan frame {c1,--- ,c.} and real
numbers Ai(x),- -+, \.(x), arranged in the decreasing order A\i(z) > Xo(z) > - > \.(2),
such that

= M)y + Xa(x)ea + - - 4+ Ao (2)cy (1.4)

The numbers \j(x) (counting multiplicities), which are uniquely determined by x, are

called the eigenvalues and tr(x) = Z)\j(l’) the trace of x.
j=1

Since, by [66, Proposition III1.1.5], a Jordan algebra (V, o) with an identity element
e € V is Euclidean if and only if the symmetric bilinear form tr(z oy) is positive definite,
we may define another inner product on V by (x,y) := tr(x o y) for any z,y € V. The
inner product (-, ) is associative by [66, Proposition II. 4.3], i.e., (z,y0z) = (y,x 0 z) for
any z,y,z € V. Accordingly, we let || - || be the norm on V induced by the inner product,

namely,
. 1/2
Iz == \/{z, ) = (ijl Ag(x)) , VzeV.
Then, by the Schwartz inequality, it is easy to verify that
leoyll <llzll-lyll, Vaz,yeV. (1.5)
For any given x € (V, o, (-,-)), let L(x) be the linear operator of V defined by

L(zx)y:=xz0y VyeV. (1.6)
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It is noted that L£(x) is symmetric with respect to the inner product (-, -) in the sense of
(L(2)y, 2) = (y,L(z)z) Vy,z€V.

Suppose that (V, o, (-, -)) is a simple Euclidean Jordan algebra of rank r and {¢y, ¢, -+ , ¢, }
is a Jordan frame of V. From [66, Lemma IV.], we know that the operators L(c;), j =
1,2,--- ,r commute and admit a simultaneous diagonalization. In particular, for ¢,j €
{1,2,--- ,r}, define the subspaces

Vi == {xeV]zoc =12} =Rg,
1
Vz] = {$€V’Ciox—cjox—§x} Whenl#]

From [66, Corollary IV.2.6], it says that
dim(V;;) = dim(Vy) foranyi#j € {1,2,---,r}and s#t € {1,2,--- ,r},

and n = r + %r(r — 1), where d denotes this common dimension. Moreover, from [66,
Theorem IV.2.1], we have the second version of decomposition.

Theorem 1.2. [66, Theorem IV.2.1] The space V is the orthogonal direct sum of sub-
spaces Vi (1 <i<j<r), ie,V=ad,<;V,. Furthermore,

VijoVi C Viu+Vy,
Vij oV C Vik7 if ¢ 7é k‘,

Hence, given any fized Jordan frame {cy,co, -+ , ¢}, we can write any element x € V as
T
T = E ¢ + E Lij,
i=1 i<j

where x; € R and x;; € V,;. The expression Y ., xic; + >
decomposition of x.

i<j Tij s called the Peirce

The decomposition in Theorem 1.1 is called the spectral decomposition, whereas the
decomposition in Theorem 1.2 is called the Peirce decomposition. For different elements
x and y in V, the Jordan frames in their spectral decompositions are different. To the
contrast, x and y share the same Jordan frame in the Peirce decomposition. A Euclidean
Jordan algebra is called simple if it cannot be written as a direct sum of the other
two Euclidean Jordan algebras. It is known that every Euclidean Jordan algebra can
be written as a direct sum of simple ones, which are not themselves direct sums in a
nontrivial way. In finite dimensions, the simple Euclidean Jordan algebras come from
the following five basic structures.
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Theorem 1.3. [66, Chapter V.3.7] Every simple Euclidean Jordan algebra is isomorphic
to one of the followings.

(i) The Jordan spin algebra L".

(ii) The algebra S™ of n x n real symmetric matrices.

(iii) The algebra H™ of all n x n complex Hermitian matrices.
(iv) The algebra Q™ of all n X n quaternion Hermitian matrices.

(v) The algebra Q* of all 3 x 3 octonion Hermitian matrices.

Given an n-dimensional Euclidean Jordan algebra (V, (-, -), o) with I being its cor-
responding symmetric cone in V. For any scalar function f : IR — IR, we define a
vector-valued function f™ () (called Lowner function) on V as

f (@) = Fu@)er + fFQa(@))ez + -+ fF(A(2))er, (1.7)
where x € V has the spectral decomposition as
x=M(x)er + Xo(T)co + - - - + Ap(T)cy.

As mentioned earlier, when V represents the Jordan spin algebra IL,, K corresponds to
the second-order cone (SOC) given as in (1.3). For convenience, we also denote it by K",
which means a single SOC, that is,

KM= {($1,1‘2) € R x Rn_l | ||$2|| S xl}‘

In particular, when n = 1, K™ reduces to the set of nonnegative real numbers IR, . Under
such case, the spectral decomposition (1.4) of x = (x1,75) € IR x IR*! appeared in
Theorem 1.1 becomes

= M (2)ull) + Ao(z)ul?, (1.8)

where A\i(z), A2(x), ul!) and ul? with respect to K" are given by

Ai(x) = x4+ (=1)"[|a, (1.9)
1 _1)¢ x2 if o

u = 2<1’( & ||ﬂf2||) L7l (1.10)
%(1,(—1)%)) if 9 =0,

for i = 1,2, with w being any vector in IR"! satisfying [|w|] = 1. If 29 # 0, the
decomposition (1.8) is unique. The determinant and trace of x are defined as det(x) :=
A1 (z)A2(x) and tr(z) := A\ (x) + Aa(x), respectively.
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Under the SOC setting, the Lowner function defined as in (1.7) reduces to so-called
SOC-function £~ studied in [16, 21, 23, 28, 29]. More specifically, with this spectral de-
composition, for any scalar function f : J C IR — IR, the Lowner function f associated
with K" reduces to f~ : S C IR® — IR" as below:

(@) = fOu(@)ul + Fo(z))ul® Vo = (z1,75) € R x R", (1.11)

xT

where J is an interval (finite or infinite, open or closed) of IR, and S is the domain of
7 determined by f.

In the SOC setting, Chen, Chen, and Tseng [29] demonstrated that the Léwner func-
tion f° inherits several key properties from the underlying function f, including continu-
ity, Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous
differentiability, and semismoothness. The Holder continuity of both f* and f was fur-
ther established in [16]. Sun and Sun [197] extended some of these foundational results
to the broader context of symmetric cones, specifically regarding . Moreover, the SOC
trace function associated with f can be defined as follows:

socC

f @) = fa(@) + f(Ra(2) = te(f () VzeS. (1.12)

SOcC

Chen, Liao and Pan [34] built up the following relation between f* and f
Vi (x) = (f)°(z) and V2f"(z) = V(f)°°(x) Vz € intS.

By employing the Schur Complement Theorem, they establish the convexity of SOC trace
functions as well as compositions involving these functions. Several of these functions
play a pivotal role in penalty and barrier function methods for second-order cone pro-
grams (SOCPs). Furthermore, certain fundamental inequalities related to second-order
cones are instrumental in demonstrating the convexity properties of these functions. For
a more comprehensive discussion on the roles and applications of £~ and f', defined in
(1.11) and (1.12), respectively, the reader is referred to [28].

When V represents the algebra S™ of n x n real symmetric matrices, what do the
spectral decomposition and the Lowner function look like? For any X € S™, its (repeated)
eigenvalues A1, - -+, \, are real and it admits a spectral decomposition of the form:

X = Pdiag[A, -+, A] PT, (1.13)

for some orthogonal matrix P, where diag[A, - -, A,] denotes the n x n diagonal matrix
with its ¢th diagonal entry A;. In fact, the spectral decomposition (1.13) corresponds to
the spectral decomposition in Theorem 1.1. To see this, letting P = [ul |ug | - | un] ,
by taking the Jordan frame {cy,cs, -+ ,c,} as

T T T
{u1u17u2u2 )t 7unun} )
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it can be verified that the spectral decomposition (1.4) of X, that is,
X = )\1(X)Cl + /\Q(X)CQ + -+ )\T(X)Cr,

reduces to the above matrix decomposition (1.13). Likewise, under the S} setting, the
Lowner function defined as in (1.7) reduces to a matrix-valued function. More specifi-
cally, for any function f : R — IR, we can define a corresponding function f™* : §* — S”
[11, 95] by

F7X) = Pdiag[f(M), -+, f(A)] PT. (1.14)

It is known that f™*(X) is well-defined (independent of the ordering of Ay, ..., \, and
the choice of P) and belongs to S, see [11, Chapter V] and [95, Section 6.2]. Moreover,
a result of Daleckii and Krein showed that if f is continuously differentiable, then f™* is
differentiable and its Jacobian V™ (X) has a simple formula, see [11, Theorem V.3.3];
also see [45, Proposition 4.3].

The function f™ was used to develop non-interior continuation methods for solving
semidefinite programs and semidefinite complementarity problems in [50]. Another re-
lated method was studied in [117]. Further studies of f™* in the case of f(£) = |¢| and
f(&) = max{0, &} were conducted in [173, 196], obtaining results such as strong semis-
moothness, formulas for directional derivatives, and necessary/sufficient conditions for
strong stability of an isolated solution to semidefinite complementarity problem (SDCP).

The SOC function f™ defined as in (1.11) has a connection to the matrix-valued f™
given as in (1.14) via a special mapping. To see this, in light of the Lowner operator £(+)
given as in (1.6), for any z = (x1,22) € IR x R"™!, we define a linear mapping from IR"
to IR™ as

L,: R — IR”
-
T X } " (1.15)

y o Ly [xg x 1

It can be easily verified that x oy = L,y for all y € IR", and L, is positive definite
(and hence invertible) if and only if z € int(K"). However, L 'y # 27! oy, for some
z € int(K") and y € R, ie., L' # L,~1. The mapping L, defined as in (1.15) will
be used to relate f to f"'; see relation (1.17) in Proposition 1.1. For convenience, in
the subsequent contexts, we sometimes omit the variable notion = in A;(x) and ul) for
i=1,2.

Proposition 1.1. Let x = (z1,75) € R X R™™! with spectral values \i(x), \a(x) given
by (1.9) and spectral vectors u, u? given by (1.10). We denote z = xo if xo # 0;
otherwise let z be any nonzero vector in R"1. Then, the following results hold.

(a) For any t € R, the matriz L, + tM, has eigenvalues A\ (z), Ao(z), and z1 +t of
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multiplicity n — 2, where

M, = 0 0 1.16
SRS 1

(b) Forany f:IR — IR and any t € IR, we have
£ ) = [ (Ly + tM)e. (1.17)

Proof. (a) It is straightforward to verify that, for any x = (z1,72) € R x IR"!, the
eigenvalues of L, are A\i(z), \a(x), as given by (1.9), and z; of multiplicity n — 2. Its
corresponding orthonormal set of eigenvectors is

Voul) vVou® u® = 0,48y, i=3,..,n,
1 (2

where ug ', uy ' are the spectral vectors with w = ” 0 whenever zo = 0, and u, ) e ,ugn)

is any orthonormal set of vectors that span the subspace of IR"~2 orthogonal to z. Thus,
Lz = Udlag[)\l(a:% )\2(1'), Ty, 7‘1'1]UT5

where U := [ Vaul! vaul? WP ] . In addition, by using ul) = (O,ug)),
1 =3,...,n, it is not hard to verify that

0 0
U diag[0,0,1,--- ,1|UT = “~ ), G
gl ] 03w @)

Since @ = [i u$? - u is an orthogonal matrix, we have

[=QQ" = 22! + > ud ()T
22 " &

and hence )" . ug) (ugi))T =1- This together with (1.16) shows that

E ||2
Udiag[0,0,1,...,1]UT = M..
Thus, we obtain
L, +tM, = Udiag[\; (2), A\o(2), 21 +t,--- 2y +]UT, (1.18)
which is the desired result.
(b) Applying (1.18) yields

[ (L 4 EM.)e = Uding [/ ((2)) FQo(@)), fler+8), -, flan+ 1] UTe
= fOa(@)ul? + FQalw))uf?
= (@),
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where the second equality uses the special form of U. Then, the proof is complete. [

In light of (1.7), let ¢ : IR — IR be a scalar valued function. There exists a vector-
valued function associated with the Euclidean Jordan algebra (V,o, (-,-)) given by

o (2) = p(Mi(2))er + p(Aa(@))ea + - - + p(Ar(2))cr, (1.19)

where z € V has the spectral decomposition x = 7, Aj(x)c;. The function ¢, is also

called the Lowner operator [197]. When ¢(t) is chosen as max{0,¢} and min{0,¢} for
t € IR, respectively, ¢, becomes the metric projection operator onto K and —K:

()4 = Zmax{o, ANi(z)}e; and  (z)- = Zmin{O, Aj(z)}e;.

Theorem 1.4. [197, Theorem 13] For any x = >, Nj(x)c;, let ¢, be given as in
(1.19). Then, ¢, is (continuously) differentiable at x if and only if ¢ is (continuously)
differentiable at each \;(x), j=1,2,...,r. The derivative of ¢, at x, for any h € V, is

2 @h =3 [, e hies+ 30 4[], eo (o),

where
p(i(7) —p(N(@) .
[gp[l}()\(x))}ij = Ai(x) = Aj(2) if Ai(z) # Ay() . L,j=1,2,....r
¢’ (Xi(z)) if Ai(z) = A;(2)

In fact, the Jacobian ¢/ (-) is a linear and symmetric operator, which can be written

as
r

P @) =Y dN@Pe) +2 Y [ A@)], Lle)L(e) (1.20)
j=1 ij=1i#]

where P(x) 1= 2L2%(x) — L(z?) for any x € M is called the quadratic representation

of V. Consider x € V with the spectral decomposition x = 3%, A\j(z)c;. For i,j €

{1,2,...,r}, let C;;(z) be the orthogonal projection operator onto V;;. Then, there hold

Cij(x) = Cj5(x), C(x) = Cij(x), Cij(@)Cra(x) = 0if {i,j} #{k,1}, i3,k 1=1,...,r
(1.21)
and

Z Cz](dl) = I,

1<i<j<r
where C}; is the adjoint (operator) of Ci;. Moreover, by using [66, Theorem IV. 2.1], it
indicates

C;i(z) = P(c;) and Cij(x) = 4L(c;)L(cj) = 4L(c;)L(¢;) = Cji(w), 1,7 =1,2,...,1.
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Note that the original notation in [66] for orthogonal projection operator is P;;. However,
to avoid confusion with another orthogonal projector P;(c;) onto V(c, ) and orthogonal
matrix P which will be used later, we adopt C;; instead.

With the orthogonal projection operators {C;;(x)|i,j = 1,2,...,r}, we have the
following spectral decomposition theorem for £(z) and L(z?); see [125, Chapters VI-V].

Theorem 1.5. Let v € V have the spectral decomposition x = 7"_, \j(v)c; and L(-) be

defined as in (1.6). Then, the operator L(x) has the spectral decomposition
- 1
L(z) =) N@)Cix)+ D 5 (@) + Mi(@)) Ci(2)
j=1 1<<I<r
with the spectrum o(L(x)) consisting of all distinct numbers in
1 .
0@+ aa@n =12 ).

and L(x?) has the spectral decomposition
- 1
L) =) N@)Cy) + Y 5 (N() +N(2)) Ca(x)
j=1 1<j<i<r

with the spectrum o(L(x?)) consisting of all distinct numbers in

{% (\2(z) + A2 (x)) |40 =1,2,--- ﬂn}'

Proposition 1.2. For any x € V, the operator L(z*) — L*(x) is positive semidefinite.
Proof. By Theorem 1.5 and (1.21), we can verify that £?(x) has the spectral decompo-
sition:
: 1
L3x) =) N(@)Cy(z) + ) 7 K@) + () Ca(x).
j=1 1<j<i<r

This means that the operator £(z?) — £?(x) has the spectral decomposition
1 1
La®) = L@) = ) {5 (N(@) + X (@) = ; (@) + N(@))?| Cala).
1<j<i<r
Noting that the orthogonal projection operator is positive semidefinite on ) and

A(@) + A (@) o (@) + (@)
2 - 4

forall j,1=1,2,...,r,

from which the conclusion follows, utilizing the spectral decomposition of £(z?) — £3(x).
0J
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1.2 Complementarity Problems

Complementarity conditions lie at the heart of both the theoretical foundations and
numerical analysis of numerous optimization algorithms. They frequently emerge, for
example, in the formulation of the Karush-Kuhn-Tucker (KKT) conditions in mathe-
matical programming, which underpin most - if not all - of the algorithms explored in
the subsequent chapters. Beyond their pivotal role in optimization, complementarity
problems also provide a well-established unified framework for addressing equilibrium
models arising in various applied disciplines, including operations research, engineering,
and economics [53, 63].

The standard setting of a complementarity problem is a Euclidean space V endowed
with an inner product (-, -), in which we define the complementarity problem as below.

Definition 1.1. Let F' :' V — V and let K be a cone in V. The problem of finding a
point x € V that satisfies

rek, F(x)eKk*, and (z,F(x))=0 (1.22)

1s known as a complementarity problem .

Below are some well-known and classic examples of complementarity problems.

Example 1.4 (Nonlinear Complementarity Problem). Let V. = IR™ and consider the
usual inner product (x,y) = x'y. Setting K = IR}, then K* = KC, i.e., K is self-dual,
and the complementarity problem (1.22) reduces to finding x € R™ such that

x>0, F(x)>0, and (z,F(z))=0, (1.23)

which is known as nonlinear complementarity problem (NCP) .

Example 1.5 (Linear Complementarity Problem). Let V = IR™ and consider the usual
inner product (x,y) = x'y. From the NCP (1.23), there corresponds to linear comple-
mentarity problem (LCP) when F reduces to affine function Mx+q where M is ann X n
matriz and g € R"™. It is usually denoted by LCP(M,q) with the mathematical format

x>0, Mx+q>0, and (z,Mz+q)=0. (1.24)

The Linear Complementarity Problem (LCP) (1.24) is not only equivalent to mized linear
0 — 1 optimization, but is also equivalent to the mixed integer feasibility problem. In
addition, there exist several notable variants of the LCP, such as the horizontal LCP and
vertical LCP. For a comprehensive treatment of these topics, the reader is referred to the
the monograph [53] and the Encyclopedia of Optimization [76].
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Example 1.6 (Second-Order Cone Complementarity Problem). Let V = IR"™ be endowed
with the inner product {x,y) = x7y. The Lorentz cone, also known as the second-order
cone , is defined as

K :Lﬁ = {(fl,.f2> € R x ]R,nil | Hfg” < Q?l} .

This cone is also self-dual, and the corresponding complementarity problem is to find
x € R™ such that

T >

—n
Ly

0, F(z)>»,0, and (z,F(x))=0, (1.25)

—_T]n
Ly

which is called the second-order cone complementarity problem (SOCCP) .

Example 1.7 (Positive Semidefinite Cone Complementarity Problem). Let V = S™ be
the vector space of all n X n symmetric matrices endowed with the inner product (X,Y) =
tr(XTY). We consider the cone of positive semidefinite matrices K = ST, which is again
self-dual. The resulting complementarity problem is the search for a matriz X € IR™™"
such that

X=0, F(X)=0, and (X,F(X))=0, (1.26)

known as the positive semidefinite cone complementarity problem (SDCP) .

Example 1.8 (Symmetric Cone Complementarity Problem). Let V be the general Eu-
clidean Jordan algebra introduced in Section 1.1 and K be the symmetric cone defined as
in (1.1). Then, the complementarity problem (1.22) becomes

rek, F(x)ek, (x F(x))=0, (1.27)

which is called the symmetric cone complementarity problem (SCCP) .

As highlighted in Theorem 1.3 (see also [66, Chapter V.3.7]), the cones featured in
the aforementioned examples belong to the class of symmetric cones. Consequently, the
SCCP (1.27) serves as a unified framework encompassing the NCP (1.23), the SOCCP
(1.25), and the SDCP (1.26). A recent study [223] further introduces systematic method-
ologies for constructing general non-symmetric cones.

In a Euclidean Jordan algebra, the orthogonality requirement in the complementarity
problem (1.22) can also be expressed in terms of the Jordan product “o”. In other words,
from [85, Proposition 6], for K being a symmetric cone, there holds

reK, F(z) e K, and (z, F(z)) =0
= 0.

< =z €K, F(z) e K, and x o F(x) (1.28)
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Several nonlinear complementarity problems have already been introduced in well-
known textbooks, such as [53, 63]. Therefore, we do not reiterate those examples here.
Instead, we present a representative real-world problem arising from engineering applica-
tions, as discussed in [123]. Additional practical instances of nonlinear complementarity
problems can be found in various domains, including multiuser power control in digital
subscriber lines [222], three-dimensional frictional contact problems [230], and electric
power markets [42, Section 5].

grasp transport

Figure 1.2: Multifingered robot manipulation.

Figure 1.2 illustrates the multifingered robot grasping manipulation, where a mul-
tifingered robotic hand grasps and transports an object from an initial position to a
final position. The dynamics of the object during this process can be described by the
Newton-Euler equations, as outlined in [86, 149]. More precisely, the dynamic equation
of the object is described by

y = v,

b o= %RGlqu[o 0 —g], (1.29)
¢ = Qu,

W= ]_1(RG2u—w><(Iw)>,

where y is the position, v is the velocity, ¢ = [q1 ¢o ¢3]" is the quaternion, w is the
angular velocity, m is the object mass, I is the matrix of moment of initia, ¢ is the
gravity constant, v means the grasping forces which is represented by a matrix, [G G

is the contact matrix, R is the rotation matrix of the object, and ) can be expressed as

qo g3 —q2
Q=z| -3 @ ¢ with g =1\/¢} + ¢ + 6.
q2 —q1 do
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Moreover, the grasping forces are subject to the contact friction constraint, expressed as

Uiz, Uiz) || > K Ui,
I ) =<

where u;; is the normal force of the i-th finger, u;s and u;3 are the friction forces of the
i-th finger, || - || is the 2-norm, and g is the friction coefficient.

In order to find the path that can be achieved with the minimum grasping forces, the
optimal control problem is recast as

T
min / Ldt
0

st. &= f(x,u)

z(0) = xg (1.30)
2(T) =z,
DueK4x K% x K4,
where
- Y
u'u v
L = — e
9+ 7 q

W

In addition, f represents the right hand side of system (1.29), T" is the control duration,
xo and z,, are the initial and final states, respectively, D is the diagonal matrix with the
friction coefficient, and K denotes the second-order cone, which is given by

lall < } .

The optimal control problem (1.30) can be addressed by applying Pontryagin’s min-
imum principle; see, for example, [80, 104, 135]. In the language of optimization, this
approach is equivalent to formulating the Karush-Kuhn-Tucker (KKT) conditions for
problem (1.30), which consist of two key components. The first component involves a set
of equalities pertaining to the Lagrange multipliers, while the second component captures
the complementarity conditions. Specifically, by introducing the Hamiltonian function,
the first part of the KKT conditions can be reformulated as follows:

Kd::{[zlleRxIRdl
)

t—Hy=12— f(x,u) =0,
AN+ H, = A+ \"f, =0,
H,=L,+ A f,+n"D=0,
¢((0), z(T)) =0,

A0) + ¢ yo =0,

AT) + ¢gyo =0,
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where A, 1, o are the Lagrange multipliers, and ¢(z(0),2(T)) = { xx((,—% B io } . The
— a7

second part forms a second-order cone complementarity problem (SOCCP) as below:
—nek, Duek, n'Du=0, (1.31)

where I = K% x K% x - x K.

To conclude this section, we highlight the notion of “weighted complementarity prob-
lems” (WCP) , which emerge in various equilibrium models in economics; see [177, 202].
The WCP can be viewed as a natural extension of the complementarity problem (1.27)
and is characterized by the following mathematical formulation. Given a vector w € IC,
the goal of the weighted complementarity problem is to find (z,s,y) € V x V x IR™ such
that

rek, sek, F(z,s,y)=0, zos=uw, (1.32)

where F': VXV x IR™ — V x IR™ is a continuously differentiable nonlinear mapping.
When the vector w = 0, the WCP (1.32) reduces to a mixed symmetric cone comple-
mentarity problem studied in [225]. When w = 0, m = 0, and F(z,s,y) = f(z) — s with
f:V — V being a continuously differentiable mapping, according to relation (1.28), the
WCP (1.32) becomes the SCCP (1.27).

1.3 Complementarity Functions

The complementarity problem (1.22) essentially involves solving a system composed of
inequalities defining the cones K and K*, along with an equation capturing the orthogo-
nality condition. Rather than handling this system of inequalities and equation directly,
we will demonstrate in the next section how it can be reformulated more conveniently
and effectively through the use of complementarity functions. To this end, we present its
definition as below.

Definition 1.2. A function ¢ : VXV — V is called a complementarity function or
a C-function if

d(r,y) =0 <= =zek, yek', and (z,y)=0. (1.33)

In some cases, there exists a real-valued function ¢ : V x V — IR,, which also
satisfies condition (1.33). Such a function is referred to as both a merit function and
a C-function. This class of C-functions, along with their associated merit functions,
plays a crucial role in the development of algorithms for solving the symmetric cone
complementarity problem (SCCP) and symmetric cone programming (SCP). They have
garnered significant attention in the contemporary optimization literature; see [102, 126,
127, 140, 164, 197] and references therein.
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For self-dual closed convex cones K in a Euclidean space V, we can always construct
a complementarity function based on the projection mapping onto . We recall that
given a set K C V, the orthogonal projection onto IC, denoted by i, is defined by

i (z) = argmin, e[|y — ],
that is, Il (x) satisfies
Mk (x) =2l < lly —=ll, vyek.

A well-known result, the so-called Projection Theorem, is that for a nonempty closed and
convex set K, the projection Ix(x) exists (which means the nearest-point) and is unique
for each point x € V. Moreover, I (x) is also the unique point satisfying the inequality

(x —k(z),z — lg(x)) <0, Vzek. (1.34)

The proof of (1.34) is shown in Lemma 1.1(d) and other properties regarding projection
mapping are summarized thereat, which are for subsequent needs. In addition, any point
x € V has a unique decomposition, known as the Moreau decomposition, given by

x =g (z) — M (—2),

where (Il (z), s (—z)) = 0. Very often, we also use z3- and zx or Pc(x) and Pc-(—x)
to denote the projection of x onto K and —K*, respectively.

Lemma 1.1. Let K be any closed convex cone in R™. For each x € R™, let xf and
x denote the nearest-point (in the Euclidean norm) projection of x onto K and —K*,
respectively. The following results hold.

(a) For any x € R™, we have v = zj- + x and ||z|* = ||z&]]? + o |*

(b) For any x € R™ and y € K, we have (x,y) < (z{,1).

(c) If K is self-dual, then for any x € IR"™ and y € K, we have ||(x + y),JgH > HQ:,JEH
(d) For any xz,y € R™ and z € K, there hold

(x—xz)T (z—25) <0 and a5 —yf| < |z -yl

Proof. (a) These are well-known results in convex geometry on representing z as the
sum of its projection onto K and its polar —K*.

(b) Since zx € —K* and y € K, (z,y) < 0. By part(a), it is clear that (z,y) =
(ze ) + (2, y) < (T, y)-
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(c) Since K is self-dual, we have y € K£*. Then, (x + y)c —y € —K*. Since zy is the
nearest-point projection of z onto —K*, this implies
log =2l < [[((@ + 9k —y) — |-
By part(a), this simplifies to [|z}f]| < [|(z + y)i||-
(d) Consider the point zj + a(z — x3) = az + (1 — a)x) for 0 < @ < 1. Tt belongs to K
due to the convexity of IC. Since this point belongs to K, we have
|z — 2§ —a (2 — zf) H2 > |z — x| Vo eR™

Writing out the expression of the left hand side gives
2 T
|lz—af—a(z—20)|" = llz—2f|P +®lz — af|]? — 20 (z — ) (2 — x)
2
> o —agl"
Then, we obtain
20(z — 2it)" (2 — 2) < o’z — af |

Dividing by « on both sides and letting a — 0 imply
(x—x;g)T (z—a5) <0, (1.35)

which is the desired result.

For the second part, from the above inequality (1.35), we have (w — z)T(z — zt) <0

for all w € K. Noting y- € K, it says that

(i — )" (2 =) <0
and similarly .

(e —9¢) (v —wg) <0
Adding these two inequalities gives

(v —2f) " (z — 2 —y + ) <0,

which together with Schwartz inequality implies
||yIC_‘TICH yic_xic T(y—x)SHyz—wzHlly—xl|

Then, the desired result follows and the proof is complete.  [J

Proposition 1.3. Let K C V be a self-dual closed convex cone. Define ¢ : VXV —V
as

Our (,y) =z —Tx(z — y). (1.36)
Then, ¢y, is a C-function such that ¢ (z,y) = ¢y (y,x) for all x,y € V.
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Proof. Using the Moreau decomposition of x — y and noting that I = K* due to self-
duality of IC, we have

v —y =1Ig(r—y) - Hx(y — ).

This equation indicates ¢, (z,y) = ¢y (y,z). Now, assume that z € K, y € K and
(z,y) = 0. Using ¢, (2,y) = ¢y (v, ), there hold

[0r (@I = (Dge (@), Oy (v, 2))
= (v —Ig(zr —y),y — Ux(y — v)) (1.37)
= —(z,1lx(y —2)) — (y, Uk(x — v)).

Since KC is self-dual and = € K, it is clear (z, IIxc(y—x)) > 0. Likewise, (y, x(z—1y)) > 0.
From (1.37), we see that ||, (z,y)]|> <0, i.e. ¢y (z,y) = 0. Conversely, suppose that
Our(2,y) =0, that is x = [Ix(x — y). Then x € K. Since ¢, (z,y) = ¢ (v, ), it also
follows that y € K. It remains to show that (z,y) = 0. By convexity of K and inequality
(1.34), we have

0> ((z—y)—z,2—x)=(—y,z— ) (1.38)

for all z € K. Taking z = 0 € K, (1.38) gives (x,y) < 0. Since x € K and K is a cone,
z =2z € K. From (1.38) implies that (x,y) > 0. Altogether, we achieve (z,y) =0. O

When K represents a symmetric cone, we denote by ¢ the function defined in
(1.36), which has been shown to be strongly semismooth in [197]. More recently, the
nonsingularity of Clarke’s generalized Jacobian associated with the nonsmooth KKT
system based on ¢ for linear SCP has been investigated in [129]. These contributions
form the theoretical foundation for the development of nonsmooth Newton methods and
smoothing Newton methods for solving the SCCPs and the SCPs. Another popular choice
of ¢ satisfying Definition 1.2 is the Fischer-Burmeister (FB) complementarity function
[85] defined as

o (r,y) = (2 +9)"2 = (x+y) VayeV, (1.39)

where 22 = z o z, and z'/? denotes the unique square root of z € K, i.e., z'/? o 21/2

Compared to the function ¢ , this function possesses a notable advantage: its squared
norm induces a continuously differentiable merit function, which further enjoys a glob-
ally Lipschitz continuous gradient; see [128, 164] for details. This property significantly
facilitates the globalization of nonsmooth Newton methods based on ¢ . Throughout
this book, we frequently employ ¢, and ¢, directly in various settings associated with
IC, whenever the context allows clear distinction without ambiguity.

=X.

For K representing symmetric cones, or certain classes of non-symmetric cones, there
exist alternative approaches to constructing C-functions beyond the use of projections;
see [142, 144, 150, 153, 154] for details. A more thorough discussion of these methods
will be presented in Chapter 3. By employing a C-function ¢ satisfying Definition 1.2,
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the SOCCP (1.31) introduced in Section 1.2 can be further reformulated as a system of
equations:

In [41, 78], the complementarity function ¢, is employed, which is a special case of (1.39)
corresponding to SOC setting. In other words, by using the vector-valued function,

bon(a,b) = (a2 + b)Y — (a+D) (1.40)

for a = { Zl ] €eR xR b= { Zl ] € R x RY"1, the SOCCP (1.31) is equivalent
2 2
to
Gp (Du, —n) = 0.
Here, the square term and square-root term in (1.40) are calculated via Jordan product
aTb
aob = |: a1b2+b1a2 :|

In particular, the expressions for a? and a'/? are given by

2
o [ Ja }
2&1(12

and

respectively.

1.4 Semismooth Functions, P-functions, and P-properties

To lay the groundwork for presenting the properties of existing NCP functions in the next
chapter, we first recall some essential background concepts and materials that will play a
crucial role in the subsequent analysis. To this end, we begin by briefly reviewing several
notations. For a function f : R" — IR, we denote by V f(z) and V2f(z) the gradient
and Hessian of f, respectively. Besides, given a function F': IR" — IR™, we denote by
JF(z) the Jacobian of F and we let VF(x) = JF(z)". Sometimes, to emphasize that
the derivative is taken w.r.t. x, we write J,F'(x) and V,F(z), respectively.

We begin with the concept of semismoothness, originally introduced by Mifflin [155]
for functionals and later extended to vector-valued functions by Qi and Sun [181]. As
a preliminary, we first define the notion of strict continuity (also referred to as local
Lipschitz continuity) at a point x € IR"; see [186, Chapter 9]. Specifically, a function F
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is said to be strictly continuous at x if there exist positive constants x > 0 and 6 > 0
such that

1E(y) = F(2)l < klly =2l Vy,z e R" with [ly —z| <0, [z —z| <0;

and F' is strictly continuous if F' is strictly continuous at every z € IR™. If § can be taken
to be oo, then F'is Lipschitz continuous with Lipschitz constant x. Define the function

lipF : R* — [0, 00] by

F(y) - F
lipF(z) := limsup IFy) (Z)H
e e

Then, F is strictly continuous at x if and only if lipF'(x) is finite. We say F is directionally
differentiable at x € R™ if

F'(z;h) = lim Flz +th) - F(z)

t—0+ t

exists Vh € R¥;

and F' is directionally differentiable if F' is directionally differentiable at every x € IR".
F' is differentiable (in the Fréchet sense) at x € IR™ if there exists a linear mapping
VF(x):R"™— IR" such that

F(z+h) — F(z) — VE@)h = of||h]).

We say that F' is continuously differentiable if F' is differentiable at every xz € IR™ and
VF' is continuous.

If F is strictly continuous, then F is almost everywhere differentiable by Rademacher’s
Theorem-see [52] and [186, Sec. 9J]. In this case, the generalized Jacobian 0F(x) of F' at
x (in the Clarke sense) is defined as the convex hull of the generalized Jacobian 0pF'(x),
where

OpF(z) = { lim VF(27) | F is differentiable at 27 € IR’“} :
] —x
The notation 0p is adopted from [178]. In [186, Chapter 9], the case of n = 1 is considered
and the notations “V” and “0” are used instead of, respectively, “Oz” and “0”. In other
words, 0F(z) = convOgF(x). If m = 1, we also call 0F(x) the generalized gradient of
F at x. The calculation of OF(x) is usually difficult in practice, and Qi [180] proposed
so-called C-subdifferential of F':

OcF(x)" := OF\(x) x - -+ x OF,(x), (1.41)

which is easier to compute than the generalized Jacobian OF(x). Here, the right-hand
side of (1.41) denotes the set of matrices in IR"*™ whose i-th column is given by the
generalized gradient of the i-th component function F;. In fact, by [52, Proposition
2.6.2], there holds

8F(x)T - (90F(:L‘)T.
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Assume F' : IR™ — IR™ is strictly continuous. We say F' is semismooth at x if F' is
directionally differentiable at x and, for any V' € 0F(x + h), we have

Fz+h)—F(x) —Vh=o(|h])-

We say F'is p-order semismooth at = (0 < p < o0) if F' is semismooth at = and, for any
V € OF (x + h), we have

F(x+h) — F(x) — Vh = O(||h]|***). (1.42)

A function F is said to be semismooth (respectively, p-order semismooth) if it possesses
this property at every point x € IR*. In particular, F is referred to as strongly semismooth
if it is 1-order semismooth. Notable examples of semismooth functions include convex
functions and piecewise continuously differentiable functions. Furthermore, the composi-
tion of two semismooth (respectively, p-order semismooth) functions remains semismooth
(respectively, p-order semismooth). The property of semismoothness plays a pivotal role
in the design and analysis of nonsmooth Newton methods [178, 181], as well as in cer-
tain smoothing techniques discussed in the previous section. For more comprehensive
treatments of semismooth functions, the reader is referred to [73, 155, 181].

Lemma 1.2. Suppose F' : R™ — IR" is strictly continuous and directionally differentiable
in a neighborhood of x € IR™. Then, for any 0 < p < oo, the following two statements
(where O(-) depends on F' and x only) are equivalent:

(a) For any h € R™ and any V € OF (z + h),

F(x+h) — F(z) —Vh=o(|hll) (respectively, O(||h||**)).

(b) For any h € R™ such that F is differentiable at x + h,

F(z+h) — F(x) = VF(z + h)h = o(||h]]) (respectively, O(||h]|'**)).

Proof. Please see [196, Theorem 3.6]. [

The following lemmas, including a mean value theorem for vector-valued functions,
will be essential for the subsequent analysis.

Lemma 1.3. If FF: D C IR" — R™ has a second derivative at each point of a convex
set Dy C D, then

IVF(y) = VF(2)|| < sup [[V*F(z +t(y — )| - |ly — =]|.

0<t<1
Proof. Please see [160, Theorem 3.3.5]. O

The Mean Value Theorem in Lemma 1.3 for a vector-valued function F': IR" — IR™
is a bit different from the traditional one. More specifically, a vector-valued function F' :
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IR™ — IR™ does not have a Mean Value Theorem in form of F(y) = F(z)+VF(2)"(y—x)
where z € [z,y]. To see a counterexample, define F': IR — IR? as

F(t) = (t — 3t —t%).

We compute that F(0) = (0,0), F(1) = (0,0), and VF(t) = [ 1—2¢t 1—3t*]. 1t can
be seen that there does not exist ¢ € [0, 1] satisfying F(1) — F(0) = VF(t)T(1 - 0).

[

P

Lemma 1.4. ([92, Lemma 1.3]) Let x = (21,22, ..., x,) € R" and ||z, := (Z |xi]7’>
=1
(

11
If1<p1 < pa, then |||y, < ||z[lp <0772 ||2]|,,.

Proof. We assume = = (z1, 22, -+, 2,) is a nonzero vector since the inequality is trivial
when x = 0. Thus, there exists at least one nonzero scalar component of x, say xz;, # 0.
Then, by noting z—i > 1, we obtain

P2

n oy
lzlly; = <Z|xz‘|pl>
=1
n P2
P1
= <|$z‘o|pl+ > |$i|p1>

i=1,ii0
n |1 %
— el 14 2 it it 1%i]
" |‘7”i0|p1
- Py
> o |P? |1+ Z?:1“'7“1'0 s\
B " ‘xio|p1
L ) "
P1
= |$z‘o|p2+< >, |$i|p1>
i=1,i#io
n
> |Iio’p2+< Z |$i|p2>
i=1,iio
= I3

p2’

where the first inequality uses the fact that (1 +¢)* > 14 ¢* for all ¢ > 0 and o > 1.
This proves ||z]lp, > [|2]|p,-

To prove the reverse inequality, we will apply the Holder Inequality,

|xTy| < lzllp - [l¥llg,
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1 1
where — + — =1 and 1 < p < oco. This can be verified by the following:
p q

1

n o
el = | Dl

i=1
1

n 1
S VRN
=1

r P2—pP]1 P1

n o n Ll m
P2 P2
( 1?2?1) ( E (|xi|p1)m>
i=1 =1

IN

1

n P2
p2—P1
= n P1P2 (E |$i‘P2>
=1

(L

,L)
= nrn rn HprQv

where we set % = Z% and % = i—; in the Holder Inequality. [

An important concept closely related to semismooth functions is that of SC! func-
tions. We present its formal definition below.

Definition 1.3. A function f : R™ — IR is said to be an SC* function if f is continuously
differentiable and its gradient is semismooth.

The class of SC*' functions can be regarded as lying between C! and C? functions.
By introducing SC! functions, many results originally established for the minimization
of C? functions can be extended to the minimization of SC! functions; see [172] and
references therein. For further applications and a more comprehensive discussion on SC*
functions, the reader is referred to the excellent book [63]. In addition to SC" functions,
we also introduce the concept of LC! functions in this section.

Definition 1.4. A function f: R"™ — IR is called an LC' function if f is continuously
differentiable and its gradient is locally Lipschitz continuous.

The class of LC!' minimization problems was studied in [179], where the local superlin-
ear convergence of an approximate Newton method was established under the assumption
of semismoothness of the gradient function at a solution point. It is evident that any SC*
function also qualifies as an LC' function. Additional concepts related to semismooth
functions include piecewise smooth and almost smooth functions. It is well-known that
piecewise smooth functions are prototypical examples of semismooth functions. How-
ever, recent studies have identified various semismooth functions that are not piecewise
smooth; see [182] and references therein. Notable examples include the p-norm function
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with 1 < p < oo defined on IR” for n > 2, the Euclidean norm function, pseudo-smooth
NCP functions, and various smoothing functions.

Definition 1.5. The almost smooth (respectively, strongly almost smooth) functions are
functions that are semismooth (respectively, strongly semismooth) on the whole space R™
and smooth everywhere except on sets with “dimension” less than n — 1 in the sense that
the sets do not locally partition IR™ into multiple connected components.

Now, we recall definitions of P-matrix, P-functions and P-property, along with several
related concepts.

Definition 1.6. A matrix M € IR™™" is a
(a) Py-matriz if every of its principal minors is nonnegative.
(b) P-matriz if every of its principal minors is positive.

It is clear that every P-matrix is also a Fy-matrix. Moreover, it is well-known that
the Jacobian of any continuously differentiable Py-function is itself a FPy-matrix. Below,
we present one of the key characterizations of FPy-matrices, which will be utilized in
subsequent analysis. For additional properties and a comprehensive discussion of P-
matrices and Py-matrices, the reader is referred to [53].

Lemma 1.5. [53, Theorem 3.4.2] Let M € R™ ™. The followings are equivalent:
(a) M is a Py-matriz.
(b) For every nonzero vector x there exists an index i such that x; # 0 and x;(Mz); > 0.

(c) All real eigenvalues of M and its principal submatrices are nonnegative.

(d) For each e >0, M + <l is a P-matrix.

Definition 1.7. Let F' : IR™ — IR", then
(a) F is monotone if (x —y, F(z) — F(y)) >0, for all x,y € R".
(b) F is strictly monotone if (x —y, F(x) — F(y)) >0, for all z,y € R"™ and x # y.

(c) F is strongly monotone with modulus pn > 0 if {x —y, F(x) — F(y)) > ullz —y|?, for
all x,y € R".

(d) F is a Py-function if max (x; — i) (Fi(x) — Fi(y)) > 0, for all z,y € R™ and x # y.

T FY;
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(e) F is a P-function if max (x; —yi)(Fi(x) — Fi(y)) >0, for all x,y € R™ and x # y.

(f) F is a uniform P-function with modulus p > 0 if max (z; — v;)(Fi(x) — Fi(y)) >

1<i<n

MHI - yH27 fO’l" all xr,y € R™.

(g) VF(x) is uniformly positive definite with modulus p > 0 if d"V F(x)d > pl|d|?, for
allz € R™ and d € IR".

(h) F is Lipschitz continuous if there exists a constant L > 0 such that ||F(x) — F(y)|| <
L||z — yl|, for all z,y € R".

From Definition 1.7, it is evident that strongly monotone functions are strictly mono-
tone, and strictly monotone functions are, in turn, monotone. Furthermore, a function
F'is a Py-function if it is monotone, and it is a uniform P-function with modulus p > 0
if F'is strongly monotone with modulus g > 0. Additionally, when F' is continuously
differentiable, the following conclusions hold:

1. F'is monotone if and only if VF(x) is positive semidefinite for all x € R".
2. F is strictly monotone if VF(x) is positive definite for all z € IR™.

3. F' is strongly monotone if and only if VF(z) is uniformly positive definite.

Next, we introduce the definitions of Cartesian P-properties for a matrix M € IR™*",
which can be viewed as special cases of the more general properties formulated by Chen
and Qi [43] for linear transformations.

Definition 1.8. A matriz M € IR™*" is said to have

(a) the Cartesian P-property if for any 0 # x = (z1,...,%,) € R™ with x; € R™, there
exists an index v € {1,2,...,m} such that (z,,(Mzx),) > 0;

(b) the Cartesian Py-property if for any 0 # x = (z1,...,2,) € R™ with x; € R™, there
exists an index v € {1,2,...,m} such that x, # 0 and (z,,(Mz),) > 0.

Clearly, when m = n and n; = --- = n,,, = 1, M having the Cartesian P-property (or
Py-property) coincides with M being a P-matrix (or FPy-matrix), which are introduced in
[53]. Let M be an n x n matrix with elements m;;. Then, M can be denoted by

Mll M12 Mlm
M = M21 M22 M2m : (143)

Mml Mm2 Mmm



1.4. SEMISMOOTH FUNCTIONS, P-FUNCTIONS, AND P-PROPERTIES 27

where M, foreachv =1,...,mand [ =1,...,mis an n, X n; matrix consisting of those
elements my; with k = n,_1 +1,...,n,,j = n;—1 +1,...,n; and ng = 0. Let S be a
proper subset of {1,2,...,m} and denote by M (S) the matrix resulting from deleting
the block matrix M,; with v or [ complementary to those indicated by S from M given as
in (1.43). We call M(S) a principal block matriz of M. By Definition 1.8, it is not hard
to verify that every principal block matrix M (.S) must have the Cartesian P-property if
the matrix M has the Cartesian P-property. When m =n and n; = --- = n,, = 1, this
reduces to the well-known fact that every principal submatrix of a P-matrix is again a
P-matrix. Particularly, assume that the matrix M, by rearrangement, is written as

(1.44)

where J and B are index sets such that 7 UB = {1,2,...,m} and J N B = (). Then,
when M has the Cartesian P-property and M7 is nonsingular, we have the following
result, which can be regarded as an extension of the fact that any Schur-complement of
a P-matrix is also a P-matrix.

Proposition 1.4. Suppose that M defined as in (1.44) has the Cartesian P-property and
the matrix M 77 is nonsingular. Then its Schur-complement in the matriz M, i.e.,

Mgy = Mps — Mg (Mg7)" Mg
also has the Cartesian P-property.

Proof. Let ys be an arbitrary nonzero vector with the dimension same as Mpg. Let z 7
be a vector with the dimension same as M7 such that

Mggrg 4+ Mgpys =0, (1.45)

or equivalently,
vy =—(Mgz)" Mgpys. (1.46)

Let z = (z7,yg) € R™. Then, z # 0. From Definition 1.8(a) and the given assumption
that M has the Cartesian P-property, there exists an index ¢ € {1,2,...,m} such that

Notice that the index ¢ must belong to the set B. If not, i.e., i € J, then from the
definition of M we learn that the inequality (1.47) is equivalent to

(zg)i, Mgy + Mgpysli) > 0,
which obviously contradicts the equality (1.45). Now (1.47) is equivalent to

((yB)i, (Mpgxg + Mppysli) > 0.
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Using the inequality and equation (1.46), we immediately have that

()i, Mzaysl) = ((us)i, [Mssys — Mss(Mzz)™ Mzsysl:)
= ((yB)i, [Mspys + Mpgxz];) > 0.

Thus, by Definition 1.8(a), the matrix M\jj has the Cartesian P-property. [J

Definition 1.9. [85] A matriz M € R™ ™ is said to have
(a) the Jordan P-property (or the Py-property) if x o (Mzx) € —K = z=0;

(b) the P-property if the condition that Ly, Liya), = Lva), L, @ = 1,2,...,m and
xo (Mzx) € =K necessarily implies x = 0;

(c) the Py-property if M + €l for any € > 0 has the P-property.

Proposition 1.5. (a) If a matrix M € R™™ has the Cartesian P-property, then it also
has the Jordan P-property, and consequently the P-property.

(b) If a matrix M € IR™ ™ has the Cartesian Py-property, it has the Py-property.

Proof. (a) From Definition 1.9, it is not hard to see that the Jordan P-property implies
the P-property. Therefore, we only need to prove the Cartesian P-property implies the
Jordan P-property. Let x = (x1,...,x,) € R™ with z; € IR™ be any vector such that
xo(Mz) € =K. From the Cartesian structure of K, we have

zio(Mx), € =K™ fori=1,2,...,m,
which, by the definition of Jordan product given by (1.2), means that
(i, (Mz);) <0 foralli=1,2,...,m. (1.48)

Now, suppose that z # 0. Then, from Definition 1.8(a), it follows that there exists
an index v € {1,2,...,m} such that (z,,(Mz),) > 0, which clearly contradicts (1.48).
Hence, M has the Jordan P-property.

(b) Observe that for any € > 0, M + €l has the Cartesian P-property. By part (a) and
Definition 1.9, M has the Py-property. [

It should be noted that the Cartesian Fy-property does not necessarily entail the
P-property. For example, let m = 2 and ny = ny = 2, and consider

-2

and z =

S O = =
O O = =
NN OO
NN OO
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It is easy to verify that M has the Cartesian Py-property, z o (Mz) = (0,0,0,0) € —K =
—(K? x K?) and L,Ly = Lye Ly = 0, but @ # 0, i.e., M has not the P-property. Now,
we are not clear whether the P-property implies the Cartesian Py-property.

We now introduce the definitions of Cartesian P-properties for a nonlinear mapping
F : IR" — IR™ within the framework of second-order cones (SOCs). The foundational
concepts of P-properties on Cartesian products in IR™ were first formulated by Facchinei
and Pang [63]. Subsequently, Chen and Qi [43], as well as Kong et al. [127], extended
these notions to the settings of positive semidefinite cones and general Fuclidean Jordan
algebras, respectively. Building upon these developments, we present several nonlinear
generalizations of the Cartesian P-properties in the context of IC, defined as follows.

Definition 1.10. A nonlinear mapping F' = (Fy, ..., F,) with F; : R" — IR™ is said to

(a) have the uniform Cartesian P-property if there exists a constant p > 0 such that, for
any z,y € R", there is an index v € {1,2,...,m} such that

(2, — Yo, B (7) — F,(y)) > pllz — y||%

(b) have the Cartesian P-property if for any x,y € IR"™ with x # y, there ezists an index
ve{l,2,...,m} such that

z, vy, and (v, —y,, F,(x) — F,(y)) > 0;

(c) have the Cartesian Py-property if for any x,y € R™ with x # y, there exists an index
ve{l,2,...,m} such that

Ty 7é Yv and <x11 — Y, F,,(ili') - Fzz(y» Z 0.

(d) have the Cartesian Rog-property if for any sequence {x*} satisfying the condition

[—a*] ¢ [—F ("))
|2¥]| = +oo, ot =0, et =0, (1.49)
"] "]
there exists an index i € {1,2,...,m} such that
g | Ej(2%) o 2¥
i 2 L0 03]y
k—o00 |||

It is straightforward to verify the following one-way implications from Definition 1.10:

Uniform Cartesian P-property = Cartesian P-property = Cartesian Fy-property;

Uniform Cartesian P-property = Cartesian Rgo-property.
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Moreover, it is evident that when m = 1, the Cartesian P-property (or P,-property)
of the mapping F' reduces to the strict monotonicity (or monotonicity) of F. If the
mapping F is continuously differentiable and possesses the Cartesian P-property (or Pp-
property), then its transposed Jacobian matrix VF(z) at any point x € IR"™ inherits
the corresponding Cartesian P-property. Furthermore, when F' specializes to an affine
function of the form Mx 4+ ¢, the uniform Cartesian P-property of F' is equivalent to the
Cartesian P-property of the matrix M.

Proposition 1.6. For any ¢ > 0, let F. : R™ — IR"™ be given by
F.(z) := F(x)+ex. (1.50)

(a) If F is a Py-function, then the Jacobian matrices F.!(x) for all x € IR™ are P-
matrices. In particular, the function F. is a P-function.

(b) If F has the Cartesian Py-property, then F. has the Cartesian P-property.

Proof. Please see [62, Lemma 3.2] for part(a), whereas part(b) is clear by Definition 1.10
(b) and (c). O

It is worth noting that even if F' possesses the Cartesian P-property, the perturbed
function F., as defined in (1.50), may fail to exhibit the uniform Cartesian P-property.
A counterexample illustrating this phenomenon in the case m = 1 can be found in
[62]. Lastly, in parallel with Definition 1.9, we introduce the notions of P-properties for
nonlinear mappings within the framework of SOCs, which represent special instances of
the broader concepts established in [204].

Definition 1.11. A nonlinear mapping F = (Fy,..., F,) : R™ — IR" is said to have
(a) the Jordan P-property if (x —y)o (F(x) — F(y)) € =K = x =y;

(b) the P-property if from the condition that Ly, _y, Lp,(2)-Fyy) = LF@)-F @) Laoi—ys 1 =
1,2,...,m and (x —y) o (F(z) — F(y)) € =K implies v = y;

(c) the Py-property if F(z) + ex has the P-property for all € > 0.

(d) the uniform Jordan P-property if there exists a constant o > 0 such that, for any
¢, & € R", there is an index v € {1,2,...,m} such that

Xa[(G = &) 0 (FL(C) = Fu(€))] = ell¢ — €17

where Xo[((, — &) o (F,(C) — F,(£))] means the second spectral value of ((, —&,) o

(e) the linear growth if there is a constant ¢ > 0 such that |[F(C)|| < ||F(0)] + ¢||<]l-
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Proposition 1.7. (a) If a mapping F : R™ — IR™ has the Cartesian P-property, then
it must have the Jordan P-property and the P-property.

(b) If a mapping F : R™ — IR"™ has the Cartesian Py-property, then it has the Py-
property.

Proof. The proof is similar to that of Proposition 1.5, and we omit it. [

There are analogous concepts such as Rp-matrix, Ro-type function and Ry-type prop-
erty, which play a crucial role in proving the existence of solutions and in establishing
both local and global error bounds for the LCPs, the NCPs, and the SOCCPs, respec-
tively. The precise definitions are provided below; for further details, we refer the reader
to [19, 53, 204].

Definition 1.12. A matriz M € R™ " is called an Ry-matriz if SOL(0, M) = {0}, i.e.,

the linear complementarity problem
x>0, Mx>0, (z,Mz)=0

has 0 as its unique solution. FEquivalently, M is an Ro-matriz if x;(Mxz); = 0 for all i
and x > 0, and Mx > 0 implies x = 0.

It is known that P-matrix = Ry-matrix. For defining the Ry-type function, we need
the following notation. For any x € V|, let \;(z) for i = 1,--- 7 denote the spectral
values of x and

w(z) == max Ai().

Definition 1.13. A function F': V — 'V is called

(a) an R§-function if for any sequence {xy} that satisfies

kaH = 00 (_xk)Jr 0 (_F(xk))Jr 0

T [l ’ (e ’
we have .
k— 00 Ik ||

(b) an R§,-function if for any sequence {xy} that satisfies

||mk|| 00 (—-’L'k)+ =0 <_F(xk))+ =0
B £ ’ [ ’
we have .
lim inf &8 F@))

k—o00 l|lzk |
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(c) an Rj,-function if for any sequence {xy} that satisfies

kaH = 00 (_xk)Jr 0 (_F(xk))Jr 0
B E ’ |l ’
we have .
liming Y& F @)
k—oo |k ||

In the setting of SOC, i.e., V = IR" and w(xy o F(x1)) reduces to \o(zg o F(xy)),
there are Ry;-function and Rge-function whose definitions are similar to R§;-function
and Rj,-function, respectively. The only distinction is that they incorporate ||zx||? in the
denominator. In other words, a function F : IR™ — IR" is called

(i) an Ry -function if for any sequence {z} that satisfies

]| — oo, (=n)+ -0, (F(xw))+ -0, (1.51)
[zl |
we have P
lim inf (2. <:Zk)> > 0;
ki— 00 |kl

(ii) an Rgo-function if for any sequence {z;} that satisfies

||$k|| 00 (_xk)Jr 0 (_F<xk)>+ 0
T[] ’ [l ’
we have \ "
lim inf 2(2k 0 ;ivk)) > (.
k—o00 ||k ||

It is well known that every Rgi-function is also an Rgo-function, and that if F' possesses
the uniform Jordan P-property, then F' is an Rg-function. Utilizing the inequality
(x,y) < w(xoy)llel® (see [204, Proposition 2.1(ii)]) together with Definition 1.13, it is
straightforward to verify that R}, = R{},. Moreover, by employing the Peirce Decompo-
sition Theorem (Theorem 1.2), the following result establishes an additional implication:
Ry = Rg,.

Proposition 1.8. If the function F' : V — V is a Rj-function, then F' is a Rj,-function.
Proof. For the sake of simplicity, for any z,y € V, we let
zNy =z—(x—-y), zUy=y+ (T -y

It is easy to verify that z Uy :== y+ (x —y). = x + (y — x)4. Moreover, these are
commutative operations with

(xNy)o(zUy)=zoy, zMNy+zlUy=x+y
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and
rUy—zNy=|y—x| €X.
If we consider the element xMy = x— (z—y)+ € V and apply the Spectral Decomposition

Theorem (Theorem 1.1), there exist a Jordan frame {ej,eq, - , €.} and real numbers
A1, Ao, - -+, A, such that

rMy =X e+ -+ e

On the other hand, considering the element x Uy = 2 + (y — x); € V and applying the
Peirce Decomposition Theorem (Theorem 1.2), we know

.
zUy = Zx,;ei —i—szj
i=1 i<j

with z; € IR and z;; € V;;. Without loss of generality, let Ay = w(z My). To proceed the
arguments, we first establish an inequality:

T 2 )\1.

Note that

r

(a:l_ly—xl_ly):Z(xi—)\i)ei+2xijGIC.

i=1 i<j
Thus, it follows that

(zUy—aNy,e) = (z1 — M)|e]* >0,

which yields x; > A;. Now suppose Rj condition holds. Take a sequence {z;} satisfying
the required condition in Definition 1.13(c), i.e.,

kaH — 00, (_xk)Jr -0, % — 0,
[l [l
where y;, := F(zg). From R§ condition, we have
M A
timinf T e M and A > 0. (1.52)

For the element xj oy, € V, applying the Spectral Decomposition Theorem (Theorem
1.1) again, there exist a Jordan frame {f1, f2, -, f-} and real numbers gy, pa, - , fir
with gy > ps > -+ - > p, such that

Tpoyr = pafi+ -+ o fr
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Then, we have w(xy o yx) = p1. On the other hand,

rroyr = (xkMyg)o (x, Uyg)

= ()\161 + -+ )\reT) e} (Z x;e; + Z xij)
=1

i<j
= ET: Aixie; + XT: Aie; 0 (Z Tij)
i=1 =1

i<j
, — ) —
=1 =1 'L<]
Hence,
/\1$1<€1>€1> = <xkoyk,61>

= (fi,e1) + pa(fo,er) + -+ pe(fr, €1)
pa(fi,er) + pi(fa,en) + -+ pa(frre1)
i t,

INIA

where 6§ = max{(f1,e1), -, (fr, €e1)}. This leads to

M1 > )\1$1<€1>€1>
lzell = 70|zl

)

which combining with the formula (1.52) implies that

i int “EE O qiine M S g g MELEL €1

>0

where the second inequality holds due to 1 > Ay > 0 and % > 0. Therefore, the
implication R§ = Rj, holds. [

Next, we introduce the notion of weak Ry-type functions, which will be instrumental
in establishing the boundedness of level sets for the SCCPs in Section 3.3.

Definition 1.14. A function F' : V — V s called an R§-function if for any sequence
{z1} that satisfies

Jakll = 00, limsupew((—ax)1) < o0, limsupw((—F(zy)) < oo,
k—o0 k—o0

we have
w(zk N F(xy)) — oo.
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When the mapping F' is linear, specifically F'(x) = L(z) + q with ¢ € V, the notions
of R§-function and R{-function reduce to the classical Ry-property (or Ryp-matrix) of L;
that is, the associated SCLCP with ¢ = 0 admits a unique zero solution. The proofs
of these equivalences closely follow the arguments presented in [19, Proposition 2.2] and
are therefore omitted here. Furthermore, by Definition 1.13 and Definition 1.14, we can
readily establish the following relationship between R and R

Proposition 1.9. For the function F' : V — V, there holds
Ry = Ry.

Proof. Suppose R§ condition holds. Take a sequence {x)} satisfying the required con-
dition in Definition 1.14, i.e.,

[zk]] = oo, limsupw((—ax)4) < oo, limsupw((—F(zx))+) < oo.

k—o00 k—o00
It follows that
||| — oo, (=) — 0, (=9e)+ — 0.
||l |l

By the definition of Rj, we have

lim inf —w(xk M i)

> 0.
k—s00 |k ||

Combining with ||zx|| — oo implies that
w(zk Myg) — 00.

Therefore, the implication R§ = R§ holds. [

Definition 1.15. The mappings G = (G4,...,Gy) and F = (Fy,..., F,,) are said to
have the joint Cartesian Roy-property if for any sequence {C*} satisfying the condition:

_ k —F((F
1CF|| — +o0, =G G<g )+ -0, =RE)] (f )+ — 0, (1.53)
sl I¢¥
there exists an index v € {1,2,...,m} such that
)\max Gl/ k FV K
lim inf [ (¢ k) ° (¢ )} > 0.
k=00 sl

Proposition 1.10. Assume that G(¢) = ¢ for any ¢ € V and F is a Rog-function. Then,
G and F have the joint Cartesian Rgs-property.
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Proof. Suppose that F' is an Rgo-function. From Definition 3 of [140], for any sequence
{¢*} satisfying the condition (1.53), there holds

o Amax [(Fo F(CY)]
(=T

> 0. (1.54)

For each k, let 2¥ = (* o F(¢*) and suppose that it has the spectral decomposition

2P =30 N(2M) e, where {cf, ..., cf} C Vis a Jordan frame. For convenience, we also
denote 2% = (2F,... 2F) with 2F € V By the spectral decomposition of z*, clearly,
2F = Z )\j(zk)(c?)i, i=1,2,...,m, (1.55)
j=1
with ck = ((c )1, ) for every j € {1,2,...,r}. Now, without loss of generality,

we assume that )\lk( ) = Amax(2"%) with 1 <1, < r. Then,

max Z clk Zz/\ Z’ Clk> >
j=1 i=1 j=1

Combining with (1.54) and (1.55), there exists an index v € {1,2,...,m} such that

S () (), (), (2%, (ck ),)
0 < lim inf == J k = liminf 2~ %77
e KB itoo [P

(1.56)

Suppose that z¥ as an element in the simple Euclidean Jordan algebra (V,, 0, (-,-)) has
the following spectral decomposition

Z _Z)‘ QV]7

where {¢%,...,q%.} CV, be the corresponding Jordan frame. Then,
(20, (e )v) < Amax( <Z avjo (c1,) > = Amax(2,) (v, (¢, ), (1.57)

where e, is the identity element in V,, and the inequality is since (cl )y € K and qw e k¥
for every j =1,2,...,7. From (1.56) and (1.57), it then follows that

<Zk ( ;c) > >\max<zk) <el/7 (Cf )V>
0 < liminf 222~ "%""7 < Jim inf LA ke T
k=too  [[CF[2 T kotoe || CH| I

Noting that (e,, (¢ ),) is bounded for each k, we have that

k
lim inf —<€V’ (Clk>y>

=0.
kotoo[|CH]
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From the last two inequalities, it readily follows that

2
lim inf Amax (7))

—— > 0.
k=too[|CH]

By Definition 1.15, the mappings G and F' have the joint Cartesian Rgo-property. [

Definition 1.16. The mappings F, G : IR™ — IR" are said to have the joint Rm—pmperty
if for any sequence {C*} with

-G k _F k
IC*] = +o00, % — 0, % — 0, (1.58)
there holds i i
lim inf (F(C), GIE) > 0. (1.59)

koo 1€l
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Chapter 2

The Nonlinear Complementarity
Functions

Complementarity Problems (NCPs) constitute a fundamental class of variational inequal-
ities, frequently emerging in the formulation of Karush-Kuhn-Tucker (KKT) conditions
for optimization problems [63]. Beyond their role in optimization theory, the NCPs of-
fer a powerful framework for analyzing equilibrium phenomena across a wide range of
disciplines, including operations research, engineering, and economics [63, 68, 70].

Given a function F : IR" — IR", the problem of finding a point z € IR"” such that
r>0, F(x)>0, and (z,F(x)) =0, (2.1)

is precisely the nonlinear complementarity problem . Various approaches to solving this
problem have been proposed, in which most of them utilize a so-called NCP function ,
that is, a function ¢ : IR? — IR such that

¢(a,b)=0 <= a>0, b>0, and ab=0. (2.2)

An NCP function is useful in solving the NCP (2.1) as it naturally exploits the structure
of the problem. In particular, defining @, : IR" — IR" as

o(x1, Fi(x))
P, (z) = : : (2.3)

it is clear to see that NCP (2.1) is equivalent to solving the system of equations @, (z) = 0.
Based on the above discussion, there are roughly four main approaches to addressing the
NCP (2.1), each utilizing an NCP function ¢ as defined in (2.2).

(1) Merit function approach. The central idea of this approach is to reformulate the
NCP as an unconstrained global minimization problem:

min V¥ () where W (2):= %HCIDF(:E)Hz (2.4)

zelR™

39
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Here, the objective function V¥, is also referred to as a merit function. It is evident that
the global minimizers of problem (2.4) correspond precisely to the solutions of the NCP
(2.1). As a result, attention is directed toward analyzing the structure and properties of
U, as well as developing effective solution methods for solving the minimization problem

(2.4).
(2) Nonsmooth function approach. For this approach, it just employes the direct
equivalent relation:

¢(x1, Fi(z))
NCP «= & (2) = ; 0. (2.5)

G20, Fu())

In other words, solving the NCP (2.1) is equivalent to finding solutions to the system of
equations ®g(x) = 0. In general, the function ®p is nonsmooth, which gives rise to the
term “nonsmooth function approach”.

(3) Smoothing function approach. The functions Up and ®F used in the merit
function and nonsmooth function approaches are often nondifferentiable. To address this,
the smoothing approach introduces a family of smooth approximations. Specifically, one
may construct a smooth function WF"* with x> 0 such that

U= W, as p—0. (2.6)
Alternatively, one may define a smooth approximation ®F" satisfying
P —®, as pu—0. (2.7)

Since both WF" and ®p" are smooth, a wide range of well-established algorithms for
smooth optimization or equation-solving can be employed to tackle problems (2.6) and
(2.7), respectively. The subsequent analysis then focuses on identifying conditions under
which solutions to the smoothed problems converge to those of the original nonsmooth
formulations, namely, (2.4) or (2.5) as u — 0.

(4) Regularization approach. Distinct from the previous three approaches, this
method focuses on solving the original NCP (2.1) through a sequence of regularized
complementarity problems, denoted as NCP(F):

x>0, F.x)>0, (z,F.(x))=0, (2.8)
where € > 0 is a regularization parameter tending to zero, and F. is defined by
F.(z) := F(z)+ex.

The central question in this approach is to determine under what conditions the solutions
of the regularized problem NCP(F.), as defined in (2.8), converge to a solution of the
original NCP (2.1) as ¢ — 0.
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Owing to their practical relevance, a wide variety of NCP functions have been pro-
posed and thoroughly investigated in the literature [79]. Among these, one of the most
widely used is the natural residual (NR) function [170], defined as

Gyr (@, b) = min{a, b} = a — [a — b] . (2.9)

In contrast to the merit function defined in (2.4), the NR merit function ¥, : R" — IR
is employed, and is given by

ZgbiR(aci ,Fi(2)). (2.10)

Analogously, for the nonsmooth function approach described in (2.5), the corresponding
function @, is defined componentwise by replacing the generic NCP function ¢ with the
natural residual ¢, as given in (2.9), i.e.,

¢NR($17 F1<I>>
(I)NR($) =
G (Tny F())

Mangasarian and Solodov proposed another type of NCP function [147], which is
defined by

1
bys (@, b) = ab + % (maX{O, a—ab}? — a® + max{0,b — aa}? — bz), a>1. (2.11)

The NCP function ¢,,, described above is differentiable, which is advantageous for the un-
constrained minimization approach. However, it is important to note that an NCP func-
tion cannot, in general, be both convex and differentiable simultaneously; see [99, 157].
Consequently, the design of NCP functions that exhibit either convexity or differentia-
bility, depending on the needs of a particular application, remains an important and
ongoing area of research.

Another widely used NCP function is the Fischer-Burmeister (FB) function [72, 73],
defined as
Gpg (@, ) = Va2 + b2 — (a+ D). (2.12)

The FB function has attracted considerable attention and has been extensively employed
in numerous studies due to its favorable numerical properties. Several variants of ¢,
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have also been explored in the literature [195]:

¢1(a,b) = ¢pp(a,b) —aaiby, a>0.

pa(a,b) = ¢.,(a,b) —alab)y, a>0.

¢3(a,b) V[bes (@, b)]2 + a(ab)?, a > 0.
0a(a,0) = /[0ps(a,0)]? + alardy)?, > 0.
¢s(a,b) V1o (a,0)]? + al(ab)1 ]2, o > 0.
¢6(a b) Ve (a,0)]2 + al(ab)4]*, a > 0.
97(a,0) = V[dps(a,0)1]2 + af(ab)4]?, a > 0.

In particular, it has been noted that the functions ¢q(a,b) = ¢.,(a,b) — a(ab); and
¢3(a,b) = \/[¢ps(a,b)]2 + a(ab)? are not recommended for practical use, as they lack
certain desirable properties; see [195, page 206].

A general framework for constructing NCP functions was first introduced by Man-
gasarian in [146]. The idea is to select a strictly increasing function 6 : IR — IR satisfying
6(0) = 0, such that a > b if and only if #(a) > 6(b). Under this setting, a vector z solves
the complementarity problem (2.1) if and only if

O(|F;(2) — z|) = 0(Fi(2)) — 0(z) =0, i=1,--- n.

An alternative construction was proposed by Luo and Tseng [143], which introduces a
merit function f : R" — IR defined by

Fir(€) = vo({¢, F(C +sz —¢i, —Fi(€)), (2.13)

where 1y : IR — [0, 00) and v; : IR? — [0, 00) are continuous functions that vanish on the
negative orthant only. The construction of the function f, . is not derived from an NCP
function. Nevertheless, it possesses several notable properties under certain assumptions
[143]. In particular, f,,. is convex on IR™ provided that the function (x, F'(x)) and each
component —F;(z), for i = 1,...,n, are convex in z. Building upon the idea underlying
the construction of f,. as defined in (2.13), Kanzow, Yamashita, and Fukushima [120]
introduced a class of NCP functions. Specifically, they considered the set of continuous
functions ¥ : IR™ — [0, 00) satisfying

Ut)=0 <= t<0

which they denoted by ¥™. Then, for any ¥, € ¥! and ¥; € ¥? each function
¢; : R? — IR defined by

¢i(a? b) = \Do(a7b)+\pi(_a7_b)7 L= 1a ,

is a nonnegative NCP function. A comprehensive survey of various merit functions can be
found in [74]. More recently, a rigorous treatment of the construction of NCP functions
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was provided by Galantai in [79], which is notably the first work to compile a systematic
list of existing NCP functions. In essence, most of these functions are extensions or
variants of the previously discussed ¢, ¢, and ¢,,s. Additional generalizations have
also been proposed, building upon these foundational forms. In the following sections,
we present a survey and review of recent developments in the design and analysis of new
NCP functions.

2.1 Constructions of NCP Functions based on ¢,

2.1.1 Construction by using p-norm

There are several extensions of the FB function ¢, given as in (2.12) in the literature.
For example, Kanzow and Kleinmichel [116] extended ¢, function to

do(a,b) :==+/(a—b)>+0ab— (a+b), 6¢€(0,4).
Chen, Chen, and Kanzow [20] studied a penalized FB function
or(a,b) := Aoy (a,b) + (1 — Nazby, A e (0,1).

Additional forms of penalized Fischer-Burmeister (FB) functions have been explored by
Sun and Qi in [195]. In this section, we turn our attention to a notable extension of the
classical FB function, denoted by ¢,,, which has recently garnered significant interest
and has been the subject of extensive study. As observed in [79], it is particularly
noteworthy that several nonlinear complementarity problem (NCP) functions bear a close
resemblance to the FB function. Among them, the generalized FB function is of special
interest:

Pry(a,0) = [[(a, )]l = (@ +b), p>1 (2.14)

This formulation represents a compelling generalization of ¢, and has proven to be
an effective tool for solving NCPs. Initially introduced by Tseng in [206], the function
@P . was established therein as a valid NCP function. Subsequent studies have further
examined its properties and applications, as documented in [22, 27, 30, 35, 36, 39, 96, 205].
Here, | - |, denotes the [,-norm, and the parameter p serves as a tunable variable that, as
demonstrated in [30, 32, 35, 36, 39], can potentially enhance the numerical performance
of certain algorithms.

Accordingly, we define 97 : IR? — IR, by

0P (a,b) = %|¢§B(a,b)|2. (2.15)
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For any given p > 1, the function ¢ is a nonnegative NCP function and smooth on IR?
as will be seen later. Analogous to @, the function ®? :IR"™ — IR" given as

oL (z1, Fi(w))

P (z) = : (2.16)

FB

</5’§B (2n , Fu())
yields a family of merit functions ¥? :IR"™ — IR for the NCP for which

wP, () ::%chp 0* = Zcb (i, F; ))2=Z¢§B(%,Fz-(w))~ (2.17)

As will be demonstrated later, for any fixed p > 1 the function WP serves as a con-
tinuously differentiable merit function for the NCP. This smoothness property makes
it amenable to classical iterative approaches, such as the Newton method, which can
be effectively employed to solve the NCP through unconstrained smooth optimization,
namely:

min V2 (z). (2.18)

zeR?» FB

Proposition 2.1. Let ¢? : IR* — R be defined as in (2.14) where p > 1. Then, the
following hold.

(a) The function ¢¥_ is an NCP function, i.e., it satisfies (2.2).

(b) The function ¢®_ is sub-additive, i.c., ¢ (w+uw') < P (w)+¢P_(w') for allw,w'" €
R2.

(c) The function ¢¥_ is positive homogeneous, i.e., ¢ _(aw) = ad? (w) for all w € IR?
and a > 0.

(d) The function ¢ is convez, i.e., ¥ (aw + (1 — a)w') < ad?_(w) + (1 — a)d?_ (w')
for all w,w' € R? and o > 0.

(€) The function ¢ is Lipschitz continuous with Ly = /2 +20/P71/2) when 1 < p < 2,
and with Ly = 1+ /2 when p > 2. That is, |¢?_(w) — ¢# (w')| < Lo|lw —w'|| when
1<p<2and|¢r (w)— ¢ (w)| < Li|jw—w'|| when p>2 for all w,w’ € R

(f) Given any point (a,b) € R?, each element in the generalized gradient 0¢P_(a,b) has
the representation (§ — 1,( — 1) where, if (a,b) # (0,0),

_ (seu(a)-lal! sgu(b) - o]~
&0 ( @Ol " @b )

and otherwise (£,¢) is an arbitrary vector in R? satisfying ]5\1’%1 + ]C|P%1 <1.
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Proof. (a) The proof can be seen in [206, page 20]. For completeness, we here include
it. Consider any a > 0 and b > 0 satisfying ab = 0. Then, we have either a = 0 or
b = 0, which implies that ¢?_(a,b) = {/]a]? — a or ¢?_(a,b) = {/]b]P — b. Considering
a > 0and b > 0, we thus have ¢? (a,b) = 0. Conversely, consider any (a,b) € IR?
satisfying ¢2_(a,b) = 0. Then, there must hold a > 0 and b > 0. Otherwise, we have
{/|alP 4 |b|P > (a + b) and hence contradicts the fact that ¢,(a,b) = 0. Now we prove
that one of a and b must be 0. Otherwise, ||(a,b)||, < |/(a,b)|l1 = a + b. This obviously
contradicts the fact that ¢2 (a,b) = 0. The two sides show that ¢? _ is indeed an NCP
function.

(b) Let w = (a,b) and w’ = (¢,d). Then, the desired result follows by

¢ (w+ w') a,b) + (c,d)|l, — (a + b+ c+d)

I
1(a, 0)ll, + [I(c, d)]lp — (a +b) — (¢ +d)
= ¢§B (a’7 b) + ¢§B (C’ d) - ¢I;B (w) + ¢I;B (w,)7

where the inequality is true since the triangle inequality holds for p-norm when p > 1.

(c) Let w = (a,b) € IR? and o > 0. Then the proof follows by

¢ (aw) = {/|aal? + |ablP — (aa + ab) = af/|alP + |b]P — a(a +b) = adl (w).
(d) This is true by part (b) and part (c).

(e) Let w = (a,b) and w' = (¢, d), we have

|07, (W) — dp(w')| = ‘II(% b)llp = (a+b) = (¢, d)l, + (¢ + d)

IN

\u<a,b>up—u<c,d>up Fla—c+[b—d]

(@, b) = (e, )l + V2y/]a — c* + b~ dJ?
(@, b) = (e, d)l, + V2ll(a,b) = (e, D)
lw — [l + V2w — w'.

VANVAY

Then, by Lemma 1.4 (also see [92, Lemma 1.3)), i.e.,

|2llp < M|zl < @2 |z],, forz € R" and 1< pr < p,

the desired results follow.
(f) This comes from direct computation. [

As shown below, the function ¢? ~possesses several additional properties that are
instrumental in establishing the results presented in the subsequent section.



46 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Lemma 2.1. Let ¢* :R* — IR be defined as in (2.14) where p > 1. If {(a*, 1)} C IR?
with (a* — —o0) or (b* — —00) or (aF — oo and b* — o), then we have |¢?_(a*, bF)| —
oo for k — 0.

Proof. This result is also mentioned in [206, page 20]. O

We now introduce another family of NCP functions that reformulate the nonlinear
complementarity problem as an unconstrained minimization problem. In other words,
these functions serve as a class of merit functions for the NCP. Given ¢ as defined in
(2.14), we define the function ¥? :IR*> — IR for p > 1 by

U2, (a,) = 5100, (0,5)” (219)

This class of functions exhibits several desirable properties, as detailed below. Notably,
for any fixed p > 1, the function ¢?  is continuously differentiable everywhere, in contrast
to ¢P , which lacks differentiability at the origin.

Proposition 2.2. Let ¢2_, Y2 be defined as in (2.14) and (2.19), respectively, where

FB’

p > 1. Then, the following hold.

(a) ¥2_ is an NCP function, i.e., it satisfies (2.2).
(b) ¥? (a,b) >0 for all (a,b) € R*.

(c) Y2, is continuously differentiable everywhere.

(d) Vau? (a,b) - Vy? (a,b) > 0 for all (a,b) € R®. The equality holds if and only if
PP (a,b) = 0.

(e) Vau? (a,b) =0 <= VyY? (a,b) =0 <= ¢% (a,b) = 0.

Proof. (a) Since ¢?_(a,b) = 0 if and only if ¢? (a,b) = 0, the desired result is satisfied

by Proposition 2.1(a).

(b) It is clear by definition of ¢?_.

(c) From direct computation, we obtain V¢ (0,0) = V2 (0,0) = 0. For (a,b) #
(0,0), we have

o (sea(a) -l )

Vol (a,b) = ( AT 1) & (a,b) (2.20)
. sen(h) o\

Vi, (a,b) ( = 1) o (a,b). (2.21)

sgn(a) - |afP~" sgn(a) - o~

I(a, b)II5 I(a, 0)I5™"
(i.e., uniformly bounded) and moreover ¢?_(a,b) — 0 as (a,b) — (0,0). Therefore, we

and

where sgn(+) is the sign function. Clearly,
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have V9P (a,b) — 0 and V2 (a,b) — 0 as (a,b) — (0,0). This means that 2 is
continuously differentiable everywhere.

(d) From part(c), we know that if (a, b) = (0,0), it is clear that V,¢?_(a,b)-Vy (a,b) =
0 and ¥2_(a,b) = 0. Now we assume that (a,b) # (0,0). Then, V,¢?_(a,b) - V2 (a,b)

is (M - 1> (M - 1) o, (a,b)%.

I(a,0) 15~ I(a,0) 15"
gt . |plp—t
Again, from M < M < 1, it immediately yields that
1(a, b)][ 1, b)||
VP (a,b) - VP (a,b) > 0 for all (a,b) € IR®. The equality holds if and only if
< |alP~! p—1 p—1
g (ab) =0, B ATy sen®) PP g, g SR AT
[1(a, b)|[» 1(a, b)][» I(a, b) 1[5

then we have a > 0 and |a| = ||(a,b)||,, which leads to b = 0 and hence ¢ (a,b) =
p—1
{/la|P —a = a—a = 0. Similarly, we have ¢*_(a,b) = 0 if M

T = L Thus, we
1(a, b)|[7
conclude that the equality holds if and only if ¢?_(a,b) = 0.

(e) It is already seen in the last part of proof for part(d). O

It has been shown that if F'is a monotone function [81] or a Py-function [64], then any
stationary point of W _ is a global minimizer of the unconstrained optimization problem
min V_(z), and therefore constitutes a solution to the NCP. Furthermore, if F' is strongly

monotone [81] or a uniform P-function [64], the level sets of W, are guaranteed to be
bounded. In what follows, we establish and prove analogous results for WP, assuming

the same conditions as those in [64, 81]. The proofs of the subsequent propositions are
inspired by the corresponding arguments found in these references.

Proposition 2.3. Let U2 : R" — IR be defined as (2.17) wherep > 1. Then W2 _(x) > 0
for all x € R™ and W?_(z) = 0 if and only if x solves the NCP (2.1). Moreover, suppose
that the NCP has at least one solution. Then, x is a global minimizer of W _ if and only
if x solves the NCP.

Proof. The results follow from Proposition 2.2. [

Proposition 2.4. Let W2 : R" — IR be defined as (2.17) where p > 1. Assume F is
either monotone or Py-function, then every stationary point of WP is a global minima
of (2.18); and therefore solves the original NCP.

Proof. (I) For the assumption of monotonicity of F', suppose that z* is a stationary
point of W2 . Then we have VWP (2*) = 0 which implies that

n

S (Vattlat B es + Vbt (af, BIVEG) ) =0, (222

=1
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where e; = (0,---,1,---,0)7. We denote VP (o*, F(x*)) = (-, Vo2 _(z7, Fi(x*)),- - )T
and VyP (x*, F(x*)) = (-, VP (2], Fy(2*)),-- )T, respectively. Then (2.22) can be
abbreviated as

Vaop? (z%, F(x")) + VF(z")Vy?_ (2", F(2*)) = 0. (2.23)

Now, multiplying (2.23) by V¢ (z*, F(z*))" leads to

n

> (VW;DB (@7, Fi(27))- Vg, (a7, Fi(x*))) +Vyip, (27, F(27)) 'V (@) Vydy, (a7, F(27)) = 0.
i=1

(2.24)
Since F' is monotone, VF'(x*) is positive semidefinite, the second term of (2.24) is non-
negative. Moreover, each term in the first summation of (2.24) is nonnegative as well

due to Prop. 2.2(d). Therefore, we have
Vb (zf, Fi(x")) - Vot (27, Fi(2¥)) =0, Vi=1,2,---,n,

which yields ¢?_(z;, Fi(z*)) = 0 for all i = 1,2,---,n by Proposition 2.2(e). Thus,
WP (r*) = 0 which says 2* is a global minimizer of (2.18).

(IT) If Fis Fy-function and z* is a stationary point of W?  then W2 (z*) = 0, which
yields (2.23). Notice that V92 (a,b) and Vi (a,b) are given as forms of (2.20). If

we denote A(x*) and B(x*) the possibly multi-valued n x n diagonal matrices whose
diagonal elements are given by

A“(ZE*) o Sgn(xj) ) |w2k|pi1

o Reypr © @ hE) £ 0.0

and
. sgn(Fj(x*)) - |Fy(a*) P~ N ¥
Bu(et) = BN ABUIE e ma)) £ 0,0),
(@7, Fi(z*))[p
If (xF, Fi(z*)) = (0,0), then we let A(z*) = B(2*) = I, i.e., the n x n identity matrix.
With the notions of A(z*), B(z*) and (2.20), the equation (2.23) can be rewritten as

(A(x*) — I) + VF(z*)(B(z") — I)|®?_(a*) = 0. (2.25)

We want to prove that ®2_(z*) = 0 (and hence WP (z*) = 0). Suppose not, i.e.,
P (2*) # 0. Recall that ®? (z*) = 0 if and only if (2.1) is satisfied and the i-th
component of ®? (z*) is ¢&_(x}, Fi(x*)). Thus, ¢?_(z;, Fi(z*)) # 0 means one of the
following occurs:

1. xf # 0 and F;(z*) # 0.

2. 27 =0 and Fi(z*) < 0.
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3. 2} <0 and Fi(z*) = 0.

In every case, we have By(z*) # 1 (since By(z*) = 1 if and only if ¢2_(z7, Fi(z*)) = 0
by Proposition 2.2(d)(e)), so that (By(x*) — 1) - ¢2_(z}, Fi(x*)) # 0. Similar arguments
apply for the vector (A(z*) — I)®?_ (z*). Thus, from the above, we can easily verify
that if ®2_(2*) # 0 then (B(z*) — I)®?_(z*) and (A(2*) — I)®2_(2*) are both nonzero.
Moreover, both of their nonzero elements are in the same positions, and such nonzero
elements have the same sign. But, for equation (2.25) to hold, it would be necessary
that VF(z*) “revert the sign” of all the nonzero elements of (B(z*) — I)®2_(2*), which
contradicts the fact that VF(z*) is a Py-matrix by Lemma 1.5. [

Proposition 2.5. Let W7 :IR" — IR be defined as (2.17) where p > 1. Assume that F
15 either strongly monotone or uniform P-function, then the level sets

LV, 7) = {z e R" | ¥} (v) < 7}
are bounded for all v € R.

Proof. (I) First, we consider the assumption of strong monotonicity of F. Suppose there
exists an unbounded sequence {||z*||}rex — oo with {&"}ex € L(UP ,v) for some
v > 0, where K is a subset of N. We define the index set as

J:={ie{1,2,--- ,n}| {«f} is unbounded} .
Since {2*} is unbounded, J # (). Let {z*} denote a bounded sequence defined by
zk:{ 0, if ielJ,
! kit i
Then from the definition of {z*} and the strong monotonicity of F, we obtain

py (@) = plla® =2

Z < <xk—zk,F(xk) —F(zk))

n

= D (= 2D (Fi(a") - F(") (2.26)
= ) @ (F(a) - (=)

< (Ser) " Simeh - AE

Since Z(mf)Q # 0 for k € K, then dividing by Z(mf)z on both sides of (2.26) yields

ieJ icJ

1/2
W Sah?) =TI - AL ke k (2.27)

icJ ieJ
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On the other hand, we know {F;(z*)}rer is bounded (i € J) due to {2*}rex is bounded
and F' is continuous. Therefore from (2.27), we have

{|Fi, ()|} = o0 for some iy € J.
Also, {[|zf ||} — oo by the definition of the index set J. Thus, Lemma 2.1 yields

Op(zf , Fiy(2¥) = 00 as k — oo.

But this contradicts {2} C L(U?_,~).

(IT) If F' is uniform P-function, then the proof almost follows the same arguments as
above. In particular, (2.26) is replaced by

py (@) = plle® =P

icJ

< max (af = )6 - )
= maxa}(Fi(z") — F (")) (2.28)

= 5, (F(a") — Fi(2"))

Jo

< | I(F") = F(2h)L,

where jy is one of the indices for which the max is attained. Then dividing by \xfo| on
both sides of (2.28) and the proof follows. [

We now examine some geometric properties of the function ¢f and offer interpre-
tations of their significance. In particular, we present the family of surfaces defined by
¢ (a, b) for various values of p € (1,400); see Figures 2.1-2.2. When the parameter p is
fixed within this interval, Figure 2.2 provides an intuitive visualization showing how the
shape of the surface is influenced by the choice of p. From the definition of the p-norm,
we recall that ||(a,b)||1 = |a|] + |b], and ||(a,d)||s := max{]al,|b|}. It follows trivially
that ¢? (a,b) = ¢._(a,b) := |a| + [b] — (a + b) pointwise as p — 1; see Figures 2.2(a)
and (b). Conversely, as p — oo, we have ¢?_(a,b) — ¢ (a,b) := max{]al, [b|} — (a + ),
as illustrated in Figures 2.2(e) and (f). It is important to note that ¢! (a,b) does not
qualify as an NCP function, since ng;B(a, b) = 0 even when a > 0 and b > 0. In contrast,
¢ (a,b) is indeed an NCP function, although it fails to be differentiable along the line
a=b.

Lemma 2.2. [31, Lemma 3.1] If a > 0 and b > 0, then (a + b)? > a? + b for all
p € (1,400).

Proof. We present two different ways to prove this lemma.
(1) For any p > 1, p = n + m, where n = [p] (the greatest integer less than or equal to
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Z-axis

Figure 2.1: The surface of z = ¢? (a,b) with (a,b) € [-10, 10] x [—-10, 10].

p) and m = p — n, applying binomial theorem gives

(a+bP = (a+b)"(a+b)™

(@ +b0")(a+b)™
a"(a+b)" +b"(a+0)"
a"a™ + 0"

= ada’ + .

v

v

(2) Let f(t) = (t+1)? — (t? + 1). It is easy to verify that f is increasing on [0, c0) when
p > 1. Hence, f(a/b) > f(0) = 0 which yields (a + b)? > a? +b*. O

Lemma 2.3. [30, Lemma 3.2] Let ¢*  : R* — IR be given as in (2.14) where p > 1.
Then, there holds

(2 - 2%) min{a, b}| < [¢_ (a,b)] < (2 + 2%) min{a, b}|.

Proof. Without loss of generality, assume a > b. We will establish the desired results by
examining the following two cases: (1) a+b <0 and (2) a+b > 0.

Case(1): a+ b < 0. In this case, we have
|07 (@, 0)] = [[(a, D)l > [b] = [min{a, b}| > (2 = 2#)| min{a, b}/ (2.29)
On the other hand, since a > b and a + b < 0, we have |[b] > |a|. Then

|62, (a,0)] < [[(a,0)l, — 20 = (2 + 27)[b| = (2 + 27)| min{a, b} .
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Case(2): a+b > 0. If ab=0, then the desired inequality clearly holds. Thus, we discuss
by two subcases:

(i) ab < 0. In this subcase, we have a > 0, b < 0, and |a| > |b|. Consequently,
9, (0,b) < Jal + bl = (a+ b) = —2b = 2 minfa,b}] < (2425 min{a, b},
and

&, (0,5) > [[(a,B)l|oc — (@ +b) = —b = | minfa,b}| > (2 — 25)| min{a, b}].

(ii) ab > 0. Now we have a > b > 0. Since for any p > 1 there holds that
0> 67, (@.8) > [|(a,b) |l — (a+8) = a— (a+b) = —b = —minfa, b},
we immediately obtain that
62, (a,0)] < |min{a,b}| < (2+27)| min{a,b}].

On the other hand, since ¢?_(a,b) < 0, it follows that

[P (a,b)] = a+b—|(a,b)|[, =0 {(% + 1) B (<%>p+ 1)1/1?} ‘

Let f(t) =t+1— (t* +1)"/? for t > 1. Then

/ o tp pp%l
f(t)_l_(ﬂurl) ‘

Notice that f’(t) > 0 for ¢ > 1, and f(1) =2 — 2%, and hence we obtain that

|67 (a,b)] > (2—27)b = (2 — 27)| min{a,b}| for any p > 1. (2.30)

All the aforementioned inequalities (2.29)-(2.30) imply that the desired inequality holds.
O

Proposition 2.6. Let ¢* :IR* — IR be given as in (2.14) where p € (1,+00). Then,
(a) (@a>0andb>0) <= ¢ (a,b) <0;

(b) (a=0andb>0) or(b=0 anda>0) <= ¢ (a,b) =0;

(c) b=0anda<0= ¢ (a,b) = —2a > 0;

(d) a=0andb<0 = ¢ (a,b) = —2b>0.
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Figure 2.3: Level curves of z = ¢ _(a,b) with different values of p.
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Figure 2.4: The surface of z = ¢2_(a,b) with (a,b) € [0,10] x [0, 10].

Proof. (a) If a > 0 and b > 0, it is easy to see ¢¥_(a,b) < 0 by Lemma 2.2. Conversely,

using {/|a[P + |b]P > |a| and {/|alP + [bP > |b], we have {/|alP + [b]P > max{|al|,|b|}.
Suppose a < 0 or b < 0, then we have max{|al, [b|} > (a+b) which implies ¢2_(a,b) > 0.
This is a contradiction.

(b) By definition of ¢?_(a,b), we know

0 a>0, T 0 b2>0,
—2a a <0, 9»(0,0) = o b_{ —2b b <0,

which say that (¢ = 0 and b > 0) or (b = 0 and a > 0) = ¢2_(a,b) = 0. Conversely,
suppose ¢ _(a,b) = 0. If a < 0 or b < 0, mimicking the arguments of part(a) yields

{/|alp + [b]P > max{|a|, |b|} > (a + b)

which implies ¢2_(a,b) > 0. Thus, there must hold @ > 0 and b > 0. Furthermore, one
of a and b must be 0 from part(a).

¢ (a,0) =la| —a = {

The proof of (¢) and (d) are direct from the proof of part(b). O

Proposition 2.6(a) demonstrates that ¢£_(a,b) is negative in the first quadrant of the
IR*-plane; see Figure 2.3. Meanwhile, Proposition 2.6(b) establishes that ¢” (a,b) = 0
occurs only along the nonnegative coordinate axes, that is, when a > 0,0 = 0 or a =
0,6 > 0. In fact, this result is equivalent to asserting that ¢? (a,b) satisfies the conditions
of an NCP function. Furthermore, Propositions 2.6(b)—(d) collectively indicate that the
parameter p has no influence on the value of ¢¥_(a,b) along the a-axis and the b-axis.
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Proposition 2.7. Let ¢* :IR* = IR be given as in (2.14) where p € (1,+00). Then,
(a) ¢¥ (a,b) = ¢ (b, a);
(b) if 1 < p1 < po, then ¢PL(a,b) > @72 (a,b).

Proof. Part(a) is trivial and part(b) is true by applying Lemma 1.4. O

Proposition 2.7(a) establishes the symmetry of ¢?_(a,b), indicating that there exist
pairs of points symmetric about the line a = b that share the same function value. In
other words, the surface defined by z = ¢2 (a,b) exhibits identical geometric features
in the second and fourth quadrants of the IR%-plane; see Figure 2.3, Figure 2.4, and
Figure 2.5. Moreover, Proposition 2.1(d) shows that the surface is convex, as ¢?_ itself
is a convex function. Proposition 2.7(c) further reveals that the values of ¢?  decrease
as the parameter p increases. In summary, the parameter p significantly influences the
geometric structure of the surface.

Proposition 2.8. If {a*, 0"} C IR? with (a* — —o0) or (V¥ — —o0) or (a* = +oo and
b — +00), then |¢2 (a¥,b%)| = +oo for k — +o0.

Proof. This can be found in [206, page 20]. O

Proposition 2.8 highlights the increasing direction on the surface defined by z =
#?_(a,b). This behavior is visually evident in the contour plot shown in Figure 2.4, where
darker shades correspond to lower surface heights. To gain a deeper understanding of
the surface’s structure, it is natural to examine certain characteristic curves lying on it.
To this end, we consider a family of curves «,., : R — IR? defined by:

rp(t) = (7“ =t @l (et — t)) (2.31)

where r € IR and p € (1,+00) are arbitrary but fixed. Geometrically, each curve a.,
represents the intersection of the surface z = ¢2_(a, b) with the plane defined by a+b = 2r;
see Figure 2.5. In the following, we explore several key properties of these special curves.

Lemma 2.4. Let ¢* : IR* — R be given as in (2.14) where p € (1,400). Fiz any
r € R, we define f: IR — R as f(t) := ¢2_(r+t,r —1t), then f is a convex function.

Proof. By Proposition 2.7(b), we know that ¢ is a convex function. Observing that
[ is the composition of ¢¥ with an affine function, we conclude that f is also convex.
Although the composition of two convex functions is not generally convex, convexity is
preserved in this case due to the affine nature of one of the components. [

Proposition 2.9. Let ¢?_ : IR? — IR be given as in (2.14) where p > 1. Suppose a and
b are constrained on the curve determined by a+b = 2r (r € R) and the surface. Then,

#P_(a,b) attains its minima ¢¥_(r,r) = 2%]7“] — 2r along this curve at (a,b) = (r,r).
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z-axis
z-axis

0
X-axis 10 -5

y-axis y-axis

(a) a+b=4and z = ¢2_(a,b) (b) a+b=—4and z = ¢2_(a,b)

z-axis
z-axis

x-axis 10 10 -5 0

y-axis -10 y-axis

(¢c)a+b=0and z = ¢? (a,b) (d) a+b=0and z = ¢.!(a,b)

Figure 2.5: The curve intersected by surface z = ¢2_(a,b) and plane a 4 b = 2r.
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Proof. We know that ¢?_(a,b) is differentiable everywhere except at the point (0,0).
Therefore, we consider two separate cases:

(i) Case (1): » = 0. Since a + b = 0, it follows that a and b have opposite signs, unless
a =b = 0. According to Proposition 2.6, this implies that ¢? (a,b) > 0 in this scenario.
In particular, ¢?_(a, b) achieves its minimum value of zero at the origin, (a,b) = (0,0).

(ii) Case (2): r #0. Fix rand p > 1. Let f : R — R and g : R — IR be respectively
defined as

F(0) = @y tor = 1), g(t) = Ir o+ e — 1]

Then, we calculate that

() = ﬂ and ¢'(t)=p [sgn(?" +t)(r+t)P "t —sgn(r —t)(r — t)p_l} )

p—1

p(g(t)) »

We know ¢(t) > 0 for all ¢t € IR. It is clear ¢’(0) = 0, and hence f'(0) = 0. By Lemma
2.4, f(t) is convex on IR. In addition, it is also continuous, therefore, ¢ = 0 is a critical
point of f(¢) which is also a global minimizer of f(¢). The proof is done since a = b =r
and ¢?_(r,r) = 2%\7"| —2r whent=0. O

Lemma 2.4 and Proposition 2.9 establish that the curve formed by the intersection
of the plane a + b = 2r and the surface z = ¢%_(a,b) is convex and attains its minimum
at the point where a = b (see Figure 2.6). We now examine the curvature of the family
of curves o, defined as in (2.31), at the point (r,r,¢?_(r,r)). Since the function ¢?_
is not differentiable at (a,b) = (0,0) (i.e., when r = 0), we consider two nearby points,
(—tg,to,gbl{iB(—tO?to)) and (to, —to, ¢ (o, —to)), for some tg > 0. We then compute the
cosine of the angle formed between ag,(—to) and g, (to); see Figure 2.7.

Proposition 2.10. Let a,., : R — IR? be defined as in (2.51), and cos,(0) be cosine
function of the angle between two vectors o ,(—to) and ag,(ty) where to > 0. Then,

2% —
(a) cos,(0) = A
\/<2§ ~2) +32
(b) cosy() = —% as p — 1, and cos,(0) — —55 as p — +00;

(c) if 1 < p1 < pa, then cos,, () < cosp,(0).
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Proof. (a) By direct computation, we obtain

ag,p(—to) - v p(to)

cos,(0)
g oo (=to) Il o, (o)
B 2r — 6
\/(2§ +6) + 2%”\/(2% +6) — 2572

25 — 6
\/(2%—2)2+32

(b) From part(a), let f : (1,4+00) — IR be f(p) := cos,(f). Then f(p) is continuous on

(1,400). By taking the limit, we have cos,(0) — —3 as p — 1, and cos,(0) - —2 as

p — +00.

_(1_-1In2)\9p

(¢) From part(b), we know f'(p) = 6(12—p)2 which implies f'(p) > 0 for all p > 1.
(27 —2)2+32

Therefore, f(p) is a strictly increasing function on (1, 4+00). O

Proposition 2.11. Let a,,, : R — R? be defined as in (2.31). Then, the following hold.

1
. . (p—1)22 "
(a) The curvature at point oy, (0) = (r,r, ¢ (r,7)) is £,(0) = IR
(b) k,(0) = 0 as p — 1 and k,(0) = +00 as p — +oc.
(c) If1 < p1 < po, then Ky, (0) < Ky, (0).

Proof. (a) Because . ,(t) = (r +tr =t QP (r+tr— t)), we know

(p— 1)2%
o/r,p(o) =(1,—-1,0) and O/T:p(O) = (0’07 T .

Recall the formulation of curvature

oz, (8) Aad, (1))
Hp(t) - / 3 )
|, (0)]

where wage operator means the outer product of two vectors. Thus, we have

o) — 1250 A 2, (0) (p—1)20"
K = = .
’ o, (0 ]

(b) Let f: (1,400) — IR be defined as
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then obviously f(p) is continuous on IR. Thus, the desired result follows by taking the
limit directly.

(¢) From part(b), we compute

951 ( In?2 In2
(p) = 22 1——+—)

which implies f'(p) > 0 for all p € (1, +00). Thus, f(p) is strictly increasing on (1, 400).
0

The preceding two propositions illustrate how the parameter p influences the geomet-
ric structure of the surface; see Figures 2.8(a) and (b). Proposition 2.11(b) states that as
p — 1, the curve approaches a straight line (Figure 2.8(c)). Conversely, as p — 400, the
curve becomes increasingly sharp at the origin, and is no longer differentiable at ¢ = 0
(Figure 2.8(d)). In summary, the results presented in this section reveal that the param-

eter p significantly affects both the local and global geometric behavior of the surface
defined by z = ¢?_(a,b).

As previously discussed, the generalized FB function ¢? is convex and differentiable
everywhere except at the point (0,0). In contrast, the function ¥?_(a,b), defined in
(2.19), is non-convex but remains continuously differentiable across its entire domain.
Despite this key difference, ¢? = and ¢ exhibit many similar geometric properties, as
will be demonstrated. In what follows, we present several properties of ¢? . and highlight
the distinctions between P and ¢~ .

Proposition 2.12. Let ¢? :IR* = IR be given as in (2.19) where p € (1,4+00). Then,
(a) ¢? (a,b) >0, ¥(a,b) € R?;

(b) ¢? (a,b) =P (b,a), V(a,b) € IR?;

(c) (@=0andb>0)or(b=0anda>0) <= Y2 (a,b) =0;

(d) b=0anda <0 = P (a,b) = 2a* > 0;

() a=0andb<0= 9 (a,b) =2b* > 0;

(f) ¥P, is continuously differentiable everywhere.

Proof. Part (d) and (e) come from Proposition 2.6(c) and Proposition 2.6(d), please see
22, 27, 35] for the rest. [

Proposition 2.7(c) states that the value of ¢P . decreases with respect to the parameter
p- In contrast, ¢ does not exhibit this monotonicity in general. More precisely, this
property holds for ¢ only within certain quadrants of the domain.
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Figure 2.6: The curve f(t) = ¢2_(r +t,r —1).
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Figure 2.7: Angle between vectors g ,(—to) and ag, (o).
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Figure 2.8: The curvature k,(0) at point a,.,(0).
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Figure 2.9: The surface of z = 4?2 (a,b) with (a,b) € [-10,10] x [-10,10].
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Figure 2.10: The local surface of z = 4?2 (a,b) with (a,b) € [0,10] x [0, 10].
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Figure 2.12: Level curves of z = ¢?_(a,b) with different values of p.
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Proposition 2.13. Suppose 1 < p; < py and (a,b) € R?. Then,
(a) ifa <0 orb<0, then Yl (a,b) > P2 (a,b);
(b) ifa>0 and b >0, then Y7 (a,b) < Y2 (a,b).

Proof. (a) This is clear from Proposition 2.7(c).

(b) Suppose a > 0 and b > 0, from Proposition 2.6(a), we have ¢2_(a,b) < 0. Then
Proposition 2.7(c) yields ¢! (a,b) > ¢ (a,b), and hence (¢P%)*(a,b) < (¢72)*(a,b).
0

z-axis

-2 y-axis 0 : y-axis

(a) a+b=0and z =92 (a,b) (b) a+b=2and z =12 (a,b)

Figure 2.13: The curve intersected by surface z = ?_(a,b) and plane a + b = 2r.

Since ¥ is not convex in general, the counterpart to Proposition 2.9 is presented
below.

Proposition 2.14. Let Y2 _(a,b) be defined as (2.19) with a+b = 2r. Then, the following
hold.

a) Ifr €e R" and a > 0,b > 0, then ¥?_(a,b) attains mazima 271 — 2yt +2) r?
FB
when (a,b) = (r,r).

relR™U , then ¥ (a,b) attains minima ol + 9p 1 +2) r? when (a,b) =
b) If R 0}, then ¥P (a,b 2
(r,7).

Proof. (a) When a > 0 and b > 0, Proposition 2.6(a) says that ¢?_(a,b) < 0. Since
¢ (a,b) > 0, by Proposition 2.9, the minima of ¢?_(a,b) becomes maxima of ¢* (a,b).

(b) This is a consequence of Proposition 2.9. [
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The preceding results indicate that ¢? = shares many geometric proplerties with ¢P .
as illustrated in Figures 2.11-2.12. In particular, we define ¢! (a,b) := 3|¢} (a,b)|* and
¥ (a,b) = 3] (a,b)]®. Nonetheless, there remain key differences between ¢ and
YP . For instance, unlike ¢? ., the function ¢? is not convex. Figure 2.12 illustrates the
direction of increase for £ . It is also worth noting that ¥?_(a,b) is nonnegative and
exhibits distinct behaviors in the region where a > 0 and b > 0, as shown in Figures 2.9,
2.10, and 2.11.

To further explore the geometric properties of ¢ . we introduce a family of curves
defined by
Brp(t) = (r+t,r —t, 0% (r+t,r—1)), (2.32)

where r is a fixed real number and ¢ € IR. This family of curves represents the intersection
between the plane a + b = 27 and the surface z = ¢?_(a,b), as illustrated in Figure 2.13.

Proposition 2.15. Let 8., : R — IR? be defined as in (2.32). Then, the following hold.

1

: o 1_
(a) The curvature at point B,,(0) = (r,r, 0% (r,r)) is £y(0) = (p — 1)27 (1 — 20 1).
(b) A,(0) = 0 asp — 1 and r,(0) — 400 as p — +oc.

(c) If1 < p1 < po, then Ky, (0) < Ry, (0).
Proof. (a) From 3,,(t) = (r +t,r — t,9_ (r +t,7 —t)), we know

67/’,]3(0) = (]-7 _]-7 0) and ﬁvl"l,p(o) = (07 Oa (p - 1)2; - Sgn(r)(p - 1)2;+1>
which yields
/ O /\ 1 0
o) = 01 81,0)
157, (0)]
(b) Let f : (1,400) — IR be defined as f(p) := k,(0) = (p — 1)2%(1 - 2%_1). Then, the
result follows by taking the limit directly.

(c¢) From part(b), it can be verified that f'(p) > 0 for all p € (1,400). Thus, f(p) is
strictly increasing on (1,+o00). O

=(p—1)2r(1—-27").

Figure 2.14 illustrates how the shape of the curve evolves with varying values of p,
particularly highlighting changes in curvature as p approaches 1 or tends toward infinity.
As an addendum to part (a), we note that the curvature at two special points, 3, ,(—r) =
(0,2r,0) and 8,,(r) = (2r,0,0), is identical and given by &,(r) = &,(—r) = 5. Although
YP _ is differentiable everywhere, the mean curvature at the origin, (0,0), does not exist.
We summarize the similarities and differences between ¢ —and 92 below.

(bf*B (a7 b) wgB (a7 b)

Difference | convex nonconvex

differentiable everywhere except (0,0) | differentiable everywhere
¢P_(a,b) <0 when a >0 and b > 0 PP (a,b) > 0,¥(a,b) € R?
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(1) NCP function.

(2) Symmetry (i.e., 2 (a,b) = ¢¥_(b,a) and P _(a,b) =YL _(b,a)).
(3)

(4)

Similarity

3) The function is not affected by p on axes.

4) When (a* — —o0) or (b* — —c0) or (a*, 0" — +00),
there have [¢? (a*,b*)] — oo and [y (a*,b*)] — oo.

(5) non-coercive.

Proposition 2.16. The function ®2_ : R™ — IR" defined as in (2.16) is semismooth.

Proof. From Proposition 2.1(d), we know that ¢ is convex and thus semismooth.
Furthermore, each component of ®? (z) is formed by composing the convex function
¢?, : R? — R with the differentiable mapping (z;, F;(x))" : R" — IR?. Since both
convex and differentiable functions are semismooth, and the composition of semismooth
functions remains semismooth, it follows that ®F  itself is semismooth. [

Proposition 2.17 shows that ¢ is an SC' function. Consequently, if each Fj is
also an SC! function, then WP inherits this property. Before presenting the proof, we
introduce a key technical lemma, which establishes that the gradient V¢? _ is globally
Lipschitz continuous, an essential result for our subsequent analysis.

Lemma 2.5. The gradient of the function ¢?_ defined as (2.19) is Lipschitz continuous,
that is, there exists L > 0 such that

IV, (a,0) = Vi (¢, d)|| < Li|(a,b) = (¢, d)],
for all (a,b), (c,d) € R?.
Proof. Based on the expressions for the gradient of ¢2  given in (2.20) and (2.21), and by

applying the chain rule and quotient rule (the computation, while routine, is somewhat
tedious and thus omitted), we arrive at the following two cases.

(i) If p is even and (a,b) # (0,0), then

V2,00, (a,b) = (”(— 1)2+ﬁ‘1ﬂ(||<a,b>||p—<a+b>),

a,b)Hg_l - (a, b)“%p—l
p—1 ot
ngﬁg 7b = VQaWFjB ,b :<CL—__1) (—__1)’
b (a,b) b (a,b) | (a, b)]|5 1 ORI .
— Dar1pr—1
_<p||<a )b>|| (”W’ Bl — (a + w),

VEUr (a,b) = (H(f—_l—1)2+<*|’|‘”—“%H(u<a,b>up—<a+b>).

W™ (a,0) 2"
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(d) The change of curvature as p — 1 at 31 ,(1). (e) The change of curvature as p — +oo at 51 ,(1).

Figure 2.14: The curvature &,(0) at point 3,,(0).
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ol

It is clear that T
[ (a, 0)|[3

< 1 and we also see that

2p—2 2p
a2 bfP < <max{|a!,\b|}> = ( lal? |b’p) < @O

which yields

e

[ o) = (233)

Jal? bl
< 1. On the other hand, by Lemma 1.4, we

Similarly, it can be verified that ————— <
I(a, b) [l

have
lal + [b] < V2va2 + 52 = V2||(a,b)|]2 < V2 - 207271P)|(a, )], = 20717 (a, )],

Applying all the above, we can give an upper bound for ViaWF’B(a, b) as below.

\viawgB (a, b)]

( @ 1)2+ (p— Dla?p["  (p—DlalP2[bf - (Ja| +[b])
I(a, o) I(a, 0)7" Ia, 0)[5"
(p — Dal”~?bf - 24~V (a, b)
I(a, b) 5"
< A+ (p-1)+(p-1207Y

= 4+ (p-1) {1 + 2(1—1/1’>] :

< 44+(p-1)+

where the last inequality holds due to (2.33). By the same arguments, we also have

'VZ%W]FJB(@, b)’ <44+ (p-—1) [1 + 2(1—1/1))} '
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Now, we estimate the upper bound for V2,y? (a,b) = V3 4P (a,b) as below.

'Vib@/}ﬁB(a, b)’ = 'Vz?a@/f’;B(a, b)’

aP

'n(ab) - ' ‘uabu ‘1‘

(o= Dl P () )
" )ngl <H(,b)|lp+(||+|b|>>

_|._
ap! bt
(| wolr” ) o™+
) p
+

p—Dlal" P~ (p = D]al" b~ - (Jal + [b])

IN

I(a,0) (1" I(a,0) 17
(p = DlafP~ o]~ - 2072 (a, b)[],
< 4d4+(p-1)+
I(a,0) 17
< A+ (p-1)+(p—1)20P

= 4+ (p-1) [1 + 2(1—1/13)] :

where the third and fourth inequalities are true by the similar result as (2.33), that is,
JafP~ b~

e <
I(a, b)II"
(ii) If p is odd and (a, b) # (0,0), then we obtain

V2,07, (a,b) = (M—1)2+Sg“<a)sgn(b) L= (bl (0 1)),

1o D) a0
V2P (a,b) = . sgn(a) a” 1\ (sen(b) BT
w¥is(@0) = Viay(a,b) = <||< DI 1)(”(@,6)”;—1 1)
_sea(@)sgn(d) - (p— a0 (o
e (u< Dl (a+ >),

sgn(b) - -1 \?  sgn(a)sgn(b) - (p — 1)a?br
(||<a,b>||£—1 1) - (a0, by

In fact, the upper bounds for V2, ¥? (a,b), V24P (a,b), V0P (a,b) remain the same
by following exactly the same steps as in the case where p is even. Thus, there exist a
constant L > 0 independent of (a, b) such that

V407, (a,b) (a0, = ta+1)).

V242 (a,0)]| < L, V¥ (a,b) # (0,0) € R,
Then, by Lemma 1.3, we have
quﬂp(a? b) - V¢§B (Ca d)H < LH(G, b) - (Ca d)“7 (234)
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for all (a,b),(c,d) € R? with (0,0) & [(a,b),(c,d)]. Moreover, (2.34) also holds in
case (a,b) = (c,d) = (0,0) since VP (a,b) = VP (a,b) = 0. Therefore, we can
assume (a, b) # (0,0). From Proposition 2.2(c), ¥2_ is continuously differentiable for all
(a,b) € R? with V¢2_(0,0) = (0,0); then using a continuity argument, we obtain (2.34)
remains true for all (¢,d) € IR?. Thus, (2.34) holds for all (a,b), (¢,d) € IR? which says
YP_is globally Lipschitz continuous. [

Proposition 2.17. The function ¢ defined as in (2.19) is an SC" function. Hence,
if every F; is an SC' function, then the function WP given as in (2.17) is also an Sct
function.

Proof. As established in Proposition 2.2(c), 12 is continuously differentiable. It remains
to verify that its gradient, V¢?_, is semismooth. According to Lemma 2.5, V¢ is Lips-
chitz continuous and, consequently, strictly continuous (i.e., locally Lipschitz continuous).
Therefore, to prove the semismoothness of V¢ _, it suffices to verify that it satisfies the
condition in Lemma 1.2(b). More precisely, we only need to check semismoothness at
the point (0, 0), since VP is continuously differentiable, and hence semismooth, at all
other points (as shown in the proof of Lemma 2.5). To this end, we have to verify that
the equation in Lemma 1.2(b) is satisfied, i.e., for any (hy, hy) € IR* such that Vi¢?_ is
differentiable at (hq, h2), we have

VP (hi, ha) — VP (0,0) — VY (hy, ha) - b = o(||(h1, ho)|). (2.35)

In order to prove (2.35), we have two cases where p is even and p is odd.

For p is even, we denote (Z1,Zs) the left-hand side of (2.35). Then, we have
= [ Ky 0
[ - :| = - kz 1 . ¢I€B(h1’h2) - |: 0 :| (236)

i+ (B Yot ) b

hy }
hy ' [ hy |’
by s — ki (1, o) -+ (e Y on i) | L

Y
ki = (1—27_1—1)7
[[(h, ha) o

- (2.37)

ky = (——1), 2.37
(R, ho) [l
(p— DR het

(R, ho) |7

where

k3:
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By plugging (2.37) into (2.36) and writing out =; and =5, we obtain that =; = 0 and
=5 = 0. To see this, we compute =; as below:

( hf_l ) h}f—l 2
= = () (i) — (— —1)h1
(R, ho) |57 FB (R, ho) |5

(p— DA 'R

hpfl hpfl
0Dy - () ()
NS N TS T [(hn, ho) |5 :

(p— 1)~ 1hp
[T Pew o)

= pr (hl ]’LQ) [(L . 1) ( — 1)hp_1hp N (p_ 1)hp_1hp:|
T N o) [ o), o) 5

p—1 2 p—1 p—1
(Y () (Y,
1 )2 1 ) 10 b2
hlllfl h]ffl 2
- pr (hlth)(—_l) - (—_1> hl
o [ ) [ 1, ) [
)t
—— 1| ————= -1 )h
(|| h17h2)|| (e, ho) |15
hrt ppt ho!
) et (- (]
1o )E ) [%( ) = <H<hl,hz>uzz-1 NS
{n

(T
- (e e 1) iy — ]
(e
0,

(R, ho)|lp~ | (h1, R2) |l

p—1
i 1) 0
| h17h2 ||

where the second-to-last equality is true since A} + hy = |[(h1, h2)||2 when p is even.

p



2.1. CONSTRUCTIONS OF NCP FUNCTIONS BASED ON ¢, 75

Similarly,
h;27—1 ) h;2;—1 2
Zo = |1 1 ‘ﬁig(hlahz)—(—— _1> ha
(I|(h1,h2)llp ' (B, ho)[I5 ™
(p— DAL h hy!
NPT @r_ (ha, h) — W—l W—l hy
[(h1, ha) |l [(h1, he2) |l [(P1, ha) |l
(p— 1)hPRy
||(h1 h2>H2p 1 '%B(hlahﬁ
- — 1)hPRe! — hPnet
= ¢§B(h17h2) [(2—;;_1_1) o ) 2p—1 s ) 2p— 11
[ (R, h2) |l [ (h1, h2) I [ (R, h2) |l

(1) o= (e =) (s =)
- T =1 2 = o =1 o =1 1
NS (7, ho) |57 (7, ho) |5
hzz)—l h]2)—1 2
=¢&mw&@———fr—g—(————f"4>h
AN S eS= ’

p—1 p—1
[ )
[(h1, h2) I [(h1, ha) [
(

hy! ) [ ppt pet
= 1¢Phﬁg—(——L—r—Qh—(——i—T—
(H (1, ha) |5~ Fp i (ko ho) |57 F (o) 57
p—1 P P
- ( - 1—1) [Hml,haup—%]
| (R, ho)|p | (ha, Ro)llp
ho! )
= — —1]-0
(H (hy, ho) |5
= 0

)

where the second-to-last equality is true since i 4 i, = ||(h1, he)||} when p is even. From
the above two expressions of Z; and =y, it implies that (2.35) is satisfied. Thus, VP s
semismooth at (0,0) for the case where p is even.

For odd values of p, the same line of reasoning applies, leading to analogous verifications.
Thus, we conclude that V! is semismooth, and therefore ¢ is an SC ! function. The
second statement then follows directly from this result.  [J

We would like to highlight that for p = 2, the function ¢?  was already shown to be
an SC' function in [63, 64], with the first formal proof appearing in [64]. Proposition
2.17 extends this result to all p > 2, though its proof is considerably more intricate than
in the quadratic case. With Lemma 2.5 and Proposition 2.17 established, we can now
derive the following consequences.

Proposition 2.18. If every F; is an LC' function, then the function P - given as in
(2.16) is strongly semsmooth.

)
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Proof. It is known that ¢? is semismooth, in fact, strongly semismooth. This follows
from Proposition 2.1(d), Lemma 2.5, and [182, Theorem 7]. Moreover, since every LC*
function is strongly semismooth, the result immediately follows. [

Proposition 2.19. The function ¢?_ defined as in (2.19) is an LCY function. Hence,
if every Fy is an LC* function, then the function WP given as in (2.17) is also an LCH
function.

By applying Proposition 2.1(c), Proposition 2.16, and a result from [182], we immedi-
ately obtain an interesting property concerning the strong almost smoothness of ®? . For
further details on the notions of almost smooth and strongly almost smooth functions,
we refer the reader to [182].

Proposition 2.20. If every F; is an LC function, then the function P defined as in
(2.16) is strongly almost smooth function.

Proof. This result follows directly from Proposition 2.1(c), Proposition 2.16, and [182,
Theorem 7]. O

2.2 Constructions of NCP Functions based on ¢,

2.2.1 Construction by discrete generalization

As discussed in Section 2.1, the generalized Fischer-Burmeister function ¢? , defined in
(2.14), encompasses the classical Fischer-Burmeister function as a special case and serves
as a natural extension of the widely used ¢, function. This extension replaces the
Euclidean (2-norm) in ¢, (a,b) with a general p-norm, providing what can be regarded
as a “continuous generalization”. A geometric perspective of ¢ is presented in [205],
while the impact of varying p on different algorithmic frameworks has been explored in
(31, 32, 35, 39, 40]. In contrast, a natural question arises: “Is there a corresponding
extension of the natural residual function?” The following diagram illustrates the core of
this inquiry:

Pes(a,0) = [[(a,b)]l2 = (a+0)  — @7, (a,0) = [[(a,b) ]|, — (a+b)

¢NR (aa b) = IIlin{a7 b} s 297

While numerous NCP functions have been proposed as variants of the natural residual
function ¢, no work in the literature has addressed a true extension of the natural resid-
ual function itself. The primary challenge lies in the absence of a continuous norm-based
generalization, such as the one used for ¢f . In this section, we provide an affirmative
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answer to this long-standing open question, as presented in [33]. Unlike the continuous
generalization used for ¢? , the approach here is based on a “discrete generalization”.
Specifically, we introduce the generalized natural residual function, denoted by ¢? , de-
fined as follows:

¢t (a,b) = a’ — (a —b)} with p > 1 being a positive odd integer, (2.38)

where (a — b))}, = [(a —b)4]P and (a — b); = max{a — b,0}. Here, p being a positive odd
integer is necessary, that is, we require that p = 2k + 1, where £k = 1,2,3,---. We will
explain this later. Notice that when p =1, ¢? = reduces to the natural residual function
Oug» 1-€., when k = 0, it corresponds to

o1 (a,b) = a— (a —b)y = min{a,b} = ¢ (a,b).

This is the motivation behind the term “generalized natural residual function”. We
emphasize once again that the proposed extension is based on a discrete generalization.
For even values of p, the function ¢f_  no longer qualifies as an NCP function in the
traditional sense. However, a distinguishing feature of ¢? _ is that it is twice continuously
differentiable, as will be established in Proposition 2.23. In contrast, while the generalized
Fischer-Burmeister function ¢? , defined in (2.14), is not differentiable in general, the
squared norm [|¢?_(a,b)||* is differentiable everywhere. As a result, the merit function
approach typically employs [|¢”_(a, b)||*, while the nonsmooth function approach makes
direct use of ¢? (a,b). Unlike the nondifferentiability of ¢, the function ¢? ~with p =
2k + 1 is twice continuously differentiable, making it especially attractive for algorithmic
purposes. This smoothness enables the direct application of classical methods, such as
Newton’s method, to solve nonlinear complementarity problems (NCPs).

Proposition 2.21. Let ¢¥_ be defined as in (2.38). Then, ¢%_ is an NCP function.

Proof. First, we note that for any fixed real number £ > 0 and odd integer p, the
equation t? — &P = 0 has exactly one real solution t = £ because the function ¢ is strictly
monotone. Thus, we observe that

@ (a,b) =0
a —(a—0b" =0
a—(a—10)y =
min{a,b} =0
a,b>0, ab=0.

11y

This shows that gbgR is an NCP-function. O

For p being an even integer, ¢f  is not an NCP function. A counterexample is given
as below:
2 _ 2 2 _
62 (~2, 1) = (~2)2 — (=2 + 4)2 = 0.
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Moreover, the function ¢ is neither convex nor concave function. To see this, taking
p = 3 and using the following argument verify the assertion:

, 1. 1. 8 -1 9
1= 0 (=L =1) > 505 (=2, -1 + 50,0, -1 = - + 5 = —3.

Proposition 2.22. Let p > 1 be a positive odd integer. Then, we have

[(a = b)4]" = [(a = b)"]y, (2.39)
and hence
&, (a,b) = a7 — [(a — ), = a7 — [(a - b))..
Proof. For any a € R, we know that [o]; = 1(a + |a|). In addition, looking the
coefficients of the binomial (1 + x)?, we have

Y. C.Jj) Z C(p,j) = ZCp, 27,

j=0,€even j=0,0dd

These two facts lead to

[(a —b)+]°
— (a—btla—bl)

g
- = Zc<p,j>|a—b|j<a—b>p-f>

7=0
1 P . A P ‘ |
= 5| 2 Cwla—tlla=0y7+ > Cjla—bl(a—b)
7=0,€even j:0,0dd
1 p
T >, Clila-by Z C(p.j)la—bl(a—b)"~
j=0,even j= 0,0dd
- % (277 (a = b) + 2" a — bl (a — b))

((a =b)? + |a—bl(a—b)"™)
a—0b)"l4,

N | —

—~

where the last equality holds because p is a positive odd integer. Thus, the proof is
complete. [

In Proposition 2.22; observe that the equality in (2.39) holds exclusively when p is
a positive odd integer. For even values of p, the identity [(a — b),]? = [(a — b)P]+ no
longer holds. This highlights the necessity of restricting p to positive odd integers in the
definition of ¢? . We now present an alternative formulation of ¢f —and establish its
twice differentiability. To proceed, we first introduce a technical lemma.
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Lemma 2.6. Let u(t) := [t|P and v(t) := t?|t| where p > 1. Then,
(a) the function u(-) is differentiable with u'(t) = p sgn(t)[t|P~;
(b) the function v(-) is differentiable with v'(t) = (p + 1)tP~t].

Proof. The arguments are straightforward which are omitted here. [

Proposition 2.23. Let p =2k + 1 where k =1,2,3---. Then, we have
(a) ¢* (a,b) = a2kl — % ((a —b)# ! + (a — b)*|a — b|);
(b) ¢ is continuously differentiable with

V¢t (a,b)
[ = (a— b a—b),

) p{ (a=bp(a = D), }
(c) ¢ is twice continuously differentiable with

quﬁgR(a’b)
ooyt e—bpta—b) (a—bpia-b),
= plp—1) [ (a—b)P3(a—0b)y —(a=Db)P3(a—1b)y } .

Proof. (a) The alternative expression is a direct consequence of Proposition 2.22.

(b) From Lemma 2.6, we compute

It
a0
O ( opyr 1 2%k+1 2k
= 5.1 —5((a—b) + (a —b)*|la — b
— (Qk—l—l)a% . (Qk; 1)((1—())%— (2]{‘1;— 1)(a_b)2k:—1|a_b|
and
0
o (%Y
O [ oo 1 2k+1 2%
= ¢ —5((a—b) + (a —b)*"|la —b]
— <2k;— 1) (a . b)2k + <2k;— 1) (a . b)Zk—1|a . b|

79
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Hence, we obtain

(a—=b)*+ (a—b)*a —b|
202 — 2(a — b)*71(a —b), ]
2(a —b)*(a —b),

MR |

_ 2%+l { 202 — (a — b2 — (a — b)**|a — b }
|

I
=

which proves part(b).

(c) Similarly, with Lemma 2.6 again, the Hessian matrix can be calculated as below.

V2¢P (a,b)

2021 — (@ —b)* 1 —(a—b)*2a—-b (a—0b)*1+ (a—0b)*2|a—1

- k(2k+1) { (a—b)zk—l—i—(a—b)2k_2|a—b| —(a—b)%_l— (a—b)%_2|a—b|
a’? —(a=bPa—b)y (a—bP?(a—b),
= p=1) [ (a—bP-Sa—by  —(a—bP3a—b),

With this, it is clear that ¢F is twice continuously differentiable. U

Proposition 2.24. Let ¢%  be defined as in (2.38) with p > 1 being a positive odd
integer. Then, the following hold.

(a) ¢% (a,b) >0 <= a>0, b>0.

(b) @2, is positive homogeneous of degree p, i.e., ¢& (aw) = aPPt_(w) for all w € IR?
and o« > 0.

(c) ¢ is locally Lipschitz continuous, but not (globally) Lipschitz continuous.

(d) ¢ is not a-Héolder continuous for any o € (0,1], that is, the Hélder coefficient

[(bia]a,]l’@ 1= sup |¢§R(w) - %R(w )|

wpo o= w®

is infinite.

>0 on {(a,b) |a>b>0o0ra>b>2a},
(e) Vag? (a,b)-Vyd (a,b) ¢ =0 on {(a,b)|a<bora>b=2aora>b=0},

< (0 otherwise.

(f) Va2 (a,b) - Vid? (a,b) =0 provided that ¢%_(a,b) = 0.
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Proof. (a) This result has been mentioned in [33, Lemma 2.2].

(b) It is clear by definition of ¢?

NR'

(c) Since continuously differentiability implies locally Lipschitz continuity, it remains to
show that ¢? is not Lipschitz continuous. Consider the restriction of ¢? —on the line
L:={(a,b) | a=b> 0}. Note that for any a > 0, ¢*_(a,a) = a?, it suffices to show that
f(t) := t* is not Lipschitz continuous. Indeed, for any M > 0, choosing ¢t = max{1, M}
and t' =t + 1 yields

/
IO1O] _ oy
= (t+1DP (1) R
> p-tr!
> M.

Hence, it follows that f is not Lipschitz continuous.

(d) As in the proof of part(c), we again restrict ¢? = on L and choose the same ¢. Hence,

£ () — ()]
|t — /]

we also have
> M

for any positive number M, that is, ¢?  is not a-Holder continuous.

(e) According to Proposition 2.23, we know that

Vol (@.8) - Vil (@D) = 7+ (@ — (= bp*a— b)) (@ — b a — b))
_ { p? (@t —(a—0)P 1) (a—b)Pt if a>0b,
0 if a<b.

When a > b, it is clear that p* > 0 and (a — b)?~! > 0. Thus, we only consider the term
aP~' — (a — b)P~1. Note that p — 1 is even, which implies

A’ '=(a—bP! <= la|=a—-b < b=0orb="2a.

In addition to the case a < b, there are two subcases a > b = 0 and a > b = 2a such that
Vag? (a,b) - Vy¢? (a,b) = 0. On the other hand, we have

A’ > (a—b)P! = |a|>a—-b <= b>0orb>2a.

All the above says V,¢f (a,b)- V% (a,d) is positive only when a > b > 0 or a > b > 2a.
For the remainder case, it is not hard to verify V,¢? (a,b) - Vy¢? (a,b) < 0.

(f) It is clear from part(e). O
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Finally, we present several variants of ¢¥ . Analogous to the functions introduced in
[195], these variants can also be verified as NCP functions.

e1(a,b) = ¢% (a,b) +a(a) (b)y, a>0

pa(a,b) = ¢ (a,0) +a((a)(b)4)*, a>0
ps(a,0) = (¢, (a.0)" +a((ab))", a>0
pala,b) = (2, (a,0))" +a((ab)y)?, a >0

Lemma 2.7. The value of ¢¥ _(a,b) is positive only in the first quadrant, i.e., ¢§R(a, b) >
0 if and only if a >0, b > 0.

Proof. Since p is odd, the function f(¢) = P is strictly increasing. This observation
allows us to verify that

a>0,b>0
a+b>la—Db
a—>b+ la— Db
2
a>(a—>b);
a? > (a— b))%
¢ (a,b) >0,

a >

rered

which is the desired result. ]

Proposition 2.25. All the above functions ¢;, i € {1,2,3,4} are NCP functions.

Proof. We will only show that ¢; is an NCP-function and the same argument can be
applied to the other cases. Let Q := {(a,b)|a > 0, b > 0} and suppose ¢;(a,b) = 0.
If (a,b) € €, then ¢2 (a,b) > 0 by Lemma 2.7; and hence, y1(a,b) > 0. This is a
contradiction. Therefore, there must have (a,b) € Q¢ which says (a),(b); = 0. This
further implies ¢ R(a, b) = 0 which is equivalent to a,b > 0, ab = 0. Then, one direction
is proved. The converse direction is straightforward. [

We now illustrate the surfaces of ¢f = for various values of p, providing further insight
into this new family of NCP functions. Figure 2.15 shows the surface of ¢ (a,b), which
is observed to be concave and increasing along the direction (¢, ) in the first quadrant. In
contrast, Figure 2.16 displays the surface of ¢? R(a, b), revealing that it is neither convex
nor concave. Moreover, as noted in Lemma 2.7, ¢¥_(a,b) is positive only when both
a >0 and b > 0. The surfaces of @£ for different values of p are depicted in Figure 2.17.
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zZ-axis

Figure 2.15: The surface of z = ¢?_(a,b) with p = 1 and (a,b) € [-10,10] x [-10, 10]

Figure 2.16: The surface of z = ¢¥_(a,b) with p = 3 and (a,b) € [~10,10] x [~10, 10]
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01%

SIXB-2

0

. 0
a,aX\S

a- ax‘\S

(C) z= ¢LR (aa b) (d) z = ()Zbl{]; (av b)

Figure 2.17: The surface of z = ¢¥_(a,b) with different values of p.
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2.2.2 Construction by symmetrizations

In contrast to ¢? the function ¢? is derived through a “discrete generalization” and,
quite remarkably, retains twice differentiability. This property allows for the direct appli-
cation of various methods, such as Newton’s method, to solve nonlinear complementarity
problems (NCPs). However, unlike the graph of ¢f_, the graph of ¢f lacks symme-
try, which may pose challenges in further analysis and in the development of solution
algorithms. To address this, we aim to symmetrize ¢f_. Specifically, we propose two
approaches to construct symmetric variants of this “generalized natural residual func-
tion”, both of which continue to satisfy the conditions of NCP-functions. In doing
so, we not only introduce new NCP functions and merit functions for the nonlinear
complementarity problem, but also provide “symmetric counterparts” to the generalized
Fischer-Burmeister function.

Next, we outline our approach to symmetrizing the “generalized natural residual
function”. The first step involves examining the graph of ¢2 as presented in [205]. To
achieve symmetry in the graph of ¢? , we consider the cases a > b and a < b separately.
Motivated by the structure of ¢f , we propose a first symmetrized version, denoted by

¢ . - IR* = IR, defined as follows:

a’ — (a—0b)P ifa>b,
¢r . (a,b) =4 aP =P if @ =b, (2.40)
b —(b—a)P ifa<b,

where p > 1 is a positive odd integer. As shown in Figure 2.18, ¢?__is an NCP function
whose graph is symmetric. However, ¢ is not differentiable in general, prompting the
natural question of whether a symmetric and differentiable variant can be constructed.
To this end, we observe that the associated merit function ||¢? _ ||* possesses the de-
sired smoothness, although we seek a more direct and simpler differentiable formulation.
Fortunately, we identify a second symmetrization of ¢? , denoted by ¢f - R? - R,
defined as:
a’b? — (a — b)PoP  if a > b,
PP (@, 0) = S aPbP = o if a = b, (2.41)
a’? — (b —a)Pa? if a < b,

where p > 1 is again a positive odd integer. The graph of ¢£ " is shown in Figure 2.19
and exhibits both symmetry and differentiability, fulfilling our desired properties for a

well-behaved symmetrized NCP function.

Proposition 2.26. Let ¢¢___ be defined in (2.40) with p > 1 being a positive odd integer.
Then, ¢%_ . is an NCP function and is positive only on the first quadrant Q = {(a,b) |a >
0, b>0}.



86 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS
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(c) z=¢L .(a,b),p=5 (d) z=¢2 (a,b),p=T7

Figure 2.18: The graphs of ¢f__ with different values of p.
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(d) z=4P__ (a,b),p=7

Figure 2.19: The graphs of ¢ with different values of p.



88 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Proof. It is straightforward to verify that ¢f_is positive only in the first quadrant.
Next, we demonstrate that ¢f  satisfies the properties of an NCP function. To this
end, we proceed by analyzing three distinct cases. For a > b and ¢7__ (a,b) = 0, it is
clear to see a? — (a — b)? = 0, which implies that @ = a — b. Thus, we conclude that
a > b= 0. Similarly, for a < b and ¢?___(a,b) = 0, we have 0 = a < b. For the third
case, a = b and ¢¢__ (a,b) = 0, it is easy to see that a = b = 0. It is trivial to check
the converse way. In summary, ¢¢  satisfies that ¢¢  (a,b) = 0 if and only if a,b > 0,

S—NR
ab = 0; and hence, it is an NCP function. [

For p being an even integer, ¢7 is not an NCP function. A counterexample is given
as below:

Or (-2, -4 =(-2)" = (-2+ 4" =0.
Moreover, the function ¢f _ is neither convex nor concave. To illustrate this, we set
p = 3 and use the following arguments to verify the assertions:

1 1

L= 0¢ (1 1) < 500 (0,0) + 500 . (2,2) =
1 1

L= 0¢ q(11) > 507 1 (2,0) + 560 ,(0,2) =

Proposition 2.27. Let ¢? _ be defined in (2.40) with p > 1 being a positive odd integer.

S—

Then, the following hold.

(a) An alternative expression of & is

(b) The function ¢f_  is not differentiable. However, ¢¥ _ is continuously differen-
tiable on the set Q := {(a,b) | a # b} with

(a,b) = { plart — (a— b)Y, (a—b)P']T if a>b,

vér plo—ap=, p = b—ap |7 it a <t

S—NR

In a more compact form,

_ [ pler M a,b), (a=b)P )T i a > b,
V() = { pl(b—aP™t, o 1(b,a)]T if a<b.

(c) The function ¢f_  is twice continuously differentiable on the set 0 = {(a,b)|a # b}

with
a2 —(a—bP2 (a—bP? ]
V2¢p (& b) _ p(p - 1) { (a . b)pr —(a - b)p’Z } if a>b,
O TR e e BT
o (b—a)=? o= (b—a)* -
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In a more compact form,

pp—1) { ¢§£2(“>b)2 (a — by } if a>b,

2 _ (a—bP=* —(a—0b)~>
VEPL n(a:b) = oo - 1 [ ~(b—a)p (b—a>p—2} 4 b
(b—a)=2  ¢L%(b,a) '
Proof. The arguments are just direct computations, we omit them. [

Proposition 2.28. Let ¢ be defined as in (2.40) with p > 1 being a positive odd
integer. Then, the following hold.

(a) ¢ .(a,0)>0 <= a>0, b>0.

(b) ¢§7NR is positive homogeneous of degree p.

(c) @8 . is not Lipschitz continuous.

(d) ¢ . is not a-Hélder continuous for any a € (0, 1].

(e) Vg2 . (a,b)-Vy?  (a,b) >0 on{(a,b)a>b>0}{U{(a,b)[b>a>0}.

(f) Vag? .(a,0)-Vid?  (a,b) =0 provided that ¢¥__ (a,b) =0 and (a,b) # (0,0).

S—NR
Proof. (a) It is clear from Proposition 2.26 or [18, Proposition 2.1]).
(b) It follows from the definition of ¢2

(c)-(d) The proof is similar to Proposition 2.24(c)-(d).

(e) Tt is enough to verify the case for a > b > 0 because for b > a > 0, the inequality will
hold automatically due to ¢f _  having a symmetric surface. To see this, according to
Proposition 2.27(b), we have

v&¢g_NR(aa b) Vb¢€ NR( ) = p2 : [apil - (a - b)p71:| (a - b)pila
which yields the desired result by Proposition 2.24(e).

(f) This result also follows from the proof of Proposition 2.24(e). O

We now establish the semismoothness of ¢? . It is well known that any piecewise
continuously differentiable function is semismooth. For completeness, we will verify this
property step by step based on the definition. Through this process, we will not only
confirm local Lipschitz continuity and characterize the generalized gradient, but also
demonstrate that ¢f _ is strongly semismooth. As a first step, we verify that the
function is strictly continuous, that is, locally Lipschitz continuous. It is important
to note, however, that ¢?__ is not “globally” Lipschitz continuous, as established in

Proposition 2.28(c).
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Lemma 2.8. Let ¢¢_  be defined as in (2.40) with p > 1 being a positive odd integer.
Then, ¢¥ . is strictly continuous (locally Lipschitz continuous).

Proof. For any point # = (a,b) with a # b, the continuous differentiability of ¢f
implies its locally Lipschitz continuity. It remains to show ¢f is locally Lipschitz
continuous on the line L = {(a,b) | a = b}.

To proceed the arguments, we present two inequalities that will be frequently used. Given
any 2 = (ag,a9) and § > 0, let N5(2°) := {x € R? | ||z — 2°|] < §}. Then, for any
x = (z1,73) € Ns(2°), we have two basic inequalities as follows:
i < lzf| < Jlo =2 + [l2°)) <6+ [l2°) Vi=1,2. (2.42)
|z1 — 29| < |21 — ag| + |ag — za| < ||z — 2% + ||2° — 2| < 26. (2.43)
Now, for any y, z € Ns(z°), we discuss four cases as below.

(i) For y € L and z € L, we have

o W) = (D) = |yl — 2]

lyr — 21| - |y{’71 + 3/5)7221 +---+ Z{;il|

< Ay =zl - (P~ + P2zl + -+ [P
< p(6+[12°)P My — 2|

rally — 2|,

where ; := p(d + ||2°]|)P~! and the second inequality holds by (2.42).

(ii) Fory ¢ L and z € L (or y € L and z ¢ L), without loss of generality, we assume
Y1 > yo. Then, we have

¢1307NR (y) - gb]sijR,(Z)

Y7 — (1 — y2) — 7|

i — 211+ (1 — 92)”

Fally = 20+ (g — )"l — 21l + |21 — 2] + |22 — 1)
rilly = 2l + (2007 (lly — 2l + [l = yll)

rally — 2|,

where Ky := k1 + 2(20)P~! and the last inequality holds by (2.43).

ININACIA

(iii) For y ¢ L, z ¢ L and y, z lie on the opposite side of L, i.e., (y; — y2)(21 — 22) < 0,
without loss of generality, we assume y; > y» and 27 < z5. Since y, z lie on the opposite
side of L, the line L and the segment [y, z] := {A\y+ (1 — A\)z | A € [0, 1]} must intersect
at a point w € [y, z] N L. Thus, we have

Pe W) = ()| <10 () — O (W) + 9% (w) — 9% (2)]

Rally — wif + wallw — ||

IN A

rally = 2l + rally — ||

rslly — =,
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where k3 := 2Ky and the third inequality holds because w € [y, z].
(iv) For y ¢ L, z ¢ L and y, z lie on the same side of L, i.e., (y; — y2)(z1 — 22) > 0,

without loss of generality, we assume y; > yo and 2z; > 25. Then, we have

(Y7 — (11— 12)") — (2] — (21 — 22)")]

Y7 — 2V 4 [(y1 — y2)? — (21 — 22)7|
killy — 2| + 2p(20)P |y — 2|

= Kally — 2|

Fsnn W) = O _a(2)

<
<

where x4 = k1 + 2p(25)P~! and the second part is estimated as follows:

(Y1 — y2)” — (21 — 22)"]

(1 —92) = (21 = 22)| - [(1 = 92)" "+ 4 (21— 22)" 7]
(ly1 — 21l + |2 — 22 (lyr — wlP "+ -+ + |21 — 22"
(ly = 2l + lly = zl)p(20)P~"

2p(20)"ly — 2.

IA A

From all the above, by choosing k = max{k1, ke, k3, K4}, we conclude that

n W) —oh ()| < klly — 2] forany y,z€ Ns(2°).

This means that ¢f__ s locally Lipschitz continuous at 2°. Then, the proof is complete.
O

Proposition 2.29. Let ¢F be defined as in (2.40) with p > 1 being a positive odd
integer. Then, the generalized gradient of ¢%_ s given by

pla” = (a = b, (a—bP )T if a>b,
9P (a,b) =<4 {plaa™, (1 —a)a" " |a€[0,1]} if a=0b,
pl(b—a)p™t, Pt —(b—a)p " if a<b.

Proof. We have already seen the d¢? (a,b) when a # b in [144]. For a = b, according

to the definition of Clarke’s generalized gradient, we claim that

ot (a,a) = conv{ lim )V¢p (ai, b;) | o7, is differentiable at (a;,b;) € ]R2} :

(ai,bi)—(a,a S—NR
To see this, we discuss three cases as below.

(i) If a; > b;, for any i > n and sufficiently large n, then

. . ap_l — (a. — b.)p_l ap—].
1 b b)) = 1 ’ e = :
(a,-,bsr—r}(a,a) V¢S*NR (a ) (ai,biﬁr—I}(a,a)p (ai — bl)p 1 p
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(ii) If a; < b;, for any i« > n and sufficiently large n, then

. . (bz — ai)p_l 0
lim V(DQNR (ai7 bl) = lim )p |: bzpfl . (bz o ai)p—l =p apfl .

(aibi)—=(a,a) (aibi)—(a,a

(iii) For the remainder case, V@? _(a;, b;) has no limit as (a;, b;) — (a,a).

From all the above, we conclude that

e o[ ] o2} o]

Thus, the desired result follows. [

aG[O,I]}.

Lemma 2.9. Let ¢¢ _ be defined as in (2.40) with p > 1 being a positive odd integer.
Then, ¢f . 1s a directional differentiable function.

Proof. For any point x = (a,b) with a # b, the continuous differentiability of ¢
ensures its directional differentiability. Therefore, it remains verify directional differen-
tiability along the line L = {(a,b) | a = b}. To this end, consider an arbitrary point
x = (a,a), a direction h = (hy, hs), and t > 0. We proceed by examining the following
three cases:

(1) If h1 = hg, then
P8 (@ +th) —of  (2)
1. S—NR S—NR
t—%ﬁ t
— i (a+thy)P — a?
N t—0+ t
~ m af + pat~'thy + Y b, (P)arFtF Ry — a?

t—0+ t

p
o -1 P\ p—kpk—17k
B tli%i (pap hy + 1;—2: (R)a "t hl)

= pa’~thy.

(11) If hy > hg, then
(@ +th) — & (@)

lim

t—0t t

li (CL + thl)p — (thl — thz)p —aP
= lim

t—0+ t
_ af + pat~'thy + Y b, (P)aPFtRRY — tP(hy — ho)P — a”
N t—l>r(§l+ t

p
= (Pa’”‘lhl > (a1 m)p)
k=2

= pa’~thy.
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(iii) If hy < hg, then
(bg—NR (SE + th) T ¢§—NR (I>

lim

t—0+ t

li (a + thg)p — (thg — thl)p —aP
= lim

t—0+ t
o O paP~thy + 7y (B)aP *tFRE — tP(hy — hy )P — a”
N t—lg}*' t

p

= lim <pap1h2 +)(D)ar Ry — 7 (g — hl)p>

—

k=2
= paP th,.
To sum up, we have verified the definition of directional differentiability for ¢¢ . This

completes the proof.  [J

Proposition 2.30. Let ¢¢ __ be defined as in (2.40) with p > 1 being a positive odd

integer. Then, ¢F is a semismooth function. Moreover, ¢F_  1is strongly semismooth

—NR R

Proof. We shall proceed to directly establish the strong semismoothness of ¢£_ . Ob-
serve that ¢? _ is twice continuously differentiable at any point x = (a,b) with a # b,
which immediately implies its strong semismoothness at such points. It thus remains to

verify that ¢? _ is strongly semismooth along the line L = {(a,b) | a = b}.

For any = = (a,a), h = (hy,hs), V € 0¢P

P @+ h)and h — 0, we have the following
inequality while ||h| < 1:

IAllP < [R[*  for any p > 2.

To prove the strong semismoothness of ¢? . we will apply this inequality and verify

S—NR
(1.42) by discussing three cases as below.

(i) If hy = hg, then for any « € [0, 1]
O @+ ) = 0 (@) = Vi

p
= |a” 4+ pa’thy + Z (i)ap_khlf —a? — paP~thy
k=2
My([ha|* + -+ + |ha]?)
My([|P]1* + -+ [[R]P)
(p — )My A|,

INIACIA
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where M; = max { (?)]a[P™" |k =2,3,--- ,p} and the last inequality holds when [|h]| < 1.
(11) If hi > hg, then

B+ R) = 62, () = V]
= |(a+h)? = (hg —ha)? —a” —p[la+hi)’" = (b — k)P, (hy — ho)P ] { " 1 ’

= [(a+h1)? = (hy = ho)? — aP — p(a+ h1)" " hy + p(hy — hy)?|

p—1
= |(a+h)’P—a’ —p (ap_l + Z (pkl)ap_l_kh’f> hi+ (p—1)(hy — ho)?

k=1
p—1
< (a+h) —a” —pa”tha| +p |y (P e R 4 (p — 1) [(hy — ho)?|
h hg k=1 ng

=1 . S =3

o3

As h — 0, we have the following estimations for each =;.
o = < (p—1)My||h|]? by case (i).

o S < 00 () MalPT T E I T < Mo(Ihaf? + - 4 [ fP) < (p — 1) Mo|R[|?, where
My = max { (" |a"*|k=1,2,-- ,p—1}.

o 25 < S0y ()P Rl < Myl + -+ [BIP) < (p+ D)M[[BI2, where M =
max{(z) |k=0,1,--- ,p}.

Hence, we conclude that

o @+ h)—¢b () -Vh| < M]||h||?,

where M = (p— 1)M; +p(p — 1)Ms + (p — 1)(p + 1) Ms.
(iii) If Ay < hg, the argument is similar to the case (ii).

All the above together with Lemmas 2.8-2.9 prove that ¢f _ is strongly semismooth.
O

We now introduce additional variants of (bngR' As with the functions discussed in
[195], the following variants can also be verified to satisfy the properties of NCP functions.
or(a,b) = @8 (a,b) +a(a)(b)4, a>0.
Ga(a,b) = ¢ . (a,0)+a((a)i (b)), a>0
¢3(a,b) = ¢ (a,b) +a((ab)s)", a >0,
a(a,b) = ¢ (a,b) +a((ab)s)’, a >0,
fs(a.b) = ¢ (a.b)+a((@))*(0)+)", a>0
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Proposition 2.31. All the above functions gi(a,b) fori e {1,2,3,4,5} are NCP func-
tions.

Proof. We only show that 51(a, b) is an NCP function and the same argument can be
applied to the other cases. First, we denote 2 := {(a,b) |a > 0,b > 0} the first quadrant
and suppose that al(a,b) = 0. If (a,b) € Q, then ¢¢ _(a,b) > 0 by Proposition 2.26;
and hence, 51((1, b) > 0. This is a contradiction. Therefore, we must have (a,b) € Q°
which says (a),(b)y = 0. This further implies ¢? _ (a,b) = 0 which is equivalent to
a,b >0, ab =0 by applying Proposition 2.26 again. Thus, gzzl is an NCP function. [

Proposition 2.32. Let ¥ be defined in (2.41) with p > 1 being a positive odd integer.
Then, Y2 is an NCP function and is positive on the set

Q={(a,b)|ab# 0} U{(a,b)|a<b=0}U{(a,b)|0=a>0b}.

Proof. First of all, when a < b = 0, we have ¢?  (a,b) = a* > 0. Similarly, when
0=a > b, we have ¢? _ (a,b) =b* > 0. For 0 # a > b # 0, suppose that b > 0. Then,
a > (a — b) which implies a? > (a — b)? and b” > 0, and hence a?b” — (a — b)Pb? > 0.
On the other hand, suppose that b < 0. Then, a < (a — b) which implies a? < (a — b)?
and b” < 0. Thus, we also have a?b? — (a — b)Pb? > 0. For a = b # 0, it is clear that
aPb? = a?” > 0. For the remaining case: 0 # a < b # 0, the proof is similar to the case

of 0 # a > b # 0. From all the above, we prove that ) _ is positive on the set (2.

S—NR
Next, we go on showing that ¢f is an NCP function. Suppose that a > b and
aPP — (a — b)PWP = [aP — (a — b)P]b* = 0. If b = 0, then we have a > b = 0. Otherwise,
we have a = (a — b) which also yields that a > b = 0. Similarly, the condition a < b and
a’b? — (b — a)Pa? = 0 implies that b > a = 0. The remaining case a = b and a?b” = 0
gives that a = b = 0. Thus, from all the above, ¢ _ is an NCP function. [

From Proposition 2.32, we conclude that ¢ is a merit function, as it is positive
on € and vanishes precisely on the set {(a,b)|a > b =0} U{(a,b)|0 =a < b}. A bit
further discussion of the function ¢f is provided as follows:

(i) For p being an even integer, ¥? _ is not an NCP function. A counterexample is

S—NR
given as below.

Y2 (22, —4) = (=2)2(—4)? — (=2 + 4)*(—4)* = 0.

(ii) The function ¢? _ is neither convex nor concave function. To see this, taking
p = 3 and using the following argument verify the assertion.

, 0 64

1 1
L= (L) < v (0,00 + 502 (2.2) = 5 + 5 =32

1 1 0 0
L= wg*NR(l’ 1) > EwS—NR(Z O) + 5153 (07 2) = 5 + 5 =0.

S—NR
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Proposition 2.33. Let ¢2 be defined as in (2.41) with p > 1 being a positive odd
integer. Then, the following hold.

(a) An alternative expression of ¢F_ s

¢P (a,b)b? if a >0,
W (@)= @ —a i a—b
¢r (b,a)a? if a <b.

1s continuously differentiable with

(b) The function ?__

R

pla?='P — (a = b)P~10P, @b~ — (a = b)PP 4 (a = b)PTIP]T i a > b,
(a,b) = ¢ plaP 0P, aPP~L T = pa® =11 ,1]7 if a=0b,
pla™tP = (b—a)Pa™" + (b—a)f'a?, @’ — (b—a)P'a”]T if a <.

VP

S—NR

In a more compact form,
ple M a, b)P, & (a,b)P" + (a — by P )T if a>b,
(CL, b) = p[a2p—1,a2p_1]T if a= b,
pler (b,a)a? ' + (b—a)P~taP, ¢ 1(b,a)a?]T if a <bD.

VP

S—NR

(c) The function P s twice continuously differentiable with

B TR T R A
D (g b2 if a>0b,
Il G LA S ST
VAP (a,b) = (pp;pl)f;jbp (ppibp1)12§bpl2 if a=0»,
(p = D[ = (b~ a)fla"~? s ]
bl ot (p—1)(b—a)P2a?
e ol = (b ap e
) —(p—1)(—a)a if a<b.
(p—1)(b—a)P~?a? ~2 _ () — a)P~2]aP
R e N LA U

Proof. (a) It is clear to see this part.

(b) It is easy to verify the continuous differentiability of ¢ (a,b) on the set {(a,b)|a >
bora < b}. We only need to check the differentiability along the line a = b. Suppose
that h > k, we observe that

@/}é’iNR(a +h,a+ k) — ¢§7NR (a,a)
= (a+h)P(a+k)P — (h— k)PP —a®
(pa(1,1), (k) + R(a, b, k).
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Here the remainder R(a, h, k) is o(h, k) function of h and k, since the degree of h and k
of R(a,h,k) is at least 2. Similarly, from the other two cases h = k and h < k, we can
conclude that Vi (a,a) = pa®~'(1,1)T. In addition, the continuity of V? __(a,b)
along the line a = b is easy to verify.

(c) The arguments for this part are similar to those for part(b). We omit them. [
Likewise, we present some other variants of ¥ . Indeed, analogous to those func-

tions in [195], the variants of ¢? _ as below can be verified being NCP functions.

Yi(a,b) = ¢P  (a,0) + afa) (D)4, a>0.
Ua(a,b) = ¥P  (a,b) +a((a)4(b)+)?, a>0
ds(a,b) = P (a,b) +a((ab)y)', a>0
Ya(a,b) = P (a,b) +a((ab)y)®, a>0
Us(a,b) = ¢ (a.b) +a ((a))* (D))", a>0

Proposition 2.34. All the above functions @Zi(a, b) fori € {1,2,3,4,5} are NCP func-
tions.

Proof. We only show that zzl is a NCP-function and the same argument can be applied
to the other cases. Let € := {(a,b) | ab # 0} and suppose that ¥, (a,b) = 0. If (a,b) € €,
then ¢ (a,b) > 0 by Proposition 2.32; and hence, 1(a,b) > 0. This is a contradiction.
Therefore, we must have (a,b) € Q¢ which says (a),(b); = 0. This further implies
PP (@, b) = 0 which is equivalent to a,b > 0, ab = 0 by applying Proposition 2.32
again. Thus, 1;1 is an NCP function. [

Based on Figures 2.18 and 2.19, we offer several observations regarding the sur-
faces of ¢f  and P . as well as their algebraic properties. First, it is evident that
P . (a,b) =¢?  (bya)and P  (a,b) =P (b, a), indicating that both surfaces are
symmetric with respect to the line a = b. Regarding their algebraic structure, it can be
verified that

PP (@, b) = [min(a,b)}2 for p=1.
To see this, for example if a > b, we check that a'b' — (a — b)'b' = b* = min(a, b)>.
On the other hand, for large p = 3,5,7,-- -, the function ¥? _ does not coincide with

[min(a, b)]2p. Nonetheless, when we restrict ? _ (a,b) on the line @ = b and two axes
a =0 and b = 0, we really have that

zbé’iNR(a, b) = [min(a, b)fp.

In summary, ¥  can be regarded as a merit function associated with the original

S—NR
natural residual NCP function ¢, (a,b) = min(a,b). Notably, ¥2  is twice contin-

uously differentiable, making it well-suited for the development of various algorithmic
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frameworks that exploit smoothness properties. However, it is important to point out
that of  does not satisfy the condition:

Vbt (a,b) - VP (a,b) > 0. (cf. Property 2.2(d) in [27])

For instance, setting p = 3 and evaluating at (a,b) = (0, —1), we obtain V.92 (0, 1) =
3 and wag’ (0, =1) = —6, leading to a negative product. This may present challenges

when analyzing convergence rates in certain optimization algorithms. Visually, the sur-
face of ¢f _ resembles The graph of ¢ is neither convex nor concave. On the other
hand, the surface of ¢ " is smooth yet also lacks convexity and concavity.

Proposition 2.35. Let ¢2  be defined as in (2.41) with p > 1 being a positive odd
integer. Then, the following hold.

(a) ¢r  (a,b) >0 for all (a,b) € IR?.

(b) o2 . is positive homogeneous of degree 2p.

(c) PP . 18 locally Lipschitz continuous, but not Lipschitz continuous.
(d) 2 is not a-Hélder continuous for any o € (0,1].

(e) Vau? (a,b) VP (a,b) >0 on the first quadrant R3

(f) ¥2 . (a,0) =0 <= Vyr (a,b) = 0. In particular, we have V2 (a,b) -
VP (a,b) =0 provided that ¥? _ (a,b) = 0.

Proof. (a) This inequality follows from Proposition 2.32 or [18, Proposition 3.1].
(b) It is clear by the definition of ¥?

S—NR "~
(c)-(d) The proof is similar to Proposition 2.24(c)-(d).
(e) For convenience, we denote A := V92 _ (a,b)-Vyy?  (a,b). Then, we proceed the
proof by discussing three cases. For a > b > 0, we have
A =p?b?PL. (ap_l —(a— b)p_l) (ap —(a—=bP+ (a— b)p_lb) )
Note that @ > a —b > 0 and b > 0, therefore we prove A > 0. Similarly, when b > a > 0,
we also have A > 0. For the third case a = b > 0, it is clear that A = p?a®~2 >0 .

(f) Note that 92 is a NCP-function, i.e.,
WP (a,b)=0 <= a>0,b>0, ab=0.

From Proposition 2.33(b), we knowV¢? _ (a,b) = 0 either whena >b=0o0rb>a = 0.
Conversely, we suppose V)P

b wl(a,b)=0. Fora=0b,

- T
VP (a,b) =pa® '11]' =0 = a=b=0,
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this proves that

S—NR

(a,b) = 0. For a > b, we know from Proposition 2.33(b) that

{ a7 — (a — b =0, (2.44)

a?tP~t — (a — )PP~ + (a — b)P~HP = 0.

Note that it is clear to see that b = 0 satisfies the system (2.44). Assume b # 0, the
system (2.44) becomes

a?t —(a—b)P 1t =0, (2.45)
a? — (a —b)? + (a — b)*"'b = 0.

From (2.45), we obtain (@ — b)?~! = a?~!. Then, substituting it into the equation (2.46)
yields

a? — (a—b)a" ' +a" b = 0.

This implies a?~'b = 0. Thus, we obtain a = 0. Again, by (2.45), we obtain (—b)P~! =
0. This leads to a contradiction since we assume b # 0. Therefore, for a > b, we
obtain that b must be zero, and hence ? _ (a,b) = 0. Similarly, when a < b, we also

have ¢?  (a,b) = 0. In summary, we conclude that ? _ (a,b) = 0 if and only if
VW;’_NR(&, b) = 0. ]

Lastly, we investigate the growth behavior of ¢? , ¢ . and 92  in Proposition
2.36. To this end, we first introduce a key lemma that will serve as the foundation for
our analysis.

Lemma 2.10. For any x € [0,1] and any k > 0, we have

1
1+ kx’

(1-2)" <

Proof. First, we define f : [0,1] — R by f(z) = (1 — 2)*(1 + kz). A simple calculation
vields f'(x) = —k(k + 1)z(1 — z)*~1. Then, f monotonically decreases on [0, 1] from
f(0) =1to f(1) = 0. Consequently, 0 < f(x) <1, which completes the proof. [

Proposition 2.36. Let {(a*, b*)}2°, C R? such that |a*| — oo and [b¥| — oo as k — oo.
Then, |¢§R(ak,bk)| — 00, \(bZS’_NR(ak,ka — 00, and \wg_NR(ak,bkﬂ — 00.

Proof. (a) First, we verify that |¢¢ _ (a",0")| — co. To proceed, we consider three
cases.

(i) Suppose a® — oo and b* — co. Note that for all x € [—1,0] and n € N, there holds

(14+2)" < (1 —na)™?
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which is due to Lemma 2.10. Thus, when a > b > 0, we have

o . (a,b) = da’—(a—b)f =ad’—a” (1 — é)p

(i)

v

>

Similarly, ¢? _ (a,b) > % for b > a > 0. Thus, ¢?

b (aF D) — 00 as k — oco.

—N

(ii) Suppose a* — —oo and b¥ — —oco. Observe that ¢? _ (a,b) < a? when a > b, and
¢? . (a,b) < when a < b. Thus, ¢?__ (a",bF) = —oc0 as k — oo.

(iii) Suppose a* — oo and b* — —oc0. For a > 0 and b < 0, we have

(a—b)P >a? + (—=b)P =ad’ — .

S
k — co. In the case that a* — —oo and b* — oo, we also have ¢? _(a¥,bF) = —oo as

k — oo by symmetry of ¢f

Thus, ¢?  (a,b) = a” — (a — b)? < b and we conclude that ng’s’iNR(ak,bk) — —00 as

—NR’

(b) Next, we show that |¢P_(a* b")] = co. Again, we examine three cases.

(i) Suppose that a” — —co. Since ¢? (a,b) = a? — (a —b)", < a® for all (a,b) € IR?, it is
trivial to see that ¢? (a*,b¥) — —oc.

(ii) Suppose that a* — oo and v* — co. For a > b > 0, then we have

pb?
(bﬁR(a’ b> = (bg—NR(a’ b) 2 m

For 0 < a < b, it is clear that ¢? (a,b) = a”. Then, we conclude that ¢? (a", %) — oc.
(iii) Suppose that a* — oo and b¥ — —oo. For @ > 0 and b < 0, we have
(bfm(a, b) = (ﬁ’s’iNR(a, b) < b

and so @2 _(a*,b") — —oco. Thus, we have proved that [¢* (a",0")| = oco.
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(c) The last limit, [P  (a* b*)| — oo, follows from the fact that

S—NR

P (a,b)bP if a >0,
PP (a,b) = aPbP = a if a=0b,
¢f . (b,a)a? if a <b.

and the inequalities obtained above for ¢?_ . [

2.2.3 Construction by continuous generalization

From a numerical perspective, one may naturally ask whether a “continuous gener-
alization” of the natural residual (NR) function ¢, exists, namely, a generalization
parametrized by p taking values over a continuous interval. In this section, we propose
such a continuous-type generalization of the NR function. The proposed function, while
lacking a symmetric surface, admits two symmetrized forms that also depend continu-
ously on the parameter p. Our generalization is defined as follows:

Frg(a,0) = sgn(a)lal” — [(a — b).]", (2.47)

where p € (0,00), and the sign function is defined by

1, if t>0,
sgn(t) := 0, if t=0,
-1, if t<O.

It is not hard to verify that 5‘;1;, is an NCP function. Indeed, observe that

Pla:0) = f(a) = f((a = b)),
where f(t) = sgn(t)|t|P, a bijective function. Consequently,
F(a,b) =0 f(a) = f((a =b)y) <= a=(a—b)y <= b (a,b) =0.

Notably, when p is an odd integer, agR coincides with ¢? | meaning this continuous
generalization subsumes the discrete-type extension defined in (2.38). We further remark
that this type of transformation, applying a monotonic bijective function f to ¢, can
be applied to any NCP function of the form ¢ = ¢; — ¢9, a fact also noted in [79].

It is clear to see that the function (2.47) does not have a symmetric surface. Employing
the same strategy as in [18], we propose two symmetrizations of ¢? . as

sgn(a)lal? — (a —b)? if a >0,

P @) = { sen(B)[bl? — (b—a)? it a<b, (248)
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and

sgn(a)sgn(b)|al?|b|P — sgn(b)(a — b)P|b]P if a > b,

¢5m“”*:{%m@%mm@mm—%m@@—amﬂpﬂ a<b (249)

where p > 0. Notice that ¢f  =¢f  and ¢f =P  whenever p is odd.

Proposition 2.37. Let 51’ P and Jp

NR’ 7"S—NR’ S—NR

be defined as in (2.47), (2.48), and (2.49),

o and QZQNR are NCP functions.
Moreover, ggﬁR(a, b) > 0 (¢7_ .(a,b) > 0) if and only if a > 0 and b > 0, while

YP(a,b) >0 for all (a,b) € R?.

respectively.  For any p > 0, the functions ¢F_, P

Proof. That aﬁR is an NCP function follows from the above discussion. Moreover,
note that a > 0 and b > 0 if and only if @ > (a — b),. Since f(t) = sgn(t)[t|P is strictly
increasing, we see that a > 0 and b > 0 if and only if sgn(a)|al? > sgn((a—>b)+)|(a—0b)4 |,
ie. gﬁR(a, b) > 0. On the other hand, observe that

~ e (a,b) if a>b,
¢§NR(a,b)—{ 2 (ba) if a<b (2.50)

and B
~ p ' >
7 (a ) =4 EObPe (a.b) e, (2.51)
STNR sgn(a)lalP¢t (b,a) if a <b.
Using above identities and the fact that aﬁR is an NCP function, then 5§7NR and {/}VQNR

are also NCP functions with algebraic signs as specified in the proposition. [

In light of the preceding proposition, the functions QNBI{’TR, ag_NR, and zZé’_NR may be
regarded as continuous generalizations of ¢f , ¢f . and ¢F . respectively. We now
proceed to establish several fundamental properties of these functions, which will later
play a key role in the development of a neural network-based approach. We begin by
examining their smoothness properties. Throughout this discussion, C'(Q2) and C?(),
denote the spaces of continuously differentiable and twice continuously differentiable

functions on a domain €2 C IR", respectively.
Proposition 2.38. The following result holds:
(a) If p > 1, the function $§R € CY(IR?) and its gradient is given by

lal"~" = (a — b)P~'sgn((a — b))
(a =) 'sgn((a — b))

If p > 2, then %{’m € C*(IR?) and its Hessian is given by

VP, (a,b) =p {

V& (a.) = p(p—1) [

sgn(a)lal’=* — (a — b)"sgn((a — b)y)  (a—b)"*sgn((a —b)4)
(a—b)"*sgn((a—b)y) —(a— b *sgn((a—b);

)
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(b) If p > 1, the function ¢F

S—NR

€ CY(Q) where Q := {(a,b) |a # b}. In this case, the
gradient of &SZNR 15 given by

e e

p
Ve plb— a1, ot — (b— a1 T it a<b.

S—NR

gurther, ng_NR is differentiable at (0,0) with VP

S_NR(an) =1[0,0]". If p > 2, then
P € C?(Q) with Hessian given by
— sgn(a)|alP~? — (a —b)P~2  (a — b)P~2
b p(p—1) { (a — b2 by
) (o 1) [ —(b—a)r? (b — a)P=2 ] A
(b—a)P=2 sgn(b)|b|P~2 — (b—a)P?

] if a>0b,
V24P

S—NR

(c) Ifp>1, then yP

S—NR

€ CY(IR?) whose gradient is given by

sgn(b)[blP (lafP~! — (a — b)P~) ]
[sgn(a)|al? (B[P~ — (a — b)P[bP~" + sgn(b)(a — )P~ [b|” |
a|?1 [ﬂ if a=b,
[sgn(b)]alP~[b]” — (b—a)?|alP~" + sgn(a)(b — a)?~'|al?]

D if a>0b,

Vg (a,b) =14 p

dl sen(a)lal? (/=" — (b — a)~) Hoash
If p> 2, then {/;QNR € C?*(IR?) whose Hessian is given by
(p — 1)[sgn(a)sgn(b)|al?~2[b|?] (» — 1)(a—b)" *sgn(b)[b]? ]
—(p = 1)(a — b)"?sgn(b)[b|? +pllaP~t = (a — )P~ bt
p (p — 1)[sgn(a)sgn(b)|al?[b["~?]
(p — 1)(a — b)"~sgn(b)[b|” —(p = 1)(a — b)Psgn(b)[b["~?
+pllalP™ — (a — b)P~H][pfP +2p(a — b)P~H b

i —(p—1)(a = b)*~*sgn(b)[b”

if a > b,
) (p — 1)sgn(a)sgn(b)|alP~2|b|? plalP~ b=t
V2P (ab) = plalP~ b=t (p — 1)sgn(a)sgn(b)|al?|b|P~2
if a =",
[ (p—1)[sgn(a)sgn(b)|al"—2|b]"] T
—(p—1)(b - a)Psgn(a)|al?~> (p—1)(b — a)P">sgn(a)|al?
+2p(b— a)P~HalP~? +p[bfP~t = (b — a)P~]|alP~?
p| —(p—1)(b—a)’ 2sgn(a)|al?
(p = 1)(b — a)P~>sgn(a)lal? (p — 1)[sgn(a)sgn(b)|al?|b|P~2]
L +pllofPt = (b —a)P]|alP? —(p—1)(b— a)P~?sgn(a)lal?

if a <b.
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Proof. Note that f(t) = sgn(t)|t|P is continuously differentiable when p > 1 with f/(¢) =
p|t|P~t. Moreover, f is twice continuously differentiable when p > 2 with f”(t) = p(p —
1)sgn(t)|¢t[~2. Using these and the alternative formulas given in (2.50) and (2.51), the
gradients and Hessians can be easily obtained. The calculations are omitted.  [J

The above proposition serves as a generalization of results found in [33, Proposition
2.2], [18, Proposition 2.2 and Proposition 3.2], and [103, Proposition 4.3]. In a similar
vein, the following result extends [103, Proposition 3.4, Proposition 4.5, and Proposition
5.4].

Proposition 2.39. Let p > 1. Then, the following hold:

B N >0 on {(a,b)|a>b>0o0ra>b>2a},
(a) Voo (a,b)-Vid? (a,b) =0 on {(a,b) |a<bora>b=2aora>>b=0},
< 0 otherwise.

>0 on {(a,b) |a>b>0o0ra>b>2a}
~ ~ and on {(a,b) | b>a >0 or b>a > 2b},
p : -
(b) Vadl i (a,0)Vodg s (a:0) =0 on {(a,b) | #? _ (a,b) =0o0r a>b=2aorb>a=2b},
< 0 otherwise.

(c) Va@im(a, b)-Vb{ﬂvgiNR(a, b) > 0 on the first quadrant IR? | and /;/;ngR
VyP  (a,b) =0.

S—NR

(a,b) =0 <

Proof. Using Proposition 2.38(a),

VodP, (a,) - Vyd? (a,b)
= pllal’™ = (a = by 'sgn((a — b)1)](a — b)P'sgn((a — b))
{ pllalP™t — (a — b)P7 Y (a — )Pt if a>b
0 if a<b’

Suppose now that a > b. Since g(t) := tP~! is a strictly increasing function on [0, c0),
la|P~! — (a — b)P~! > 0 if and only if |a|] > a — b, which happens if and only if b > 0 or
b > 2a. This establishes Proposition 2.39(a). Statement (b) easily follows from part(a),
while part(c) can be easily verified using the result of Proposition 2.38(c). O

Like what we did earlier, we now analyze the growth behavior of the proposed families
of functions in Proposition 2.40, which serves as a continuous counterpart to Proposition
2.36.

Proposition 2.40. Let ¢ € {&;R, @7NR, JngR}' Then, |¢(a®, b%)| — oo for any sequence
{(a®,bF)}22 | in IR? such that |a*| — oo and |b*| — .

Proof. The proposition follows from Lemma 2.10 and analogous arguments for Proposi-
tion 2.36. 0
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2.3 Constructions of NCP Functions based on ¢?

In this section, we explore several extensions based on the Fischer—-Burmeister function
¢P .. Recall that the FB function is defined by

bos(a,b) = Va2 +b2—a—b, Y(a,b) € R
and one of its generalizations, proposed by Kanzow and Kleinmichel [116], is given by
b9(a,b) := /(a —b)2+0ab—a—b, 6¢c(0,4), V(a,b)ec R (2.52)

It has been shown in [22, 27, 35, 36, 116, 167] that both ¢y defined in (2.52) and ¢%_
given in (2.14) enjoy several desirable properties, including strong semismoothness, Lip-
schitz continuity, and continuous differentiability. Furthermore, the corresponding merit
functions associated with ¢y and ¢ = have been shown to possess the SC ! property (i.e.,
they are continuously differentiable with semismooth gradients) and the LC' property
(i.e., they are continuously differentiable with Lipschitz continuous gradients), under
appropriate assumptions.

2.3.1 Construction by using parameter

The above idea of introducing a parameter can likewise be applied to ¢?_,

#y(.0) = Yl ¥ B —a—b, p e (1,00).

In fact, motivated by those functions studied in [35, 116], we consider the following class
of functions [96]:

Pop(a,b) :== v/O(alP +b]P) + (1 —O)ja—bp —a—b, p>1, 0€(0,1. (2.53)

Accordingly, there is an associated unconstrained minimization:

Wy, (x) = % Z &g (w1, Fi()). (2.54)

An important question arises: is the function ¢y, an NCP function? If so, do the
functions defined in (2.53) and (2.54) inherit the same desirable properties, such as strong
semismoothness, Lipschitz continuity, and smooth merit function characteristics, as the
previously studied functions mentioned above? Furthermore, how do the merit function
methods based on (2.53) and (2.54) perform in terms of numerical behavior and practical
efficiency?

In this section, we provide a partial answer to the questions raised above. Specifically,
we demonstrate that the function ¢y ,, defined in (2.53), is indeed an NCP function. We
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also examine several desirable properties of ¢y, and its associated nonnegative merit
function, including strong semismoothness, Lipschitz continuity, and continuous differ-
entiability. For convenience, we define

Moo, ) = YOG T T (Ol —0F, p=1, 61 (25)
Proposition 2.41. The function ¢g,, defined by (2.53) is an NCP function.

Proposition 2.42. The function 1y, defined by (2.55) is a norm on IR? for all p >
1,0 € (0,1].

Proposition 2.43. Let ¢y, be defined by (2.53), then for all 0 € (0,1] and p > 1,

(i) ¢e,p ts sub-additive, i.e., ¢p,((a,b)+(c,d)) < ¢op(a,b)+¢o,(c,d) for all (a,b), (c,d) €
IR2,'

(ii) ¢g, is positive homogenous, i.e., ¢g,(a(a,b)) = aggy(a,b) for all (a,b) € R?* and
a > 0;

(iii) ¢, is a convex function on R?, i.e., ¢gp(a(a,b)+ (1 —a)(c,d)) < aggpy(a,b)+(1—
a)pgp(c,d) for all (a,b),(c,d) € R? and « € [0,1];

(iv) ¢y, is Lipschitz continuous on IR?;
(V) ¢oyp is continuously differentiable on TR*\{(0,0)};
(vi) ¢a, is strongly semismooth on IR?.

Proof. By using ¢y ,((a,b)) = ng,(a,b) — (a + b) and Proposition 2.42, we can obtain
that the results (i), (ii), and (iii) hold.

(iv) Since 7, is a norm on IR? from Proposition 2.42 and any two norms in finite
dimensional space are equivalent, it follows that there exists a positive constant s such
that

779710(&7 b) < 'Li”(a? b)”? ‘v’(a,b) € IRQ,

where || - || represents the Euclidean norm on IR%. Hence, for all (a,b), (¢,d) € IR?, there
holds

|¢9,p(a7 b) - gb@,p(Cv d>|

|770,p(a’ b) - (a + b) - Ue,p(ca d) + (C + d)|
M6.p(a,b) —mop(c,d)| +[a —c|+ |b—d
nop(a —c,b—d) +V2||(a —¢,b—d)|
Kll(a—c,b—d)|| +V2|[(a—c,b—d)
(k+V2)|(a—c,b—d).

VARVANVAN
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This says that ¢y, is Lipschitz continuous with Lipschitz constant x4 V2, i.e., the result
(iv) holds.

(v) If (a,b) # (0,0), then 1 ,(a,b) # 0 by Proposition 2.42. By direct calculations, we
obtain
Opgp(a,b)  Osgn(a)|aP~ + (1 — 0)sgn(a — b)|a — b|P~!
da B nop(a, b)P~1

—1; (2.56)

Do p(a,b) _ Osgn(b)[b]"~" — (1 —O)sgn(a = b)la — b~

1 2.57
ob nop(a,b)P=1 ’ ( )

where sgn(+) is the symbol function. Then, it is easy to see from (2.56) and (2.57) that
the result (v) holds.

(vi) Since ¢, is a convex function by the result (iii), we know that it is a semismooth
function. Noticing that ¢y, is continuously differentiable except (0,0), it is sufficient
to prove that it is strongly semismooth at (0,0). For any (h,k) € R*\{(0,0)}, ¢g, is

T
differentiable at (h, k), and hence, Vg ,(h, k) = (%f”gc(th’k), 8¢9’§£h’k)> . Thus, we have

¢M“Qm+4mk»_¢wmxn_(8%gkaa%g?$t)(Z)

= VO(hl? + [klP) + (1 = O)lh — k|r — (h + k)
sgn(h)|h[P~! +sgn(h — k)[h — kP~

_ 1)h
( oy R )
_(sgn(k)]k]p_l —sgn(h —k)|h — kP71 1k

n97p(ha k‘)pil

= VOl + [klP) + (1~ )|h — k|7
_sgu(R)[RP~ h + sgn(k)[k[P~ 'k + sgn(h — k)[h — k[P~ (h — k)
n@,p(ha k)pil

; B + [kl? + b — kP
= Vo(hP + kP + (1= 0)|h — k| —
VBTRP AP + (=0 = Kp — = o

b+ kP + [ — kP
— h k) —

toall ) = T

gl K — (b + [k + b — kP?)
n@,p(ha k)p—l

=0
= O([(h. B)I[*)-

Then, we obtain that ¢y, is strongly semismooth. [
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Proposition 2.44. Let ¢y, be defined by (2.53) and {(a*,b*)} C R2 Then,
|¢0,p(ak7 bk)| — 00

if one of the following conditions is satisfied. (i) a* — —oo;  (ii) b* — —o0;  (iii)
a¥? — oo and b* — oo.

Proof. (i) Suppose that a* — —oco. If {b*} is bounded from above, then the result holds
trivially. When b* — oo, we have —a* > 0 and b* > 0 for all k sufficiently large, and
hence,

Yo P+ T9P) + (L= B)lak — 0 — b > Y81 + (1 — B)[oFp — b = 0.

This, together with —a* — oo and the definition of ¢y, implies that the result holds.
(ii) For the case of b* — —oc0, a similar analysis yields the result of the proposition.

(iii) Suppose that a® — oo and b* — oco. Since p > 1 and 6 € (0, 1], we have
(1= 0)]a* =P < (1= 0)(Ja" P + [0]7)

for all sufficiently large k. Thus, for all sufficiently large k,

VO(lak [P + [0HP) + (1 = 0)|a* — B[P < y/]atlP + [bF P,
and hence,
(a" +0°) = V/O(|ak P+ [BF]) + (1 — )|k — 0P > (a* +b°) — y/]at|P + [0F[P.

By [35, Lemma 3.1] we know that (a* + b*) — {/|a*|P + |b¥|P — 0o as k — oo when the
condition (iii) is satisfied. Thus, we obtain that

[bop(a",05)| = (a* + ) — /O(lak]P + [bF]P) + (1 = O)|ak — bF]P — oo

as k — oo, which completes the proof. [

We now define a nonnegative merit function, associated with the function ¢y ,, as
follows:

Vo (a,b) = %¢§7p(a,b), p>1, 0€(01], (a,b) € R (2.58)

Proposition 2.45. Let 1y, be defined by (2.58), then for all 8 € (0,1] and p > 1,
(i) v, is an NCP function;

(ii) g p(a,b) > 0 for all (a,b) € R?;
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(iii) g, is continuously differentiable on IR?;
(vi) Vg, 15 strongly semismooth on IR?;

(v) aw"ga(a’b) : wegb(a’b) > 0 for all (a,b) € R?, where the equality holds if and only if

¢9,p(a7 b) = 0:'

(vi) 22l — () o Wonled) _ () e gy (a,b) = 0.

Proof. By the definition of vy, it is easy to see that the results (i) and (ii) hold.

(iii). By using Proposition 2.43 and the definition of )y, it is sufficient to prove that
g, is differentiable at (0,0) and the gradient is continuous at (0,0). In fact, for all
(a,b) € R*\{(0,0)}, we have,

|¢9p(aa b)| =

vVO(|alP + bP) + (1 — 0)]a — blp —a — b‘
Yolal + /06 + /(1= 8)ja— P

<
< la| + 10| + |a — b| + |a| + |b]
< 3(lal +10]),

+ |a| + ||

where the second inequality follows from p > 1 and the third inequality follows from
6 € (0,1]. Hence,

(3(Jal + 81)* < O(|al* + [b]*).

N | —

Vopla,5) — 1p(0,0) = 363, 0,) <

Thus, similar to that of [41, Proposition 1], we can achieve that vy, is differentiable at
(0,0) with Vb ,(0,0) = (0,0)”. Now, we prove that for all (a,b) € R*\{(0,0)},

p—1 — — — bt
Osgn(a)|alP~ + (1 9)sgi11(a b)la - b| <1, (2.59)
779,p(a7 b)p
=1 _ (1 — — — bt
Osgn(b)[0] (1 6)sg1j5a b)la — b| <1 (2.60)
no.p(a; b)P
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In fact,
Osgn(a)|alP~t + (1 — 0)sgn(a — b)|a — bP~*
779p(a7 b)pil
< OlalP~t + (1 — 0)]a — bP~*
- No,p(a, b)P~1
0 |0ralrt 4 (1= 0)7|(1— 0) 7 (a — b
nap(av b)p_l
1 11,1 p 1 . p_ . p=1
o (02 + (A =0)r)")r ((|07al” D+ (J(1=0)r(a=b)[P)r1)w
- n@,p(a’v b)p—l
_ 0+ a-0)Er+ )T
n@,p(aa b)p—l
@+
(xP + yP + zp)pz-%1
~ P + 2P )u
gy 4 2P
< 1

)

where z := |0%a|p, Y= |9%b|p, z:=|(1 —9)%(a—b)|p; the first inequality follows from the
triangle inequality; the second inequality follows from the well known Hoélder inequality;
the second equality follows from the definitions of  and z; the third equality follows from
the definitions of 19 ,(a,b), x, y and z; and the third inequality follows from the fact that
x, y and z are all nonnegative. Therefore, (2.59) holds. Similar analysis will derive that
(2.60) holds.

Thus, it follows from (2.59) and (2.60) that both %{Y’b) and %lfa’b) are uniformly

bounded. Since ¢y ,(a,b) = 0 as (a,b) — (0,0), we obtain the desired result.

(iv) Since the composition of strongly semismooth function is also strongly semismooth
(see [73, Theorem 19]), by Proposition 2.43(vi) and the definition of 1y, we obtain that
the desired result holds.

(v) It is obvious that %Qb#ia’b) = 0 when (a,b) = (0,0). Now, suppose that (a,b) # (0,0).
Since

aw&p(aa b) . 877[)971,(@,{)) . a¢0,p(a7b) . 8¢9,p(aab)
da ob N da ob

~ g p(a,b)?, (2.61)

by (2.56), (2.57), (2.59), and (2.60), we obtain that 2222 < ¢ anq Zerlet) < g

for all (a,b) € IR?, that is, the first result of (v) holds. In addition, from (2.61) it is
obvious that the sufficient condition of the second result of (v) holds. Now, we suppose

that wgg’éa’b) . Gweglfa,b) = 0. Then, it is sufficient to prove that ¢y ,(a,b) = 0 when

8¢6,p(a7b) A 6¢9,p(a7b) 8¢9,p(aab)
da ob Oda

= (0. Suppose that = 0, without loss of generality. From the
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proof of (iii) in this proposition, it is easy to see that it must be y = 0, and hence, b = 0.
After a simple symbol discussion for (2.56), we may get a > 0. Hence ¢y ,(a,b) = 0 by
Proposition 2.41. So, the result (v) holds.

(vi). Since

) b Ocg p(a,b 0y p(a, b 0 p b
wﬁgéa ): ¢0,agl )(b@,p(a;b); ¢Ga§)a )_ ¢0 (a )(b@p( )

the result (vi) is immediately satisfied from the above analysis. [

Proposition 2.46. The gradient function of the function 1y, defined by (2.58) with
p > 2 and 0 € (0,1], is Lipschitz continuous, that is, there exists a positive constant L
such that

IV4op(a,b) = Vibyp(c, d)|| < Ll(a,b) = (¢, d)] (2.62)
holds for all (a,b), (c,d) € R%.

Proof. It follows from the definition of )y, and the proof of Proposition 2.45(iii) that
Vo p(a,b) = Vg ,(a,b)da,(a,b) when (a,b) # (0,0), and Vi) ,(0,0) = (0,0)T. From
Proposition 2.45(iii), we know that 1y, is continuous differentiable. The proof is divided
into three cases.

Case 1: If (a,b) = (c,d) = (0,0), it follows from Proposition 2.45 that V1) ,(0,0) = (0, 0),
and hence, (2.62) holds for all positive number L.

Case 2: Consider the case that one of (a,b) and (¢, d) is (0,0), but not all. We assume
that (a,b) # (0,0) and (¢, d) = (0,0), without loss of generality. Then,

IVibo.p(a; b) = V(e d)|| = [[Viba,p(a,b) = (0,0)]
= [[Vop(a b)goy(a,b) = (0,0)]]
= [Vop(ab)ll¢ey(a,b)
= [[Voop(a,b)lll¢op(a b) — dap(0,0)]
< Lll(a,0) = (0,0)];

where the inequality follows from the fact that {||V¢g,(a, )|} is uniformly bounded on
IR? (which can be obtained from the proof of Proposition 2.45(iii)) and ¢, is Lipschitz
continuous on IR? given in Proposition 2.43(iv). Hence, (2.62) holds for some positive
constant L.

Case 3: If both (a,b) and (c¢,d) are not (0,0), we will apply Lemma 1.3 to prove that
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(2.62) holds for this case. For simplicity, we denote

o Osgn(a)|alP~' + (1 — 0)sgn(a — b)|a — bP~*

1 = = 3
My (a:)

- Osgn(b)[b[P~1 — (1 — O)sgn(a — b)|a — bJP~*

hy = T ;

770,p (CL, b)

iy = (Bl + (1= O)a— b7 (a,b):

i = —hinh 2 (a,b);

by = —(1—0)|a— blP~*ny ,(a, b);

i?z = —731527735_2(&, b);

b= OB+ (1= 0)a — P (o, b

Gy = —iz%nggd(a, b).

When (a,b) # (0,0), by direct calculations, we have

327759’13(@, b) o ) a1 + G ‘

da2 - (hl - 1) + (p — 1)W<779,p(a, b) — (CL -+ b))7
821% P<a7 b) 7 2 61 + 62

’ = (b —1)(hy—1 S _ :

9adb (h1 = 1)(he = 1)+ (p )%?%mmmmwm) (a+b));
82w9yp<a7 b) _ 7 2 61 + ég )

b2 = (b= 1)"+(p - 1>W(ﬂe,p(a7 b) — (a+10));

Oboa N dadb

2 2
where the last equality follows from the fact that 2 wgfa(ba’b) and 2 %’égia’b) are continuous

when (a,b) # (0,0). Since for any p > 2, 1y, (+,-) is a norm on IR? by Proposition 2.42,
it is easy to verify that

ja+0] < la| + [b] < V]al? + [blP + V/lal? + bl = 2[|(a, b)ll, < 26" 1gp(a, b),

where k* > 0 is a constant depending on # and p. Thus, we have

aq ~ BlalP?+ (1 —0)]a — bP?
ob > (a,b) iy (a,b)
_ BlaP? (1= 60)]a b
mh,(a,b) mh(a,b)
2 2
< 0P+ (1-0)r
< 2.
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Similarly, we have
e
2p—2 =5 T =
7795 (a,b) 7795 (a,b)
These, together with the results |h1| < 1 and |hy| < 1 given in Proposition 2.45, yield

|ao| , b | . |Co

2p-2/_ p\ — 7 2p=2/ N — ) 2p—2, gy =
77971;) (aub) 77671;) (aub) 779‘39 (aub)

Thus, we compute that

o p(a,b) 7 2 ap + as
Z O\ T -1 S et e _
’ Da2 (b = 1)+ (p )né,’;‘l @.b) (05(a,b) — (a+1b))
~ dl + d2 &1 + dZ
< N =1+ (p—1) | | m—"op(a, D) | + | 5= (a+0)
mob t(a,b) moh "t (a,b)
. ay | o
< 44+ (1+2 -1 +
= At <n§f;‘2<a, ) b>>
< 4+3(1+26%)(p—1);
82209710(&, b) A A a1 + ao
W‘ (h1 = 1)(he — 1)+ (p— 1)m(7le,p(a, b) — (a+0b))
< (7 = 1)(he — 1)]
[;1 + 62 [;1 + 32
—l—(p - 1) _—7797 (CL, b) + _—(CL + b)
( ol (a,b) oot (a,b)
. b | b |
< 44+(1+2 -1 +
= Aty (nzf;,‘2<a, ) o e
< 442(1+2k%)(p—1);
0%ty p(a,b) A 9 ¢+ G
Z 0P\ ) -1 B e e —
- ¢+ G ¢+ G
< lhe =1+ (0 — V) | | mom—=10p(a, )| + |5 ——(a +b)
moh a,b) noh "t (a,b)

A

C1 |62’
< 44 (14265 (p—1) _ + ——
nob 2(a,b)  mpn % (a,b)

< 443(1+26%)(p—1).

Hence, there exists a positive constant L such that (2.62) holds by Lemma 1.3. [

It should be noted that Vi), is not Lipschitz continuous for all § € (0, 1] when
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p € (1,2). In fact, if we fixed § = 1, for (a,b) # (0,0) and (¢, d) # (0,0), we have

IVibip(a, b) — Vb (c, d)|
= ||v¢1p<a7 b)¢1p(a7 b) - v¢1p(cv d)¢lp(c’ d) H

sgn(a)|a!p—11ab_wlcd wic.d) — éy,(a,b

2 o™ ) T appT 2o D F ol = ule)
sgn(a)|al’~! b _ sgu()[ef”! L. d)| = ow(c,d) — d(a,b

> | ontesd = T o] = onte.d) = outad)

- ﬁ?(zj)‘H’_qb( b= ||g<n(c3>‘||—‘ du(c, d>‘ = (5 +vV2)l(c,d) = (a, b))

where s+ /2 is given in Proposition 2.43(iv). If we let (a,b) = (1, —n), (¢,d) = (=1, —n)
with n € (1,00), we have

sgn(a)lal"”!

p—1
drplab) — BN e d>\

Ia, b1 (e, d)l[»
VT4 +(n—1) V1+nP+(n+1)
- (14 np)P=1/p * (14 np)P-/p

9 m +n
(1+ np)(p—l)/p
4n
(1+ np)(p—l)/p
4n?—Ppp=t
(1 + np)-1/p
4n?—P
(1 + (1/n)p)e-D/p
n*p

v

)

where the first and the second inequalities follow from 2 > p > 1 and n > 1. Since
|(a,b) — (¢, d)|| =2 and n € (1,00), from the above inequalities it is easy to verify that
V), is not Lipschitz continuous.

We now turn our attention to the merit function for the NCP as defined in (2.54), and
proceed to examine several of its key properties. These properties serve as the theoretical
foundation for the algorithms presented in Chapter 5. Furthermore, we explore the
semismoothness related characteristics of the merit function. To this end, we define

Po.p(71, F1())
Dy () = . . (2.63)

¢6,p($na Fn(m))
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Consequently, the merit function defined in (2.54) can be expressed as

1
\1197p(x) = §||(I)9p ||2 qub@p ZL’Z, z . (264)

Proposition 2.47. (i) The function vy, defined by (2.58) with p > 2 and 6§ € (0,1] s
an SC* function. Hence, if every F; is an SC' function, then the function Wy,
defined by (2.64) with p > 2 and 0 € (0,1] is also an SC' function.

(ii) If every F; is an LC' function, then the function ®g, defined by (2.63) with p > 1
and 0 € (0,1] is strongly semismooth.

(iii) The function g, defined by (2.58) with p > 2 and 6 € (0,1] is an LC* function.
Hence, if every F; is an LC* function, then the function Wy, defined by (2.64) with
p>2and 0 € (0,1] is also an LC' function.

Proof. (i) By Proposition 2.45, it suffices to establish the semismoothness of Vg ,,. From
the proof of Proposition 2.46, it is evident that Vg ,(a, b) is continuously differentiable
for all (a,b) # (0,0). Thus, our focus narrows to demonstrating the semismoothness of
V) (a,b) at the point (0,0).

For any direction (hi,he) € R?\ {(0,0)}, it is known that Vi, is differentiable at
(h1, he). Consequently, it remains to show that

Vtbop(h1, ha) = Vibep(0,0) = V24 (ha, ha) - (R, ha)T = o(||(ha, ha)|)).

In fact, let y, Gs, by, b, ¢1, & be similarly defined as those in Proposition 2.46 with (a,b)
being replaced by (hy, hy). Denote

5 ay + ao

hy = (p— 1)m¢e,p(hh ha);
R by +b

hy = (p—l)ﬁ%,p(hhhz);
~ Cl + 02

h = (p_ 1) — ¢9, (h‘ ah )7
i e N(hyhg)

and
(01 [P + (1 = 0) |y — holP=)1gf (B, ha)hy — Bmgh 2 (hy, ho) b
my = (1=6)[h — o/~ 2179p(h1’h2)h’2+h'1h2179p 2(ha, ho)ho;
(01ha [P~ + (1 = 0)|hy — holP )1, (h1, ho) Iy
—(1 = 0)|h1 — holP~?ny (I, ha)ho;
my = h1h2779 (h1, ha)ho + h%n;’; 2(h1, ha)hi;
ms = (Osgn(hy) [l [P~ + (1 — O)sgn(hy — ho)|hy — ho|P )1 (B, ho);
me = h1h2?79 ?(hy, ha)hs + h%ﬁgi ?(hy, ha) by
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Then,

and hence,

Hy

CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

( ;:1 ) * Gop(ha, ha) — ( 8)

(hy — 1)2 + hg (hy — 1)(hy — 1) + hy '(m)
(hy = 1)(hy — 1)+ hy  (hy — 1)% + hs '

|
/N SO S

~ ~ A~

(b1 = 1)gap(hr, hs) = ((hn = 1)° + hy)hy — (b1 = 1)(hy — 1)+ ha)hs
(hy — 1)gp(h1, ho) — hshy — hahy — (hy — 1)
(hy — Do p(ha, ho) — hshy — hahy — (hy — 1)pg,p(h1, ha)

&1 + dz bl + b2
-V | 57—+ 1N | Gep(ha,ho)
o (h, o) o (b, ho) "

—(p— 1)¢0,p(h1, h2) <M>

="
—
|
N
>
—
_l_
—
>
[\
|
—_
~—
>
N
~—

2p 1(h1,h2)
—(p = 1) dop(hi, ha) <m>
—( —1)¢6p(h1’h2)< 2P 1(h1,h2)>

2 hihy + hoh
—(p — 1)pgp(h1, ha) <h1 th)

No.p(h1, ho)

—(p - 1)¢9,p<h’17 hQ)(ill - ill)
0,

where the third equality follows from lAzlhl + ]Alghg = 1p,p given in the proof of Proposition
2.43 and the definition of ¢y ,, the fourth equality follows from the definitions of iLg, hy, the
fifth equality follows from the definitions of aq, as, l;l, by, and the eighth equality follows
from ﬁlhl + ﬁghg = 1)y, given in the proof of Proposition 2.43.

Similar analysis yields Hy = 0. Thus, Vi), is semismooth. Furthermore, 1y, is a SC*

function.

(ii) Since an LC! function is strongly semismooth, and the composition of strongly semis-
mooth functions preserves strong semismoothness, it follows from Proposition 2.43(vi)
that the desired result holds.

(iii) Utilizing the results established above, it is straightforward to verify that assertion

(iii) holds.

4



2.3. CONSTRUCTIONS OF NCP FUNCTIONS BASED ON gbe 117

The conclusions of Proposition 2.47(i) and (iii) no longer hold when p € (1,2) for all
6 € (0,1], due to the fact that Vi), is, in general, not locally Lipschitz continuous. For
instance, consider the points (a,b) = (£, —1) and (¢, d) = (—+, —1); it can be shown that
Vg, fails to be Lipschitz continuous in any neighborhood of (0, —1).

Proposition 2.48. Let ¥y, : R" — R be defined by (2.64) with p > 1 and § € (0,1].
Then, Wy ,(x) > 0 for all x € R™ and Vg ,(z) = 0 if and only if © solves the NCP (2.1).
Moreover, suppose that the solution set of the NCP (2.1) is nonempty, then x is a global
minimizer of Yo, if and only if © solves the NCP (2.1).

Proof. The result follows from Proposition 2.45 immediately. [

Proposition 2.49. Let Uy, : R" — R be defined by (2.64) with p > 1,6 € (0,1].
Suppose that F' is either a monotone function or a Py-function, then every stationary
point of Wy, is a global minima of mingerr Vo ,(x); and therefore solves the NCP (2.1).

Proof. Relying on Proposition 2.45 and [35, Lemma 2.1], the proof of this proposition
closely follows the argument presented in [35, Proposition 3.4], and is thus omitted. [

Proposition 2.50. Let Uy, be defined by (2.64) with 8 € (0,1] and p > 1. Suppose that
F' is either a strongly monotone function or a uniform P-function. Then the level sets

L(Wgp,7) :=A{z € R"[¥yp(z) <7}
are bounded for all v € R.

Proof. By invoking Proposition 2.44, the proof proceeds in a manner analogous to that
of [35, Proposition 3.5], and is therefore omitted here. [

2.3.2 Construction by using penalized term

An alternative approach involves introducing a penalization term in place of a parameter.
In this section, we explore this technique by analyzing the following merit function ¥, , :

IR™ — IR, defined as .
Vap(@) =) taplwi , Fi(®)), (2.65)
i=1
where 1,, : R?* = IR, is an NCP function given by
Yapla,b) = & (max{0,ab}? + yla,B) = S (@b} + S(I(@ ), — (a+ ) (266)
with a > 0 being a real parameter. When o = 0, the function 9, , reduces to 1,, making

Ya,p an extension of ¢P . Moreover, 1., generalizes the function v, investigated by
Yamada, Yamashita, and Fukushima in [217], which corresponds to the case p = 2. In
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what follows, we examine several advantageous properties of the merit function 1, , that
are instrumental in the subsequent analysis. We also establish mild conditions under

which the merit function ¥, , possesses bounded level sets and provides a global error
bound.

The next lemma demonstrates that 1, shares many of the favorable properties of
¥p. Additionally, when o > 0, it enjoys a significant property that ¢?_ lacks; see Lemma
2.11(f).

Lemma 2.11. The function ¢, defined by (2.66) has the following favorable properties:
(a) Yayp is an NCP function and 1, > 0 for all (a,b) € R?.

(b) %a, is continuously differentiable everywhere, and moreover, if (a,b) # (0,0),

Vatngfad) = abat),+ (L 160
sgn(b) - |bP! (2.67)

Vitbap(ah) = aalab)s + ( _ 1) o0 D)

(a, b) |5~
and otherwise V ,94,,(0,0) = Vy1h,,(0,0) = 0.

c) Forp > 2, the gradient of 1., is Lipschitz continuous on any nonempty bounded set
7p
S, i.e., there exists L > 0 such that for any (a,b), (¢,d) € S,

IVap(a,b) = Vibay(c,d)|| < Li[(a, b) — (¢, d)]|
(d) Vavap(a,b) - Vitba,(a,b) > 0 for any (a,b) € R?, and furthermore, the equality
holds if and only if Yy ,(a, b)=0.
() Vitap(a,b) =0<= Vitha,(a,b) =0 <= 1),,(a,b) = 0.
(f) Suppose that a > 0. If a - —o0 or b — —o0 or ab — oo, then Y, ,(a,b) — co.

Proof. Parts (a), (b) and (f) directly follow from the definition of 1, , and Proposition
3.2 (a) and(c) and [35, Lemma 3.1]. It remains to show parts (c)-(e).

(c) Notice that the functions a(ab), and b(ab), for any a,b € IR are Lipschitz continuous
on any nonempty bounded set S, whereas ¢,(a,b) is Lipschitz continuous on IR? by [35,
Proposition 3.1 (e)]. Therefore, by the expression of Vi, ,(a,b) and the boundedness of

Nalp—1 b) - |plP—1t
(sgn(a) |Z|_1 B 1) and (sgn( ) |p|_1 _ 1) 7
(@, 0|l 1(a, 0|l
it is not hard to verify that the gradient Vi), ,(a,b) is Lipschitz continuous on S for
p =2
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(d) If (a,b) = (0,0), part (d) clearly holds. Now suppose that (a,b) # (0,0). Then,

Vai/)mp(a, b) ) vbwa,p(av b)

(M - 1) (M - 1) (¢7,)%(a,b) (2.68)

I(a, D) (15~ I(a, b)[I5~
sgn(a) - |a[P~!
+alab(ab).? + aalab) (W - 1) #'_(a,b)
sgn(b) - [b~ )
ab(ab), (BEPT 4 D).
ot (S 1) 2o
Since
glp—1 L plp—1
ab(ab),* > 0, M —1<0, and M —-1<0, (2.69)

I(a, b)[I5 I(a, D) 15~

it suffices to show that the last two terms of (2.68) are nonnegative. We next claim that

sgn(a) - |af"”!
(@, 0)5 ™

If a <0, then ¢?_(a,b) > 0, which together with the second inequality in (2.69) implies
that (2.70) holds. If a > 0 and b > 0, then ¢? (a,b) < 0, which implies (2.70) by a
similar reason. If @ > 0 and b < 0, then (ab); = 0, and hence (2.70) holds. Similarly, we
have that

aa(ab) 4 ( - 1) op(a,b) >0, V (a,b)#(0,0). (2.70)

sgn(b) - [bf—
I(a, )5~

Consequently, Vo1,,(a,b) - Vithe p(a,b) > 0. From (2.68), Vs ,(a,b) - Vb, p(a, b)=0
if and only if {a = 0 or (¢ > 0 and b = 0) or ¢,(a,b)=0} and {b = 0 or (b > 0 and
a=0) or ¢¥_(a,b) = 0} and {ab=0}. Thus, V,¥4(a,b) - Vyiap(a,b) = 0 if and only if
¢a,p(a7 b) = 0.

(e) If Yo p(a,b) = 0, then ab = 0 and ¢? (a,b) = 0 by part (a), which in turn implies
that V,1a,(a,b) = 0 and Vb, ,(a,b) = 0. Next, we claim that V.1, ,(a, b) = 0 implies
Yap(a,b) = 0. Suppose that V410, ,(a,b) = 0. Then,

ab(ab) + ( 1) ¢*_(a,b) >0, ¥ (a,b) # (0,0).

sgn(a) - o~
I(a, )5~

We can verify that the equality (2.71) implies b = 0,a > 0 or b > 0,a = 0. Under the two
cases, we achieve 1), ,(a,b) = 0. Similarly, V1, ,(a,b) = 0 also implies 1, ,(a,b) = 0.
O

ablab), = — ( - 1> & (a,b). (2.71)

Note that ab — oo does not necessarily imply 9,(a,b) — oo, which means ?_ does
not share Lemma 2.11(f). In fact, for a = 0, the lemma needs to be modified as “if
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(a = o0) or (b — o0) or (a — oo and b — o0), then ¥, ,(a,b) — 00”. As we will
see later, Lemma 2.11(f) is useful for proving that the level sets of ¥, , are bounded.
Besides, by Lemma 2.11(a), we immediately have the following result.

Proposition 2.51. Let V,, be defined as in (2.65). Then, ¥V, ,(x) > 0 for all z € R"
and U, ,(z) = 0 if and only if x solves the NCP. Moreover, if the NCP has at least one
solution, then x is a global minimizer of W, if and only if v solves the NCP.

Proposition 2.51 indicates that the NCP can be recast as the unconstrained mini-

mization:
min ¥, (). (2.72)

z€IR™
In general, finding a global minimizer of ¥, , is a challenging task. Hence, it is crucial
to identify conditions under which a stationary point of ¥, , is guaranteed to be a global
minimum. By applying Lemma 2.11(d) along with the proof techniques used in [81,
Theorem 3.5, one can establish that each stationary point of ¥, , is a global minimizer
if and only if the mapping F'is a Fy-function.

Proposition 2.52. Let F' be a Py-function. Then x* € IR™ is a global minimum of the
unconstrained optimization problem (2.72) if and only if x* is a stationary point of V., .

The following proposition demonstrates that the unconstrained minimization (2.72)
admits a stationary point under fairly mild assumptions on the mapping F. Given that
similar results and related analyses can be found in [27, Proposition 4.1], [81, Theorem
3.8], and [120, Theorem 4.1], we omit the proof here.

Proposition 2.53. The function ¥, , has bounded level sets L(V,,,7) for all v € IR,
if F'is monotone and the NCP is strictly feasible (i.e., there exists & > 0 such that
F(z) > 0) when a > 0, or F' is a uniform P-function when o > 0.

In what follows, we show that the merit functions W2 | W . and ¥, , exhibit the same
order of growth on any bounded set.

Proposition 2.54. Let V., W2 and W, be defined as in (2.10), (2.17), and (2.65),
respectively. Let S be an arbitrary bounded set. Then, for any p > 1, we have

1\ 2 N 2
(2 - 25) U, (1) < TP _(z) < (2 + 25) U (z) forall z € R (2.73)
and

1 2 1
(2 - 2;) U, (1) < U, (z) < <a32 +(2+ 25)2> U (z) forallzes,  (2.74)

where B is a constant defined by B = max {sup {max {|x;|, |FZ(1:)\}}} < 00.
SN zeS
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Proof. The inequality in (2.73) is direct by Lemma 2.3 and the definitions of ¥, and
V.. In addition, from Lemma 2.3 and the definition of ¥, ,, it follows that

W) > (2 zi)2 U, () forall z € R",
We next prove the inequality on the right hand side of (2.74). We claim that, for each 1,
(x;Fi(x))y < Blmin{z;, F;(x)}| forallxz € S. (2.75)
Without loss of generality, suppose Fj(x) > z;. If F;(x) > z; > 0, it follows that
(z:Fi(x))+ = ziF(z) = Fi(x)| min{z;, Fi(2)}| < Bl min{z;, Fi(z)}|.
If Fi(x) >0 > x;, then (x;F;(x))y = 0. If 0 > F;(x) > x;, it follows that
(2iFy(2))+ = |2:Fi(2)| < |2if* < Blmin{z;, Fi(2)}].
Thus, (2.75) holds for all x € S. By Lemma 2.3 and (2.75), foralli =1,... ,nand x € S,
Yap (15, Fi(2)) < {a32 (24 2%)2} min{a;, Fy(z))?
holds for any p > 1. The proof is then complete by the definition of ¥, , and ¥ .. O

Proposition 2.55. Let V2 and VU, , be defined by (2.17) and (2.65) respectively, and S
be any bounded set. Then, for anyp > 1 and all x € S, we have the following inequalities:

2 25)? 2 4 2)?
B2 w ) <@ < 22y )
(aB2+ (2+25)2) (2 —2v)?
where B is the constant defined as in Proposition 2.5/.
Proof. This is an immediate consequence of Proposition 2.54. [

Since WP, W . and ¥, , exhibit the same order of growth on bounded sets, it follows
that any one of them yields a global error bound for the NCP if the others do as well.
In what follows, we establish that ¥, , provides a global error bound for the NCP when
a > 0, even in the absence of Lipschitz continuity of the mapping F'.

Proposition 2.56. Let ¥, , be defined as in (2.65). Suppose that F' is a uniform P-
function with modulus p > 0. If o > 0, then there exists a constant k1 > 0 such that

|z —x*|| < /illllo“p(ac)i for all z € R";

if « =0 and S is any bounded set, there exists a constant ko > 0 such that

%
|z — x| < ko (max {\Ilmp(m), \Ifmp(x)}) for all x € S;

where x* = (x7,- -+ ,2}) is the unique solution for the NCP (2.1).

rrn
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Proof. Since F' is a uniform P-function, the NCP has the unique solution, and moreover,

plle — o' < ;g%u—x*)( 0= Fe)
= max{z:Fy(z) — 27 Fi(v) — 2:55(27) + 27 Fi(27)}
= max {z:F(z) — 27Fi(v) — 2:F(27)}
< max Ti{($iFi(37))++(—E($))++(—37i)+}> (2.76)

1<i<n

where 7; := max{1, z}, F;(z*)}. We next prove that for all (a,b) € R?

(=a)+” + (=b)+" < [I(a, )], — (a + )" (2.77)

Without loss of generality, suppose a > b. If a > b > 0, then (2.77) holds obviously. If
a>02>b, then ||(a,b)|, — (a+b) > —b > 0, which in turn implies that

(=a):” + (=b):" = 0" < [ll(a,b)ll, — (a +D)]".

If 0 > a > b, then (—a).” + (=b),> = a® + 0* < [||(a,b)|, — (a + b)]°. Hence, (2.77)
follows.

Suppose that o > 0. Using the inequality (2.77), we then obtain that

[(ab)y + (—a)s + (=b)4]* = (ab)% + (=b)} + (—a)} + 2(ab)+(—a);
( )+( b)+ +2(ab)+(—b)+

=0)% + (=a)i + (ab)} + (—a)?

( )i + (=b)3 + (ab) + (=0)%

3 [(ab)} + ((a, b)l, — (a+b))]

< | S@+ 5 )l — o+ )
— Ttap(a,b) for all (a,b) € R?, (2.78)

IA
A
v
/‘\

IN

6

where 7 := max {—, 6} > 0. Combining (2.78) with (2.76) and letting 7 = max 7;, we
« <i<n

get

plle =P < maxe 73 {rih (@, ()}

IN

#7112 max wap(xl,F(x))l/Q

1<i<n

1/2
712 {Z{%,p(xi, E(:v))}

= %Tl/Q\IJayp(ac,F(x))l/Q.

IA
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From this, the first desired result follows immediately by setting x; := [%Tl/ 2/ ,u} 12

Suppose that & = 0. From the proof of Proposition 2.54, the inequality (2.75) holds.
Combining with equations (2.76)—(2.77), it then follows that for all z € S,

pllr — x*||2 < max 7; [B| min{xz;, F5(z)}| + (wﬁB(% Fi(x)))lﬂ]

1<i<n

< max [VEBUL (a0 Fia) + (2, (o () ]
< VB (w2, (@) + /92, ()
< 47A'£A3max{ \IIZF’B(x)}

47 B max { xpap(x)}

where B = B/(2 — 2%) and the second inequality is due to Lemma 2.3. Letting ko :=
. 11/2
2 [%B / ,u] , we obtain the desired result from the above inequality. [

The following lemma is crucial in the proof of Proposition 2.57, which is pivotal in

establishing the convergence rate of the algorithm.

Lemma 2.12. For all (a,b) # (0,0) and p > 1, we have the following inequality:
glp—1 . |plp—1 2 N2
(st 0! Y,y
(@, b)I7

Proof. If a = 0 or b = 0, the inequality holds obviously. Then we complete the proof by
considering three cases: (i) a >0 and b > 0, (ii) a < 0 and b < 0, and (iii) ab < 0.

Case (i): Without loss of generality, we suppose a > b > 0. Then, we have

a4 ot ([2) +1

1@ DI~ (|2 + 1)

P14+ 1

Le =
)=

+ for any ¢ > 0. By computation, we obtain that
P
t2(p—1)(1 1)

o= (tr +1)°

, Vit>0.

Since f'(t) < 0fort > 1 and f(1) = 2%, it follows that f(t) < 25 for t > 1. Therefore,

Jal"~" + (bl

— < for p > 1,
I(a, b)[I5~
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p—1 b p—1
% >2— 92 for p > 1. Squaring both sides
o l(a, )7
then leads to the desired inequality.

which in turn implies that 2 —

Case (ii): By similar arguments as in case (i), we obtain

p—1 b p—1 p—1 b p—1
2—2%§2—W§ w for p > 1,
1, b)[[» (@, 0)|l»
from which the result follows immediately.
Case (iii): Again, we suppose |a| > |b| and therefore have
p—1 p—1 p—1 _ |p|p—1
v > "+ [0 > i 1 for p > 1.

T l@ol T @ b)lET

e

Thus 2 — 27 < 2 .
I(a, b)]I7

for p > 1 and the desired result is also satisfied.  [J

Proposition 2.57. Let 1, be given as in (2.66). Then, for all x € R™ and p > 1,

1\ 2
IVatap (2, F(@) + Vb, F)) |2 > 2 (2= 25 ) 02, (2),
and particularly, for all x belonging to any bounded set S and p > 1,

2(2 — 27)4

IVatbap(@, F(2)) + Vitbay(z, F2))|I* > T
<a32 +(2+ 2p)2>

Vo p()

where B is defined as in Proposition 2.54 and

Votbople, F(z) = (vazwa,p(xhﬂ(x)), ---,vawa,p@m(x))) ,
Vibap(z, Flz)) = (vbwa,pm,ﬂ(x)), ---,vbwa,pm,Fn(x))) .

Proof. The second part of the conclusions is direct by Proposition 2.55 and the first
part. From the definition of VYo, (2, F(2)), Vitap(x, F(z)) and WP (), the first part
of the conclusions is equivalent to proving that the following inequality

(Vathop(@.5) + Vi, 1)) > 2 (2= 25) 2, (a.b) (2.79)
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holds for all (a,b) € IR%. When (a,b) = (0,0), the inequality (2.79) clearly holds. Suppose
(a,b) # (0,0). Then, it follows from equation (2.67) that

(Vatap(a, b) + Vithap(a, b))
= {a(a +b)(ab)+ + (¢p(a,b)) (

sgn(a) - |alP~" +sgn(b) - p]P~! 2) }2

I(a, b) 5"
= o*(a+b)*(ab)> + (¢,(a,b))? (Sgn(a) : |a|||1’(; ;S';Jgiri(b) ot 2)
+20(a + b)(ab)+ (¢, (a, b)) (Sgn(a) : |a|||”(; ngHSﬁ(b) ot 2) |

Now, we claim that for all (a,b) # (0,0) € IR?,

)

glP—1 b) - [plp—1

sgn(a) - |al +8pg_ri() 0] _2> > 0.
||<a7b)||P

2aa-+ )b 0,(a0) (2:30)

If ab < 0, then (ab); = 0 and the inequality (2.79) is clear. If a,b > 0, then by noting
that

<Sgn(a) lalP" + sgn(b) - [b"~
I(a, o)

and ¢? (a,b) < 0, the inequality (2.80) also holds. If a,b < 0, then ¢2_(a,b) > 0,
which together with (2.81) then yields the inequality (2.80). Thus, we prove that the
inequality (2.80) holds for all (a,b) # (0,0). Using Lemma 2.12 and equations (2.80)-
(2.81), we readily obtain the inequality (2.79) holds for all (a,b) # (0,0). Then, the proof
is complete. [

— 2) <0, VY(a,b)#(0,0) € R? (2.81)

2.3.3 Construction by using parameter and penalized term

We combine both previously discussed ideas, parameterization and penalization, to con-
struct a new class of NCP functions. In contrast to the function ¢y, introduced in (2.53),
defined by

dop(a,0) = /0(|al? + [b7) + (1 = ) (la — b]) — (a + ),

we now propose an alternative extension. Specifically, we define the function 944, :
R? — R, as
!
VYo pp(a,b) = E(max{(), ab})® + g p(a,b) (2.82)

where a > 0 is a real parameter. The corresponding merit function ¥, 4, : R" — IR, is
defined by

a@p Z¢a6‘p Zg z I)) (283)
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It is worth noting that 1, 9, encompasses several well-known functions, such as 1,
P, 1y, Yy, and the function 97 from [195], as special cases. Although 14, is con-
structed by penalizing the function ¢y, studied in [96], we explore additional and more
favorable properties of 146, here. In particular, we show that the merit function ¥4,
possesses bounded level sets and provides a global error bound for the NCP under mild
assumptions, properties that were not addressed in [96]. Moreover, as highlighted in
[20], the penalized Fischer-Burmeister function not only exhibits stronger theoretical
properties than the classical FB function, but also demonstrates superior numerical per-
formance. This further motivates our consideration of this generalized class of NCP
functions. Indeed, a unified investigation into the properties of various penalized NCP
functions and their variants has been conducted; for further details, we refer the reader
to [211].

Lemma 2.13. The function 1,9, defined by (2.82) has the following favorable properties:
(a) Yap,p is an NCP function and tag, > 0 for all (a,b) € R

(b) ©apyp is continuously differentiable everywhere. Moreover, if (a,b) # (0,0),

Vebaaslth ), @) o + (1= Dsgata = Dla—d
B Osgn(a) - |alP~' + (1 — 0)sgn(a — b)|a — bP~*
= oblab) + ( B(al? + [b7) + (1 = B)la — b 1) b0(a:0);
T T e
B sgn(b) - [b|P~! — (1 — 0)sgn(a — b)|a — bjP~!
= oalab), + ( [0(]al? + [67) + (1= 0)[a— o)) @D 1) P05(a,0),
(2.84)

and otherwise, V,1a.0,(0,0) = Vy1ha,0,(0,0) = 0.

(c) Forp > 2, the gradient of Yap, is Lipschitz continuous on any nonempty bounded
set S, i.e., there exists L > 0 such that for any (a,b),(c,d) € S,

IViapp(a,0) = Vibagp(c,d)|| < Lll(a,b) — (¢, d)|.

(d) Vavasp(a,b) - Viaep(a,b) > 0 for any (a,b) € R?, and the equality holds if and
only if Yapp(a,b) =0.

() Vatagp(a,b) =0« Vyagp(a,b) =0 <= Yqa0,(a,b) =0.
(f) Suppose that o > 0. If a — —o0 or b — —o0 or ab — 00, then Y, ,(a,b) — co.

Proof. (a) It is clear that 1,.4,(a,b) > 0 for all (a,b) € IR? from the definition of 1,4,
Then by [96, Proposition 2.1], we have

Yoo pla,b) =0 < %(max{o, ab})? =0 and ty,(a,b) =0<=a>0, b>0, ab=0.
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Hence, 14,0, is an NCP function.

(b) First, direct calculations give the partial derivatives of 14 ,. Then, using ab(ab); —
(0,0) and aa(ab)y — (0,0) as (a,b) = (0,0), we have §(max{0,ab})* is continuously
differentiable everywhere. By [96, Proposition 2.5], it is known that 1)y, is continu-
ously differentiable everywhere. In view of the expression of V), 9,(a,b), ¥, is also

continuously differentiable everywhere.

(c) First, we claim that a(ab); for any a,b € IR is Lipschitz continuous on any nonempty
bounded set S. For any (a,b) € S and (¢,d) € S, without loss of generality, we may
assume that a® + 0% < k and ¢® + d? < k which imply |a| < k+1, 0| <k+1,|c|<k+1
and |d| < k + 1. Then,

a(ab); — c(cd) 4

- % azb+a|ab|—02d—c|cd|‘

— % —a?d + a*d — *d + a|ab| — clab| + c|ab|] — c|cd|

< % ( — a?d| + |a*d — *d| + |alab| — c|ab|| + |c|ab] — c|cd\|>

- 1 < 2\b—d|+|a+c]|d!|a—c|+|ab||a—c|+|c|]ab—cd|>

< % [k|b—dy+ (al + leDldlla — ¢ + la — | + (k + )\ab—admd—cd@
< % [k;|b—d|+2 k+1)? |a—c|+k|a—c|+(k’+1)2(|b—d|+|a—c|)}

= %{[2<k+1)2+k+(k+1)2]|a—c|+[k+(k+1)2}lb—dl}

< Ila—c|+b—dl)

< V2I(a,b) = (¢, d)]],

where [ = 2(k +1)? + k + (k + 1)2. Hence, the mapping a(ab), is Lipschitz continuous
on any nonempty bounded set S and so is aa(ab);. Similarly, ab(ab); is Lipschitz
continuous on any nonempty bounded set S. All of these imply the gradient function
of the function $(max{0,ab})? is Lipschitz continuous on any bounded set S. On the
other hand, by [96, Theorem 2.1], the gradient function of the function )y, with p > 2,
6 € (0,1] is Lipschitz continuous. Thus, the gradient of v, ¢, is Lipschitz continuous on

any nonempty bounded set S.
(d) If (a,b) = (0,0), part(d) clearly holds. Now we assume that (a,b) # (0,0). Then,

Vawa,é,p(aa b) ' vbwa,é,p(ch b) (285)
= cdgj ,(a,b) + a’ab(ab),” + aa(ab).cdpy(a, b) + ablab)de,(a,b),
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where

¢ = <esgn(“) Jal””t + (1 — O)sgn(a —b)la — b~ 1)
[B(|al? + [b]?) + (1 — 0)]a — b|P)] /> )
_ (Osgn(b) - [b~" — (1 — O)sgn(a — b)la — b~
‘- ( [0(lafP + [b]P) + (1 — 6)]a — bjp)]e=D/p 1) :

From the proof of [96, Proposition 2.5 ], we know ab(ab)% > 0 and

Osgn(a) - |a[’~! + (1 — O)sgn(a — b)[a — bP~"

(B + Ttra s — 1) <o
fsgn(b) - [bP~" — (1 — O)sgn(a — b)|a = b~

("B e g 1) <0

(2.86)

it suffices to show that the last two terms of (2.85) are nonnegative. For this purpose,
we claim that

dsgn(a) -Jap~" + (1~ B)sgnla —Bla—bp~ N
aalab): ( [0(al? + [b]") + (1 — 0)]a — b|p)]>=D/p 1) Pop(a,b) 20 (2.87)

for all (a,b) # (0,0). If @ < 0 and b < 0, then ¢y ,(a,b) > 0, which together with
the second inequality in (2.86) implies that (2.87) holds. If @ < 0 and b > 0, then
(ab); = 0, which says that (2.87) holds. If a > 0 and b > 0, then |a|? + [b]? > |a — b|P.
Thus, ¢g,(a,b) < ¢p(a,b) <0, which together with the second inequality in (2.86) yields
(2.87). If a > 0 and b < 0, then (ab); = 0, and hence (2.87) holds. Similarly, we also
have

fsen(B) - " — (1~ B)sgn(a — B)la — bp-"
avlab): ( O al? +[bl7) + (1 = O)ja — bp) oD 1) Go(a,b) 2 0

for all (a,b) # (0,0). Consequently, V,¢q0,(a,b) - Voo p(a,b) > 0. Besides, by the
proof of [96, Proposition 2.5], we know ¢ = 0 if and only if b = 0 and a > 0; d = 0 if and
only if @ = 0 and b > 0. This together with (2.85) says V,¢q.0,(a,b) - Ve ep(a,b) =0
if and only if {¥s,(a,b) = 0 and a2ab(ab),> = 0} or {¢ = 0} or {d = 0} if and only
if {¢p,(a,b) = 0 and ab < 0} or {¢c = 0} or {d = 0} if and only if vy ,(a,b) = 0 and
% (max{0,ab})* = 0 if and only if 14 9,(a,b) = 0.

(e) If Yapp(a,b) = 0, then §(max{0,ab})* = 0 and g ,(a,b) = 0, which imply ab < 0
and ¢g,(a,b) = 0. Hence, V,¢u9,(a,b) =0 and Vyih,0,(a,b) = 0. Now, it remains to
show that V,9,0,(a,b) = 0 implying ¢, ¢,(a,b) = 0. Suppose that V,140,(a,b) = 0,

which yields

~ (sen(a) - |aP! + (1 = BO)sgn(a — b)ja — b~ .
ablab) = ( 6P + o) + (1~ B)]a — bp)e- 0 1) Pos(a:b). (288)
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We will argue that the equality (2.88) implies ( =0,a > O) or (b > 0,a = O). To see
this, we let

¢ = ablab)y,

_ ngn(a) . |a|P*1 + (1 — Q)Sgn<a — b)|a _ b|p71 B )
‘- ( [O(alP + [b]) + (1 — 0)]a — blr)]>-D/p 1) Po.p(a;b),
. (Hsgn(a) a4+ (1 - O)sgn(a — b)|a — b~ 1) |

[0(|al? + [b]7) + (1 — 6)]a — b]p)]>-D/p

It is not hard to observe that (e < O) and (e = 0 implies b = O) which are helpful for
the following discussions.

Case 1: b =0 and a < 0. Then, it leads to ¢ = 0 but d # 0, which violates (2.88).

Case 2: b < 0 and a > 0. Then, we have e < 0, and hence ¢ = 0 but d # 0, which
violates (2.88).

Case 3: b < 0 and a < 0. Then, we have e < 0 and ¢y ,(a,b) > 0, which yield ¢ < 0 but
d > 0. This contradicts to (2.88) too.

Case 4: b > 0 and a > 0. Then, we have e < 0 and ¢y ,(a,b) < 0, which imply ¢ > 0 but
d < 0. This contradicts to (2.88) too.

Case 5: b > 0 and a < 0. Similar arguments as in Case 2 cause a contradiction.

Thus, (2.88) implies (b =0,a > O) or (b > 0,a = O), and each of which always yields
Ya0p(a,b) = 0. By symmetry, Vi), 0,(a,b) = 0 also implies 14,9,(a, b) = 0.

(f) If @ - —o0 or b — —oo, from [96, Proposition 2.4], we know |¢g,(a,b)] — oco. In
addition, the fact §(max{0,ab})* > 0 gives 9q,9,(a,b) = co. If ab — oo, since v > 0,
we have §(max{0,ab})* — oo. This together with vg,(a,b) > 0 says a9 ,(a,b) — oco.
0

Proposition 2.58. Let U, 4, be defined as in (2.83). Then ¥, ,(x) >0 for all x € R"
and Yy 9,(x) = 0 if and only if x solves the NCP. Moreover, if the NCP has at least one
solution, then x is a global minimizer of W, g, if and only if v solves the NCP.

Proof. Since 1y, is a NCP function, from [96, Proposition 2.5], we have that x solving
the NCP <=z > 0,F(z) > 0,(z,F(z)) = 0 <= 2z > 0,F(z) > 0,2;F;(x) = 0 for
all i € {1,2,--- ,n} <= VYug,(r) = 0. Besides, U,¢,(x) is nonnegative. Thus, if =
solves the NCP, then z is a global minimizer of ¥, g,. Next, we claim that if the NCP
has at least one solution, then x is a global minimizer of ¥, g, = z solves the NCP.
Suppose x does not solve the NCP. From z solves the NCP <= V¥,,,(z) = 0 and
U,0,(z) is nonnegative, it is clear W, g,(x) > 0. However, by assumption, the NCP
has a solution, say y, which makes that W, ,(y) = 0. Then, we reach a contradiction
that Wyg,(z) > 0= VU,4,(y) and z is a global minimizer of ¥, ,. Thus, the proof is
complete. [
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Like what we have done in previous sections, Proposition 2.58 indicates that the NCP
can be recast as the unconstrained minimization:

min U, ¢ ,(z). (2.89)

zelR™

Then, we establish analogous results based on this reformulation.

Proposition 2.59. Let F' be a Py-function. Then x* € IR"™ is a global minimum of the
unconstrained optimization problem (2.89) if and only if x* is a stationary point of Uy g.,.

Proposition 2.60. The function ¥, g, has bounded level sets L(Vyg,,c) for all c € R,
if F' is monotone and the NCP is strictly feasible (i.e., there exists & > 0 such that
F(z) >0) when a > 0, or F is a uniform P-function when o > 0.

Proof. From [20], if F is a monotone function with a strictly feasible point, then the
following condition holds: for every sequence {a*} such that ||2%]] — oo, (—a2F), <
oo, and (—F(z%)); < oo, we have 1rnax{ )+Fi(z¥)+} — oo. Suppose that there

exists an unbounded sequence =¥ C L(V,4,,c) for some ¢ € R. Since W, ,(z*) < ¢,

there is no mdex i such that ¥ — —oo or Fj(2*) — —oo by Lemma 2.13(f). Hence,
1H<Hl<X { )+ Fi(x } — 00. Also, there is an index j, and at least a subsequence a:k

such that { xj Ey (2" +} — o0o. However, this implies that ¥, 4,(z") is unbounded by
Lemma 2.13(f), contracting to the assumption on level sets. Another part of the proof
is similar to the proof of [35, Proposition 3.5]. O

Lemma 2.14. Let ¢y, : R?* = R be defined as in (2.53). Then, for any p > 1 and all
6 € (0,1], there holds

(2 — 27)|min{a, b}| < |o,(a,b)| < (2 + 27)| min{a, b} (2.90)

Proof. Without loss of generality, we assume a > b. We will prove the desired results
by considering the following two cases: (1) a+b <0 and (2) a+b > 0.

Case(1): a+ b < 0. In this case, we need to discuss two subcases:

(i) |al” + |b|P > |a — bJP. In this subcase, we have

[bop(a, b)) > [/0(a—bP) + (1= 0)(la = bl) — (a+ )|

= |{/(la—0bP) — (a+b)|

= [(la = b = (a +b)|
= la—b—(a+0b)
= |2b|

= 2| min{a, b}|

(2 — 27)| min{a, b}| (2.91)

v
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On the other hand, since |a|P + |bP > |a — b|P and by [30, Lemma 3.2], we have
[90,(aD)] <168, (a. )| < (2+27)| min{a, b}

(i) |al? + |b|P < |a — bJP. Since |al? + [b|P < |a — b” and by [30, Lemma 3.2], we have

|bo,p(a,b)] > |67, (a,b)] > (2 — 27)| min{a, b}|.

On the other hand, by the discussion of Case(1),

|bop(a,b)] < 2b| < (2 + 27)| min{a, b}|.

Case(2): a+b > 0. If ab=0, then (2.90) clearly holds. Thus, we proceed the arguments
by discussing two subcases:

(i) ab < 0. In this subcases, we have a > 0,b < 0, |a| > |b|. By Lemma 2.2, |a]? + |b|P <
la — bP. Then,

dop(a,b) > ¢ (a,b) > |a| —a—b> —b=|min{a,b}| > (2 — 27)| min{a, b}|.
On the other hand,

dop(a,b) < |a—b| — (a+b) = —2b = 2| minf{a, b}| < (2 + 27)| min{a, b}|.

(ii) ab > 0. In this subcases, we have a > b > 0, |a|” + |b|P > |a — b|P. By Lemma 2.2,
dop(a,b) < ¢p(a,b) < 0. Notice that ¢p,(a,b) > |a—b| — (a+b) = —2b = —2min{a, b},

and hence we obtain that
|6o.p(a,b)| < 2| min{a,b}| < (2 + 27)| min{a, b}|.

On the other hand, since ¢y ,(a,b) < ¢,(a,b) < 0, and by [30, Lemma 3.2], and hence
we obtain that )
|Go.p(a,b)] = [¢p(a,b)| = (2 — 27)[ min{a, b}|. (2.92)

All the aforementioned inequalities (2.91)-(2.92) imply that (2.90) holds. O

Proposition 2.61. Let Wy, U . and U, g, be defined as in (2.54), (2.10) and (2.83),
respectively. Let S be an arbitrary bounded set. Then, for any p > 1, we have

(2—20)20, (2) < Wy, (x) < (2+27)20, (z) forall z € R" (2.93)
and

(2= 29)20, (1) < Vag,(z) < (aB2+ (2+20)2)0,, (v) forallze S,  (2.94)

where B is a constant defined by B = max {sup {max {|x;|, |FZ(1:)\}}} < 00.
1SN zeS



132 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

Proof. The inequality in (2.93) is direct by Lemma 2.14 and the definitions of Wy, and
V.. In addition, from Lemma 2.14 and the definition of ¥, 4, it follows that

2
Va0p(7) > (2 - 2%> U . (z) forall z € R™

It remains to prove the inequality on the right hand side of (2.94). From the proof of
[30, Proposition 3.1], we know for each i,

(x;Fy(z))y < Blmin{x;, F;(x)}| for all x € S. (2.95)

By Lemma 2.14 and (2.95), for alli =1,...,n and z € S,
1
Ya0p(Ti, Fi(z)) < 3 {aB2 +(2+ 2%)2} min{z;, F;(z)}?

holds for any p > 1. The proof is then complete by the definitions of ¥, 4, and ¥,.
!

Proposition 2.62. Let Yy, and V,p, be defined by (2.54) and (2.83), respectively;
and S be any bounded set. Then, for any p > 1 and all x € S, we have the following
inequalities:
(2 -27)
<a32 +(2+ ﬁ)?)

(2 4 27)?
(2—27)

Vo gp(2) < Wpp(a) < o 0.0(T)

where B is the constant defined as in Proposition 2.61.

Proof. It follows from Proposition 2.61 directly. [

Proposition 2.63. Let V,g, be defined as in (2.83). Suppose that F is a uniform
P-function with modulus p > 0. If a > 0, then there exists a constant ky > 0 such that

|lx — x| < /11\1107971,@)% for all z € R™;
if « =0 and S is any bounded set, there exists a constant ko > 0 such that

1
2

|z — x*|| < Ko <max {\Ifa,g,p(x), \I/a79,p(3:)}) for all z € S;

*

where x* = (x7,- -+ ,x}) is the unique solution for the NCP.

rrn

Proof. By the proof of [30, Theorem 3.4], we have

plle —2*|* < max 7i{(2:Fi(2))+ + (= Fi(2))+ + (=2i)+ }, (2.96)
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where 7; := max{1, x}, F;(z*)}. We next prove that for all (a,b) € IR?
(=a)s" + (=b)+" < [do,(a, b)]. (2.97)

To see this, without loss of generality, we assume a > b and discuss three cases:

(i) If a > b > 0, then (2.97) holds obviously.

(ii) If @ > 0 > b, then |a? + [b]P < |a — b|P by Lemma 2.2, which implies ¢g,(a,b) >
I(a,b)ll, — (a+b) > =b > 0. Hence, (—a)y” + (=b)1" = b* < [¢g,(a, b)]*.

(i) If 0 > a > b, then (—a).”> + (=b),* = a® + b* < [pg,(a, b)]>. Hence, (2.97) follows.

Suppose that o > 0. Using the inequality (2.97), we then obtain that

[(ab)y + (—a)s + (=b)4]* = (ab)% + (=b)% + (—a)% + 2(ab)+(—a)s
+2(=a)4(=b)+ + 2(ab)4(—b)+
< (ab)y + (=b)% + (—a)} + (ab)} + (—a)?
+(=a)2 + (=) + (ab)] + (=b)%
3 [(ab)} + [¢op(a.b)]?]
< 7| S+ Sfonyla b
= TYagpla,b), (2.98)

IN

6

where 7 := max {—, 6} > (0. Combining (2.98) with (2.96) and letting 7 = max 7;, we
(8 Stsn

get

IN

max 7; {Ta.0, (i, Fy(2))}*

1<i<n

A 1/2
P max Yoo (i, Fi(2)"

i 1/2
Fri/2 { Z{?ﬁa,@,p(%’ Fi(z)) }
i=1

= 7:7_1/2\1,%9@(@1/2.

plle — 2|

IN

IN

From this, the first desired result follows immediately by setting r; := [#7/2/y] 12

Suppose that @ = 0. From the proof of Proposition 2.61, the inequality (2.95) holds.
Combining with equations (2.96)—(2.97), it then follows that for all x € S,

plle = 2*|* < max 7 [Blmin{w, Fy(2)} + 2o, (s, Fi(2))'?]

1<i<n

IN

7 max [x@é(wg,p(a:i, Fi(x)"? + 2o (s, Fi(ﬂf)))l/z}

(V2B + 2)# Wy (x)) >
(V2B + 2)7(W 4 9,(z))"/?

(V2B + 2)7(max {qzaﬁ,p(x), U, 0,(1) })

IN

IN



134 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

where B = B/(2 — 2%), T = 1rnax 7; and the second inequality is from Lemma 2.14.

. 1/2
Letting kg := [(\/53 +2)7/1| , we obtain the desired result from the above inequality.
0J

Lemma 2.15. For all (a,b) # (0,0) and p > 1, we have the following inequality:

O[sgn(a) - |a|P~' + sgn(b) - [b[P~] 2 N2
(WIGI” F10) + (1= 0)a— b)) =D/ 2> = (2 - 2’”) , VO e (0,1].

Proof. If a = 0 or b = 0, the inequality holds obviously. Then we complete the proof by
considering three cases: (i) a >0 and b > 0, (ii) a < 0 and b < 0, and (iii) ab < 0.

Case (i): Since # € (0,1] and p > 1, it follows that /7 < 1. Now, by the proof of [30,
Lemma 3.3], we have

Olsen(a) - |a[P~! + sgn(b) - [bP~Y]
[0(|alP + [b]P) + (1 — 6)]|a — bJp)|>=D/p
Ollal"~" + [bP~]
[0(Jal? + [b]P) + (1 — 0)]a — bJp)]-1/>
Ollal”~" + 1bl"~]
~ [0(alp + |b|p))P-1/p
91/”[\&]1’_1 + ’b‘p—l]
[(lafp + |b]p)]=1)/p
< 2P forp>1.

Therefore, it yields

Ollal"~" + [bI"]

_ [0(|al + |b]P) + (1 — 6)|a — bJP)]e-D/p = >9 - 9%

for p > 1. Squaring both sides then leads to the desired inequality.

Case (ii): By similar arguments as in case (i), we obtain

92— 2w
o Ollal’~" + bl
B [O(lalP + [b|P) + (1 — 6)]a — bJp)]P=1)/p
p—1 p—1
< 24 Olla””” + o1"] for p > 1,

[OClal + [ol7) + (1= )la — bpr)Je=07v

from which the result follows immediately.
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CaL(iii): Again, we suppose |a| > |b| and therefore have
2%
OflalP~" + [b]"]
[0(alP + |b]?) + (1 — 6)[a — b|p)]@-1/»
Of|aP~ — |b|P~1]
[0(al? + [b[7) + (1 = 6)]a — b|)] -1/

for p > 1.

Thus, it gives

Ollal—" — [oP""]
[0(|alP + |b]P) + (1 — 0)]|a — bP)]@-1)/p
for p > 1 and the desired result is also satisfied. [

2925 <2—

Proposition 2.64. Let 1,0, be given as in (2.82). Then, for all x € R™ and p > 1,

1\ 2
|Vatapa(@, F(@)) + Vitap(e, F@)|* > 2 (2= 27) Wp,(2) v € (0,1]

In particular, for all x belonging to any bounded set S and p > 1,

2(2 — 27 )4

IVatbagp(, F(2)) + Vitbaoy (e, Fz)|]* > .
(aB2+(2+2pV

)\11%971,(1') Vo ¢ (O, 1],

where B is defined as in Proposition 2.61 and
-
Vibasgle @) = (Vatuaplon ), oo Vataplon o))

]
Vitban (@, F(z)) = (vb@wa,e,p(xl,ﬂ(x)), ---,vbwa,g,pm,Fn(x))) |

Proof. The second part of the conclusions is direct by Corollary 2.62 and the first
part. Thus, it remains to show the first part. From the definitions of V¢, (2, F(x)),
Viapp(z, F(x)) and We,(x), showing the first part is equivalent to proving that the
following inequality

(Vo (0.5) + Vg, D) > 2 (2 = 25) 4y p(a,b) (2.99)

holds for all (a,b) € IR%. When (a,b) = (0,0), the inequality (2.99) clearly holds. Suppose
(a,b) # (0,0). Then, it follows from equation (2.84) that

(vawa,é’,p<a> b) + waa,e,p(a7 b))2

B Olsgn(a) - |aP~t + sgn(b) - [bP~!] i
= {Oz(a +b)(ab)+ + (¢o,(a, b)) ([9<|a|p + [b|P) + (1 — ) |a — bJp)](>—D/p B 2) }

9 20 12 2 Olsgn(a) - [al"~" +sgn(b) - [b["~] ’
= oo 0+ Ganle ) (G ) (1= o )

Olsgn(a) - |a["~" + sgn(b) - [o~]
+2a(a + b)(ab)+ (dg,(a, b)) ([ewi )+ = 9)g|a o 2) (2.100)
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Now, we claim that for all (a,b) # (0,0) € IR?,

Ofsen(a) - [a”~! + sgn(b) - b
20(a + b)(ab)+(¢o,p(a, b)) ([9<|a|p + [b|P) + (1 — )|a — bJp)]P—/p

If ab < 0, then (ab); = 0 and the inequality (2.101) is clear. If a,b > 0, then by the
proof of Lemma 2.15, we have

( Olsgn(a) - |alP~" +sgn(b) - o'~
[0(Jal? + [b]P) + (1 — 6)]a — b|p)]-D/P

and ¢g,(a,b) < 0, which imply the inequality (2.101) also holds. If a,b < 0, then
¢op(a,b) > 0, which together with (2.102) yields the inequality (2.101). Thus, we obtain
that the inequality (2.101) holds for all (a,b) # (0,0). Now using Lemma 2.15 and
equations (2.100)—(2.101), we readily obtain the inequality (2.99) holds for all (a,b) #
(0,0). The proof is thus complete.  [J

- 2) >0. (2.101)

- 2> <0, VY(a,b)# (0,00 €R* (2.102)

2.3.4 Construction by discrete generalization

We may also extend the concept of “discrete generalization”, as introduced in Section 2.2,
to the Fischer-Burmeister (FB) function. This leads to the definition of a new function,
denoted by denoted by ¢? _ ., given by

& (a,b) = <\/a2 ¥ b2>p ~(a+bP, (2.103)

where p > 1 is a positive odd integer and (a,b) € IR>. Observe that when p =1, ¢?
reduces to the standard Fischer-Burmeister function. We will show that ¢? __ is an NCP
function and, notably, is twice continuously differentiable without requiring the squaring
of its norm. However, it is important to note that if p is even, the function ¢? __ mno longer
satisfies the properties necessary to qualify as an NCP function. Although differentiability
of ¢ is advantageous, it does not imply that Newton’s method can be directly applied
in all cases, since the Jacobian at a degenerate solution to the NCP may be singular (see
[110, 115]). Nonetheless, this differentiability feature opens the door to applying various

methods, such as derivative-free algorithms, for solving the NCP directly and effectively.

Lemma 2.16. Suppose that p = 2k + 1 where k = 1,2,3,---. Then, for any u,v € IR,
we have uP = vP if and only if u = v.

Proof. The proof is straightforward and can be found in [7, Theorem 1.12]. Here, we
provide an alternative proof.

“<" Tt is trivial.

“=" For v = 0, since u? = vP, we have u = v = 0. For v # 0, from f(¢) = t* — 1 being a

u\P
strictly monotone increasing function for any ¢t € IR, we have <—> — 1 =0 if and only
v

if & = 1, which implies u = v. Thus, the proof is complete. [
v
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Lemma 2.17. Let ¢? ___ be defined as in (2.103) where p is a positive odd integer. Then,
the value of ¢ ___(a,b) is negative only in the first quadrant, i.e., ¢* _ (a,b) <0 if and

D—-FB

only if a >0, b > 0.

Proof. We know that f(t) = t? is a strictly increasing function when p is odd. Using
this fact yields

a>0,b>0
a+b>0 and ab>0

vat+b2<a+b

p
<\/a2 T b?) < (a+b)
(bg_FB(a,b) <0,

which proves the desired result. [

1o

Proposition 2.65. Let ¢P _ be defined as in (2.103) where p is a positive odd integer.

D—

Then, the function ¢P _ is an NCP function.
Proof. Suppose ¢¥ __ (a,b) = 0, which says (Va®+ 62)p = (a + b)?. Using p being a

positive odd integer and applying Lemma 2.16, we have
p
(\/a2+62> =(a+bPf <= a’?+ b =a+0b.

It is well known that va? + b? = a + b is equivalent to a,b > 0, ab = 0 because ¢, is an
NCP-function. This shows that ¢? _ (a,b) = 0 implies a,b > 0,ab = 0. The converse
direction is trivial. Thus, we prove that ¢¥ is an NCP-function. [

We now provide a more detailed discussion of the newly introduced NCP function

¢pD—FB'

(a) For p being an even integer, ¢¥ _ is not an NCP function. A counterexample is
given as below.

B (—5,0) = (=5)* — (=5)* = 0.
(b) The surface of ¢? _ is symmetric, that is, ¢ _ (a,b) = ¢? (b, a).

(c) The function ¢? _ (a,b) is positive homogenous of degree p, i.e., ¢? _(a(a,b)) =
aP¢f  (a,b).

(d) The function ¢2 __ is neither convex nor concave function. To see this, taking p = 3
and using the following argument verify the assertion.

1 1 1 1y 10
0=} s (1,1) > 56, 1, (0,0) 450, ,,,(2,2) = 5 x0+5 (22 —~ 26) =3 (22 —~ 26)

and

[

_ 11 1 1 1 1
2 :¢?];7FB(_§’§) < §¢3D—FB(_]"O)+§¢3 (0,1) :§ X2+§ x 0 =1.

D—-FB
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Proposition 2.66. Let ¢¥ _ be defined as in (2.103) where p is a positive odd integer.
Then, the following hold.

(a) Forp>1, ¢P __ is continuously differentiable with

VOes(a:0) = b(va2 + b2)P~% — (a + b)P~!

(b) Forp>1, ¢P__ is twice continuously differentiable with V*¢?__ (0,0) = [ 8 8 1 ;
and for (a,B) # (0,0)

aQ(pr—FB a2<bp];—FB

VO b = | 08 B0 | (2.104)
dbda  Ob?
where
82¢pD—FB 2 2 4 _9
o = p{lo—De? + PV B = (0= D(a+ by
0? o2
% = pllp—2)ab(Va® + 12" — (p— 1)(a + b)" %] = —ai%f’
82
?%;FB = p{la®+ (0~ DPI(VaZ + 02 = (p— 1)(a+ 1) 2}

Proof. (a) The differentiability of ¢? . along with the computations of its first and
second derivatives, follows directly from standard calculus and is therefore omitted here

for brevity.

(b) For p > 3, the verifications are straightforward. The trick part is the case of p = 3.
Thus, we only show that ¢? s twice continuously differentiable whenever p = 3. In
fact, for (a,b) # (0,0), ¢2___ is twice continuously differentiable with V?¢? _ satisfying

B

(2.104). Tt remains to claim V?2¢3

D—-FB

(0,0) = { 8 8 ] , and V?¢? _is continuous at

(0,0). First, we note that

Ve’

D—-FB

(a,0) = V¢ _,(0,0) =3 [ Z((%)) _ ((Zi;)j } ’
v ]+

1
w1 ]]
= a’ 4+ +v2(a+ b)?
= (1+v?2) (a® + %) +2y/2ab.
(i) (ii)

and

|| —tovie ]| =
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i (a2+62)_ a? + b2 as (a
(1)\/(12:+b2—\/ + b2 — 0 as (a,b) — (0,0).

b b
(i) \};/2% < \\;;’L’ v |ab] — 0 as (a,b) — (0,0), where the inequality holds by

arithmetic-geometric mean inequality.

Hence, we have

IV¢?

lim bors(®:0) -
(a.)—(0,0) Va2 + b2 ’

0
0 0

Ve (0,0)]

ie, ¢? s twice differentiable and V?¢? _ (0,0) = [ } . Secondly, we claim each

second partial derivative is continuous at (0,0). For

> 2a% + b2 a?
=3 ——=—2(a+b) ) =3 Va2 + 1+ ——= —
da? (\/a2 + 2 ( )) ( Va2 +b?

it is clear that Va2 +b> — 0, a+b — 0 as (a,b) — (0,0). And the second term
also tends to zero because

2(a + b)) ,

2
a
Va2+b?

a’ |al
—— =la| - ——= < |a| — 0.
Va2 + b2 al \/a2—|—b2_| |
2 43 243
Hence, —2z% is continuous at (0,0). For —37*%, the proof is similar. For

0” 0”
&:3 a—b_2<a+b) :hj
0adb Va? + b2 obda

82¢P
it is obvious that ZE(;;B tends to zero, where the first term tends to zero by (ii).

Therefore, we obtain ¢? s twice continuously differentiable at (0,0), which is the

desired result. O

Proposition 2.67. Let ¢? __ be defined as in (2.103) where p > 1 being a positive odd
integer. Then, the following hold.

(a) ¢ _(a,b) <0 <= a>0, b>0.
(b) @2 ___ is locally Lipschitz continuous, but not Lipschitz continuous.

(c) @2 .., is not a-Hélder continuous for any a € (0,1].

(d) Vag? _ (a,b)-VypP _ (a,b) >0 on the first quadrant R? |
(e) Vu#? __(a,b)-Viye? _ (a,b) =0 provided that ¢¥ _ (a,b) = 0.
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Proof. (a) It follows from Lemma 2.17 immediately.
(b)-(c) The arguments are similar to Proposition 2.24(c)-(d).

(d) According to Proposition 2.66, we have

= pla(Wa®+0?)P2 = (a+ )P '] - p [b(Va® + b2)P~2 — (a + b)P]

= p*lab(a® + V)P 2 + (a+b)* 2 — (a+ b)P (Va2 + B2)P2 - (a + b)]
= P ab(a® + 077 4 (a+ )P — (a + b)P(va? + b2

= P [ab(® + 8P+ (a+0)P ((a+ 07 = (Vo +02)7%)].

Since a > 0, b > 0 and p — 2 is also an odd number, the term (a + b)?~? — (v/a? + b?)P~2
is always positive by part(a). This clearly implies the desired result.

(e) From Proposition 2.65, we know ¢? _is an NCP function, which implies

—FB

O n(a,0) =0=a>0,b2>0, ab=0.
When a > 0 and b = 0, we have V,¢? _ (a,0) = a(\/ﬁ)p*2 gl = gl gl — 0,
Similarly, when b > 0 and a = 0, we have Vi (0,b) = 0. In summary, we conclude
Vag? (a,D) - Vy¢P  (a,b) =0 provided that ¢?  =0. [

D—-FB

We next present several variants of ¢? . In fact, similar to the functions proposed
in [195], these variants can be verified to satisfy the defining properties of NCP functions.

-

a,b) = ¢} _..(a,0) —ala)r(b)4, o> 0.

) = ¢ (0,0 —a((a)i (b)), a>0.
) = [0 (@0 +a((ab)y)", a>0.
) +a((

= [¢f _.(a, b))? ab). ), a > 0.

1

(
2(a,
(

(

S S

a,

b
b
3(a, b
b

-

4\ @, «

Proposition 2.68. All the above functions ¢; fori € {1,2,3,4} are NCP functions.

Proof. Applying Lemma 2.17, the arguments are similar to those in [33, Proposition
2.4], which are omitted here. [

Indeed, in light of Lemma 2.16, we can construct additional variants of ¢ . each
of which constitutes a novel NCP function. More specifically, let k£ and m be positive
integers, and let f : R x IR — IR, and g : IR x R — IR be functions such that g(a,b) # 0

for all a, b € IR. Then, the following constructions yield new variants of ¢? = that satisfy
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the properties of NCP functions.

2k+1 2kt1

ds(a,) = |g(a,b)(Va? + 17 + fla,0)] 7 = [g(a,b)(a+ b+ fla,5)] 7

do(a.h) = [9(0, (VT —a—p)| "

¢7(a,b) = :g(a, b)(Va?+ b —a+ f(a, b))] et _ [9(a,b)(b+ f(a, b))]ffnill
os(a,b) = |gla,b)(Va? + —a+ f(a,b)| " — [g(a,b)(b + fla, b)) 7T
pola,b) = €% _ 1 where i =5,6,7,8.

b10(a,b) = In(|¢s(a,b)| + 1) where i = 5,6,7,8.

Proposition 2.69. All the above functions ¢; fori € {5,6,7,8,9,10} are NCP functions.

Proof. This is an immediate consequence of Propositions 2.65-2.68. In particular, by
Lemma 2.16 and g(a, b) # 0 for a,b € R, we have

¢5 a, b)

2k+1

2k+1

(

[g(a,b ) (Va2 + b2 + f(a,b)) FMH = [g(a,b)(a + b+ f(a,b))] >

{ |ota.0) (V¥ + s(a.0) ] }mH = {[g@.t)(a+b+ f(a, )] }2’”*1
(

9(a. ) (VT + f(a.D) }k = [9(a.b)(a+b+ f(a,b))]""
)

g(a,b)(Va* + b + f(a,b)) = gla,b)(a+ b+ f(a,b))
(Va®+ b+ f(a,b)) = (a+ b+ f(a,b))
vaz+b:=a+0b.

The other functions ¢; for i € {6,7,8,9,10} is similar to ¢5. O

[ A

Proposition 2.70. Suppose that ¢(a,b) = pi(a,b) — o(a, b) z's an NCP function on

2k+4+1

2
R x IR and k and m are positive integers. Then, [¢(a b)] Zmit and [cpl(a b)] amtl
[cpg(oz,b)]%i11 are NCP functions.

Proof. Using £ and m being positive integers and applying Lemma 2.16, we have

[6(a,8)] 7
{ [¢ b 2271::_11 }2m+1 _ O
(6
¢

((I b :| 2k‘+1

(a,b) =

Mﬂ
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Similarly, we have

2k+1
[o1(a, )] ™ — [ipa(a, b)] 5t =0

2k+1

lon(a, )] 55— [pa(a, ] 254
O S (U

901(61, b)]2k+1 — [(102(&’ b)]2k+1

reruy

The above arguments together with the assumption of ¢(a,b) being an NCP function
yield the desired result. [

Couple remarks regarding Proposition 2.70 are pointed out as below:

(a) When £ is a positive odd integer and m is a positive integer, [gf)(a, b)}k is an NCP
function. Whenever perturbing the parameter k, we obtain new NCP functions.
For example, if ¢(a, b) is an NCP-function, then [gzﬁ(a, b)} bt T is an NCP function.
We can determine suitable and nice NCP functions among these functions according
to their numerical performance.

(b) When k is a positive even integer and m is a positive integer, [qb(a, b)] * cannot be an

NCP function. However, [qb(a, b)]lHﬁ is an NCP function, which offers an way
to construct new NCP functions for even k. This approach opens an entirely new
avenue for constructing NCP functions, offering a flexible and systematic frame-
work for generating novel formulations with desirable analytical and computational
properties.

To conclude this section, we illustrate the surfaces of ¢f _ for various values of p,
providing a visual perspective that offers deeper insight into the structure and behavior
of this new family of NCP functions. Figure 2.20 is the surface if ¢, ., (a,b) from which
we see that it is convex. Figure 2.21 presents the surface of ¢3D _.5(a,b) in which we
see that it is neither convex nor concave as mentioned earlier. In addition, the value of
¢P __.(a,b) is negative only when @ > 0 and b > 0 as mentioned in Lemma 2.17. The

surfaces of ¢P  with various values of p are shown in Figure 2.22.

2.4 Constructions of NCP Functions involving cer-
tain functions

To motivate this section, we note that there exists an alternative approach to deriving
the functions ¢f and ¢? . as discussed in Section 2.2 and Section 2.3, respectively. In
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10
0 _5;0
05
—10 59
—10 _5
0. 10
b-axis > 10

Figure 2.20: The surface of z = ¢, .. (a,b) and (a,b) € [-10,10] x [—10, 10].

~10 =5

0.
b-ax1s

Figure 2.21: The surface of z = ¢? ___(a,b) and (a,b) € [-10,10] x [-10, 10].
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1%

SIXe-2

0,
b-axis > 10

(b) 2= ¢} _,,(a,b)

1orx

SIX®-2

10 10 s

0. 0.
b-axis 3 10 b-axis

(€) 2=¢] ..(a,b) (d) 2 =6} _,,(a,b)

Figure 2.22: The surface of z = ¢¥ _ (a,b) with different values of p.
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[79], a method is proposed that constructs new NCP functions from existing ones through
monotone transformations. This approach is, in fact, inspired by a key lemma presented
in [79], which serves as the foundation for the transformation-based construction.

Lemma 2.18. Assume that ¢ is continuous and ¢(a,b) = fi(a,b)— fa(a,b). Let 6 : R —
R be a strictly monotone increasing and continuous function. Then, the function ¢ is an

NCP function if and only if 1g(a,b) = 6(f1(a,b)) — 0(f2(a,b)) is an NCP function.

Proof. Please see [79, Lemma 15]. [

In light of Lemma 2.18, we define the function 6 = 6, as 0,(t) = sgn(t)|t|’, where
“sgn(t)” denotes the sign function and p > 1. To illustrate, consider the Fischer-
Burmeister function, for which we take fi(a,b) = Va? + 0% and fy(a,b) = a + b. For
the natural residual function, we set fi(a,b) = a and fs(a,b) = (a — b),. With these
choices, it can be verified that both ¢?  and ¢? (with p restricted to odd integers)
can be derived from the more general formulation 1s,. In this sense, 1y, encompasses
both functions as special cases, and may thus be viewed as a form of “continuous gener-
alization”. However, our preference is to interpret these constructions through the lens
of “discrete generalization”, which more accurately reflects the nature of our approach.
Specifically, for the function ¢? (a,b) = a? — (a — b)%, it is essential that p be an odd
integer to ensure that the resulting function retains the defining properties of an NCP
function. This condition underscores the discrete nature of the generalization: the valid-
ity of the function fundamentally depends on specific, discrete values of the parameter
p. Therefore, the central idea behind our new families of NCP functions is rooted in dis-
crete generalization, rather than in a smooth or continuous extension. This distinction
forms the basis for our terminology and conceptual framework. On the other hand, if we
consider the FB function ¢,,(a,b) = va? + b> — (a + b). When plugging p = 2 into 6,
we obtain a corresponding NCP function

Vo, (a,b) = a* +b* — sgn(a + b)(a + b)?,
which doesn’t coincide with the form

& pla,b) = (Va2 + b2>2 —(a+0)%.

Thus, the functions ¢? and ¢? only with positive odd integer p can be retrieved from
the way proposed in [79]. Again, it requires p to be a positive odd integer to guarantee
that both ¢ and ¢? are NCP functions. In view of all the above, we still call them
discrete-type families of NCP functions.

The aforementioned construction in Lemma 2.18 or [79, Lemma 15] relies on specific
functions 0(-) that satisfy particular conditions. Motivated by this concept, we propose
novel construction ways that incorporate alternative classes of functions, thereby expand-
ing the toolkit for generating new complementarity functions. Another noteworthy point
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is that both ¢? _and ¢f serve not only as NCP functions, but also as complementar-
ity functions for second-order cone complementarity problems (SOCCPs); further details
can be found in Chapter 3.

2.4.1 Construction by using certain functions

As previously indicated, we introduce a novel approach for constructing continuous NCP
functions through the use of specific auxiliary functions. Let 6 : IR — IR be a continuous
function, and define ¢} : R* — IR by

¢p(a,b) = [|(a,0)[l, = (0(b)a + 0(a)b), p=1. (2.105)

It is evident that ¢} is a continuous and symmetric function, meaning that ¢}(a,b) =
#5(b, a). With an appropriate choice of 6, this construction gives rise to an NCP function.
Our analysis proceeds by considering two distinct cases, determined by the value of p.

I. The case of p = 1.
We first consider the case of p = 1, that is, ¢} : R*> — IR is given by

dp(a,b) = la| + [b] — (6(b)a + 6(a)b). (2.106)

Proposition 2.71. Let 6 : R — R such that 6(0) = 1, 6(t) > 1 for all t > 0, and
—1 < 6(t) < 1 for allt < 0. Then, the function ¢; defined by (2.106) is an NCP
function. Moreover, ¢y(a,b) <0 if and only if (a,b) € IR2.

Proof. Observe that we may rewrite ¢, as

#p(a,b) = a(sgn(a) — (b)) + b(sgn(b) — 0(a)),

where

1 if t>0,
sgn(t) := 0 if t=0,
-1 it ¢<0.

Then, it is easy to verify that

¢g(a, b)
0 if a,b>0& ab=0,
a(l—=6(b)) +b(1 —0(a)) if a>0&b>0, (2.107)

1 b)
—a(1+6())+b(1—0(a)) if a<0&b>0,
(14 0( (a)) if a<0&b<O.

By our hypotheses on 6, we see that ¢}(a,b) < 0 for the second case, and ¢} (a,b) > 0 for
the third and last cases. Finally, by symmetry of ¢4, we have ¢j(a,b) > 0 when a > 0
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and b < 0 as in the third case. In other words, ¢}(a,b) = 0 if and only if a,b > 0 and
ab = 0. This says that ¢} is an NCP function. O

An important implication of Proposition 2.71 is encapsulated in the following result,
which characterizes the growth behavior of the NCP function ¢,. This consequence plays
a key role in establishing the coerciveness of @, as defined in (2.3) (see [64]), which in
turn facilitates the convergence analysis of relevant algorithms. We omit the proof, as it
follows directly from the explicit formula of ¢4 given in (2.107). It is worth emphasizing,
however, that the strict inequality conditions on the limits of 6 as © — 400 are essential
to preclude the emergence of indeterminate products.

Proposition 2.72. Let 6 satisfy the hypothesis of Proposition 2.71 such that tlim o(t) >
—00
1 and —1 < tlim 0(t) < 1. Then, |¢p(a® b*)| — oo as k — oo for any sequence
——00

{(a®, b*)} C IR? with |a*| — oo and |b*| — oo.

For the remainder of this section, we assume that 0(-) satisfies the conditions specified
in Proposition 2.71 when p = 1. A straightforward choice for 6 is any monotonically
increasing function whose range lies within (—1, c0), passes through the point (0, 1), and
is strictly monotonic in a neighborhood of zero.

Example 2.1. The functions

Vi2+4+t 2
_ t _ —
61(23) =€, 92(t) = —2 s and eg(t) 1 et

clearly satisfy the conditions of Proposition 2.71 and Corollary 2.72. The graphs of
bg. (a,b) fori=1,2,3 are shown in Figures 2.23(a), Figure 2.24(a), and Figure 2.25(a).
For each i, it is evident that the function (béi 1S non-positive on ]Ri and has the growth
behavior as described in Corollary 2.72. In addition, gzﬁéz s a nonsmooth nonconver
function for all i. In particular, the function has sharp trace curves corresponding to
a=0 and b =0, which are the points of non-differentiability of ¢, .

II. The case of p > 1.

We now turn our attention to the case p > 1 and investigate the conditions under
which ¢} constitutes an NCP function. These conditions closely resemble those presented
in Proposition 2.71, with a few key distinctions. Specifically, strict inequality at ¢t = 1 is
not required; however, a stronger lower bound on é(t) is necessary for ¢ < 0.

Proposition 2.73. Let p > 1. Suppose 6 : R — IR such that 6(0) = 1, 6(t) > 1 for all
1-p

t >0, and =277 < 0(t) <1 forallt < 0. Then, the function ¢} defined by (2.105) is

an NCP function. Moreover, ¢j)(a,b) < 0 if and only if (a,b) € IRY.



148 CHAPTER 2. THE NONLINEAR COMPLEMENTARITY FUNCTIONS

(a) Graph of ¢y (b) Graph of ¢g2

Z-axis

(c) Graph of ¢3, (d) Graph of ¢g°

Figure 2.23: Graphs of ¢p for different values of p where 60, (t) = €.
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_05 pan®

U5 05 05 b—‘&*‘s
1.0 —-1.0

1.0 -1.0

(a) Graph of ¢ (b) Graph of ¢

Z-axis
Z-axis

(c) Graph of ¢3, (d) Graph of ¢

Figure 2.24: Graphs of ¢ for different values of p where (t) = Y=L,
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(a) Graph of ¢},3 (b) Graph of qﬁ},f

0.0
~05 pat®

1.0 -1.0

(c) Graph of ¢g, (d) Graph of ¢

_2
1+e—t"

Figure 2.25: Graphs of ¢y, for different values of p where 03(f) =
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Proof. Since ¢} is symmetric w.r.t. the line a = b, it suffices to check the values of ¢j
on the region a < b. We carefully consider four cases.

(i) If a = 0 and b > 0, then ¢}(a,b) = |b| — 6(0)b = 0 since 0(0) = 1.
(ii) Suppose @ > 0 and b > 0. Due to p > 1, we have ||(a,d)||, = (ap+bp)% < a+ b which
in turn yields

dp(a,b) <a+b—(0(b)a+6(a)b) =a(l —0(b)) +b(1 —6(a)).

Because 0(t) > 1 for any ¢ > 0 it follows that ¢j(a,b) < 0.
(ili) Suppose a < 0 and b > 0. In this case, we have that ||(a,b)||, > a + b. Thus,

op(a,b) > a+b—(0(b)a+6(a)b) = a(l —0(b)) +b(1 —6(a)).

Since b > 0, we have 1 — #(b) < 0 and so the term a(l — 0(b)) is nonnegative. On the
other hand, 1 — #(a) > 0 since a < 0 which means that the term b(1 — 6(a)) is likewise
nonnegative. Hence, ¢(a,b) > 0.

(iv) Finally, suppose that a < 0 and b < 0. The function ¢ — ¢ is strictly convex on
[0, 00) since p > 1. Thus,
I(a, )II; = lal” + [b]" > 2P (Ja] + [b])",

which implies that ||(a, b), > 21%(|a| +10]) = —21%(a +b). Consequently,

$(a,b) > —27 (a+b)— (0(b)a + 0(a)b)
— a7 +0(b) — b2 +0(a))
> 0
where the last inequality follows from the assumption that 6(¢) > —2%" for all t < 0.

From the above four cases, it is clear that ¢§(a,b) < 0 only on IRZ. This completes the
proof. [

Proposition 2.74. Let 0 satisfy the hypothesis of Proposition 2.73 such that tlirn 0(t) > 1
—00
and 27" < 1tlirn 0(t) < 1. Then, |¢h(a*, %) — oo as k — oo for any sequence
——00
{(a®,bF)} C IR? with |a*| — oo and |b*] — oco.

Proof. The result follows from the inequalities obtained from cases (ii), (iii) and (iv) in
the proof of Proposition 2.73. [

For all cases where p > 1, we henceforth assume that 6(-) satisfies the conditions
outlined in Proposition 2.73. We now proceed to illustrate this with a few examples.
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Example 2.2. Observe that by taking 6(t) = 1, we obtain the generalized FB func-
tion (2.14). Hence, the family of NCP functions given by (2.105) subsumes the class of
generalized FB functions.

Example 2.3. As in Example 2.1, consider 0; for i = 1,2,3. Then, for any p > 1, the
function qb’;i is an NCP function by Proposition 2.73. Notice from Figures 1-3 (subfigures
(b) to (d)) that the graphs of ¢ (p > 1) look “smoother” than that of %i. In particular,
@y is not differentiable only at the origin. Finally, gi 15 also nonconvex similar to qbéi mn

FExample 2.1.

It is well established that no complementarity function can simultaneously possess
both differentiability and convexity [99, 157]. In fact, such a function may lack both
properties. The following two propositions demonstrate that this is indeed true for ¢.
As observed in Examples 2.1 and 2.3, ¢} fails to be convex. We now assert that this
non-convexity holds more generally.

Proposition 2.75. Suppose that 0 is strictly increasing on some interval I = [0,1).
Then, ¢y, is not conver.

Proof. Suppose that ¢} is convex, due to ¢}(0,0) = 0, it must be the case that
dh(Aa, \b) < Agp(a,b) for any A € [0,1] and any u,v € IR. Taking any a,b € I yields

Cbg()‘a? )‘b) o )‘¢§(a> b)

= [[(ha, A), — (A(AB)a + ABAa)b) — Al (a, B,
—(0(b)a +6(a)D))

= Aa(0(b) — O(AD)) + Ab(6(a) — O(Aa)).

Since A € [0, 1], we have that Aa, A\b € I. By the strict monotonicity assumption on 6 in
I, there has ¢} (Aa, \b) — A¢j(a,b) > 0. Hence, ¢} is not convex. [

Proposition 2.76. Suppose that 6 is continuously differentiable and satisfies the condi-
tions of Proposition 2.71 if p =1 or Proposition 2.73 if p > 1. Then, ¢} is semismooth.
Moreover, the generalized gradient of ¢y is described by

¢} (a,b) =
{[sgn(a) — 0'(a)b — 6(b), sgn(b) — 0'(b)a —0(a)]"} fa#0&b#0
{[0, 2X\ —1 —af’(0) — 8(a)]T | A € [0,1]} ifa>0&b=0
{[2A — 1 —b0'(0) — 6(b), 0]T | X € [0,1]} ifa=0&b>0
{[-2, 2A =1 —a®'(0) — 0(a)]" | X € [0,1]} ifa<0&b=0
{[=2, 2x —1—b0'(0) — (b)]T | A € [0,1]} ifa=0&b<0
{l&.¢T 1€ ¢e[-2,0] } ifa=b=0
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and for p > 1, we have

9¢y(a,b) =
(R 00800, B o0 -0} (0 00
{le—1,¢— 1T [1&]757 + 1177 < 1} if a=b=0.

Proof. Note that the mapping f : (a,b) — |/(a,b)||, is a convex map and is therefore
semismooth. Because ¢ : (a,b) — —(0(b)a + 6(a)b is smooth (and hence semismooth),
their sum f + g = ¢} is semismooth. Now, we compute the generalized gradient of ¢j.
It is clear that ¢} is differentiable only on D := {(a,b) : a # 0 and b # 0}. Then, its
gradient

sgn(a) — 0'(a)b — 6(b)
sgn(b) — 0'(b)a — (a)
coincides with the generalized gradient on D. Suppose then that (a,b) ¢ D. First, we

consider the case when a > 0 and b = 0. By definition of Clarke’s generalized gradient
d¢g(a,b) = conv (Ogpy(a, b)), i.e., the convex hull of the B-subdifferential

Véy(a,b) = V(a,b) € D,

Opdh(a,b) = {g€R?|FH(ap, b)), C D sit.
(ak,bk) — (CL, b) and V(bé(ak, bk) — g}

Let {(ax,bx)}32; € D such that (ag,br) — (a,0). For all sufficiently large k, we have
ap > 0. If b, > 0 for all k£ sufficiently large, then

i Vg(ar,by) = lim { sgn(ax) — 6"(ar)by — 0(br) }

koo | sgn(by) — 0'(by)ar, — O(ar)
- [ L= ¢'(a)-0— 0(0)
1—-0'(0)-a—06(a)
0

where we used the fact that € is continuously differentiable and that #(0) = 1. If b, < 0
for all k sufficiently large, then

: 1 B 1—0(a)-0—-6(0)
dim Vog(ar,be) = { 1= 0/(0)-a—6(a) }
= [t |
| —1—=ab'(0) —6(a) |
In other cases, V@ (ag, by,) has no limit. Hence,
dpgp(a,0) = {[0,1 — ab'(0) — 6(a)]", [0, —1 — at'(0) — 0(a)]" }

and the result for the case @ > 0 and b = 0 follows by taking the convex hull. We
omit the proof of the other cases as the arguments are similar. Finally, note that ¢j
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is differentiable on IR? except at (0,0). The computation of the generalized gradient
¢(0,0) is similar to the computation of 9¢P_(0,0) shown as in [27]. This completes the
proof. [

Finally, we explore several variants and generalizations of ¢}. In addition, we propose
specific functions that can be employed to construct new NCP functions from existing
ones. To facilitate this discussion, we denote by (), the projection of ¢t onto the non-

negative real line, that is,
t ift>0,
()4 == {

0 ift<0.

For convenience, we define ¢}* for i = 1,2,3 as follows:

Mab) = dhlab)—ala)(b).
F(@b) = dhla.b) - afab)?
b = dhlab)—alal ()2

where a > 0. For any p > 1 and (a,b) € IR, we know from Proposition 2.71 and
Proposition 2.73 that ¢ (a, b) < 0. Moreover, ¢ (a,b) = ¢b(a,b) > 0 for all (a, b) ¢ RZ.
Consequently, these three variants are easily to be seen as NCP functions as well.

Proposition 2.77. The functions gzgg’i are all NCP functions for any a > 0 and 1 =
1,2,3.

In recent years, both “continuous” and “discrete” generalizations of NCP functions
have attracted considerable interest; see [18, 27, 33, 35]. These generalizations typically
involve a tunable parameter ¢, which has been shown to significantly enhance the nu-
merical performance of certain algorithms based on NCP functions [2, 32, 35]. Moreover,
such extensions can yield NCP functions with distinct analytical properties [18, 33]. For
example, the generalized Fischer-Burmeister (FB) function (2.14) serves as a continuous
generalization of the classical FB function (2.12), with p € (1,00). The standard FB
function is recovered by setting p = 2. In parallel, discrete generalizations have also been
proposed. One notable instance is the natural residual (NR) function,

Gur(a,b) = min{a, b} =a — (a — )4

which remains a widely used NCP function alongside the FB function. A discrete gener-
alization of the NR function, proposed in [33], is given by

¢! (a,b) =a’ —[(a—b)]? (2.108)

where ¢ is a positive odd integer. When ¢ = 1, the original NR function is recovered. The
term “discrete” reflects the fact that g is restricted to positive odd integers. An intriguing
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feature of the generalized NR function (2.108) is its twice differentiability for ¢ > 3, a
property not shared by the original NR function. This enhanced smoothness renders ¢7
particularly suitable for algorithms that require differentiable NCP functions.

We wish to highlight that the technique underlying the second type of generalization
discussed above, namely, the discrete generalization, can be systematically applied to
NCP functions of the form

d(a,b) = ¢1(a,b) — da(a,b). (2.109)

In other words, the function

¢q(a7 b) = [Q_Sl(a’ b)]q - [&2(% b)]q

is always a discrete generalization of ¢ given in (2.109), where g is a positive odd integer.
As a matter of fact, we can further extend such technique by considering any family of
injective functions { f;}. More precisely, consider the function

d5,(a,) = fo(é1(a,0)) — fo(2(a,b)) (2.110)

which can be readily shown to be an NCP function whenever f, is injective and ¢ is an
NCP function of the form given in (2.109). This transformation, as expressed in (2.110),
has also been observed in [79]. For example, the discrete generalized NR function (2.108)
can be obtained by applying this transformation to the standard NR function using the
map f,(t) = t9, where ¢ > 0 is an odd integer. Applying the same transformation to our
NCP function ¢}, we arrive at the discrete generalization

(09)* := ll(a, b)[I5 = (0(b)a + B(a)b)",

where ¢ is again a positive odd integer. As noted earlier, such generalizations may yield
NCP functions with distinct analytical properties. In particular, it is straightforward to
verify that (¢})? is continuously differentiable on IR? whenever ¢ > p > 1, in contrast to
the original function ¢}, which is not differentiable at the origin.

Another discrete generalization of ¢} can be obtained by applying the same map
f4(t) = t? to the equivalent form of ¢} given by

Sp(a,b) = &, (a,b) — [a(0(b) — 1) + b(0(a) — 1)]. (2.111)

This yields another symmetric generalization

(05)2,(a,0) = [@, (a, b)) — [(a(B(b) — 1) + b(8(a) — 1)]".

For ¢ = 1, Proposition 2.76 ensures the semismoothness of ¢j. Interestingly, the discrete
generalization introduced above yields smooth NCP functions for any p > 1 and odd
integers ¢ > 3. This fact is straightforward to verify, and we omit the proof for brevity.
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These results are consolidated in Proposition 2.78. It is also worth noting that all of the
aforementioned generalizations preserve symmetry. More generally, the transformation
in (2.110) produces symmetric NCP functions when applied to our proposed function ¢}
as well as to its alternative representation given in (2.111).

Proposition 2.78. Suppose 0 is continuously differentiable and satisfies the conditions
of Proposition 2.71 if p = 1, or Proposition 2.73 if p > 1. Let ¢ > 1 be an odd integer.
Then,

(¢h)(a,b) = [|(a, b)||2 — (8(b)a + O(a)b)”

is a discrete generalization of ¢4, which is smooth if ¢ > p > 1. Additionally,

(055 (a,0) := [97,(a,0)]* = [(a(0(b) — 1) + b(0(a) — 1))

is also a discrete generalizations of ¢, which is smooth if ¢ > 3 and p > 1

It is worth noting that the function f,(¢) = t¢, with ¢ > 1 an odd integer, is com-
monly used to enhance the numerical performance of algorithms. In the context of neural
network-based approaches to optimization, such functions are often referred to as acti-
vation functions. Their primary purpose is to improve convergence rates, and several
alternative activation functions have been proposed in the literature. A few notable
examples include:

1. Bipolar Sigmoid Function [228, 229]:

1 —e ¢

J) =1

, q>0.

2. Power-Sigmoid Function [228, 229]:

f(t) = e e <1
q tq2 lf ’t| Z 1

where ¢ = (¢q1,2), ¢1 > 2 and ¢y > 3 is an odd integer.

3. Smooth Power-Sigmoid Function [228, 229]:
1 14em 1—e @t 1

T3 1 @ 1ieat 3

q2

Ja(t)
where ¢ = (q1,¢2), ¢ > 2 and ¢z > 3.
4. Sign-Bi-Power Function [136]:

)7+ |t]7 ift>0
f.(t) = 0 ift=0, ¢>0.
—[t]e —|t]s ift<0
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All of the functions mentioned above are injective mappings that can be employed
to transform an NCP function of the form (2.109). However, these transformations do
not constitute generalizations in the sense described earlier. A true generalization, as
illustrated, is only possible if there exists a parameter g such that f;(¢) =t. Nonetheless,
we observe that the function % yields a continuous generalization via the transformation
(2.110) when f, is chosen to be the “sign-bi-power function”. In any case, a promising
direction for future research lies in exploring how these injective functions might enhance
the numerical efficiency of NCP function, based solution methods, much in the same way
they are used to improve performance in neural network approaches. For the power func-
tion f,(t) = t9, and the resulting generalized NR function, some encouraging numerical
results have already been reported in [2]. Finally, we remark that the composite map
fq 0 ¢} is also a valid NCP function, provided that f, is injective and satisfies f,(0) = 0,
as is the case for the aforementioned activation functions. This approach is also worth
consideration in numerical implementations.

2.4.2 Construction by using invertible functions

In this section, we introduce a novel approach to constructing NCP functions, an idea
that, to the best of our knowledge, is new to the literature. Specifically, we identify
conditions under which the class of invertible functions can be effectively utilized to gen-
erate new NCP functions. This development is motivated by the discovery and structural
analysis of three particular NCP functions, which reveal a unifying pattern. Illustrative
examples of the resulting NCP functions, accompanied by their graphical representations,
are also provided.

We begin by presenting the following three NCP functions, which serve as the inspi-
ration for our proposed construction:

¢, (a,b) = In(el 4 el — 1) — max(a, b); (2.112)
¢, .. (a,b) = In(el 4¢Pl —1) — (a4 b); (2.113)
¢abs—exp (a7 b) = |a| + |b| - eab - eba“ (2114)

The first two functions, ¢, and ¢, __ ., are constructed using the exponential and
logarithmic functions, with additional terms designed to ensure that the function evalu-
ates to zero along the nonnegative axes. These NCP functions were discovered through
an examination of the construction techniques in [3, 4]. It is important to note that all
three functions involve absolute value terms, rendering them nondifferentiable. Conse-
quently, for the purposes of subsequent analysis, we must work with their subdifferentials
in the sense of Clarke [52]. To that end, we make use of the sign function:

1 ift>0,
sgn(t) == 0 ift=0,
-1 ift<O.
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along with the definition of the convex hull of all limit points of Jacobian sequences.

Proposition 2.79. Let ¢

:IR? — R be defined in (2.112), that is,

¢ (a,b) = In(el + el — 1) — max(a, b).
Then, the following hold.
(a) The function ¢, . is an NCP function.
(b) The subdifferential of ¢, is described by
( eaf:b_l —1,ea+e:,,_1 if (a,b) € Iy = {(a,b)|a,b>0and a >b
o e — 1 if(a,b) € I, = {(a,b)|a,b > 0 and b > a}
= = — 1) if (a.b) € Iy = {(a,b) [a < 0, b > 0}.
e ey — 1 if (a,0) € Iy = {(a,b)|a,b <0 and b > a
e = if (a,b) € Is = {(a,b)|a,b <0, and a >
e 1)} if (a,0) € Ig = {(a,b)|a > 0, b < 0}
—1 1 : _
6¢17 (a7b): {(O p)| <p< } ¥f(a,b)€L1_{(a,b)|a>0,b—O}
{0 “1<p<1) if (a,5) € Ly = {(a,0)|a =0, b >0}
_e* 1 _e*
conv { (26“_61a ) ) ( 2ot 1>} if (a,b) € Ly ={(a,b)|a,b>0, and a =
2ev—1 2e—1
{(-L,p—1)| —e*<p<e} if (a,b) € Ly = {(a,b)|a <0, b=0}.
{(p—1,-1)] —et <p< e} if (a,b) € Lg = {(a,b)|a =0, b < 0}.
—e @ —e * 1
conv { < (et ) : <Qe:1a > } if (a,b) € Ls = {(a,b)|a,b <0, and a =
2e~2—1 1 2e~2—1
(0,1),(1,0), }
conv if (a,b) = (0,0

where conv(S) denotes the

Proof. (a) “=" Suppose ¢
proceed, we discuss two cases.

(i) If @ > b, then el 4 el — 1 = ea.

convex hull of the set S.

a,b) = 0, we need to show a > 0, b >0, ab=0. To

In —max ( ?

The left-hand side of this equality is greater than

or equal to 1 since the absolute value is always nonnegative. Hence, e* must be greater
than or equal to 1. This leads to a being greater than or equal to 0. Thus, a > 0 and
el’l —1 =0, which says a > 0 and b = 0.

(ii) If b > a, by the symmetric form of the function ¢, , we see that a = 0, b > 0.
Therefore, a > 0, b=0or a =0, b > 0. This is equivalent to a > 0, b > 0, ab = 0.
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“<” Conversely, if a > 0, b > 0, ab =0, thena >0, b =0o0r a =0, b > 0. For
a>0,b=0,then ¢__ (a,b) = In(eld + el — 1) — max(a,b) = |a| —a = 0. For
a=0, b>0, then ¢ (a,b) = In(el* + el — 1) — max(a,b) = |b| — b = 0. Thus, the
proof is done.

In —max

(b) Note that ¢____is differentiable at (a,b) € I; ~ I, whereas it is not differentiable
in other cases. Hence, we need to calculate each case separately.

Case (1): (a,b) € I; ={(a,b)|a,b> 0 and a > b}.

Vo a,b)

In —max (

el“lq ] el’lp
= (@ w—mm )
(e e
o \erteb—1 T erteb—1
Case (2): (a,b) € Iy ={(a,b)|a,b>0and b > a}.

Vi, (@)

elalg eltlp
- ((e|“ + el —1a|” (elol + el = 1)[p] 1)
e 6b
- (e“—l—eb—l’ e +eb—1 _1)

Case (3): (a,b) € I3 ={(a,b)|a <0, b>0}.

V¢1n —max (aj? b)

elelg eltlp
- (e e )
—e e
- (e“—{—eb—l’ e~ +eb—1 _1>

Case (4): (a,b) € Iy ={(a,b)|a,b<0, and b > a}.

Vo, (@ D)

elalg el’lp ]
((ela + el —1)ja]” (eldl + Pl —1)[b] )

B —e —e b 1
o \eo4et—1 eafeb—1
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Case (5): (a,b) € I ={(a,b)|a,b <0, and a > b}.

V¢1n —max (0’7 b)

eldlq eltlp
- (e wr )
—e —e
- (e“—{—eb—l —b e“—l—eb—l)

Case (6): (a,b) € Ig ={(a,b)]a >0, b<0}.

Vo a,b)

In —max (

elalg elblp
(@ —m ~* wrra=m)
= (e—a ~1 Lb)
e?+ebt—1 T er4et-—1

Case (7): (a,b) € Ly ={(a,b)|a >0, b=0}.

Since the point (a,0) is adjacent to the region I; and Ig, let {(ax,br)} be the sequence
such that limy . (ag, bx) = (a,0).

If {(ag,br)} €11 = {(a,b)|a,b > 0 and a > b}, then

lim Vo, (ag,by)

k—o0
ag bk
(e
k—oo \ €% + ePk — 1 e + ek — 1
B ed _1 60
et 4e0—1 et e —1
(o)
— (0,—).
e(l
If {(ag,br)} CIs ={(a,b)|a >0, b <0}, then

hm ngln ~max (ak, bk)

k—o0

. U —ebr
- lclggo<eak—|—e—bk—1_ ’ eak+€—bk_1)
= e’ —e )
e ed—1 T erted—1

—1

— (0. =

0.2

Thus, by definition of subdifferential, we have

00, et =oo{ (V). (5)} = {05 <0 5},
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Case (8) ~ (12): For the region L;, i = 2,--- ,6 and the origin point (0,0), the way to
calculate the subdifferential is similar to L, so we omit them here.  [J

The next proposition concerns the second NCP function, ¢ _ . In fact, computing
the subdifferential of ¢, is significantly more intricate than that of ¢, _ , due to the
presence of the max(a,b) term. When combined with the absolute value expressions, this
term induces a more complex partitioning of the domain into regions where the function
is differentiable. Moreover, some of the results pertaining to ¢, __ = can be derived using
elements from Proposition 2.79. Before proceeding to the proof, we highlight two notable
e First, observe that max(a,b) = a+ b when a > 0, b > 0,
ab = 0. Consequently, under these conditions, ¢, (a,b) = ¢, __ (a,b) = 0. These
observations lead us to conjecture that ¢___  also qualifies as an NCP function. To
confirm this, it is necessary to evaluate the behavior of ¢ ___  across the remaining
regions of the domain.

observations regarding ¢

sum

Proposition 2.80. Let ¢, :TR* — IR be defined in (2.113), that is,
¢lnfsum (a’ b) = 1n(e|a‘ + e'bl - 1) - (a’ + b)
Then, the following hold.

(a) The function ¢, . 1is an NCP function.

sum

(b) The subdifferential of ¢, . 1is described by

elalg elbl .
{(e‘ B N . 1)} if a0 and b+ 0.
(p—1,0)] < F <p< if a=0,b> 0.
{ —1—2 —ellb‘< <i”} if a=0,b<0
a(Zblnfsum (a7b> - < {(p ‘b‘ - p - e‘b‘} 1 a 9 < .
{(0,p—=1) 1= gpgﬁ if @ >0,b=0.
{(- 2,p—1 T <p< 4} if a <0,b=0.

Proof. To prove part (a), we must verify that ¢, __  satisfies condition (2.2). From
Proposition 2.79, it is evident that ¢, __ (a,b) = 0 on the nonnegative portions of the
a,b-axes, and that the function is strictly positive on their negative sides. Therefore,
it suffices to examine the behavior of ¢ within the four quadrants of the ab-plane.
Assume that ¢, __ (a,b) = 0. To analyze this scenario, we proceed by considering the
following four cases corresponding to the quadrants of the plane.

In —sum

Case (i): If @ > 0 and b > 0, then e? 4+ €* — 1 = ¢%’. Then, we have
0=ce’—1)+ (" —1) = (e —1)(e’ —1).

Since a > 0 and b > 0, we should have (e —1)(e’—1) > 0 which leads to a contradiction.
Thus, ¢, ... (a,b) # 0 in case (i).
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Case (ii): If a < 0 and b > 0, then e™® + ¢ — 1 = ¢’ and hence & + ¢’ — 1 = e,
which gives (e?)%e? — 1 — e%b + e = 0. Tt follows that

0=ce"e’(e — 1)+ (" — 1) = (e®" + 1)(e* — 1).

But, €%’ +1 > 0 and e* — 1 < 0, it says (e%’ + 1)(e® — 1) < 0, which contradicts the
above equation. Thus, ¢ a,b) # 0 in case (ii).

In —sum (

Case (iii): Suppose a < 0 and b < 0. Obviously, el*l 4 el — 1 is greater than 1, and

e%e® = ™ is less than 1. Hence, ¢ (a,b) # 0 in case (iii).

In —sum

Case (iv): If @ > 0 and b < 0, then ¢
and the arguments in case (ii).

# 0 by noting the symmetry of ¢ __ (a,b)

In —sum

To sum up, from all the above, we prove that ¢, (a,b) = 0 <= a > 0,b = 0 or
a=0,b>0<=a>0,b>0, ab=0.

(b) Again, by using the definition of subdifferential, we calculate each case separately.

Case (1): If @ # 0 and b # 0, then ¢, __  is differentiable. Then, we have

um

e‘ala €‘b‘b
b) = -1 —1]. 2.11
Vgbln—sum(a7 ) ((€|a| + €|b| _ 1)‘@’ ! (6‘“' —+ e‘b‘ — 1)’b‘ ) ( 5)

Case (2): Suppose a = 0 and b > 0. we compute subdifferential by the definition of
convex hull of all limits points of Jacobian sequence. Let (ag,bx) — (0,b) as k — oo.
Applying (2.115) yields

(5 —1,0) if {(ar,br)} € {(a,b)|a>0,b>0}.

A0V G (O Br) = {(;_; S 10) if {(ar b)) € {(ab)]a < 0,b> 0).

This concludes 9¢,, . (a,b) = {(p —1,0)|p € [, F]}. The other cases exclude the
case a = b = 0, which are similar to the above cases. Therefore, it remains to prove the
case when a = b = 0.

For the case a = b = 0, let (ag,br) — (0,0). Compute the limit of (2.115) as (ax, by) —
(0,0), we have

(0,0) if {(ag,br)} € {(a,b)|a>0,b> 0}.
lim Vo, (arbi) = (—2,0) ?f {(ag,bx)} C{(a,b)|a <0,b> 0}
k—o0 (—2,-2) if {(ag,bx)} € {(a,b)|a < 0,b < 0}.
(0,—2) if {(ar,br)} € {(a,b)|a>0,b<0}.

Hence 96, __(0,0) = co { (g) , (_02> , (_02> , (:;) } —{(&.n)] —2<en<o}.

O
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Proposition 2.81. Let ¢ :IR? — TR be defined as in (2.114), that is,

abs—exp
(babsfexp(a@ b) = |af‘ + |b’ - eab - eba/
Then, the following hold.

(a) The function ¢ is an NCP function.

abs—exp
(b) The subdifferential of ¢, .. is described as
( {(sgn(a) — e — e’ sgn(b) — eba —e?)} if a#0, b#0.
{(0,p—a—e")| —1<p<1} if a>0, b=0.
) {(p—b—¢€0)| —1<p<1} if a=0, b>0.
O {(=2,p—a—e")| —1<p<1} if a<0, b=0.
{(p—b—e’,=2)| —1<p<1} if a=0, b<0.
C{En) | -2<6n <0} if a=0b=0.
Proof. (a) First, we rewrite the function ¢, as

Do (@, b) = a(5g0(a) — €”) + b(sgn(b) — e*),

which possesses the below piecewise expression:

0 if a>0,b>0, and ab=0.
s (a,b) a(l—e’) +b(1—e*) if a>0,b>0.
abs—oxp \ &) —a(l+e’)+b(1—e) if a<0,b>0.
—a(l+¢e) —b(1+e*) if a<0,b<0.

It is noted that ¢ a, b) is negative in the second case, and positive in the third and

abs—exp (

last cases. In light of the symmetry of ¢, . (a,b), we obtain that ¢ (a,b) is also
positive on a > 0, b < 0. Therefore, ¢, is an NCP function.
(b) We discuss a few cases in order to calculate the subdifferential of ¢, . .
Case (1): If a # 0 and b # 0, we have
Vo, opla,b) = (sgn(a) — e — e, sgn(b) — ela — e“) . (2.116)

Case (2): Suppose a > 0, b = 0 and (ax, by) — (a,0) as k — oco. From expression (2.116),
we know

lim Vo, . (arby) =

k—o0

(0,1 —a—e*) if {(ax,br)} C{(a,b)|a>0,b>0}.
{ (0,-1—a—e*) if {(ax,br)} € {(a,b)|a>0,b<0}.

Then, it follows that d¢,,, . (a,b) ={(0,p—a—e*)| =1 <p <1}

For the other cases except for the case when a = b = 0, the calculation is similar to case
(2), so we omit them here.
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Case (3): Suppose a = b = 0 and (ax, b;) — (0,0) as k — oo. From expression (2.116),
we compute that

(0,0) if {(ax, b)) C {(a,b)|a>0,b> 0}.
fm Vo (ab) = (=2,0)  if {(ar bp)} € {(a,b)|a < 0,b > O}
hosoo | bsexe \ K2 U (=2,-2) if {(ap, bx)} € {(a,b)|a < 0,b < O}.

(0,—2)  if {(ar, bx)} € {(a,b)|a > 0,b < O}.

This concludes d¢,, . (0,0) ={(&{,n)| —2<¢&n<0}. O

It is worth noting that the function ¢ was discovered through a different line of
reasoning than the previous two NCP functions. The key distinction lies in the interpre-
tation of the term |a|+|b|, which can be seen as the [;-norm of the vector (a,b), while the
exponential terms e?, e® serve as monotone cofactors applied to b and a, respectively. By
examining the structural patterns underlying these three newly introduced NCP func-
tions, we identified a broader framework for generating NCP functions through the use of
invertible functions. In particular, the first two functions, ¢, (a,b) and ¢___  (a,b),
both feature the term In(el®! + el®l — 1), which prominently involves invertible functions.
Motivated by this observation, we propose the following generalization of the common
term:

abs—exp

FOUHal) + £71(0D) = £7H0)),

where f is a real-valued function defined on a suitable domain and subject to certain
structural assumptions. Accordingly, their natural extended formats become

¢la,b) = f(f~'(lal) + f71(b]) — 1) — max(a, b); (2.117)
#la,b) = f(f(lal) + F7(b) — 1) = (a+b); (2.118)
¢la,b) = f(f~ (al) + F7(0]) = 1) = g(a)b — g(b)a. (2.119)

Clearly, if f(t) = Int, then the functions (2.117) and (2.118) reduce to those functions
(2.112) and (2.113). If f~'(¢t) = t + 1 and g(¢) = €', then the function (2.119) reduces
to the function (2.114). In this Section, we provide a complete discussion on under what
conditions of f, (f7')" and g, the above functions defined as in (2.117), (2.118) and
(2.119) will be NCP functions.

Proposition 2.82. Suppose f is a real valued function defined on R with f(1) =0 and
flr denotes the restricted function of f on I C IR. If f|; satisfies one of the following
conditions:

(@) flr:[1,00) = [0,00) is invertible, or
(b) flr: (—o0,1] — [0,00) is invertible,

then 6,(a,b) = F(f~4(|al) + f1(b]) = f~1(0)) — max(a,b) is an NCP function.
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Proof. (a) Without loss of ambiguity, we still use f instead of f|; in our analysis. Since
f :[1,00) — [0,00) is invertible and f(1) = 0, f is strictly monotone increasing on
[1,00). In addition, f~" is also strictly monotone increasing. To verify that ¢, is an NCP
function, we need to show that ¢, satisfies condition (2.2).

“=" Suppose ¢,(a,b) = 0, we consider the two regions on the a, b-plane which are a > b

and b > a.

Case (1): If a > b, then f(f*(|a|) + f71(|b]) — f7'(0)) = max(a, b) = a. Since f~(|a]) +
“1(Jo]) = f~1(0) > 1 and f is strictly monotone increasing on [1,00), so a = f(f~'(|a])+

“1(Jbl) = £71(0) = F(1) = 0. Then, f(bl) = 1 = f~'(a) — £(Jal) = 0 since a is

nonnegative. This says b =0, a > 0.

Case (2): If b > a, by the symmetric form of the function, we obtain a = 0, b > 0.
Therefore, a >0, b=0or b > 0, a = 0. This is equivalent to a > 0, b > 0, ab = 0.

“«<” Conversely, suppose that a > 0, b > 0, ab = 0. Then, we have a > 0, b = 0 or
b=0,a>0.Ifa>0, b=0, it is trivial that ¢ (a,b) = |a| —a=0. If b >0, a =0, it
is also clear that ¢,(a,b) = [b| — b= 0.

(b) Since f : (—o0,1] — [0,00) is invertible and f(1) = 0, f is strictly monotone
decreasing. In addition, f~! is also strictly monotone decreasing. Next, we show that ¢ ;
is an NCP function.

“=" Suppose ¢, (a, b) = 0, we consider the two regions on the a, b-plane which are a > b
and b > a.

Case (1): If a > b, then f(f~'(lal) + f7'([b]) = f7'(0)) = a. Since f~ (|a|)+f’1(|b|) -
f750) < 1 and f is strictly monotone decreasmg on (—oo,1],a = f(f~(la|)+ f~(]b]) —
f740)) > f(1) = 0. Then, f71(|b]) — 1 = f~*(a) — f~(Ja|]) = 0 since a is nonnegative.
Hence, b =10, a > 0.

Case (2): If b > a, by the symmetric form of the function, we obtain that a = 0, b > 0.
Therefore, a > 0, b=0or b > 0, a = 0. This is equivalent to a > 0, b > 0, ab = 0.

“<” Conversely, suppose that a > 0, b > 0, ab = 0. Then, we have a > 0, b = 0 or
b>0, a=0. Fora >0, b=0, it is clear that ¢,(a,b) = [a| —a = 0. For b >0, a =0,
it is also trivial that ¢ (a,b) = |b| =b=0. O
Example 2.4. Here are examples of f satisfying condition in Proposition 2.82(a).

L filt) = (t = 1) -

2. fo(t) = ln(t)}[lm).

3. fa(t) = (t — 1)/2

4. fa(?)

100
(t . 1 1/5

‘[100 ’
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Then, their corresponding NCP functions are shown as below and their graphs are depicted
i Figure 2.20.

1. ¢, (a,b) = |a| + [b] — max(a,b).
2. ¢, (a,b) = In(el + el — 1) — max(a, b).
3. ¢, (a,b) = [|(a,b)[|2 — max(a,b).

4. ¢;,(a,b) = ||(a,b)|l5s — max(a,b).

Proposition 2.83. Suppose f is a continuously differentiable real valued function with
f(1) =0. If f satisfies the following conditions:

(i) f:[1l,00) = [0,00) is invertible, and
(ii) (fYY is strictly monotone on [0, 0),
then ¢, (a,b) = f(f~(la]) + f71(0]) — F71(0)) — (a + b) is an NCP function.

Proof. To verify that ¢, qualifies as an NCP function, we must demonstrate that
¢,(a,b) = 0 if and only if a,b > 0 and ab = 0; in other words, the function van-
ishes exclusively along the nonnegative sides of the a, b-axes. To this end, we examine
the behavior of ¢, in each of the four quadrants of the ab-plane. For the second, third,
and fourth quadrants, the analysis relies solely on the monotonicity of f~!. However,
when analyzing the first quadrant, where both a > 0 and b > 0, we additionally require
the monotonicity of the derivative (f~!)" to establish the necessary properties of ¢ 5

Case (1): Suppose a > 0 and b > 0. If (f~1) is strictly monotone increasing on [0, co),
then we have

-
- @)~

Thus, 1 < f~*(a) + f74(b) — 1 < f~'(a + b). Since f is strictly monotone increasing on
[1,00), so

FU @)+ 71 0) = 1) < f(F Y a+b) =a+b.
Thus,

¢, (a,b) = f(f M (a) + f7H(b) = 1) = (a+b) <0,
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[\%)
Z-axis
(3o}
z-axis

0.5

0.5

0.0 . 0.0 .
0, 08 p-axis -0.5 p-axis

(a) Graph of ¢, in Example 2.4 (b) Graph of ¢, in Example 2.4

(3]
z-axis
[\S)
Z-axis

0.5

0.5

0.0 .
05 p-axis

0.0 .
~0.5 b_a}uS 1.0 o

(c) Graph of ¢, in Example 2.4 (d) Graph of ¢, in Example 2.4

Figure 2.26: Graphs of NCP functions shown in Example 2.4.
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If (f~1) is strictly monotone decreasing on [0, cc), then we have
THa+b) =)
a+b
- / (Y )

f

f 1 ,<JZ
0
= [N f H(0)
f 1( )
Thus, 1 < f~*(a+b) < f~*(a) + f~1(b) — 1. Since f is strictly monotone increasing on
[1,00), we see

U Ha) + f70) = 1) > f(fHa+b) =a+d.

Then, it is clear that

¢, (a,b) = f(f~(a) + f7'(b) = 1) — (a+b) > 0.

Case (2): Suppose a < 0 and b > 0. Under this case, if a +b > 0, since f~! is strictly
monotone increasing on [0, 00), so we have f~1(|b]) — f~1(0) > f~'(a + b) — f~(]a]).
Thus,

“al) + 0D = 1> fTHa+0) > 1
Since f is strictly monotone increasing on [1,00), we have

FENal) + f26) — 1) > f(F Y a+ b)) =a+b.

If a4+ b <0, we still have f(f~'(|a]) + f71(|b]) — 1) > a + b because f is positive on
(1,00) and f~'(|a|) + f~'(|b]) — 1 > 1. Thus, there holds

¢, (a, ) = F(f (lal) + f7H (b)) = 1) — (a+b) > 0.

Case (3): Suppose a < 0 and b < 0. Since f~(Ja|) + f71(|p]) =1 > 1, f(1) =0, and f is
strictly monotone increasing on [1,00), f(f~!(|a|) + f~'(|b]) — 1) > 0. Thus, we have

¢, (a,b) = F(f 7 (lal) + f7H (b)) = 1) — (a+b) > 0.

Case (4): Suppose a > 0 and b < 0. This case is the symmetric case of a < 0,0 > 0.
Thus, there holds

¢, (a,b) = fF(f~H(|a) + f7H(0]) = 1) —a+b>0.
Case (5): Suppose a >0, b=0ora =0, b > 0. In this case, ¢, is zero.

Case (6): Suppose a <0, b=0or a =0, b <0. In this case, ¢, is positive.

In summary, ¢, is zero only on the nonnegative sides of a,b-axes. [
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Proposition 2.84. Suppose f is a continuously differentiable real valued function with
f(1) =0. If f satisfies the following conditions:

(i) f:(—o00,1] = [0,00) is invertible, and
(ii) (f~Y) s strictly monotone on [0, 0),
then ¢,(a,b) = f(f~"(la]) + f=(|6]) = f71(0)) = (a +b) is an NCP function.

Proof. The proof is similar to that in Proposition 2.83. [

Example 2.5. Here are examples of [ satisfying the conditions in Proposition 2.83.
1. fi(t) = ln(t)}[l’oo).
2. f2(t) = (t - 1)1/2‘[1700)‘

3. f3(t) = (t - 1)1/5‘[1700)'

Then, their corresponding NCP functions are as below and their graphs are depicted in
Figure 2.27.

1. ¢, (a,b) = In(el® + el — 1) — (a + ).
2. ¢, (a,b) = |(a,b)[|2 — (a +b).
3. ¢;,(a,0) = [(a,b)]l5 = (a+ ).

Proposition 2.83 establishes a sufficient condition on the function f and the derivative
(f71) to ensure that ¢ ; 1s an NCP function. However, this condition is not necessary.
In fact, there exist functions f for which (f~!)" is neither strictly increasing nor strictly
decreasing, yet the resulting ¢, still satisfies the defining properties of an NCP function.
To illustrate this, we present two counterexamples where f does not satisfy the strict
monotonicity requirement on (f~!), but ¢ ; nonetheless remains a valid NCP function.

Example 2.6. Let f be a real valued function defined by

—V/3B8—2t+6, if 1<t<185.

flt) =4 V2t —36+4, if 185 <t <20.
L—4q, if 20 <t

Then, we compute that

~C46t+1, if 0<t<5.
FU) =9 £ —4t4+26, if 5<t<6.
2 + 8, if 6<t.
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[\e)
z-axis

05 1.0
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1.0 _10 —0.5 b_aXlS

(a) Graph of ¢, in Example 2.5

(3]
z-axis

1.0 05 1.0

0.5
0.0 .
—05  p-axis 10 1o

0.0 .
10 _y0 0.5 p-axis

(b) Graph of ¢, in Example 2.5 (c) Graph of ¢ s, in Example 2.5

Figure 2.27: Graphs of NCP functions shown in Example 2.5.
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and
—t+6, if 0<t<5.
(YY) =< t—4, if 5<t<6.
2, if 6<t.

The graphs of f, f~' and (f~')" are given as in Figure 2.28. Consider ¢, (a,b) =
fOF7 (al) + f71(0l) — f71(0)) = (a 4+ b), we see that ¢, is zero on the nonnegative
sides of the a,b-axes and positive on the negative sides of the a,b-axes. In addition, by
using the monotonicity of =1, ¢ is positive on the second, third, and fourth quadrant due
to Proposition 2.85. Thus, we only have to check the value of ¢, on the first quadrant.
From the expression of (f Y, we can draw a diagram of the function and easily find that

Jo (FhY @)dt > fa+b Y(t)dt for all a,b > 0. This implies

Ha)=1> fHa+Db) = fH(b)
= fa)+ [ ()—1>f Ya+b) >
— (f Ha)+ f7Hb) = 1) > f(f7

(

)+ (a+ ))=a+b
= f(fHa)+ ()= 1) = (a+b) >0,

which says ¢,(a,b) > 0 on the first quadrant. Hence, ¢, is an NCP function, whose
graph is shown in Figure 2.30(a).

Example 2.7. Let f be a real valued function defined by

V2E—1-1, if 1<t<18.5.
F)={ V=20 +T73+11, if 185<t<24.
V2= 2341, if 24 <t.

Then, we compute that

Ctt+1, if 0<t<5.
Fr) =4 —L+11t—24, if 5<t<6.
—t+12, if 6<t.

and
t+1, if 0<t<5.
(FY@) =4 —t+11, if 5<t<6.
t—1, if 6<t.

The graphs of f, f~' and (f~')" are given as in Figure 2.29. Consider ¢,(a,b) =
fOF7 (al) + f71(0)) — f71(0)) — (a 4+ b), we see that ¢, is zero on the nonnegative
sides of the a,b-axes and positive on the negative sides of the a,b-azxes. In addition, by
using the monotonicity of =1, ¢ ; 18 positive on the second, third, and fourth quadrant
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(a) Graph of f in Example 2.6
60F ‘ ‘
— [0
40}
20t //
0 ; : .
0 5 10 15 20 25
(b) Graph of f~! in Example 2.6
oF : :
— (@)
4,

5 10 15 20 25

(c) Graph of (f~')" in Example 2.6

Figure 2.28: Graphs of f, f~! and (f~!)’ in Example 2.6.
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due to Proposition 2.83. Thus, we only have to check the value of ¢, on the first quad-
rant. From the e:cpression of (f~ 1)’ , we can draw a diagram of the function and easily

find that ['(f~1) (x)dx < fa+b Y(x)dx Ya,b > 0. This implies
fHa)—1< f Ha+ ) 1(b)
— 1</ () ) - “Ya+b)
= f(f () + (b) ) ( Ya+0b)=a+b

= f(f_()+f (b)) —1) = (a+b) <0,

which says ¢,(a,b) < 0 on the first quadrant. Hence, ¢, is an NCP function, whose
graph is shown in Figure 2.30().

6r . f(t) /

0 5 10 15 20 25

(a) Graph of f in Example 2.7

300F ‘ ‘
— [0

2001

100

—

0 5 10 15 20 25

(b) Graph of f~1 in Example 2.7

— (0

20

10

0 5 10 15 20 25

(c) Graph of (f~1) in Example 2.7

Figure 2.29: Graphs of f, f~! and (f~!) in Example 2.7.

There exists a promising avenue for further extending the class of NCP functions
described in Proposition 2.83. Specifically, we observe that by incorporating additional
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(a) Graph of ¢, in Example 2.6 (b) Graph of ¢, in Example 2.7

Figure 2.30: Graphs of two ¢, functions in Example 2.6 and Example 2.7.

functions, subject to suitable conditions, applied to the negative parts of a and b, one
can formulate an entirely new class of NCP functions. This extension leads to greater
flexibility in construction while preserving the key properties of NCP functions. We
formalize this idea in the next proposition.

Proposition 2.85. Suppose f is a continuously differentiable real valued function with
f(1) =0 and g is a real valued function with g(0) = 1. If f and g satisfy the following
conditions:

(i) f:[1,00) — [0,00) is invertible;
(ii) (f~Y) is strictly monotone increasing;

(iii) g(0) =1, g(t) > 1Vt >0, and 1 > g(t) > 5 Vt < 0.

Then, ¢, ,(a,b) = f(f~*(lal) + fH(b]) = £71(0)) — (9(b)a + g(a)b) is an NCP function.

Proof. To show that ¢, is an NCP function, we have to verify that ¢, is zero only on the
nonnegative sides of the a, b-axes. To this end, we check all the regions of the a, b-plane.

Case (1): Suppose a > 0 and b > 0. By Proposition 2.83, we have
FOUal) + f7100) = 1) < a+b < g(b)a+ g(a)d,

which yields
F al) + £ (b)) = 1) = (9(b)a + g(a)b) < 0.
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Case (2): Suppose a < 0 and b > 0. By Proposition 2.83, we have

FOHal) + F7H(0) = 1) > a+b > g(b)a + g(a)b,

which implies

FU al) + £7H(6) — 1) = (g(b)a + g(a)b) > 0.

Case (3): Suppose a < 0 and b < 0. Since f~! and (f~')" are both strictly monotone
increasing on [0, 00), we know that f~! is strictly convex on [0, 00). This indicates that

£ lal) + £ (bl) — 1> 257 (M) s (Ial : !bl) -

In addition, using f being strictly monotone increasing on [1, 00), it gives

el + 5 =10 > £ (27 (D) 1) o g (1)) - e B

2 2 2

Thus, we obtain

FOUal) + £7H(6) = 1) = g(b)a — g(a)b

> P g a tgtapn
- g (sgn(a) — 2g(b)) + g (sgn(b) — 2g(a))
> 0.

Case (4): Suppose a > 0 and b < 0. This case is the symmetric case of a < 0, b > 0.
Due to

FUal) + £7H(8) = 1) > a+b > g(b)a+ g(a)b,

it is clear to see
FOHal) + F7H(bD) = 1) = (g(b)a + g(a)b) > 0.

Case (5): Suppose a > 0,b =0 or a =0,b > 0. In this case, ¢, is zero.
Case (6): Suppose a < 0,b =0 or a =0,b < 0. In this case, ¢

From all the above, ¢, is zero only on the nonnegative sides of the a, b-axes. Hence, ¢,
is an NCP function. [

1.4 18 DositIve.

Example 2.8. Here are ezamples of f and g satisfying those conditions in Proposition
2.85.

(a) Three examples for function f:
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Lﬁ@ﬁﬂmmww.
2. oty = (=D, .
3. fa(t) = (t = 1)), .
(b) Three examples for function g, see Figure 2.31:
1. g1(t) = €.
4—et

. t) = .

20 =15
2+4+t

Then, applying those f and g functions in Example 2.8, we generate the following nine
NCP functions, see Figure 2.32.

Bad) = (e 4 1) ==
4 — e_b 4 — e @
a — b7
1+ 2e—b 1+ 2e—@
2 4 2 1

P3(a,b) = ln(e'“| 4+ el — 1) — \/ﬁ*’ba_ @4—&()’
da(a,b) = (@, b)]2 — e'a — e,

4 — e_b 4 — e @
Ps(a.0) = @ D)lle = 7550~ Tog0

b24+4+b 244

o) = Nl - I, VALY,
¢7(aa b) — ||(a, b)||5 — @ba — eab’

¢s(a,b) = |[(a,0)]5

Gala,b) = In(e 4 —1)

Y

— a — b,
14 2e? 14 2e@
VP+4+b  Va+d+a
bolat) = (o)~ YT, YEALRe,

The following proposition serves as a counterpart to Proposition 2.84, with arguments
closely paralleling those used in the proof of Proposition 2.85. The result relies on the
monotonicity and concavity of f~! over the interval [0,00). For brevity, we omit the
proof.

Proposition 2.86. Suppose f is a continuously differentiable real valued function with
f(1) =0 and g is a real valued function with g(0) = 1. If f and g satisfy the following
conditions:

(i) f:(—o00,1] = [0,00) is invertible;
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Figure 2.31: Graphs of g functions given in Example 2.8.

(ii) (f~Y) is strictly monotone decreasing;
(iii) g(0) =1, g(t) > 1Vt >0, and 1 > g(t) > 5 Vt <O0.
Then, gbf’g(a,b) = f(f~*(al) + f71(b]) — £71(0)) — (9(b)a + g(a)b) is an NCP function.

In Proposition 2.85, consider the specific choice f(¢) = ¢t — 1 In this case, we have
FfF (al)+ £71(|b]) = 1) = |a] + 10|, and notably, (f~')" is not strictly monotone increas-
ing. Nevertheless, we observe that if an auxiliary function g satisfies a strict inequality
condition, rather than an equality condition, on the interval (0,00), then the resulting
function ¢, remains a valid NCP function. This observation motivates an extended
case of Proposition 2.85. A related class of NCP functions of this type was previously
introduced in [4], and can be viewed as a specific instance connected to the framework
established in Proposition 2.85.

Example 2.9. Suppose that ¢(a,b) = |a| + |b] — (g(a)b + g(b)a), where g : R — R
satisfying

g(0)=1, g(t)>1 Vvt>0, and 1>g(t)>—-1 Vt<O.
Then, ¢ is an NCP function. Note that the condition 1 > g(t) > —1 for allt < 0 is a bit
weaker than 1 > g(t) > —% for all t <0, used in Proposition 2.85 and Proposition 2.86.
This distinction arises because our analysis involves both f and g, whereas the approach
in [4] considers only g.

For instance, consider the same examples of g presented in Fxample 2.8, which also
satisfy the conditions mentioned above.

1. gl(t) = €t.

4 —et

& eell) =
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05
0.0
buaxis 05

(b) Graph of ¢, from Example 2.8

0.0
b-axis 05 10

(¢) Graph of ¢3 from Example 2.8 (d) Graph of ¢4 from Example 2.8

SIXe-2
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0.0
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5
0.0
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(g) Graph of ¢7 from Example 2.8 (h) Graph of ¢g from Example 2.8
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12 4+4+1
5. golt) = L=

The corresponding NCP functions are then constructed as follows; see Figure 2.33 for
their graphical representations.

1. ¢, (a,b) = |a| +|b] — e’a — €.

4 — et 4 — e @
a — )
14 2e? 14+ 2e@

VO2+4+b \/a2+4+ab
a — .
2 2

2. ¢,,(a,b) = la| + [b] —

3. ¢,,(a,b) = la| + [b] —
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(a) Graph of ¢ Example 2.9
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(b) Graph of ¢, Example 2.9 (c) Graph of ¢, Example 2.9

Figure 2.33: Graphs of NCP functions generated in Example 2.9.



Chapter 3

General Complementarity Functions

The NCP functions introduced in Chapter 1 are, in fact, C'-functions associated with
the nonnegative orthant IR", a special instance of symmetric cones. In this chapter, we
broaden our scope to explore more general classes of complementarity functions linked to
other types of symmetric cones [66], including C-functions associated with second-order
cones (SOC), the cone of positive semidefinite matrices, and the unified symmetric cone.

3.1 Complementarity Functions associated with SOC

In this section, we examine the complementarity problem within the framework of second-
order cones, known as the second-order cone complementarity problem (SOCCP). The
objective is to find a vector ¢ € IR" that satisfies

(F(¢),¢) =0, F(Q) ek, (eKk, (3.1)

where (-, ) denotes the Euclidean inner product, F' : IR" — IR" is a smooth (i.e., con-
tinuously differentiable) mapping, and K is the Cartesian product of second-order cones.
In other words,

K=K" x---x K", (3.2)

where m,nq,...,n,, > 1, 0y + -+ n,, =n, and
K= {(z1,29) € R x R"™ | ||ag < 21}, (3.3)
with || - || denoting the Euclidean norm and K! denoting the set of nonnegative reals R .

A special case of (3.2)-(3.3) arises when K = IR"}, the nonnegative orthant in R",
corresponding to the setting where m = n and ny = --- = n,,, = 1. In this case, the
SOCCP (3.1) reduces to the classical NCP, a cornerstone in optimization theory with
wide, ranging applications in engineering and economics; see, for example, [63, 68-70].
A broader formulation of the SOCCP seeks a vector ( € IR" satisfying

(F(¢),G(C) =0, F()ek, G()eKk, (3.4)

181



182 CHAPTER 3. GENERAL COMPLEMENTARITY FUNCTIONS

where (-,-) denotes the Euclidean inner product, and F': IR" — IR", G : IR — IR" are
smooth (i.e., continuously differentiable) mappings. Unless stated otherwise, throughout
this chapter we assume K = K" for simplicity, that is, K is a single second-order cone.
However, the ensuing analysis readily extends to the general case where I takes the form
of a Cartesian product as in (3.2).

Recall that when K is the second-order cone K", a function ¢ : IR” x IR" — IR" is
called a C-function associated with the SOC if

o(x,y) =0 <= 2,y K", zoy=0, (3.5)
— z,ye K", (z,y)=0.

Such C-functions are particularly valuable in addressing the SOCCP, as they enable re-
formulation into nonsmooth equations. Over the years, various methods have been pro-
posed to solve the SOCCPs. These include interior-point methods [6, 141, 158, 187, 209]
and non-interior smoothing Newton methods [46, 78, 91]. More recently, an alterna-
tive approach was introduced in [41], where the SOCCP is reformulated as an uncon-

strained smooth minimization problem. The idea is to construct a smooth function
¥ IR™ x IR™ — IR, such that

UY(r,y) =0 <= =zxze€k", yek", (z,y)=0. (3.6)

Such a function 1 is referred to as a merit function, and it also qualifies as a C'-function.
With this formulation, the SOCCP can be rewritten as the unconstrained smooth (global)
minimization problem:

min ¢ (F(¢), ¢)- (3.7)

¢eRm

This reformulation allows the application of standard gradient-based optimization tech-
niques, such as conjugate gradient and quasi-Newton methods [8, 75]. As discussed in
[41], this approach offers several advantages. However, its effectiveness critically depends
on the appropriate choice of the merit function ).

We begin with the NCP function introduced by Mangasarian and Solodov, as pre-
sented in (2.11). Under the second-order cone (SOC) setting, this function admits two
potential extensions. The first is the implicit Lagrangian function ¢, : R" x IR" — Ry,
which is parameterized by a > 1 and defined as follows:

buelos) = m (L =) = (0) = oo llo =l + = ol

u,vEL”
1
= (zy) + o (e —ag)e[* = ll=” + Ity — az)o [P = llyl?) - (3.8)

This function is also extended to semidefinite complementarity problems (SDCPs) by
Tseng [207] and general symmetric cone complementarity problems (SCCPs) by Kong
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et al. [127]. The second extension is the vector-valued implicit Lagrangian function,
st IR" X R™ — IR", defined by

1
Oy (T, y) =x 0y + 2% [(37 - ay)i — 2+ (y — ax)i — yQ} Ve,y e R",a>1. (3.9)

Both 9, and ¢, are C-functions associated with the SOC; see Proposition 3.1 below.
Furthermore, according to [127, Theorem 3.2(b)] (also refer to Section 3.3), the function
1, serves as a merit function derived from the trace of the ¢,,, function. It is worth
noting that the C-function ¢, is primarily constructed via the projection onto the
second-order cone, providing a natural extension of the original ¢, defined in (2.11). The
results that follow generalize several classical findings, particularly those in [148, 208, 218],
from the NCP framework to the SOC setting.

Proposition 3.1. For any fivzed o > 1 and all z,y € R", we have the following results.
(a) Yy(r,y) =0 <= 2 K", ye K", (z,y) =0 <= ¢, (z,y) =0.
(b) ¢, and ¥, are continuously differentiable everywhere, with

Vitys(,y) = y+a " ((z—ay)y —2) = (y — az)y,
VwaS(l',y) = T+ ot ((y - O‘x)Jr - Z/) - (iL‘ - ay)Jr-

(c) The gradient function Vi), is globally Lipschitz continuous.

MS

(d) (@, Vathys(z,9)) + (Y, Vytbys (2, 9)) = 2¢,4(2,y).

(€) (Vathys(2,y), Vytys (2, 9)) 2 0.

(f) Yys(x,y) =0 if and only if Vb, (z,y) =0 and V), (x,y) = 0.
(8) (a— Do (zy)I* = dys(z,y) = (1= a )| (z,y)]1*

(h) a™Ha = 1)*ys(2,y) < Vathys(2,9) + Vit (2, 9)1* < 20(a — Dy (2, ).

Proof. The proofs of parts (a)-(b) and (e)—(f) can be found in [127]. Parts (c¢) and
(d) follow directly from the explicit forms of ¢, and its gradient V¢ . Part (g) is a
straightforward application of [208, Proposition 2.2], taking 7 = —,,,. Finally, part (h)
follows easily from [176, Theorem 4.2], together with results from parts (b) and (g). O

In the setting of SOC, as mentioned in Chapter 1, for any x = (xy,75) € R x R"™!
and y = (y1,72) € IR x IR"!, their Jordan product associated with K" is

roy = (<x,y>, Y122 + $1y2) .

The identity element under this product is e := (1,0,--- ,0)T € IR". We use the notation
22 to denote the Jordan product x o , and z + y to represent the usual componentwise
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addition of vectors. It is well known that 2?> € K" for any x € IR". Moreover, for any
x € K", there exists a unique vector #1/2 € K" such that (z'/2)? = 212 02'/2 = 2. Based
on this, the Fischer-Burmeister function associated with the SOC is defined by

¢FB (l’,y) = (1’2 + y2)1/2 —T =Y, (310)

for all (z,y) € IR™ x IR™; it is a map from IR™ x IR™ to IR". It was shown in [78] that
¢pp(x,y) = 0 if and only if x € K™, y € K™, (x,y) = 0. Hence, ¢, : R" x R" — R,
induced from

1
¢FB(x7y) = §H¢FB($’y)H27 (3'11)
is a merit function for the SOCCP.

It is known that SOCCP can be reduced to an SDCP by observing that, for any
= (x1,22) € R x R"! we have x € K" if and only if

Lgc::[gc1 x-{]

) Ilf

is positive semi-definite (also see [78, p. 437] and [190]). However, this reduction increases
the problem dimension from n to n(n + 1)/2 and it is not known whether this increase
can be mitigated by exploiting the special “arrow” structure of L,.

Lemma 3.1. Suppose that x = (z1,72) € IR x R"™! has the spectral decomposition (1.8)

with spectral values Ny, Ay and spectral vectors u&”, ul?. Then, the following results hold.

(a) 2% = Nu® + 22 € K.
(b) If x € K", then 0 < \; < Ay and /%2 = /A1 u™ + /A5 u®.

(c) Ifx € int(K"), then 0 < A\ < Ag, det(x) = A Aa, and L, is invertible with
Lt L . d _@1
1 ¢
’ det(z) | —x9 ° (:1:’)[ + —xp1g
T T

(d) zoy= Ly for ally € R", and L, > 0 if and only if x € int(K").
Proof. Please refer to [78] for detailed proof. [

Since z?%,y* € K" for any x,y € IR™, we have 2% +y? = (||z|* + ||y||?, 22122 + 2p132) €
K™, which implies

o +yt ¢int(K") = 2l® + yl* = 2llziws + yigell. (3.12)
The spectral values of 22 + y? are as below:

A=l P = 2l + v,

3.13
N = Jall? + ll2 + 2llees + vl (3.13)
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For convenience, we introduce some notational conventions that will be used throughout
the remainder of this section. For any vectors z = (z1,72) € RxIR" ' and y = (y1,1») €
IR x R"!, we define the mappings w, z : IR" x R" — IR" as follows:

w= (wl’wZ) = (wl(xay>7w2(xay ) = ’LU(iL', ) = g2 —|-y27
2= (21,22) = (21(2,y), 22(3,y)) = 2(2,y) := (2 + y*)/2 (3.14)

Clearly, w € K™ with w; = ||z||* + ||y||* and wy = 2(z122 + y1y2). By denoting

W2 _ TiTa Tt thbs if wy#0
_ = 2
wy =4 Nwall  lz1zs + 1190

any vector in IR"™! satisfying||[ws|| =1 if wy =0

and using Lemma 3.1 (b) and (c), we can express z as

z =

We now present several key technical lemmas essential for the analysis that follows.
The first lemma characterizes specific properties of vectors z and y when the sum 22 + 12
lies on the boundary of K". The second establishes an upper bound for two squared
terms in terms of a quantity that reflects the proximity of 2% 4 y? to the boundary of K.
The remaining lemmas provide additional useful relationships. Collectively, these results
form the foundation for the subsequent analysis in this chapter.

Lemma 3.2. For any x = (z1,%2),y = (y1,y2) € R x R" ! with 2% + y* € int(K"), we

have
xi = [z
vi = vl
1y = fv}yz,
T1Y2 = Yix2.

Proof. By (3.12), [|«[|*+ [|y[|* = 2[|z122+y1y2]- Thus (=] + [y]|*)* = 4l|z122+yiys|?,
so that

lz[* + 2l P llyl* + lyll* = 412z + y1ye)T (2122 + y132).
Notice that ||z|* = 23 + ||z2||* and ||y||* = y? + ||y2||>. Thus,

2 2
(@3 + lla2l®)” + 20l Nyl* + (o5 + lly2l®)” = daillwall® + 8z1r25 92 + 443 ]|yl
Simplifying the above expression yields

(22 — 22012 + (42 = lwal®)” + 2Nz Pllyl? — 8zapray2) = 0.
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The first two terms are nonnegative. The third term is also nonnegative because

IzPlyl? = (27 + [l@2]?) (45 + llwell?)
lzalllz2ll) Clyallyall)
Ay ||y | |22l ||y2||

> 4Ty Yo

AV

Hence

o} = llwall’, wi = llwell®, 20l=lPlyl® — 8ziyrzyy2 = 0.

Substituting ? = ||z3||* and y} = [|y2||* into the last equation, the resulting three

equations imply z1y; = 23 ¥s.

It remains to prove that z1y, = y129. If 1 = 0, then ||xs|| = |21] = 0 so this relation is
true. Symmetrically, if y; = 0, then this relation is also true. Suppose that z; # 0 and
y1 # 0. Then, x5 # 0, yo # 0, and

w11 = oy = |22 [|y2]l cos O = |a[Jys| cos b,
where 6 is the angle between x5 and yo. Hence, cos € {—1,1}, i.e., yo = axs for some

a # 0. This yields

Ty = x;yg = 04|’5’32H2 = O@’U%,

so that y;/x; = a. Thus, yo = 2oy /x1. O

Lemma 3.3. For any v = (v1,22),y = (y1,92) € R x R" ! with z25 + y192 # 0, we

have
< (r129 + 912/2)T$2)2 T1T2 + 1Yo ’2
T — < To — 1y
2122 + Y132 ]| 2122 + Y132
< zl? + llyll? = 2l|z122 + y1yel|-

In other words,
(21 4+ (=)l ws)” < |2 + (= 1) ay || < As(w) for i=1,2.

Proof. The first inequality can be seen by expanding the square on both sides and using
the Cauchy-Schwarz inequality. It remains to prove the second inequality. Let us multiply
both sides of this inequality by

2122 + 1y ||” = 23|22 ||* + 2z1123 v2 + yillya|)?
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and let L and R denote, respectively, the left-hand side and the right-hand side. Since
x1T9 + y1y2 # 0, the second inequality is equivalent to R — L > 0. We have

T
I — (||JI2H2—2I (x1x2+y1y2) )

! ||x1$2 + y1y2|| N Jﬁ) Hx1x2 N y1y2||2

_ ||:c2||2(x%||x2||2+2x1y1x;y2+y%||yg||2)
9, (a:1||x2||2 ; ylx;yz) -

ta? (x%H:vgn? T 2yl + yiuygw)
= af||wo||* + 2219123 vl w2 ||® + i || 22| ]| ye?
=2z} ||za||*| 122 + v1ya|| — 2213123 Yoz + Y19a||
+ai||lwa|? + 223125 yo + 2Ty3 |ya |7,

and

R - (||x||2+ ||y||2—2||x1x2+y1y2||)||x1x2+y1y2||2
_ 2 2 2 2 2
_ (x1+||x2|| —2||x1x2+y1y2||)||x1x2+y1y2|| T Pl + izl

_ (w% T flall? = 2leras + ymn) (a:%||x2||2 2T+ y%HyQHQ)

HlylP ez + 1y

= zillza? + 22t ag ys + 3yt well® + af et + 21125 vl ||
+ytllzelPllyall? = 223 wol P 2122 + yavell — 4x1nzg yollzr s + yays||
=20t el lPllz1ze + vawell + N1yl (lz1z + y1ya?.

Thus, taking the difference and using the Cauchy-Schwarz inequality yields
R—-1L

= |yl llz1z2 + 1yel®

— 2x1y1x;y2Hx1x2 + e — 2nyy2HQHx1xz + y1 9|

= yillzive + nivel® + |vel*llz1ze + v1vell® — 201y (z122 + yiye) | 2122 + v13s|
> yillews + yigell® + v2l*llerze + yav2ll® = 2w lllvell 2122 + yayell?

= (lyal = lwel))? lz122 + yrye|?

> 0.

Then, the proof is complete. [

Lemma 3.4. There exists a scalar constant C > 0 such that

‘|L1L(_x12+y2)1/2||F S O? ||LyL(;12+y2)1/2HF S C
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for all (x,y) # (0,0) satisfying x> + y* € int(K"). (||A||r denotes the Frobenius norm of
AeR™™.)

Proof. Consider any (z,y) # (0, 0) satisfying °+y* € int(K"). Let Aj, g be the spectral
values of 22 + 92 and let z := (22 + »?)'/2. Then, z is given by (3.15), i.e

VAL + VA VA=V

£ = 9 ) zg = 5 W2,
with A1, Ay given by (3.13), and wy := H??—% if z129 + y1y2 # 0; otherwise wy is
122 + Y1Yo
any vector satisfying ||wq| = 1. Using Lemma 3.1(c), we have that
L.L;!
€ l'TZ
B 1 T2 — X3z —T28 + dzf S 2T 316
~ det T mdet() m (3.16)
et(z) | x9z; — 2129 —X9%29 + I+ oz z2
Ll P, ff el + el
- 1 Jr2<r+r>f'7;w2“5r
NIV ‘ﬁﬁﬁx 4+ Yo ‘ﬁmlwg Vi rm 2wl + %‘\;x I
+(\(/\7f_;/\7—))1’1w2w§
[ (21 + 2w, 1 — TIws Twd  xpwd 2t ]
2 I 2 2 2 2
2\/ )\2 2\/ )\1 2\/ )\ \/g\/ )\ YV )\1 + v )\2

P ]

o (22 + z1ws) N (29 — zqws) Towy x2w;> N 2211
2v/ X2 2V 2\(_ 2vVa/) VALV
2 2+

P ] _

Since Ay > |[|z||?, we see that /Ay > |z1] and VA > ||xa]|. Also, ||we|] = 1. Thus,
terms that involve dividing x; or x5 or 1wy or zdwy or zywow] or xdwywd by Ay or
VA1 + VA2 are uniformly bounded. Also, v/A1/v/A2 < 1. Thus

L,L;*
_ (21 — zdws) T1wy ‘/\/E -
B O(1) + ow O(1) — o + (\/_+ ) T Waly
(@2 —mawa) gy T3 =
R Y T N TV, v, SR
- (z1 — T3 ws) T1wy Vo — 23 w,) .
) 0(1)+2—\/A—1 O(1) — (\/_+¢_) (\//\_1+\/)\_2)\/>\_1w2
O(1) w O(1) — $2w2 \/)\_Q(IEQ — Tws) o7 )
- 2V A 2V +va) 2V VAV
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where O(1) denote terms that are uniformly bounded, with bound independent of (z,y).
By Lemma 3.3, if z120 4412 # 0, then |z, —2dws| < ||wo—z1ws|] < VAL 212 +y190 =
0, then A\; = ||z||*+ ||ly||* so that, by choosing wy to further satisfy xJw,; = 0 (in addition
to |Jws|| = 1), we obtain

|21 — 2y ws| < oz — wrws|| = [Jzf] < VAL

Thus, all terms in L,L;! are uniformly bounded. [
Lemma 3.5. (a) For any x € K", y € R" with 2* — y* € K", we have v —y € K.
(b) For any z,y € R™ and w € K" such that w® —z* —y* € K", we have L7, = L2+ L.
Proof. Please see [78, Proposition 3.4]. O
Lemma 3.6. (a) For any « € R”, (z, (x)_) = |(@)_| and (z, (2).) = [[(z) |
(b) For any x € IR" and y € R", we have

rekk" <= (x,y)>0 VyeKk" (3.17)
(c) Let x = (x1,22) € R x R" ! and y = (y1,y2) € R x R™™!. Then, we have

(2,y) < V2 [|(zoy)-ll. (3.18)

Proof. (a) By definition of trace, we know that tr(z o y) = 2(x,y). Thus,

(z,(x)-) =

-+
=
—~ —~ —~
—
8
N—

+
_l’_
—~
8
~
L
(0]
—~
8
N~—

I
~—

N RN~
&

|
=
8
‘\/
o

where the last inequality is from definition of trace again. Similar arguments applied for
(@, (2)4) = [I(x)+]1*.
(b) Since K" is self-dual, that is ™ = (K™)*. Hence, the desired result follows.
(c) First, we observe the fact that
reK" < (2);=uz,

re—-K" < (z); =0,
€ K"U-K" < (2); = \u?,
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where A, is the bigger spectral value of z with the corresponding spectral vector u(®).
Hence, we have three cases.

Case(1): If zoy € K™, then (xoy), = x oy. By definition of Jordan product of x and y

as (1.2), ie,, zoy = ((z,y) , T1y2 + y122). It is clear that ||[(z o y)4| > (z,y) and hence
(3.18) holds.

Case(2): If xoy € —K™, then (zoy)y = 0. Since z oy € —K", by definition of Jordan
product again, we have (z,y) < 0. Hence, it is true that v/2||(z o y),| > (2, ).

Case(3): If zoy ¢ K" U —K", then (zoy); = Mu® where

A = (z,y) + [|[T1y2 + iz,

uW? = 1(1’ T1Y2 + Y122 )
2 lz1y2 + Y122

If (z,y) <0, then (3.18) is trivial. Thus, we can assume (x,y) > 0. In fact, the desired
inequality (3.18) follows from the below.

1
I@oylP = 523

2

1

5(1‘, y>27

1
= 5 (<377 y>2 +2(x,y) - ||z1y2 + yaxa|| + [|z1y2 + 3/1552H2>

v

where the first equality is by [[u®| =1/v2. O

Lemma 3.7. Let ¢, and ¢, be given by (3.10) and (3.11), respectively. For any
(z,y) € R™ x R", we have

2 2 2

¢FB (ZE, y)+

Proof. The first inequality follows from Lemma 1.1(a). It remains to show the second
inequality. By Lemma 1.1(d), (22 + 3?)"/? — z € K". Since K" is self-dual, then Lemma

1.1(c) yields

2 2
((:1@'2+3/2)1/2—Dc—y)+ > H(_y)+
By a symmetric argument,
2 2
H ((.I'? + y2)1/2 —x — y)+ > H(—ZL‘)+

Adding the above two inequalities yields the desired second inequality. [
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Lemma 3.8. Let ¢, and ¢, be given by (3.10) and (3.11), respectively. For any
{(z* )}, CR™ x R, let \¥ < A5 and pf < pb denote the spectral values of z* and
y*, respectively. Then the following results hold.

(a) If \} — —o0 or u¥ — —o0, then v, (2%, y*) — oo.

(b) Suppose that {\k} and {u}} are bounded below. If N§ — oo or ub — oo, then
(z,2%) + (y, y*) — oo for any x,y € int(K").
Proof. (a) This follows from Lemma 3.7 and the fact that

2

2 ||(=2"),||" = > (max{o, —AE)

i=1
and similarly for ||(—y*)||?; see [78, Property 2.2 and Proposition 3.3].

(b) Fix any = = (1,22),y = (y1,92) € R x R"™" with [|za|| < 21, [|y2l| < y1. Using the
spectral decomposition

ok PP P L
2 2 2

w ) with ||wh|| =1,

we have

)\k )\k )\k - /\k /\k )\k
(z,2%) = (%) x1 + < 2 5 1> rowh = 71(:51 — zwh) + 72(% + zawh). (3.19)

Since ||wh]| = 1, we have z; — zdw§ > z; — ||zo]] > 0 and z; + xJwh > 1 — |22 > 0.
Since {A\} is bounded below, the first term on the right-hand side of (3.19) is bounded
below. If {A\5} — oo, then the second term on the right-hand side of (3.19) tends to
infinity. Hence, (z,2*) — oco. A similar argument shows that (y,4") is bounded below.

Thus, (z,2*) + (y,y*) — oo. If {k} — oo, the argument is symmetric to the one above.
0

3.1.1 The functions ¢,, and v, in SOC setting

A. The functions ¢_, and ¢,

Proposition 3.2. Let ¢, : IR" x IR" — R™ be given by (3.10). Then, the function
Gpp 15 a C-function associated with SOC, that is, it satisfies (3.5). In other words, there
holds

G (1,y) =0 <= 2,y € K", oy =0,
— =z,ye K", (z,y)=0.
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Proof. Please see [78, Proposition 2.1]. [

Proposition 3.3. Let ¢, : R" x IR" — IR" be given by (3.10). Then, the function ¢,
15 15 strongly semismooth.

Proof. The proof relies on the relationship between the singular value decomposition

(SVD) of a nonsymmetric matrix and the spectral decomposition of a symmetric matrix;
see [198, Corollary 3.3] for details. O

Proposition 3.4. Let ¢, be given by (3.10). Then, the function 1., given by (3.11)
has the following properties.

(a) Yp : R x R™ — Ry is a C-function associated with SOC, which satisfies (3.6).

(b) vy is differentiable at every (z,y) € R"xIR"™. Moreover, V1,,(0,0) = V,1,,(0,0) =
0. If (z,y) # (0,0) and 2% + 4> € int(K"), then

VmwFB (may) = LxL&12+y2)1/2 —1I ¢FB (a:,y),
VwaB (xvy) = LyL(_;E12+y2)l/2 -1 ¢FB (:L’,y)

If (z,y) # (0,0) and x* + y* & int(K"), then 23 + y} # 0 and

Vol 4yt

Ve (t,y) = (#—Ty—l) Ges (,9). (3.21)

Proof. (a) This result follows from Proposition 3.2 directly.

Votbes(2,y) = (L—Q Ges (,9), (3.20)

(b) In light of the behavior of 2 + y?, we proceed with the analysis by considering three
distinct cases.

Case (1): z =y =0.

For any h, k € IR", let 111 < 15 be the spectral values and let vV, v(?) be the corresponding
spectral vectors of h? + k?. Then, by Lemma 3.1(b),

(R + D)2 —h—k|| = [V + Vav® — h— k|
< Vi oW+ iz 0@ + (IRl + (1]
1
= — + + ||R]l + IE]-
\/5(\/;71 Viz) + Al =+ [k
Also
p < e = (AP A (IR 2l 2k + K|

1AL+ 1-01% + 2[Aal [[a]] + 2|k ][ 2]
2/[A]1* + 2|1k
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Combining the above two inequalities yields

o (0 K) — 100 (0,0) = ||(B2 + k)2 — b — k||
< (%<m+m+uhu+uku)
2 2 2 ’
< (ﬁmnhn TR +||hu+|wc||)

O([RII* + [IEI1)-
This shows that ¢, is differentiable at (0,0) with

Vg (07 O) = vyd}FB (07 O) =0.

Case (2): (z,y) # (0,0) and 2? 4+ y* € int(K").

Since 22 + y? € int(K"), Proposition 5.2 of [78] implies that ¢, is continuously differen-
tiable at (z,y). Since v, is the composition of ¢ with = — 1||z||?, then ¢, is contin-
uously differentiable at (x,y). The expressions (3.20) for V, 1., (x,y) and V, .. (x,y)
follow from the chain rule for differentiation and the expression for the Jacobian of ¢,
given in [78, Proposition 5.2] (also see [78, Corollary 5.4]).

Case (3): (z,y) # (0,0) and 2? + y* & int(K").
By (3.12), [lz]* + lyll* = 2[lz122 + y1gel|. Since (z,y
y1y2 # 0, so Lemmas 3.2 and 3.3 are applicable. By (

) # (0,0), this also implies x5 +
3.15),

s (VA B

- T1T9 +
where Aj, Ay are given by (3.13) and wy := _Tite T il
[z122 + y192]|
Since x122 +y1y2 # 0, we have 12y +y1y5 # 0 for all (2', ') € R" x IR sufficiently near

to (x,y). Moreover,

Thus, Ay = 0 and Ay > 0.

2

2¢FB(x/’y/> _ H(JI/Z—}-ylz)l/Z—l’/—y/
1/2]|2 1/2
_ H(x'2+y’2) H +Hx’+y’H2—2<<x’2+y’2> ,x’+y’>

_H/z 1112 / 112 ) /2 /21/2/ /
= lZ'IF+ [lg'II7 + [l2" + y[IF =2 (27 +y o'y,

where the third equality uses the observation that ||z||? = (22, ¢e) for any z € IR™. Since
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1212 4+ ||Y/||* + ||2' + '||? is clearly differentiable in (z/,3), it suffices to show that

2 <<:c’2 + y’2)1/2 T+ y'>
= (V2 + ) (7y +y1) + (Ve — /i)

(hahy + yih) T (2h + yb)
— \/E(at’jty’%—
b Bl

(%%+MWW%+%»
|22 + Y|

(zhah + yivh) T (2h + h)
|2y 25 + v

—+V&z'(x;+-yg—- (3.22)
is differentiable at (2/,y') = (x,y), where p1, ug are the spectral values of 2/ 4+ 3/°, i.e.,
wi = |22+ |Y1? + 2(=1)%||=h2h + yiys||. Since Ay > 0, we see that the first term on the
right-hand side of (3.22) is differentiable at (2',vy') = (z,y). We claim that the second
term on the right-hand side of (3.22) is o(||h|| + ||k||) with h == 2" — 2z, k == ¢ —y, i.e.,
it is differentiable with zero gradient. To see this, notice that xyze + y1y2 # 0, so that
pr = |22 + |V |1* = 2||2h2h + viubl, viewed as a function of (z/,3/), is differentiable at
(«',y') = (z,y). Moreover, pu; = Ay = 0 when (2/,y') = (z,y). Thus, first-order Taylor’s
expansion of py at (x,y) yields

p = O(lz" ==l + ' —yll) = ORI+ [[E])-

Also, since x1x5 + y1y2 # 0, by the product and quotient rules for differentiation, the
function o I /
o4y — (@2 + y1ys) " (5 + o) (3.23)
2125 + y195||
is differentiable at (z',y’) = (z,y). Moreover, the function (3.23) has value 0 at (2, ') =
(x,y). This is because

(2122 + y1y2) T (22 + y2)

T T
= X1 —WeTy + y1 —wyye = 0+0,
| 2122 + Y192 | 2 ?

T+ —

where wy = (2122 + y1y2)/||z122 + y132|| and the last equality uses the fact that, by
Lemma 3.3 and ||z||* + ||y||*> = 2||z122 + y192||, we have wlxy = 21, wiys = y1. (By
symmetry, Lemma 3.3 still holds when = and y are switched.) Thus, the function (3.23)
is O(||h]| + ||k]|) in magnitude. This together with u; = O(||h| + ||k||) shows that the
second term on the right of (3.22) is O((||k|| + ||k]))%/?) = o(||R|| + ||k]]).

Thus, we have shown that v, is differentiable at (x,y). Moreover, the preceding argu-
ment shows that 2V, (z,y) is the sum of the gradient of ||z’||* + [|y/||* + ||z’ + ¥'||* and
the gradient of the first term on the right of (3.22), evaluated at (2',y’) = (z,y). The
gradient of ||z'||* + ||¢/||* + ||z’ + ¥/||* with respect to 2/, evaluated at (2/,y') = (x,y), is
4x + 2y. Using the product and quotient rules for differentiation, the gradient of the first
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term on the right of (3.22) with respect to ', evaluated at (2',y’) = (z,y), works out to
be

Ty + Wy To
VA2

.

+\/_( z3 (z9 + y2) w,y (T2 + Y2) wgmg)

|22 +yly2H |lz122 + 1192
2z (x1 +
_ I g
]+ Yy

where wy := (r122 + y1y2) /|| T172 + y192|| and the equality uses Lemma 3.2 and the fact
that, by Lemma 3.3 and ||z + [|y||* = 2||z122 + y192]|, we have w]xy = 21, wys = y1.
Similarly, the gradient of the first term on the right of (3.22) with respect to z}, evaluated
at (',y") = (x,y), works out to be

(513'1 + 1+ w;—(ﬂig + yz))

T + Wok1

Vs
+\/— (2I1$2+ (1 4+ y1)y2 B w;(@—kyg) w29€1)

| z122 + Y192 2122 + Y132
2$1I2 -+ (.Tl + y1>y2

Vol 4yt

In particular, the equality uses the fact that, by Lemma 3.2, we have x1ys = y122 and
2129 + y110]| = 22 + ¥, so that wozy = w9 and Ay = 4(2? + y?). Thus, combining the
preceding gradient expressions yields

2/ + 2 } 2 { z1(x1 + 1) ]
OV, (2,y) = da + 2y — N e '
77Z)FB( y) Y [ 0 /l’% + y% 2179 + («TI + y1>y2

Using ||x129 + 12| = 23 + vy} and Ay = 4(2? + y?), we can also write

(2% + )2 = 1‘1$2+yly2
V xi +yi

(21 + y1 + wy (22 + y2))

= 2

so that
Tr1To +
Gesloy) = (ot +0i — (o), DL g ) (329)
]+ Yy

Using the fact that z1y, = y122, we can rewrite the above expression for V, 4. (z,y) in
the form of (3.20). By symmetry, (3.21) also holds. [

Proposition 3.5. Let ¢, be given by (3.10). Then, the function 1., given by (3.11) is
smooth everywhere on IR™ x IR™.
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Proof. By Proposition 3.4, 1., is differentiable everywhere on IR" x IR". We will show
that Vi, is continuous at every (a,b) € R™ x IR". By the symmetry between = and y
in Vi), it suffices to verify that V,1,, is continuous at every (a,b) € IR™ x IR™.

Case (1):a=b=0.

By Proposition 3.4, V,1,,(0,0) = 0. Thus, we need to show that V, ¢ (z,y) — 0 as
(z,y) — (0,0). We consider two subcases: (i) (z,y) # (0,0) and 2 + y* € int(K") and
(i) (z,y) # (0,0) and 22 +y* & int(K"). In subcase (i), we have from Proposition 3.4 that
V.. (2,y) is given by the expression (3.20). By Lemma 3.4, L:,;L(_xl%ryz)l/2 is uniformly
bounded, with bound independent of (x,y). Also, ¢., given by (3.10) is continuous at
(0,0) so that ¢, (z,y) — 0 as (x,y) — (a,b). It follows from (3.20) that V¢, (z,y) — 0
as (x,y) — (a,b) in subcase (i). In subcase (ii), we have from Proposition 3.4 that
Ve (2, y) is given by the expression (3.20). Clearly z1/+/2? + 37 is uniformly bounded,
with bound independent of (z,y). Also, ¢.,(z,y) — 0 as (z,y) — (a,b). It follows from
(3.20) that V ¢, (z,y) — 0 as (z,y) — (a,b) in subcase (ii).

Case (2): (a,b) # (0,0) and a® + b? € int(K").
It was already shown in the proof of Proposition 3.4 that 1, is continuously differentiable
at (a,b).

Case (3): (a,b) # (0,0) and a® + b? & int(K").
By (3.12), ||a||* + ||b]|* = 2||a1as + b1bs||. By Proposition 3.4, we have a? + b? > 0 and

a1

Vitbg(a,b) = (m—

1) ¢(a,b).

We need to show that V¢, (x,y) — Vi, (a,b). We consider two cases: (i) (z,y) #
(0,0) and 22 +y? € int(K") and (ii) (z,y) # (0,0) and 22 +y? & int(K™). In subcase (ii),
we have from Proposition 3.4 that V, ¢ (z,y) is given by the expression (3.20). This
expression is continuous at (a,b). Thus, V.. (z,y) = Vi), (a,b) as (z,y) — (a,b) in
subcase (ii). The remainder of our proof treats subcase (i). In subcase (i), we have from
Proposition 3.4 that V1., (x,y) is given by the expression (3.20), i.e.,

V-TwFB (%, y) = (LwL(t,g12+y2)1/2 - [) ¢FB (QL’, y)
= Ll?L(_r12+y2)1/2 (12 + y2)1/2 - LJPL(_:E12+y2)1/2 (17 + y) - ¢FB (.I‘, y)

= T — LxL(_x12+y2)1/2 (iL' + y) - ¢FB (I, y)

Also, by Lemma 3.2, we have [lajaz + bibs|| = 3|lal|* + 3][b]|* = af + b} and a,b, = byay,
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implying that (see (3.13), (3.15))

ai

aq ajas + biby
—_(®+ )V = —(y/a2+b2,—>
NCEN: Vad + b RNy

( a%ag + a1b1b2>
= aL, ——5 733

at + b3
_ (a1, afa; + b%ag)
a3 + b?
= (a1,a2)
= a.

This together with (3.20) yields

VacqujFB (CL, b) = (\/ﬁ - 1) ¢(a’ b)

a1
= — |:(0,2 ‘I— b2)1/2 - (CL + b)i| - ¢FB (a7 b)
Va? + b?
_ a (a® + 62)1/2 _ L(a +b) — ¢, (a,b)
NGE Vai + 8 o
= a— — (4 +b)— b, (a,b).

Va? + b?

Since ¢y, is continuous, to prove V b, (2,y) = Vithy(a,b) as (z,y) — (a,b), it suffices
to show that
_ aq
Lelrpaps® = g0 a5 (5,y) = (a,h) (3.25)

- ai
L,L7} Yy — ——— b
(4 Va7
Note ||al|* + ||b||* = 2||airas + bibs|| and (a,b) # (0,0), there has ajas + biby # 0. Thus,
by taking (z,y) sufficiently near to (a,b), we can assume that x;xs + y1y2 # 0. Let
z = (22 + 9?)Y2. Then z is given by (3.15) with Ay, Ay given by (3.13) and wy :=

12 ¥ Yi2 . In addition, det(z) = 2} — ||22||* = VA1 Aa. Let (¢1,¢2) := L, L;'x. Then,
|l z122 + 1132
(3.25) reduces to

as (z,y) — (a,b). (3.26)

a% ai

Vai+ b Va2 + b? 2

We prove (3.27) below. By Lemma 3.2, as (z,y) — (a,b),

G — as (z,y) — (a,b). (3.27)

and CQ —

)\1 — O, )\2 — HaHZ—i— HbH2+2Ha1a2+b162H :4(a%+bf), 21— a%—l—b% (328)
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Using (3.16), we calculate the first component of L,L 'z to be

1 det(z 3 22)?
= o (st B =+ 22 (Y
1 1
2

x
AN P SRS
el (w121 — 25 29)°

21 zldet(z)

In addition, applying Lemma 3.2 and (3.28) yields

lzol®  flaal® _ @l

Thus, to prove the first relation in (3.27), it suffices to show that

(1121 — 2d 20)2
b).
21 dot() — 0 as (z,y) — (a,b)

Note that

(2121 — 23 2)* 1 ; \//\_1+\/>\_2+\/>\—1—\//\_2x% ?
21 det(2) zﬂ/_m; b2 2 272

L VA= VA Y

)\1)\2 2 (5(71 — Ty ’11)2)

NG e
+ % (21— xgwg)Z). (3.29)
We also have from (3.28) that A\; — 0, v/ Ay — 2y/a? + b > 0, and z; — +/a? + b? > 0.

T1T2 + Y192
2122 + 1132l

Moreover, by Lemma 3.3 and ws =

($1 — I'-QF@UQ)Q
VI

Thus, the right-hand side of (3.29) tends to zero as (z,y) — (a,b). This proves the first
relation in (3.27). Using (3.16), we calculate the last n — 1 components of L, L'z to be

— 0 as(x,y) — (a,b).

1 5 T x1 det(z) T T
= ——— | zyx92] — TF20 — Ty 20T — — 2925
Co det(z)<121 122 9 %29 + . 2+21222

x 1 L 2,
= Z—le + m |:($121 — x—erQ)xz + 21 ( 2 — xl) 22:|

21

T (1121 — 2] ) T

= —pot+ T2 1y — —2].
P det(z) e
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Also, by (3.28), we obtain
T aq
“xy —

—— ay.
2 Va? + b?

Therefore, to prove the second relation in (3.27), it suffices to show that

(121 — 24 20) (

T
aet(2) To — —22> — 0 as (z,y) — (a,b).

21
(1121 — 23 20)

det(2)

(w121 —agze) 1 (x Vi +va VA -V
det(2) Vae U2 2
o 1 \/>\_2_ \/)\_1 T
Vv (”Tl VAt T (- g
o V=V T
- + (IEl — Ty ’wg)
VA2 PAVOSPY:
T +1—\//\_1/\/>\_2 (21 — 2Jws)
VA2 2 VAL

First, is bounded as (z,y) — (a,b) because, by (3.15),

199

.’L‘;’U)Q)

)

and the first term on the right-hand side converges to a;/+/4(a? + b?) (see (3.28)) while

the second term is bounded by (3.13) and Lemma 3.3. Second, zy —
(x,y) — (a,b) because, by (3.15) and (3.28),

vy ﬂ@ S ey a 4(a? +b2) ajas + biby
2 Vai+ b2 2 ||ayag + bybs||
0 — atas + aybyby
||ayag + bybs||
alay + biay
a? + b?

= a2—
= G2 — Q2

= 0,

where the second equality is due to Lemma 3.2, so that a;by = byjas and |
a? + b?. This proves the second relation in (3.27).

x
—z9 — 0 as
21

]alag + bleH =

Thus, we have proven (3.25). An analogous argument can be used to prove (3.26), which
we omit for simplicity. This shows that V ¢, (x,y) = V... (a,b) as (z,y) — (a,b) in

subcase (i). O

Proposition 3.6. Let ¢, and ¢, be given by (3.10) and (3.11), respec
(z,y) € R™ x R", we have the following results.

tively. For any
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(@, Vatbey (2,9)) + U, Vitoes (2,9)) = [l (2, 9) I (3.30)

(b)
(Vathes (,9), Vit (2, ) = 0, (3.31)

with equality holding if and only if ¢, (z,y) = 0.

Proof. Case (1): x = y = 0. From Proposition 3.4, V¢, (z,y) = V¥, (x,y) =0, so
the proposition is true.

Case (2): (z,y) # (0,0) and 2? 4+ y* € int(K™). By Proposition 3.4, we have

VIwFB (ma y) = LxLz_l -1 ¢FB ($7 y)?
vy¢FB (l‘7 y) - LyL,;l -1 ngB (I7 y)v

where we let z 1= (22 + 32)!/?

T, Vot (2,9)) + (Y, Vytbey (2, )
(L LY = Dgeg) + (v, (Ly L7 = Dpyy,)
(L7 Ly — D2, b)) + (L7 Ly — 1)y, Gy
zlL $+L "Lyy — 2 — Y, dpp)
L (l’ +y°) = o =y, Opy)
=T =y, )
2= =Y, Opy)
= [l¢esll?,

where the next-to-last equality follows from L,z = 2% so that L;'2? = 2. This proves
(3.30). Similarly,

(Vs (2,9), Vites(2,9)) = (LoLZ' = Dbyyy (LyLT' = Dbyy)
- <(Lw - LZ)L,;l(bFB’ (Ly o LZ)L;1¢FB> (3'32>
= <(Ly - LZ)(LI - LZ)LZ_1¢FB’ Lz_1¢FB>‘

Let S be the symmetric part of (L, — L,)(L, — L,). Then

. For simplicity, we will write ¢, (x,y) as ¢.,. Thus,

{
(z,
=
= (L
{
(L
{

1

S = 5 ((Ly - Lz)(La: - Lz) + (LCC - Lz)(Ly - Lz))

1
= 3 (LxLy + LyLy — L(L, + L,) — (Ly + L)L, + 2L§)

1 1
— §(Lz —L,—L,)*+ 5(Lg - L2-L)).
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Since z € K" and 2* = 2* 4 y?, Lemma 3.5 yields L2 — L7 — L2 = O. Then, (3.32) gives

waB(‘T y)? VwaB(x,y»
SL 1¢FB7 ;1¢FB>

<(Lz - La? - Ly)2LZ_1¢FB7 L;1¢FB> +
<<LZ - Lw - Ly)2L;1¢FB7 L;1¢FB>

1 _
= §||L¢FBL21¢FB||2’

where the last equality uses L, — L, — L, = L,_,—, = Ly__. This proves (3.31).

(V
{

1 _ _
_<(Lz - L?g - L§>Lz 1¢FB’ Lz 1¢FB>

1
2 2
1
2

If the inequality in (3.31) holds with equality, then the above relation yields || Ly L7'¢
0 and, by Lemma 3.1(d),

el =

¢FB © (L2_1¢FB) = L¢FB LZ_1¢FB =0
Then, the definition of Jordan product yields

<¢F‘B7 L;1¢FB> = 0

Since z = (2% + y*)¥/? € int(K") so that L;! = O (see Lemma 3.1(d)), this implies
¢ps = 0. Conversely, if ¢, = 0, then it follows from (3.20) that

(Vs (7,9), Vg (7, 9)) = 0.

Case (3): (z,y) # (0,0) and 22 + y* & int(K"). By Proposition 3.4, we have

vmwFB(xay) = <.1'2x—1—|—y2 - 1) ¢FB<xvy)7
1 1

vwaB(way) = <% - 1) ¢FB<x7y)'
Thus,

<£L‘, vmwFB (337 y)> + <Z/, VwaB (33‘, y)>
= (\/ﬁ - 1) (T, pg (2, Y)) m ) (Y, e (2, )
- {(F=)- (ﬁ JE)
5 +y1 $1 +?Jl

1T + Y B
<—m Y Gep (2, y >
= <¢FB(x7y)7¢FB(x7y>>7
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where the last equality uses (3.24). This proves (3.30). Similarly,
(Vathe (2, 4), Ve (,9))

T Y1 2
= | ————-1||——= 1] 9@yl
(\/x?er% ) ( 23+l ) FB

> 0.

This proves (3.31). If the inequality in (3.31) holds with equality, then either ¢, (z,y) =0
or \/;%ITy% =1 or y—12 = 1. In the second case, we have y; = 0 and x; > 0, so that

2

S
Lemma 3.2 yields y» = 0 and 21 = ||22]|. In the third case, we have z; = 0 and y; > 0,
so that Lemma 3.2 yields o = 0 and y; = ||y2||. Thus, in these two cases, we achieve

xoy=0, x € K", y € K". Then, by Proposition 3.2, ¢, (z,y) =0. O
Lemma 3.9. Let w : IR" x R™ — R™ be defined by w(x,y) := u(x,y) ov(x,y), where

u,v : R™ x R™ — IR™ are differentiable mappings. Then, w is differentiable and

Vow(z,y) = Vou(,y) L@y + Vau(2,y) Lugy),

3.33
vyw(l‘ay) = VyU(x,y)Lv(%y)—f-vyv(l’,y)[/u(x,y). ( )

Proof. This is the product rule corresponding to the Jordan product. As its proof is
straightforward, we omit the details. [

Lemma 3.10. For any x,y € R", let w(z,y) = (w1, ws) and z(x,y) = (21, 22) be defined
as in (3.14). Suppose that F(x,y) = LxLZ_é’y)(x +y) and G(z,y) = LyLZ_(;y)(a: +y).
Then, we have

(a) z is differentiable at (x,y) # (0,0) € R™ x R™ with x? + y* € int(K™). Moreover

Vez(z,y) = L,L} Vyz(z,y) = LyL_1

2(z,y)’ z(z,y)
where ) i
L7l = [ cwy al + (bci)Qa)wgw; ] ifwp 7 0; (3.34)
(1/v/am) 1 if w, = 0,
with
B 2
" Vs (w) + v/ Ai(w)
y = L ( L, ] )
2\ V() VA(w) )
1 1 1
C T2 (\/Az(w) - \/Al(w)> '
and Wy = 2
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(b) F,G are differentiable at (x,y) # (0,0) € R"xR" with z*>+y* € int(K"). Moreover,
IVFE(x,y)|, [VG(x,y)| are uniformly bounded at such points.

Proof. (a) That the function z is differentiable is an immediate consequence of [131].
See also [29, Proposition 4]. Since, 22(x,y) = x* + y?, applying the product rule (3.33)
in Lemma 3.9 yields

2V 2(2,y) La(wy) = 2Lz,  2Vy2(2,y) Loz = 2Ly,

Hence, the desired results follow.

(b) For symmetry, it is enough to show that F' is differentiable at (x,y) # (0,0) with
z? +y? € int(K") and that |V, F(z,y)|, ||V, F(z,y)| are uniformly bounded. It is clear
that F'is differentiable at such points. The key part is to show the uniform boundedness
of [V.E(x,y)l, [V,F(x,y)|. Let A1, A2 be the spectral values of 2 + y?, then

Moo= 2l )l = 2l + el
A=zl (ly )+ 2flzize + el
Thus, z(x,y) := (2 + y?)"/? has the spectral values v/A;, v/X2 and

o) = () = (L o),

T

where wy = T2 T Y1l if 2129 + 1172 # 0 and otherwise wy is any vector in IR"!
| 7172 + Y112

satisfying ||ws|l = 1.

Now, let u := L;(; ) (x + y). By applying Lemma 3.1, we compute u as below.

- T
1 1 N T+
- - det(z(z, 1
det(z(z,y)) | —22 MI + —z92y { T2 + Y2 }
| 21 21
| (21 + 1)z — (2 + 12) "2
- - ot(z x Tz
det(z(z,y)) I —(@1 +y1)z2 + d;—l()(@ + 1) + 2+312) “22

- H;].

We notice that F'(z,y) = LILz_(lx,y) (x +y) = Lyu = x ou. Then by applying Lemma 3.9,

we obtain
V.F(z,y) =L, + Vyu(z,y)L, and V,F(z,y)= Vyu(z,y)L,.

To show that ||V,F(z,y)| is uniformly bounded, we shall verify that both ||L,| and
|Veu(z,y)L,|| are uniformly bounded. We prove them as follows.
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(i) To see ||L,]|| is uniformly bounded, it is sufficient to argue that |us|, ||ug| are both
uniformly bounded. First, we argue that |u;| is uniformly bounded. From the above
expression of u, we have

1 1

) (T121 — 29 29) + m(ym — Yy 22).

Uy = ————
b det(z(z,y T,y

Following the similar arguments as in Lemma 3.4 yields

1
- - T - -
R T EE) R T e R

_ (z1 — Igwﬂ (y1 — szwz)
- o Bz lom s ]

where O(1) denotes terms that are uniformly bounded with bound independent of (z,y).
Moreover, by Lemma 3.3, if 2129 + y192 # 0 then |z, — 2l ws| < [|2o — myws|| < VAL If
1172+ 1192 = 0 then \; = ||z||? + ||y||* so that by choosing w, to further satisfy z2w, = 0
we obtain |11 — zdws| < |2 — zyws|| < ||z|] < VAL, Similarly, it can be verified that
ly1 — ya ws| < v/A1. Thus, |u;] is uniformly bounded.

Secondly, we argue that ||usl| is also uniformly bounded. Again, using the expression of
u and following the similar arguments as in Lemma 3.4, we obtain

B 1 det(z(z,y)) T3 29
Uy = det(z(a;,y)) |: X122 + ) To + ) Z9
1 det(z(z,y)) Y2
Jrdet(z(a:, Y)) [ 22t 2 vo 2 =
B 0(1) _ T1W2 I %(l‘gwﬁ w n O(l) _ Y1Ws n \/\/_;:?(y;u@) w
2V 2V V) 2Vh 2V V)

_ {O(l)— T1W3 B Vs (21 — 23 ws) w}
2(VA V) 20V VAV
+ow - g o B
2(VA+ V) 2(VA VAV

Using the same explanations as above for u; yields that each term is uniformly bounded.
Thus, |lug|| is uniformly bounded. This together with |ui| being uniformly bounded

implies that ||V.F(z,v)|| = ||L.|| = Uy u;
p x YUY = ull = iy u1[

is also uniformly bounded.

(ii) Now, it comes to show that ||V u(z,y)L,|| is uniformly bounded. From the definition
of u:= L;é’y)(x + y), we know that z(x,y) ou = z +y. Applying Lemma 3.9 gives

Vez(x,y) Ly + Vau(z, y)LZ(x’y) =1,
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which leads to
qu(xvy)[/z(ac,y) =1- sz(]}, y)Lu =1 (L L !

2(z,y)

)Ly,

_ 1 1
= Vyu(z,y) = ([ LoL7, yLu )L @)
1 1
= (I LL} L )Lz(m L
1 -1
— Vv u( ) Lz y)L ~ LIy L Lz(w)Lw
—

Therefore,

(z y) (@, Y)

Voo, y)Lall < ||(ZLZL )T

ALl [| a2t )T

By Lemma 3.4, ||L, Z_é’y) is uniformly bounded, so is H(L Lzé y))TH. This together

with ||L,|| being uniformly bounded shown as above yields ||V u(z,y)L,| is uniformly
bounded.

From (i) and (ii), it follows that that |V, F(x,y)| is uniformly bounded. A similar line
of reasoning applies to ||V, F(z,y)|; and therefore, |[VF(z,y)| is uniformly bounded as
well. This concludes the proof. [

Lemma 3.11. Let 1., be defined as in (3.11). Then, Vi, is continuously differentiable
everywhere except for (x,y) = (0,0). Moreover, ||V?¥_, (x,y)| is uniformly bounded for

all (z,y) # (0,0).
Proof. For any (z,7) € IR" x IR", let z := (22 + y*)"/2. We prove this lemma by
considering the following two cases.

(i) Consider all points (z,y) # (0,0) with z* + y? € int(K"). Since
Vx,’vaB(l'7y) = LwL;1 - [) ¢FB(’:C7 y) =z - LILQI(ZL‘ + y) - ngB(x?y)?
Vo) = (DL = 1)) =y = L 4) = (o).

we compute V2. (z,y) as follows:

Vil (z,y) = 1=V, (LILzl(:c + y)> — (LQCLZ1 — 1>, (3.35)
Ve e(zy) = =V, (LxL,;l(x + y)) — (Lngl — 1),
sz¢FB ("L‘7 y) = _v;t (LyLZf_l(fL’ + y)) — <L$LZ_1 — I),

ViwaB (z,y) = 1=V, (LyLz_l(x + y)) - (LyLz_l - ]).
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The continuity of V%1, at (z,y) thus follows. It is easy to see that |[L,L; [, ||L,L; ||
are uniformly bounded by [41, Lemma 4] (|| - || and || - || are equivalent in IR"*"). Let
F(z,y) .= L,L;'(x +y) and G(z,y) := L,L;*(z +y). By Lemma 3.10, we know that

Ve (LmLzl(x + y)) = ||V.F(z,y)| is uniformly bounded. Likewise, we have that

Hvy (LxLZ‘l(x + y)) , ‘ v, (LyLz_l(I + y))‘ v <L L'z + y)) H are all uniformly

bounded. Thus, we can conclude that [V2.lys (25)]s 172,0n (@ 9) (V20 2,9,
V2, ey (z, )| are all uniformly bounded which implies that ||V?¢,, (z,y)|| is also uni-
formly bounded.

(ii) Consider all points (x,y) # (0,0) with 22 4+ y* & int(K™). Since

T

py——— I

vVttt \/l’1+y1
N

Vb (2, y) = W—l Gps (7, y) =y — \/7 (T +y) = dep (2, 9),
1 1

we compute V2. (z,y) as follows:

Vm%g(%y) = -1 ¢FB(x’y) = +y ¢FB($’y)7

1 T1y: + v} 0 ] 1
Vies(z,y) = I - I+ { — | —F—— - 1(BL6
iy Ve e Lo )T\ TP
T i Fayt [ 1 (1
V2 b (2,y) = — -4 { ] — | —— 11,
yrrs Vait+yl  (@i+yi)¥2 [0 Vi + i
(0 iy +xyr [ 1 x1
Vi (xy) = — I— { } =11
s (0:0) G loo]) T\ Ve
0
0

24
%wmww-—f—< — I+ Wl[

U1
S )1
Vit +yg o (@) ) (x/x%er% )

where 0 denotes the (n — 1) x (n — 1) zero matrix. Now we provide a sketch proof to
verify V.1, is continuous. Let (a,b) # (0,0) and a® 4+ b* ¢ int(K™). We want to prove
that

Vaorles (7,Y) = Vaolheg (a,0),  as  (z,y) = (a,b). (3.37)
Due to the neighborhood of such (a,b), we have to consider two subcases: (1) (z,y) #
(0,0) with 2% + y? € int(K") and (2) (z,y) # (0,0) with 2% + y? & int(K"). It is clear
that (3.37) holds in subcase (2) because the formula given in (3.36) is continuous. In
subcase (1), we have

Ve (®,y) = 1=V, (L, L7 (z+y)) — (L. L' — 1) (3.38)
= I Lt (Ll = (Ll (L) (LD ] = (L2t = ).

z
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In view of (3.35), (3.36) and (3.38), it suffices to show the following three statements for
(3.37) to be held in this subcase (1):

(43]
a) + bl

() Lu— (L LZ")(Lu)(Lo L7 —

(a) L,L;'— I, as (x,y) — (a,b).

(b) L, — I, as (z,y) = (a,b).

a?(ay + by)

(CELE I, as (xz,y) = (a,b).

First, we know from [41, Proposition 2] that there holds

a1
Va2 + b2

I, as (z,y) — (a,b) since both (z +y) and L,L;! are

L,L7'(z +y) — (a+b) as (,y) = (a,b),

43]
Va? + b?

continuous and (x + y) — (a + b) when (z,y) — (a,b). Secondly, if we look into the

entries of L, and compare them with the entries of L,L;! (see [41, eq. (27)]), then it is

b
clear that L, — le I, as (z,y) — (a,b). Finally, part(c) follows immediately from

2
vai+ by
part (a) and (b). Thus, we complete the verifications of (3.37). The other cases can be
argued similarly for V1., Vb, and V1., . In addition, it is also clear that each

term in the above expressions (3.36) is uniformly bounded. Thus, we obtain that V¢,

which implies L, L, —

is continuously differentiable near (z,y) and ||[V?,,(x,y)| is uniformly bounded.  [J

Proposition 3.7. Let 9., be defined as (3.11). Then, Vi, is globally Lipschitz con-
tinuous, i.e., there exists a constant C such that for all (z,y), (a,b) € R" x R",

IVt (2,9) = Vit (0, D)) < Cli(z,y) = (a, )], (3.39)
IVytes (2, 4) = Ve (@, D) < Cl(2,y) = (a,0)]

and is semismooth everywhere.

Proof. Due to symmetry, it suffices to establish the first part of (3.39). For any (z,y) €
R" x R”, let z := (2% + y?)Y/2.

(i) First, we prove that V1, is Lipschitz continuous at (0,0). We have to discuss three
subcases for completing the proof of this part.

If (z,y) = (0,0), it is obvious that (3.39) is satisfied.

If (x,y) # (0,0) with 22 + y? € int(K"), then

HvwaB(x7y) - vwaBa)’O)H = HvwaB@j?y)H = H:L‘ - LIL;1<x + y) - (bFB(x?y)H :
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It is already known that z and ¢, (z,y) are Lipschitz continuous (see [198, Corollary
3.3]). In addition, Theorem 3.2.4 of [160, pp. 70] says that the uniform boundedness

of V{ L,L7'(x +y) ) (by Lemma 3.10) yields the Lipschitz continuity. Thus, (3.39) is

satisfied for this subcase.

If (x,y) # (0,0) with 22 + y? & int(K"), then

X1

m@ +Y) = bpp (T, )

||VI¢FB(x7y) - VI¢FB(O7O)’| - ||VI¢FB('I7y)|| -

X1

Vit

desired result follows.

Since < 1 and both (z +y), ¢,,(z,y) are known Lipschitz continuous, the

(ii) Secondly, we prove that V1., is Lipschitz continuous at (a,b) # (0,0). Let (z,y) €
IR" xIR", we wish to show that (3.39) is satisfied. In fact, if the line segment [(a, b), (z,y)]
does not contain the origin, then we can write

[Vt () — Vit (a,D)] < H [ Pulad) + () - o bmdtH < Ol (@, y)—(a, )|

where the first inequality is from the Mean-Value Theorem (see [160, Theorem 3.2.3]),
and the second inequality is by Lemma 3.11. On the other hand, if the line segment
[(a,b), (x,y)] contains the origin, we can construct a sequence {(z* y*)} converging to
(z,y) but for each k, the line segment [(a,b), (x*,4*)] does not contain the origin and
apply the above inequalities to obtain

HvwaB (xka yk) - vwaB <a7 b)H < ¢ ||($k>yk) - (CL, b)

Y

which, by the continuity, implies

IVatbes (2, 4) = Vathes (0, b)|| < Cll(, y) = (a,0)]]
Thus, (3.39) is satisfied.

To complete the proof of this theorem, we only need to verify that Vi, is semismooth
at the origin as, by Lemma 3.11, Vi), is continuously differentiable near any (0,0) #
(z,y) € R™ x R™. From Proposition 3.4(b)-(c), we know that for any ¢ € IR, and
(z,y) € R™ x IR", we have

Vb, (tz, ty) = tVih, (x,y).
Thus, Vi, is directionally differentiable at the origin and for any (0,0) # (z,y) €
R™ x IR"
Ve (2,9) (2. y) = (Vi) ((,9); (2,9) = Vi (2,).
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This means that for any (0,0) # (x,y) € R™ x IR" converging to (0, 0),

V¢FB($’ y) - V¢FB(O’ 0) - VQwFB(x7y)<x7y) = VwFB('T7y) -0- vwFB(x7y) =0,

which, together with the Lipschitz continuity of Vi), and the directional differentiability
of Vi, at the origin (Vi is, however, not differentiable at the origin), shows that
Vb, (z,7y) is (strongly) semismooth at the origin. [

Proposition 3.8. Let ¢, be defined as in (3.11). Then, ¢
as an LCY function.

e 05 an SCt function as well

Proof. The results follow from Proposition 3.7 immediately. [

Returning to ¢,,, we now present the representation of the elements of the B-
subdifferential dp¢., (z,y) at a general point (z,y) € R™ x R™.

Proposition 3.9. Let ¢, be defined as in (3.10). Given a general point (z,y) € R™ X
IR™, each element in Opp,,(z,y) is given by [V, — 1 'V, — I| with V, and V,, having the
following representation:

(a) If 2* +y? € int(K"), then V, = L7'L, and V, = L;'L,.

(b) If 2* + y* € bd(K™) and (x,y) # (0,0), then

L 1 wy 1
- Lot
Ve € {2\/2w1 [U_Jz 41 — 3wywy ] *3 [ } }
1 1 wQT
e {2\/2w1 [ Wy A4l — 3wy } Ly+3 [ — Ty } } (3.40)
<

for some u = (uy,uz),v = (vi,v2) € R x R" satisfying |uy| < |Juz| < 1 and

lv1] < [Jva|| < 1, where we = wo/||ws]|.

(¢) If (z,y) = (0,0), then V, € {L;}, V,, € {L;} for some &,y with ||Z||* + ||9]> = 1, or

SR 610 Ll B i R e )
Vy € {1 { & } nnu% [ _}@2 ] v 42 [ (I_wgw;)wz (I_w(:w;)wl }}(3.41)

for some u = (u,uz),v = (v1,v2),& = (£1,&),m = (m,m2) € R x R™™ such
that Jur] < fluzll < 1, [on] < luof| < 1, |6} < &l < 1, || < el < 1,
wy € R satisfying ||ws| = 1, and s = (s1,82), w = (wi,wq) € R x R"!
satisfying ||s|* + ||lw||* < 1/2.

)
— =

[\
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Proof. Let D¢FB denote the set of points where ¢, is differentiable. From Lemma 3.10
and ¢FB(xay) = Z<x7@/) - (513' + y), we know

(¢FB>;(x7y> = L;le — 1, (¢FB>;<x7y) = LzlLy —1 V(m,y) < D¢>FB'

(a) In this case, ¢, is continuously differentiable at (x,y) by Lemma 3.10. Hence,
OBy (,y) consists of a single element, i.e., ¢ (z,y) = [L;'L,—1 L;'L,—I], and the
result is clear.

(b) Assume that (z,y) # (0,0) satisfies * +y? € bd(K™). Then w € bd(K™) and w; > 0,
which means [|ws| = w; > 0 and Ag(w) > Aj(w) = 0. Observe that, when wy # 0, the
matrix L1 in (3.34) can be decomposed as the sum of

=i 4 5]

A(w) [ —W2 Wiy

and
| 1 wy
Ly(w) = — = Nalw >

Ag(w) \/)\2—+ (I — Wby )

with wy = wy/||ws]]. Consequently, (¢,,), and (gf)FB)’ can be rewritten as

(0 )2 (z,y) = (La(w) + Lo(w)) La =1, (pp)y (2, y) = (La(w) + Lo(w)) Ly — 1. (3.43)

Let {(z*,y*)} € Dy_, be an arbitrary sequence converging to (z,y). Let w* = (wf, w}) =
w(z®, y*) and 2F = z(a:k *) for each k, where w(z,y) and z(z,y) are given as in (3.14).

Since wy # 0, we without loss of generality assume ||w5|| # 0 for each k. Let wh =
wh /|Jwk|| for each k. From (3.43), it follows that

(ngB);c(xkv yk) - (Ll(wk) + L2<wk>) La:k - I,
(Gen)y(@® y") = (Li(w*) + Lo(w")) Ly — 1.

Since limg_ 00 A1 (w") = 0, limg o0 Ao(w") = 2wy, > 0 and limy,_, o, w5 = W, we have

- (3.42)

lim Lo(w*) L = C(w)L, and lim Ly(w*)Lx = C(w)L,
k—o00 k—o00
where -
1 1 Wy
Clw) = 21/2w; { Wy 4l — 3wag } '

Next we focus on the limit of Li(w"”)L,x and Li(w*)L,. as k — co. By computing,

1 uF (uk)T
k _ 4 1 2
S e

1 ok (08)T
L k L I 1 2
@Ik = 5| by ok |
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where
k ENT —k k kK k E\T -k k kK
T — (z3) Wy E_ Lo — T1Wy P (y3) " Wy E_ Yo — Y1 Wy
U = ——F—————, U, Vs (3.44)

CVAED T VA T VRl

By Lemma 3.3, |uf| < |luf|| <1 and |[of| < ||Jv%]] < 1. So, taking the limit (possibly on a
subsequence) on Ly (w*) L, and Ly (w¥)L,x, respectively, gives

1 T 1
Ly (wF) L —>—{ “ s }:_{ 1 }UT

2 —Ulwg —?I)Qu;— 2 —wg
1 U1 UT 1 1
Ly(w®)L - 2 == T 4
l(w ) vt - 2 |: —V1Wo —U)QU;—:| 2 |: —Wo :| v (3 5)

for some u = (ug,uz),v = (vi,v2) € R x R satisfying |u;| < [Jug]] < 1 and |vq] <
|vo]| < 1. In fact, u and v are some accumulation point of the sequences {u*} and {v*},
respectively. From equations (77)-(3.45), we immediately obtain

(Bes)h(a,59) cwn@+1[ {]UT—L

2 —W2

(bro)l (@) — cwnw+1[ 1}UT_L

2 | —ws
This shows that ¢/ (z*,y*) — [V, = I V, —I] as k — oo with V,, V, satisfying (3.40).

(c) Assume that (z,y) = (0,0). Let {(z*,4*)} € Dy__ be an arbitrary sequence converg-
ing to (z,y). Let w* = (wf, w§) = w(z®, y*) and 2¥ = z(z*,y*) for each k. Since w = 0,

we without any loss of generality assume that w4 = 0 for all k, or w} # 0 for all k.

Case (1): w§ = 0 for all k. From Lemma 3.10, it follows that L' = (1/y/w¥)I. There-
fore,

1 1
——L—1 and (¢.,) (2% ¢*) = —L« —
’Ujlf ( FB)y( ) \/U)_]f y
Since wf = ||z + [|y*||?, every element in (¢, ), (z*,y*) and (@), (z*, ") is bounded.
Taking limit (possibly on a subsequence) on (¢, ), (2", y*) and (¢,),, (2", "), we obtain

(ngB);(mkvyk) — Lz —1 and (ngB);(mk?yk) — LZ)_I

(¢FB>/1‘(:Ek7yk) = I.

for some vectors #,5 € R" satisfying ||Z]|* 4+ [|g||* = 1, where & and ¢ are some accu-

mulation point of the sequences {j—k_k} and \;—k—k}, respectively. Thus, we prove that
wy wy

¢ (@Fyh) = Vo =T V,—1I] as k — oo with V, € {L;} and V,, € {L;}.

Case (2): ws # 0 for all k. Now (¢, ), (2%, 4*) and (@), (z*,4*) are given as in (?7?).

Using the same arguments as part(b) and noting the boundedness of {w}}, we have

1 1
Li(w*) Ly — 5[ ! :|UT, Li(w") Ly — 5[ ! :|1)T (3.46)

—Wo —Wsa
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for some u = (uy,us),v = (vi,v2) € R x R satisfying |u;| < [Jug]] < 1 and |vy] <

|va|| < 1, and wy € R™! satisfying ||ws|| = 1. We next compute the limit of Ly(w
r as k — oo. By the definition of Ly(w) in

and Lo(w*)L

Y

BY Lo
(3.42),

v 2 | &l +4 (1 — w5 (wf)T) s§ wh(e5)T +4(1 w’%(w’z“)T) st ]
1 ny ()" }
Lo(w" L, = = { . v _ 2 ,
A =5 | ik 4 (1 — b))k @b )T +4 (1 wh(ah)T) b
where
5 _ ay 1+ (xg)Twlg gk o 932 +x wé” k _ yl + (?Jz) k ?J]f + ?Jlfwlg
! \/)\2 U)k 2 \/)\2 wk \/)\2 wk & \//\Q(UJk)7
and
ok — flf ok — 95’5
! 2 (wk) —|— A1 ( wk 2 \//\g(wk) + \/Al(w’“)7
Wk = ok — ylg .
! )\2 wk + )\1 U)k 2 \/)\Q(wk) + \/Al(wk)

By Lemma 3.3, |€F| < [|€5]] < 1 and |nf| < ||75]| < 1. In addition,

=1 + lly*I1®

™11 + llwI* =
2([l=H% + [ly*]

Hence, taking limit (possibly on a subsequence) on L

&1

Lo(w™) Ly —
(1

Ly(w*)Ly — n

N~ N~ N~ N
1 1 T 1

for some vectors & =

1
2) + 20/ M (wh) Ao (wh) — 2
)

<

W)Ly and Lo(w*) Ly yields

&
| &g + A — ey )sy Wby + A(I — ey )5y

N 0 0
U_JQ :|§ +2 |: (]—IDQU_J;—)SQ (I—wgu_};)sl ’

no } (3.47)

L 7’]111_)2 + 4([ — U_)QU_);—)(,«)Q U_Jg’f]g + 4(] — wgw;)wl

T+2 0 0
L U_JQ " (I — U_JQU_);—)(A)Q (] — wQ’U_J;—)Wl

(&1,&),mn = (m,n2) € RxIR" ! satisfying || < ||&| < 1and || <
[m2]] < 1, wo € R™! satisfying [|@o|| = 1, and s = (s1, 82),w =

(wl,wg) e R x R*!

satisfying ||s]|? + [|w]|* < 1/2. Among others, £ and 1 are some accumulation point of the
sequences {&F} and {n*}, respectively; and s and w are some accumulation point of the
sequences {s"} and {w*}, respectively. From (??), (3.46) and (3.47), we obtain

1 1 1 1 0 0
(G )o(a*, %) = 2[@FTW{_@]”T”{([—M;)SQ (I—wzwg)sl}_f’
1

7o -2

1 1
Gl > g | o ||

|1

I — Wyt Yws (I — W] )wy
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This implies that as k — 0o, (¢,) (2%, y*) = [Vo — I V,, — I] with V, and V,, satisfying
(3.41). Combining with Case (1) then yields the desired result. [
By introducing the vector-valued function ¢, : R" — IR™ defined below, it becomes

evident that the SOCCP (3.4) can be reformulated as the following nonsmooth system
of equations:

¢FB (Fl (C)v Gl (C))

B0(0) = | Gu(F(0.Gi(0) | =0 (3.48)

Dun (Fy(0). CalC)

where ¢, is defined as in (3.10) with a suitable dimension. Consequently, its squared
norm gives rise to a smooth merit function, defined as follows:

Ve (C) = %H‘PFB(OH2 = Z%B(E(C), Gi(C))- (3.49)

Remark 3.1. When 22 +y* € bd(K!) with (z,y) # (0,0), using Lemma 3.2, we can also
characterize V,, and V), in Proposition 3.9(b) by

1 [ x :L’T 1 1
V:r,; € ' 2 woz) +3 —w2 uT
2wy | @y 2o ] - 2| Tl
1 [ w Ys L1 T
V, € {—— 7 B T
v { 2wy |y 2pd — 22 2| Tl

for some u = (uy,us), v = (vy,vs) satisfying |uy| < ||uz|| <1 and |vy| < ||ve| < 1.

To analyze the generalized Newton method, we begin by providing an estimate for the
B-subdifferential of ® ., along with a sufficient condition ensuring that all elements of
the B-subdifferential of ®,, at a solution are nonsingular. For convenience, throughout
this section, let us denote for any i € {1,2,...,¢q} and ¢ € IR™

Fl(C) = (E (C)7E2(C))v GZ(C) = (Gzl(C)aGﬂ(C)) € R x Rni_lv
w;i(¢) = (wir (), wia(()) = w(Fi((), Gi(C)), 2i(¢) = (2i1(C), 2:2(¢)) = 2(Fi(¢), Gi(())

where w(z,y) and z(x,y) are the functions defined in (3.14). Note that & is (strongly)
semismooth if and only if all its component functions are (strongly) semismooth. More-
over, since the composition of (strongly) semismooth functions remains (strongly) semis-
mooth by [73, Theorem 19], the following proposition follows immediately from Proposi-
tion 3.3.
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Proposition 3.10. The operator @, : R" — IR™ defined by (3.48) is semismooth.
Furthermore, it is strongly semismooth if F' and G’ are locally Lipschitz continuous.

Let (®,,); denote the i-th component of the function ®_,. Notice that, for any
¢ e R,

08P (€)' C O5(Pyy)1(0)" X O (®@pp)2(C) " X+ X Op(Pyp)q(C)" (3.50)

where the latter denotes the set of all matrices whose (n;_1 4+ 1) to n;-th columns belong
to Op(®,,):(¢)T fori =1,2,...,q and ng = 0. From Proposition 3.9 and Remark 3.1, we
immediately obtain the following estimate for dp®.,,({)T.

Proposition 3.11. Let ®,, : R" — IR™ be defined by (3.48). Then, for any ( € R",

0P, (C)" S VF(Q) (A(Q) = I) + VG(Q) (B(¢) = 1), (3.51)

where A(C) and B(C) are possibly multivalued m x m block diagonal matrices whose ith
blocks A;(¢) and B;(C) fori=1,2,...,q have the following representation:

(b) If F(C)? + Gi(C)? € bdK™ and (Fy(C), Gi(C)) # (0,0), then

| ; E1<<) Fz'z(C)T 1
' ; Gi(€) Gw(C)T 1 T
Bz(() € { 2w21( ) Gz2(<) 2G; ( )I . Giz(zizzlé?)(C)T + 27)1(17 wz2(§) )}

for some u; = (i1, un), v; = (vi1, vi2) € R x R™ ™ satisfying |ui| < |Ju|| <1 and
vir| < [lvizl| <1, where wi(C) = wia(¢)/[Jwia(C)]]-

(c) If Fi(¢) = G4(¢) =0, then

a0 € {za}u {36 () + ju (-al) + | S et ||

2 0 2s41( — wipw;,
1 T 1 T 0 2&)22([ w12w;5)
B;i(¢) € {Lvi} U {277Z (17wl‘2> + 2?}@ (17 wi2) + [ 0 2w (I — @Wpdh)

for some ti;, 0; € R™ satisfying || @ |2 +]|0:|1> = 1, wi = (wir, win), vi = (vi1, Vi2), & =
(&1, &), mi = (i, mi2) € R x R™ ™ satisfying |un| < ||l < 1, |vi] < Jue| <1,
Sl < Nl < 1 and |na] < |mell < 1, we € R™™ satisfying ||wi|| = 1, and
si = (841, 8i2), wi = (wit, wie) € R x R™™ such that ||s;||* + ||wi||* < 1/2.



3.1. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SOC 215

Lemma 3.12. For any ¢ € R", let A(¢) and B(() be given as in Proposition 3.11. Then,
(a) forallie {1,2,...,q} such that F;(¢)* + G;(¢)* € intK™, there holds that
((Ai(¢) — Dy, (Bi(¢) = DNv;) > 0 for any v; € R™;

(b) fO?” all © € {1727 s ,Q}, we have <(AZ(C) - ])<(I)FB)1(<)7 (Bl(g) - ])<¢)FB>'L(C>> > 0,
and the inequality holds with equality if and only if (P.;):(¢) = 0.

Proof. (a) The proof is similar to that of [41, Lemma 6]. For completeness, we here
include it. From Proposition 3.11(a), it follows that for any v; € R™,

= <(LF1 - in)Lz_ilvi’ (LG1 - LZZ)L_1UZ>

Zi

= ((Lg, — L.,)(Lr, — in)Lzlvi, L;lvi> (3.52)

where, for convenience, we will omit the notation ( in functions. Let S; be the symmetric
part of (Lg, — L,,)(Lp, — L.,). Then, by computing, we have

1
SZ' = 5 [(LGz - LZ’L)(LF'L - Lzz) + (LFz - Lzz)(LG'L - LZZ)]
1 1

Notice that z; = (F? + G?)Y/2 € intK™ and z? — F? — G? = 0 € K™, and hence we have
L2 — L3, — L, = O by [78, Proposition 3.4]. From (3.52), it then follows that
<<Az — I)’UZ‘, (Bz — I)U1> == <SiLz_ilUi’ L;l’(}i>

> <<L2z - LFi - LG¢)2LZ_Z.1U¢, Lz_ilUi>

1
2
1
- 5”([’% - LFi - LGz‘)Lz_ilviHQ >0
for any v; € IR™, where the first inequality is due to the fact that L2 — L3, — L = O.
(b) From Theorem 2.6.6 of [52] and the smoothness of ¥ (x,y) (see [41]), we have

VQ/}FB (x7 y) = aBgzﬁFB (x7 y)T¢FB (1‘7 y) v x? y E ]R’n7

which together with Proposition 3.9 and Proposition 3.11 implies that for i = 1,2,... ¢,
Vot (BC). Gil0)) = (A(Q) — 1) (@ )l0). 553
Ve (Fi(C), Gi(Q)) = (Bi(¢) = 1)(®r)i(C)-

Using Lemma 6(b) of [41], we immediately obtain the desired result. O

In what follows, we study under what conditions all elements of the B-subdifferential
O, (¢) at a solution are nonsingular. Given a solution ¢* of the SOCCP, we call it
non-degeneracy if F;((*) + G;(¢*) € intK™ for all i € {1,2,...,q}.
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Remark 3.2. Let (* be a solution of the SOCCP. From [5], we know that precisely one
of the following six cases holds for each block pair (F;(¢),Gi(C)):

Fi(C) Gi(¢) 5¢
Fi(¢*) e intK™  Gi(¢*) =0 yes
Fi(¢r) =0 Gi(¢r) € IntKC™ | yes
Fi(¢*) € bd™K™  G;(¢*) € bdTK™ | yes
Fy(¢*) e bdtK™  Gi(¢*) =0 no
F(¢*)=0 Gi(¢*) € bdT K™ | no
F(C) =0 Gi(CT) =0 no

where bd* K™ = bdK™ \ {0}, and the last column indicates whether the strict comple-
mentarity, i.e. F;(C*) + G;(C*) € intKC™, holds or not. Particularly, when the i-th block
pair satisfies the strict complementarity, A;(C*) and B;((*) have an explicit expression
as shown by Lemma 3.13 below.

Lemma 3.13. Let * be a solution to the SOCCP (3.4). For any i € {1,2,...,q}, we
have

(a) A;(C*) =0 and Bi(¢*) = I if F(C*) = 0 and Gi(C*) € intkC™;

(b) Ay(C*) =T and B;(¢*) = 0 if F;(¢*) € intK™ and G4(¢*) = 0;

() Ai(¢") = Lr Ly vy and Bi(C*) = Layc) Loy if Fi(C), Gi(C¥) € bdTK™.
Proof. (a) Since F;(¢*)? + G;(¢*)? = G;(¢*)? €intK™, by Proposition 3.11(a),

Ai(C") = Ly Ly ey =0 and  Bi(C") = Lay¢ L ¢y = L Ly = 1
Similarly, we can prove that part(b) holds. Next we consider part(c). We claim that
Fy(¢*)? + G4(¢*)? € intK™. Suppose not, then F;(¢*)? + G;(¢*)? € bd*K™, which by
Lemma 3.3 implies that F;;(¢*)Gi(C*) = Fia(¢*)TGie(¢*). On the other hand, since
F;(¢*) € bdTK™ and G;(¢*) € bd"K™, we have that

Fi(€7) = [Fa(C)l, - GaalC) = [[Gia(C)I- (3.54)

Combining the two sides then yields that || Fi2(¢*)| - |Gia(C¥)|] = Fia(¢*)TGia(¢*). This
implies that Fj(C*) = aGyie(¢*) for some a > 0. Combining with (3.54) then yields
F;1(¢*) = aGii(¢*). Therefore, F;(¢*) = aG;(¢*). Noting that F;(¢*)TG;(¢*) = 0 since
¢* is a solution of the SOCCP, we have F;(¢*) = G;(¢*) = 0. This clearly contradicts the
given assumption. Using Proposition 3.11(a), we then obtain the desired result. [
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By Remark 3.2, if (* is a nondegenerate solution of the SOCCP (3.4), then the index
sets

T = {i€{1,2,...,q} | Fy(¢*) =0, Gi(g*)eint/cm},
B = {ie{l,2,...,q¢} | F;(¢*) € bd"K"™, G;(¢*) € bd* K™},
J = {z € {1,2,....q} | F(C) € intK™, Gy(C*) :0} (3.55)

form a partition of {1,2,...,¢}. Thus, if n = m, by supposing that VG({*) is invertible
and rearranging the matrices appropriately, P(¢*) = VG(¢*)"'VF(¢*) can be rewritten

as
Pz P(C)zs P(C)z7
P(¢*) = | P((")sz P((")ss P((")sr
P() gz P(C)gs P(C)as
We are now in a position to establish the following nonsingularity result, assuming that
the given solution is nondegenerate.

Proposition 3.12. Let (* be a nondegenerate solution to the SOCCP (3.4) and I, B,
J be index sets described by (3.55). Suppose that n = m and VG((*) is invertible. Let
P(¢*) = VG(¢C*)™IVF(CY). If P(C*)zz is nonsingular and its Schur-complement, denoted

-~

by P(C*)zz, in the matriz

P(¢C*)zz P(¢(")1B
P(¢*)sr P(C")s8

has the Cartesian P-property, then all W € 0p®,.,(C*) are nonsingular.

Proof. Using (3.51) and noting that VG((*) is invertible, it suffices to show that any
matrix C' belonging to VG(¢*) 'V F(¢*)(A(¢*)—1I)+(B(¢*)—1) is invertible. By Lemma
3.13 and Proposition 3.11(a), C' can be written in the following partitioned form

—Prr Prp(Ap — Ip) Oz7
C=| —Pgr Ppe(As—1Ig)+ (Bs—1Is) Ops |,

where Iz = diag([;, i € B) with I; being an n; X n; identity matrix, Ag = diag(A;, ¢ € B)
and B = diag(B;, @ € B). For simplicity, we here omit the notation ¢* in the functions.
It is not hard to see that these C' are nonsingular if and only if

—Prz Prp(Ap — Ip) }
—Pgr  Pgp(Ag — Ig) + (Bg — Ip)

is nonsingular. Showing that the matrix C) is nonsingular is equivalent to proving that
the only solution of the following system

Yz
—Up :_Cr =0
=[]

c.- |
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is the zero vector. This system can be rewritten as

{ Prryr + Prs(Ig — Ag)ys = 0,
Pgryr + Pes(Ip — Ap)ys = —(Ip — Bi)ys.

Recalling that Prz is nonsingular, we obtain from the last system that

(Pss — Psz P} Prs)(Is — Ag)ys = —(Is — Bg)ys.

Therefore, establishing the nonsingularity of C,. reduces to demonstrating that the second
equation admits only the zero vector as its solution. We proceed by contradiction: assume
that yg # 0, and consider the following two cases.

Case (1): (Ig — Ag)ys = 0. Define Jg := {i € B: (yg); # 0}. Then Jz # (). Moreover,
(L = A(C))(ys)i =0 and (I — Bi(¢"))(yp)i =0 foralli € Jg,
where the second equality is from the second equation of (3.56). This means that
(T = Ai(¢") + (I = Bi(¢")] (yg)i = 0, Vi€ Jp.
Note that (yz); # 0 for all i € Jg, and hence the last equation implies that the matrix
[21 — Ai(¢) — Bi(¢")] quad¥i € Jg
is singular. On the other hand, from Lemma 3.13(c), it follows that

21 — Al(¢") = Bil¢") = 2I = L Lo ) — Lawe) Lo
= [2L.i¢n — Lrery — Lauen] Loen

= [ngi(c*) — LFi(C*)+Gi(C*):| LZ_z%C*)’ Vi e B. (357)
Notice that w;((*), z;(¢*) € intKC™ for each i € B, and furthermore,
42(C")* = [Fi(¢7) + Gi( )] = 2wi(C) + [F(C7) — Gi(¢7))* € intK™.

Using Proposition 3.4 of [78] then yields that [2z;(¢C*) — (F;(¢*) + Gi(¢*))] € intK™,
which implies that Lo,y — L, (c*)+aic+) > O. Combining with (3.57), we obtain that
21 — A;(C*) — B;(¢*) for each i € Jp is nonsingular. This leads to a contradiction.

Case (2): (Is — Ap)ys # 0. Notice that F;(¢*)* + G;(¢*)? € intK™ for each ¢ € B by
Lemma 3.13(c), and hence applying Lemma 3.12(a) yields that

<[<]B — Ag)ylg]i, [(BB — IB)yB]z> S 0 for VieB.
This together with the second equation in (3.56) means that

([(Iz — Ag)ysli, [(Pss — PszPri Prs)(Ig — Ag)ygli) <0, Vi€ B.
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Since Pgp — PBIP1_11PIB is exactly 1311, using the Cartesian P-property of 1311, this is
only possible if (Iz — Ag)ys = 0, and again we obtain a contradiction. [

We now turn our attention to the stationary point property and the coerciveness of
the function W. In particular, we aim to present a condition, less restrictive than that in
[41, Proposition 3|, that ensures every stationary point of ¥ is a solution of the SOCCP.
Furthermore, we establish that the function ¥, associated with the SOCCP (3.4) is
coercive under the assumption that F' satisfies the uniform Cartesian P-property. To
prove the first result, we begin with the following technical lemma.

Lemma 3.14. Let ¢, : R" x R" — IR, be given by (3.11). Then, for any x,y € R",

quB(xa y) # 0 — vwaB(LU, y) # 07 VwaB<I,y) % 0
Proof. The equivalence is direct by Proposition 3.2.  [J

Proposition 3.13. Let U, : IR" — IR, be given by (3.49). Suppose that n = m and
VG is invertible. If VG()™'VE(¢) at any ¢ € R™ has the Cartesian Py-property, then
every stationary point of V.. is a solution to the SOCCP.

Proof. Since ¥, is continuously differentiable by Proposition 3.5 and @, is locally
Lipschitz continuous, we have by Clarke [52] that for any ¢ € IR" and any V € 9®(¢)"

VU(() = V(().

Let ¢ be an arbitrary stationary point of ¥, and V be an element of dp®_,(¢)T(C
O®(¢)"). From equation (3.50), it follows that there exist matrices V; € dp(®,,)i(C)"
such that

V=VixVyx--xV,.

In addition, for each V; € IR™ ™ by Proposition 3.9 there exist matrices A;(() € IR™*™
and B;(¢) € IR™*™  as characterized by Proposition 3.11, such that

Vi = VE(Q(Ai(Q) = 1) + VG(O)(Bi(¢) = 1), i=12,....q.

Let A(¢) = diag(A1(¢),...,A4,(¢)) and B(¢) = diag(B1((),...,B,(¢)). Combining the
last three equations, it then follows that

[VF(O(A(C) = 1) + VG(O(B(C) = D] P, (¢) =0,
which, by the invertibility of VG, is equivalent to
[VG(QOT'VEQA) = 1) + (B(C) = 1)] @4,(¢) = 0. (3.58)

We next prove that ®_,(¢) = 0. Suppose not, then there is an index v € {1,2,...,q}
such that (P.;). () = ¢ps (FL(C), G, (C)) # 0. From Propositions 3.9 and 3.11, we notice

that
Vo (F,(C), Gu(C)) (B,(¢) = 1)®.(C)
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Therefore, applying Lemma 3.14 yields
(AI/(C) - I)(q)FB)V(C) 7£ 0 and (BV<C) - I)<(I)FB)V<C) 7é 0. (359>

In addition, from (3.58), it follows that

[VG(O)T'VEOAQ) = D)@y (Q)], + (Bu(€) = I)( Py )(C) = 0.
Making the inner product with (A,(¢) — I)(®,;).(¢) on both sides, we obtain

((AQ) = D(@3)u(Q), [VGQ)VFO(AQ) = N,y (O)], )
F(A0) = D(@)ul0): (BLAC) = 1)(®y)() ) = 0.

Notice that the first term on the left hand side is nonnegative by (3.59) and the Cartesian
Py-property of VG(¢)"'VF(¢), and the second term is positive by Lemma 3.12(b) since
(P.5).(C) # 0. This leads to a contradiction. [

When VG is invertible, it follows from [41] that the column monotonicity of VF(C)
and —VG(¢) is equivalent to the condition VG(¢)"'VF(¢) = O, which clearly implies
that VG(¢)"'VF(¢) possesses the Cartesian Py-property. Consequently, the station-
ary point condition in Proposition 3.13 is weaker than the condition employed in [41,
Proposition 3|. Moreover, for the SOCCP (3.4), this condition is equivalent to requiring
that F satisfies the Cartesian Py-property, which reduces to the familiar stationary point
condition that F'is a Py-function in the case of the NCP.

Lemma 3.15. Let ., be defined as in (5.11). For any sequence {(z*,y*)} C R" x IR",
let \¥ < \& and b < pb denote the spectral values of 2% and y*, respectively.

(a) If \¥ — —o0 or pf — —o00 as k — oo, then ¥, (2%, y*) — +o0.

(b) If {\*} and {u}t} are bounded below, but N5 — +o0, ub — +o0, and ﬁ o sz/_:H - 0
as k — oo, then ¥, (2%, y*) — +o0.

Proof. Part (a) is indeed Lemma 3.8. We next prove part (b). Suppose that {¢,, (z*, y*)}
is bounded. Let z* = [(2*)? + (3*)?]'/2 for each k. From the definition of ¢,

oyt =2 — g2k b)), VE
Squaring two sides of the last equality then yields that
20F o yF = —22% 0 p(a*, yF) + B2, ), VY k. (3.60)
Since ||z*|] — 400 and ||y*|| — 400 by the given conditions, we have that

k k\2 E\2 1/2
lim _ lim (%) ")

=0
el ol 7 (e 7| e ([0 ’
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which together with the boundedness of {¢.,(z*,4*)} implies that

lim —2Zk o quB (l'kkyk) :— ¢FB (xk7yk)2 = 0.
hr00 [l [[[y* ]

Using the equality (3.60), we obtain limy_, Hi_:H o % = 0, which clearly contradicts the
given assumption. Consequently, the conclusion follows. [

Lemma 3.15 extends the result of [41, Lemma 9(a)], which plays a pivotal role in
establishing the coerciveness of the merit function W. It is worth emphasizing that
in Lemma 3.15(b), the condition ﬁ o % -+ 0 as k — oo is indeed necessary, as
demonstrated by the following counterexample.

Example 3.1. Consider the sequences {z*} and {y*} given as follows:

k k
"= —(k+1) and yF=| k-1 for each k.
0 0

It is easy to verify that \¥ = —1, u¥ =1 for each k, and \§ — +o00, p — 400, but

k 1/\/5 k 1/\/§ 2k u*
— —1/\/§ v T 1/\/§ , and
A W | Y

T

— 0.
[Ed]

—_ 0 —
l* [ {ly* ]

That is, the sequences {z*} and {y*} do not satisfy the assumption ﬁ o % - 0. For
such sequences, by a simple computation, we have

VAk? + 2 + 4k + V4k? + 2 — 4k — 4k
Gp (2, yF) = 3| 4- (VAE2 42 + 4k — \/4k? + 2 — 4k)

0
Since
lim VAK2 + 2 + 4k + VAk?2 + 2 — 4k — 4k = 0,
—00
lim 4 — (VAR +2+ 4k — VAR +2 — dk) = 2,
—00
we have limy_, o ||éps (2%, 4%)|| = 1, i.e., the conclusion of Lemma 3.15(b) does not hold.

We are now ready to establish the coerciveness of ¥, for the SOCCP (3.4), under the
assumption that F' satisfies the uniform Cartesian P-property, along with the following
additional condition.
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Condition A. For any sequence {¢*} C IR" satisfying ||C*|| — +oo, if there exists
an index i € {1,2,...,q} such that {\;(¢F)} and {\(F;(¢*))} are bounded below, and
Aa(CF) Ao (F(CF)) = 400, then

| ¢k Fi<<k>>
1 0.
1£S£p<u<fu’||ﬂ<<k>|| g

Proposition 3.14. For the SOCCP (3.4), suppose that the mapping F has the uniform
Cartesian P-property and satisfies Condition A. Then, the merit function ¥, s coercive.

Proof. We shall prove that limer_4 0 U(¢*) = 400. Let {¢*} C IR™ be a sequence such
that ||¢*]| — 400, where ¢* = (¢f,...,¢}) with ¢} € R™. Define the index set

J:={ie{1,2,...,¢} | {¢}} is unbounded} .

Since {¢*} is unbounded, J # 0. Let {¢*} be a bounded sequence with £F = (¢f, ..., &F)
and &F € IR™ for each k, where £F is defined as follows:

0 ified
k __ ) .
& _{ ¢F otherwise, t=12..q

By the uniform Cartesian P-property of F', there is a constant p > 0 such that

pICE— €52 < max (¢F— b F(¢H) - Fi(eh)

i=1,...,

= <<Il/€7 Fu(ck) - FV<£k)>
< ICEIIECH) — F(€5)] for cach k, (3.61)

where v is an index from {1,2,...,¢} for which the maximum is attained which we have,
without loss of generality, assumed to be independent of k. Clearly, v € J, which means
that {¢*} is unbounded. Consequently, there exists a subsequence, assumed to be {¢¥}
without loss of generality, such that [|¢¥|| — +o00. Notice that

I6* = €517 > 116y = 11" = [IGU1I*,  for each k.
Dividing the both sides of (3.61) by ||¢*|| then yields that
PG < 17, (¢%) = F (€M) < 1F(CH)I+ I, €M),
which implies || F,(¢*)|| — +oo since ||¢*|] — +oo and {F,(£¥)} is bounded. Thus,
ICEl = 400 and  ||F,(¢CF)]| = +oo. (3.62)

If either \;(C*) — —oo or A\ (F,(¢*)) — —oo, then using Lemma 3.15(a) readily yields
that v, (¢, F,(C*)) — +oo, and consequently, ¥__(¢*¥) — +oo. Otherwise, (3.62)
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implies that {\;(¢C¥)} and {\(F,(¢*))} are bounded below, but \s(¢¥) — +oo and
Ao (F,(C*)) — +oo. Using Condition A, it then follows that

| ¢t Fy<<'f>>
1
o < R G

which in turn implies that

lim sup Ay
k—o0

LR
{IICEII Ha(qk)H]”'

From this, we have Hg—zll o II%EEZ;H — 0. This shows that the sequences {¢*} and {F, (¢*)}

satisfy the conditions of Lemma 3.15(b), and therefore ¥_,(¢*) — +00. O

When ny = --- = ny, = 1, Condition A is automatically satisfied, and the uniform
Cartesian P-property of I’ reduces to the requirement that F' is a uniform P-function.
Hence, Proposition 3.14 recovers the corresponding result for the Fischer—Burmeister
merit function in the context of the NCP; see [64, Theorem 4.2].

B. ¢, and ¢, functions - variants of ¢, and v,

We now proceed to examine the following one-parameter family of functions:

1
1/17(%?/) = QH(bT(‘xay)HQa (3'63>
where 7 is a fixed parameter from (0,4) and ¢, : IR" x R" — IR" is defined by

O (x,y) = [(a: — )2 +T1(xo0 y)} 2 _ (x+vy). (3.64)

Using this class of SOC complementarity functions (3.64), the SOCCP (3.4) can be
reformulated as the following nonsmooth system of equations:

¢r(F1(C), G1(¢))

8.0 = | 6 (R0.G(0) | =0 (3.65)

6r (FnlC), Cun(0))

The function ®, naturally induces a merit function ¥, : R™ — IR, , defined by

V- (0) = 18I = Y6 (F(0), GulO), (3.60)
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As will be shown, the function 1, serves as a merit function associated with K, and is
continuously differentiable everywhere with explicitly computable gradient formulas (see
Propositions 3.15-3.17). Consequently, the SOCCP can be reformulated as the following
unconstrained smooth minimization problem:

min f-(C) := - (F(¢), G(¢))- (3.67)

CeR™

Moreover, we establish that every stationary point of f. is a solution to the SOCCP,
provided that VF and —V(G are column monotone (see Proposition 3.18). It is worth
noting that ¢, reduces to ¢, when 7 = 2, and its limit as 7 — 0 becomes a multiple
of ¢n. This reveals a close connection between this class of merit functions and two of
the most prominent ones in the literature, thereby justifying a more detailed examina-
tion. Additionally, our investigation is motivated by the work of [116], in which ¢, was
employed to develop a nonsmooth Newton method for the NCP.

To proceed, we first establish that v, as defined in (3.63), is a smooth merit function.
By Lemma 3.1, both ¢, and v, are well-defined for all z,y € IR", since the following
identity holds:

4

—921\? 4 —
= <y—|—T2 x) +¥x261@.

@oyPrrteon) = (o475 %) + TETTy (3.63)

The following proposition confirms that ¢, is indeed a merit function associated with

K.

Proposition 3.15. Let 1, and ¢, be given as in (3.63) and (3.64), respectively. Then,
U, and ¢, are C-functions associated with the SOC, that s,

Ur(z,y) =0 <= ¢-(2,y) =0 <= z€ K", yeK", (z,y)=0.

Proof. The first equivalence is clear by the definition of ¢.. We consider the second one.
“<”. Since x € K", y € K™ and (z,y) = 0, we have z o y = 0. Substituting it into the
expression of ¢, (z,y) then yields that ¢, (z,y) = (22 +y*)'/? — (v +y) = ¢, (7,y). From
Proposition 3.2, we immediately obtain ¢, (z,y) = 0.

“=". Suppose that ¢,(z,y) = 0. Then, z +y = [(z —y)* + 7(z 0 y)]l/Q. Squaring both
sides yields # oy = 0. This implies that = +y = (2% + y*)'/2, i.e., ¢, (z,9) = 0. From
Proposition 3.2, it then follows that x € K", y € K" and (x,y) =0. O

In the following, we focus on establishing the smoothness of ¢,. To that end, we

begin by introducing some notation that will be used throughout the analysis. For any
T =(21,22) ER X R and y = (y1,y2) € R x R"! let

w = (wi,wy) = w(z,y) = (v-y)+7(xoy),
2= (21,2) = 2(z,y) = [(x—y)+7(xoy)] 12 (3.69)
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Then, w € K™ and z € K™. Moreover, by the definition of Jordan product,

wy =wi(z,y) = [zl + Jyl* + (7 — 2)zTy,
wy = wo(w,y) = 2122 + y1y2) + (T — 2)(T1y2 + Y172). (3.70)

Let A\j(w) and Ag(w) be the spectral values of w. By Lemma 3.1, we have

) : V() _ VW) ; vA®) s

<1 :Zl(x7y) - ZQZZQ(x7y) - w2,
where wy 1= e if wy # 0 and otherwise w; is any vector in IR™! satisfying ||ws| = 1.

Lemma 3.16. For any x = (z1,22), y = (y1,42) € R x R, if w ¢ int(K"™), then

7 = |z’ yi = lwell® ziyn = 23ye, T1ye = YiT9; (3.72)
Y+ (T =z = [|mixe 4+ yiye + (7 — 2)z190||
= lzall® + [lg2]* + (7 — 2)z3 y2. (3.73)

If, in addition, (z,y) # (0,0), then we # 0, and furthermore,

T W2 Wa T W2 Wao
Tyg—— =1 Tim— =T Yg —— =14 Yr— = Ya- 3.74
Mool = ]~ ] Y Vg~ BT

2

Proof. Since w = (x — y)? + 7(z o y) ¢ int(K"), using (3.68) and [41, Lemma 3.2] yields
T—2
v =y

n T—2 2
T —=
1 B Y1 9
-
T—2 T—2 T—2 T—2
T+ Y1) y2 = |22+ Yo )y, (21 + Y1) =\ r2+ Yo | Yo
2 2 2 2
2 2
T—2 T—2
(n+ 7520 = e+ 75w o=
+T—2 +7’—2 +T—2 +7’—2 i
Ty ) T = Ty | @ x| X = Ty | Xa.
1 5 1) ¥z Y2 5 T2 )T N 5 Y1) T Y2 5 2 2
From these equalities, we readily get the results in (3.72). Since w € K™ but w ¢ int(K"),
we have ||z(| + [|y||* + (7 — 2)zTy = [|22122 + 25192 + (T — 2) (212 + p122) || By Ai(w) =
0. Applying the relations in (3.72) then gives the equalities in (3.73). If, in addition,
(z,y) # (0,0), then it is clear that ||z120+y1y2 + (T —2)z19s|| = 2T+ 47 + (7 —2)a151 # 0.
To prove the equalities in (3.74), it suffices to verify that x-{m = x1 and xlm = Iy

by the symmetry of z and y in w. The verifications are straightforward by (3.73) and
T1Y2 = Y1T2. U

To +

I,

Ya

Yo + T

Lemma 3.16 characterizes the behavior of z,y when w = (z — y)? + 7(x o y) lies on
the boundary of K". In fact, it can be regarded as an extension of [41, Lemma 3.2].
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According to Lemma 3.16, when w ¢ int(K"), the spectral values of w are determined as
follows:

Mw) =0, Xo(w)=4(2F+y; + (T —2)z1y1) - (3.75)

If (z,y) # (0,0) also holds, then using equations (3.71), (3.73) and (3.75) yields that

) = 2122 + y1y2 + (1 — 2)z192
Vat i+ (7= 2)ay
Thus, if (z,y) # (0,0) and (z — y)> + 7(z o y) ¢ int(K"), ¢,(z,y) can be rewritten as

a(@,y) = 72+ 52+ (7= e,z

Vit + i+ (1 — 2z — (21 + 1)
br(z,y) = z(w,y) — (x +y) = -’1719522+ ?/122 + (7 — 2)219s — (2 + )
\/131 -+ yl + (7' — Q)xlyl

This specific expression (3.76) will be utilized in the proof of the following key result.

(3.76)

Lemma 3.17. The function z(x,y) defined by (3.69) (or (3.71) equivalently) is (contin-
uously) differentiable at a point (z,y) if and only if (x —y)*> + 7(x oy) € int(K"™), and
furthermore,

Vez(z,y) = LHTT_zyLZ_l, Vyz(,y) = Ly r2, L'

2.l
where ) .
-1 — ( cwy al + (bCl_U2a)zI)21IJ; ) if wy 7 0;
) <1/\/w_1> I if wy = 0,
with
B 2
T ) - )

1 1

1
b= ,
2 (\/Az(w) i \/Mw))

(3.77)

1 1 1
2 (\/)\2(?0) \/Al(w)> .
Proof. The proof follows similarly to that of Lemma 3.10 and is therefore omitted. [

Proposition 3.16. The function 1, given by (5.63) is differentiable at every (x,y) €
R" x R™. Moreover, V,1,(0,0) = V,1,(0,0) = 0; if (x —y)*+ 7(z 0y) € int(K"), then

Vatho(@,y) = |Lyizz, L7 — 1) ér(a.y),

Vylr(ey) = |yl = 1] 6rla,y); (3.78)
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if (z,y) # (0,0) and (x — y)? + 7(zoy) & int(K"), then 23 + y? + (7 — 2)z1y1 # 0 and

T+ 52y
Vx \Z, = z -1 \Z, )
L I e e T TR AR
i i+ 52 ]
V, U (z, = — 1| ¢-(z,y). 3.79
y¥r(7,9) Tt =D, ¢r(2,9) (3.79)

Proof. Case (1): (z,y) = (0,0). For any u = (uy,u3),v = (v,v2) € R xR, let g, po
be the spectral values of (u — v)? + 7(uowv) and €M), €@ be the spectral vectors. Then,

2[r(u,0) = -(0,0)] = [|[u? + 0?4 (r = 2)(wo v)]* —u — o
— ||\//T15(1)+\//72£(2)—U—v||2
2
< (V2 + ful + Ioll)

In addition, from the definition of spectral value, it follows that

po = |Jul|®+ ||v]|? + (7 = 2)u"v + 2||(urus + v1vs) + (T — 2)(urve + viug) ||
< 2lull® + 2||vll* + 37 = 2l [ullllv]] < 5(]ull® + [v]]*).
Now combining the last two equations, we have ¥, (u,v) — 1,(0,0) = O(||ul|* + ||v[|?).
This shows that 1, is differentiable at (0,0) with V,1.(0,0) = V,2.(0,0) = 0.
Case (2): (x —y)? + 7(x oy) € int(K"). By Lemma 3.17, z(x,y) defined by (3.71) is
continuously differentiable at such (z,y), and consequently ¢.(z,y) is also continuously
differentiable at such (z,y) since ¢, (z,y) = z(x,y) — (z + y). Notice that

— 92 \? 4 —
22(x7y): (x+TTy) _|_¥y27

which leads to V,z(z,y)L, = L, 52, by taking differentiation on both sides about z.
Since L, = O by Lemma 3.17, it follows that V,z(z,y) = LH%zyL;l. Consequently,

Vatr(2,y) = Vor(z,y) =1 = Ly r2, L7 — 1.

This together with Vi, (x,y) = V¢ (z,y)é-(z,y) proves the first formula of (3.78).
For the symmetry of x and y in v, the second formula also holds.

Case (3): (x,y) # (0,0) and (z — y)* + 7(x o y) & int(K"). For any 2’ = (z},2%), v =
(y1,y5) € R x IR™1) it is easy to verify that

2

1/2
20, (0yf) = H [ 4y (r=2)@ou)] |+l v

= |21+ [ly'[I* + (= = 2){=", ) + [|2" + ¥/1?
12 12 / /1/2 / /
—2( [P+ =@ ey)] T 2y ),
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where the second equality uses the fact that ||z||*> = (22, e) for any z € IR™. Since ||2’||* +
1/ |1>+ (7 —2){z', /) + ||z’ +¢/||? is clearly differentiable in (z',%/), it suffices to show that
(2 +y+ (1 =2) (' oy/)]/?, 2’ +/) is differentiable at (2/, %) = (z,%). By Lemma 3.16,
wy = wa(x,y) # 0, which implies w) = we (2, y') = 22 25+ 2y yh+ (7—2) (2 ys+yi25) # 0
for all (z/,y') € R™ x IR™ sufficiently near to (z,y). Let p1, s be the spectral values of
24y 4 (1 — 2)(2" oy'). Then we can compute that

92 12 12 / / 1/2 / /
2+ + (1 —=2)(2" oy) . +y
[2(24 2 + yiyh) + (7 — 2)(@yh + yia)]” (@) + vh)
[2(x) 25 + y1y5) + (7 — 2)(Zhys + yhas)||

2zl + yiys) + (1 — 2)(xhys + yiah)]” (zh + yb)
12(zy2% + yiys) + (T — 2)(2ys + yios) ||

T4y +

- Vis

oy — . (3.80)

Vi

Since Ao(w) > 0 and we(z,y) # 0, the first term on the right-hand side of (3.80) is
differentiable at (z,y') = (x,y). Now, we claim that the second term is o(||z’ — x| +
v — yl), i-e., it is differentiable at (z,y) with zero gradient. To see this, notice that
wa(x,y) # 0, and hence py = [[2[* + [|y'|I* + (7 — 2)(2",¢/) — [12(2) + iwh) + (7 —
2)(2yh + yiah)||, viewed as a function of (2/,y’), is differentiable at (2/,vy") = (z,y).
Moreover, 13 = Aj(w) = 0 when (2/,y’) = (z,y). Thus, the first-order Taylor’s expansion
of py at (x,y) yields
po= O(llz" =) + Iy =yl

Also, since wq(z,y) # 0, by the product and quotient rules for differentiation, the function

.
2(z12% + yiys) + (1 — 2) (2 ys + yi05)] " (25 + v5)

T+ Yy — (3.81)
L 12(2) 7 + yiwh) + (7 — 2)(@hyh + yiah)|
is differentiable at (2',y") =(z,y), and it has value 0 at (2/,y") = (z,y) due to
(129 + Y1y2 + (T — 2)I1y2]T (22 + y2) T W T W2
1+ Y1 — =T — Ty + Y1 — =0
L lor2s + g1ys + (7 — 2)a10] FT R ] T

Hence, the function in (3.81) is O(||z" — x| + ||y’ — y||) in magnitude, which together with
w1 = O(||la’ — z|| + ||y’ — yl|) shows that the second term on the right-hand side of (3.80)
is
O((ll2" =zl + Iy = yl)*’*) = ollla’ — z[| + lly’ — ylI)-

Thus, we have shown that 1, is differentiable at (x,y). Moreover, we see that 2V, (z,y)
is the sum of the gradient of ||2/||* + ||| + (7 — 2){z/,¢/) + |2’ + ¢/||* and the gradient
of the first term on the right-hand side of (3.80), evaluated at (2/,y') = (x,y).

The gradient of ||2/[]* + ||y/[|* + (7 — 2)(2/, /) + ||’ + ¥/||* with respect to z/, evaluated
at (¢/,y) = (z,y), is 2o + (7 — 2)y + 2(x + y). The derivative of the first term on the
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right-hand side of (3.80) with respect to 2/, evaluated at (z/,y') = (z,y), works out to

be
N
1 ( +7'—2 )+< +7‘—2> Wo ( gt (et )Tw2>
— 1T —FW Lo T ——Y2 T 1T T T Y2
Ao (w) 2 2 [[wa| [[wal|
W [1 N (2 + F22) (@2 +y2)  wi(wa+y2) wy (w2 + Fy) }
’ [z122 + y1y2 + (T = 2)x19el| 2122 + y1y2 + (7 — 2)@192]| - [|w2?

2(z1 + 52y1) (w1 +
_ ( 21 22 yl)( 1 yl) + 2\/ZE% + y% + (7_ o 2)!101?;1,
\/xl + Y1 + (T — 2)$1y1

where the equality follows from Lemma 3.16. Similarly, the gradient of the first term on
the right of (3.80) with respect to x4, evaluated at (z/,y") = (x,y), works out to be

L {(w +—T_2y)+(x +T_2y> w2]<m +y + (g +y2)" w2>
2 2 1 1 1T Y% 2 + Y2
Ao(w) 2 27 ] ]
2 -2 T T . —2

lv12s + g1y + (7 = 2wl [lz1we + y1ge + (7 = 2)aays]| - [Jws]?
2(2x1 + (7 = 2)y1) 2 + S(21 + yl)yQ.
Val+ i + (7 = 2
Then, combining the last two gradient expressions yields that

2Vm¢7(x7y)
SR —
= 2r+(T—-2)y+2(x+y) - [ 2\/51514‘9175(7 2)z1y }
_ 2 { (1’1+TT_2y1)(x1 + 1) ]
Vi +yi + (1 — 2y (221 + (7 = 2)y1)22 + 5(21 + Y1)y

Using the fact that z1y2 = y122 and noting that ¢, can be simplified as the one in (3.76)
under this case, we readily rewrite the above expression for V1. (z,y) in the form of
(3.79). By symmetry, V,¢,(z,y) also holds as the form of (3.79). O

Proposition 3.16 establishes that v, is differentiable and admits a computable gradi-
ent. To further demonstrate the continuity of this gradient, and thereby the smoothness
of v, we require the two essential technical lemmas.

Lemma 3.18. For any v = (11, 22), y = (y1,92) € R x R™™, if wy # 0, then

T 2
. T—2 +(=1) i T—2 Wo
x - x
1 B 1 2 B Y2 al]

T—2 T—2 Wa 2
_1i
H(* 2 ”)“ )(’” 2 yl) ||w2||‘

< Ai(w)
for i =1,2. Furthermore, these relations also hold when interchanging x and y.

IN
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Proof. The first inequality can be established by expanding the squares on both sides
and applying the Cauchy—Schwarz inequality. It remains to verify the second inequality.
To this end, observe that the left-hand side of the second inequality simplifies to

-
|z]|* + ﬂ”yw + (1 =2)zTy +2(—1)" <x1 + 1= 2y1) (xQ + T—_2y2> ﬂ;
4 2 2 |lws]|
whereas the right hand side equals to
]* + [yl + (7 = 2)2 Ty + (=1)"]ws],

we only need to prove the following inequality

; T—2 T—2 \' w T(4—7)
(—=1) [2 <5E1 + 5 yl) (1‘2 + T?ﬁ) Hw—ZH — ||w2||] < THyH2

Considering that # > 0 and |Jwsy|| > 0, the last inequality is actually equivalent to

-
T—2 T—2 9
2z + Y1 To + Yo | wy — [Jwy|
2 2
By using wy = 2(x122 + y1y2) + (7 — 2)(21y2 + y122), we can compute
T
2(w1+ (7 = 2)/2m) (22 + (7 = 2)/2)) w5

= [4551.@1 +4(1 = 2)z7 +2(7 — 2)yi + 3(T — 2)%21y1 +

T(4—7T)
4

< lylPllwell. (3.82)

T—2)3
( 5 )y?}ﬂya

(=2

2

+ [2(7 — 2wy + (71— 2227 + (1 — 2% + xlyl} 3722

+ (423 + 4(r = 2z + (7 = 2% o
and
lealP =[Sy +2(7 = 22w + 47 — 2023 +4(r — 242 a]ps
+ |4} + (7 = 2%3 + 4(r = 2 Iyl
+[423 + 4(r = iy + (7 = 2% s
Applying these two equalities, it then follows that
21+ (r = 2/2m) (22 + (7 = 2/2)12) w2 — s
= [(r =22 = 4)my + ((r = 20%/2 = 27 = 2))u?] Ty
+ (=22 =4)2+ (- 2%/2 =27 = 2)) o] e
T—2 T—2

= (7-2 —4T) {xlyﬂ;—yg + Tg/%x;?ﬁ + y%HyQ”Q + 9

xwmww]
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From this, to show the inequality in (3.82), it suffices to prove that

’4w1y1w2y2 +2(7 = 2wy llye | + 4yillyell® + 2(7 — 2)yia, yz‘ < llylPllwall.  (3.83)

Let L and R denote, respectively, the square of the left-hand side and the right-hand side
of (3.83). We argue the assertion (3.83) by verifying that R — L > 0. Since

L= (204 (7 —2u) 43aTw)+ (20 + (r—2)) 2ol
8y el ey (deays + 27 = 202t + 27 = 2)uf + (7 - 2% ).
and
R = |yll*| 221+ (r = 2wl + @y + (7 = 2)21)%ell]
Il 821y + 221917 = 27 + 4(7 = 2)(a? +9)| Ty

Taking the difference between R and L leads to

2
R—L = (24 (r=2un) (Iyll*lleall® - 4y (aTye)?)
2

(200 + (= 21) (I leel® = 49iloall*) + Seanadys (Il - 4y luel?)
+4(r = 2Ty (Iyll* = 4yl )12) + 4(r — 22Ty (Iyll* - 4y?ly:2)
+2(r = 2%l () - 4y? vl

4 2 2 2 2 2 2
(lyt® = ay2lyel®) [ (220 + (7 = 20 ) ol + (201 + (7 = 2)a1) e

+821 Y129 Yo + 4T — 2)wg Yo 4+ 4(T — 2)zg Yoyt + 2(T — 2)2961@/1963?;2}

v

2

2
= (48— Iel?) | 2212 + (7 = 2010 + 2000 + (7 = 21
> 0.

By the symmetry between x and y, the above results remain valid upon interchanging x
and y. O

Lemma 3.19. For all (z,y) satisfying (x —y)? + 7(x o y) € int(K"), there holds

<C (3.84)

4 F

-1
m+TT72yLz

‘SC and‘
F

—1
Lypes2.ls

where C' > 0 is a constant independent of x,y and 7, and || - ||p denotes the Frobenius
norm.
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Proof. Due to the symmetry between x and y, it suffices to establish the first inequality
in (3.84). Let # = (71, 22) € RxR" ' and y = (y1,y2) € RxIR""!, where the expression
(z — y)? + 7(z o y) lies within int(K™). We divide the proof into two cases: (1) wq = 0,
and (2) wy # 0.

Case (1): wy = 0. In this case, zo = 0 and z; = /||z]|2 + ||y + (7 — 2)2Ty > 0. Hence,

4 1 o+ 2y 1)+ 52y
Loyrzy Ly = 2 2 T =2 =2, ]
VIEP+ Tyl + (7 =2)aTy [ 2+ 57y (@ +50)

Notice that ||z + [[y]|> + (T — 2)2Ty = ||z + 52y[|> + “22|ly||>. Therefore,

|21 + 52y |2 + s
Vel + [yl + (r —2)2Ty ~ VIl +[lyll? + (r —2)aTy ~

This demonstrates that every entry of L T2 ngl is uniformly bounded, with the bound
independent of z,y, and 7. Consequently, the first inequality in (3.84) holds in this case.

Case (2): wy # 0. Now let A\; and Ay be the spectral values of w. By (3.71) and Lemma
317,

T, =T T T T
I bs1 + cSqWy  €S1Wy + asy + (b — a)Sy Watl,
YA bsy + sy €S9y + asy ] + (b — a)s Wyt

wa
[[w2]]?

where wy = s = (s1,82) =« + 52y, and a,b and ¢ are given by

2
VA2 + VA
VA2 + VAL
2V
VAL — VA
2v 20

C =
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Using Lemma 3.18 and noting that s; = 1 + TT_Zyl and sy = 29 + TT_ng, we have

1 1
bsi + csgiy| < —=|51 + Sqs| + ——=|51 — s3] < 1,
‘1 2 2‘ — 2\/>\—2|1 2 2‘ 2\/)\—1‘1 2 2|_
1 1
bsy + cs1w < ——=||s2 + s1Ws|| + —==||s2 — s1W2|| < 1,
[bs2 + cs1wa < 2\/)\—2H2 1Wa| 2\/)\—1”2 10| <

1
S1 + Sng) U_J-Qr — ﬂ (81 — S-QI—U_JQ)
VvV A1

1
‘51 +S-2r'lfl2‘ + 2—\/)\_1 ‘81 _S—QFQDQ‘ <1,

Hcsw‘;zT + bsgu_)Qu_JQTH = wy

o

IN

T T T —
|asy — asgwow, || . HI—wQuJQHFSZ(n—i—l),

< H 257

= VR + VN
1

Jesarts = bz = Hﬁ<

|s9 + s1wsl| +

So + S110s) w;— (S92 — s112) w;—

1
2V
.y
— || S
2/

|1 — wyw; ||, < 2(n+1).

F

— s1ws| <1,

1
<
< o
< sl
IV + VA

The inequalities above imply that each entry of L, 2 ngl is uniformly bounded, with

Hasd — aslwgw;—HF

the bound independent of =,y and 7. Therefore, the first inequality in (3.84) also holds
in this case. [

Proposition 3.17. The function v, defined by (3.63) is smooth everywhere on IR™ x IR™.

Proof. By Proposition 3.16 and the symmetry of z and y in V)., it suffices to show
that V1, is continuous at every (a,b) € R™ x R"™. If (a — b)? 4+ 7(a 0 b) € int(K"), the
conclusion has been shown in Proposition 3.16. We next consider the other two cases.

Case (1): (a,b) = (0,0). By Proposition 3.16, we need to show that V, ¢, (z,y) — 0 as
(z,y) — (0,0). If (x—y)*+7(zoy) € int(K"), then V, 1, (z,y) is given by (2.20), whereas
if (x,y) # (0,0) and (x — y)? + 7(x o y) ¢ int(K"), then V, . (z,y) is given by (3.79).

. -1 I1+7772y1
Notice that L, -2 L7" and ———
7 Y \/x1+yl+(772)x1y1

x,y and 7, using the continuity of ¢,(z,y) immediately yields the desired result.

Case (2): (a,b) # (0,0) and (a — b)? + 7(a o b) ¢ int(K"). We will demonstrate that
V. (z,y) = Vaib-(a,b) by considering the following two subcases: (2a) (z,y) # (0,0)
and (r —y)*+ 7(zoy) ¢ int(K") and (2b) (z —y)?> + 7(xoy) € int(K"). In subcase (2a),
V.- (x,y) is given by (3.79). Noting that the right hand side of (3.79) is continuous at
(a,b), the desired result follows.

Next, we prove that V¢, (z,y) — V,1¢.(a,b) in subcase (2b). From (3.78), we have

V. (z,y) = (m + TT_2y) - LH%zyLz_l(x +vy) — o-(z,y). (3.85)

are bounded with bound independent of
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On the other hand, since (a,b) # (0,0) and (a — b)*> + 7(a o b) ¢ int(K"),
lall* + 1612 + (7 = 2)a"b = ||2(aras + biby) + (7 — 2)(aybs + bray)|| # 0, (3.86)
and moreover from (3.73) it follows that
lall* + [1B* + (7 = 2)ab = 2(a} +b; + (7 — 2)asby)
2(Jlaz ]l + [1b2]* + (7 — 2)azbs)
= 2[[(a1az2 + b1bs) + (T — 2)a1bs|. (3.87)
Using the equalities in (3.87), it is not hard to verify that
ay + 77_251
Vai + b7+ (1 = 2)aiby
This together with the expression of V1, (a,b) given by (3.79) yields
T—2 ) B a1 + 52by
2 V@ + 0+ (T — 2)aiby

Comparing (3.85) with (3.88), we see that if we wish to prove V, 1, (x,y) — V.1, (a,b)
as (x,y) — (a,b), it suffices to show that

T—2
2

((a— b)? +T(aob))1/2 =a+ b.

(a+0b) — ¢ (a,b).  (3.88)

V.r(a,b) = (a +

ay + TT_2b1
\/a% + 03+ (7 — 2)aiby

which is also equivalent to proving the following three relations
-2 aq + T—_le T—2
LxT_QLZ1<:c+T—> = 2 (a—l— b), 3.90
+32y 5 Y Va2 + b3+ (T—2)a1b1 2 (3:90)
_1 T —2 b1 + —CL1 T —2
Ly ro,L, ( 5 $) - = (b+ 5@
Vai+ b2 + (1 —2)ayb
- 1( T_Qx) = (o —b) (b—I—T_Qa). (3.92)
2 v 2 \/a%+b2+(7—2)a1b1 2
By the symmetry of x and y in (3.90) and (3.91), we only prove (3.90) and (3.92). Let

m) (3.93)

Then showing (3.90) and (3.92) reduces to proving the following relations hold as (z, y) —
(a,b):

(a+b), (3.89)

Lyyr2, L7 (@ +y) =

(€1, ¢2) = LzJﬁT*?yLz_l (x + TT_Q?J) , (61,&) = Lx—yLz_l (

T_Qb T_Qb -2
o (a1 ; )’ R a12+ L ( T 2) , (3.94)
VA + B+ (7 — 2)aib Val + 5+ (7 = 2)ab ’
—by) (by + =2 — -2
£ (a12 12) ( 1+ 5 Cll) 6o . (Zl b1) (52 + T (Iz) . (3.95)
\/CL1 + 07 + (7 = 2)arby \/al +01 + (7 = 2)aiby 2
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To verify (3.94), we take (z,y) sufficiently near to (a,b). By (3.86), we may assume that
wy = wa(x,y) # 0. Let s = (s1, s2) = ¢ + 52y. Using Lemma 3.1(c) and (3.93), we can
calculate that

G = g (st msln ¢ ey ),
= 2—182 + (81%(28);@) (82 - 2—122> . (3.97)

Notice that, as (z,y) — (a,b), from equations (3.70) and (3.86)-(3.87) it follows that
AM(w) =0 and  Ap(w) — 4(a? + 0 + (1 — 2)aiby). (3.98)

In addition, by the proof of Lemma 3.16, we also have

T—2 2
<a1+ 5 bl) =

Thus, from the last two equations and the expression of z given by (3.71), we have

2

-2
T by

5 and b2 = ||bs|*

as +

o \2

2l _ 2||s2|I? (a1 + 52h)
= — .
21 VA2 (w) + v/ (w) Vai +0i + (1 = 2)aib

On the other hand, for the second term in the right-hand side of (3.96), we can compute
that

(81;1(1—6&{;2)2 - \/)\2— [ V(W) + 51 <\//\2 \/Al(’w)) (51 - %)

+Z_l <\/)\2(w) - \/)\1(11))) S <51 - %) 2] : (3.100)

Ai(w) [[wa]l

(3.99)

Since s24/A1(w), s _ U2 () g (x,y) — (a,b) and |s; — 82w2| < VA1(w) by Lemma

Tzl l[w2]l

3.18, the right hand side of (3.100) tends to 0 as (z,y) — (a,b). Combining with (3.99),
we prove the first relation in (3.94). We next prove the second relation in (3.94). Note
that (, is given by (3.97). From (3.98) and (3.74), it follows that, as (z,y) — (a,b),

S1 28182 a; + T—2b1 < T—2 )

— 89 = as + by ), (3.101

21 2 \/)\z(w) + \/)\1(21) \/CLl + b2 (T - 2)@161 2 2 2 ( )

T — 2b2 _ (&1 + b% (7’ — Q)Cl,lbl) (GQ + TT_QbQ)
at + b2 + (17— 2)aiby

S1
So — —Z29 —» as +
<1

=0. (3.102)
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In addition, by the expression of z, we can compute that

(5121 = 8322) s 1= VAi(w)// Ae(w) o S22
det(z)  /A(w) " 2¢/ A1 (w) ( ' > ' (3.103)

a1+TT72b1
2\/a%+b%+(7—2)a1b2

as (z,y) — (a,b), while the second term is bounded since |s; — %| < VA(w) by

Lemma 3.18. Combining (3.101), (3.102), and (3.97) yields the second relation in (3.94).
Consequently, (3.90) is established.

By (3.98), the first term on the right-hand side of (3.103) tends to

Now, we focus on the proof of (3.95). Let u=2z —y and v =y + 52z. From Lemma
3.1(c) and (3.93), we know

1 det(z) ug 23(23 v2)
S = M <ulz1v1 - u12’2TU2 - 'Ulu-QI—ZQ + 2 u;vg + : 212
_ ug v n (w121 — ug 25) (V121 — ng?)7 (3.104)
2 z1 det(2)
1 det
T G Ut L (I (3.105)
2 det(2) ) '

Since (a — b)? + 7(a0b) ¢ int(K"), we have aby = aiby, a3 = [lasl|? and b = |[by|* due

to Lemma 3.16. This together with (3.98) implies that

ulvy _ 2(1y — o) "o (a1 —b1) (bl + TT_Qal)
2 VA2 (w) + /A1 (w) Va2 + 03+ (1 —2)arby

as (x,y) — (a,b). (3.106)

We next prove that the second term in the right-hand side of (3.104) tends to 0. By
computing,

(U121 — ud 29) (V121 — v 29)
2 det(2)

A(w)Ao(w) | w Ve (w) = /A (w) u ujwy

[ b ) - AW ( w)]

o) 2/ Me(w) N ]
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When (z,y) — (a,b), we have 2—11 A1 (w)A2(w) — 0. In addition, by Lemma 3.18,

u;wg 2 < +7’—2 ) ( +T—2 >T Wo
el T oa— [\ T2 AT TR
T—2 T—2 T wq
—[<y1+ 5 561)—<3/2+—2 l’2> —||w2||”
< 4\/)\1(11))
- 4—7 7
T _ _ T
_v2w2:( T )_( T—2 ) W2 | \
V1 —||w2|| ‘ y1+—2 1 Yo + 5 Ta [wsl] < VAa(w).

This means that —— <u1 “gw) and ﬁ (vl — UQTW) are uniformly bounded. Notice
1(w

[[w2]] [[w2]]

A1 (w)
that —= u_ and YRUZVAE) e ko uniformly bounded. Therefore,

V22 (w)” /Aa(w) Az (w)

(u121 — ud 20) (V121 — V3 20)
2z det(2)

—0 as (z,y) — (a,b).

Together with (3.106), this establishes the first relation in (3.95). It remains to verify the
second relation in (3.95). Note that & is given by (3.105). When (z,y) — (a,b), from
(3.98) and (3.74), there have

U1 (CLl — bl) ( T —2 )

—vy — by + as |, 3.107

a” @it Qab \ 2 (3.107)
(a% + b% + (T — 2)@1[)1) (CLQ — bQ)

us — L2y = (as — by) — = 0. (3.108)

21 CL% + b% + (T — 2)&1()1

In addition, by the expression of z, we can compute that

(11 —2902) 1=/ A1(w)// Aa(w) o Vg Wo
det(z)  /Ag(w) " 2/ A1 (w) ( ' ) ' (8.109)

bi+52a1
2\/a§+b%+(7—2)a1b2
.
when (z,y) — (a,b), while the second term is bounded since |v; — %| < /A1 (w) by

Lemma 3.18. Combining with (3.107), (3.108) and (3.105), we obtain the second relation
in (3.95) which implies (3.92) holds. Thus, the proof is complete. I

From (3.98), the first term on the right-hand side of (3.109) converges to

We now turn our attention to the monotone SOCCP and show that every station-
ary point of the unconstrained minimization problem (3.67) is indeed a solution of the
SOCCP. To begin, we establish the following key properties of V)., which extend Propo-
sition 3.6 to the general case where 7 € (0,4).
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Lemma 3.20. For any x = (11, 23), y = (y1,92) € R x R"™, we have

(@, Vaibr (2, 9)) + (v, Vitor (2, 9)) = ||6- (2, 9)II, (3.110)
(Vatbr (2,9), Vytor (2, 9)) > 0. (3.111)

Furthermore, the equality in (3.111) holds if and only if ¢-(z,y) = 0.

Proof. When (z,y) = (0,0), it follows from Proposition 3.16 that V¢, (z,y) = V¢ (z,y) =

0, and the conclusion is immediate. We now proceed to examine the remaining two cases.

Case (1): (z —y)?> + 7(z o y) € int(K™). By Proposition 3.16, we can compute that

(2, Vb (x,9)) + (y, Vyior (2,9))

(@ (Lormgay L = 1) 00+ (o (Byrmgeals! = 1) 60)
_ << _ —I> x,¢7>+<(L;1Ly+TT%—I> y,¢7>
<L 1[33 +y’ +(T—2)(a:oy)} —(:Ir+y),¢r>

= (L2 = (x +y),¢0) = 6%,

where, for simplicity, ¢,(z,y) is written as ¢,. This proves (3.110). Notice that

(Vatoel,9), Vyor(@,9)) = ((Lypzze = L) (Lopzz, = L) L7060, L2200 )

2, — L,). Then,

Let S be the symmetric part of (Lyy%% —L.)(L,, 2,

5 = g [(Bm = 2 (Bermny = £2) # (Bt = ) (Buse - 1)

(1 —2)? T—2

1 T—2_, T—2_,
= —{LyLm—FTLm—LzLx—l——Ly 1 ——L,L, TLZLy

2
2 2 22
—L,L,— 2LL+L+LL+TL ~L.L,

T—2 (1 —2)? T—2 T—2
+TL;2,;+ 4 yz z - z yiiz 1

4—7 2 2

-
= —(L,—L,—L,)*+ ——

where T := z + 552 y and § := $1/7(4 — 7) y. Noting that z € K" and 2? = 2% + %, we
have L? — L3 — L2 »= O by Proposition 3.4 of [78]. Consequently,

(Vator (2,9), Voo (,y)) = (SLT s, L7 6r)
> i (L. — Ly — L)L ¢, L7',)  (3.112)

T _
= Tlerse
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where the equality is due to L, — L, — L, = L, . This implies (3.111). If the inequality
in (3.111) holds with equality, then the above relation yields ||Ly. L7 ¢, ||*> = 0, which
says

L¢TL;1¢T = Qbr o (Lzl(bT) =0.

By the definition of Jordan product, (¢,, L;'¢,) = 0. This implies ¢, = 0 since L;! = O.
Conversely, if ¢, = 0, then it follows from (3.78) that (V,¢.(x,y), V,¢-(z,y)) = 0.

Case (2): (z,y) # (0,0) and (z — y)? + T(zoy) ¢ int(K"). By (3.79), we can compute

(2, Vobr (2, 9)) + (y, Vyor (2, 1))

117 + 11y + 2 (yix + 11y)
- SU+ ) T x?
(G~ e o)

= -z, 9%

where the last equality uses (3.76). This proves (3.110). Equation (3.111) holds since

(Vathr (2, y), vy¢T<J7’ Y))

Vit + i+ (T — 2z Vi + i+ (T — 2
> 0,
. . . T+ T2y y1+522
where the inequality is due to - <1 and g < 1. If (3.111)

Vit Hr =2y
11+TT72y1

VRt +(r -2z
_ vi+Fin

=1
\/x%+yf+(7—2)x1y1 \/$%+y%+(7—2)x1y1
1. In the second case, we have y; = 0 and x; > 0, so that Lemma 3.16 yields y, = 0 and

x1 = ||z2||. In the third case, we have z; = 0 and y; > 0, so that Lemma 3.16 yields
xe = 0 and y; = ||y2]]. Thus, in the two cases, we have (z,y) =0, x € K", y € K.
Consequently, ¢,(x,y) = 0 by Proposition 3.15. Conversely, if ¢, = 0, then from (3.78)
it follows that (V. (x,y), V¥, (x,y)) = 0. The proof is thus complete. [

holds with equality, then either ¢, (z,y) = 0 or

We are now prepared to establish another key result sated as in Proposition 3.18:
every stationary point of f; solves the SOCCP under the condition

VF(¢) and — VG(() are column monotone for any ¢ € R". (3.113)
From [63, page 1014] or [143, page 222], A, B € R™*™ are column monotone if
Au+Bv=0 = u'v>0 forany u,v € R"™.

In light of this, it is not hard to verify that, if VG(() is invertible, the condition (3.113)
is equivalent to requiring VG (¢) 'V F(¢) = O for any ¢ € IR"™. This implies that, for the
SOCCP (3.4), the condition (3.113) is actually equivalent to F' being monotone.
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Proposition 3.18. Let f, be given by (3.67). If F' and G satisfies the condition (3.113),
then for every ¢ € R™, either f-(¢) =0 or Vf.(¢) # 0. If Vf({) # 0 and VG(() is
invertible, then (d(C),V f-(¢)) < 0, where d(¢) := — (VG(C)™)" Vb, (F(C), G(C)).

Proof. By Lemma 3.20, applying the same arguments as in [41, Proposition 3], with ¢,
and f,, replaced by ¢, and f-, respectively, yields the desired result. We therefore omit
the details. [

Lemma 3.21. Let 2(z,y,¢) be defined by
~ 2 1/2
2z, y,e) =[x —y)*+1(xoy) +ee] .

Then, for any e > 0, the function 2(x,y,€) is continuously differentiable everywhere, and
there exists a scalar C' > 0 such that

IVai(z,y,6)lr <C,  [[Vyi(z,y,e)|r <C (3.114)
for all (z,y) € R™ x IR", where ||A||r denotes the Frobenius norm of the matriz A.

Proof. Since (z — y)?> + 7(z o y) + ee € int(K") for any (z,y) € R™ x R" and € > 0, by
Lemma 3.17 the function Z(x,y,¢) is continuously differentiable everywhere and

T—2

—2
Vai(2,y,€) = (Lx - Ly) LY Vyi(w,y.) = (Ly +

5 Lm) L;'. (3.115)

We next prove the bound in (3.114) by the two cases: ws # 0 and we = 0. Let

w = (W, W) = w(z,y,e) = (v — y)2 + 7(xoy) + ce.

Case (1). wy # 0. Then, w, # 0 since Wy = wo. Let g = (g1, ¢2) == = + T52y. By (3.115)
and the formula of Lgl given by Lemma 3.17, we can compute that

bgy + Gy Wy Egry + gy + (

V.2(z,y,¢) = b -
AT Y, 8) = bgs + égiiby  Egoty + agid + (b —

Y

) go Wy
() g1 Wy Wy
where @,b and ¢ are defined as in (3.77) with w = . Notice that

T —2 +7'—2
:Qj
9 Y1, g2 2 5

g1 =T+ ya; A(W) = Ai(w) + &, Aa(W) = Ao(w) + €.
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Using the expression of &,ZA) and ¢ and the result of Lemma 3.18 then yields that

‘1391+692Tw2‘ < ﬁ!gﬁggwﬁﬁ\gl—g;wﬂ <1,
gy + by wotdy || < ﬁ |91 + g5 Wa| + Z\/ﬁ g1 —gawa| <1,
st ~asientll = e 0 ) < 4

by + egiila|| < ﬁ 192 + grwa|| + ﬁll(w) llg2 — grwa|| < 1,

st + e, <

1 1
——— g2 + g102|| + ——== g2 — qrwa|| < 1,
2\//\2(1[1) 2 )\1(111)
2|g1]
VIl + [yl + (7 = 2)aTy

The above inequalities imply that the first inequality in (3.114) holds under this case.

]

Case (2). wy = 0. In this case, from Lemma 3.17, it follows that

1 -2 1
V.i(z,y,e) = —= (Lx + T—Ly> = ——=1L,.

(0 2 wq

Since w0y = ||z + F2y|]* + #Hy”2 + €, we have |g1|/vw; < 1 and ||gaf| /v < 1,
which implies the first inequality in (3.114). Thus, we complete the proof for the first
inequality. By the symmetry of z and y in Z(x,y, €), the second inequality clearly holds.
O

Proposition 3.19. The function ¢, defined as in (3.64) has the following properties.
(a) ¢, is (continuously) differentiable at (z,y) if and only if w(x,y) € int(K"). Also,

Vx¢7<x7y) = Lx—&-%y[’z_l - I7 vyng('I?y) = Ly—l—%z[{z—l — 1.

(b) &, is globally Lipschitz continuous with the Lipschitz constant independent of T.
(c) ¢, is strongly semismooth at any (z,y) € IR™ x IR™.

Proof. (a) The proof directly follows from (3.78) and the following fact that
¢T(x7y) = Z(I,y) - (I‘ + y)

(b) It suffices to prove that z(x,y) is globally Lipschitz continuous since ¢,(z,y) =
z(z,y) — (x + y). To proceed, we denote

222(1‘,3/,5) = [(l’—y)Q—l-T((L’Og/)—i—ge}ln
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for any € > 0 and © = (z1,72), ¥ = (y1,%2) € R x R""!. Then, applying Lemma 3.21
and the Mean-Value Theorem, we have

Aa,y) = 2(a,b)| =

< 11H£_ ||Z($,y,€) - Z(a7y7€> + Z?(CL,’(I/, 6) - ZA'(CL, b> E)H
e—0

lim 2(x,y,€e) — lim Z(a,b,¢€)
e—0t e—07t

1
< lirgl+ / V.z(a+t(x —a),y,e)(r — a)dtH
€—> 0
1
+ lirél+ / V,2(a,b+t(y —b),e)(y — b)dtH
€—> 0

< V2C|(z,y) — (a,b)]]

for any (x,y), (a,b) € IR™ x IR™, where C' > 0 is a constant independent of 7.
(c) From the definition of ¢, and ¢, it is not hard to check that

@mwwmeﬁ;% @;%yﬁ&—u¢m—wy

Note that ¢, is strongly semismooth by Proposition 3.3, and the functions x + T—;2y,

/74 —7)y and (7 — 4 + \/7(4 — 7))y are also strongly semismooth. Therefore, ¢,

is a strongly semismooth function since by [73, Theorem 19] the composition of strongly
semismooth functions is strongly semismooth. [

Proposition 3.19(c) suggests that when a smoothing or nonsmooth Newton method
is applied to solve the system (3.65), a fast convergence rate, at least superlinear, can
be expected. To develop a semismooth Newton method for the SOCCP, it is essential
to characterize the B-subdifferential dp¢,(x,y) at a general point (z,y). While the B-
subdifferential of ¢, has been discussed in [163], we extend the analysis here to ¢, for
any 7 € (0,4).

Proposition 3.20. Given a general point (z,y) € R xR, each element in O, (x,y)
is of the form V = [V, — I V,, — I| with V,, and V,, having the following representation:
(@) If (x—y)*+7(zoy) € int(K"), then Vo = L7 L,y =2, and Vy = L7'L, -2,

Y

(b) If (x —y)?> + 7(xoy) € bdK"™ and (z,y) # (0,0), then
—1 1 w, T—2 1
L L -
%6{2\/2101[@2 Al - 3@@;}(1‘* 2 )+2{_w2] }
—1 1 W, T—2
e {2\/2@1 {wz AT — 3w2w;] (Ly+ 2 Lx) +3 { } } (3.116)
<

1 and

for some u = (u1,uz), v = (v1,v2) € R x R"™ satisfying |u1| < |Jugl|

v1] < Jval| < 1, where @y = 2.
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(c) If (z,y) = (0,0), then V, € {La}, V,, € {Ls} for some 4 = (G, 03),0 = (01,02) €
R x R satisfying ||al], ||0]] <1 and Gy09 + 0102 = 0, or

11 11 0 0
e ts Lo )5 [ [0 mane oo nana )

1717+ 17 1 7+ 0 0
welslm] s ]2 0 man 0w |

for some u = (uy,u),v = (v1,02),& = (£1,&),m = (m,m2) € R x R satisfying
jur] < flugll < 1, Jui] < lvef| <1, [&G] < [[&ll <1 and [m| < nof| £ 1, wp €
IR satisfying ||ws]] = 1, and s = (s1,82), w = (w1, ws) € R x R™™ such that
5] + ||lwl]* < 1.

Proof. Throughout the proof, let D,_denote the set of points where ¢ is differentiable.
Recall that this set is characterized by Proposition 3.19(a). For convenience, we write

¢/T,:c(x7y) = vx¢7(xv y)T and ¢/r,y($a y) = Vy¢7'(x>y)—r'

From Proposition 3.19(a), it then follows that for any (z,y) € Dy,,

qbg’,n:(x? y) = Lz_leJrTszy - Ia ¢2—,:c(x7 y) = Lz_lLerTTﬂx - ] (3118)
Moreover, we observe from Lemma 3.1(c) that, when wy # 0, L' can be expressed as
the sum of .

1 1 —wW
g [ L 2]
2/ A1 (w) [ —wW2 w2y
and
. 1 wy
Ly(w) = ——= | _ 4/ Ma(w)( - Woly ) | -T |

2/ Ao(w) | W + waw
24e) Vae(w) + /s (w) i
and consequently ¢/ . and ¢/  in (3.118) can be rewritten as

Oa(ey) = (Li(w)+ Lo(w))Lyyzz, — 1,
O a(ey) = (Li(w)+ Lo(w))L, o2, — 1. (3.119)

(a) Under the given assumption, ¢, is continuously differentiable at (x,y) by Proposition
3.19 (a). Consequently, the B-subdifferential O, (z,y) consists of only one element,

qb;(x,y) = [qb'm(az,y) qb/T,x(xvy)] .
Substituting the formulas in (3.118) into it, we immediately obtain the conclusion.

(b) Assume that (z,y) # (0,0) satisfies (z —y)? +7(xoy) € bdK". Let {(a*,y*)} C Dy,

be an arbitrary sequence converging to (z,y). Let w* = (w¥ wh) = w(zk, y*) and 2F =
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z(x®,y*), where w(z,y) and z(z,y) are defined as in (3.69). From the given assumption
on (z,y), we have w € bdK™ and w; > 0, which means that Ag(w) > A (w) = 0 and
|ws|| = w; > 0. Hence, we assume without loss of generality that w5 # 0 for each k.

Using the formulas in (3.119), it then follows that

¢/ (;Ek,yk) — (L1<wk)—|—L2(wk)) ka""TT_ka_I’
— 1.

T,

¢ (@ ") = (Ll(wk)—i-[/z(wk)) Lyk+TT—2xk

T’y

(3.120)

Notice that limg ;o Ao(w®) = 2w; > 0 and limyg ;00 A (w®) = A\i(w) = 0, which,
together with limy_, o0 Lyk = Ly, limg oo Lyr = Ly and limg, 4 wlg = wy, yields

k——+o0

k—+o0

where C(w) is defined as follows:

Cluw) = 1 1 wy
22wy | Wy 41 — 3wawg

In addition, by a simple computation, we have

1 uk
L@ bz = 5 { b}
1 vk
L = 5| ot

where w5 = wk /||wk|| for each k, and

R S
VA1 (wF)

1

VA1 (wF)

ko _
u2_

vy =

By Lemma 3.18, |u}| < ||u}]

1 T—2
o= L (y’f+ ok —(y2+

lim Lz(wk)ka+TT_2yk = C(w) (LIJr

lim Lo(w*)Lyr2, = Clw) (Ly+

T —2
e T2 —(w’;+

T—2

2

T—2

L),
)

Jus || <
on a subsequence) on Ly (w¥)L s, r-2 + and Ll(wk)LykJr%—zgck, we have

2 Yy

T
U1 u
Ll(wk)ka+T—_2yk - 7 2 T
2 —U1W2 —WalUsy

1
2
1 v vy
Ll(wk)Lyk+TT—2$k — §|: ! 2

—V1Wso —U_}Q’U; :|

2

Il
—_
1
|
—_

1 and |vf] < [[v§]] < 1. Then, taking the limit (possibly
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for some u = (uy,uz),v = (v1,v2) € R x R" with |u;| < [Jus]| < 1 and |v1| < ||vo| < 1,
where wy = wy/||ws||. In fact, u and v are some accumulation point of the sequences
{uk} and {v*}, respectively. From (3.120)-(3.121), we obtain

¢ (2" ") = C(w) (Lx + TT_QLy) +% [ L } ut 1,

da(ata) > Cto)(n+ 20 w5 e

This shows that as k — +oo, ¢/ (z*,y*) — [V, — I V, —I] with V,,V, satisfying (3.116).

(c) Assume (a: y) = (0,0). Let {(z*,y*)} C D, be an arbitrary sequence converging to
(z,y). Let w* = (wy,wk) and 2* be defined as in Case (b). From the given assumptions,
we have w = 0. Therefore, we may assume without any loss of generality that w§ = 0

for all k or w§ # 0 for all k. We proceed the arguments by the two cases.
Case (1): w§ =0 for all k. From equation (3.118) and Lemma 3.17, it follows that

T— T T
oy~ L[ @]
ra\T Y | ok o2k k 772k1 ,
wy | T2+ 5 Y (=1 + F2ur)
[ T— T T
oy - L[ e
i wh | vs + s (ur + Pe) T
Since
—2 P Td-7) 2 =2 |7 T(4-7)
ko ||k k k2 _ ||,k k
wi = |lz* + =yt + = W = |+t = e
every element in the above ¢ ,(z*,5*) and ¢, (z*,y*) are bounded. Thus, taking limit

(possibly on a subsequence) on ¢ ( Foyk) and o ( k yk), respectively, gives

fooaT A AT
E K Uy Uy | ko k vr Uy |
V1‘¢T(x Y y ) —> |: 'ELQ ,&1] :| [7 Vy¢‘r(£ 9 y ) % |: {)2 Ul[ ‘| I

for some @ = (1, 1y),0 = (91,02) € R x IR satisfying ||| < 1, |9 < 1 and a9, +
1ty = 0. This shows that ¢/ (z",y*) = [V, — I V, —I] with V, € {Ls},V, € {Ls}.

Case (2): ws # 0 for all k. Now ¢/ (z*,9*) and ¢ (2", ¢") are given as in (3.120).
Using the same arguments as part (b) and noting that {wQ} is bounded, we have

1 1 1 1
k T k T
Ll(w )kaJrrngk — 5 |: — Ty :| u ., Ll(w )Lyk+7’;2x’“ — 5 |: — Dy :| (% (3122)

for some vectors u = (u1,us),v = (vy,v9) € R x R™"™! satisfying |ui| < |Jug| < 1 and
lo1| < J|ua|| £ 1, and wy € R™! satisfying ||ws| = 1. We next compute the limit of
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Lz(wk>ka+fo2yk and Lg(wk)Lyk+TT*2xk' By the definition of LQ('LU>,
1 k (&)7
L wk L T— - — ! T T 7 ; U
2(W") Loty 20 2 { o5 4 4(I — w5 (w5)")ss w5 (&3)T + 4] — oy
1 n (77k>T
LoW*)Lyoyrze = = | 4o ik :
e pizin = 5 | ok atr D ab ab) AT
where
1 [ T—2 T—2 !
& k k k k —k
= —— |(2F+ al K Wyl
& /\g(wk) _( 1 5 yl) ( 2 9 yz) 2]
1 [ T—2 T—2
K k k k k' 5k
- Ta + +lz+ Wa |
& o (oh) _( 2 5 yz) < 1 5 yl) 2}
1 [ g T—2 k) ( g, T—2 k)T —k
= — + Ty )+ Y2t Tz ) Wals
) (e _(yl 5 Yo 5 2 2
(81570 (1277
— + Ty | vt T ) W
M5 (e _(yg 5 T2 Y1 5 N1 2
and
P " (5 + F20)
1= ; 2 = ’
Ao (wk) + /A1 (wk) \/)\2(wk) \/Al(wk)
k T—2 .k k T2,k
+ 5 T

By Lemma 3.18, [£F] < ||€5]] < 1 and |nf| < [|n5|| < 1. In addition,

HSkH2+ HwkHQ — || 2 ) ” ||y 2 H

Taking the limit on Ly(w*)L 4, r—2, and L2(wk)Lyk+TT4xk, we have

Lz(wk)Lyk+TT—2xk —

zk+ 7 Y
[ &1 &2
Lo(wWL s r—2, — =
2(w”) ak+I52yk 2 | &1y +4(I — Wywg )5y We&y + 4(I — Wty )5
1117+ 0 0
= - _ +2 - AT Do)
2 K2 :|€ [ (I — wgw;)82 (I - wa;—)sl
L g &
2
1
2

(1] 4 0 0
_ + 2
_wz}" [< y

2(ll %12 + lg*l1? + (7 = 2)(@*)Ty*] + 20/ Aa(wh) /A (wh) —

} (3.123)

| g + 4] — W] )wy Wong + 4] — W] wy

} (3.124)

I — 'U_JQU_JQ )(.UQ (I — U_JQU_);)(JJl
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for some vectors & = (£1,&), 1 = (m1,m2) € R x R"! satisfying [£] < [|&]] < 1 and
Im| < |Inell < 1, and s = (51, 82),w = (w1,ws) € R x R"! satisfying ||s||* + ||w]]* < 1.
From equations (3.122), (3.123) and (3.124), it follows that as k — o0,

1

1 1 0 0
T s T+2 —1
"LT)Q :| f + 2 [ —71)2 :| uot |: (I — 11_)271);—)82 (I — U_Jg'u_);)sl :| ’
1 1 1 1 0 0

/ kE k = T, * L s
Ora(t9") = 2[@}" +2[—w2}v + {(I—wm})wz (I—wgw;)wl]

This shows that as k — +oo, ¢/ (2%, y*) — [V, — I V, — I] with V,, and V,, satisfying
(3.117). Combining with Case (1), the desired result then follows. [

1
¢;,x<$k7yk> — §|:

Proposition 3.21. The operator ®, : R™ — R™ given by (3.65) is semismooth. More-
over, it is strongly semismooth if F' and G are locally Lipschitz continuous.

Proof. Note that ®, is (strongly) semismooth if and only if each of its component
functions is (strongly) semismooth. Since the composition of (strongly) semismooth
functions remains (strongly) semismooth, as established in [73, Theorem 19], the desired
conclusion follows directly from Proposition 3.19(c). O

To characterize the B-subdifferential of ®., we write F;(¢) = (Fi1(¢), Fi2(¢)) and
Gi(¢) = (Gi1(€), Gi2(()), and denote w; and z; for i = 1,2,...,m by

w; = (win(¢), w2(¢)) = w(Fi((), Gi(C)),
zi = (2u((), 22(€)) = 2(Fi(¢), Gi(())-

For simplicity, we sometimes suppress in F;(¢) and G;(¢) the dependence on (.
Proposition 3.22. Let &, : R™ — IR" be defined as in (3.65). Then, for any ( € R",
Op®-(C)" € VF(Q) (A(Q) — 1) + VG(Q) (B(O) — 1),

where A(C) and B(C) are possibly multivalued n x n block diagonal matrices whose ith
blocks A;(C) and B;(C) fori=1,2,...,m have the following representation.

(a) If (Fi(¢) = Gi(¢)* + 7 (Ei(¢) 0 Gi(¢)) € intKC™, then
Ai(Q) = Lpyr2g, Ly and Bi((Q) = L r2p L7

(b) If (Fi(C), Gi(C)) # (0,0) and (Fi(¢) — Gi(¢))* + 7 (Fi(¢) 0 Gi(¢)) € bdK™, then
1 T—2 1 W 1 T

1 T—2 1 o], 1
B; L, Lr, 2 —v;(1, =0,
{0 € {wm( ot Fz) [w,-z AT — 3w } Faull wﬂ)}

for some u; = (us, usn), v; = (vi1, Vo) € R x R satisfying |ua| < |Jui| < 1 and

|Ui1| S ”UZQH S 1, where U_)Z'Q = szn
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(c) If (Fi(¢), Gi(C)) = (0,0), then

2 0 QSil(I — ’LDZQID;B

Bi(¢) € { Lo }U {%77 (L ah) + 2o (1, —wh) + { ) wﬂw;; ] }

2 0 20)2'1 ([ — wiQ’LU;E

for some G; = (G;1,U42),0; = (0i1,02) € R x R satisfying ||, ||0:]] < 1
and ;10 + Unle = 0, some u; = (%‘1;%‘2),%‘ = (Ui17vi2)7§i = (fﬂ,ﬁﬂ)ﬂh =
(i1, mi2) € R x R™™H with [un| < [Juial] < 1, |va| < Jlviell < 16| < [|€ell <1
and |nin| < |niell < 1, W € R™™ satisfying ||wi| = 1, and s; = (si, Si2),
w; = (wir, wiz) € R x R~ such that ||s;]|? + |Jwi])* < 1.

Proof. Let ®,,;(¢) denote the ith subvector of ®,, i.e. ®,;(¢) = &,(F;(¢),G;(C)) for all
i=1,2,...,m. From [52, Proposition 2.6.2|, it follows that

P, (Q)"T C 0P 1(Q)" x IpPra(¢)" X -+ x OpPrm(()T, (3.125)

where the latter denotes the set of all matrices whose (n;_1 + 1) to n;th columns with
no = 0 belong to P (¢ )T. Using the definition of B-subdifferential and the continuous
differentiability of F' and G, it is not difficult to verify that

Op%-:(C)"T = [VE(() VGi(Q]0pd-(F(Q),Gi(C)", i=1,...,m. (3.126)

By applying Proposition 3.20 in conjunction with the preceding two equations, the desired
result follows immediately. [

Proposition 3.23. For any ¢ € R™, let A(C) and B(() be the multi-valued block diagonal
matrices given as in Proposition 3.22. Then, for any i € {1,2,...,m},

((Ai(Q) = 1P-:(¢), (Bi(¢) — I)P,4(C)) >0,

and the equality holds if and only if ®.;(¢) = 0. Particularly, for the index i such that
(Fi(¢) = Gi(Q))* + 7(Fi(C) 0 Gi(¢) € intK™, we have

((Ai(€) = Dwi, (Bi(€) — Ivy) 20, for any v; € R™.
Proof. From [52, Theorem 2.6.6] and Proposition 3.19 (d), we have
Vi (2,y) = Opd-(2,) ¢ (2, y).
Hence, for any i = 1,2, ..., m, it follows that

Vi, (Fi(Q), Gi(C)) = 9por(Fi(Q), Gi(€)) - (Fi(C), Gi(C))-



3.1. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SOC 249

In addition, from Proposition 3.20 and Proposition 3.22, it is not hard to see that

[A(Q)T — 1 Bi(Q)T — 1] € dpd,(F(C). Gi(C))-

Combining with the last two equations yields that for any ¢ = 1,2,...,m,

Vo (Fi(€), Gi(€) = (Ai(¢) — 1)P-.i(C)
V- (Fi(C), Gi(Q)) = (Bi(¢) — I)®i(C). (3.127)

Consequently, the first part of the conclusions is direct by Proposition 4.1 of [37]. Notice
that for any 7 such that (F;(¢) — G;(¢))* + 7(F;(¢) o G;(¢) € intK™ and any v; € R™,

((Ai(¢) = D, (Bi(¢) — Dy
- <(LFi+%Gi N in)Lz_ilUiv (LG#%?E— - in)L;IUz’>

Therefore, by employing the same reasoning as in Case (2) of [37, Proposition 4.1], we
arrive at the second part of the conclusions. [

Lemma 3.22. Let ¢, : R" x R" — R, be given by (3.63). Then, for any x,y € R,

Or(2,y) #0 = Vb (z,y) #0, V. (z,y) #0.

Proof. The sufficiency follows directly from Proposition 3.16. Now suppose ¢, (z,y) # 0.
If either V9, (2, y) = 0 or Vi, (2, y) = 0, then it follows that (V- (z,y), V- (2, y)) =
0. However, by Proposition 3.15, this would imply ¢, (z,y) = 0, leading to a contradic-
tion. 0]

Proposition 3.24. Let W, : R" — R be given as (3.66). Suppose VG is invertible and
VG()"'VFE(C) at any ¢ € R™ has the Cartesian Py-property. Then, every stationary
point of V. is a solution of the SOCCP (3.4).

Proof. Let ¢ be an arbitrary stationary point of f,(¢). Since U, is continuously differ-
entiable as established in Proposition 3.19(d), and @, is locally Lipschitz continuous, it
follows from [52, Theorem 2.6.6] that for any V € ®.(¢)T, we have

0=V, (¢) =V, (C).

Let V be an element of dg®,(¢)T(C 09,(¢)T). Then, from (3.125) it follows that there
exist matrices V; € 9p®,,;(¢)T such that

V=VixVoax---xV,.
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In addition, for each V; € IR™*™ by Proposition 3.20 there exist matrices A;(¢) € R™*™
and B;(¢) € IR™*™ as characterized by Proposition 3.22, such that

V; - VE(C)(AZ(C) - I) + VGz(g)(BZ(C) - ]>> L= 17 27 ceey M

Let A(C) = diag(A1(C), ..., An(¢)) and B(() = diag(B1((), ..., Bn(¢)). Combining the
last three equations, it then follows that

[VE(O)(A(C) = 1) + VG(O)(B(C) — )] 2-(¢) = 0,
which, by the invertibility of VG((), is equivalent to
VGO VFQ(AQ) — I) + (BC) — D] .() = 0. (3.128)

Suppose that ®,(¢) # 0. Then, there necessarily exists an index v € {1,2,...,m} such
that ®,,(¢) = ¢-(F,(¢),G,(¢)) # 0. Using Lemma 3.22 and equation (3. 127) then yields

In addition, from (3.128) it follows that

[VG(Q) ' VF(Q(A(Q) = D)@+ ()], + (Bu(¢) = 1) - (C) = 0.
Making the inner product with (A,(¢) — I)®,,(¢) on both sides, we obtain

((A(Q) = NP (Q), [VG(QO)'VFQAQ) = Do), )
(A0 = DPf0): (BUAQ = DO (0)) = 0.

Observe that the first term on the left-hand side is nonnegative by (3.129) and the
assumption that VG({) 'V F({) possesses the Cartesian Py-property at any ¢ € R".
The second term is strictly positive by Lemma 3.23, given that @, ,(¢) # 0. This yields
a contradiction. [

Remark 3.3. (i) It is easy to verify that VG({) 'V F(¢) = O implies the Cartesian Py-
property of VG(C)"'VF(C). While, by [37], the column monotonicity of VF({) and
—VG(C) is now equivalent to VG(¢)"'VF(¢) = O. This means that the condition
in Proposition 3.24 is weaker than the one (3.113) used in Proposition 3.18.

(ii) For the SOCCP (3.1), the condition stated in Proposition 3.24 is equivalent to re-
quiring that F satisfies the Cartesian Py-property. If ny =ng = -+ =n,, = 1, this
condition reduces to the classical requirement in the NCPs that F is a Py-function.

Lemma 3.23. Let ¢, be given by (3.63). Then, for any (x,y) € R™ x IR", we have
(4—1)?
4

- (2,) 2 2 |[[6r (2, )4 | 2 (=) l” + 11 (=2)+117]
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Proof. Note that z(x,y) — (z + TT_Qy) € K" and z(z,y) — (y + TT_Z.T) € K". Following
the same proof line as Lemma 3.7 immediately yields the desired result. O

Lemma 3.24. Let 1), be defined as in (5.63). For any sequence {(z*,y*)} C R™ x R™,
let \¥ < \& and pb < pb denote the spectral values of 2% and y*, respectively.

(a) If \} = —o0 or ub — —o0, then ¥, (2%, y*) = +o0.

(b) If {\k} and {u}} are bounded below, but s — +o0, uk — +o0, and ka” o sz” 0,
then . (2%, y*) — +oo.

Proof. Part (a) is direct by Lemma 3.23 and the following fact that

1, | 1<
[P =5 37 info,A5)", [[(=9h) ] = 5 D (minfo, ul})”.
i=1 =1
We next prove part (b) by contradiction. Suppose that {1, (z*,y*)} is bounded. Since
ot oyt =2 — o (a"yb)  VE,

where 2% = 2(2*, y*) with 2(x,y) defined as in (3.69). Squaring the two sides of the last
equality then yields that

(4—=71)ab oy® = =2:" 0 9, (2, y") + (¢, (2", 4"))%. (3.130)

Noting that, for each k,

0o A V2uwf 2> 4 lly*|]* + (7 — 2) (%) Ty*
= = l]ly* H ESIrE [l 12]ly* |2
Sk k
we can verify that limy_, W 0. Combining with W € K! yields
Y TENY
K

lim ———— = 0.
k=too ||z [[[ ]

Using equation (3.130) and the boundedness of {¢,(z*,4*)}, it then follows that

Jfk yk

1m o =
kevoo [lk]| - fly

which clearly contradicts the given assumption. The proof is complete. [

Now, invoking Lemma 3.24 and employing the same reasoning as in [163, Proposition
5.2], we can establish the boundedness of the level sets of V. (¢) for the SOCCP (3.1),
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under the assumption that F' possesses the uniform Cartesian P-property and satisfies
the following condition:

Condition A. For any sequence {¢*} C IR" such that ||C¥|| — +oo, if there exists
i € {1,...,m} such that \;(C¥), \(F;(¢*)) > —oo and \a(CF), Ao (F;(¢¥)) — +o0, then

. ¢ Fi(¢h) >
1 .
fﬁi‘;p<||gf||’ B/ "

Proposition 3.25. For the SOCCP (3.1), if F': IR™ — IR" has the uniform Cartesian
P-property and satisfies Condition A, then the merit function V.. has bounded level sets.

3.1.2 The functions ¢ and ¢f in SOC setting

In this section, we study the generalized Fischer-Burmeister (FB) merit function associ-
ated with the SOC. Within this framework, it is natural to define

1
wﬁB(x7y) = §H¢§B(may)”27 (3131)

where p is a fixed real number from (1, +o00), and ¢? : IR™ x IR" — IR" is defined by

Opg (7,9) = V2P + [y|P = (2 +y) (3.132)

with |z|P being the vector-valued SOC function (or Lowner function) associated with
[t|” (t € R). In other words, given a real-valued function ¢g: IR — IR, recall that the
vector-valued function ¢*°°: IR™ — IR" by

() = g (@))ul) + g(ha(2))ul?.

If ¢ is defined on a subset of IR, then ¢°°¢ is defined on the corresponding subset of IR".
The definition of ¢*°¢ is unambiguous whether x5 # 0 or x5 = 0. As mentioned, if we use
the vector-valued functions associated with [¢t|P (¢t € IR) and /¢ (t > 0), then we obtain

lz[P = (A (x)]? ult) + | A2 () [P u? Vre R,

x T

Vo = Y (z) ul + U x(x) u® v ek,

respectively. The two functions enhance that ¢? in (3.132) is well defined for any
z,y € IR". Clearly, when p = 2, ¢ reduces to the FB merit function

1
¢FB (ZL’, y) = §||¢FB ([L’, y)||27
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where ¢, : R" x IR™ — IR" is the C-function associated with SOC defined by
Gps (2, y) =22+ 42— (x +y).

Likewise, we denote @7 : IR"™ — IR™ as

[ o (F1(0), G1(Q)) ]

o (¢) = | &2, (F(O), Ci(0)

| 2 (F4(0), Gal0))

where ¢?_ is defined as in (3.132) with a suitable dimension. Accordingly, its squared
norm induces a merit function, given by

W2, (0) = 31, OIF = Y002, (RO, Gi(C)) 3.13)

Lemma 3.25. For any given 0 <r <1, £ =, n" whenever § =, n =, 0.

Proof. This is an immediate consequence of [28, Proposition 2.7] since f(t) = t" for
0 <r <1is SOC-monotone on [0,00). O

Lemma 3.26. For any nonnegative real numbers a and b, the following results hold.
(a) (a+b) >a”+ b if p> 1, and the equality holds if and only if ab = 0;
(b) (a+0b) <a”+b"if 0 < p<1, and the equality holds if and only if ab = 0.

Proof. Without loss of generality, we assume that a < band b > 0. Consider the function
f(t)=({t+1)»—(t"+1) (t > 0). It is easy to verify that f is increasing on [0, 4+00) when
p > 1. Hence, f(a/b) > f(0) =0, ie., (a+ b)* > a” +b". Also, f(a/b) = f(0) if and
only if a/b = 0. That is, (a + b)? = a” + b” if and only if ab = 0. This proves part (a).
Note that f is decreasing on [0, +00) when 0 < p < 1, and a similar argument leads to
part(b). O

Lemma 3.27. For any £,n € K", if £ +n € bdK", then one of the following cases must
hold: (i) € = 0,n € bdK"; (i1) £ € bdK",n = 0; (iii) & = ~yn for some v > 0 with
n € bdtK".

Proof. Since £, € K" and € + 1 € bdK™, it follows that ||&]|| + [|n2]] > [|&2 + ne|| =
&+ > ||&]] + ||m2]|- This shows that & = 0; or 7 = 0; or & = vy # 0 for some v > 0.
Substituting & = 0, or 79 = 0; or & = v into ||a + 12| = &1 +m1 yields the result. O



254 CHAPTER 3. GENERAL COMPLEMENTARITY FUNCTIONS

Proposition 3.26. Let ¢ be defined by (3.132). Then, the function ¢£_ is a C-function
associated with the SOC. In other words, for any x,y € IR", there holds

o (r,y) =0 <= z€K", ye K", (z,y) =0.

Proof. “<”. From [85, Proposition 6], there exists a Jordan frame {u(l), u(2)} such that
z = Mu + u® and y = pu® + pou® with A, j1; > 0 for s = 1,2. Then,

(@+y)P = M4 p)u + (A + po)u?,
2yt = O+ ) + (A5 + ph)u®.

Since 0 = 2(z,y) = A1 + Agpe implies Ay = Aoz = 0, from the last two equalities
and Lemma 3.26(a) we obtain (z + y)? = 2”7 + %?, and consequently ¢ (z,y) = 0.

“=". Since ¢p(x,y) = 0, we have x = /|z|P + [y|P —y = |y| —y € K", where the
inequality is due to Lemma 3.25. Similarly, we have y = {/|z|P + |y|P—2 = . |z|—2 € K".
Now from ¢,(z,y) = 0, we have (x + y)? = 2 4+ y*, and then

Mz + )" + ez +9))" = (M (2)” + (a(2))” + (M(y)" + (Aa(y))”.

Noting that f(t) = (to + ) + (to — t)? for a fixed t, > 0 is increasing on [0, ¢y], we also
have

Mz + o))"+ Pz +9)]" > (@ 4+ — |zl + 1520)? + (@1 +y1 + 22l — lly2l)?
= (Au(@) + A(y))” + (Na(z) + Mi(y))?
> (@) + (Ma(y)” + (A2(2)” + (M (v))”, (3.134)

where the last inequality is due to Lemma 3.26(a) and z,y € K". The last two equa-
tions imply that all the inequalities on the right hand side of (3.134) become equalities.
Therefore,

22 + vl = [lzall = lvall,  Au(2)Aa(y) =0, Aa(2)Mi(y) = 0. (3.135)

Assume that x5 # 0 and y, # 0. Since z,y € K", from the equalities in (3.135), we obtain
x1 = ||zal], y1 = ||ye||, and xe = Fys for some 7 < 0, which in turn implies (z,y) = 0.
When x5 = 0 or y, = 0, using the continuity of the inner product yields (x,y) =0. O

Unless otherwise specified, throughout the remainder of this section, we assume that
K = K™ (all analysis is easily carried over to the general K as in (3.2)), p > 1 with
q=(1—-p1)71 and ¢g*°° is the vector-valued function associated with |t[? (t € R), i.e.,
g°°(z) = |z|P. For brevity, we consistently write

w=w(r,y) =z’ + |y’ and z=z(z,y) = Y|zl + |yl V,yeR"
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By definitions of |z|? and |y|?, clearly,
Po@)P + @) PP + @)

wy = wy(z,y) =

2 2 ’
A P_ |\ P A P _ |\ P
B R ] 1 S e T SO
where Ty = ”x T if x9 # 0, and otherwise T is an arbitrary vector in R"~! with ||z, = 1,
and 7, has the similar definition. Noting that z(z,y) = ¢/w(zx,y), we have
A A A A
2 =2(ry) = Yl ;L{)/ l(w), 2 = z(x,y) = o ‘U/ 1<w>w2, (3.137)
where wy = Tun if wy # 0, and otherwise W, is an arbitrary vector in IR"~! with
[l = 1.

To analyze the differentiability of ¢ | we present two essential lemmas. The first
establishes key properties of points (z,y) for which w(z,y) € bdK", while the second
offers a sufficient condition characterizing the points at which z(z,y) is continuously
differentiable.

Lemma 3.28. For any (x,y) with w(z,y) € bdK", we have the following equalities:

wi(@,y) = Jwa(z,y)| = 227 (1" + "),

ol = [lz2)?, yt = w2l 2y = 2392, 2192 = 1. (3.138)
If, in addition, wo(x,y) # 0, the following equalities hold with Ws(x,y) = ngg zg” '
wyWa(x,y) = w1, TWe(2,y) = T2, Yo Wa(2,y) = y1, NW2(2,Y) = ya. (3.139)

Proof. Fix any (z,y) with w(z,y) € bdK™. Since |z|P,|y|P € K", applying Lemma
3.27 with ¢ = |z? and n = |y|P, we have |z|? € bdK" and |y|P € bdK". This means
that [Az(z)[” - [A(2)]” = 0 and [A(y)[ - [\ ()P = 0. So, 2¥ = [la2|* and yF = [[gal|*.
Substituting this into w;(x,y), we readily obtain wy(z,y) = 227 (|x1 [P + |y1|P).

To prove other equalities in (3.138) and (3.139), we first consider the case where x; +
|z2]| = 0 and y; — ||ya|| = 0 with x5 # 0 and y, # 0. Under this case,

_ @)+ ) |)\1 )P e [e@)P w2 ||
= [Jws,

2 [E21 2 gl
which implies that x5y, = —||za|l[|y2]| = 2151 Together with 27 = [|2]|* and y7 = [|y2[|*,
we have that z1y, = y125. From the definition of ws, it then follows that
@)P PP 21y e
e R T R
M(2)|P iz A x
LWy = | 1( )| 122 | Z(y)| Y1T2 — gr— 1(|I1|p+ |y1’p)$2 _ ||w2||x2'

2 el 2 gl
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Similarly, we also have yJ wy = ||ws|ly; and y] wy = ||wally. The above arguments show
that equations (3.138) and (3.139) hold under the case where x; = —||z2|l, 11 = ||ly2|-
Using the same arguments, we can prove that (3.138) and (3.139) hold under any one
of the following cases: (1) z1 = |[22ll,y1 = [lyal; (2) 21 = —|[22ll,v1 = |yl (3) 21 =
—[lzall, g = —llg2ll. O

Lemma 3.29. Let z(z,y) be defined as in (3.137). Then, z(z,y) is continuously differ-
entiable at (z,y) with w(x,y) € int(K"), and

V.ez(z,y) = Vg (2) Vg (2) ™" and V,z(x,y) = Vg™ (y) Vg™ (2) ",

where Vg*°¢(2)™1 = (pww;) " if wy =0, and otherwise

1 1 wy wg
a1 \/A T nw) Ve(w) YA
soc 1 _ 2 1 2 1
Vg (Z) - 2p Wo 2 ([ w2w2) w2w2 wa-2r

\//\2 (W) {Aw) a(z) i /Ao (w \//\1

Proof. Since [t|P (t € R) and ¢/t (t > 0) are continuously differentiable, by [78, Propo-
sition 5.2] or [29, Proposition 5], the functions ¢°°°(z) and +/z are continuously differ-
entiable in IR” and int(K"), respectively. This implies the first part of this lemma. A
simple calculation gives the expression of Vz(x,y). By the formula in [78, Proposition
5.2],

p sgn(xy) |z P71 if 2o = 0;
Vg™ (z) = b(x) c(z)za $ (3.140)
c(x)Ty a(z)l + (b(z) — a(x))ToTa £z 70,
where
o P = )P
[E2w Aa(7) = M)
b(z) = g [sgn(Aa(2))[ A2 ()P + sgn(A(z)) | A (2) P71
c(z) = g [sgn(Aa(2))[ A2 ()P — sgn(Ai(2)) [ A (2)P71] (3.141)

We next derive the formula of Vg*°¢(2)~!. When wy = 0, we have A\ (w) = lo(w) =
wy > 0, which by (3.137) implies z; = ¢/w; and 2, = 0. From formula (3. 140) it then
follows that Vg**°(z) = p|z1|P~'] = py/wiI. Consequently, Vg*¢(z)™! = W

wy # 0, since ¢/ Aa(w) > ¢/ A1(w), we have zp # 0 and Zo = T = W2 by (3. 137) Using
the expression of V¢*°(z), it is easy to verify that b(z) 4 ¢(z) and b(z) — ¢(z) are the
eigenvalues of Vg*°¢(z) with (1,w,) and (1, —w,) being the corresponding eigenvectors,
and a(z) is the eigenvalue of multiplicity n — 2 with corresponding eigenvectors of the




3.1. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SOC 257

form (0,7;), where 7y,...,7,_o are any unit vectors in IR""! that span the subspace
orthogonal to w,. Hence,

Ve (z) = Udiag (b(2) — c(2),a(2),...,a(2),b(z) + c¢(2))UT,

where U = [u; vy +-+ v,_2 ug] € R™™ is an orthogonal matrix with
1 1
U1:|: _:|, U2:|:_:|, Uz:|:£):| forizl,...,n—Q.
— W2 W2 U
By this, we know that V¢*°¢(2)~! has the expression given as in the lemma. [

Lemma 3.30. Suppose that w(z,y) is given by (3.136) and assume that p > 2. Let
z,y € R" satisfy w(x,y) € bdT K" where bd™ K" = bdK™\{0}. Then, we have

2P 2psgn(xy)|x, [P~
V. " =V, ) =(z 142
w (2, y') ‘( ') ng(:C Y )H ’ W) = 2p72psgn($1)|$1|p71@2 ( )

Proof. Assume that xo # 0. By the expressions of w;(2’,3') and ws(2',y'), we calculate

p sgn(Az(2))[A2(2)[P~! + sgn(Ai (@) |As ()P~
2\ (sgn(Aa(@))|Aa(@) P~ = sgn(Au(@)) M (@) 7Y 22 )7

)
p sgn(Aa(x)) A () [P~ = sgn(A () [ A () [P~
)| Az (2 )

Vowr (2", 4') @ y)=(ay) =

Var[[wa (@', )| @ )=@) =

2\ (sen(a(@))Aa(2) P71+ sgn(Ai (2) [ (2)[P71) 124
0
T3 Wy Ao (@) [P — [Aa ()P wo ToTgWs
2| TFwe] 2 -
lzalllfwa]l ~ Tl lwe]

Using the equalities in (3.139), the last two equalities can be simplified as

202 psgn(zy) |z [P

/ / _
Vx/un(x >y) ‘(x )= V H'LU2(.’L' Yy )” ’ (' y")=(z,y) — 2p*2psgn(x1)|x1|pflﬁz

If 25 = 0, using the result for z5 # 0 and the continuity of Vw,(z',y") and V|lwa(2’,y)||
at (x,y), we easily obtain equation (3.142). [

Proposition 3.27. Let Y2 be defined by (3.131). Then, the function Y for p € (1,4)
is differentiable everywhere. For any given x,y € R™, if w(x,y) = 0, then V P (v,y) =
VP (z,y) = 0; if w(z,y) € int(K"), then

Vb (z,y) = (Vg(x)Vge(z)™ = 1) ¢8 (x,y),
Vil (z,y) = (Ve (y)Vg*(2)™" = 1) ¢b (2,9); (3.143)
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and if w(x,y) € bdTK", then
s (o) [P
vxwp x’y T 1 ¢p x? y )
FB( ) (q |x1|p+ |y1|p FB( )
sgn(y1) [y~

Vi, (z,y) = (m - 1) (T, y)-

Proof. Fix any (z,y) € R*"xIR". If w(z,y) € int(K"), the result is direct by Lemma 3.29
since ¢¥_(r,y) = z(z,y) — (x+y). In fact, in this case, ¥2_ is continuously differentiable
at (z,y). Hence, it suffices to consider the cases w(z,y) = 0 and w(x,y) € bd"K". In
the following arguments, 2’ and y’ are arbitrary vectors in IR", and p; (2, /), po(2’, y)
are the spectral values of w(a’,y') with €1 ¢ € IR™ being the corresponding spectral
vectors.

(3.144)

Case (1): w(xz,y) = 0. Since (x,y) = (0,0) now, we only need to prove, for any
2,y € R",

Uy (@ y) — ¢7,(0,0) = % l=(z, ') = (' +9)II” = Ol ), (3.145)

which shows that 1, is differentiable at (0,0) with V¢ (0,0) = V4P (0,0) = 0.
Indeed,

)~ @ = [l €0+ ) € - )
< V2 y) + 2]+ (1Y (3.146)

From the definition of wy(x,y) and ws(x,y), it is easy to obtain that

pa(2'sy') = wi (@', y) +wa(2', y') < Pa(@)P + (@) + () + A ()]
Using the nondecreasing of ¥/t and Lemma 3.26(b), it then follows that

(@ y) < (@) + @)+ Do)l + X))
< Pa(@)] + M @)+ @)+ @) < 200121+ 11D

This, together with (3.146), implies that equation (3.145) holds.

Case (2): w(z,y) € bd"K". Now wy(z,y) = ||wa(z,y)|| # 0, and one of x5 and y, must
be nonzero by equation (3.139). We proceed the arguments by three steps as shown
below.

Step 1: to prove that wy(2,y’) and wq(2',y’) are [p] times differentiable at (2/,y') =
(x,y), where [p] denotes the maximum integer not greater than p. Since one of z5 and y,
is nonzero, we prove this result by considering three possible cases: (i) zo # 0, ys # 0; (ii)

/

29 = 0,ys # 0; and (ifi) 22 # 0,y» = 0. For case (i), since —2-, 2= \y(z'), M (2), Xo(/)

57 Nyl
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and A\ (y') are infinite times differentiable at (z,y), and [t|P is [p] times continuously
differentiable in IR, it follows that wy(z’,y") and we(2’,y’) are [p] times differentiable at
(x,y). Now assume that case (ii) is satisfied. From the arguments in case (i), we know

that N |p N |p N|p Np o/

DI I Dl — NP

2 2 [

are [p] times differentiable at (z,y). In addition, since |\;(z)|P < 27 ||«’||? for i = 1,2,
and z = 0 in this case, we have that [As(z/)[P + [Ai(2)[P and L(|Xao(2)|P — [ M1 (2)[P)T,
are [p] times differentiable at x with the first [p]—1 order derivatives being zero. Thus,
wy(2',y') and wy(2’,y') are [p] times differentiable at (z,y). By the symmetry of 2/, ¢/
in w(a’,y’) and the arguments in case (ii), the result also holds for case (iii).

Step 2: to show that ¥ _ is differentiable at (z,y). By the definition of ¥2_, we have
_ 2 2
27, () = [l +y1I° + 2@ y)1° = 2 (2" o), 2" + o) -

Since ||z’ + ¢/||? is differentiable, it suffices to argue that the last two terms on the right
hand side are differentiable at (z,y). By formula (1.8), it is not hard to calculate that

202 )” = (o, y))7 + (e y))7,

AN Y SW) /
) +y2)
2 Zl‘/, /’x/_{_ / _ w/’ / (x/ + ,+(w2(:v y)) (952 >
< ( y) y> ILLQ( y) 1 U HwQ(:E/;y/)H
(wal2', y') T (2 + y5)
+/ (2, (x’ +y; — .(3.147
R e TP 0] I AR

Since wa(z,y) # 0, po(z,y) = A2(w) > 0, and wy(2',y") and wq(z’,y’) are differentiable
at (z,y) by Step 1, we have that (m(m’,y’))% and the first term on the right hand side
of (3.147) are differentiable at (z,y). Thus, it suffices to prove that (u, (2, y’))% and the
last term on the right hand side of (3.147) are differentiable at (z,y).

We first argue that (ul(x’,y’))% is differentiable at (x,y). Since wy(z,y) # 0, and
wi(2',y') and wq(2',y’) are [p] times differentiable at (x,y) by Step 1, the function
wi(2',y') is [p] times differentiable at (x,y). When p < 2, by the mean-value theorem
and py(z,y) = A (w) = 0, it follows that py (2, y') = O(||2' — ||+ ||y —y]|) for any (2',y")
sufficiently close to (z,y), and so (ul(x’,y’))% = O[(|lz" — z|| + ||l¥ — y||)%] This shows
that (u (2, y’))% is differentiable at (x,y) with zero derivative. When p > 2, uy(2',y') is
infinite times differentiable at (x,y), and its first-derivative equals zero by the result in
Appendix. From the second-order Taylor expansion of p;(2’,y') at (z,y), it follows that

(e, y)r = O (2" =z + Iy —yll)7 |-

This implies that (u (2, y ))% is differentiable at (x,y) with zero gradient when 2 < p <
2
4. Thus, we prove that (ui(2,y'))r is differentiable at (x,y) with zero gradient when

p € (1,4).
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We next consider the last term on the right hand side of (3.147). Observe that

2 +y/ . (wQ(xlay,))T(xIZ +yé)
P [[wa (', y)]

is differentiable at (z,y), and its function value at (x,y) equals zero by (3.139). Hence,
this term is O(||2’ — z|| + ||/ — y||), which, along with py(2/,y") = O(||2' — z|| + ||v' — v|]),
means that the last term of (3.147) is O((||z' — z ||+ Hy’—yH)H%) =o(||lz"—z||+ ||y —yl)-
This shows that the last term of (3.147) is differentiable at (x,y) with zero derivative.

Step 3: to derive the formula of V42 (z,y). From Step 2, we see that 2Vy?_ (z,y)

equals the difference between the gradient of $(ua(2’,y ))% + |l#" + ¢/||* and that of the
first term on the right side of (3.147), evaluated at (z,y). By Lemma 3.30, the gradients
of (pa(a’,9))Y/? and (pa(2’,y'))?/? with respect to 2/, evaluated at (z',y') = (x,%), are

1y _ 1
Vil ) Pl o = D)2 sl | L]

2_ _ 1
Ve ) = Ol 2 sl | 1] )

(wa (2’ ")) T (5 +y5)
[[wz (2" y")l

By the product and quotient rules for differentiation, the gradient of | +y|+
with respect to 2/, evaluated at (2',y') = (z,y), works out to be

1 To+ Yy  Woly (T2 + Ya2) 1
{_ }+Vm'w2(““/’y/)|w,y/)<:c,y>< N | Cwm ]

W [l [l Ws

where the equality is using (3.139). Along with (3.148), the gradient of the first term on
the right side of (3.147) with respect to 2/, evaluated at (2/,y') = (x,y), is

{ ! 1 . (3.150)

W

=

) o+ )2 sl | ]+ Oafw)

In addition, the gradient of ||z’ + 3/||*> with respect to 2/, evaluated at (2/,y) = (z,y), is
2(z +y). Together with equations (3.149)-(3.150), we obtain that

2V YL (2, y)
= 2wt y) + Co(w))i 127 sen(ay)|z P! [ ]
~Oalw) o+ )2 sl | ] =t | L

Since A\;(w) = 0, from (3.137) it follows that

) = ) = o+ 9) = 5000 | 1| =@
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Combining the last two equations and using z;w, = x5 and y;ws = ¥y», We obtain

IV, P (z,y) = (Mo(w))r 2 sgn(ay)|aaP (P, (x,9) + (z +y))

—(Ao(w))» 2% sgu(ay) |z [P (@ + ) — 267, (2, y)
sgn(z1)]x P!

= e+ mpe L 9@

where the last equality is from Ap(w) = 2w; = 2P(|z1|? + |y1|P). This proves the first
equality in (3.144). By the symmetry of 2 and y in ¥2_, the second equality in (3.144)
also holds. [

Based on the analysis in Step 2 of Case (2), we observe that the function 2
is differentiable for all p > 4 provided that the first [§] derivatives of pi(z’,y') =
wy (2, y') — |we(2', )|, evaluated at (2',y") = (x,y), vanish. At present, however, it re-
mains unclear whether this condition indeed holds. Proposition 3.27 confirms that ¢?_
is differentiable for all p € (1,4). A natural question then arises: is the gradient Vi?_
continuous? In what follows, we answer this question affirmatively by establishing three
technical lemmas, each valid for all p > 1.

Lemma 3.31. There exists a constant ¢; > 0 such that for all (x,y) with w(z,y) €
int(K"),

Hme 1L < ¢ and HLIy\P 1sz 1|| <

ZP— 1H

where ¢ is independent of v and y, and ||A||r means the Frobenius norm of matriz A.

Proof. Due to the symmetry of = and y in z(x,y), it suffices to prove the first inequality.
To this end, we first prove that for any (z,y) with w(z,y) € int(K"), it holds that

0 <A (LypL,h) <1, (3.151)
where, for a matrix A € IR"*", A(A) € IR" denotes the vector of eigenvalues of A, and
1 means a vector with all components being 1. Indeed, since z >, 0 and |z|P~! =, 0,

we have L, = 0 and Ljp-1 = 0. Applying (94, Theorem 7.6.3] With A= [f1 , and
B = Ljp—1 yields that A(L',Lyp-1) > 0, and then )\(me L) > 0. In addltlon

since 2P =, |z|P, from Lemma 3.25 it follows that (2”) P (|x]p) v le, 2P -,
|z[P~!. Then L,-1 — Lyp-1 = 0. Applying the result of Exercise 7 in [94, Page 468]
with A = L.p-1» and B = —L,p-1, we have that A (—L;p1_1L|x|p-1) > —1. Consequently,
A (Ligp-1 L") < 1. Together with A(Lj,p—1L_,",) > 0, we prove that (3.151) holds.

Next we prove that there exists a constant ¢; > 0 such that for all (x,y) satisfying
w(z,y) € int(K"), ||Lip1L, ||r < ¢ where ¢ is independent of z and y. Suppose
on the contrary that such ¢; does not exist. Then, there exists a sequence {(z*,y*)} C
R" xIR™ with w(z*, y*) € int(K") such that || Ljx»- 1L(zk »—1||F is unbounded. We assume
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(taking a subsequence if necessary) that limg_,. HL‘mp_lL(_z}c)p_l |F = 400. For each k,
let A* = Lygkp-1 and BF = L(_Z}c)p_l. Subsequencing if necessary, we may assume that
AF BF

llm ——=A4" and lm —— =20

*

In the following arguments, for any A, B € IR™"™ with all eigenvalues in IR, we let

M (A) and AT(A) be the vectors obtained by rearranging the coordinates of A\(A) in the

decreasing and increasing orders, respectively. That is, if X(A) = (AI(A), -+, A (A)),

then Af(A) > --- > A(A). Similarly, if )\T(A) = (A[(A),--- ,X1(A)), then [(A) <
!

- < AI(A). We write \(A) ) if Z)\¢ < Z)\j(B) for any 1 <1 < n and

Z )& Z )\i . Since A¥ = 0 and B* = 0 for each k, applying the result of [11

Problem I1I. 6 14] gives that

Ak B* Ak Bk AF B*
* () (o) < (s ) < (i) (o )
) i) 2 T B ) B

where “” denotes the componentwise product of vectors. Since limy_,o || A% r||B*||r =
+00, taking the limit & — 400 and using equation (3.151) and the continuity of A(-), we
obtain

(A% - AN(B*) <0 < AH(A%) - AN (BY). (3.152)

Since A* = 0 and B* = 0, each component of A\*(A*) and AT(B*) is nonnegative, and
the first relation of (3.152) then implies \¥(A*) - AT(B*) = 0. Note that for each k, all
eigenvalues of A*¥ and B* are respectively given as follows:

@) (I @ P+ Do) [P+ Pa(@®) P, )P,
1 1 n'ZH 1 1
PP G+ e TP 4 a(2)Pt T [Aa(2F)

which, by the positive homogeneousness of eigenvalue function, means that

N(AT) 2 A5(A7) = oo = N (A7) 2 (A7) > 0,
0 < AU(BY) S M(BT) = -+ = Ay (BY) S NL(BY).
Then, from A (A*) - AT(B*) = 0, we deduce that Al(B*) = 0 and X(A*) > 0 (If not, we

will have )\f(A*) = 0, which implies \(A*) = 0, and then A* =0 follows by the positive
semidefiniteness of A*. This contradicts the fact that ||A*||r = 1). Similarly, we can
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deduce that Al(B*) > 0 and X:(A*) = 0. Also, either of \5(A*) and \}(B*) is zero.
Without loss of generality, we assume that A%(A*) = 0. Thus, the above arguments show
that

AT(A7) > X5(A7) = 0=+ = 0= AL(A"),
(B > AjH(B*) — .. =X(B) > M(B*)=0 and \(B*) > 0.

However, from the second relation of (3.152) and the last two equations, we have

0 =327 Aj(ADN(B) = M (AALB®) + (n = DAF(AT)A(BY) + AL (A7)AL(B)
= A (AAL(B") > 0,

which is clearly impossible. Thus, the constant ¢; satisfying the requirement exists. [

Lemma 3.31 extends the result of Lemma 3.4 for the case p = 2, where the conclu-
sion was previously obtained via direct computation. In contrast, our current approach
employs a different proof technique. By combining Lemma 3.31 with the explicit forms
of Ljyp- L) o1 and Lyyp- L}, we arrive at the following result.

2p—1>

Lemma 3.32. For any x,y with w(z,y) € int(K"), let T = |z|P~! and y =|y[P~'. Then,

Bk (C)Tm o T CDEm
S O A W

nt (CDGws 0y R )T 3.153
S A Y .

fori=1,2, where Wy = HZEE%’ and O(1) denotes a term that is uniformly bounded.

Proof. Fix any (z,y) satisfying w € int(K"). We write Ay = Aj(w) and Ay = Ag(w) for
simplicity. From (3.136), we have /Ay > @w; > {/ w Note that

of [Ma(2)[P + [ (2)]P _ (max(|As(2)], [M(x VIAe(2) 2 + M (@) 5_ ]l
\/ 2 Z( \J'/§ ) ( 2p+1 ) B

for p > 2, and for 1 < p < 2,

i/lkz(l“ﬂp +M@)P \q/(IAz(:v)|2 + ()%
5 >

= 2% a5
2

Therefore,

_p+2 p
> 20 el ifp>2: (3.154)
25l it pe (1,2
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Since 71 = £ (|A2(2) [P~ + [Ai(z)[P!) and Ty = (| Ae(2) P! —[Ai(2)[P1), we have

~ 1 P P P ~ 1 4 P P

21 = g (Re(@)] +A(@)]7) < lelle and [[Zof] < S([Az(@)]s +[M(@)[7) < lal[7. (3.155)
Together with (3.154), we obtain the first two relations in (3.153) for ¢ = 2. Notice that

Zp_1:W:<€/A_2+€/A_1 €/>\_2_€//\_1w2>'

2 ’ 2
By Lemma 3.1(c) and @ = |z[P~!, we calculate that Lj,»-1L_", equals

- T~ T ~ ~ YAa 28
T1 + T3 Wy LT TywWs (xlw} x1w§)+ 2T, Rz — 2+ 95 Tmyw]
- W2
29/ 29\ 200, 29N ) e+ \/ L2V )

Ty + T W +§2 — T, (52w'2r @E;—) + 2a11 + \/@ — 2+ o )\1 —T
- xlwgw
29/ 23/, 20 29A) e+ VAL 2V + \/_) ’
Substituting the first two relations in (3.153) for ¢ = 2 into the last equation and noting
that

flﬁzT ngg i‘g Il
29Ny’ 29Ny g+ \‘1/)\ + ¥

are all uniformly bounded by equations (3.154)-(3.155), we obtaln that

i 51 — f—{wg Ilwg W -|—_ .
PRI et T T T v/ VR N v
T oy BEET gy BT Vo
i AV \/_ 2/ + VA1)V M e
[ .%/1 — 5;2'—@2 Q?lw;— \q/)\_(.fCl — .T;—’wg) _-|—
O O T A -
COr Ty Y s +2¢—1> Vet PR

This, along with Lemma 3.31, implies that the first two relations in (3.153) hold for ¢ = 1.
By the symmetry of 2 and y in w(zx,y), the last two relations in (3.153) also hold. O

Remark 3.4. The first relation of (3.153) for i =1 is equivalent to saying that
Ao (@)[P~H (1 — 73Ws) + [Aa(2) P (1 + T3 W)
v/ Ar(w)

whereas the second relation for i =1 is equivalent to saying that

([A2(@)[P~ = (@) P~ )T = (Po(@) [P~ + ()P~ we i
v/ A (w)

_ @) - 75W) + [M(@)[P (1 + 73 ws) o). (3.157)

(/ A1(w))?

FEquations (3.156) and (3.157) play an important role in the proof of the following lemma.

= 0(1), (3.156)
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Lemma 3.33. There ezists a constant co > 0 such that for all (x,y) with w(z,y) €
int(K"),

Vg™ (2)Vg(2) 7|, <o and ||V (y) Vg (2) ||, < co,

where ¢y is independent of x and y.

Proof. By the symmetry of z and y in Vg*°°(z), it suffices to prove the first inequality.
Fix any (z,y) with w = w(z,y) € int(K"). Suppose wy # 0 and z5 # 0. By the
expressions of V¢*°¢(x) and Vg**¢(2)~! given by Lemma 3.29, it is not hard to calculate

that
al(I, Z) a;(‘ru Z)

2pV g (2) Vg™ (2) ! = bo(z,2) Ai(z,2) |’

where
! T W ; z c(x)Tyw
a(r,z) = - ™ (b(z) + c(z)Ty3ws) + N (b(z) — c(z)T3ws) ,
wo(,2) = (b(z) + c(z)Tws) W, B (b(z) — c(x)T3ws) We  2pc(x) (T2 — T Waw5)
o o/ No(w) o/ (w) a(2) ’
b, 2) = - )i(w) [e(0)s + a(e)@s + (b(z) — a(z)) T 7))
1
+- ) [c(2)T2 — a(z)ws — (b(z) — a(z))T, WaT2)
Ai(x,2) = - /\;w) [c(z)Tow; + a(z)wawy + (b(z) — a(z))T) WaToW,5 |
1
— c(2)Tywy — a(x)Wewy — (b(z) — a(x))Ty WaTaty
e ] — oo — () — o) 7]
o o)1 =TT + 0a) — afa) (77 — Fmamar])].

From the definitions of a(x), b(x) and ¢(x) in (3.141), it follows that
p - _
max(b(z)], le(@)]) < 5 (@) + Pa(@)),
a@)] = plt (@) + (1= )M @) < pmax(a(@) P (@) (3.158)

for some t; € (0, 1), where the equality is using the mean-value theorem. Therefore,

()| < pllzl%, [b(x)] SPHZL“H% and |c(x)| < pllz]. (3.159)
Noting that 0 < Aq(w)/A2(w) < 1 and /A (w)/Aa(w) > A (w)/A(w), we have
a(z) = 2D Z W)y VM 0PW) s anny (3160

¢ a(w) — /M (w) =N w) () T
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By equations (3.159), (3.160) and (3.154), we can simplify a,(z, 2), as(z, 2), by(x, z) and
Aq(z,2) as

1
a(z,z) = O(1 bx—cxfg—mz,
(#.9) = O)+ s (0) ~ clr)TIT)
1
az(z,z) = O(1)— b(z) — c(x ngg W, 3.161
(£,) = 00 = s (o) = 0TI (3.161)
1 T
bo(x,2) = O(1)+ ) [(c(z) — b(2)Z3Ws) T + a(z) (T3 WaTs — Wo)] ,
Ai(z,2) = O(1) - - )j(w [(c(z) — b(2)T3W2) Towy + a(z)(Ts WaT2Wy — Wally )] -

c(x), it is easy to verify that

and
[b(2) = ()| < £ [Maf@) P11 = FF) + (@)l (1 + F )]
S [Pa(@) (1 = Fm) + (@) P (1 + )]
which, together with (3.156), implies

b(z) — c(x)T3ws c(z) — b(x)T3ws

/A1(w) V/A1(w)

In addition, it is easy to compute that

la(2) @, @WaT2 — W) |IP = a*(2)(1 — T, @) (1 + T, 2),
\|a(z)(Z3 woTowy — Watwy HF < a®(z)(1 — Zyws)(1 + Ty ws).
By equation (3.158), we have a?(x) < p? max(|\o(x)[*72, A1 (2)|?P72). Using (3.157) and
noting that 0 < 1 — 72w, < 2 and 0 < 1+ 72w, < 2, we obtain

la(2) (T3W2T> — W) | — 0(1) and la(2) (T3 W0:T>W; — Wyw,

/A1(w) /A1(w)

From (3.161)-(3.162), a4 (x, 2), as(z, 2), ba(x, z) and A;(z, z) are all uniformly bounded,
and hence there exists a constant Cy > 0 such that |[Vg*(z)[Vg™(2)] ! < Ca.

Dl _ O(1). (3.162)

Suppose T9 = 0 or wy = 0. Then there exists a sequence {(z*,y*)} € IR" x IR™ with
x5 £ 0, wy(zF, %) # 0 and w(a®, y*) € int(K") for all k such that 2% — z and w* — w
as k — oo. From the above result, HVgSOC( Vg™ (2 1|| < ¢y for all k. Noting
that Vg¢*°°(z) is continuous since |t[P is continuously differentiable, and Vg*¢(z)~! is
continuous at any z(x,y) € int(K"), we have ||Vg*°(z)Vg*°(z)~ 1||F < ¢9. The proof is

complete. [
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Proposition 3.28. Let Y2 be defined by (3.151). Then, the function Y2 with p € (1,4)
15 smooth everywhere on IR™ x IR™.

Proof. By Proposition 3.27 and the symmetry of z and y in V¢?_ it suffices to prove
that V.1  is continuous at every (z,y) € IR" x IR". Choose a point (z,y) € R" x IR"
arbitrarily. When w(z,y) € int(K"), the conclusion has been shown in Proposition
3.27. We next consider the other two cases where w(z,y) = 0 and w(z,y) € bd"K",
respectively.

Case (1): w(z,y) = 0. Now we have (z,y) = (0,0), and V.92 (0,0) = 0 by Propo-
sition 3.27. Thus, it suffices to show that V4? (2',y') — 0 as (2',y) — (0,0). If
w(2',y') € int(K™), then VP (a,y') is given by (3.143); and if w(a’,y’) € bd*K",
then V4P (2',3y') is given by (3.144). Since Vg*°(2')Vg™°(2')~" — I and sen(epayl”

Y0z P+lyp [P

are uniformly bounded, where the uniform boundedness of the former is due to Lemma
3.33, using the continuity of ¢? and noting that ¢?_(0,0) = 0 immediately yields that
VP (2',y') — 0as (z/,y') — (0,0).

Case (2): w(z,y) €bd"K". For any (2/,y') sufficiently close to (x,%), in order to prove
that VU2 (2',y") = VP _(x,y), we only need to consider the cases where w(z',y’) €
int(K") and w(2',y') € bd"K". When w(a’,y’) € bd"K", V4 _(2/,y') has an expression
of (3.144) which is continuous at (z,y) since |z1|” + |y1|’ > 0 by Lemma 3.28, and then
VP (2',y') — Vo2 (z,y). We next concentrate on the case w(z’,y’) € int(K"), for
which case

Vb (2, y') (3.163)
— VgSOC(x/)ngOC(Z/)—lzl_ngOC(x/)ngOC<Z/>—1(x/+y/) _qzsgB(x/’ y/)'
We next proceed the arguments by the following two subcases: x5 # 0 and z5 = 0.

Subcase (2.1): x # 0. Under this case, by the expression of V,¢?_(x,y) in (3.144), we
have

p—1
Vit (1,y) = %‘&(m,y)—%g(%y)

sgn(@) |z [P/ Jaa [P+ [y P { 1 1 ~sgn(z)|z [P (z+y) —d® (z,y)
Yo+ ol W | T+ P e

1
where the second equality is by z(z,y) = /|z1]? + |y [P [ = } . Comparing it with
2
(3.163), we see, to prove V2 (z',y') — V.o (z,y) as (2',y') — (z,y), it suffices to
argue that
‘ , sgu(z)|z1 [P~/ |z [P+ Jya [P
vgboc(x/)vgsoc(zl)—lz/_) g ( 1)‘ 1’ ‘ 1’ ‘yll
Va4 [P

[_1 ] as (2 y) = (z, (3.164)

(%]
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and
—sgn(xl)|x1|p’1x as (Il y’) — (I y)
Va1 |P 4 |y ]P

p—1
sgn(z) |2 ["” as (2',y) = (z,y).  (3.165)

Yy
Yl]x [P+ |y|P

First of all, let us prove (3.164). Since w(z,y) € bd*K" implies |z|P € bdK™, we have

vgsoc(x/)vgsowzl)flx/ N

Vgsoc(l,l)vgsoc(zl>—ly/ N

a(x) = 2p_lsgn(m1)|x1|p_1, b(x) = 2P=2p Sgn(x1)|x1|p_1, c(x) = 2p_2p|x1|p_1(3.166)

Since wsy(x,y) # 0 (if not, w(x,y) = 0), we have wh = wq(2’,y’) # 0. By the expressions
of Vg*°¢(2') and Vg*°¢(2')~1, it is not hard to calculate that V¢*°¢(z')Vg*¢(2’') 712’ equals

v | o |+ Pr e wve | L

Ao(w')7 0
2p
where 2/ = z(2',y),w = w(2',y’) and W, = le”—%“ Note that A;(w') — 0 and Wy — Wy
2
with Wy = i as («',y) — (x,y). By Lemma 3.33, the last term on the right
hand side tends to 0, whereas by the continuity of V¢*° the first term approaches

11 1 . i
2Lp)\2(w)p aV g () {w2 } . Thus, together with A\y(w) = 2wy = 2P(|z1|P + |y1|P), it
holds that as (2, y) — (z,y),

! soc/ MN—1_1 —16—2 1_1 soc 1
V(2" )V g*c(2") A ) (|21 P + |31]P)r "2 Vg™ () { B 1 (3.167)

In addition, using equations (3.166) and (3.140), we readily obtain that

. 2

socC - - z
Vg*(x) = 2" *psgn(ay) |1 [P~ Ty 2 P Toxg
Ty p p Ty

o]
Loan(eleab= (o 4 )i | o {1]
—Sen(x T T P g _ 5
5580 (1)1 1 (0 s 2[+<1_2> xgsgg Wy
Ty p D e

_ 11 1
= sgn(zy)|z [P (|21 [P + | ]P)r {_ }

where the equality is using Lemma 3.28. This shows that equation (3.164) holds.
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Next, we prove the second relation of (3.165), and an analogous argument can be used to
prove the first relation. Let (¢, () := Vg*¢(a’)Vg™¢(2')'y/. We only need to establish

p—1 Pt
sen(wolal o sen@olel ) S ().
/T + P Vil + fya P

Note that zf, # 0 for (2/,y') sufficiently close to (z,y). By equation (3.140) and the
expression of Vg*°°(z')™! in Lemma 3.29, a direct calculation yields that

(3.168)

e — mm )+ ela') () 5] o + () T

L [b(a) — (o) (@) ") [ — (@) (3.169)

T q//\l(w/)

+a?p/>c(:v’> [(@2)" 9 — () "W () wl]

WG = s [T+ 0T + () — o) ) T o
b (AR T+ 00— ) @) )]

s o)1 = T)T) + (ba') = ale!) (BE)T — ()T

1
——— [e(a" T, — a(a" )W, — (b(2) — a(2))(Ty) "WHTH] ¥, 3.170
s )y = '), Ol = o) ) i) 3.170)
1
————— [e(2"TH(Wy) T — a(a" )@y (Wh)T — (b(2') — a(x))(Th) "wHTy (W) ] v
q)\l(w,)[()() (@' )wy (W) " — (b(z") — a(a))(T,) (@,)"] y

where a(z'), b(z’) and ¢(2') are defined as in (3.141) with z replaced by a’. Since ¢/ Aa(w'),

b(z"), c(2'), T, and W, are continuous at (x,y), it follows that
2 2

¥4 1
Ve(w') — 2w = 24 (g [P + [y ]F)7,

)
[b(2") + e(a") (@) 5] [y + (@) 5] = (b(x) + c(2)T3W2) (Y1 + vy Wa)

as (2/,y') — (x,y). This, along with Lemma 3.28 and equation (3.166), implies that the
first term on the right hand side of (3.169) tends to 2-sgalzlnl” “y1. Since

b 0"
vi— @) = oy -y =0,
(@) — (@) "W(W5) "y, — Tyyp — Ty WawWyye =0,
whereas (b(z') — c(z')(Ty) Twh) /¥¢/ A (w') and 2pe(z’)/a(2') are uniformly bounded by the

proof of Lemma 3.32, the last two terms of (3.169) tend to 0 as (2/,y") — (z,y), and we
prove the first relation in (3.168). We next prove the second relation of (3.168). From
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the above discussions, the first three terms on the right hand side of (3.170) respectively
tend to

[c(x)fz + a(x)ws + (b(x) — a(:v))fgﬁﬁg} Y1,

7/ 2w
1
9/ 2w1
2p T
z

[c(x)fg + a(x)ws + (b(x) — a(m))fgwgfg} W3 1o,

- (a(a) (I - wwd) + (b(a) - al) (7273 — T05727])]

a(z)

as (2/,y') — (x,y), whose sum, by Lemma 3.28 and formula (3.166), can be simplified as

2 2psgn ()| [P~
sgn(xy)e(x) + b(x)] yo = Y
T e )e(w) + )], = LTy,

Observe that the sum of the last two terms on the right side of (3.170) can be rewritten
as

1
q /\l(w/>
which clearly tends to zero as (z/,y’) — (x,y), since the first term is uniformly bounded
by the proof of Lemma 3.32, whereas the term vy} — (wh) "y — y1 — Ways = 0. Thus, we

complete the proof of the second relation in (3.168). Consequently, the second relation
in (3.164) follows. This shows that V,(2',y") = Vau(z,y) as (', y') — (z,y).

Subcase (2.2): 3 = 0. Now we have z = 0 from |z’ € bdK", and Vg*°(z) = 0.
Hence,

[c(2)T, — a2’ )W, — (b(2') — a(2)) (@) 0575 (1 — (W) "w2),

Vo, (2, y) = M%’B (@, y) — 0, (z,y) = —¢2 (0, ). (3.171)

Vlzf? + o

On the other hand, since V¢*°(x) = 0, it follows from (3.167) that
Vg (2 \Vg ()12 =0 as (2,y) = (z,9);
while using Lemma 3.33 and x = 0, we have
Vg (@)Vg () 2 = 0 as (2,y) = (,p);
and from the continuity of ¢ ~and x = 0, it follows that
Ops (' y) = 07, (0,y) as (2,y) = (2,9).

Using the last three equations and comparing (3.163) with (3.171), we see, in order to
prove that Vy?_(2',y) — V9P _(z,y) as (2',y') — (z,y), it suffices to show that

Vgsoc(x/)vgsoc(z/>fly/_>0 as (:l:",y’)—>(:c,y). (3172)
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Next, for any (2/,y') sufficiently close to (z,y), we write (1, (2) := Vg* (') Vg*(2') 1y

If zf, # 0, then 2p(; and 2p(, are given by (3.169) and (3.170), respectively. Using the
same arguments as Subcase (2.1), we have that the second term of (3.169) and the sum of
the last two terms of (3.170) tend to 0 as (2/,y') — (x,y). Since ¢/ Aa(w'), a(z’), b(z"), c(z’)
and wj are continuous at (z,y), [|T5]| = 1, and b(z) = ¢(x) = 0 from (3.166) and = = 0,
the first term and the third term of (3.169) also tend to 0. This proves that 2p(; — 0 as
(',y") — (z,y). We next prove that the first three terms of (3.170) also tend to 0. From
the mean-value theorem, |a(z)] = p |t Ao(2') + (1 — t) A ()P~ for some ¢, € (0,1).
Note that the function [t[P™! (p > 1) is continuous on IR, whereas \y(2’) — 0 and
A(z') — 0as (2/,y) — (x,y). So, |a(z’)] = 0 when (2/,y') — (z,y). In addition, as
(@,y) = (z,y),

b(z') =0, c(z') =0, Y A(w)— V2w, >0, and a(z') — a(z) > 0.

This implies that the first three terms of (3.170) also tend to 0. Consequently, 2p¢s — 0
as (',y") — (z,y). Thus, (3.172) holds for this case.

If 2, = 0, then using (3.140) and the expression of Vg¢*°¢(2’)~! in Lemma 3.29, we
have

psgn(zy)|xi Pt 1, psen(ay)]zP! T
= + (w + — (w ;
Cl m [yl ( 2) 2] q )\1(’(1)/) [yl ( 2) y2:|
psgn(zh)|ah [Pt ., psgn(x)|z) Pt
R R AN A L VG AL
Az (w') Ar(w’)
2p* sgn (@) |7 [P~

Since sgn(z})|x} [P~ is continuous and {/Ag(w) > 0, we have, as (z/,y') — (z,y),

psgn(x,l)|x/1|pil[ / (—/)T /] N psgn(m1)|x1|p*1(

+ (w + W y,) = 0.
. )\2(10') (A 2) Yo . >\2(w) n 23/2)

In addition, |z}|P~!/ /A1 (w’) is bounded with the bound independent of 2" and 3’ because
A (w') = wi—||wh|| > |2}|P by (3.136) when 5, = 0. Besides, v} —(w)) Ty — y1—wiys = 0
as (z/,y') — (z,y), where the equality is due to Lemma 3.28. Hence we have

psen(xy)|z) P —
I~ )T =0 s (0 = ),
1

Thus, we prove that (; — 0 and the first two terms of (, tend to 0 as (2/,y) — (z,y).
Since a(z') = —2WI W) 40 (y), — W, (W),) Tyh) are continuous, we have

R a(w) =R/ A (w)

A2 (w) — Ar(w) — ¢/ N(w) and [if — (W) T4/, w0
- Ao (w) = /M (w) (w) [42 5(@) Y] =y 2y

a(2")
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as (/,y') — (z,y), where the last equality is due to Lemma 3.28. This, together with
sgn(z)) |} P71 — sgn(zy)|z1|P~' = 0, means that the last term of ¢, also tends to 0.
Thus, we show that (» tends to 0 as (z/,y") — (x,y). Consequently, (3.172) holds in this
case. [

Remark 3.5. It is worth noting that the proof of Proposition 3.28 remains valid for all
p > 4. Consequently, if the differentiability of the function 1, for p > 4 can be established,
a question that remains open, then it would follow that 1, is continuously differentiable.

We now examine the conditions under which W’ is coercive; that is,

limsup V2 (z) = oc.
l|z]|—o0

Establishing this property is essential for analyzing the global convergence of both merit
function methods and equation-based approaches built upon ¢? . To this end, we first
present two technical lemmas that form the foundation of our analysis.

Lemma 3.34. Let ¢¥_ and YL be given by (3.152) and (3.131), respectively. Then, for
any x,y € R", there hold

(a)
<ZL’, vrd}p(xvy)) + <y7 Vy¢p(x7 y)) = ||¢P<I7y)||2

(b)
2
Wl (z,y) > 2|le0, (z, )]+ " = max (| (=) |7, 1(=9)+ 1) .
where (-)+ means the minimum Euclidean distance projection onto K.

Proof. Noting the fact that {/|z|P + |y[p — 2 € K" and {/|z|? + |y|? —y € K", the proof

of part(a) is similar to Proposition 3.6 whereas the proof of part(b) is similar to Lemma
3.7. We omit them here.  [J

Lemma 3.35. Assume that {(z*,y*)} C IR™ x IR" satisfies either of the conditions

(a) M\i(z%) — —o00 or A (yF) = —o0;

k

(b) {M(z)} and {\(y%)} are bounded below, Ao(x%), Ao (y*) — +o00, and (e, L) -
0.

[l

Then, when p is a rational number, it holds that lim supy,_, . ¥F_ (2%, y*) = +o0.

Proof. If {(z*, y*)} satisfies condition (a), the result follows from Lemma 3.34 and the

fact
2[[(—a*) 4|2 = min (0, Ay (")) + min (0, Ay(z"))”.
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It remains to consider the case where {(x*,y*)} satisfies condition(b). Now from the
given assumptions we have (taking a subsequence if necessary) x% — +o00 and y¥ — +oc.
Without loss of generality, we assume (subsequencing if necessary) that

lim 2%/||2%|| = 2* and  lim o*/||y*|| = v*. (3.173)
k—o00 k—o0

Since {/\ ()} and {\(y )} are bounded below, there exists a fixed element d € IR™ such
that 2 —d € int(K") and y* —d € 1nt(lC”) for each k (Indeed, lettmg 7 be the lower bound
of {\(2®)} and {\(y*)}, we have 2% — (v — 1)e € int(K") and y* — (v — 1)e € int(K")
since )\l(z —(y=1De) > M)+ M1 —79)e) >v+1—7 =1 for 2* —xk or y*).
Thus, T k” € int(K") and % € int(K") for each k. This implies that T k|| € K" and

IIZZ:H € K", and consequently ¥ € K" and y* € K", for all sufficiently large k. We will
proceed the arguments by three cases as shown below, where all k are assumed to be
sufficiently large.

Case (1): the sequence {||2*||/||v*||} is unbounded. Since p is a rational number, we
may write p = n/m with n, m being natural numbers and n > m. Suppose that the
conclusion does not hold, i.e., {¢2_ (z*,9y*)} is bounded. From the definition of ¢P . and

z*, y* € K, we have (z¥)m + (y*)m = [2% + yF + ¢P_(2*, yF)] " which is equivalent to
(@) 4+ (y")m ] = [ 4yt el (M) (3.174)

Since {||z"*||/||ly*||} is unbounded, ||z*|| — +oo, ||y*]] — +oo0 and n > m, by ex-

panding [(z")w + (y*)w]™ = [(@")m + (y¥)w] oo [(2%)m + (yk)%l, we obtain that

-~

the left hand side of (3.174) is (%)™ + (y*)™ + o(||z*||"~||y*||), whereas by expanding
(2% + y* + gb’F’B(xk,yk)}n and noting that {¢? (z*,4*)} is bounded and {||z*|/||y*||} is
unbounded, the right hand side of (3.174) is (z* + *)" + o(||z*||"~||y*||), which can be
further written as

(@) + )"+ (@) oyt + (@) o (@) P oyf) + - +at o (at o (o ((a")? 0yt ) )

3
+22% 0 (2% o (%o (- (¥ 0 ) -+ o) +o(ll2¥ "y ).
—~—

n—2

Here, o(||z*||"7||y*||) denotes the term e; satisfying limy, o0 m = 0. Therefore,

(@) oyt + (2%) o (@) oy") + -k ato(aF o (- ((aF) 2 0yt) )
-3
+2z% o (a% o (aF o (- (" oy ) ) = o[l* (" lyED).

Making the inner product with the unit element e for the both sides then gives

n{(@")" 1 y") = o(ll=" 1" ly* ).
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Dividing the both sides by ||*||"~!||y*|| and taking the limit & — oo, we obtain ((z*)"~1, y*) =
0. Noting that z*,y* € K™ and ||z*|| = ||y*|| = 1, from ((z*)""!,y*) = 0 we deduce that

-1

y; = |lys|| and (2")"7" = a(y;, —y;) for some o > 0.

From this, it is easy to get (x*,y*) = 0, which by (3.173) contradicts the given condition
that <Hil’zll’ ngll> — 0. Thus, we prove that the conclusion limsupy_, .. ¥, (2%, y*) = +o0

holds.

Case (2): the sequence {||v*|/||z*||} is unbounded. By the symmetry of x and y in
¢p(z,y), using the same arguments as in Case (1) leads to the desired result.

Case (3): the sequences {||"||/||2*||} and {||z*||/||*||} are bounded. In this case, taking
subsequences of {z*} and {y*} if necessary, we may assume that limy_, HZZH = ¢ for some

4 k .k n
0 < ¢ < +o0o. By the definition of ¢£_ and z",y" € K", we have

()P + (yF)P = [2" + yF + o2 (aF,yM)]".

Suppose that the conclusion does not hold. Then, dividing the both sides of last equality
by ||z*|| and taking the limit & — oo, it is not hard to obtain

(@) + (ey)" = (=" + ey"),
which is equivalent to saying that ¢¥_(2*, cy*) = 0 since *,y* € K". Therefore, z*ocy* =

0. This clearly contradicts the given condition <”§Z”, ||§:u> - 0, and the result follows.

OJ

Remark 3.6. At present, we are unable to prove Lemma 3.35 for irrational values of p,
despite attempts to exploit the density of rational numbers in IR. Nevertheless, numerical
evidence strongly supports the validity of the result in such cases.

Proposition 3.29. Let W2 be defined as in (3.133). Suppose that G is an identity
mapping, and F has the uniform Jordan P-property and satisfies the linear growth (see
Definition 1.11(d) and (e)). Then, WE_(() is coercive for a rational p.

Proof. Suppose on the contrary that there is a constant v > 0 and a sequence {¢*} C R"
with [|¢¥|| — oo such that W2 (¢¥) < v for all k. Let ¢* = (¢f,...,¢F) with ¢f € R™
fori =1,2,...,m. Let T := {i € {1,2,...,m} | {¢}} is unbounded} . Clearly, Z # 0.

Define
0 ifiel;
k ) .
&= { ¢F otherwise, t=12...,m.

Then, the sequence {¢*} C IR™ is bounded. Since F' has the uniform Jordan P-property
(see Definition 1.11(d)), there holds

Az [(¢F =8 o (F(CH) = F(E")] = ell¢" — €*)1”
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for some o > 0. Let 2 = (¢¥ — &%) o (F(¢*) — F(€F)) for each k. Suppose that each z*
has the spectral decomposition A;(zF)u¥ + Xo(2*)uk. Then, from the last inequality,

oll¢h =€ 1P < 2(F uz) = 2((¢F =€) o (F(C") = F(€")), u3)
< 2||¢" = EMIIF(CT) = F(EM)II- (3.175)
This implies [|F(¢¥)|| — oo. Since W2 (¢*) < v for each k, from Lemma 3.35(a) it

follows that {A(¢*)} and {\(F(¢*))} are bounded below. Together with ||¢*|| — oo
and ||F(¢*)|| — oo, we obtain \y(C*), A\o(F(¢*)) — +oo. In addition, from (3.175) and

the linear growth of F', we necessarily have limy_, % o % # 0. If not, on one hand,
from the boundedness of {£¥}, we have limy_, (Ck_gﬁgi‘(‘ﬁéc(’?k;f(fk)) = 0; and on the other
hand

ollgr — &*|7 oll¢r — &¥|I7 0

lim > lim =—->0,

koo [|CFILE(C)IF T w=oo ICFICAIE O 4 cllCH) e
which is impossible by (3.175). By Lemma 3.35(b), limsup,_, ., |42 (¢*, F(¢F))|| = oo.
This gives a contradiction to W2 (¢ k) < 4 for all k. Thus, we prove that WP is coercive.
O

3.1.3 The functions ¢¢ and ¢? = in SOC setting

Another widely adopted C-function in the SOC setting is the vector-valued natural resid-
ual function , defined as

Or(,y) =2 — (r —y) 4

where (-); denotes the Euclidean projection onto K. This function induces the natural
residual merit function v, given by

1
Van(@9) = 5ll6ua @),

where ¢, : IR" x IR" — IR". According to Proposition 1.3, ¢, qualifies as a C-function
associated with SOC and has been further analyzed in [78, 91] in the context of smoothing
methods for SOCCPs. In comparison with the Fischer-Burmeister (FB) merit function
V.5, @ notable limitation of 1, is its lack of differentiability. A natural generalization
of @y is the function ¢f : R™ x IR" — IR", defined by

o (m,y) = 2" — [(z —y) ] (3.176)

Again, it is based on the idea of “discrete generalization”; and p > 1 needs to be positive
integer. Applying the same idea back to the Fischer-Burmeister function, we can define

. n n
oP i R"X = R" as

P _(Ty) = (\/:L"2 + y2)p — (z+y)?, (3.177)
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where p > 1 is a positive odd integer, (z,y) € IR" X IR", 2? = x oz is the Jordan product
of x with itself and y/z with € K™ being the unique vector such that \/z o /x = x.
Notice that when p = 1, ¢¢ _ reduces to the Fischer-Burmeister function. In other
words, we extend the new function ¢f ~and ¢? . constructed by discrete generalization
in Section 2.2, to the SOC setting. In particular, we show that the function ¢? _ and
¢F . are C-functions associated with K". In addition, we present the computing formulas

for their Jacobian matrices.

Lemma 3.36. For p = 2m + 1 with m = 1,2,3,--- and v = (v1,22), y = (y1,y2) €
IR x IR"!, suppose that 2P and yP represent (voxo---ox) and (yoyo---oy) for p-times,
respectively. Then, xP = y? if and only if x = y.

Proof. “«<” This direction is trivial.

“=" Suppose that =¥ = y?. By the spectral decomposition (1.8), we write

= M)l + A(@)ul?,
o= Ml + )
Then, 27 = (A (2))Pul” + (Mao(2))Pul? and y? = (A1 (y))Pul? + (Ao (y))Pul?. Since a? = yP
and eigenvalues are unique, we obtain (A1 (z))? = (A1(y))? and (Ay(z))? = E)\g(y)gp. By
Lemma 2.16, this implies A\j(z) = Ai(y) and Ao(z) = A2(y). Moreover, {uggl),ug(g2 } and
{uél), ug(JQ)} are Jordan frames, we have u$"” +u{? = ug(jl) +ul) = e, where ¢ is the identity
element. From z? = y? and ul) +ul?) = ugsl) + u?(f), we obtain

(A1) = (Na(@))P] (uf) — ul) = 0.

If (A\1(2))? = (Aa(2))?, we have Ai(x) = Ao(x) and A\ (y) = \a(y), that is, x = A\ (z)e = y.
Otherwise, if (A1(2))? # (A2(z))P, we must have ul) = ul”, which implies W = ul(f).

O

Proposition 3.30. Let ¢

D-F
function associated with K", 1.e., it satisfies

. be defined by (3.177). Then, the function ¢ _ is a C-

B

qbp];_FB(x? y) = 0 @ Y E ICn? y E ICnJ <x7 y> = O?
where p > 1 1s a positive odd integer .

p
Proof. Since ¢? ___(x,y) =0, we have <\/$2 + y2> = (z+y)?. Using p being a positive
odd integer and applying Lemma 3.36 yield

P
(\/x2+y2> =(z+y)lf = V22+y =z+v.

By Proposition 3.2, it is known that ¢ (z,vy) = /2% + y?> — (v +y) is a complementarity
function associated with K". This indicates that ¢?  is a complementarity function
associated with £*. [
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With similar technique, we can prove that ¢f can be extended as a C-function in
SOC setting.

Proposition 3.31. Let ¢£  be defined as in (3.176). Then, the function ¢ is a C-
function associated with K", 1.e., it satisfies

P (r,y) =0 <= zek" yeKk", (r,y) =0,
where p > 1 1s a positive odd integer.

Proof. From Lemma 3.36, we see that ¢? (z,y) = 0 if and only if z = (z — y);. On
the other hand, by Proposition 1.3, it is known that ¢, (z,y) = =z — (x — y); is a
complementarity function associated with K™, which implies z — (z —y), = 0 if and only

if v € K", y € K", and (z,y) = 0. Hence, ¢¥  is a C-function associated with K". [

In order to compute the Jacobian of ¢¥ . we need to introduce some notations for
convenience. For any z = (z1,72) € R x R"! and y = (y1,%2) € R x R"!, we define

w(Ivy) =2 +y2 = (’UJl(SL’,y),U)Q(I,y)) € R xR" and U(.f,y) =Tty

Then, it is clear that w(z,y) € K™ and \;(w) > 0,7 =1,2.

Proposition 3.32. Let ¢? _ be defined as in (3.177) and g*°(x = (\/]z])?, Boo(2) =
aP are the vector-valued functzons corresponding to g(t) = |t|2 cmd h(t) = fort €
R, respectively. Then, ¢P _ is continuously differentiable at any (x,y) € IR™ x IR™.
Moreover, we have

Vedt  (,y) = 2L, Vg (w) — VA™(v),
y¢D FB< ) = 2Lyvgsoc(w) - Vhsoc(v)7

where w = w(x,y) = 2> +y?, v:=v(x,y) = x +y, t — sign(t) is the sign function, and

Pl |51 sign(wn)I if  wy=0;
Vg*i(w) = by (w) cy(w)wy

e (w)wy  ay(w)I + (b (w) — aq(w)) Wew] if  wy #£ 0;

i
al(w) _ |)‘2(w>|2 _|)‘1(w)|g
)\Q(w)—)\l(w)
buw) = 5 |Da(w)F + ()57
p P_1 p_q
a) = B |a@)F = )f
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and
po? if vy =0;
Vh*¢(v) = ba(v) co(v)0g - _
ca(V)0y  ag(v)] + (by(v) — az(v)) Vovig £ sl
Vg = m»
o Q <>>p < 1(0))P
L) = - T
ba(v) = £ [Ou)™ + ()],
eav) = 2 [(Ra@) = ()],

Proof. From the definition of ¢? it is clear to see that for any (x,y) € R™ x

Oh e (T,Y) = (x/x2+y2)p—(x+y)p
= (x/lfﬂ2+y2|)p—(ac+y)p
[ () ) < )+ Pa(w) Fu® (w)]

— [O@)Pu (@) + Qa()Pu® ()
= g7(w) — B ().

(3.178)

(3.179)

R,

(3.180)

For p > 3, since both |t|% and #” are continuously differentiable on IR, by [29, Proposition
5] and [78, Proposition 5.2], we know that the function ¢*°° and h*°® are continuously
differentiable on IR". Moreover, it is clear that w(z,y) = 2%+ y? is continuously differen-
tiable on IR™ x IR", then we conclude that ¢f _is continuously differentiable. Moreover,

from the formula in [29, Proposition 4] and [78, Proposition 5.2], we have

g’wlﬁ—l -sign(wy ) [ w0
VgSoc(w) = bl (UJ) c ('UJ)’U_];— '
! SaT | W A
ex(w)ws () + (b (w) —ar(w)) won]
pot I e
VhSoC(U) = bQ(’U) CQ(U)’E;— '
f 0:
bt a1+ () o] | 27O
where
e = el U2 = o

_ Pe)E =\ (w)? _ Qe@)P—((w)?
a(w) = =R a2(v) = 50w,

) = ()[4 £ (alo) "+ (o)),
er(w) = & [Pafw)E1 = a1 eafw) = £ [Oalo)rt = (o))

I
IS
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By taking differentiation on both sides about x and y for (3.180), respectively, and
applying the chain rule for differentiation, it follows that

vngg,FB (C(Z,y) = 2L$Vgsoc(w) - VhSOC<U)’
Vot (r,y) = 2L,Vg*(w)— Vh**(v).

Hence, we complete the proof. [

With Lemma 3.36 and Proposition 3.30, we can construct more C-functions associated
with SOC, which are variants of ¢? _ (z,y). More specifically, consider that k& and
m are positive integers and f (z,y) : R" x IR® — IR" is the vector-valued function
corresponding to a given real-valued function f, the following functions are new variants

of P (x,y).

2k+1
2m—+1

2k+1

— [y ) B

ley) = [V g+ o))

k

doley) = [VarryE—a—y|".
Q,;?,(l',y) = :\/m— T+ fsoc(x’y>] Zmtl [y + fsoc(l‘,y)];’::rll ‘

2k+1
2k+1

Ga(z,y) = :V 22+ y? —y+ oz, y)] B e A C )| e

Proposition 3.33. All the above functions (fbvz forie{1,2,3,4} are C-functions associ-
ated with ™.

Proof. The results follow from applying Lemma 3.36 and Proposition 3.30.  [J

In general, for complementarity functions associated with K™, we have the following
parallel result to Proposition 2.70 in the NCP setting.

Proposition 3.34. Suppose that ¢(z,y) = v1(z,y) — 2(x,y) is a C-function asso-
&
ciated with K™ on IR™ x R™, and k,m are positive integers. Then, [¢(x,y)}m and

2kt1
[o1(z, y)] > — [pa(z, )] 21 are C'-functions associated with K".

Proof. According to k and m are positive integers and by using Lemma 3.36, we have

= {[¢(w,y)ﬁ "=
— [¢(z,y)] =0
= ¢(v,y) =
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Similarly, we have

[
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2k+1
]2m+1 =0

[1(z,y)] 2T (3, y

2k+1

)
[1(z, ]2’"“ = [pa(z,y)]2m
{ (or(a, )] P }2’”“ _ {m(a:, Nk }2’”*1
[901 (z, ) = [pa(z,y))**!

p1(z,y) = wa(,y)
o(x,y) = 0.

2k+1

2k+1

From the above arguments and the assumption, the proof is complete. [

Remark 3.7. We elaborate more about Proposition 3.34.

(a) Based existing complementarity functions, we can construct new C-functions asso-
ciated with IC™ in light of Proposition 3.34.

(b) When k is a positive odd integer, ¢(z,y)* is a C-function associated with K". This
means that perturbing the odd integer parameter k, we obtain the new complemen-
tarity functions associated with K™. In addition, if ¢(x,y) is a C-function, then

k
for any positive integer m, [(b(x,y)] ™ 4s also a C-function. We can determine
nice complementarity functions associated with K" among these functions by their

numerical performance.

Finally, we establish formula for Jacobian of ¢? =~ and the smoothness of ¢? . To this
aim, we need the following technical lemma.

Lemma 3.37. Let p > 1. Th@n the real-valued function f(t) = (t+)P is continuously
differentiable with f'(t) = p(t+)P~' where t, = max{0,t}.

Proof. By the definition of ¢, we have

which implies

P i t>0
o p: - ’
ro=er={ 7 4120

s [ pteTt i >0,
f(t)_{ 0 if t<0.

Then, it is easy to see that f'(¢t) = p(t,)P~! is continuous for p > 1. O
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Proposition 3.35. Let ¢? be defined as in (3.176) and h*°“(x) = 2P, I°°°(z) = (v4)P be
the vector-valued functions corresponding to the real-valued functions h(t) = t* and I(t) =
(t4)?, respectively. Then, ¢¥_ is continuously differentiable at any (z,y) € R" x IR", and
its Jacobian is given by

V! (z,y) = VE(z) — VI —y),
Vydig(o,y) = VI*(z —y),

where VR satisfies (3.178)-(3.179) and

p((wr) )P~ it up = 0;
vIes() = § [ () cs )i} 40

es(u)iia ag(u)] + (bs(u) — ag(u)) dpay | & "2 70
Uy = m,

() — 200 = (i)

3 Xo(w) — M (u)

bo(w) = £ [ )' ™+ Ouu) )],

es(u) = Z[u(u) )™ = (w7,

Proof. In light of [29, Proposition 5] and [78, Proposition 5.2], the results follow from
applying Lemma 3.37 and using the chain rule for differentiation. [

3.1.4 Other C-functions in SOC setting

A. YF type of merit functions

It was also shown in the paper [41] that, like the NCP case, ¢, is smooth and, when
VF is positive semi-definite, every stationary point of (3.7) solves SOCCP. For SDCP,
which is a natural extension of NCP where IR"} is replaced by the cone of positive semi-
definite matrices SI and the partial order < is also changed by <s» (a partial order
associated with SF where A <gn B means B — A € S ) accordingly, the above features
hold for the following analog of the SDCP merit function studied by Yamashita and
Fukushima [220]:

¢YF(x’ y) = ¢1(<l‘, y>) + ¢FB(x7y)7 (3181)

where ¥; : R — IR is any smooth function satisfying
Pi(t)=0 V<0 and  ¢i(t) >0 Vt>0. (3.182)

In [220], ¢1(t) = 3(max{0,¢})* was considered. In fact, the function t,,, which was
recently studied in [41], is also a SOCCP version merit function that enjoys favorable
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properties as what 1), has and possesses additional properties including bounded level
sets and error bound.

Proposition 3.36. Let 1, be defined as in (3.181)-(3.182). Then, the function 1, is
a smooth C-function in the SOC setting.

Proof. From the definition, it is clear that v, is a C-function. By Proposition 3.5, ¢,
is smooth and 1, is smooth due to (3.182), hence v, is smooth. [

In order to show properties of error bound and bounded level set, we need its merit
function as below:

fYF(C) = ¢YF(F(C>7 G(C)) (3183)

Proposition 3.37. Let ¢, be defined as in (3.181)-(3.182) and f,, be given by (3.183).
Then, for every ¢ € R™ where VF((), —VG(C) are column monotone, either (i) f,.(() =
0 or (ii) Vf(C) # 0. In case (i), if VG(C) is invertible, then (d,.(¢),V f,x(C)) <0,

where

00 (0) = (VGO (wa«mo, G(ONE(C) + Vathun (F(O), G(@))) .

Proof. Fix any ¢ € IR" where VF((),—VG(() are column monotone. By Proposition
3.36, we know that ¢, is smooth. Then, the chain rule for differentiation yields

Vin(0) = a(VF(C>G(<)+VG(<)F<C))
VOVt (FI0), G(O)) £ VGOVt (F(O), G(O))

where we let a := ] ((F(C), G(C))) In what follows we consider the case of N =1, i.e.,

Vs (2,Y) = 3 |0 (2, y)||>. Extending the proof to the case of N > 2 is straightforward.
Suppose Vf,.(¢) = 0. Then, dropping the argument “(¢)” for simplicity, we have

o (VFG n VGF) FVE Yty (F.G) + VG Vs, (F,G) = 0.

The column monotone property of VF, —VG gives
(aG + Vb, (F, G, aF + V1., (F,G)) <0.
Upon collecting terms on the left-hand side, we have
Q2 (F.G) 4+ ((F. Vot (F.G)) + (G, Vo (F. G))) + (Voo (F. G), Vs (F, G)) < 0.

Our assumption (3.182) on v, implies the first term is nonnegative. By Proposition 3.6,
the second and the third terms are also nonnegative. Thus, the third term must be zero,
so Proposition 3.6(b) implies ¢, (F,G) = 0. Thus, f.,(¢) = 3 ||¢w (F(Q), G()|> = 0.
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Suppose V f..(¢) # 0 and VG(() is invertible. Again, we drop the argument “(¢)” for
simplicity. Then,

< YF’VfYF>

I
/\

06 + Vot (F.C)). TF(G + Vs (. G)) + TG(F + ¥y (F.G) )

aG + V.. (F,G), VG'VF(aG + V1, (F, G))>

IN

<aG + Vathoo (F,G), oF + Vo, (F, G)>
- <aG + Voiboy (F,G), oF + Vi, (F, G)>

— _&(FG) - a(<F, Vot (F,G)) + (G, Vi (F, G>>) (Voo (F, C), Vo (F, C)),

where the first inequality follows from VG7'VFEF = 0. We argued earlier that all three
terms on the right-hand side are non-positive. Moreover, by Proposition 3.6(b), the third
term is zero if and only if ¢, (F,G) = 0, i.e., ( is a global minimum of f,,, and hence a
stationary point of f,.. Since Vf,.(¢) # 0, the right-hand side cannot equal zero, so it
must be negative. [

Proposition 3.38. Suppose that F' and G are jointly strongly monotone mappings from
IR"™ to R™. Also, suppose that the general SOCCP (3.4) has a solution (*. Then, there
exists a scalar T > 0 such that

7ll¢ = ¢l < max{0, (F(¢), GO} + I(=F(O)+ [ + [I(=G(O)+] ¥ €R™. (3.184)

Moreover,

TlC = CIP < 0t (£ Q) + 2V2£, (O ¥ R™, (3.185)
where f,. is given by (3.183) with N = 1, ¢, : R — [0, 00) is a smooth function satisfying
(3.182), and ;" denotes the inverse function of 1 on [0, 00).

Proof. First, we observe that ¢, * is well defined since, by (3.182), v, is strictly increasing
on [0,00). Because F' and G are jointly strongly monotone, there exists a scalar p > 0
such that, for any ¢ € R”,

pl¢—¢I?
< (F(Q) = F(¢), GO = G(¢)
= (F(0),G(O) + (=F(¢), G(¢") + (F(¢7), =G(C))
< max{0, (F((),G(O)} + ((=F(¢)+, G(C)) + (F(C), (=G () +)
< max{0, (F(C), G(ON} + [I(=F )+l |G+ IECHI =G+l
< maX{LHF(C*)ILIIG(C*)II}<maX{0,(F(C),G(C)>}+II( F(O) I+ 1I(= ())+II>7



284 CHAPTER 3. GENERAL COMPLEMENTARITY FUNCTIONS

p

max{L, [|F(¢)[|, [G(¢)II}
yields (3.184). Moreover, using (3.181), (3.182) and (3.183), we have

max {0, (F(C), G(O))} <1 (fye(€))  and 9, (F(C), G(C)) < fy ()

Using Lemma 3.7 and the second inequality, we have

H=F Q)+l + (=GOl < V2(I=FO)+ P+ I(=GC)+ 1)
< 2V29,,(F(C),G()?
< 2V2 £ (OY2

where the second inequality uses Lemma 1.1(b). Setting 7 :=

Thus, there holds

max{0, (F(C), G(O)} + [(=F Q)+l + (=G4l < ot (£ (€)) +2V2f 1 (O

This together with (3.184) yields (3.185). O

If in addition F' is continuous and G(¢) = ¢ for all { € IR", then the assumption that
the SOCCP has a solution can be dropped from Proposition 3.38, see, e.g.,[63, Proposition
2.2.7]. Moreover, the exponent 2 in the definition of joint strong monotonicity can be
replaced by any ¢ > 1, and Proposition 3.38 would generalize accordingly.

By using Lemma 3.8 and Proposition 3.37, we have the following analog of [220,
Theorem 4.1] on solution existence and boundedness of the level sets of f, ..

Proposition 3.39. Suppose that F' and G are differentiable, jointly monotone mappings
from IR™ to IR"™ satisfying

lim (| F(Q)|[ + [|G(O)] = oo (3.186)

<ll—o0

Suppose also that SOCCP is strictly feasible, i.e., there exists { € IR™ such that F((), G(() €
int(KC"). Then, the level set

L(y):={CeR"| f,:(¢) <~}

is nonempty and bounded for all v > 0, where f, . is given by (3.181)-(3.182) with N =1,
and ¢y : IR — [0, 00) is a smooth function satisfying (3.182).

Proof. For any v > 0, if {¢*}3, C L(v), then f,.(¢*)} is bounded and the joint
monotonicity of ' and G yields

(F(¢h),G(Q) + (F(0), G(¢H) < (F(C"),G(¢M) + (F(Q),G(C), k=1,2,..

Using this together with Lemma 3.8 and an argument analogous to the proof of [220,
Theorem 4.1], we obtain that {||F(¢*)|| + ||G(¢*)||} is bounded. Then, (3.186) implies
{¢*} is bounded. This shows that £(7) is bounded.
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The proof of L(7y) # 0 uses Proposition 3.37 and is nearly identical to the proof of [220,
Theorem 4.1]. O

We point out that there is a result presented in Section 4.1 (see Lemma 4.1), which
is analogous to Proposition 3.39 and uses Ry;-function. The condition of Ry;-function
is weaker than strong monotonicity, and it is also weaker than monotonicity plus strict
feasibility in certain sense, see [140, 204].

As below, we make a slight modification of
mapping ¢ : R" x R™ — IR, that is given by

for which v, is replaced by the

YF?

Yol y) = =1z o w)+ |12 (3.187)

]
where ()4 denotes the orthogonal projection onto ™. If we observe closely, we may see
there is some relation between 1y and v, : both are smooth functions. Moreover, if we
let 1 : IR" X IR" — IR be 91 (x,y) := ¥ (z,y), then the graphs of ¥y and 1; share similar
features. In other words, our new merit function ¢___ : IR™ x IR" — IR, is defined as

new

Vew (@, ) = o (@, y) + ey (2, ), (3.188)

where v > 0. When o = 0, 7, reduces to 1., which is the squared norm of Fischer-
Burmeister function (3.11). Thus, this new merit function can be viewed as the extension
of the squared norm of Fischer-Burmeister function. We shall show that the SOCCP (3.1)
is equivalent to the following global minimization via the new merit function ¢___:

new °

min f,..(¢) where [ (¢) =1, (F(C)C). (3.189)

¢eR™

Indeed, this new merit function v was studied by Yamada, Yamashita, and Fukushima
in [217] for the NCP setting. We are motivated by their work and wish to explore its
extension to the SOCCP (3.1). Analogous to the additional properties that 1., given
as (3.181)-(3.182), possesses and as will be seen later, if F' is strongly monotone [63]
then f . provides a global error bound which plays an important role in analyzing
the convergence rate of some iterative methods for solving the SOCCP (3.1); and if
F' is monotone and a strictly feasible solution exists then f _ has bounded level sets,
which will ensure that the sequence generated by a descent algorithm has at least one
accumulation point. All these properties will make it possible to construct a descent
algorithm for solving the equivalent unconstrained reformulation of the SOCCP (3.1). In
contrast, the merit function induced by v, lacks these properties. In addition, we will
show that 1 is continuously differentiable and its gradient has a computable formula.
All the aforementioned features are significant reasons for choosing and studying this

new merit function 1

new *
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Lemma 3.38. Let ¢y : R" x R™ — IRy be given by (3.187). Then, 1y is continuously
differentiable and
Vato(z,y) = Ly-(xoy)y,
Vyto(z,y) = Lo (zoy)+

Proof. For any z € IR", we can factor z as z = \ju) + X\u®. Then let g : R* — R”
be defined as

(3.190)

1 . .
9(2) == 5((2)+)2 = g(A)u + g(Ag)u®,
where § : R — R is given by g(\) := 3(max(0, \))?. From the continuous differentiability
of g and [29, Proposition 5.2|, the vector-valued function g is also continuously differen-
tiable. Hence, the first component g (z) := 3||(2)+||? of g(z) is continuously differentiable

as well. By an easy computation, we have Vg;(z) = (2)+. Now, let

2zy) i =woy=((r,y), ©1y2 + Y12),
then we have ¥(z,y) = g1(2(z,y)). Applying the chain rule, we obtain

Vfcqu)(] =V,z- Vgl(z) = Ly ’ (ZL‘ o y)-h
Vo =Vy2-Vai(2) = Ly - (xoy)y,

where

T T
_ | Y Y _ _ | T Ty _
V.z(z,y) = { - ] =L, and V,z(z,y) = [ . ] =L,.

Thus, the desired result (3.190) is achieved. O

Proposition 3.40. Let v
the following results hold.

(a) ¥ . (x,y) >0 for all (z,y) € R™ x R™.

:IR™ x R™ — IRy be defined as in (3.187)-(3.188). Then,

new

(b) ¥, . (x,y) =0 <= z€K", ye K", zoy=0 < z€ K", ye K", (z,y) =0.

(c) .., is continuously differentiable at every (x,y) € R"xIR™. Moreover, V1, . (0,0) =
Vo (0,0) = 0. If (z,y) # (0,0) and 2* + y* € int(K"), then

v33,(ﬂnew <x7 y) = o Ly : (x o y)+ + LILZZ,12+:U2)1/2 - I (bFB ('r? y)?
Vb @.9) = @ Ly~ (woy) +{ LyLib, e — 1 )b (2.).

If (z,y) # (0,0) and x* + y* & int(K"), then 2?2 + y} # 0 and

T
Voo (T, y) = 2a |z1] - (y)3 + (\/ﬁ - 1) Ge (7, 9),

Y
vy,l?bnew(x’y) = 2« |y1| : (l‘)i_ + (\/ﬁ - 1> QSFB(x?y)'
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Proof. (a) It is clear by definition.

(b) We only need to prove the first equivalence since the second one is a known result in
[78]. Suppose ¥, (x,y) = 0, it yields 1., (x,y) = 0. Thus, the desirable result follows by
Proposition 3.4(a). On the other hand, z € K", y € K", x oy = 0 imply ¥, (x,y) = 0;
and 1o(x,y) = 0 from x oy = 0. Therefore, ¢ (z,y) = 0.

(c) If (z,y) = (0,0), it is easy to know V,¢y(0,0) = V,10(0,0) = 0 by Lemma 3.38.
Hence V,¢,..(0,0) = V,1,..(0,0) = 0. If (z,y) # (0,0) and 2> + y* € int(K"), then
the results follow by Proposition 3.4(b) and Lemma 3.38. If (z,y) # (0,0) and 22 + 3> ¢
int (™), then by applying Lemma 3.2, we have

roy = ({z,y), T1y2 + 1172)
= (zip + 23y, T1Y2 + Y122)
= (271y1 , 27132)
= 211y.

Therefore,

Ly-(zoy)y = Ly (201y)s = 20| Ly ()4 = 2lz1] - (y o (y)+) = 2lz1| - (v)3,
where the last equality is due to

yous =W+ +@-lo W =i+ ®-°W+=Ww3
Similarly, we have L, - (z oy); = 2|y1| - (z)3. This together with Proposition 3.4 lead to
the desired results.  [J

Proposition 3.41. Let f, . be defined as (3.187)-(3.189). Then, f... is smooth with
foou(Q) =0 forall ¢ € R™ and f,.,(C) = 0 if and only if ¢ solves the SOCCP. Moreover,

suppose that the SOCCP (3.1) has at least one solution. Then, ¢ is a global minimization
of f.ow if and only if ¢ solves the SOCCP (3.1).

Proof. The results follow by Proposition 3.40 and definition of f U

new *

The error bound is an important concept that indicates how close an arbitrary point
is to the solution set of the SOCCP (3.1). Thus, an error bound may be used to provide
stopping criterion for an iterative method. As below, we establish a proposition about
the error bound of f _ given as (3.187)-(3.189). We need the next technical lemma to

prove the error bound property.

Proposition 3.42. Suppose that F' is strongly monotone mapping from IR™ to IR™. Also,
suppose that the SOCCP (3.1) has a solution *. Then ,there exists a scalar T > 0 such
that

7lIl¢ = ¢TI < NEQ) 0 Ol + I =F(O)+ll + (=)l ¥C € R™. (3.191)
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Moreover,
7II¢ = ¢ < V2 (i + 2) £ (O veeR”, (3.192)

where o > 0, and f,,, is given by (3.187)-(3.189) .

new

Proof. Since F is strongly monotone, there exists a scalar p > 0 such that, for any

¢eR”,
pll¢ =
< ( (€) - F(C*),C C*>
< < (C),C>+<( F(0))+,¢ > <F(C*),(—C)+>
< (F(Q), Q)+ II=F@)+ IS+ NECHN I (=E)+]
< V2I(F(C) 0 Ol + I=F)+ 1IN+ IFCHI =)+
< max{v?2, HF(C)H’IIC*H}(I\(F(C)OC)+\|+H(—F(C))+H+H(—C)+H)7

where the second inequality uses Lemma 1.1(b) while the fourth inequality is from (3.18).
p .
yields (3.191).
max{v/2, [|F(¢)], 61}

Then, setting 7 :=

Moreover, we have

V2

[(F(Q) 0 Q)+l = V2 1(F(0), Y < == £ (O

and

< V2(I(=FEQ) >+ 1= 17) "
< 2, (F(C), 02
< 2V2f, (O3

I(=E @)+l + 1=+l

where the second inequality is true by Lemma 3.7. Thus,

1E©Q) 0 Orll + 1(=FO)sll + (=04 | < V2 ( )W@U?

This together with (3.191) yield (3.192). O

The boundedness of level sets of a merit function is also important since it ensures
that the sequence generated by a descent method has at least one accumulation. The
following proposition gives conditions under which f,_  has bounded level sets. Similar

properties based on other slightly modified merit functions of 1, and v, , can be found
in [26].
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Proposition 3.43. Suppose that F' is a monotone mapping from IR™ to IR™ and that
SOCCP is strictly feasible, i.c., there exists ( € R"™ such that F(é),é‘ € int(K™). Then,
the level set

L(y) ={CeR"|[..(0) <7}

is bounded for all v > 0, where f_ is given by (3.187)-(3.189) with a > 0.

new

Proof. We will prove this result by contradiction. Suppose there exists an unbounded
sequence {C*} C L(v) for some v > 0. It can be seen that the sequence of the smaller
spectral values of {¢*} and {F(¢*)} are bounded below. In fact, if not, it follows form
Lemma 3.8(a) that f,_ (¢*) — oo, which contradicts {¢¥} C L(v). Therefore, the un-

new

boundedness of {¢*} leads to that the sequence of the bigger spectral values of {¢*} tends
to infinity. Now, let ¢ be a strictly feasible solution of the SOCCP. Since F' is monotone,
we have

(F(¢") = F(Q), ¢* = ¢) =0,
which yields

(F(¢5),) + (F(0),¢*) < (F(ch).¢5) + (F(0). ). (3.193)

Then, by Lemma 3.8(b) and F((),( € mt( "), we obtain (F(¢*), () + (F((), %) — oo,
which together with (3.193) lead to (F(¢*),¢*) — oco. Thus, by Lemma 3.6(c) and
(3.188)-(3.189), we have

[(F(F) oMl o0 = ¥, (F(").¢") =0 = [f.(F) o0

But, this contradicts {¢*} C L(v). Therefore, the proof is complete. [

B. LT type of merit functions.

Next, we study another two classes of merit functions for the SOCCP (3.4). The first
class is

fix(Q) = 2o({F(C), G(C))) + ¢ (F(¢), G(C)), (3.194)
where 9 : R — IR, satisfies

Po(t) =0 YVt <0 and () >0 Vt>0, (3.195)
and ¥ : IR" x IR™ — IR satisfies
Y(x,y) =0, (z,y) <0 <<= (z,y) € K" x K", (z,y) =0. (3.196)

The function f,,. was proposed by Luo and Tseng for NCP case in [143] and was extended
to the SDCP case by Tseng in [207]. In addition, we make a slight modification of f,,
which forms another class of merit function as below.

o~

fir (€)= 4o (F(C) © G(Q)) + ¢ (F(C), G(C)), (3.197)
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where 9§ : IR" — IR, is given as

Ui(w) = 5l (w)- 1 (3.198)

and ¢ : R" x R” — IR satisfies (3.196). We notice that v possesses the following

property:
Po(w) =0 <= w=.,0,

which is a similar feature to (3.195) in some sense. Examples of 1y and ¢ will be given
later. The second class of merit functions for SDCP case was recently studied in [82] and

a variant of f,. was also studied by the author in [24].

LT

We will show that both f,. and ]?L\T provide global error bound (Proposition 3.48 and
Proposition 3.49), which plays an important role in analyzing the convergence rate of
some iterative methods for solving the SOCCP, if F' and G are jointly strongly monotone.
We will also prove that if F' and G are jointly monotone and a strictly feasible solution
exists then both f, . and f;T have bounded level sets (Proposition 3.50 and Proposition
3.51), which will ensure that the sequence generated by a descent algorithm has at least
an accumulation point. All these properties will make it possible to construct a descent
algorithm for solving the equivalent unconstrained reformulation of the SOCCP. In con-
trast, the merit function induced by 1, lacks these properties. In addition, we will show
that both f, . and ]?L\T are differentiable and their gradients have computable formulas.
All the aforementioned features are significant reasons for choosing and studying these
new merit functions.

First, we notice that 1)y is differentiable and strictly increasing on [0, 00). An example
of ¥y is ¢o(t) = 1(max{0,t})*. Let ¥ (we adopt the notation used as in [207]) denote
the collection of ¢ : R™ x IR™ — IR satisfying (3.196) that are differentiable and satisfy
the following conditions:

{ (Vatb(z,9), Vyib(z,)) >0, V(z,y) € R" x IR™. (3.199)
(2, Vob(2,9)) + (y, Vo (z,y)) > 0, V(z,y) € R" x R™ '

We will give an example of ¢ belonging to W, in Proposition 3.44. Before that,
we need couple technical lemmas, which will be used for proving Proposition 3.44 and
Proposition 3.45.

Proposition 3.44. Let ¢, : IR™ x IR® — R, be given by

bi(a,y) = <H<—:c>+H2 n H(—y>+|!2)- (3.200)

N | —

Then, the following results hold.

(a) vn satisfies (3.196).
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(b) vy is convex and differentiable at every (x,y) € R™ x R™ with V1 (z,y) = (z)-
and Vyihi(z,y) = (y)-.

(¢) For every (z,y) € R™ x IR™, we have
(Voo (z,y), Vytui(z,y)) = 0.
(d) For every (z,y) € R™ x R", we have
(@, Vaor(z,y)) + (v Vi (z,9)) = (@) [1* + [I(y)-]1*.

(e) 1y belongs to V..

Proof. (a) Suppose 1(x,y) = 0 and (x,y) < 0. Then by definition of ; as (3.200),
we have (—z); = 0, (—y)+ = 0 which implies z € K",y € K". Since K" is self-dual,
x,y € K" leads to (x,y) > 0 by (3.17). This together with (x,y) < 0 yields (x,y) = 0.
The other direction is clear from the above arguments. Hence, we proved that 1, satisfies
(3.196).

(b) For any = € IR", we have the decomposition x = (x), + (z)_ = (z)+ — (—x);. Hence,

1 1 1
SN =2)e? = Sl @) — ol = min Sllw — ol

which is convex and differentiable in = (see [184, page 255]). Moreover, the chain rule
gives
1

v./;l

<—a:>+||2} — (a)s = (o).

Similar formula holds for y. Thus, v, is convex and differentiable at every (z,y) €

R" x R" with V1 (2,y) = —(—1)4 = (z)- and Vi (z,y) = —(—y)+ = (y)-.
(c) From part(b), we have

(Vathi (2,9), Vyn (2, 9)) = ((2)-, (y)-) = ((=2)+, (=y)+) = 0,

where the inequality is true by (3.17).

(d) By applying Lemma 3.6(a), we obtain

(@, Vot (2, y)) = (2, (x)-) = [|(2)-[.

Similarly, (y, V.11 (z,y)) = ||(y)_||* and hence the desired result holds.

(e) This is an immediate consequence of (a) through (d). O
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Next, we consider a further restriction on . Let ¥, . denote the collection of ¢ € W

satisfying the following conditions:

Y(r,y) =0 V(z,y) € R" x R" whenever (V,¢(z,y),V,(x,y)) =0.

(3.201)

We notice that the v defined as (3.200) in Proposition 3.44 does not belong to ¥, ,. An

example of such ¢ belonging to ¥, , is given in Proposition 3.45.
Proposition 3.45. Let v : R™ x IR® — R, be given by

1
¢2<$’y) = §||¢FB(I7 y)+||2,
where ¢, is defined as (3.10). Then, the following results hold.

(a) o satisfies (3.196).

(3.202)

(b) w9 is differentiable at every (z,y) € R™ x R™ Moreover, V,15(0,0) = V,12(0,0) =

0. If (x,y) # (0,0) and 2* + y* € int(K"), then
Vzwz(% y) = LxL(x12+y2)l/2 -1 ¢FB (.Z', y)+,
Vyha(z,y) = LyL(;12+y2)1/2 — 1) s (. y)+-
If (z,y) # (0,0) and x* + y* & int(K"), then 2?2 + y} # 0 and

T

e

Vy¢2(x,y) = (\/ﬁ - 1) ¢FB<x7y)+'

(c) For every (z,y) € R™ x R", we have

vx¢2<x>y) = ( _1> d)FB(x?y)"r?

<wa2 (‘T7 y)? Vwa(xa y)) > 07

and the equality holds whenever (x,y) = 0.

(d) For every (z,y) € R™ x IR™, we have

<Q?, Vmw2<x7y)> + <y7 Vng(llf,y» = "¢FB(m7y)+|’2'

(e) 1y belongs to U, .

(3.203)
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Proof. (a) Suppose ¢(z,y) = 0 and (z,y) < 0. Let z :== —¢.(z,y). Then (—z2), =
¢p(2,y)+ = 0 which says z € K*. Since z +y = (22 + y*)¥/2 + z, squaring both sides
and simplifying yield

2(xoy) =2 ((:ﬁ +yH) 2o z) + 2%
Now, taking trace of both sides and using the fact tr(x o y) = 2(z,y), we obtain
Az, y) = 4(2° + o) 2, 2) + 2||2% (3.204)

Since (2% +y?)Y/? € K™ and z € K", then we know ((22+%2)"/2, 2) > 0 by Lemma 3.6(b).
Thus, the right hand-side of (3.204) is nonnegative, which togethers with (x,y) < 0
implies (z,y) = 0. Therefore, with this, the equation (3.204) says z = 0 which is
equivalent to ¢, (z,y) = 0. Then by Proposition 3.2, we have x,y € K". Conversely,
if z,y € K™ and (x,y) = 0, then again Proposition 3.2 yields ¢..(z,y) = 0. Thus,
oz, y) = 0 and (z,y) <0.
(b) For the proof of part(b), we need to discuss three cases.
Case (1): If (x,y) = (0,0), then for any h, k € R™, let p; < pg be the spectral values and
let vV, v be the corresponding spectral vectors of h? 4 k%. Hence, by Lemma 3.1(b),
[+ K2 —h— k| = [ + zo® — b — k]
< VoWl + allv® ]+ 18]+ (k]
= (Vi + i) /V2+ (|7 + K.
Also
< pz = ([P A (K] A+ 2l 2k + k||
< [RIP 1R A+ 2[Rl [[2]] + 2[Fa |||
< 2|[r)* + 2]k

Combining the above two inequalities yields

Yol K) = 13(0,0) = Ly (k). P

< (b )P
(GRS EY Ik

< (i =+ vEm)/VE+ |all + )

< (2v/2IRIE+ 2RI/ VE + 1]+ 1)

= O(|Ihl* + [I&]*).

where the first inequality is from Lemma 3.7. This shows that 1y is differentiable at
(0,0) with
vxw2(07 O) = Vwa(Ov O) = 0.
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Case (2): If (x,%) # (0,0) and 22 + 2 € int(K"), let z be factored as z = A\ju) + Apu(?
for any z € IR". Now, let g : R™ — IR" be defined as

1

9(2) = ((2)+)* = gA)u™ + g,

where § : R — R is given by g()) := 3

of g and Prop. 5.2 of [29], the vector-valued function g is also continuously differentiable.
Hence, the first component g;(z) = 3||(z)+||? of g(z) is continuously differentiable as well.
By an easy computation, we have Vg;(2) = (2)4. Since ¥o(z,y) = g1(dpg (z,v)) and ¢,
is differentiable at (z,y) # (0,0) with 2? + 32 € int(K") (see [78, Corollary 5.2]). Hence,
the chain rule yields

(max(0, \))?. From the continuous differentiability

Vale0) = oyl )VorCOun(e.0)) =Ll b = 1) ral )

quvz)?(xvy) - Vy¢FB (x7y)vgl(¢FB (x,y)) :(LyL(_x12+y2)1/2 - ]> ¢FB (Jf,y)+.

Case (3): If (z,y) # (0,0) and z* + y? & int(K"), by direct computation, we know
lz|I* + ||lyl|> = 2||z122 + y1ye|| under this case. Since (x,y) # (0,0), this also implies
x1x9 + y1y2 # 0. We notice that we can not apply the chain rule as in case(2) since
¢ 1s no longer differentiable at such (z,y) of case(3). By the spectral factorization, we
observe that

¢FB (1:7 y)+ = ¢FB (l’, y) <~ ¢FB ([L’, y) € ’Cn
O (T,9)y =0 <= ¢..(z,y) € = K" (3.205)
¢FB ((ﬂ, y)+ = >‘2u(2) — (bFB (l‘, y) ¢ K"u-K",

where )\, is the bigger spectral value of ¢, (z,y) and u® is the corresponding spectral
vector. Indeed, by applying Lemma 3.2, under this case, we have (as in [41, eq. (26)])

T1x2 +
G (1,) = (\/x% + 4 = (21 ), S AL (a4 yg)). (3.206)
VT Y

Therefore, A\, and u(? are given as below:

Ao = 2ty — (21 +y) + (well, (3.207)
1 W

@ _ 1 _2>

Uu - 17 )
2( [[wal|

nzatiYs (g, 4 1,). To prove the differentiability of 1, under this case, we

w2 +y?
shall discuss the following three subcases according to the above observation (3.205).

where wy =
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(i) If ¢py(w,y) & KU —K" then ¢, (7,y)s = Mu® where Ay and u® are given as in
(3.207). From the fact that ||u®| = \%, we obtain

1 1
w2(x7y> - §||¢FB(x7y)+||2:Z>\§

= (V- worw) ooV o) el + ]

Since (z,y) # (0,0) in this case, ¥ is differentiable clearly. Moreover, using the product
rule and chain rule for differentiation, the derivative of 1y with respect to x; works out
to be

0 1 T Ty
—y(r,y) = 2|2 \/aI - (m )(——1>+2(——1)
8$1¢2<x Y) 4[ ( i +yi — (v + 1) Ty Ty [|ws]|

wd Vi w
+2<,/:c% +yi— (o + y1)> - QHw—21||2 + 2wéer1UJ2}
1 ( 1 )( 2 2
= |——= 1) (222 = (z1+y) + |l )| .
2[ Vi +ui

The last equality of the above expression is true because of

R R R e Ry

(z1 4+ 1)

Vaxl Wy =

; 3 Ta(2] + Y1) — (xiwe + 2131102)
T{+Y1

(x3 +97)
$%$2 + yfxz - I%@ — T1Y1Y2

(Vi +yi)3

= 0,

where the last equality holds by Lemma 3.2. Similarly, the gradient of ¥y with respect
to x5 works out to be

10 / Vo, Wa - W
Vm2¢2(m7y) - Zl 2< l’% + y% - (xl + yl)) W + 2vm2w2 . w2:|
1 _( 9 9 )( T Wy T
Vit — (@t || ——— -1+ | ———= -1 |w
2 P Va2 +y? [|ws]| Va2 +y?
T Wa
= ——1) (\/x2+y2—(x1+y1)+||w2||> )
(\/W ! ' [[ws]]

DN | —
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Then, we can rewrite V, s (x,y) as

v$w2(l‘7 )

-
|
_ (ﬁ—gmﬂ
_ ( " —1>¢FB<x,y>+, (3.208)

where

(11
|

(=) (v
1 = = 22y —(r+ )+ Juwe] ) €R
2 3+ y3

1

2
, - L T (o + ) +|rw2||>
2(\/IIJ1+y1 )( o b || ||

(i1) If dpp (2, y) € K" then ¢y (2,y)+ = ¢y (2,y) and hence 1o (x, y) = 5| des (7, y)+[|* =
2||¢FB(:v,y)H2. Thus, by [41, Prop. 3.1(b)], we know that the gradient of ¢, under this

subcase is as below:

-1

(1]
|

Vm¢2(‘r7y> = <\/ﬁ - 1) ¢FB(x7y) = (\/ﬁ - 1) ¢FB($,y)+(3209)

Yy Yy
Vya(z,y) = <\/ﬁ — 1) Gp(T,y) = (\/ﬁ - 1) Grn (T,Y) 4

If there is (2, y') such that ¢, (2',y) & K" U—-K" and ¢, (2',y') = ¢ (x,y) € K™ (the
neighborhood of point belonging to this subcase). From (3.208) and (3.209), it can be
seen that

Vz¢2 (3:,7 y/) — vwa(xa y)a Vng (37/7 y/) — Vng(x, y)

Thus, 1), is differentiable under this subcase.
(iii) If ¢py (2, y) € —K™ then ¢, (z,y)+ = 0. Thus, Va(z,y) = 1]|¢ps (2,y)+ ]| = 0 and it

is clear that its gradient under this subcase is

vx¢2<x7y) = - (l'j—l—i—yQ - 1> ¢FB(x7y)+’ (3210)
1 1

Vy%(ﬂ?ay) = = (% - 1> ¢FB(J;7y)+‘
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Again, if there is (2,7') such that ¢ ,(2',y) € K" U —K" and ¢, (2", y) = ¢pp(2,y) €
—K™ (the neighborhood of point belonging to this subcase). From (3.208) and (3.210),
it can be seen that

waz(l’/’ y/) — 0= vwa(xv y)7 Vywz(l'/’ Z//) — 0= vwa(xv y)

Thus, 1), is differentiable under this subcase.
From the above, we complete the proof of this case and therefore the proof for part(b) is
done.

(c¢) We wish to show that (V, ¢ (x,y), Vyie(z,y)) > 0 and the equality holds if and only
if Yo(x,y) = 0. We follow the three cases as above.

Case (1):If (z,y) = (0,0), by part (b), we know V,1s(z,y) = V bs(x,y) = 0. Therefore,
the desired equality holds.

Case (2): If (x,y) # (0,0) and z* 4+ y* € int(K"), by part (b), we have

<va€¢2<x7y)v Vng(x,y» = <(L$Lz_1 - ])(¢FB)+7 (LyLz_l - I)( FB)+>
= (Lo = L)L (Gep)+r (Ly — L2) L7 (045)+) (3.211)
= <(Ly - Lz)(LI - LZ>L2_1(¢FB>+7 1(¢FB)+>'

Let S be the symmetric part of (L, — L,)(L, — L,). Then

L
L

z
z

1
s =3 ((Ly — L)Ly — L)+ (L, — L.)(L, — Lz))
1
= 3 (LILy +LyLy — L.(L,+L,) — (L, + L)L, + 2L§)
1 2 1 2 2 2
= (Le = Ly = L)’ + S(L = L3 — L),

Since z € K" and 2* = 2 + 3*, Lemma 3.5 implies L? — L2 — L? > O. Then (3.211)
yields

(Vatba(z,y), Vyba(z,y))
= (SL (6r) s, L2 (60) )
= e = Lo = L)L (00 L7 Bp)) + 5052 = 2 = I)L2 (B0 L2 (01):)
> %«L Lo L)L (60 L (61):)
= Sl I (6r) I

where the last equality uses L, — L, — L, = L,_,_, = L¢FB. If the equality holds, then
the above relation yields ||Ly, L. '(¢ps)+]|* = 0 and, by Lemma 3.1(d),

L¢>FB L;1(¢FB)+ = ¢FB © (L;1(¢FB)+) = L;1<¢FB)+ o (bFB =0
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Since z = (2% + y?)'/? € int(K") so that L' = O (see Lemma 3.1(d)), multiplying L.
both sides gives ¢, o (¢,;)+ = 0. From definition of Jordan product (1.2) and Lemma
3.6(a), it implies (¢,.,)+ = 0; and hence 1y = 0. Conversely, if (¢,,)+ = 0, then it is
clear that (V, ¢ (z,y), Vyibe(z,y)) = 0.

Case (3): If (x,y) # (0,0) and z* 4+ y* & int(K"), by part (b), we have

(Vatba(z,y), Vytn(z,y)) = (/—Ty = 1) (y—+y = 1) I6es (2, 9) 41> > 0.
1 1 1 1

If the equality holds, then either ¢, (z,y); = 0 or \/ﬁ =1or Wi
second case, we have y; = 0 and x; > 0, so that Lemma 3.2 yields y, = 0 and 1 = ||z2]|.
In the third case, we have xr1y = 0 and y; > 0, so that Lemma 3.2 yields x5, = 0 and

y1 = |ly2]]. Thus, in these two cases, we have zoy =0, x € K", y € K". Then, by

(d) Again, we need to discuss the three cases as below.

Case (1):If (z,y) = (0,0), by part (b), we know Vs (z,y) = Vyio(x,y) = 0. Therefore,
the desired equality holds.

Case (2): If (z,y) # (0,0) and 2% + y* € int(K"), by part (b), we have

Vr¢2<x>y) - (LmLz_l_I>¢FB<I7y)+7

vy¢2($, y) = (LyLz_l - I) ¢FB (:L', y)+7
where we let z := (22 4 3?)/2. For simplicity, we will write ¢(x, %), as ¢,. Thus,

2, (Lol = 1) () 4) + (Y (Ly Lot = 1)()+)
(L7 Lo = D, (dpg)+) + (L2 Ly = 1)y, (dp5)+)
L_ILLE:E + Lz_lLyy —Tr—Y, <¢FB)+>

<$, VI¢2(:’:7 y)) + <y7 Vng(l’, y)) = <
(
< 4
= <L;1(Q32 + y2> —r =Y, (¢FB)+>
(L
(

122 —T =Y, (¢FB)+>
£—=T =Y, (¢FB)+>
= [[(es)+II",

where the next-to-last equality follows from L.z = 2%, so that L;'2? = 2z and the last
equality is from Lemma 3.6(a).
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Case (3): If (z,y) # (0,0) and 2% + y* & int(K"), by part(b), we have

T

T s 1 ¢ (‘/L'7 y) Y
/x% + y% > FB +

Vy¢2(m,y) = (ﬁ - 1> ngB('x?y)-f—'

vx¢2<x7 y) = (

Thus,

(2, Vatha(,9)) + (v, Vytba(z, )
— ( ) (2, ($pg)+) + (y— - 1) W, (Den)+)
131 + 3/1 7+ Yy

= << 1)‘%‘—'— (%_1> Y, (¢FB)+>
3 +y1 i+ Y1

= <¢FB’
= [[(¢rs)+ ||2

where the next-to-last equality uses (3.206) and the last equality is from Lemma 3.6(a)
again.

(e) This is an immediate consequence of (a) through (d). O

We notice that (3.203) can be rewritten as
Vanlwg) = 1l — o -] o (- 2),

Vialen) = L= o=l oty 2
where z = (22 + y?)'/2. This is a similar form as in [207, Lemma 7.2]. Nonetheless,
(3.203) cannot be rewritten as the above form since L' does not exist whenever x2 + y?
is on the boundary of K". The next proposition is a result which is an extension of [207,
Proposition 7.1] for SDCP to the case of SOCCP. Though the ideas for arguments are
similar, we present the proof for completion.

Proposition 3.46. Let f,. : R" — R, be given as (3.194) with vy satisfying (3.195)
and Y satisfying (3.196). Then, the following results hold.

(a) For all ¢ € R™, we have f,.(¢) > 0 and f,.(() = 0 if and only if ( solves the
SOCCP.
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(b) If vo,% and F,G are differentiable, then so is f,. and

Via(Q) = $((F((),G(()) | VF(QG(C) + VGO F(Q)

+VF(()VU(F(C),G(Q))
+VG(QV, 0 (F(C),G(Q)).

(c) Assume F,G are differentiable on IR"™ and 1 belongs to V. (respectively, ¥, ).
Then, for every ¢ € R™ where VG({) ™'V F(C) is positive definite (respectively, pos-
itive semi-definite), either (i) f,.(C) =0 or (i) V f.(¢) # 0 with (d(¢), V f,+(C)) <

0, where
d(¢) == =(VG(Q) ™) [¢o((F(C), GIONG(C) + Varr(F(C), G(S)) |-

Proof. (a) This consequence follows from (3.194) and (3.195)-(3.196).
(b) By direct computation and chain rule, the result follows.

(c) First, we consider the case of ¢ € ¥,, and fix ( € IR" where VG({)"'VF({)
is positive semi-definite. Let o := 15((F(¢),G(¢))) and drop the argument “(¢)” for
simplicity. Then

(d,Vfir)
= (—(VGHT(aG + V0 (F,G)),VF(aG + V0 (F,G)) + VG(aF + V0 (F,G)))
—(aG + V0 (F,G), VG 'VF(aG + V4 (F,G)))
—(aG + V¢ (F,G),aF + V,(F,G))
—(aG + VY (F,G),aF + V,(F,G))

— (F.C)-a (<F, V(F,G)) + (G Y, F, G>>) (VL(F.G) Y, (F.C))
= _042<F7 G) - <Vx¢<F, G)a Vzﬂﬂ(ﬂ G)>a

where the first inequality holds since VGV F is positive semi-definite and the inequality
follows from o > 0 and equation (3.199). Now, we observe that ¢t (t) > 0 if and only if
t > 0 since 9y is strictly increasing on [0, 00). Therefore, the first term on the right-hand
side is non-positive and equals zero if (F,G) < 0. In addition, by equations (3.199)
and (3.201), the second term on the right-hand side is non-positive and equals zero only
if Y(F,G) = 0. Thus, we have (d(¢),Vf..(¢)) < 0 and the equality holds only when
(F(€),G(¢)) <0 and ¥(F(¢),G(¢)) = 0, in which equation (3.196) implies ( satisfies
(3.4), i.e., f,.(¢C)=0.

Similar arguments can be applied for the case of v € ¥, and VG({)"'VF(¢) being
positive definite. [
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Next, we further consider another class of merit functions by modifying f, . a bit where
Yy is replaced by 1§ : R™ — Ry given as (3.198), i.e., ¥§(w) = 3||(w)4|*. It is known
that the function 15 given in (3.198) is continuously differentiable (see [184, p. 255])
with V¢§(w) = [w]+ (by the chain rule). In other words, we will study f,, : R" — R,
defined as (3.197)-(3.198):

—

fir (€)= ¥ (F(¢) 0 G(Q)) + ¢ (F(C), G(C)),

where 1§ is given as (3.198) and v satisfies (3.196). By imitating the steps for proving
Proposition 3.46 and using Lemma 3.38 as below, we obtain Proposition 3.47, which is a
result analogous to Prop. 3.46. We omit its proof.

Proposition 3.47. Let ]FL\T :IR" — R, be given as (3.197)-(3.198). Then, the following
results hold.

(a) For all x € IR", we have fL;(C) > 0 and E(C) = 0 if and only if ¢ solves the
SOCCP.

(b) If i, and F,G are differentiable, then so is ]?L\T and

Vi) = |VF()Low + VG Lr |(F(C) 0 G())s

+VEF (V0 (F(¢),G(C))
+VG(QV, 0 (F(C),G(C)).

We originally thought there should have parallel results to Proposition 3.46(c) for fL\T
and whose proofs are also similar. In other words, we wish to have the following:

Assume F,G are differentiable on IR™ and 1) belongs to W, (respectively, ¥, ). Then,
for every ¢ € IR" where VG (O)"'VF (Q\is positive definite (resp\ectively, positive semi-
definite), either (i) f,.(¢) =0 or (ii) V f,.(¢) # 0 with (d(¢), Vf..(¢)) < 0, where

d(¢) == —(VG(O)™) |La - (F(C) 0 G(Q))+ + Vatr(F(C). G(C)) |-

However, we are not able to complete the arguments even though v is in relation to
in certain sense. We thank a referee for pointing this out. We suspect that there needs
more subtle properties of v to finish it.

The error bound is an important concept that indicates how close an arbitrary point
is to the solution set of SOCCP. Thus, an error bound may be used to provide stopping
criterion for an iterative method. As below, we establish propositions about the error
bound properties of f,,., fL\T given as (3.194) and (3.197). We need some technical lemmas
as below to prove the error bound properties.
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Lemma 3.39. Let ¢y, 1y be given as (3.200) and (3.202), respectively. Then, ¢, and
Wy satisfy the following inequality.

wxa:,y)za(u<—x>+u2+H(—yw) Vo) e R xR, (3.212)

for some positive constant o and i = 1,2.
Proof. For 1, it is clear by definition (3.200) where o = %. For 1)y, the inequality is

2
still true, where a = }1, due to Lemma 3.7. [

Lemma 3.40. Let ¢¢ be given as (3.198). Then, 1§ satisfies

do(w) > Bl (w)4]* Yw e R,
for some positive constant 3.

Proof. It is clear by definition of ¢ given as (3.198) where 5 =1. O

Proposition 3.48. Let f.. be given by (3.194)-(3.196) with v satisfying (3.212). Sup-
pose that F' and G are jointly strongly monotone mapping from IR™ to R™ and SOCCP
has a solution C*. Then, there exists a scalar T > 0 such that

7ll¢ = ¢*II* < max{0, (F(¢), G(O)} + I(=F )+ + I(=G(O)+l ¥ eR" (3.213)

Moreover,

V2

NG fe(OV? VCeR, (3.214)

TIC = ¢ < g (£ (Q) +
where o 18 a positive constant .

Proof. Since F' and G are jointly strongly monotone, there exists a scalar p > 0 such
that, for any ¢ € R",

pll¢ = ¢
(F(¢) = F(¢"), G(O) = G(¢)
= (F(0),G(Q)) + (=F(¢),G(¢)

)
)+ (F(C), =G(Q))
(

< max{0, (F(C), G(ON)} + {(=F(C)4, G(¢) + (F(¢7), (=G(C)+)
< max{0, (F(C), G(ON} + [I(=F )+l |G+ I =G+l
< maX{l,HF(C*)H,||G(C*)||}<max{0,<F(C),G(C)>}+||( FO)+l +11(= ())+||),

where the second inequality uses Lemma 1.1(b). Setting 7 :=

yields (3.213).

P
max {1, [[F(¢*)|, [[G(¢)I[}
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Notice that 1y ! is well-defined by (3.195), and by using that ¢y is strictly increasing
on [0,00), we thus have

max{0, (F(¢), G(¢))} < ¥ (fi2(C)) -

In addition, it is clear that
V(F(C),G(Q)) < fir(Q)-

Now using Lemma 3.39 and the above inequality, we obtain

I(=F )<l + (=GOl < V2(I=FO)+ P+ I(=GC)+ 1)
W(F(C), G(()"?

<

SIS ES

<

F(OV2.

Thus,

max{0, (F(¢), G(O)} + [(=F(C))+ [l + I(=G(O)+] < g (£ir(O) + == fin (O™

This together with (3.213) yields (3.214). O

BiE

Proposition 3.49. Let fL\T be given by (3.197)-(3.198) with ¢ satisfying (3.212). Sup-
pose that F' and G are jointly strongly monotone mapping from R™ to IR™ and the SOCCP
has a solution C*. Then, there exists a scalar T > 0 such that

7lI¢ = ¢l < NFQ) 0 GO+ + I(=F Q)+l + I(=G(S))+| ¥Ce R (3.215)

Moreover,

rlC— ¢t < (% N 7@

where a and [ are positive constants.

)ﬂ(g)lﬂ V¢ e R™, (3.216)

Proof. Since F' and G are jointly strongly monotone, there exists a scalar p > 0 such
that, for any ¢ € R",

pl¢—¢I®
< (F(Q) = F(C), GO = G(¢T)
= (F(0),G(Q) + (=F (), G(C)) + (F(¢"), =G(C))
< (F(Q), G(O) + (=F(€)+, G(¢)) + (F(C), (=G(O)+)
< (F(O), GO) + I=F )+ TGO+ 1O =GO+l
< VRII(F(Q) o GO+l + IH=F @)+ G+ IEECHIII(=GC))-l
< max{V2, [F(C)L NG N(F Q) o (C))+II+II(—F(C))+II+II(—G(C))+I|>,
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where the second inequality uses Lemma 1.1(b) while the fourth inequality is from (3.18).

(V2 [F (L e T B219)

Moreover, by Lemma 3.40, we have

Then, setting 7 :=

—

I(E(C) 0 GO+l < —= w3(F(¢) 0 GO < —= Fir (Y2,

-

and (as in Proposition 3.48)

H(=FO) sl + (=GOl < V2(I(=FQO) 4] + (=G |?) "
Y(F(Q), G(O))?

<

—

fLT (<)1/27

<

RIEEIES

where the second inequality is true by Lemma 3.39. Thus,

ICE(CE) 0 GOl + I(=F ()]l + [[(=G(O)+1l < (L + —)fTT(C)W.

This together with (3.215) yields (3.216). O

Now, we give conditions under which f, ., ]TL\T has bounded level sets in Proposition
3.50 and Proposition 3.51, respectively. We need the next lemma which is key to proving
the properties of bounded level sets.

Lemma 3.41. Let 1)y, 109 be given by (3.200) and (3.202), respectively. For any {(z*, y*¥)}2, C
IR™ x R", let \¥ < X5 and ¥ < ub denote the spectral values of * and y*, respectively.
Then, the following results hold.

(a) If \F — —o0 or ub — —o0, then ;(x*,y*) — oo, fori=1,2.

(b) Suppose that {\i} and {u}} are bounded below. If N§ — oo or u§ — oo, then
(x,2%) + (y,y*) — oo for any x,y € int(K").
Proof. (a) For ¢y, the proof follows by the fact that

2

2l|(—a*)4 ]2 =Y (max{0, —AF})’

i=1
and similarly for ||(—y*)||?; see [78, Property 2.2 and Proposition 3.3].

For 15, using the same fact plus Lemma 3.7 leads to the desired result.
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(b) Fix any x = (z1,72),y = (y1,y2) € R x R"™! with ||zs]| < 71, ||y2]| < y1. Using the
spectral decomposition

)\k )\k )\k _)\k
b = ( E R 1wk) with ||wh|| =1,

2 2 7
we have
(z,2%) = ( ! —; 2) x1+ ( 2 5 1) riwh = 71(:151 —x§w§)+72($1 +xTwh). (3.217)
Since ||wk|| = 1, we have x; — xJwh > 21 — ||z2| > 0 and x; + 2Jwh > 21 — |22 > 0.

Since {\¥} is bounded below, the first term on the right-hand side of (3.217) is bounded
below. If {\5} — oo, then the second term on the right-hand side of (3.217) tends to
infinity. Hence, (z,2*) — oco. A similar argument shows that (y,4") is bounded below.

Thus, (z,2%) + (y,y*) — oco. If {5} — oo, the argument is symmetric to the one above.
0

Proposition 3.50. Let f,. be given as (3.194)-(3.196) with v satisfying the condition
of Lemma 3.41(a). Suppose that F,G are differentiable, jointly monotone mappings from
R"™ to R™ satisfying

i (17 + 1G] ) = o< (3219

l[<ll—o0

Suppose also that SOCCP is strictly feasible, i.e., there exists { € IR™ such that F((), G(¢) €
int (™). Then, the level set

L(y)={CeR"| fi.({) <}
s bounded for all v > 0.

Proof. Suppose there exists an unbounded sequence {¢*} C L(v) for some v > 0. Tt
can be seen that the sequence of the smaller spectral values of {F(¢*)} and {G(¢*)} are
bounded below. In fact, if not, it follows from Lemma 3.41(a) that ¢ (F(¢*), G(¢*)) — oo.
Thus, we have f_.(C*) — oo, which contradicts {¢*} C L(7). Therefore, the unbounded-
ness of {¢¥} and (3.218) yield that the sequence of the bigger spectral values of {F(¢*)}
or {G(¢*)} tends to infinity. Since F,G are jointly monotone, we have

(F(¢H) = F(Q), G(¢H) = G(O) =0,

which is equivalent to

(F(¢),G(O) + (F(C), G(¢M) < (F(C"), G(¢H) + (F(Q), G(C)). (3.219)
Then, by Lemma 3.41(b) and F(¢), G(¢) € int(K"), we obtain (F(¢*), G(O))+(F((), G(¢*)) —
oo, which together with (3.219) lead to (F(¢*), G(¢*)) — oo. Thus, f,..(¢¥) — oco. But,
this contradicts {¢*} C L(v). Hence, we proved that £(y) is bounded. [
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Proposition 3.51. Let fz be given as (3.197)-(3.198) with 1) satisfying the condition
of Lemma 3.41(a). Suppose that F,G are differentiable, jointly monotone mappings from
IR™ to IR™ satisfying

lim (HF(OH " HG(C)H) ~ .

lI€l—=o00

Suppose also that the SOCCP is strictly feasible, i.e., there exists ( € R"™ such that

F((),G(C) € int(K™). Then, the level set

L) ={CER" | fi(O) <7}
s bounded for all v > 0.

Proof. The arguments are similar to those in Proposition 3.50, so we omit the proof.
O

3.2 Complementarity Functions associated with Pos-
itive Semidefinite cone

The study of C-functions associated with the positive semidefinite cone has received
considerable attention in the literature. A foundational contribution is due to Tseng
[207], who investigated several important instances, including the gap function, the reg-
ularized gap function, the implicit Lagrangian function, the squared Fischer-Burmeister
(FB) function, and the LT-type functions. Further developments include the work of
Yamashita and Fukushima [220], who explored a variant of the LT-type C-function, and
Kanzow and Nagel [117], who examined FB-type variants tailored to the positive semidef-
inite cone. The differential properties of these functions were subsequently analyzed
by Zhang, Zhang, and Pang [231]. Notably, Sun and Sun [198] established the strong
semismoothness of the FB function, while Bonnans, Pang, and Cominetti [9] discussed
nonsingularity conditions for semidefinite programming based on FB-type C-functions.

In recent years, however, there has been limited advancement in the construction or
extension of C-functions specifically for the positive semidefinite cone. This is largely
because many developments within the broader framework of symmetric cones in the
past decade naturally encompass the positive semidefinite case as a special instance. In
what follows, we present a selection of representative C-functions within this setting.

Let S™ be the space of n x n real symmetric matrices endowed with the inner product
(X,)Y) =tr(XY), forany X,Y €S",

where “tr” denotes the trace, that is, the sum of the diagonal entries. Then, the SDCP
(standing for positive semidefinite complementarity problem) is to find a matrix X € S”
such that

G(X)eS}, F(X)es}, (GX),F(X)) =0, (3.220)
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where G, F' : S* — S" and S} represents the positive semidefinite cone. If G is the
identity mapping, then (3.220) reduces to

Xes', F(X)est, (X,F(X))=0. (3.221)

When F : S" — S" is affine, the SDCP (3.221) is called the positive semidefinite linear
complementarity problem (SDLCP). Moreover, when S" is restricted to the space of
diagonal matrices, the SDCP (3.221) reduces to an NCP again.

Proposition 3.52. Let the gap function ¢, :S"™ — IR be defined as

gap

Vo (X) = max {{F(X), X - Z)}. (3.222)

ZeST

Then, the function v, defined as in (3.222) is a C-function associated with positive
semidefinite cone. In other words,

b (X)=0 <= XeS' F(X)eS', (X, F(X))=0.

Proof. Please see Proposition 3.1 and Proposition 3.2 in [207]. O

Proposition 3.53. For any a € (0,00), define the regularized gap function v, :
S"xS" =+ IR as

wr_gap(X,Y)ZmaX{(X,Y—Z>—%HY—ZH2}. (3.223)

Zesn

Then, the function v, defined as in (3.223) is a differentiable C-function associated
with positive semidefinite cone. In other words,

Y (X,Y)=0 <<= Xef§, YeS}, (X)Y)=0.

Proof. Please see Lemma 4.1 and Proposition 4.1 in [207]. O

Proposition 3.54. For any o € (0,00), define the Implicit Lagrangian function i, :
S"x S" —- IR as

Uys (X, Y)
=  max {(X,Y —7Z1) — (Zs,Y) — % (IX = Zo|* + Y — ZlHQ)}

Zh,Z2€ST

= (V) o (X = aY ) P = X2 (Y = aX) = [VI7). (3:224)

Then, the function v, defined as in (3.224) is a differentiable C-function associated with
positive semidefinite cone. In other words,

b(X,Y)=0 <= XeS', YeS!, (X, Y)=0.
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Proof. Please see Lemma 5.1 and Proposition 5.1 in [207]. O

Proposition 3.55. Let the Fischer-Burmeister function ¢., : S™ x S* — S" be defined
as
b (X,Y)=VvX24+Y2 - (X +Y), VX Y eSS (3.225)

Its induced merit function ¢, : S" x S" = 1R s given by
1
Ve (X,Y) = S |0, (X, V)P (3.226)

Then, both function ¢, and ., are C-function associated with positive semidefinite
cone. In other words,

by (X,Y)=0 <= ¢.,(X,Y)=0 < XeS!, YeS§, (XY)=0.

Proof. The proof is first proposed by Tseng, please see Lemma 6.1 and Proposition 6.1
in [207]. There is an alternative proof by using the simple result that for X,Y € S%,
there holds

XY =0 <= XeY =0

where X ¢ Y = tr(XY) = 5 (XY + Y X). Please refer to [117, Proposition 2.2] for more

details. O

1
2

The directional derivatives, the B-subdifferential, and the generalized Jacobian of the
Fischer-Burmeister function ¢, , as defined in (3.225), were thoroughly characterized in
[231]. These results provide a foundational basis for analyzing the convergence behavior
of nonsmooth function approaches to solving the semidefinite complementarity problem
(SDCP) (3.220). Furthermore, the equivalent conditions for the nonsingularity of the
generalized Jacobian of ¢, were established in [9]. In addition, the associated merit
function 1, defined as in (3.226), was shown in [199] to be an LC? function, that is, it
is continuously differentiable and possesses a Lipschitz continuous gradient mapping.

Proposition 3.56. Let the LT-type function 1. : S" x S" = IR be defined by
P (XY) = 4o ((X, V) + 9(X,Y), (3.227)
where ¥y : IR — R, satisfies
bo(t) =0 <« <0, (3.228)
and 1 : S" x S" — IR, satisfies
P(X,Y)=0, (X,Y)<0 <= Xecf§, YeS}, (X;Y)=0. (3.229)

Then, the function 1, . defined as in (3.227)-(3.228) is a differentiable C-function asso-
ciated with positive semidefinite cone. In other words,

b (X, Y)=0 <= XeS!, YeS!, (X, Y)=0.
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Proof. Two examples of 1 satisfying (3.229) were considered in [207]:

POGY) = 5 (1024100 7) . 9 Y) = 5 16 (X V),

DO | —

Although both functions satisfy (3.229), they still have different features. For instance,
while both choices are differentiable, only the first one is convex. For detailed arguments,
please see Lemma 7.1, Lemma 7.2, and Proposition 5.1 in [207]. O

Proposition 3.57. Let the function 1, : S* x S® = IR be defined by
1 4 1
U (X,Y) = Jmax {0, (X, V) } + ol (X, V) (3.230)

Then, the function .., defined as in (3.230) is a differentiable C-function associated with
positive semidefinite cone. In other words,

. (X,)Y)=0 <= XeS}, YeS}, (X)Y)=0.

Proof. Please see Lemma 2.2, Lemma 2.3, Theorem 3.1, and Theorem 3.2 in [220]. O

It was noted in [220] that if the second term in (3.230) is replaced by 1 [, (X, Y)+|%,
the resulting function falls within the class of LT-type functions as defined in (3.227).
In the context of NCP, the function v, is known to exhibit convexity under certain
conditions [143]. However, this favorable property does not extend to the setting of the
positive semidefinite cone. From the authors’ perspective, the function v, is structurally
simpler than v, ., as it avoids the projection onto the cone of positive semidefinite matri-
ces, S"+. Moreover, [220] also investigated the boundedness of level sets and established
error bound results based on the merit function ¢,,.

Proposition 3.58. Let the function ¢, : S" x S — S" be defined as
O (XY) =X — (X =Y. (3.231)
Then, the function ¢, defined as in (3.231) satisfies
Hr(X,Y)=0 <<= Xef8}, YeS], XY=0

Moreover, if we define ¢7 : S" X S" — S" as

oL (X,)Y)=/(X=Y)2+472 ] — (X +Y), 7>0. (3.232)
Then, the function ¢7 . defined as in (3.232) satisfies

g (X,Y)=0 <= X»>0, Y=0O, XY=rI
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Proof. The function ¢7_ is a smmoothed NR function, which is also called Chen-Harker-
Kanzow-Smale smoothing function in the literature. It is defined by observing

¢(a,b) =2min{a,b} = (a+b) — |a — b = (a+b) —\/(a — D)2
Please see Proposition 2.3 and Proposition 2.4 in [117] for the proof. [

As noted in Section 3.1, the second-order cone complementarity problem (SOCCP)
can be reformulated as a semidefinite complementarity problem (SDCP) by observing
that, for any x = (z1,75) € IR x IR"™!, the condition # € K™ holds if and only if

R
To X1l

is positive semidefinite (see also [78, p. 437] and [190]). However, this reformulation comes
at the cost of a dimensional increase from n to n(n+1)/2, and it remains unclear whether
this increase can be efficiently alleviated by exploiting the special “arrow” structure of L,.
For this reason, it remains meaningful, particularly from the standpoint of applications,
to study C-functions tailored separately to the second-order cone and the cone of positive
semidefinite matrices S7}.

3.3 Complementarity Functions associated with Sym-
metric Cone

It is natural to pursue the extension of the C-functions discussed in Chapter 2 and Section
3.1 to the broader setting of general symmetric cones. At first glance, such extensions
may appear straightforward, given the unifying framework provided by Euclidean Jordan
algebras, which encompass second-order cones, positive semidefinite cones, and symmet-
ric cones. However, the analytical challenges are often greater than expected, primarily
due to the lack of an explicit spectral decomposition formula in the general symmetric
cone setting. When an extension avoids reliance on spectral decomposition, the anal-
ysis is relatively tractable. In what follows, we begin with a few merit functions and
C-functions that are more amenable to such treatment.

Several researchers have contributed to the development of merit and C-functions
for symmetric cones. Notably, Liu, Zhang, and Wang [140] extended a class of merit
functions originally proposed in [120] to the symmetric cone complementarity problem
(SCCP) (3.234). Kong, Tuncel, and Xiu [127] studied the extension of the implicit
Lagrangian function introduced by Mangasarian and Solodov [147] to the symmetric
cone setting. In addition, Kong, Sun, and Xiu [126] proposed a regularized smoothing
method for solving the SCCP (3.234), based on the natural residual complementarity
function associated with symmetric cones.
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3.3.1 Existing C-functions associated with Symmetric Cone

Given a Euclidean Jordan algebra (V, o, (-, -)) where V is a finite dimensional vector space
over the real field IR endowed with the inner product (-,-) and “o” denotes the Jordan
product. Let K be a symmetric cone in V and G, F' : V — V be nonlinear transforma-
tions assumed to be continuously differentiable throughout this section. Consider the
symmetric cone complementarity problem (SCCP) of finding ¢ € V such that

GO ek, F( ek, (G()F())=0. (3.233)
If G is the identity mapping, then the SCCP (3.233) reduces to
(eK, F(Q)eK, (¢,F() =0, (3.234)

The model provides a simple, natural and unified framework for various existing comple-
mentarity problems such as the nonnegative orthant nonlinear complementarity problem
(NCP), the second-order cone complementarity problem (SOCCP), and the semidefinite
complementarity problem (SDCP). In addition, the model itself is closely related to the
KKT optimality conditions for the convex symmetric cone program (CSCP):

min g(x)
st {ap,x)=0b;, 1=1,2,...,m,
x €K,
where a; € V, b e Rfort=1,2,... m, and g : V — IR is a convex twice continuously

differentiable function. Therefore, the SCCP has wide applications in engineering, eco-
nomics, management science and other fields; see [5, 63, 141, 210] and references therein.

Recall the differentiable NCP function ¢,,, introduced in (2.11), originally proposed
by Mangasarian and Solodov. This function also serves as a merit function and is defined
as

1
Gys (@, b) = ab + %Oa —ab]®2 —a®+[b— aal? — b2), a> 1.
As in the SOC setting, see (3.8) and (3.9), there are two natural approaches to extend this
function to the framework of symmetric cones. In this context, for any a > 0 with v # 1,
we define the associated real-valued implicit Lagrangian function ¢, : R" x R" — R
as follows:

Uys(@,y) = (2,y) + % (I(z = ay) < IIP = llzlI* + 1y — oz) | = llyll?) . (3.235)

and the vector-valued implicit Lagrangian function, ¢,,, : IR" x IR — IR", by

1
bus (2, y) =20y + % [(z —ay)t — 2>+ (y — az)} — y?]. (3.236)
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Here, ]+ denotes the metric projection onto K and z* = z o x. The requirement of the
parameter o > 0 with o # 1 is due to the below observation in [127]. When o = 1, it is
noted that

1
bus(ry) = woyt g =yt =o'+ (y =) ~o)
1
= zoy+g[@—yi-2*+ (@ -]
1
— xoy+§[(x_y)2_x2_y2]
= 0.

Proposition 3.59 establishes that both the real-valued and vector-valued implicit La-
grangian functions qualify as C-functions associated with the symmetric cone. It also
outlines several of their key properties.

Proposition 3.59. Let 9, and ¢
Then, the following hold.

be defined as in (3.235) and (3.236), respectively.

MS

(a) Both ¢, and ¢, are C-functions associated with symmetric cone. In other words,

Yys(@y) =0 <= o, (r,y) =0 <<= 2zek, yek, (z,y) =0,

(b) Fora > 1, ¢, (x,y) >0, whereas ¢, (x,y) <0, for 0 < a < 1.
(c) Yys(x,y) = (e, bys(x,y)), where e is the identity element of V.
(d) ¢, is strongly semismooth.

(e) . is continuously differentiable with Vi), (z,y) = Vo, (z,y) e.

Proof. Part(a) uses the fact that (z — ay)y is the unique solution to the problem:
i ( )+ =lz — o
min (ay,z —x) + = ||z — z||*.
zell Y 2

Then, in terms of the so-called regularized gap function, the arguments proceed. Please
see [127, Theorem 3.2] and [127, Theorem 4.1] for details.

Parts (b)—(c) are derived from [127, Theorem 4.1], part (d) from [127, Theorem 3.4], and
part (e) from [127, Lemma 4.2]. [

Likewise, the vector-valued Fischer Burmeister function in the setting of symmetric
cone is defined by

S (2,y) = (2% + y)? = (2 +y), (3.237)

and the vector-valued natural residual function is

¢NR<x7y) =T = (.CL' - y)+, (3238)
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where (), denotes the metric projection on K. Here, 22 = z o , z'/? is a vector such
that (2'/2)? = z, and = + y means the usual componentwise addition of vectors. Note
that ¢, is already a C-function associated with symmetric cone due to Proposition 1.3.
Nonetheless, both ¢, and ¢, functions were shown to be C-functions in [85, Proposition
6].

Proposition 3.60. /85, Proposition 6] Let ¢, and ¢, be defined as in (3.237) and
(3.238), respectively. Then, both ¢, and ¢, are C-functions associated with symmetric
cone. In other words,

Opp(,9) =0 = o,y =0 <<= ze€k, yek, (z,y) =0,
Proof. Using the following equivalent properties [85, Proposition 6:

rek, yek, (r,y)=0
— ze€kK,yek, zoy=0
= r+y=(2"+y*)"*
= r=[r—yl

Then, the desired results follow. [

Proposition 3.61. [10, Theorem 3.1] Let ¢, and ¢, be defined as in (3.237) and
(3.238), respectively. Then, there holds

(2= V2) [|9an (. 9| < 165 (@, 9| < (24 V2) [|$3n (2. 9)]] -

Proof. The proof proceeds by considering various values of the rank r associated with

the Euclidean Jordan algebra. For detailed arguments, please refer to [10, Theorem 3.1].
OJ

The strong semismoothness of ¢, has already been established in [197], whereas
the corresponding property for ¢, remains an open question. In particular, Chang,
Chen, and Pan investigated this issue in [17] and demonstrated that ¢, is strongly
semismooth in the Euclidean Jordan algebras L™, S, H", and Q™. This constitutes
an almost complete resolution, with the sole exception being the algebra Q3, the space
of 3 x 3 Hermitian matrices over octonions, also known as the Albert algebra. The
inability to draw a definitive conclusion in this case arises from the non-associativity of
the octonion algebra @, which prevents representing its elements as real matrices. For
further details, the reader is referred to [17].

According to ¢, ¢, and 1, given as in (3.238), (3.237), and (3.235), respectively,
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there induce merit functions ¢, (¢), ¥, (C), and ¥,,4(¢) as below:

Yl = 16 (C PP, (3,230
UinlQ) = 5 10 (G FOIP,

Uus(Q) = 204G F(Q) + {I(=aF(Q) + Q)4 = IICIP?
+(—a¢ + FO)+ 2 = IF I} (3:240)

Proposition 3.62. Let ¢, and ¢, be defined as in (3.239) and (3.240), respectively.
For each a > 1, the following holds:

2(a = Dhyn (€) < 9y (€) < 2a(a = Dihy (€), VC V. (3.241)

Proof. For convenience, we denote

£(Ga) ==~ (aF(Q), (¢~ aF(Q))s — €)= 5 ¢ — aF(Q))s — ¢l

We point out that there is another expression for f(z, ) as given below, see [77, Theorem
3.1].

o) = max=(aF(Q) + 5~ Oy —¢)

yeK

= = (aF(©+ 3~ aF(@): - OC-aF©O) —¢) (242
> = (aF(Q) + 3¢~ FIQO) = 0, (¢~ FIQ: ~€).
Now, we compute

F(Ga) = ~{F(Q,(C~ aF(Q)s Q) = 5 ¢~ aF(Q)s ~ I

= (G F(O)+ = (¢~ aF(0), (¢~ aF(Q)s) — 5ol — aF () I — oI

= (G F(©O) + 5= (I~ aF Q)P = ICIP)
Likewise,
1
161 == (FIO) + 5((¢ = FIEs = (¢~ FIE+ =€)

and

af (¢ =) =~ (I(=a¢ + FQ)? = IFOI?).



3.3. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SYMMETRIC CONE315

Combining the above two equations, we obtain an identity for ()

1
o

belO) =20 (6.0~ af(6 ) ) (3.243)

To show the desired two inequalities, we proceed by two steps. The first step is to verify
the left-hand side of (3.241). To see this,

5O = 20 (2160 = af6 )
'

1

> 20| = (PO~ FIOL ~ O - 516 = )~ P

O (C = FQ) = ¢+ 3¢ = F@) =< | + 20 (1161 = st )

o —
2a

- 2 o0+ 20 (76D - afic. D)
— (@ D0al0) + 20 = (FIO). (€ = FIO) =€) = 516 = FIQ))+ ~¢IP
P TFO) = O+ 3¢~ 2@~ CIF]

Ly O

Vv
£}
|
=
5

Z

&

o
_|_
[\
5

where the first inequality follows from (3.242). Next, we verify the right-hand side of
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(3.241). To this end, we observe two things:

~f(Ge) = S 1)

= {F(O), (¢~ aF(O)s = ) — 5 (¢~ aF(C))s — I

HFQL (€= FQ)e =€ + 3¢~ PO~ P

a—1 1 1
- W@bNR(C) + %wNR<C) - %H(C - CYF(C)).,. - CHQ

+HF(Q), (€= F(O)+ = (€= aF(Q))+)
(o — 1)

a—1
= leNR(C) - 20 wNR(C) 1
~5 ¢ = aF(Q))+ — (¢~ F(O)+? + M= FQ))y — ¢I?
1

- - ; 1¢NR(<)
o I = DC = (€= FIQ)) + (¢~ aF(Q)s — (¢~ FO) P
(= Q) —C+ PO, (¢~ aF Q) — (C~ F(Q))

< (0

and

FGD) = af(G, )

= (F(O, (= FQ)e — )~ ¢~ F(Q)s — P

(€= ~F(Q)s —¢

2

HEQ, (= ~F(Q)s O+ 5

1

= max—{F(Q)+ 5(y— Oy — ) + amin(= F(Q) +

(y—=0),y—0)

N | —

< = (FIO+ 3¢~ FIOD = (= FO) —¢)
+(FO+5(C= PO = 0. (€= F(O)s =)

a—1

= —5 = FQ) =<

a—1

= T¢NR (g)
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The above two expressions together with the identity (3.243) yield

o —

I e (3}

= 2a(a— 1), (Q).

Thus, the proof is complete. [

Propositions 3.61 and 3.62 show that ,, ¥, and 9, exhibit similar growth be-
havior in the general symmetric cone setting. These functions can also be effectively used
to characterize the boundedness of level sets and to establish local error bounds for the

SCCPs.

Definition 3.1. For the residual function r(¢) = ||¢xe(( F ()|, the function r(C) is
said to be a local error bound if there exist constants ¢ > 0 and § > 0 such that for each

Ce{CeV]|d((,S) <4}, there holds

d(¢, 5) < er(C),
where S denote the solution set of the SCCP (3.234) and d(¢,S) = inf,es || — v

Lemma 3.42. Let ¢, be defined as in (3.237). Then, for any x,y € V,
1
(e, 9) 1 |* > 5 (I=2) P+ 1 (=9)+17) -
Proof. This is a special case of Lemma 3.51 when 7 =2. [

Lemma 3.43. Let ¢, be defined as in (3.238). Then, for any x,y € V, there is a
constant § > 0 such that

1P (2, ) II* >

(=241 + (=)< 1) -

o™

Proof. By applying Proposition 3.61 and Lemma 3.42, the desired result is obtained
immediately. [

Proposition 3.63. Consider the residual function r(¢) = ||pue (¢ F(Q)||. If F is an
RY -function, then the level set L(7y) :={C € V|r(¢) <~} is bounded for all v > 0.

Proof. Suppose there is an unbounded sequence {(;} C L(y) for some v > 0. If
limsupw((—C(x)+) = oo, then (through a subsequence) ||(—Cx)+|| — oo, by Lemma 3.43,
which implies that 7({;) — oco. This contradicts the boundness of £(y). A similar contra-
diction ensues if lim sup w((F(—¢x))+) = oo. Thus, for the specified unbounded sequence
{Cx} satisfying the condition in Definition 1.14, by Definition 1.14, we also obtain that
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W(Ppp (Cs F1(Ck))) — 00 With 7((k) = || (Cky F1(Ce)) ||, it is easy to see that () — oo.
This leads to a contradiction. Consequently, the level set L(7) := {( € V|r({) < v} is
bounded for all v > 0. O

Proposition 3.63 establishes that the residual function r(¢) possesses the bounded level
set property under the Ry-type condition. However, this condition alone is insufficient
for r(¢) to serve as a local error bound, even in the simpler case of the NCPs, which are
special cases of the SCCPs. An illustrative counterexample is provided in [19], showing
that r(z) fails to act as a local error bound for an Ry-type NCP. Specifically, consider
the mapping F : R — IR defined by F(¢) = (3. Tt is straightforward to verify that F
is an Rj-function and that the corresponding NCP has a bounded solution set S = 0.
Nonetheless, 7({) does not qualify as a local error bound. This raises a natural question:
under what additional condition can r(z) serve as a local error bound for the SCCPs?
The next proposition addresses this by providing a sufficient condition.

Proposition 3.64. Consider the residual function r(¢) = ||¢xs (¢, F(Q))]|. Suppose that
the solution set S of the SCCPs is nonempty and that ¢, is BD-reqular at all solutions
of the SCCPs. Then, r(C) is a local error bound if it has a local bounded level set.

Proof. Since r(¢) has a local bounded level set, there exists ¢ > 0 such that the level
set L(g) = {¢|r(¢) < e} is bounded. Thus, the set L(e) = {{|r({) < e} is compact.
Suppose that the conclusion is wrong. Then, there exists a sequence {(x} C L(g) such

that @)
TGk
m — 0 as l{? — Q.

Here dist((x, S) denotes the distance between (x and S. Therefore, 7({x) — 0 and it
follows from compactness of L£(¢) that there is a convergent subsequence. Without loss
of generality, let {(.} be a convergent sequence, and ¢ be its limit, that is, ¢, — ¢ € L(e).
Then, r(¢) = 0, which implies ¢ € S. It turns out that

(G) —0 as k— oo. (3.244)

16 — €l
From [197], we know that ¢ (¢, F/({)) is semismooth. By applying [171, Proposition 3]
and BD-regular property of ¢, (C, F'(¢)), there exist constants ¢ > 0 and 6 > 0 such
that 7(¢) > ¢||¢ — (|| for any ¢ with ||¢ — || < 6. This contradicts (3.244). Consequently,
the residual function r({) is a local error bound for the SCCPs. [

Results analogous to Proposition 3.64 can also be established for the other two merit
functions. In light of Propositions 3.61 and 3.62, we may conclude that both ., and
s also serve as local error bounds for the SCCPs.

We now turn to the derivation of a global error bound for SCCPs by leveraging an
Ry-type condition together with a BD-regularity condition. To this end, we introduce
the following definition and a technical lemma.
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Definition 3.2. For the residual function r(¢) = ||¢xs(C F(Q))|, the function r(C) is
said to be a global error bound if there exist constant ¢ > 0 such that for each ( €'V,

d(¢, S) < er(Q),

where S denote the solution set of the SCCP (3.234) and d(¢,S) = infyes [|C —y]|.

Lemma 3.44. Let {(x} be any sequence such that ||(x|| — oo. If F is an R§-function,
then

Proof. Suppose that the result is false. There exists a subsequence (,, with ||(,, || = oo
such that

rlem) (3.245)
1G]
From Lemma 3.43, it follows that
(_an)Jr 0 and (_F(an))+ 0.
G| G|

This together with the definition of R§-function implies

onint & G F(6))

k=00 1G]

>0,
which contradicts the formula (3.245). Consequently, we have the desired result. [

Proposition 3.65. Suppose that F' is an R-function and that ¢, s BD-reqular at all
solutions of SCCPs. Then, there exists a k > 0 such that for any ( € V

dist(¢, 5) < r7(C),
where S is the solution set of SCCPs, dist((,S) denotes the distance between ¢ and S.

Proof. By the definition of R§-function, Proposition 3.63 and Proposition 3.64, we claim
that r(x) is a local error bound so there exist ¢ > 0 and § > 0 such that

r(() <o = d((S) <er(Q)

Suppose r(¢) does not have the global error bound property. Then, there exists (i such
that for any fixed ¢ € S,

1¢ — ¢l > dist(Ce, S) > kr(Ce)
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for all k. Clearly, the inequality r({x) < 0 cannot hold for infinitely many k’s, else
kr(Ck) < d(C, S) < cr(¢x) implies that k& < ¢ for infinitely many &’s. Therefore, r(¢;) > §
for all large k. Now,

1¢ = ¢l = d(Ck, S) = kr(Ce) = ko

for infinitely many &’s. This implies that ||(x|| — co. Now divide the inequality and take
the limit £ — oo, we have

T ek 1 [T RACT B
koo Gl T ke |Gl

where the last implication holds because F'is an Rj-function and Lemma 3.44. This
clearly is a contradiction. [

Proposition 3.66. Under the same conditions as in Proposition 3.65, both the merit
function 1., (C) and the implicit Lagrangian function v, (C) are global error bounds for

SCCPs.

When F : V — V is a linear mapping of the form F'(¢) = L(¢) + g with ¢ € V, and
the linear operator L possesses the Ry-property, then the residual function r(¢) not only
serves as a local error bound but can, in fact, be strengthened to a global error bound
for the SCLCPs, as shown in the result below.

Proposition 3.67. Suppose that r(C) is a local error bound for SCLCPs and the linear
transformation L has Ry-property. Then, there exists k > 0 such that dist((,S) < kr(()
for every ¢ € V.

Proof. Suppose that the conclusion is false. Then, for any integer £ > 0, there exists an
Cx € IR™ such that dist((x, S) > k(). Let 2({x) denote the closest solution of SCLCPs
to (k. Choosing a fixed solution (y € S, we have

16k = Coll = 1[Gk = (i)l = dist(Cr, §) > k7 (Cr)- (3.246)

Since 7(¢) is a local error bound, it implies that there exist some integer K > 0 and § > 0
such that for all & > K, r({;) > d. If not, then for every integer K > 0 and any § > 0,
there exist some k > K such that r((;) < . By property of local error bound of r(¢),
we have

0
EHQ@ — 2(G)ll > 67r(Ck) = 16k — 2(G)I-

Thus, we obtain % > 1. As k goes to infinity, this leads to a contradiction. Consequently,
r(zy) > . This together with (3.246) implies that ||(x — Col| > ||k — 2(x)|| > k6 which
says that ||(x|| = oo as k& — oo. Now, we consider the sequence {Hg—f”} There exist a

subsequence {(, } such that
Gk
lim —— = (.
=00 ||<k1
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Hence, it follows from (3.246) that

10 ||<kz

i=oo || G, |

. C; ( Ck, C; q )
= limk; ||—— — LN Ji. LB

imoo || [| Gk, [e® fe® Ck:l /

= lim KlIC— (¢~ L)

This implies that || — (¢ — L({))+|| = 0, which shows that ¢ is a nonzero solution of
SCLCPs with ¢ € V. It contradicts the Ry-property of L. Then, the proof is complete.
O

It is worth noting an important point: if the Ry-property of the linear transformation
L is replaced with the weaker condition of monotonicity, the conclusion of Proposition
3.67 may no longer hold. This limitation can be illustrated through the following example,
which employs the implicit Lagrangian function .

Example 3.2. Let L : IR? — IR? be defined as
1 5
L:—[_‘/i f] and q:—[O]
V2 V2
It is easy to prove that the symmetric cone is IRZ and the corresponding SCLCP has a
T
unique solution z* = (0,0)7. Choosing (, = <\%, \%) , k>0 gives F(Cx) = L({x)+q =
(2,0)T. Then, for any k > 2v2a with a > 1, we have

N TR OB
= 4(a?-1).

However, dist((x, S) = |G|l = k. This implies dist((x, S) > 1,,s(Ck) as k — oo, which
explains that 1,,,(C) cannot serve as global error bound for the SCLCPs.

Building on Proposition 3.60, Kum and Lim further demonstrated that their penalized
functions remain C-functions associated with the symmetric cone; see [132, Theorem 3.4
and Theorem 3.6].

Proposition 3.68. For A € (0,1), we define
0 (2,y) = Ay (2, ) + (1 = N)(24 0 yy), (3.247)

and
¢i\m(x7 y) = AquR(x?y) + (1 - /\)(JI+ © y+>‘ (3248)

Then, ¢§B and ¢§R are C-functions associated with symmetric cone.
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Proof. The results follow directly from the application of the Lowner-Heinz inequality
and Proposition 3.60. For detailed arguments, see Theorems 3.4 and 3.6 in [132]. O

Following this direction, we consider the extension of the one-parameter class of func-
tions originally proposed by Kanzow and Kleinmichel [116], along with a corresponding
class of regularized functions. Specifically, we define the one-parameter family of vector-
valued functions ¢, : VX V — V as follows:

O (x,y) = (x2 +y*+ (1 —2)(xo y))l/2 —(z+y), (3.249)

where 7 € (0,4) is an arbitrary but fixed parameter. Consequently, its squared norm
yields a merit function associated with IC

1
¢T<x7y) = QHQST(:an)HQv (3250)
where || - || is the norm induced by (-, -), and the SCCP can be reformulated as

min f,(C) = ¥,(G(O), F(Q)). (3.251)

Cev

When 7 = 2, the function ¢, reduces to the vector-valued FB function given in (3.237),
while in the limit as 7 — 0, it becomes a scalar multiple of the vector-valued natural
residual function defined in (3.238). In this sense, the one-parameter family of vector-
valued functions ¢, unifies two widely used C-functions associated with the symmetric
cone K. We shall now prove that for any 7 € (0,4), both ¢, and its corresponding merit
function v, are C-functions associated with K. To see this, we use the definition of the
Jordan product to derive the identity

5 5 r—2\? T4—7) ,
iy +(r=2)(roy) = (x+ S

2
— 4 —
= (y—I—T 5 29&) —I—¥az2 ek (3.252)

for any x,y € V. This confirms that the function ¢, is well-defined. These functions ¢,
and v, were previously extended to the SOC setting in Section 3.1; see (3.64) and (3.63).
Although the results below resemble those in the SOC context, the analysis here differs
significantly: rather than relying on direct computations, it is grounded in the structure
of Euclidean Jordan algebras and their associated properties.

Proposition 3.69. For any x,y € V and 7 € (0,4), let ¢, and ¥, be given by (3.249)
and (3.250), respectively. Then, ¢, and 1, are C-functions associated with the symmetric
cone. In other words,

Ur(z,y) =0 <= ¢ (2,y)=0 <<= =zek,yek, (v,y) =0,
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Proof. The first equivalence is clear by the definition of 1., and we only need to prove
the second equivalence. Suppose that ¢, (x,y) = 0. Then,

[ +y* + (T = 2)(z o y)] Vo (x +v). (3.253)
Squaring the two sides of (3.253) yields
2y’ + (= 2)(woy) =2’ +y’ + 2z oy),

which implies x oy = 0 since 7 € (0,4). Substituting x oy = 0 into (3.253), we have

/2

r= (P +¢)P—y and y= (% +¢°) x.

Since 22 + y? € K, 22 € K and y* € K, from [85, Proposition 8] or [138, Corollary 9] it
follows that x,y € K. Consequently, the necessity holds. For the other direction, suppose
x,y € K and x oy = 0. Then, (z +y)*> = 22 + y?. This, together with x o y = 0, implies

1/2

(22 + 9y + (1= 2)(xoy)] " = (x+y) =0.

Consequently, the sufficiency follows. The proof is thus complete. [

Lemma 3.45. For any z,y € V, let u(z,y) := (x? +y*)/2. Then, the function u(x,y) is
continuously differentiable at any point (z,y) such that x? + y* € int(K). Furthermore,

Vou(z,y) = L(2) L (u(z,y) and V,u(z,y) = L(y)L (u(z,y)). (3.254)

Proof. The first part is due to Theorem 1.4, and hence it remains to derive the formulas
in (3.254). From the definition of u(z,y), it follows that

u (z,y) =2* +4y*, Var,ycV. (3.255)

By the formula (1.20), it is easy to verify that V,(z?) = 2£(z). Differentiating on both
sides of (3.255) with respect to = then yields that

2V, u(z, y) L(u(z,y)) = 2L(x).
This implies that V,u(z,y) = L(z)L (u(x,y)) since, by u(x,y) € int(K), L(u(x,y)) is
positive definite on V. Similarly, we have that V,u(z,y) = L(y) L (u(z,y)). O

To present another lemma, we first introduce some related notations. For any 0 #
z € K and z ¢ int(K), suppose that » has the spectral decomposition z = Y7, A;j(2)¢j,
where {c1,¢o,- -+, ¢} is a Jordan frame and Ay (z), - - - , A\, (2) are the eigenvalues arranged
in the decreasing order A\i(z) > Aao(2) > -+ > A\.(2) = 0. Define the index

* ::min{j|/\j(z):(), j=1,2,-- ,r}
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and let
it-1

cy = E .

=1
Clearly, j* and c¢; are well-defined since 0 # z € K and z ¢ int(K). Since ¢, is an
idempotent and c¢; # 0 (otherwise z = 0), V can be decomposed as the orthogonal direct
sum of the subspaces V(cy,1), V(cs, 3) and V(cys,0). In the sequel, we write Py(cy),
P%(CJ) and Py(cy) as the orthogonal projection onto V(cs,1), V(cy,3) and V(cy,0),
respectively. From [140], we know that £(z) is positive definite on V(c;, 1) and is a one-
to-one mapping from V(cs,1) to V(cs,1). This means that £(z) an inverse £L7!(z) on
V(ey, 1), ie., for any u € V(cz,1), L7(2)u is the unique v € V(cy, 1) such that zov = wu.

Lemma 3.46. For any x,y €V, let z : V XV =V be the mapping defined as
z=z(z,y) = [+ 9>+ (1 = 2)(zoy)] v (3.256)

If (z,y) # (0,0) such that z(z,y) ¢ int(K), then the following results hold:

(a) The elements z, y, v+ vy, x + TT_2y and y + TT_Qx belong to the subspace V(cy,1).

(b) For any h € V such that 2*(z,y)+h € K, let w = w(z,y) = [2*(x,y)+h]/2—2(2,y).
Then, Py(cs)w = 5L (2(,y))[Pi(cs)h] + o([|R]]).

Proof. From identity (3.252) and the definition of z, it is evident that z(z,y) € K for
all z,y € V. Therefore, by applying arguments similar to those in [140, Lemma 11], the
desired result follows. [

Proposition 3.70. The function v, defined by (3.250) is differentiable everywhere on
V x V. Furthermore, V,1.(0,0) = V,.(0,0) =0, and if (z,y) # (0,0), then

T—2
2
T—2
2

Vo) = Lo+ T3 00) 6 ele) - 2 oo

V(2 y) = {.c(w x>.c*1(z(x,y)) —I] 6r (2, ), (3.257)

where z(x,y) is given by (3.256).

Proof. We prove the conclusion by the following three cases.

Case (1): (z,y) = (0,0). For any u,v € V, suppose that u® + v? + (7 — 2)(u o v) has the
spectrum decomposition u? +v* + (1 —2)(uov) = 377, p;d;, where {dy,dy, ..., d,} is
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the corresponding Jordan frame. Then, for j = 1,2,...,r, we have

1 r
Mj:W<Zj:1/~Ljdj,dj> = (v’ +0"+ (7 = 2)(uow),d;)
15

_ <<u+T;2v>2+$v2,dj>
< <<u+T;20)2+$v2,6>

= Jull® + (r = 2)(u, 0) + |||
< (#/2)(lull® + llv]*). (3.258)

where the second equality is by [|d;|| = 1, the first inequality is due to e = >_"_, d; and
d; € K for j =1,2,...,r, and the last inequality is due to

1
(wy) < Sl +lwl?) and - [lz +yl* < 2(]ll* + y]*)- (3.259)
Therefore, we have

¥r(u,v) = ¢-(0,0) = %HW + 02+ (1 = 2)(wov)]'? — (u+ v)H2

= LS vm - o)
HZ;:1\/N_jdj

> il P+ 2(]ful® + Jlo]?)

j=1

1
(37 +2) (b + 1ol?).
where the first two inequalities are due to (3.259), and the last one is from (3.258). This
shows that v, is differentiable at (0,0) with V,¢,(0,0) = V,4,(0,0) = 0.

Case (2): z(z,y) € int(K). Since ¢, (x,y) = z(z,y) — (r + y), we have from Theorem 1.4
that ¢, is continuously differentiable under this case. Notice that

2
+ [lu+|?

IN

IN

IN

1
wr(iﬂ, Z/) = 5 <€7 ¢»2r($a y)> )
and hence the function 1, is continuously differentiable. Applying the chain rule yields

V:I:wT(xa y) = vx¢7(x7 y)£(¢7(l’, y))e = vx¢7(x7 y)¢7-($, y) (3260)
On the other hand, from (3.252) it follows that

o) = [(e+ T52) + ] ey



326 CHAPTER 3. GENERAL COMPLEMENTARITY FUNCTIONS

and therefore using the formulas in (3.254) gives

Vabelw,y) = £z + 0 2) £ ) - T

This, together with (3.260), immediately implies

Ve = [€ (o T2 £ ete ) - 7] orte

For symmetry of x and y in ¥, (x,y), we also have
_ Ly ]
Vo-(z,y) = |L ( :L‘) L (2(x,y)) — T| (7, y).

Case (3): (z,y) # (0,0) and z(x,y) ¢ int(K). For any u,v € V, define

2:=2Fou+2jov+ul+v:+(r—2uow
Wlthx—:c—i——y and y = y—i—?x. It is not difficult to verify that

Px,y)+2 = ((x+U)+72;2(y+v)> +T(44_T)(y+v)2

2(x+u,y+0) €K,

Let "
w(may) = (ZQ(Ivy)—'_é) _Z(x7y>‘
From the definitions of v, and z(z,y), it then follows that

¢T(96+u y+v) —¢r(2,9)
- [H (z,y) + 2]/* - (x+u—|—y+v)||2— 2(z,y) — (z+ )| (3.261)

1

= & e +lutoll] = (wy),z+uty+v)+ @ty = 2(z,y),utv)
= —(w(,y),z+y) +{z+y—z22y),utv)+ (&) + (G v)+o((u,v)]).

By Lemma 3.46(a),  +y € V(cy,1). Thus, using Lemma 3.46(b), we have
<w(x,y),x+y> = <P1(Cj)w(l‘,y), x+y>

= (36 CE@aIRE)+ ollél). o +y)
= L {(Pile)t, £ (a(w 9w + 1) + ol[2])
= (Piles) [Foutgov], L7 (=(z.p)lx +9]) + ol (w,0)])
= (boutgor, P(e)E (oeu)w +y)]) + ol o))

_ <§;ou+g ov, L7 z(x,y))(x +y)> + o(||(w, v)]])

= ([£7' 2z, 9) (@ +y)] o &, u)
+ (L7 (@, y) (@ +y)] 0 g, v) + ol [[(u, v)]]) (3.262)
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where the first equality is since V = V(c;,1) & V(cy, 3) @ V(cy,0), the fifth one is due
to Pi(c;) = P;(cs), and the sixth is from the fact that £7(z(x,y))(x + y) € V(cy, 1).
Combining (3.261) with (3.262), we obtain that

Ve (T +u,y +v) — e (z,9)
_ <g; taty—z(my) - [L () (@ +1)] 0 2, u>

g+ a4y —a(e,y) = (L@ ) +9)] 0g ) +ollw0)]).

This implies that the function v, is differentiable at (x,y), and furthermore,

1

=>

o

[E—

Votbr(2,y) = 2+x+y—z2(z,y) — [L7(2(z,9)(z +y)
Vye(z,y) = g4+a+y—2(z,y) — [L7(2(2,9)(x +y)

)

o}

§>

[R—

Notice that
t4z+y—z@y) — [L7z(z,y)(x+y)] ok

= &= ¢:(v,y) = [L7(2(z,y)) (@ +y)] o (+TQ?/)

»)
= o+ T2 ot — £ (o+ 155 [ Cla)e+ o)

= 2o+ 75 2) £ clealeto ) — - 5] - dnlo)
—9
where the third equality is due to £7'(2(z,y))z(z,y) = e and the fact that
e = (e ) e =2 (o4 T55) £t

Therefore,

Vs (z,y) = {E (fr +

Similarly, we also have

VU (2,y) = {.c < — 2x> LV () — z} 6. (2.1).

This shows that the conclusion holds under this case. The proof is thus complete. [

It should be pointed out that the formula (3.257) is well-defined even if z(z,y) ¢
int(fC) since in this case ¢.(z,y) € V(cy,1) by Lemma 3.46(a). When V is specified as
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the Lorentz algebra (IR", o, (-,-)rn), the formula reduces to the one of [37, Proposition
3.2]; whereas when V is specified as (S", o, (-, -)sn) and 7 = 2, the formula is same as the
one in [207, Lemma 6.3(b)] by noting that z(z,y) = (2 + y*)*/? and

Vatr(z,y) = L@)L(2(2,))bes (2,9) — ben(@,y)
= 20 [L7N(2(2,Y))bes (2, 9)] — L(2(2,9)) L7 (2(2,y)) b (2, 9)
= @0 [L7N(2(2,Y))bps (2,9)] — 2(z,y) o [L7 (2(2,y
= [L7(z(2,y)ben (@, y)] 0 (x — 2(,)).
Thus, the formula (3.257) provides a unified framework for the SOCCP and the SDCP
settings.

~—
~—
-
!
@
—~
8
<
=

From Proposition 3.70, we immediately derive several properties of the gradient Vi, ,
which were previously established in the contexts of the NCPs [116] and the SOCCPs
[37], respectively.

Proposition 3.71. Let 1, be given as in (3.250). Then, for any (x,y) € VXV, we have
(a) (z, Voo (z,)) + (y, Vytr(z,9)) = [|6-(2,9)]1%.
(b) Vi, (x,y) =0 if and only if x € K, y € K, (z,y) =0.
Proof. (a) If (z,y) = (0,0), the result is clear. Otherwise, from (3.257) it follows that
(2, Vatbr (2, ) + (v, Vyor (2, y))
= (o (o T520) o1 Cla el ) = (o, (o,0)

(o (04 520 ) o 167 et )0 o] ) = 20

= (oo (24 7520) L7 Cla)on(on) ) - (o 6r(o)

#(vo (vt 75 00) L el )6 0) ) — (2610

= (£%(2,9), L7 (2(2,y)) - (2,9)) — (& + v, d: (2, 1))
= (2(z,9),0-(z,)) — (z +y,¢:(2,9))
= o (= »)I7,
where the next to last equality is by 2% = £(z)z and the symmetry of £(z).
(b) The proof is direct by part(a), Proposition 3.69 and Proposition 3.70. [
Next, we investigate the continuity of the gradients V, i, (x,y) and V¢, (z,y). To
this end, for any € > 0, we define the mapping z. : VXV — V by

ze =z (z,y) = (P + >+ (1= 2)(woy) + 86)1/2 : (3.263)



3.3. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SYMMETRIC CONE329

From (3.252), clearly, z.(x,y) € int(K) for any x,y € V, and hence the operator
L(z:(x,y)) is positive definite on V. Since the spectral function induced by ¢(t) =
Vt (t > 0) is continuous, therefore from Theorem 1.4, it follows that z.(z,y) — z(z,y)
as ¢ — 07 for any (x,y) € V x V, where z(z,y) is given by (3.256). This means
that £(z.(x,y)) — L(z(x,y)) as ¢ — 07. In what follows, we prove that the gradients
V.- (x,y) and V. (z,y) are Lipschitz continuous by arguing the Lipschitz continuity
of z.(x,y) and the mapping

T—2

H.(z,y) := £(Jc + y) L7z (2,9))(x + ). (3.264)

To establish the Lipschitz continuity of z.(x,y), we need the following crucial lemma.

Lemma 3.47. For any (z,y) € VXV and ¢ > 0, let z.(z,y) be defined as in (3.263).
Then the function z.(x,y) is continuously differentiable everywhere with

Venlny) = £(e+ 75797 ule),

Vyze(x,y) = E(y + I 2m)£_1(z€(x,y)). (3.265)

Furthermore, there exists a constant C > 0, independent of x,y and €, 7, such that
[Veze(z,y)| <C and  [|Vyz(z, )] < C.

Proof. The first part follows from Lemma 3.45 and the following fact that

9 \2 4 1/2
z.(x,y) = {<x+TTy> +¥y2+56}

T—2\2 T1(d-71) , 1/2
= <y+ 5 .r) —|—Ta: +ce .

We next prove that the operator V,z.(z,y) is bounded for any z,y € V and € > 0. Let
{uy,uy, ..., u,} be an orthonormal basis of V. For any x,y € V, let L(2?), L(x + T—fy),
L(z.) and L((x + TT_Qy)z) be the corresponding matrix representation of the operators
L(2?), L(x + 52y), L(z) and L((x + T52y)?) with respect to the basis {uy, ug, ..., u,}
Then, by the formula (3.265), it suffices to prove that the matrix L(z + 52y) L™ (2.) is
bounded for any z,y € V and € > 0. The verifications are given as below.

Suppose that z = 2(z,y) has the spectral decomposition z = %, A;j(2)c;, where A;(2) >
Aa(z) > -+ > A(2) > 0 are the eigenvalue of z and {cy,co, ..., ¢ .} is the corresponding
Jordan frame. From Theorem 1.5, £(z) has the spectral decomposition

L) =Y MEE + X 5 () + M) ()

1<5<i<r
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with the spectrum o(L£(z)) consisting of all distinct numbers in {1(X\;(2) + \i(2)) | 4,1 =
1,2,...,r}, and £(2?%) has the spectral decomposition

L) =Y R+ Y 5 02+ ) Cil2) (3.260)

1<j<i<r

with o(£(2?)) consisting of all distinct numbers in {3 (A3(2) + Af(2)) 4,1 =1,2,...,7}.
By the definition of z.(z,y), it is easy to verify that 2. = Y77 | /Aj(z) +¢ ¢;, and

consequently the symmetric operator £(z.) has the spectral decomposition

L(z) :Zi:,/xg(z)ﬁcﬁ(zw 3 %<\/)\j2-(z)+e+\/A%(z)+5>cjl(z) (3.267)

1<j<I<r

with the spectrum o(L£(z.)) consisting of all distinct numbers in

{% (\/A?<Z>+8+\/A?(z)+e> }j,l:1,2,...,7~}.

We first prove that the matrix L(z + 52y) (L(2?) + e])_1/2 is bounded for any z,y € V
and € > 0. For this purpose, let P be an n X n orthogonal matrix such that

PL(2*)P" = diag (A(L(z%)), \a(L(z%)), -+, A(L(2%))) (3.268)

where A\ (L(z%)) > Ao(L(2%)) - -+ > A\ (L(2%)) > 0 are the eigenvalues of L(z?). Then, it
is not hard to verify that for any € > 0,

P (L(z*) + 6[)_1/2 PT = diag <

| 1
IMEE) 1 VML) + e) '

Denote U := PL (x + TT_Qy) PT. We can compute that

L(x + TT_2y> (L(z2) + s])_l/z

= Plediag (

1 1
e P
NIE) +e VAT e )
Ui
ML) +

= PT P. (3.269)

1<i<n
1<k<n

Since L(z%) = L ((z+ F2y)?) + L (#gﬂ) and L(y?) is positive semidefinite, we
obtain

L(z*) - L ((x + TT_?‘W) =0,
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In addition, by Proposition 1.2, £[(z + 52y)?] — L(z + 52y)L(x + 52y) is positive
semidefinite, and hence we have

L((az -~ )2>—L(m G

The last two equations thus imply

-2 —2
L(z*) — L <x - 7_Ty> L (x + TTy) = 0. (3.270)
Now, for any given k € {1,2,...,n}, from (3.268) and (3.270), it follows that
M(L() = [PL(PT,,

-2 -2
> {PL(SU + TTy>L<:c + T y)PT]

B [ﬁﬂ e Z Ui
i=1

where the inequality is by the fact that the diagonal entries of a positive semidefinite

matrix are nonnegative. This immediately yields

Me(L(22)) 4>/, U2 >Uy YVi=12...,n

Combining with equation (3.269), there exists a constant C; > 0 such that

-2 _
HL <x + %y) (L(z*) +€I) <oy v z,y € Vand € > 0. (3.271)

Next, we prove that the matrix (L(z2) +el)"/* L=(z.) is bounded for any z,y € V and
e > 0. Let Cj(z) for 1 < j,1 < r be the matrix representation of C;;(z) with respect to
the basis {uy,us, ..., u,}. From equations (3.266)—(3.267), it then follows that

(L(22) + eI)V? — Z e re e+ Y %\/2@5(2) FO(2) + 26) Cl2),

1<j<I<r

g 1
; \/Ai(2) +e Curle) + 1§j§gr ( )\?(Z) +e4+A(z) +e ) /2 Cal2):

Using the last two equalities and (1.21), it is easy to compute

\2(z /\lzz €
(L(=2) + 1)L Zcﬂ + ¥ VA6 + ) +29

Cii(2)(3.272)
1<i<i<r 1/ A5(2) e+ Af(2) +¢€
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Notice that the projection matrix Cj;(z) with 1 < j.1 < r is bounded for any z,y € V,
and for any x,y € V and ¢ > 0

\/A?(Z)+€+\/A?(Z)+€2 \/A§(2)+A%(z)+25 V1<jil<r.

Hence, from (3.272) we can deduce that (L(z%)+¢eI)?L~1(z.) is bounded for any x,y € V
and € > 0, i.e., there exists a positive constant Cy such that

1/2

H(L(z2) +el)'? L (z)

<(Cy Vz,yeVande>0. (3.273)

Combining (3.273) and (3.271), we have that the matrix L (2 + Z52y) L™ (z.) is bounded
for any x,y € V and € > 0, because

L (a;+ a 3 2y) L7Y(z)

— |z (x +— 2y) (LG +eD) ™2 () +e1) | L7 (20)
_ [L <x + TZ;zy) (L(z%) + 51)1/2} [(L(zQ) +en)'? L_l(za)} H

-2 _
< L(x—l—T2 y) (L(z*) +€l) 12 12

(22 +en)”
< 0y Vaz,yeVande>0.

L71<Zs)

Consequently, there exists a constant C' > 0 such that |V, z.(z,y)|| < C for any x,y € V
and € > 0. For the symmetry, ||V, z.(z,y)|| < C also holds for any z,y € V and € > 0.
From the discussions above, we see that the constant C' is also independent of 7.  [J

Invoking Lemma 3.47 and the Mean Value Theorem, we establish global Lipschitz
continuity of the mapping z.(z,y), as stated in the following proposition.

Proposition 3.72. For any x,y € V and ¢ > 0, let z.(z,y) be defined as in (3.263).
Then, the function z.(z,y) is globally Lipschitz continuous.



3.3. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SYMMETRIC CONE333

Proof. For any (z,y), (a,b) € V x V, by applying Mean-Value Theorem yields

[2e(z,y) — 2e(a, D) = |[ze(2,y) — 2ze(a,y)] + [2:(a, y) — z-(a, D)]|
/0 Vieze(a+t(z —a),y)(z — a)dt

+ /01 Vyz(a,b+tly —b))(y — b)dtH

< V3 / IVazela+ ta — a)y)] - |l — aljdt
v / IV, 2, b+ t(y — )] - lly — bl de

< VaC(|z — al + [ly — bl})

< 20)(z.y) — (@b,

where the last two inequalities are respectively by Lemma 3.47 and (3.259). This shows
that the function z.(x,y) is globally Lipschitz continuous. [

We now turn our attention to the Lipschitz continuity of the mapping H. defined in
(3.264). To this end, we show that the partial derivatives V,H.(z,y) and V,H.(z,y)
remain bounded for all x,y € V and € > 0. The computation of these derivatives relies
on the following lemma.

Lemma 3.48. For any x,y € V and e > 0, let h € V be such that 2*(x,y) + h € K and
write w := [22(z,y) + h)/? — z.(z,y). Then, w = 3L (z(z,y))h + o(||])).

Proof. From the definition of w, it immediately follows that
[+ z(2,y)]* = 22(2,y) + I,
which is equivalent to saying
w? + 2w o z.(x,y) =h (3.274)

or
h=2L(z(z,y))w + w’. (3.275)

We claim that, as ||h|| — 0, there must have ||w| — 0. Indeed, let ||h|| — 0, then we
obtain from (3.274) that w? + 2w o z.(z,y) = 0. Adding z?(x,y) to both sides gives

2
(0 + z(2,y))" = 22(,y).
This, by the fact that w + z.(z,y) € K and z.(z,y) € int(K), implies

w+ z:(2,y) = z(z,y),
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and hence w = 0. Since L(z-(z,y)) is invertible on V and ||w|| — 0 as ||k|| — 0, using
the implicit function theorem and equation (3.275) yields

.
we = 5L (= )+ ol ).
Thus, the proof is complete. [

Lemma 3.49. For any xz,y € V and € > 0, let H.(x,y) be given as in (3.264). Then,
H_.(z,y) is differentiable everywhere. Moreover, for any given u,v € V,

VoH.(vyu = [£7(s(a.y) (@ +y)] ou+L(w+ T—_2y> L7 (ze(,y))

2
{u — L7 (z(z,y)) (@ + y) 0 L7 (2 (w, y))ﬁ(:c 4+ ; 2y>u1 ,
Vo H(r g = o [ (el ) )] o0 £+ Ty £ ()

T—2

|:U — L7 (2(z,y)) (@ + y) o L7 (2 (2, y))ﬁ(y + :1:) v] (3.276)

Proof. For any z,y € V and any given u,v € V, let 2’ =z + TT_Qy, vy =y+ TT_% and
h:=21'ou+2y ov+u’+ v+ (1 —2uouw.
It is easy to verify that

2(@y)+h = (@+u)+y+o)P+ (T -2)[(x+u)o(y+v)] +ee
= 22z +u,y+v) € int(K).

Let

:|1/2

w = [Zz?(x?y)—i_h _Zs(xay)‘

Then,
2 1/2 .
w+ z(z,y) = [2Z(x,y) + h] 7" = z(z + u,y +v) € int(K).
Applying Lemma 3.48 then leads to
..
w= 2L aular ) + of ()], (3.277)
which implies that w — 0 as u — 0,v — 0 and w = O(||(u, v)||). Write
g:=L N (z(z,y)) (@ +y) and g+s:=L (z(z,y) Fw)(@+uty ). (3.278)
We next express s in terms of g, w, u,v and z.(x,y). By (3.278), it is clear that

L(z(z,y)g=2+y and L(z(r,y)+w)(g+s)=r+u+y+ov,
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which in turn implies
L(zo(z,y))s=u+v—wog—wos,

and
s=L Y z(z,y)(u+v—wog—wos). (3.279)

Using (3.277) and (3.279), we have that ||s|| — 0 as ||(u,v)|| — 0. This, together with
(3.277), means that w o s = o||w||) = o(||(u, v)||). Therefore,

L7 (22, ) (w o s) = of|| (u, v)]])

and
s = L7 (z(2,y))(u+v —wog)+o||(w,v)]).

Now, from the above discussions and the definition of H,, it follows that
Hs(m + u,y + U) - Hs(ma y)

- c<x+u+%2<y+v>) L (el y) 4 w)(x +ut g +v)

£ (o4 T52) £ e +)

= L(adut 240 ) g+ 9 - £ (e + T2y g
< 2 ) ( 2 )

-2 -2
= £<x+TTy>s+£(u+T2 v) (g+s)

T—2

= 2o+ T2 [ ot v - gow] + £ (w5

2v)9+o<u<u,v>u>
T—2

_ <x + 2 3 2y) L7 (22, y)) (u+v) — L (x + y> LY (2 (2,))
(L7 () (2 +y) o (L7 (2 (2, 9) L2 u+ L7 (2(,9)) L(Y )v)]

i ( ki %) £ (e ) (& + ) + o | (w, 0)]).

This means that H. is differentiable at the point (z,y). Also, the formulas of V,H.(x, y)u
and V,H.(z,y)v are exactly given by (3.276). The proof is then complete. [

Lemma 3.50. For any z,y € V and € > 0, let H.(x,y) be defined as in (3.264). Then,
for any given u,v € V, there exists a constant C' > 0 independent of x,y and €, 7 such
that

IVeH(z,y)ul < CrHul| and [V, H.(z,y)v]| < O vl
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Proof. By Lemma 3.47, there exists a constant C' > 0 independent of z, y, €, 7 such that

T —

HL(HTT_Qy),cl(zE(x,y))H <C and Hﬁ(y—l— Zx)ﬁl(zg(x,y))H <.

Hence, their adjoint operators £ (z.(z,y))L(z+ 52y) and L7 (2(z, y)) L(y + 52x) are
also bounded for any x,y € V and ¢ > 0, i.e.,

Hﬁ_l(za(a:,y))ﬁ(:z n TT_Qy) H <C and Hﬁ_l(za(x, y))£<y 4L S Q:c)

<o

Noting that

L7 (z(z,y) (z+y) = %[fl(zs(x,y)) {L’(m + TT_zy)e +[,<y 4L ; 2$)€:| ,

we also have

L7 (e (2, 9)) (2 +y)|| < 4CT7H (3.280)
Thus, by the formulas of V,H.(z,y)u and V,H.(x,y)v, we get the desired result. [

By applying Lemmas 3.49 and 3.50, and following the same reasoning as in the proof of
Proposition 3.72, we establish the global Lipschitz continuity of H.(z,y), as summarized
in Proposition 3.73. Moreover, the Lipschitz continuities of V1, and Vi, are also
shown in Proposition 3.74.

Proposition 3.73. For any z,y € V and ¢ > 0, let H.(z,y) be defined as in (3.264).
Then the function H.(x,y) is globally Lipschitz continuous with the Lipschitz constant
being Ct=1, where C' > 0 is independent of x,y and €, T.

Proposition 3.74. The function 1, has a Lipschitz continuous gradient with the Lips-
chitz constant being positive multiple of 1 + 771, i.e., there exists a constant C' > 0 such
that

IVathr (2,y) — Vatir(a,b)||
Hvy%(% y) - Vwa(a, b)”

VANVAN
Q
—
|
—
=
<
|
8
=

for any (z,y),(a,b) € Vx V, where C' is independent of (x,y), (a,b) and e,7. In other
words, ¥, is an LC* function.

Proof. For the symmetry, we only need to prove the first inequality. By (3.257), we
know

Vohr(2,y) = 20 + %y — z(z,y) — ﬁ(ﬂs + TT_2y>£‘1(2(w, y)(x+y).
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For any € > 0, let G, : V XV — V be the mapping defined by
T
Gel,y) =22 + 5y — z(x,y) — He(z,y).

Then, from Proposition 3.72 and Proposition 3.73, it follows that G.(z,y) is glob-
ally Lipschitz continuous with the Lipschitz constant being C(1 + 771), i.e., for all
(z,y),(a,b) € VXV,

1G-(2,y) — G=(a,b)|| < CA+7|(z,y) — (a,b)]. (3.281)

We next show that for any (z,y) € Vx V, G.(x,y) — V.. (x,y) as ¢ — 07. Indeed,
if (z,y) = (0,0), then H.(0,0) — 0 by (3.264) and (3.280), and so G.(0,0) — 0 =
V.1-(0,0). If (z,y) # (0,0), noting that z.(z,y) — z(z,y) as ¢ — 07, it suffices to
prove that

L7 (z(z,y))(x+y) — L7 (2(z,y)(z +y). (3.282)
If (x,y) # (0,0) such that z € int(K), then L£(z) is positive definite on V. If (x, y) # (0, 0)
such that z ¢ int(KC), then from Section 3 it follows that £(z) is positive definite on the
subspace V(cy,1). By the proof of [101, Lemma 4.1(ii)], £7!(z) is then continuous on V or
V(cs,1), which implies the result of (3.282). Thus, we show that G.(z,y) — V¢, (z,y)
ase — 07 for any (z,y) € VxV. Now taking ¢ — 07 in (3.281) and applying the relation
between G.(z,y) and V1, (x,y) shown as above, we get the desired result. [

Besides (3.251), we also consider a class of regularized functions for f, defined as

Fr(€) = $o(G() 0 F(C)) + - (G(C). F(Q)), (3.283)
where ¢y : V — IR, is continuously differentiable and satisfies
o(u) =0 Yue —K and ho(u) > 5||(u)y] YueV (3.284)

for some constant 5 > 0. Using the properties of ¢y in (3.284), it is not hard to verify
that f, is a merit function for the SCCP (3.233). The class of functions will reduce to
the one studied in [140] if 7 = 2 and G degenerates into an identity transformation. As
below, we show that the class of merit functions provide a global error bound for the
solution of the SCCP under the condition that G and F' have the joint uniform Cartesian
P-property.

Lemma 3.51. For any x,y € V, let 1, be defined as in (3.250). Then, there holds

T

40r(2,9) > 2 ll0n (e )] I = 257 )l + o) 7]

Proof. The first inequality is due to Lemma 1.1(a) and the definition of 1,. We next
prove the second inequality. From (3.252) and Lemma 1.1(b), it follows that

22 +y° + (1 —2)(roy) v x—l—T—_Qy € K,
2

T—2

[:v2+y2+(7—2)(xoy)]1/2—<y+ {E> e K.
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Combining with Lemma 1.1(c), we then obtain

2

2H[(ag?+y2+(7—2):coy)1/2—:Jc—y}+
[0+ o) = (a4 52) - 2550
+H{<x2+y2+(7—2)(x0y))1/2— (y+T;2$) —4;7$L

TP + =T ()

2

2

Thus, the proof is complete. [

We now demonstrate that the regularized merit function ]?T furnishes a global error
bound for the solution of the SCCP, provided that the pair (G, F') satisfies the joint
uniform Cartesian P-property.

Proposition 3.75. Let ﬁ be defined as in (3.283)-(3.284). Suppose that G and F have
the joint uniform Cartesian P-property and the SCCP (3.233) has a solution, denoted by
(*. Then, there exists a constant k > 0 such that for any ( € V,

= CIF < 57 F0 + o= (F0) (3.255)

Proof. Since G and F' have the joint uniform Cartesian P-property, there exists a con-
stant p > 0 such that, for any ¢ € V, there is an index i € {1,2,...,m} such that

plC =1 < (GilQ) = Gi(¢), Fi(¢) — Fi(¢))
= (Gi(Q), Fi(Q)) + (Fi(C7), =Gi(Q)) + (= Fi(C), Gi(¢7))
< (Gi(Q), Fi(Q)) + ([=Gi(Ol+, Fi(¢7)) + ([=Fi(Q)]+, Gi(C))
< Amax|Gi(€) © F(O] + [[E(CII=Gi (O] 4[] + |G(CHIIT=E(O] ]
< max {1 |G 1F(C) I

X Amaxl(Gi(€) 0 F(Q)) ] + =Gl Q)L ll + N=F(Q) L]
max {1, | G(¢), | F(C)I}
x| IGi(Q) 0 BN + =G QL + = F()l- ]

IN

where the equality is since (G;(C*), Fi(¢*)) = 0, the second inequality is due to Lemma

1.1(b), and the third one follows from Proposition 2.1 of [204] and the Cauchy-Schwartz
P

max{1, [[G(C)I, [I1F(¢II}
Kl = CIIF < GO 0 FiQ+l + I=Gi Ol ll + N [=F (Ol

inequality. Setting k := we immediately obtain
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From the conditions given by (3.284), clearly, for any ¢ € {1,2,...,m}, we have
I[GA(¢) 0 FiQLll < 8700 (Gil) 0 Fi(Q)) < 871 Q).

In addition, applying Lemma 3.51, we achieve

=GOl + I=FQNl < V2(I=GQIN + I-F 1)

4 1/2
< \/ﬁ@/}r(G(OaF(O) /

4 - 1/2
< i ()"
< = F
Combining the last three inequalities immediately yields the desired result (3.285). O

For the NCP, Kanzow and Kleinmichel [116] established that the merit function f,
provides a global error bound when the mapping F' is a Lipschitz continuous uniform
Pfunction. In contrast, Proposition 3.75 reveals that the regularized merit function ﬁ
does not require the Lipschitz continuity of F'. This distinction arises because the former
relies on the global error bound property of ¢, along with the similar growth behavior
shared by 1, and v, whereas the regularized merit function ﬁ achieves the same goal
through the inclusion of the regularization term 1. When the SCCP (3.233) reduces to
the special case (3.234), that is,

ek, F(Q) ek, ((,F(C) =0,

Proposition 3.2 and Corollary 3.1 of [204] indicate that the assumption of the existence
of a solution x* can be omitted from Proposition 3.75, due to the fact that the uniform
Cartesian P-property implies the uniform Jordan P-property. Moreover, we note that for
the SCCP (3.234), a similar global error bound result was previously established in [140]
under the stronger assumption that F' possesses the uniform P*-property. This condition
can be more restrictive than the uniform Cartesian P-property in certain settings. For
instance, when F is an affine mapping of the form F({) = M({ + ¢, and V is the Lorentz
algebra with dim(V) > 5, Sun showed that F satisfies the uniform P*-property if and
only if M is positive definite. It is evident that the positive definiteness of M ensures

the Cartesian P-property of F', but the converse does not necessarily hold. For example,
for V.= V; x Vy x V3 with dim(V;) = dim(Vy) = 2 and dim(V3) = 1, let M be a
block diagonal matrix composed of [ (1) (1) } , [ _1 1 1 } and 1. It is easy to verify that
F({) = M(+q for any g € V has the Cartesian P-property, but M is not positive definite.

Now, we provide a condition to guarantee the boundedness of the level sets

L7 ={ceVIFQ) <},

for any v > 0. Specifically, we will prove that the following condition is sufficient.
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Assumption 3.1. For any sequence {¢*} C 'V such that
ICEIF = o0, II=G(CM]4]] < oo, [[=F(CM)]+]| < +oo, (3.286)

there holds that
max Amax [Gi(¢") o Fy(¢*)] — +oc. (3.287)

1<i<m

Proposition 3.76. If the mappings G and F satisfy Assumption 3.1, then the level sets
Eﬁ (v) of fr for all v > 0 are bounded.

Proof. Assume on the contrary that there is an unbounded sequence {¢*} C L (y) for

some v > 0. Then, f,(¢*) < ]/”;(Ck) < « for all k. By Lemma 3.51, G and F satisfy
(3.286). Hence, there is v € {1,...,m} such that Apax [G,(¢*) o F,(¢¥)] — +00. Noting
that

Amax [Go(CF) 0 Fu(CM)] < Amax [(Go(€*) 0 FL ()1 ] < [IGU(C*) 0 B (01 || < B (CH),

we have f,(C*) — +o0. This contradicts the fact that {¢*} C Lz(y). O

Assumption 3.1 is a relatively mild condition that nonetheless ensures the bound-
edness of the level sets of f, In fact, this assumption is satisfied by SCCPs involving
jointly monotone mappings with a strictly feasible point, as well as those possessing the
joint Cartesian Rgo-property. To substantiate this claim, we present the following tech-
nical lemma, which may be viewed as an extension of Lemma 3.8(b) to the context of
symmetric cones.

Lemma 3.52. Let {*} C V be any sequence satisfying ||*|| — +oo. If the sequence
{Amin(z%)} is bounded below, then ((z*),, %) — 400 for any & € int(K).

Proof. For every k, let 2% have the spectral decomposition % = > i Aj(@%)gF with

{qF,...,q"} being the corresponding Jordan frame. Let 2 have the spectral decomposition
x =735 Aj(2)e; with {e1,..., ¢} being the corresponding Jordan frame. Without loss
of generality, suppose that A, (z%) = Apax(z¥), where 1 < I < r. Then, for every k,

((@")4,2) = <Z(Aj(xk))+q§“7 Z&(fﬂ)cj>

Jj=1

> N (@) in (@) (as S5y )
= )\max((xk)+))‘min(‘%)<(h]§€76)? (3288)

where the inequality holds since qf, c; € K and \;((z%)1), \j(#) > 0forall j =1,2,...,7.
Notice that ||(z*)_|| < +oc as k — oo since {Apin(2¥)} is bounded below. Using the fact
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that [|2*]|? = ||(z*)4[]? + ||(«*)_||* and ||2*|| — 400, we then have that ||(z*), || — +oc.
This, together with (z*), € K, immediately implies

Amax ((2%) ) — +oo0. (3.289)

Since {q{i } is bounded, we assume (subsequencing if necessary) that limy_, ql’z = q*.
By the closedness of K and ||lg; || = 1 for each k, we have ¢* € K\ {0}. From [66,
Proposition 1.1.4], it then follows that (¢*,e) > 0 since e € int(K). Thus, taking the
limit on the both sides of (3.288) and using the equation (3.289), we readily obtain that
((x%)y,2) = +00. O

Proposition 3.77. Assumption 3.1 is satisfied if one of the following statements holds:

(a) G and I are jointly monotone mappings with |G(C) ||+ F(¢)]| — +oc as [|{[| — +o0
and there exists a point ( € V such that G(¢), F(¢) € int(K);

(b) G and F have the joint Cartesian Rgg-property.

Proof. (a) Let {¢*} be a sequence satisfying (3.286). Since G and F are jointly monotone,
(G(¢H) =GO, F(¢h = F(&)) = 0,
which by Lemma 1.1(a) is equivalent to
(G F(E) + (610, F©) 2 (164 PO ) + (1G] FO) )
+{IF(E)4,6Q) + ([P G0

Notice that the sequences {A\pin(G(¢*))} and {Amin(F(¢*))} are bounded below by (3.286),

~

|G+ |1F(CP)|| = +o00 and G(€), F(¢) € int(K). Using Lemma 3.52 then yields

(G FQO) + ([FE GQ) = Hoo

In addition, by (3.286) it is easy to verify

(6], F(Q)) > =00 and  ([F(¢H)]-,G(Q)) > =00
Therefore, from the last three equations it follows that
> _(Gi(¢"), F(¢")) = (G(¢H), F(¢")) = +oo,
i=1

which in turn implies that there exists an index v such that (G, (¢*), F,(¢*)) — +o00. By
204, Proposition 2.1(ii)], we have Apax [G,(¢*) o F,(¢*)] — 400, which implies (3.287).
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(b) The proof is direct by Definition 1.15. [

When G(¢{) = ¢ for any ¢ € V, Liu, Zhang and Wang [140] established the boundness
of the level sets of L () for 7 = 2 under the condition that F'is a Rge-function. The
condition, in view of Proposition 1.10, is stronger than the one of Proposition 3.77(b).
Thus, Proposition 3.77(b) generalizes the result of [140, Theorem 7].

Regarding the LT-type complementarity functions associated with SOC, f,. and fL\T
studied in (3.194) and (3.197), there was an extension to symmetric cone setting in [140].
More specifically, Liu, Zhang, and Wang considered the following merit function:

¢ (€)= w(Co F(C)) + ¥(¢, F(Q)), (3.290)
where ¢ : V — IR, satisfies
o) =0 <« —tek, (3.291)
and ¢ : V x V — IR, satisfies

Y(u,v) =0, uove -K <<= wuwek, vek, (uv)=0. (3.292)

Proposition 3.78. [140, Lemma 3.1] Let ¢3 : V x V — Ry be defined as

Ore(2,y) i= p(x oy) + (2, y) (3.293)

where ¢ and ¥ satisfy (3.291) and (3.292), respectively. Then, ¢ is a C-function
associated with symmetric cone.

Proof. “=" Suppose that ¢ (z,y) = 0 holds. From (3.293), it is clear that p(z,y) =0
and ¢ (z,y) = 0. Then, applying (3.291) and (3.292) leads to z € K, y € K and (z,y) = 0.

“<” Suppose that x € K, y € K and (z,y) = 0. Then, from (3.292), it yields ¢(z,y) =0
and z oy € —K. This together with (3.291) says that ¢(x,y) = 0. Thus, we conclude
that ¢ (z,y) =0. O

An example of ¢ is given in [140], which is

and three examples of ¢ are provided:

nlwy) = 5 (Il +-g?)

1 2
wlen) = 5 (VT - o)
vs(z,y) = %(”[\/;p2+y2_(x+y)}+uz)
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The function ¢3¢ (¢) by plugging the above ¢ and ¥, into (3.290) was proved continuously
differentiable in [140, Theorem 6.1] provided F is continuously differentiable, whereas the
functions ¢* (¢) by plugging the above ¢ with ¢, and ¢, were shown differentiable in
[140, Theorem 6.2] provided F' is differentiable. Please refer to [140] for their detailed
gradient expressions.

There is another type of merit functions, similar to the aforementioned LT-type C-
function associated with symmetric cone. It so-called EP-type functions, which were
originally proposed by Evtushenko and Purtov [61]. Kong and Xiu [130] extended them
to symmetric cone setting. In particular, they define

¢ _(r,y) = —(vroy)+ %([z + y]_)2, 0<a<l, (3.294)
¢ o(@y) = —(zoy)+ %([JC]Q_ +[y?), 0<p<1, (3.295)

Note that the parameter a could be 1 in defining ¢*° _, but 8 # 1 is needed for
defining ¢Z‘1EP This is because, by choosing 0 # x = y € —K, there occurs

G ) = ~(ro) + (ol + BE) =~ + 2 =0

Proposition 3.79. [130, Theorem 5.2] Let ¢*¢
and (3.295), respectively. Then, ¢>
symmetric cone.

e and ¢ be defined as in (3.294)

SC - N -
op and ¢ e AT€ smooth C-functions associated with

Proof. The projection formula is unknown for general symmetric cone, so the Peirce
Decomposition Theorem (Theorem 1.2) is employed. Please refer to [130, Theorem 3.2]
for the arguments for showing they are C-functions, and see [130, Theorem 3.3| for their
smoothness. [

In light of ¢, given as in (3.236), ¢* _ given as in (3.294), and ¢% . glven as in
(3.295), there induce the following functions:

Fusl©) = 5 10u(C FOIP, (3.296)
fulQ) = || e Q)]
Q) = e F©)

2
, (3.297)

2

5 ) (3.298)

We will study the growth behavior of these three functions, for which we need a few
technical lemmas.
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Lemma 3.53. For a given Jordan frame {c1,ca,...,¢.}, if 2 € V can be written as

Z—ZZ’ZC@—{— Z Zij

1<i<yj<q
with z; € R fori=1,2,...,q and z;; € V;; for 1 <i < j <gq, then
D T R R
1<i<j<q 1<i<j<q

where s; > (2;)+ > 0,0 > (z;)— > w; with s; +w; = 2 fori=1,...,q, and s;j, w;; € V,;
wz’thsij—i—wij:zij fOTlSZ<]§q

Proof. Please see [130, Lemma 3.1]. O

Lemma 3.54. For any x,y € V, the following inequalities always hold:
(2) Amin(2)]|c|]? < (z,¢) < Amax(@)||c||? for any nonzero idempotent c;

() Pmax(# +y) = Amax (@) < [yl and [Amin (2 +y) = Amin(2)] < [lyll;

(€) Max(® +Y) < Amax (%) + Amax () and Apin (2 4+ ¥) > Amin (@) 4+ Amin (y)-

Proof. Please see [188, Lemma 14] and [204, Proposition 2.1]. O

Proposition 3.80. Let ¢*°  and ¢%

Then, for any x,y € V, there hold

|
|

be defined as in (3.294) and (3.295), respectively.

o e 2 (2 ) max {[Oun(o) P [P}, (2209

o o) 2 () mc{ Ol )P} 3300

2p
Proof. Suppose that = has the spectral decomposition z = "7 | x;¢; with ; € R and
{c1,¢a, ..., ¢} being a Jordan frame. From Theorem 1.2, y € V can be expressed by
y= Zyzc@ + > (3.301)
1<i<j<q

where y; € R for i = 1,2,...,¢ and y;; € V;;. Therefore, for any [ € {1,2,...,q},

Cnoy) = (comy) = <zy+ S yu>

1<i<j<q

= Il<Cz,Zini>+!L’z<Cl, Z yij>
i=1 1<i<j<q

= 1y, (3302)
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where the last equality is since (¢, Y1, j<, yij> = 0 by the orthogonality of V;; (i < j).

We next prove the inequality (3.299). From (3.301) and the spectral decomposition of x,

q
fv+y=2 Ti +Yi)¢i + Z Yij-
1=1 1<i<j<q
which together with Lemma 3.53 implies
(e +y)- wa D Uy

1<i<j<q

where u; < (z; +y;)- <0fori=1,2,...,q and u;; € V;;. By this, we can compute

<cl,[(x—|—y)_]2> = < <Zuzcz+ Z uw>, x+y)_>

1<i<j<q
= <ulcl + (cl o E uij> g U;C; + g u”>
1<i<j<q 1<i<j<gq
2
= +ul<cl, E uij> < E Ujj, €1 O E ucz>
1<i<j<q 1<i<j<q
+ <Cl o E Usj, E Uz‘j>
1<i<j<q 1<i<j<q

2
= u?+<cl,< > u]> > Vi=1,2 . ¢ (3.303)
1<i<j<q

where the last equality is since (¢, )., i<q uij> = 0 by the orthogonality of V;; (i < j).
Now, using equations (3.302)-(3.303), we achieve

(. —¢ (2,y)) = (a,zoy—(1/2a)[(x+y)-]*)

2
= zy — (1/2a) U12+<Cla< Z uij) >
1<i<j<q

S Ty, — (1/260 [(xl + yl>*]27 Vi= 17 27 - g, (3304)

where the inequality is due to the following facts

2
w < (z+y)- <0 and <cz,< > u]> >zo.
1<i<j<q
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On the other hand, from Lemma 3.54(a) we have

(ct, =¢> _(z,y)) > )\min( — ¢ _(, y)) ||ClH2 = )\min( — ¢ (7, y)), Vi=1,2,....q.
(3.305)
Thus, combining (3.304) with (3.305), it follows that

20 A min (=0 (2, y)) < 20y — [(20 + y)-1?, YIi=1,2,....q
Let Amin(2) = 2z, with v € {1,2,...,q}. Then, we particularly have that
2a)\min(_¢iC_Ep (l’, y)) S 2a)‘min(x)yl/ - [(Amin<x> + yu)f]2- (3306)

We next proceed the proof by the two cases: Ayin(2) < 0 and Ay (x) > 0.

Case (i): Amin(7) < 0. Under this case, we will prove the below inequality:

20 Amin () — [(Amin () + 3)-]* < = (20 = o) [N ()%, (3.307)

which, together with (3.306), immediately implies

In fact, if Ayin(z) + v, > 0, then we can deduce that

O o @) 2 (=6 @.9))] 2 [(20 = a®)/20)] [Qin(@)) ] (3:308)

20\ min (%)Y = [(Amin () + ) ]* = 20(Amin (2)) - (1) < —(20 = a®)[(Ain(2)) -]
and otherwise we will have

20 Amin (7)Y — [(Amin () + %)-]2
= 20Amin(2)y — [(Amin(z) +30)]”
—(2a = @) Ain ()2
= —(2a = &)[(\min(2))-]*.

Case (ii): Amin(z) > 0. Under this case, the inequality (3.308) clearly holds.

IN

Summing up the above discussions, the inequality (3.308) holds for any z,y € V. In view

¢ (z,y), we also have

of the symmetry of z and y in ¢

for any x,y € V. Thus, the proof of the inequality (3.299) is complete.

6 o (@1)|| 2 [20 = 0%)/(20)] [Dunin(9)) -

We next prove the inequality (3.300). By the spectral decomposition of x, we have that

(z-)* =37 [(%;)-]*ci, which in turn implies

(e, (@ )?) =[(z)-]?, VI=1,2,...,q (3.309)
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In addition, from Lemma 3.53 and the expression of y given by (3.301), it follows that
q
Y- = ZUM + Z Vij s
i=1 1<i<j<q
where v; < (y;)- <0fori=1,2,...,q and v;; € V;;. By the same arguments as (3.303),

<c,,(y)2):v?+<c,,< > vij) > Vi=1,2,...,q. (3.310)

1<i<j<q

Now, from equations (3.302), (3.309) and (3.310), it follows that
(e, =6 (@) = (awoy—(1/28) [(x)*+ (y)*])

= my — (1/25) [((951)—)2 +uf + <Cl» (Zlgiq‘éq Uij>2>}
z — (1/28) [((1)-)* + (v)?]
z — (1/26) [((2)-)* + ((w)-)*], VI=1,2,....q

where the first inequality is due to the nonnegativity of (c;, (32,<;j<, v;;)?), and the
second one is due to v; < (y;)— < 0. On the other hand, by Lemma 3.54(a),

(et =0 @) = Auin( =% (@ 9) el = Awin( =6 (2,9)), VI=1,2,....q
Combining the last two inequalities immediately leads to
Auin (=5 (2,9)) < i — (1/28) [((20) ) + ((w))?]
Let Amin(2) = 2z, with v € {1,2,..., ¢} and suppose that Ay, ()
Amin(=05 1 (2,9)) Anin(2) Y — (1/28) [((Amin(2))-)* + ((1)-)?]
[Qmin () -] [(0) -] = (1/28) [((Amin(2))-)* + ((3)-)]
—(1/28) { [BOwin()) - = ()1 + (1 = ) [ Chnin(2)) 17}

- (557 [l T*

IAINA

[=1,2,...,q.

v
< 0. Then,

IA A

IA

which in turn implies
1— 32

| 2B)K&mwu? (3.311)

If Apin(z) = 2, > 0, then the inequality (3.311) is obvious. Thus, (3.311) holds for any

x,y € V. In view of the symmetry of z and y in ¢ZC » (T, y), we also have

5 )] 2 (=0 )| =

G5 (@) 2 Pain (5 4, 7\_(‘ﬁﬁnaﬂm42
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for any x,y € V. Consequently, the desired result follows. [

The following proposition characterizes an important property for the smooth EP-

type C-functions ¢ and ¢ZC . under a unified framework.

Proposition 3.81. Let ¢°  and ¢%°  be defined as in (3.294) and (3.295), respectively.

Suppose that {z*} C V and {y*} C V are the sequences satisfying one of the following
conditions:

(i) either Apin(2%) = —00 0r Apin(¥*) — —o00;
(1) Amin (%), Amin (¥F) > —00, Mnax (25), Amax (¥F) — +00 and ||z* o y*|| — +o0.

Then,

gbiC_EP(xk,yk)H — +00 and ‘

Proof. If Case (i) is satisfied, then the assertion is direct by Proposition 3.80. In what

follows, we will prove the assertion under Case (ii). Notice that in this case the sequences

{2*}, {y*} and {z* + y*} are all bounded below since Apin(2%), Amin(y*) > —oo and

Amin (2% + ¥F) > Amin (2%) 4+ Amin(¥¥) > —o00. Therefore, the sequences {[(mk + yk)_]z},
2 2

{([wﬂ_) } and {([yk] _) } are bounded. In addition, we have Ay, (2* o y¥) — —o0

k

O Amax (" 0 y¥) — +o00 since ||2* o y¥|| — +o0.

If Ain (2% 0 4*) — —00 as k — oo, then by Lemma 3.54(c) there hold
Amin (0% 10 (#,9) = Amin [(2* 09%) = (1/20)((2* + y*) )]

)\mm(‘r oy ) 1/20& H((‘Tk—i_yk H

Awin (2 0 4%) = (1/28) (")) + (9 ’%)2)]
Amin(2 0.9 + (1/28) | (")) + ()]

which, together with the boundedness of ||((z* + ¢*)_)?|| and ||((=*)_)? + ((¥*)_)?|l,
implies )\min(—¢i°7EP(xk, y*)) — —oo and )\min(—qﬁ;‘iEP (2%, y*)) — —oo. Since

we immediately obtain ‘

IA

N (=6, (2, )

IN

@99 2 Pain(=67 o (2.9))| and |

B o )| = [0 1 )]

& (mk,yk)H — 400 and ‘

O o (a*, yk)H — +00.

If Amax (2% 0 y*) — +00 as k — oo, from Lemma 3.54(c) it then follows that

Ama (=0 0 (,9)) = Amax [(2F 0 4F) = (1/20) (2" + ¢*)-)?]
> Amax(® 0y") = (1/20) [ (2" +4*)-)| .
Amax (=05 0 (2,9) = Amax [(2" 09") — (1/28) (((#*)-)? + ((4*)-)?)]
> Amax(2¥ 0 y%) — (1/28) ||((mk 2+ ((v%) H
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which, by the boundedness of ||((z* + v*)_)?| and ||((z*)-)? + ((y*)-)?||, implies that
Amax(—9% (2%, y*)) — +oo and )\max(—gbZ‘iEP (2%, 4*)) — +oo. Noting that

|

we readily obtain ‘

B 0,51 2 (= (2,51 and |

¢S;,Ep(xk7yk)H Z ‘)\max(_qbz(iEp(xkayk)) )

gzﬁinEP(xk,yk)H — +00 and ’

When V = IR"™ with “0” being the componentwise product of the vectors, ||2*oy*|| —
+o00 automatically holds if Apax(7%), Amax (¥*) — +00, and Proposition 3.81 reduces to
the result of [109, Lemma 2.5] for the NCPs. However, for the general Euclidean Jordan
algebra, this condition is necessary as illustrated by the following example.

Example 3.3. Consider the Lorentz algebra L™ = (R"™, 0, (-, -)rn). Assume that n = 3
and take the sequences {x*} and {y*} as follows:

k k
=1k and ¢ = —k for each k.
0 0

It is easy to verify that Apin(z%) = 0, Amin(¥*) = 0, Amax(7%), Amax(¥¥) — +o0, but
=0

|2* o y*|| - +o00. For such {z*} and {y*}, by computation we have ”gbicpr (zF, yk)‘

and

ngZ‘iEP (xk,yk)H =0, i.e. the conclusion of Proposition 3.81 does not hold.

Lemma 3.55. [102, Lemma 4.1] Let {z*} and {y*} be the sequences such that x* — T
and y* — y when k — co. Then, we have that ¥ o y* — Z o 4.

Proof. Please see [102, Lemma 4.1] for detailed arguments. [

Now we are in a position to establish the coerciveness of f, and fs. Assume that
(V,0,(-,-)) is a general Euclidean Jordan algebra. We first consider the SCLCP case.

Proposition 3.82. Let f, and fz be defined as in (3.297) and (3.298), respectively. If
F(¢) = L(¢) + b with the linear transformation L having the P-property, then f, and fz
are coercive.

Proof. Let {¢*} be a sequence such that ||¢¥|| — +o0o. We only need to prove that
fa(¢*) = 400 and f5(¢*) — +oo. (3.312)

By passing to a subsequence if necessary, we assume that ¢*/||¢*|| — ¢, and consequently
(L(CF) +b)/|ICF|| = L(C). If Amin(C*) — —o0, then from Proposition 3.81 it follows that

’(ijéc_gj)(gk, L(¢F) + b)” — +00, and ‘ (bZiEP((k, L(¢k) + b)” — 400, which in turn implies
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Now assume that {¢*} is bounded below. We argue that the sequence {L(¢*) + b} is
unbounded by contradiction. Suppose that {L(¢*) + b} is bounded. Then,

L(Q) = Jim [(L(¢H) +b)/IcH] =0 €K

Since {¢*} is bounded below and Apax(C*) — +oo by |[¢¥|| — 400, there is an element
d € V such that (¢¥ —d)/||¢* — d|| € K for each k. Noting that K is closed, and we have

lim (¢* = @)/I* — dl| = /|G = C e k.

Thus, ¢ € K, L({) € K and { o L({) = 0. From [85, Proposition 6], it follows that ¢ and
L(¢) operator commute. This, together with (o L(¢) = 0 € —K and the P-property of L,
implies that ( = 0, yielding a contradiction to ||C|| = 1. Hence, the sequence {L(¢*) + b}
is unbounded. Without loss of generality, assume that || L(¢*) + b|| — +o0.

If Anin (L(C*) +b) — —o0, then using Proposition 3.81 yields the desired result of (3.312).
We next assume that the sequence {L(¢*) + b} is bounded below. We prove that

(S /AN o [(L(C*) + ) /1ICE(I] = 0. (3.313)

Suppose that (3.313) does not hold, then from Lemma 3.55, it follows that

CoL()= lim [(¢*~d)/IcH] o [(L(¢H) +b—d)/IcH] =0 vdeV.  (331)
Since {¢*} and {L(¢*) + b} are bounded below and Amax(¢"), Amax(L(¢F) + b) = 400,
there is an element d such that (* —d € K and L(¢*) +b—d € K for each k. Therefore,

(E=d)/IcMl] ek and (L) +b-d)/IcI] €K, ¥k,

Noting that K is closed and ¢ = limy_, 0 (¢* — d)/||C*|] and L({) = limy_ o [(L(C*) + b —

d)/||¢*[l], we have
ek and L(¢) eKk. (3.315)

From (3.314) and (3.315) and [85, Proposition 6], it follows that ¢ and L({) operator
commute. Using the P-property of L and noting that (o L({) = 0 € —K, we then obtain
¢ = 0, which clearly contradicts ||C|| = 1. Therefore, (3.313) holds. Since ||¢¥|| — +o0,
we have ||¢* o (L(C¥) + b)|| — +oo. Combining with Apmin(C*), Amin (L(C*) + b) > —o0
and ||C¥|[, [IL(¢*) + b]| = +o0, it follows that the sequences {¢¥} and {L(¢*) + b} satisfy
condition(ii) of Proposition 3.81. This means that the result (3.312) holds. O

Proposition 3.83. Let f, and fz be defined as in (3.297) and (3.298), respectively. If
the mapping F' has the uniform Jordan P-property, then f, and fz are coercive.
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Proof. The proof technique is similar to that in [114, Theorem 4.1]. For completeness,
we include it. Let {¢¥} be a sequence such that ||¢¥|| — +o0o. Corresponding to the
Cartesian structure of V, let ¢¥ = (¢F,...,¢*) with ¢F € V; for each k. Define

J:={ie{1,2,...,m}[{¢}} is unbounded} .

Clearly, the set J # () since {¢*} is unbounded. Let {¢*} be a bounded sequence with
= (&r,.. &8 ) and €F € V, fori = 1,2,...,m, where £F for each k is defined as follows:

0 ifieJ;
k __ ) -
&= { ¢k otherwise, | L2,...,m.

Since I’ has the uniform Jordan P-property, there is a constant p > 0 such that

pHCk - SkHQ < max Apax [(Czk - gzk) © (Fl(ck) - FZ(Sk))}

)\max [Cf ° (FV(Ck) - Fu(gk))]
< NG o (B¢ = B(EM)
< NGHIIEAC) = FE9)II, (3.316)

where v is an index from {1,2,...,m} for which the maximum is attained and the last
inequality is due to (1.5). Clearly, v € J by the definition of {£*}, and consequently,
{¢*} is unbounded. Without loss of generality, we assume that

ICE | = +o0. (3.317)

Since

Ic¥ = €*I17 > 1167 = 11" = lIGU1I*,  for each &, (3.318)
dividing the both sides of (3.316) by ||¢¥|| then yields that

PG < IF(CF) = E (€M) < 1P+ I, (€M)

Notice that {F(£%)} is bounded since the mapping F is continuous and {£*} is bounded.
Hence, the last inequality immediately implies

|15, (¢%)|| = 4o0. (3.319)
In addition, we can verify by contradiction that
1¢F o F (¢CM)]| — +oc. (3.320)

In fact, if {||¢¥ o F,(¢*)||} is bounded, then on the one hand, we have

Jim (167 o (F,(¢%) = EL(EDI/ICI = 0.
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But, on the other hand, the inequality (3.318) yields

lim pl|¢C* = &"1P/I1CEI1? = p > 0,

k——+o00

which clearly contradicts the third inequality in (3.316). Thus, from equations (3.317),
(3.319) and (3.320), the sequences {¢*} and {F,(¢*)} satisfy the conditions of Propo-

v)
sition 3.1. Therefore, there necessarily holds that H(qﬁzc_EP) ( ,f“,F,,(Ck))’ — 400

and

(v)
‘(gbf_EP) ( f,F,,(Ck))H — +00, which in turn implies that f,(¢*) — +oo and
f3(CF) > 40 ask — 0. O

From Definition 1.10 and Lemma 3.54(a), clearly, the uniform Cartesian P-property
implies the uniform Jordan P-property. Hence, the functions f, and fs are also coercive
if F' has the uniform Cartesian P-property. In addition, when V = IR"” with “o” being
the componentwise product of the vectors, the uniform Cartesian P-property and the
uniform Jordan P-property of F' are equivalent to saying that F' is a uniform P-function;
(see [63, Page 299] and discussions in Section 1.4), and now Proposition 3.83 recovers the
known result [206, Theorem 2.3].

In order to establish the coerciveness of the implicit Lagrangian merit function f,,
we need the help of the natural residual complementarity function over symmetric cones

ro(z,y) =2 —(r—(1/a)y),, Vz,yeV and a>0. (3.321)
To this end, we first characterize the growth behavior of the residual function 7.

Lemma 3.56. Let r_ be defined as in (3.321). Then, for any x,y € V, we have

Auin (7, (2, )) < it {Ain (@), (1/0) A1) }.

Proof. For any x,y € V, from the definition of r_ in (3.321) and Lemma 3.54(c), we
have

/\min<x) - )\min [Ta (.T, Z/) + (l’ - (1/Oé>y)+]
2 Amin (7o (2, 9)) + Amin [(2 — (1/a@)y)4 ],

which implies
Amin (74 (7, Y)) < Amin(7) — Amin [(x - (1/a)y)+} < Amin(). (3.322)
On the other hand, we notice that the function r_ can be rewritten as

ro(z,y) = (z = (1/a)y)- + (1/a)y.



3.3. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SYMMETRIC CONE353

Consequently, it leads to

(1/) Amin(y)

min [0 (2, 9) — (2 = (1/a)y)-]
min(ra (:Ea y)) + )\min [_(*T - (1/04)y)_]
min (7', (2, 9)) + Amin [(—2 + (1/)y) 4] .

v
> > >

This implies that

Amin (7 (2, 4)) < (1/0) Aain (4) — Amin [(—2 + (L/)y) 1] < (/@) Amin(y)- (3.323)

From equations (3.322) and (3.323), we prove the desired inequality. [

Proposition 3.84. Let r, be defined as in (3.521). Suppose {z*} C V and {y*} C V be
the sequences satisfying one of the following conditions

(i) either Apin(2*) — —00 or Apin(y*) — —o0;
(i) Amin(2°), Amin (4) > =00, Amax(#"), Amax(y*) — +00 and (z*/[|2*[[) o (" /[|y*[[) - 0.
Then,

ra(:vk,yk)H — +00.

Proof. If Case (i) holds, the result is direct by Lemma 3.56 and the fact that
o (2%, g™ = il (2, 5]

It remains to prove the desired result under Case (ii). Suppose that the sequence
{r_ (2%, y*)} is bounded. From the definition of r_, we have

ro(@hyh) = at = (1/2) (¢F = (1/a)y®) — (1/2) |2 — (1/a)y"|
= (1/2) (=" + (1/a)y*) — (1/2) |2* — (1/a)y"].
Therefore,
2" — (1/a)y*| = (a" + (1/a)y*) — 2r, (2", 4").

Squaring two sides of the last equation then yields

(1/a)at oy® =7, (2% y%) o (a8 + (1/a)y") — [r, (=", ")
Dividing the two sides by ||2*||||*|| and using the boundedness of {r_(z*,y*)}, we obtain

lim (2*/]|2*]]) o (y"/Ily*]1) = 0.

k—o00

This contradicts the given assumption that (z%/||2*||) o (y*/|ly*||) - 0. O

When V = IR"™ with “o” being the componentwise product of the vectors, the con-
dition Apax(2*), Amax(y*) — +oo implies (z*/|[z*|]) o (¥*/||y*||) -+ 0, and consequently
Proposition 3.84 gives an important property of the natural residual NCP function or the
minimum NCP function; see [109, Lemma 2.5]. But, for the general Euclidean Jordan
algebra, the following example illustrates that (z*/||z*||) o (v*/||y*]|) - 0 is necessary.
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Example 3.4. Consider the Lorentz algebra L™ = (IR", o, (-, -)grn) with n = 3. Take the
sequences {z*} and {y*} as follows:

k k
= —(k+1) and "= k-1 for each k.
(1/a) 1
It is easy to verify that Amin(2%) = —1, Anin(¥%) = 1 and Apax (%), Amax (yF) — +00, but
1/v/2 1/v2

ol = Ve I = | V2| and @8/l o (v /Il — 0.
0 0

Therefore, the sequences {x*} and {y*} do not satisfy the assumption (z*/||z*|)o(y*/|ly*|) -
0. For such sequences, by computation, we have that

k k+(1/2) — (1/2a) (1/20) — (1/2)
ro@ ) = —(k+1) | | k-(1/2+1/20) | = —(1/20) = (1/2) |.
(1/a) 0 (1/a)

Clearly, ||r. (x*,y¥)|| - +o0, i.e., the conclusion of Proposition 3.84 does not hold.
Y ITq Y

Lemma 3.57. Let ¢, and r, be defined as in (3.236) and (3.321), respectively. Then,
for any x,y € V, there holds

a?—1 1 —a?
ool = max{ (50 Y ol (5 ) Il

Proof. First, for any z,y € V, the following identity always holds:

(e, bus(@.y)) = (2,9) + (1/20) {[[(z — ag)+ I — llz[I* + [[(y — az)+[I* — [ly[I*}
= (y, (z = (/a)y)1) + (a/2)[Jz = (z = (1/a)y)[?
—(y, (z — ay)1) — (1/20) [|lz — (x — ay)+ | (3.324)

In fact, for any z,y € V, we can compute

(Y. (z = (1/)y)+) + (a/2) |z = (z = (1/a)y)+]*

(y. (/o) (ax —y)y — 2) + {y, 2) + (/2)[[(1/e)(ax — y)+ — ||*
(a/2)[1(1/a)(az —y)1 — 2+ (1/a)yl* + (y, ) — (1/20)|ly[|*
(1/20)|] = (y — az)- + (y — az)[|* + (y, @) — (1/2a)[ly|
(1/20)|(y — ax)+|* + {y, z) — (1/20)ly|
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and
(y: (x = ay)+) + (1/2a) & — (& — ay)+ |
= (1/20)|(z — ay)+|* = (1/a) (z — ay, (z — ay)+) + (1/2a)||z|*
= —(1/20) |[(z — ay)4 |I* + (1/20)||z]|*.
These two equalities immediately implies (3.324). Now consider the optimization problem

géi’? (y,2) + (1/20)(z — x, 2 — z).

It is easy to verify that z* = (x — ay), is the unique optimal solution, whereas (x —
(1/a)y)+ is a feasible solution. Therefore, we have

1 1

(2 = ay)i) + o Nl = (= o) |* <y, (@ = (Afa)y)o) + 5Nl = (2 = (1/a)y). |

Combining this inequality with (3.324) yields

a?—1
200

(e, s (,9)) > ( ) o — (@ — (1a)y) |,

which implies

o?—1

1bus ()| = (ef el bus )} = (W) I (2, )12 (3.325)

In addition, consider the following strictly convex optimization problem
min (y,z) + (a/2)(z — x,z — x).
zE

We can verify that z* = (x — (1/a)y). is the unique optimal solution, whereas (r — ay).
is a feasible solution. Consequently, we have

(y, (= (1/a)y)s) + Flle = (= (L))ol < (o, (v = ap)s) + 5o = (@ = ay)+ ]

Combining this inequality with (3.324) then yields

21
(e tnalin ) < (St ) e = o= el
which in turn implies
1—a? 2
sl = = te/lell s (0) = (5o ) et (3.320)

From (3.325) and (3.326), we establish the desired result. The proof is thus complete.
UJ

Note that in Lemma 3.57 there holds ||e|| = /g since the rank of V is assume to be
g. Now, in light of Proposition 3.84 and Lemma 3.57, we have the following property of

¢MS .
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Proposition 3.85. Let ¢, be defined as in (3.236). Suppose {z*} C V and {y*} C 'V
be the sequences satisfying one of the following conditions
(i) either Apin(2®) — —00 or Apin(y*) — —o0;
(1) Ammin ("), Amin (¥*) > =00, Anax (@), Amax(y*) — +00 and (% /[|z*[|) o (y*/[ly*||) - 0.
Then, [|ys(2*,y")[| = +o0.

Similar to Proposition 3.84, when V = IR"™ with o being the componentwise product,
the assumption (z*/[|z"||)o(y*/||y*||) - 0 is automatically satisfied, and from Proposition
3.85, we readily obtain the result [113, Lemma 6.2] for the NCPs. However, for the

general Fuclidean Jordan algebra, the following example shows that the assumption
(@*/lz*]]) o (4*/ly*[]) = 0 is also necessary.

Example 3.5. Consider the Lorentz algebra L™ = (R™, 0, (-, -)rn) with n = 3 and take
the sequences {x*} and {y*} as follows:

k k2
=1 —k and ¢F = K2+1 for each k.
0 0

It is easy to verify that Amin(2%) = 0, Amin(¥*) = —1 and Apax(2%), Amax (¥¥) — +00, but

A = 5| ) G~ g ] @t 6 0

This shows that the sequences {z*} and {y*} do not satisfy the assumption (x*/||2*|) o
(v*/|ly*]]) = 0. For such {x*} and {y*}, we can compute

2ka + (a?/2) —(1/2)
(2" —ay")s)? = (") = | —2ka—(a?/2) |, ()" —aa®))? = (") =| (1/2) |,
0 0
and
—k 2ka + (a2/2) —(1/2)
¢MS (wka yk) = k + (1/20&) —2ka — (a2/2) + (1/2>
0 0 0

(/4) = (1/4c)
= | —(/4) + (1/4a)
0

Clearly, ||¢,. (x%, y%)|| = o0, i.e., the result of Proposition 3.85 does not hold.
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Now assume that (V,o, (-,-)) is a general Euclidean Jordan algebra. We establish the
coercive properties of the merit function f, . for the SCLCP and the SCCP.

MS

Proposition 3.86. Let f,,, be given by (3.297). If F(¢) = L(C) + b with the linear
transformation L having the P-property, then the function f,,s is coercive.

Proof. Let {¢*} be a sequence such that ||¢¥|| — +oco. By passing to a subsequence if
necessary, we can assume that ¢¥/|¢*|| — ¢, and hence (L(¢*) + b)/||¢*|| — L({). By
the proof of Proposition 3.82, L(¢) # 0 and {L(¢*) + b} is unbounded. Without loss of
generality, assume that || L(¢*) + b|| — +oo.

If Amin(C*) = —00 or Apin(L(C*) 4+ b) — —o0, then using Proposition 3.85 yields
635 (¢F L(C*) + B)[| = +00 and - f5(C¥) = +o0.

We next assume that the sequences {¢*} and {L(¢*) + b} are bounded below. Since
Amax (C%); Amax(L(CF) + b) — +o00 by ||C¥|], [|L(C*) + b|| — +o0, there is necessarily an
element d such that (¥ —d € K and L(¢*) +b —d € K for each k, which implies

(F—d)/||¢c*| e & and (L(C*) +b—d)/||L(¢*) +b]| € K for each k.

Using the fact that K is a closed convex cone and noting that
¢ = Jim (¢F = /M, LQ/ILQ)] = Jim (L(CH) + b= d)/ L) + b,

we have ¢ € K and L(C)/[|L(C)]| € K. Suppose (¢*/[[¢*]))

(CH/ICH) o (L(C) + )/ IECE) + b = 0.
Then, from Lemma 3.55, it follows that ¢ o (L(C)/||L(C)]|) =

")
0. Consequently,
ek, L()eK and (oL({)=0.

By [85, Proposition 6], ¢ and L({) operator commute. This, together with (o L({) =0 €
—K and the P-property of L, means that ¢ = 0, which is impossible since ||(|| = 1. Thus,
(C*/IEHN) o (L(¢*) + B)/IIL(CF) + bl[) - 0. Notice that Amin(¢*), Amin(L(¢*) +b) > —o0
and [|C¥]], || L(¢*) + b|| — +o0, and hence the sequences {¢*} and {L(¢*) + b} satisfy the
condition(ii) of Proposition 3.85, which implies that f,,(¢*) = +00. O

Proposition 3.87. Let f,,, be given by (3.297). The function f, is coercive under one
of the following conditions:

(C.1) the mapping F has the uniform Jordan P-property and the Lipschitz continuity;

(C.2) F has the uniform Jordan P-property and, for any {C*}, if there exists an index
i€ {1,2,...,m} such that Apax(CF) = +00 and Apax(Fi(C*)) — 400, then

| ¢ R >
1 0. 3.327
1SLS£p<H<fH TR (3.827)
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Proof. The proof is similar to that for [114, Theorem 4.1, and we here include it for
completeness. Let {¢*} C V be any sequence such that [|¢¥|| — +o00. Corresponding to
the structure of V, we write (¥ = (¢¥,...,¢*) with (¥ € V; for each k. Define

J:={ie{1,2,...,m}|{¢} is unbounded} .

early, the set since is unbounded. Let e a bounded sequence wit
Clearly, th J#0 & bounded. Let {£*} be a bounded h
F=(&F,.. ., &) and € € V, for i = 1,2,...,m, where £ for each k is defined as:

¢h = 0 ifiel
© | ¢ otherwise,

If Condition C.1 holds, then by the uniform Jordan P-property, there is p > 0 such that
PICE —€MIP < max A [(GF = €F) 0 (Fi(CY) — Fi(€"))]

= )\max [Czlf © (FV(Ck> - FV(§k>)]
< IG o (Fu(¢M) = F(EM)
< ICNECS - B, (3.328)

where v is an index from {1,2,...,m} for which the maximum is attained, and by the
definition of {¢*}, clearly, v € J, and the last inequality is due to (1.5). Since v € J,
{¢*} is unbounded. Without loss of generality, assume that

¢ — +o0. (3.329)

Notice that
ICF = €511 > lley = & 17 = G117, k.
Dividing the both sides of (3.328) by ||¢¥|| then yields
PG < 1F,(¢%) = F (€M) < IE I+ I, (€M),
which, together with the boundedness of {F), (%)}, implies
1F,(CF)|| — +oc. (3.330)

From equations (3.329) and (3.330), we thus obtain

Il = o0, [IF(CF)I| — o0 (3.331)

We next show that (C¥/||C5[)) o (F,(¢F)/||F,(¢F)|)) - 0. If it does not hold, by the continu-
ity of Amax(), we will have that Amax [(C¥/[ICF(]) o (F.(C¥)/||F(¢¥)||]] — 0. Consequently,

lim Amax (G 0 (F3(¢*) = FL(€9)] /TG TIIE (S

k—o0

I A (GG © (F(C)/IFL(E)ID]

+ Jim A [~ 0 B (€9)] / [IIGS I (CI]
- (3.332)

IA
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where the inequality is due to Lemma 3.54(c). On the other hand, from the Lipschitz
continuity of the mapping F', there exists a scalar v > 0 such that

IF(CY) = FO)I < ~II¢" =0l = ~lI¢"|| for cach &,
which in turn implies
I (¢ < I1F(CF) = B )+ [E,O)F < ICH I+ [E. ()], V&

From the last inequality, we obtain

i pllct = ¢/ [IGEIE )
> lim pll¢* = €I/ ICI I + IE. )] =2 > 0.

This, together with (3.332), gives a contradiction to the first inequality of (3.328). Thus,
the sequences {¢*} and {F,,(¢*)} satisfy the conditions of Proposition 3.85. Consequently,

[k, Fo(¢R))|| = +oo and  f,4(¢F) = +o0.

If Condition C.2 is satisfied, then from the above discussions we see that equations
(3.328)-(3.331) still hold. If A\puin(¢¥) — —00 or Apin(F,(¢*)) — —oc, then using Lemma
3.56 and Lemma 3.57 gives that ¢*)(¢%, F,(¢¥)) — +oo, and hence f,(¢¥) — +oo.
Otherwise, by equation (3.331), we will have Ay (CF) = +00 and Apax(Fy(CF)) — +o0.
From the given assumption, it then follows that

lim sup (GG FCH/NEACI) > 0,
which, by Lemma 3.54(a), leads to
H SUp Ao (/NI o (B (M) IEACHID] > 0.

This shows that (¢&/[IC4]) o (F(¢H)/IIF.(¢¥)]) = 0. Hence, the sequences {¢} and
{F,(¢C*)} satisfy the conditions of Proposition 3.85. Consequently, ||¢{)(¢k, F,(¢%)|| —
+00 and f,,s(¢*) — +oo. The proof is then complete. [

Notice that, when V = IR" with o being the componentwise product of the vectors,
the assumption (3.327) is automatically satisfied and the uniform Jordan P-property of
I is equivalent to saying that F' is a uniform P-function. Thus, Proposition 3.87 reduces
to the known result [114, Theorem 4.1] for the NCPs. However, for the general Euclidean
Jordan algebra, besides the uniform Jordan P-property of F', it require that F'is Lipschitz
continuous or satisfies the assumption (3.327) so that (¢*/||C¥|) o (F,(¢*) /|| E,(¢*)])) - 0.

In addition, using Proposition 3.84 and the same arguments as in Proposition 3.86 and
Proposition 3.87, we can achieve the coerciveness of the natural residual merit function
for the SCCP:

Ral0) = 5 I (G FIQIP (3333)
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Proposition 3.88. The function R, defined by (3.333) is coercive under Condition C.1
or C.2 of Proposition 3.87. If F(¢) = L(C) + b with the linear transformation L having
the P-property, then R, is also coercive.

Furthermore, from Lemma 3.57, we conclude that the growth rate of f,,, is higher
than that of the natural residual merit function R,,.

Proposition 3.89. Let {¢*} be a sequence such that ||C*|| — +oo. If F satisfies Condi-
tion C.1 or C.2 of Proposition 3.87, then Ry (C*) — 400, fs(¢*) = +o00 and

fl\/IS (gk)

W—)—i—oo with 0SO’<1

3.3.2 Constructions of C-functions associated with Symmetric
Cone

Building upon the preceding discussions, two natural questions arise concerning the con-
struction of C-functions for the symmetric cone complementarity problem:

(i) Is there a systematic framework for constructing complementarity functions associ-
ated with symmetric cones?

(ii) Can existing NCP functions be adapted to generate C-functions in the symmetric
cone setting?

These questions have long stood as central challenges in the study of complementarity
functions. In this section, we offer affirmative answers to both. Specifically, we propose
two distinct methods for constructing C-functions tailored to symmetric cones. The first
approach is inspired by a class of NCP functions originally examined by Mangasarian in
[146], as detailed below.

Property 3.1. Assume that 0 : IR — IR is a strictly increasing function, that is, a >
b <= 0(a) > 0(b), and let 6(0) = 0. Then, the function

¢(a,b) := 0(|la —b]) — 0(a) — 6(b)
1s an NCP function.

In [146], Mangasarian provided two examples of 6, namely 0(z) = z|z| and 0(z) = z.
Accordingly, they induce the following NCP-functions:

¢Man1(a7b) - (a_b)Z_b|b|_a|a|7
Oy (@, D) = |a—b] —b—a.
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Motivated by Property 3.1, as will be demonstrated later, we introduce a class of vector-
valued functions designed to induce C-functions associated with symmetric cones. Fur-
thermore, we develop several compositional forms of such C-functions, expanding the
repertoire of available constructions.

The second method builds upon existing NCP functions. As noted earlier, numer-
ous researchers have explored the extension of NCP functions to serve as C-functions
for the symmetric cone complementarity problem (SCCP). Our novel approach lies in
utilizing these existing NCP functions, originally defined as real-valued functions, to
construct vector-valued C-functions within the symmetric cone framework. With nearly
sixty NCP functions documented in the literature, this idea introduces a powerful and
versatile mechanism for generating a rich variety of C-functions. We believe this contribu-
tion represents a significant breakthrough, laying a solid foundation for future analytical
developments on the SCCP via NCP-based techniques. In particular, we present gen-
eral formulations of C-functions derived from NCP functions and apply this framework
to two prominent symmetric cones: the second-order cone and the positive semidefinite
cone. These constructions are based on explicit expressions of the inner (Jordan) product,
further highlighting the potential of this methodology. This innovative direction opens
new avenues for addressing complementarity problems through minimization approaches
grounded in NCP function theory.

Lemma 3.58. For any x,y € K, if x =x 0, y =x 0 and x = y, then x'/? = y'/2.

Proof. Please see [85, Proposition 8. [

Lemma 3.59. Let X, Y be n x n matrices in S**". Then, the following hold:
(a) X = 0= UXUT =0 for any orthogonal matriz U.

(b) X =0,Y>=0=(X,Y)>0.

(c) X>=0,Y >0, (X, V)=0= XY =YX =0.

(d) If X =0,Y =0, then (X,Y) =0 <= XY =0.

(e) Given X and Y in S™™ with XY = Y X, there exists an orthogonal matriz U,
diagonal matrices D and E such that X = UDU" and Y = UEUT.

Proof. Please see [84, 183]. [
Lemma 3.60. Let x = (x1,73) € R x R"™! and y = (y1,%2) € R x R". Then,
xtM O, ytmr() and :L‘Oy:O

if and only if the following hold
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(i) If T2 # 0 and yo # 0, then x,y are both on the boundary of L', share the same
spectral vectors, and can be expressed as

with (u$,uly = 0 or uf? o ufP = 0.

(ii) IfZo = 0 or g = 0, then it goes to the trivial cases that x =0 andy € L orx € L7
and y = 0.

Proof. The proof follows an approach similar to that of [78, Proposition 2.1]. For the
sake of completeness, we include the full details below.
“«<" The proof of this direction is trivial.

“=7" From x =1y 0,y =1» O and zoy = ({(x,y), 192 + 11 Z2) = 0, we have
(T y) =z + TG =0, 1> [|Z], v >[5l (3.334)

To proceed, we discuss two cases.

(i) If Z5 # 0 and 7, # 0, then equation (3.334) implies —ZJ Jo = x1y1 > ||Za]|||72]]. Since
—739 < ||Z2||l[22]], it leads to x1y1 = —23 9> = [|Z2[]|2]]. Hence zy = [|Z2]],y1 = ||2]];
otherwise, if x € int(L) or y € int(L'}) then z1y1 > ||Z2]|||72||, which is impossible.
This means x and y are both on the boundary of L7. Using the facts that the second
component of x oy is zero, i.e 172 + Y172 = 0, and the fact that x; = ||Z2|, 11 = ||72]],
these yield that

1 z 1 z
v =a(@) - w? = (o1 + Izl - 50 =) = 20 5L =)
and
y=ly) - = G+l (1 720 =29 (1,2,
|| 2| 2" 7]
where x and y can be viewed as sharing the same spectral vectors {ué , U )} with u{? =

11, 22) ul = 1(1, =22 = oY and (WP, ul?) = ul? o ulP = 0.

237 lz2|| 2 [[Z2]]

(ii) If Z5 = 0, from equation (3.334), we obtain x;y; = 0. It leads to 1 = 0 or y; = 0.
For z; = 0, then we have x = 0 and y can be any element in L. For y; = 0, then 7,
must be 0 from the third inequality of (3.334), which means y = 0 and z can be any
element in L} in this case. Similar to the case g = 0. [
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Lemma 3.61. Let v = (71,73) € R x R"™! and y = (y1,%2) € R x R"™! with Ty # 0,
Yo # 0. Then,
xiM 0, th 0 and zoy=20

if and only if x1 = ||Z2]|, 11 = ||2]], and z192 + 11Z2 = 0.

Proof. This is an immediate consequence of Lemma 3.60. [

Lemma 3.62. Let x = (11,7) € R x R" ! and y = (y1,92) € R x R"™! with T # 0,
U #0. Ifx =L 0,y L 0 and xoy =0, then o = —mTo, where m := ”g;” Moreover,
Yo = —mTy <= there exists k € {2,--- ,n} such that y, = —maxy # 0

and yxr = xye for all 1€ {2,--- n}. (3.335)
Proof. From case (i) in the proof of Lemma 3.60, we see that ZJ 9o = —||Z2||||72||, which
further implies
2 T L 14
1% 172 ||Z2]] 172 ||| ||Z2 ]
Letting m := g2l 3, implies o = —mZs.

lZ21]”

Next, we prove the relation (3.335).

“=" Since gy = —mTy, and Ty # 0, y2 # 0, there exists k € {2,--- ,n} such that z; # 0,
yr # 0 and yp = —may. In addition, y; = —ma; for all [ € {2,--- ,n}. Multiplying by
—muay both sides of this equation, we have

y(—mzxyg) = —max(—maxy) = —may.
Thus, we prove that y,x, = xyg.

“<” Since yx, = 2y and yp = —maxy # 0, it yields y,xp = x;(—may). This implies
that y; = —ma; for all [ € {2,--- ,n}. Hence, o = —mzy. O

A. First construction method of C-functions.

As discussed in Chapter 2, several systematic approaches exist for NCP functions,
typically relying on the property that a > 0,0 > 0,ab = 0 implies either a = 0 or b = 0.
Unfortunately, this implication does not hold in the setting of symmetric cones. Recall
from (1.28) (see also [85, Proposition 6]) that

xilCoayEICovxoy:O < :CEICO?yiK:Oa <.Z',y>:0
The core difficulty with symmetric cones K lies in the fact that
x>0, y>=x 0, oy =0 does not imply that x =0 or y = 0.

Nonetheless, as we shall see, the following assumption may help to compensate for this
limitation.
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Assumption 3.2. A function 6 : R™ — IR"™ is said to satisfy Assumption 3.2 if
(i) = =x 0 if and only if 6(z) =k 0.
(ii) for any x,y = 0, x oy = 0 if and only if O(x) 0 6(y) = 0.

Assumption 3.2(i) is a slightly weaker than the strictly increasing property mentioned
in Property 3.1, whereas Assumption 3.2(ii) is used to adjust the expression in a general
symmetric cone setting.

Proposition 3.90. Suppose that 0 : IR™ — IR"™ satisfies Assumption 3.2. Then, the
function ¢ : IR™ x IR™ — IR™ defined by

p(x,y) = 10(x) — 0(y)| — 0(x) — O(y)
1s a C-function in the symmetric cone setting.

Proof. It suffices to verify that ¢(x,y) =0 if and only if z =, 0, y = 0, zoy = 0.

“=” Assume that ¢(x,y) = 0, we observe

o(r,y) = 10(x) = 0(y)| —0(z) —0(y) =0
= |0(z) —0(y)| = 0(x) + 0(y)
= |0(z) —0(y)]* = (0(z) + 0(y))? (3.336)
= 0(x)* —20(x) 0 O(y) + 0(y)* = 0(x)* + 20(x) 0 O(y) + O(y)
< 0(z)o0(y) =0

Letting w = |0(z) —0(y)| gives w? = 0(x)? —20(x) o 0(y) +0(y)? = 0(x)*+0(y)*. Thus, we
have w? = 0(z)? and w? =, O(y)?. This leads to w =, O(x) and w =x O(y) by applying
Lemma 3.58. Since ¢(z,y) = 0, w = 6(z) + 0(y), it follows that 0(z) = w — 6(y) = 0
and 0(y) = w — 6(z) = 0. Using Assumption 3.2(i) of 6, we obtain =,y >=x 0. Then, we
further have x oy = 0 from Assumption 3.2(ii).

“<” Suppose that x = 0,y =x 0,z 0y = 0 and 0 satisfies Assumption 3.2. Then it
is clear to see that 8(x) = 0, 8(y) =x 0 and 6(z) o 8(y) = 0. This fact together with
(3.336) shows p(z,y) =0. O

What are some examples of 6(-) function that satisfy Assumption 3.27 Indeed, in
light of Theorem 1.1 and note that x € K if and only if A\;(z) > 0foralli=1,--- 7, we
can confirm that the following functions satisfy Assumption 3.2 in their domain:

01(z) = =z,

05(z) = 2P, where p is positive odd integer,
O5(2) = =z,

04(2) = 22 where 6, : K — K.
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Hence, by Proposition 3.90, these functions corresponds to C-functions ¢, s, @3, and
4 which are listed below.

1
pilz,y) = fo—yl = (2 +y) = —50w(,y);
po(z,y) = |2P —yP| — 2P — yP, where p is positive odd integer;
pa(r.y) = |zl —ylyl| — 2|z - ylyl;
vz, y) |x1/2 — yl/Q‘ — 22 — 12 where o4 : K x K — K.

Next, we explore composition forms of C-functions. More specifically, given a 6(-)
function satisfying Assumption 3.2 and any C-function ¢, the composition function
©(0(x),0(y)) is a C-function as well.

Proposition 3.91. Suppose that 0 : IR™ — IR" satisfies Assumption 3.2. Then, for
any C-function ¢ : IR" x R"™ — IR", the composition function o(0(z),0(y)) is also a
C-function.

Proof. “<” If v =x 0, y = 0,x oy = 0 and 0 satisfies Assumption 3.2, we have
O(z) =x 0 and 0(y) =x 0 by Assumption 3.2(i) and 6(z) o §(y) = 0 by Assumption
3.2(ii). Then, it follows that ¢(6(z),0(y)) = 0 since ¢ is a C-function.
“=7 If p(0(x),0(y)) = 0, we have 0(z),0(y) =x 0 and O(x) o O(y) = 0 since ¢ is a
C-function. Again, applying Assumption 3.2 yields z,y >x 0 and xoy =0. O

Since those functions 6y, 05, 03, 6, satisfy Assumption 3.2, we can employ them and

apply Theorem 3.91 to obtain more C-functions. For example, if we take the Fischer-
Burmeister function

Pes(,9) = (22 + 7)Y = (z +y),

then we achieve the following C-functions accordingly:

él(xay) = ¢FB(I7:U)7

Go(z,y) = (% +y*P)Y2 — (2P + yP), where p is positive odd integer;
Pa(zy) = ((zle))® + (ylyD*)? = (xlz| + yly));

sz, y) = (z+y)Y? = (@2 +y?), where ¢4 : K x K — K.

In fact, item(i) and(ii) in Assumption 3.2 can be combined together as a complemen-
tarity property, which is slightly weaker than Assumption 3.2.

Assumption 3.3. A function 6 : R" — R" is said to satisfy Assumption 3.3 if
vk 0, yzx 0, zoy=0 <= 0(x) zc 0, 0(y) =x 0, O(z) 0 0(y) = 0.

It is clear that Assumption 3.2 implies Assumption 3.3, but the reverse direction is
not true. It is noted that Assumption 3.3 is sufficient for Proposition 3.91. The following
is a weaker version of the composition form.
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Proposition 3.92. Suppose that 0 : IR" — IR" satisfies Assumption 3.3. Then, for
any C-function ¢ : R™ x R™ — IR", the composition function ¢(0(x),0(y)) is also a
C-function.

Proof. The proof is straightforward. Since ¢ is a C-function and 6 satisfies Assumption
3.3, we have

p(0(x),0(y)) =0
— 70, y>=0, zoy=0.
Hence, p(0(x),0(y)) is also a C-function. O

If we choose 0(z) = z, then the composition function ¢(6(z),0(y)) in Proposition 3.92
goes back to the original C-function ¢(x,y). If we choose p1(z,y) =z — (x — y)y =
bur (7,9), 0a(z,y) = (22 + y*)/? — (x + y) = by (7, y), composing them with different
0(-) leads to various C-functions.

1. Let 6(z) = zP where p is positive odd integer. Then, applying Proposition 3.92
implies

p1(0(2),0(y)) = 2 — (2" —y")4,
P2(0(x),0(y)) = (a2 +y*)"2 = (a7 + ),

are also C-functions.

2. Let 6(z) = z|z|. Then, applying Proposition 3.92 implies

p1(0(2),0(y)) = ala] — (zlz] —ylyl) .,
o2(0(),0(y)) = ((z]z)? + (wly)?) " = (xlz] + yly),

are also C-functions.

We now introduce a special class of functions that also satisfy Assumption 3.3. This
enables us to generate a broad family of functions 6(-), which can be effectively employed
in conjunction with Proposition 3.92.

Proposition 3.93. For any real-valued function f : IR — IR with the following proper-
ties:

(1) t >0 if and only if f(t) > 0;

(i) t =0 if and only if f(t) =0,
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the vector-valued function f5¢:IR™ — IR™ associated with IC, defined by

(x) = fOa(2))er + -+ fOn(2))e, Vo eV,

satisfies Assumption 3.3. Here, N\;(z) and {e;} fori=1,2,--- r are the spectral values
and the spectral vectors of x, respectively.

Proof. Let z,y € V, the spectral decompositions of x and y are given by

x = Z Ai(x)e; and y = Z Ai(y)f

Then, we have

T

Fr@) =Y fi(@)e; and  f7( Zf

i=1
From the above properties (i)-(ii) of f, we obtain

xtlcoa yiKoa ZL‘Oy:O
=k 0, y =x 0, (z, >:0

Ai(z) >0, Ni(y) >0, Z)\ y) (es, f5) =

Ai(z) 20, Aily) =0, >\z‘( i(y) = 0or (e, f5) =0

Fi(x)) =20, f(Xily)) = 0, f( i(2))f((y)) = 0 or (e;, f;) =0
fr(z) = 0, f(y) =x 0, Zf () {ei, f5) =0

J (@) = 0, 7 (y) =k 0, <fsc( ): [*(y)) =

fr@) =c 0, f(y) =x 0, f*(z)0 f (y) = 0,

where i = 1,2,--- ;rand j = 1,2,--- ,r. Thus, it is clear to see that Assumption 3.3 is
satisfied and the proof is complete.  [J

MIIHIIH

We list a couple of examples of f mentioned in Proposition 3.93. The first one is
f(t) = t? with positive odd number p. It is clear that the properties (i) and (ii) are held.
Hence, its corresponding SC-function reduces to the regular function f%(x) = zP. The

t
o which also possesses (i) ¢ > 0 if and only if f(¢) > 0; and (ii)
t =0 if and only if f(¢) = 0. Then, in light of Proposition 3.93, its SC-function satisfies
Assumption 3.3. This means we can employ this f* function as a choice of 6(-) function
in Proposition 3.92 to generate C-functions below:

0<w>:f“<x>=#@+lel+...+ﬂ

second one is f(t) =
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where © € V, \;(z) for i = 1,2,--- |r are spectral values of z, and {e;}/_; is a Jordan
frame. Note that the expression is not explicit.

Indeed, by applying Lemma 3.60, we can omit property(ii) in Proposition 3.93 in the
special case of the second-order cone.

Proposition 3.94. For any real-valued function f : IR — IR with t > 0 if and only
if f(t) > 0, the following vector-valued function associated with L7 (also called SOC-
function for short), defined by

F @) = FOu(@)ul? + fa(@)u?,
satisfies Assumption 3.3. Here, \;(x) and u;i), fori=1,2 are the spectral values and the
spectral vectors of x = (x1,T3) € R x R
Proof. Let © = (21,72) € R x R" ! and y = (y1,%2) € R x R" L.

For 5 = 0 or g5 = 0, it can be seen that x = 0 or y = 0 by Lemma 3.60. It follows that
f(x) =0o0r £ (y) =0 when Zy = 0 or 4, = 0. Hence, f(y) automatically satisfies
Assumption 3.3.

For Zy # 0 and g, # 0, from Lemma 3.60, we have

zin 0, y =i 0, oy =0
= N(z) >0, Ni(y) >0, i=1,2, and = = Xa(2)ul?, y = Xy(y)ulV

= f(N(@) >0, fNi(y) >0, i=1,2, and f™(z) = fFQa(@)ul?, () = fRa(y))ul!
= (@) = 0, f(y) m 0, 7 (@) o £ (y) =0,

where the desired result follows. Thus, the proof is complete. [

A trivial example of f mentioned in Proposition 3.94 is f(t) = 3, where it is easy to
check ¢t > 0 if and only if f(¢£) > 0. Therefore, from Proposition 3.94, its SOC-function
becomes

[ (@) = @) ul) + Na(2))*ul?),

and satisfies Assumption 3.3. Note that this expression is explicit due to (1.9)-(1.10).
Again, we can plug in 0(z) := f* (x) in Proposition 3.92 to construct C-functions in the
SOC setting.

In fact, Assumption 3.3 can be extended to the following two-function version.
Assumption 3.4. The functions 01,05 : IR™ — IR" is said to satisfy Assumption 3.4 if

=0, y=x 0, zoy=0 <= 01(x) =0, Os(y) =x 0, O1(z) 0 by(y) = 0.

By invoking Assumption 3.4, Proposition 3.92 can be naturally extended to a more
general setting, as presented below.
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Proposition 3.95. Suppose that 61,05 : IR — IR"™ satisfy Assumption 3.4. Then, for
any C-function ¢ : R™ x R™ — IR, the composition function (6 (x),02(y)) is also a
C-function.

Proof. The proof is straightforward. Since ¢ is a C-function and 6y, 6, satisfy Assump-
tion 3.4, it is easy to verify that

©(01(2), b2(y)) =0
< Oi1(z) = 0, O2(y) =x 0, 61(x) 0 by(y) =0
<~ .T>_']CO, yi/coa xoy:O
Hence, we show that ¢ (6 (), 6(y)) is also a C-function. O

Here are examples of 6;(-) and 05(-) in Proposition 3.95:
Oi(z) =2® +x and Oy(y) =ylyl.

Composing these two functions with the natural residual function ¢ (z,v) = 2 —(z—y)+
yields

P (01(2), 02(y)) = 2* + 2 — (2 + 2 — yly[)+

which is a C-function due to Proposition 3.95. Note that it is true that if we exchange
the position of #; and 6, in the composition. There is another surprising result that if
we switch the roles of ¢ and 6 in Proposition 3.95, the goal is still achieved.

Proposition 3.96. Suppose that 6 : R™ — IR" satisfies z = 0 if and only if 6(z) = 0.
Then, for any C-function ¢ : R™ x R™ — IR", the composition function O(go(-, )) s also
a C-function.

Proof. Since ¢ is a C-function and 6 satisfies z = 0 if and only if §(z) = 0, we have

H(go(a:,y)):() — o,y =0 <= x=c0, y=c0, xoy=0.

This proves that 6(¢(z,y)) is also a C-function. O

Below are several examples of functions 6(+) as referenced in Proposition 3.96:
1. 0(z) = 2P, where p is a positive integer;
2. 0(=) = |2;

3. 0(2) = f(2) where f*(z) is the SC-function induced from a real-valued function
f with ¢ = 0 if and only if f(¢) = 0.
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B. Second construction method of C-functions.

The central idea of the second construction method for C-functions lies in utilizing
existing NCP functions, originally real-valued, to generate C-functions, which are vector-
valued. This represents a novel and promising direction, revealing that the extensive
collection of known NCP functions (approximately sixty) can be systematically employed
to produce a rich variety of C-functions.

It is important to emphasize that a C-function is vector-valued, whereas an NCP
function is typically real-valued. The challenge of extending an NCP function to a C-
function has remained an open problem for several decades. In what follows, we present
a detailed exposition of how this extension can be achieved in the setting of symmetric
cones.

Proposition 3.97. Let ¢ : IR?> — IR be an NCP-function. For any x € V and y € V,
the following ® : V xV — V defined by

Z ¢ (A (y))eio fj
3,7=1
is a C-function, where {e;}i_,, {f;}j=, are Jordan frames of x and y, respectively.

Proof. Let z € V and y € V, the spectral decompositions of x and y are given by

xr = Z Ai(x)e; and y= Z () f

By definition of C-function, it suffices to show that ®(z,y) = 0 <= =z € K, y €
K, (z,y) =0.

“=" Since (e;, f;) > 0, it yields

O(r,y) =0 — 2(152 Ai(y))eio fj =0

2,7=1

= <Z¢ (y))eio fi.e >_O

zgl

Z & l0), N () (en, f3) =

¢2()\ (@), Aj(y)) =0 or (e fj) =
¢(Xi(x), Aj(y)) = 0 or <ei7fj>_0
Ai(@) 20, Aj(y) 2 0, X(2)A;(y) = 0 or (es, f) =0

reK, yek, Y M@)i(y) (e f;) =0

i.j=1

reK, yek, (x,y)=0.

IIIIIIMII
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“«<" By the above equivalences, we obtain

re, yek, (x,y) =0
= ¢*(\(@),N(y)) =0 or (e, f;) =0
< ¢*(Mi(7),\(y)) =0o0reof;=0
— > (Nil@), Aj()eio f; =0

i,j=1

— P(z,y) =0.

Thus, we achieve the desired result. [

In fact, if V = IR, then a C-function ®(z,y) reduces to an NCP function ¢*(z,y). It
is clear that we can write out components of ®(z,y) shown as in Proposition 3.97 in the
second-order cone setting. Let z = (z1,72) € R x R"™ and y = (y1,%2) € R x R".

~ (a+bugv,
P(z,y) = (CQQ dp, ) (3.337)
where
To e — b2 ep —
Uy = { Tl if Ty 7&.0 5y = ¢ Tl if 7&_0
w otherwise, 0 otherwise,

with any vector w,? € R"! such that ||w|| =1, ||J]| = 1, and

¢*(Mi(2), M(®) + ¢*(M(x), a(y)) + 6°(Na(2), M (1)) + ¢*(Ma(2), Ma(y))

a = 4 ’
y = PN@) () = (@) Aa(y)) — 92 (Aa(2), Ai(y)) + 9*(Aa(x), Aa(y))
A )
o = —NE) M) = P N(@) () + 62 Aa(@), M(y)) + 6*Aa(@), Ao (y)
4 ?
g = 2@ M)+ (Mi(2), Aa(y)) = *(he(), Mi(y)) + ¢*(ha(2), Aa(y))
4

Example 3.6. Consider the Fischer-Burmeister function ¢.,(a,b) = va?> + b*> — (a+b)
for all (a,b) € R x IR. Then the corresponding C-function is

%ﬂ@=2ﬁ&@ﬂﬂ%mﬁ

It is easy to see that

Du(z,y) =0 <= o(z,y) =" +y)?—(x+y) =0.
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As noted in [169, Section 3], the component-wise expression of ¢..(x,y) is quite intricate,
which implies that its subgradient formula is also complex. In contrast, by employing the
explicit formula for ®(x,y) provided in (3.337), the computation of the subgradient of
.. (z,y) becomes more tractable. Consequently, @, (z,y) may offer greater ease of im-
plementation in numerical experiments compared to ¢..(x,y) when solving the SOCCP.

Proposition 3.98. Let ¢ : IR? — IR be an NCP function. Suppose that x € V and
y € V with {e;}i_,, {fj}j=1 as their corresponding Jordan frames, respectively. Then,
the following ®', ®? : V x V — V defined by

®'(z,y) = Z #*(Ni(2), Ai(w))ei o f

(ZJ &1

Ploy) = Y F0u) M)

(4,9)¢I

are C-functions, where I = {(i,j) € {1,--- ,r}| (e;, f;) = 0}.

Proof. Using the proof of Proposition 3.97, it is easy to show that ®'(z,y) is a C-
function. We will now prove ®*(z,y) is a C-function. Note the fact that ¢; € K and
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(e;,e;) >0 forall i =1,--- 7. Therefore, we have
<I>2(x y)=0
= Z ¢*(A (y))e: =0
(.9)¢1
— <Z »* (N ))ei,e>:0
(i)l
< < Z ¢2 ))6i,zei> =0
Gs! i=1
— Z ¢*(\ (1)) (es &) =0
(4,9)¢1
— ¢2()‘Z(x)7)‘J< )) =0, (17]) ¢ I
= o(Nil2),Ai(y) =0, (i,)) ¢ 1
= (@) 20, \i(y) >0, Ni(2)\(y) =0, (4,5) ¢ 1
= zek, yek, Y M@ e f;) =0
(6.9)¢1
= rek, yek, Y M@N®) (en fi)+ D M@)Ai(y) (e f;) =0
(i5)¢! (i.4)el
= zek, yek, D N@\(y) (e f;) =0
ij=1

— zek,yek, (x,y)=0.

Then, the desired result follows. [
Note that from ®2(z,%) in Proposition 3.98, we obtain that

(2, y) Z O*(Ni(2), () f; and (. y) Z O*(Nil), A (1)) (es + f)-
(i.3)¢1 (1.9)¢1

are also C-functions.

We now establish C'-functions for the special case of two commutative operators x and
y which recover the existing C'-functions. In particular, x and y share the same Jordan
frame, that is,

r=M(x)er+ -+ M(2)e, and y =Ny (y)er + -+ Ao (V)er,

where o : {1,---,r} = {1,---,r}. Moreover, 2P = N(z)e; + --- + N(x)e, for any
positive number p.
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Proposition 3.99. Let ¢ : IR? — IR be an NCP-function. For any x € V and y € V,
the following ® : V xV — V defined by

O(z,y) = quw(x)? Aoty (¥))es

is a C-function, where {eq, ez, - ,e,} is a Jordan frame of x and y.

Proof. It suffices to show that &)(x,y) =0<=zek, yek, (x,y) = 0. Indeed, we
have

&)(m,y) =0

=
>
=
B
>
S
=
s
=
|
o

—
(-
=
>
=
—
>
2
=N
s
I
(-
=
>
O
>
X
S
=
\/
I
(e}

=
g
&
o >
Q.
S
[l
S o
-~
I

— zrek,yc

where (e;,e;) > 0 and (e;, e;) = 0 whenever ¢ # j. Then, the proof is complete. [
Note that if o(i) = ¢ for i = 1,--- ,r then

y=XMyer+-+A\ye,.
Since (e;, e;) > 0, we have

re,yek, (z,y) =0 <= XN(z)>0XN({y) >0, i(x)\(y) =0 = x=00ry=0.

Based on Proposition 3.99, we will show that 5(35, y) retrieves the existing C-functions
in the special case of two commutative operators x and y. In particular, we focus on two
popular NCP functions, which are the FB and NR functions

bon(a,b) = (a®+6°)"* = (a+1),
(bNR(a’b) = a—(a—b)+
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for any (a,b) € R x IR. The corresponding C-functions are

(I)FB (l’, y) = Z ¢FB ()‘l<x>7 )‘U(i) (y))eia

CDNR('T7 y) = Z ¢NR(>‘i($)v >‘0(i) (y))ei-

Then, there have

Pop(r,y) = @ps(z,y),

Dz, y) = on(z,y).

Since x and y operator commute, it implies
- - 1/2 - 1/2
Pyt = Ne+ > MpWe and (224337 =37 (M) + X ) e
i=1 i=1 ;

and

Hence, we obtain

e(wy) = D (@) + X)) " = @) + Ao (0)

and

= D A@e =3 (@) = Xy ), @

= T—- (.T - y)+ = QONR(ﬂf,y).

Similar arguments apply for other existing C-functions in the literature.

Remark 3.8. We point out a few comments to understand more about the construction
of C-functions by using NCP functions.
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(i) From Proposition 3.99 and [85, Proposition 6], we obtain that for any x € V, y € V,
x # 0,y #0, there holds

reK, yek, (r,y) =0 <=  AN(z)=0, \(y) =0, (x,y) =0, (3.338)

where \j(x) and N\(y), ¢ = 1,--- ,r are arranged in the increasing order A\ (z) <
o < A(2) and M(y) < - < A (y), respectively. Indeed, it is enough to prove
thatx € K, y € K, (xz,y) =0 = M\(x) =0, \(y) =0, (z,y) = 0. According
to [85, Proposition 6], we have that x and y operator commute which together with
the proof of Proposition 3.99 indicate

Ai(r) >0, Ni(y) >0, Mi(2)Aoiy(y) =0, i=1,---,r
= M(@)Aey(y) + -+ A () Aoy (y) = 0.

Using the rearrangement inequality, we obtain
0= M)Ay (Y) + -+ M (@) Aoty (4) Z M)A (y) + -+ Ar(2)Mi(y) = 0
which yields
M@ (y) =0, A(z)hi(y) =0 = Ma(z) =0, Mi(y) =0,
where \.(x) > 0 and \.(y) > 0 due to x #0, y # 0.

(ii) Using the relation (3.338), for any v € V and y € V and assume that \;(x) and
Ni(y), i =1, ,r are listed in the increasing order, the following holds

reK, yek, (z,y) =0
— o(M(z),\(y) =0, (z,y) =0 or (3.339)
o(M(z), Ar(y)) =0, ¢(A(2), M(y)) =0, (x,y) =0,

where ¢ is an NCP function.

(iii) We observe that constructing a general class of C-functions based on NCP functions
opens a novel avenue for addressing the SCCP, leveraging spectral eigenvalues and
spectral vectors (Jordan frames). In particular, we have identified a new direction
for solving the SOCCP and SDCP by formulating them as minimization problems
via the relation (3.339). Moreover, in the cases of two special symmetric cones, the
second-order cone and the positive semidefinite cone, the Jordan product admits
explicit expressions. This enables the construction of simplified C-functions for
these cases through the same relation (3.339).

As noted in Remark 3.8(iii), a simplified form of C-functions can be constructed for
both the second-order cone and the positive semidefinite cone by exploiting the rela-
tion (3.339). To illustrate this approach, we begin with the second-order cone setting,
employing Lemma 3.60, Lemma 3.61, and Lemma 3.62.
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Proposition 3.100. Let ¢ : IR? — IR be an NCP-function. For any v = (x1,T3) €
R x R™ and y = (y1,72) € R x R, the following two vector-valued functions
ol ®%: R" x R™ — IR" defined by

o) (¢<A1<x>,A1<y>>)

T1Y2 + Y122

P(A1(2), A2 (y))
P(2.y) = | o0ale), Ma(v)
Y3Tr — T3Yk

are C-functions in the second-order cone setting. Here, k € {2,--+ ,n} and

e T n—2 = T n—2,
xr3 = (x27“' s L—1, Lh+1, """ 7'1.TL) ER ) Y3 = (92,"' s Yk—1, Yk+1, " - 7yn) ER )

and \i(x), N(y) for i = 1,2 are the spectral values of x and y associated with second-
order cone, respectively. In particular, there holds ||Z2|lyx = —||G2|lzk # 0 for some

ke{2,---,n} when T3 # 0 and ys # 0.

Proof. For o = 0 or y5 = 0, from Lemma 3.60, we know that x = 0 or y = 0. Then, it
is easy to verify

xim 0, yim 0, zoy=0 <= (I)l(x>y):() and q)2(37ay):0-

Therefore, we only focus on the case of Z5 # 0 and 7, # 0.

(i) We first prove that ®!(z,y) is a C-function. To proceed, we note a fact that for any
r e}, yeL?, there holds

M) =0, 1iYa + nZa =0 <= \i(y) =0, 2192 + 1172 = 0.
This fact together with Lemma 3.61 yields

d(Mi (), M(y) =0
T1Y2 + Y172 =0

1Yz + Y122 =0
{ Ai(z) =0, A(y) =0

Ol (z,y) =0 <= {

< _ _
T2 + 172 =0

— 2zin 0, y =in 0, zoy =0.

Thus, ®!(x,y) is a C-function.
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(i) We now show that ®*(z,y) is a C-function. Applying Lemma 3.61 and Lemma 3.62,
it follows that

x>_]L7l0 y>LnO,(I;oy:O

M(z) =
= :..-0
| 7= [T
s
A
— |||y = ||y2||a:k # 0 for some k € {2,--- ,n}
L YiTe = T1Yk forall | € {2, s ,n}
FooE
¢ >\2 x 9)\1 y)) = 0
=\ %2l = —l1Tellzi # 0 for some k € {2, ,n}
( Y3Tk — T3yr =0

— ®*(x,y) =0.
Conversely, suppose that ®*(z,y) = 0. Due to ¢ being an NCP function, we obtain

(Mi(z), A2(y)) =0
p(Xa(z), Mi(y)) =0

Ysxp — T3yp = 0

A1) >0, /\2( ) >0, Mi(y) >0, Xao(y) >0
= 1 M@)h(y) =
Aa(2)A1(y) = 0

{ vely, yelh (3.340)

A () Aa(y) + Aa(x) A (y) = 0.

Note that \;(x) = x1 + (=1)Y]|Z2|| and X;(y) = y1 + (=1)"||7:2|| for i = 1,2. Hence, we
have

M(@)A(y) = 2y — | Z2ll|G2] + 21l|72]] — w1l Z2]l,
N(@)M(y) = 2y — 22|72l — 21 ||T2] + yul|Z2]]-

This fact together with (3.340) leads to

M (@) A2 (y) + Aa(2)A1(y) = 2(zay1 — [|Z2]]]|52]]) = 2(z191 + 23 52) = 0,

which says that (z,y) = 0. Thus, ®*(z,y) is a C-function. O

Note that in Proposition 3.100, the component 1% + 3179 of ®!(z,y) is a vector in
IR"~! while the component zx;, — Zzy of ®*(z,y) is a vector in IR"~2. Therefore, both
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ranges of ®!(x,y) and ®?(x,y) are in R™. It is well-known that there have plenty of
NCP functions in the literature. According to Proposition 3.100, we can convert them
into C-functions associated with second-order cone. We illustrate this using two NCP
functions in the following example.

Example 3.7. We consider two popular NCP functions as follows:
Ops(a,0) = Va2 +0?—(a+0b) and ¢, (a,b) =a—(a—b)y, Y(a,b) € R xIR.

In light of Proposition 3.100, it is not hard to see that

R LR ) P G

T1Y2 + Y172 T1Y2 + Y172
and
) ¢FB(>\1 <I>7 /\Q(y)) ) ¢NR<)\1(I)7 >‘2<y))
(@) = | Gen (o), W) | 4 (2,9) = | Oun(N2(2), Aa(y))
YTk — T1Yk YsTr — T3Yr
are C-functions, where ||Za||yr, = —||g2||xr # 0 for some k € {2,--- ,n} when Ty # 0 and
y? ?A 0)
T3 = (x27"' y Lh—1, Lht1, """ ’x’n)T S RR—Q’ Ys = (y27'” v Yk—1, Yk+1, " - 7yn)T S ]RTZ—27

and X\i(x), N\i(y) for i = 1,2 are spectral values of x and y, respectively.

Indeed, we can further conclude that
@;B(x,y) =0,i=12 <= ¢ (1,y) = (2 —|—y2)1/2 —(z+y)=0
and
¢ (r,y)=0,i1=12 <= o @y =r—(r—-y);=0
To see this, by definition of C-function and Lemma 3.61, for Z5 # 0 and g, # 0, we have

Oep(T,y) =0 <= xecll, yecll, zoy=0
= Ai(2) =0, M(y) =0, 2192 + T2 =0
— P! (z,y)=0.

For Z, = 0 or g, = 0, it is easy to check ¢, (z,y) = 0 <= ®! (z,y) = 0 by defi-
nition of C-function and Lemma 3.60. Similar arguments apply for other cases. The
above discussions indicate that ®!_(z,y) are C-functions and equivalent to the tradi-
tional complementarity function ¢, (z,y); ®_(x,y) are C-functions and equivalent to
the traditional complementarity function ¢, (z,y).

Remark 3.9. We elaborate more about Proposition 3.100 as below.
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(i) In Proposition 3.100, if ¢ is a continuously differentiable NCP function, then ®'(z,y)
and ®*(z,y) are continuously differentiable C-functions when Ty # 0 and 7, # 0.
Let y = F(x), where F : R" — IR™ is continuously differentiable. Then, the first
row of the Jacobian J®'(z,F(z)) and the first and second row of the Jacobian
JO?(x, F(x)) are described by

96 96

(JO'(z, F(x)), = MVM(Q:) + @) (DF(x)VA(F(z))) ,
: I I R
: 9 oy 06 o (T

when & € bd(L'})\{0} and F(x) € bd(L%)\{0}. Since ¢ is continuously differen-
tiable, it can be seen that

¢ B 0o _
¢ ¢
M(Az(x); 0)#0, and mm, Ao(F())) # 0,

when x € bd(L?)\{0} and F(z) € bd(L?)\{0}. Thus, for x € bd(L})\{0} and
F(z) € bd(L%)\{0}, the first row of the Jacobian J®'(x, F(x)) is zero and the
first and second row of the Jacobian J®*(x, F(x)) are nonzero. In summary, when
we apply Newton method to solve the SOCCP, ®*(z, F(x)) is a better choice than
Ol (x, F(x)).

(ii) It is generally difficult to derive explicit component-wise formulas for many of the
existing C-functions in the literature. However, Proposition 3.100 provides explicit
expressions for the components of ®'(z,y) and ®*(z,y), making the computation
of their subgradients significantly more tractable. This contrasts with the complex
formulation of the B-subgradient of the Fischer-Burmeister C-function, as shown
in [163, Proposition 3.1]. Consequently, employing ®'(x,y) and ®*(x,y) for solving
the SOCCP may facilitate easier implementation in numerical simulations.

(iii) Regarding Remark 3.8(ii)-(iii), we propose a new direction to tackle the SOCCP
which can be solved by the following unconstrained minimization problem

min ¢*(\1(x), M\ (F(2))) + (x, F(x»Q

zeIR™

or

min ¢*(Ay(2), Ao (F(2))) + ¢*(Na(2), M (F(2))) + (x, F(2))”,

zelR™

where F' : IR™ — IR™ s a map.
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Similar to Proposition 3.94, the SOC-function defined in (1.11) plays a pivotal role
in our second construction approach. The significance of certain special SOC-functions
within this framework is demonstrated in Proposition 3.101.

Proposition 3.101. Let ¢ : R* — IR be an NCP function. Suppose that F(x) is a
SOC-function induced from function f:IR — IR, which means F(x) can be written:

F(z) = fa(@)ul) + fQo(2))ul  or F(z) = fo(@)ul’ + f(\(2))ul?.
Then, there holds

rell, F(z)el?, (z,F(z))=0

¢(M(2), f(M(2)))
= O, F(2)) = [ ¢(ha(x), f(Aa(2))) | =0 or
0
¢(Mi(x), f(Ra(2)))
oYz, F(x)) = | ¢(Na(z), f(Mi(2))) | =0,
0

where ¥ = (21,T2) € Rx R and \;(z), ul) fori = 1,2 are the spectral values and the
spectral vectors of x, respectively.

Proof. We will prove for the case ®3(x, F(z)). Assume that F(z) can be written as

F(x) = f(@)ul? + fol@))ul?.
Hence, we have

rell, F(x)el?, (z,F(z)) =0

)
< Ai(@) 20, f(Mi(z)) 20, A(2)f(Aa(2)) + Ao(2) f(Aa(2)) = O
= (@) 20, f(Ai(z)) 20, M) f(M(z) =0, do(2)f(Ao(2)) =0
= d(M(2), f(M(2))) =0, o(Ma(2), f(A(2))) =0
—

®3(z, F(z)) = 0.

Similar arguments apply to the case when ®*(z, F(z)) =0. O

n(n+1)

Next, by using Lemma 3.59 and noting that S™*" = IR, , we show how to construct
C-functions based on given NCP functions in the setting of positive semidefinite cone.
We introduce the following notations for convenience. For any X,Y € S™*" we denote

Xi=[xi |- |%], YVi=[y1] - lyal,

where x; and y; for ¢ = 1,--- ,n are column vectors of matrices X and Y, respectively.
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Proposition 3.102. Let ¢ : IR? — IR be an NCP function. For any X,Y € S™", the
following two functions ®° : SP*" x S™*n — ]Rw, 1=1,2, given by

P(A1(X), Ai(Y))
XIY1

O(X,Y) =

P(X,Y) =

are C-functions. Here, the zero vector in ®'(X,Y") belongs to R whereas the zero

vector in ®*(X,Y) belongs to IR” = In addition, )\(X), N(Y) fori=1,--- n are
eigenvalues of matrices X, Y, which are arranged in the increasing order Aj(X) < -+ <
M(X) and \(Y) < -« < A\ (Y), respectively.

Proof. First, according to Lemma 3.59 and Ay (X) < -+ < A\ (X), M (V) <--- < A\ (Y),
we have

X>0,Y =0, (X,Y)=0
— X>0,Y >0, XY =0 (3.341)
<~ MN(X) >0, \(Y)>0, and XY = 0.

Suppose that X =0 or Y = 0, it is easy to see that
X=0,Y =0, (X,)V)=0 <= &(X,Y)=0 and ®*(X,Y) =0.

Therefore, it suffices to consider the case of X # 0 and Y # 0. Suppose that ®}(X,Y) =
0. Noting that (X,Y) = tr(XY) = >  x]y;, we have

A (X),\(Y)) =0
(I)1<X,Y>IO ¢( 1( )7 1( ))
xy;=0,i=1,---.n
AM(X) = 0,M(Y) >0
> Xy =0
— X>0,YV >0, (X,Y)=0.
Conversely, from (3.341), we know

X=0,Y =0,(X,Y)=0 = A(X)>0, \(Y)>0, and XY =0.  (3.342)
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We now claim that
(3.342) = M(X)=0, y(Y)=0, and XY =0. (3.343)

By contradiction, suppose that \;(X) > 0. Hence, \;(X) >0 foralli=1,--- ,n. It
follows that det(X) = A (X) --- A\ (X) > 0, that is, X is nonsingular matrix. Multiplying
both sides of XY = 0 by X! leads to Y = 0, which contradicts the fact that Y # 0.
Thus, A\;(X) = 0. Similarly, we can argue that A\;(Y") = 0. This says that A\ (X) A (Y) =
0, and then ¢(A(X), A\ (Y)) = 0. On the other hand, since XY = 0, x]y; = 0 for all
i=1,---,n. All the above concludes ®!(X,Y") = 0.

For the case of ®*(X,Y), likewise, we also have
(I)Q(Xa Y) =0 = ()‘n(X)y 1

M(X)>0,M(Y)>0
Z:Ll zy’l_o
— X>0,Y >0, (X,Y)=0.

Conversely, suppose that X = 0, Y = 0, and (X,Y) = 0. Hence, A\,(X) > 0 and
An(Y) > 0. From (3.342) and (3 343), we have

)\1(X) = 07 )\1(Y) = 0, and XY = 0.

This yields A (X)A,(Y) = 0and A\, (X)A1(Y) = 0, which further imply that ¢(A;(X), \,(Y)) =
0 and (A, (X), A\ (Y)) = 0. Moreover, since XY =0, x]y; = 0foralli = 1,--- ,n
Thus, we conclude that ®?(X,Y)=0. O

Note that both ®!(X,Y") and ®?(X,Y’) yield vectors in IR . Therefore, they could
be viewed as matrix-valued function. In fact, there exist a lot of matrix expressions for
®'(X,Y) and ®*(X,Y). For instance,

(n+1)

x| y1 (M (X), (Y)) 0 0
P(A(X), M (Y)) X5 Y2 0 0
PHX,Y) = 0 0 X3 Y3 0
0 0 0 aYn
X{¥1 (M (X), An(Y)) d(An(X), M (Y)) 0
P(AL(X), Au(Y)) X3 Y2 0 0
PX(X,Y) = | o(An(X), Mi(Y)) 0 X3 Y3 0
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Example 3.8. We consider the FB function ¢p.(a,b) = va?+b> — (a +b) for all
(a,b) € IR x IR. Their corresponding C-functions are

¢FB (/\1 (X)7 M (Y))
X{y1
@éB (X,Y) =

2
(I)FB (X’ Y> - ’

where \i(X), \i(Y) fori=1,---  n are eigenvalues of matrices X,Y , which are arranged
in the increasing order A (X) < -+ < A\ (X) and M\ (Y) < --- <\ (Y), respectively.

Likewise, in the setting of positive semidefinite cone, it is easy to see that
P (X,)Y)=0,i=12 <= ¢,(XY)=(X+Y)2—(X+Y)=0.

This feature indicates that CDéB (X,Y) are C-functions and equivalent to the traditional
complementarity functions ¢, (X,Y).

Remark 3.10. There are some other possible forms equivalent to ®*(X,Y) and ®*(X,Y)
in Proposition 3.102 without having a lot of zeros. For instance, we could define

(M (X), M (Y))
X{y1
PU(X,Y) =

P*(X,Y) = ,
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where \i(X), N\i(Y) fori=1,--- ,n are eigenvalues of matrices X, Y, which are arranged
. . . (n+1)(n—2) n2_n—
in the increasing order. Here, V;Y e R and Viy eR" = may have many

alternative forms, one pair of them s

1 (T T T T T
Viy = (X1y27”' 1 X1¥Yn: XoY3, o 7Xn72yn) )

2 (T T T T T
Viy = (Xl Yo, X1 ¥Yn, X0¥3, 00 7Xn72yn71) .

Again, there are many matrixz forms for 51(X, Y) and &)2()(, Y). We hereby provide one
matriz form as follows:

XIyl gb(/\l (X)7 /\1 (Y)) X-1ry2 e X-IFYn—l
(M (X), A (Y)) X, Y2 X|Yn 0 Xg¥no1
d(X,Y) = X{ys X! Yn X3y3 o XY
XIynfl X;ynfl X;-ynfl e X;I;yn
X Y1 P (X), M(Y)) ¢(An(X), M (Y)) -+ X{ynoo
¢()\1<X), >\n<Y)) X-2ry2 XIYnfl e X-QI-Yn72
PHX,Y) = | ¢(Aa(X), Mi(Y)) X{Yn-1 X3 Y3 e X3Yno2
X—lryn72 X-QI—YTL72 X;,ryan e XIYn

Note that it might be difficult in using ®'(X,Y) and ®*(X,Y) to define a merit
function || ®(X,Y)|]? for solving the SDCP due to the implicitness of eigenvalues of a
real symmetric matrix. Thus, we propose a new direction to deal with the SDCP through
NCP functions. More precisely, we will present a form of optimization problem for the
SDCP. Let F : S™*™ — S™" be a mapping. The SDCP is to find a matrix X € S"*"
such that

X eSSy, F(X)eSy™", (X, F(X))=0. (3.344)

According to the relation (3.338), the SDCP (3.344) is equivalent to find a matrix X €
8™ such that
A(X) =0, M(F(X)) =0, (X, F(X)) =0

when X # 0 and F(X) # 0. Using the fact that

AM(X) = min «"Xu and A (F(X)) = min v F(X)v.

flull=1 [[vll=1

Then, for the case X € bd(S7*") and F'(X) € bd(S}*"), the SDCP (3.344) becomes the

following bilevel optimization problem:

{ min  f(X, M (X), M(F(X))) := (M(X))? + (M (F(X)))? + (X, F(X))*
st. AM(X)=min u"Xu and M\ (F(X))= min v"F(X)v, X € S,

fJul|=1 l[oll=1
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If the minimal value is zero, then there exists a matrix X € S™*™ satisfying

which is a solution of the SDCP. We see that the above problem does not provide the
solution for the cases X = 0 and F(X) € int(S}*") or X € int(S7T*") and F(X) =
0. However, this will not happen if we use the same technique for ®!(X, F(X)) and
P?(X, F(X)). Note that

PHX,F(X) =0 <=

or

(X, F(X)) =0,

P*(X,F(X)) =0 < (M (X), \(F(X))) =0 and ¢(\,(X), M (F(X))) =0,

where ¢ is a given NCP function. Then, we have the corresponding bilevel optimization
problems:

min - f (X, A (X), M (F(X))) = (6(A(X), M (F(X))))? + (X, F(X))®
s.t. /\1(X)—Hrﬁ|1n1uTXu and A\ (F(X )):Ighillv F(X)v X e §vm,

or

min f(X, A (X), M (F(X))) = (@A (X), Ma(F (X)) + (6(Aa(X), M (F(X)))* + (X, F(X))*
st AM(X) = min u" Xu, \,(X)=max u' Xu, \(F(X))= mmv TE(X)v,

fJull=1 [[uf|=1 lloll=

and \,(F(X)) = ”m”al}i u'F(X)u, X € S™m.

Therefore, if the minimal value is zero, then there exists a matrix X € S™*" satisfying
A (X) >0, M(F(X)) >0, (X, F(X)) =0 which means that we can obtain the solution
on the boundary and interior of S7*".

At last, we introduce C-functions based on a special type of matrix-valued functions.
For a real-valued function f : IR — IR, recall from (1.14) that there is a corresponding
matrix-valued function defined by

S = FOMXO)UL+ -+ FO(X)) U,

where X has the spectral decomposition X = A (X)U;+- - -+ A\, (X)U,. For more details
regarding this special matrix-valued functions, please refers to [45].

Proposition 3.103. Let ¢ : IR> — R be an NCP function. Suppose that F(X) is the
matriz-valued function induced by a function f: IR — R, that is, F(X) is written as

FX) = fOu(X)Us + - + F(A(X)Un,



3.3. COMPLEMENTARITY FUNCTIONS ASSOCIATED WITH SYMMETRIC CONE387

with X = M(X)U; + -+ + \(X)U,, where N\i(X), i = 1,--- ,n are eigenvalues of
X and {U;}, is a Jordan frame. Then, for any X € S™ ", the following function

n(n+1)

o3 . S x S 5 IR™ 2 given by

(M (X), f(M(X)))

PXFX) = | o (X0, FOux)
0

n(n—1)
2

1s a C'-function, where the zero vector belongs to IR

Proof. Again, applying Lemma 3.59 yields

X >0, F(X)=0, (X,F(X))=0
— Xr0, F(X)>=0, XF(X)=0
— N(X)>0, f(MX))>0,i=1,---,n, and zn:/\,-(X)f(/\Z(X))UZ =0
— NX) >0, f(X)) >0, (X)f( (X)) = OZ,:; =1,---,n
— ¢()‘Z(X)> f(Az(X))) =0, 1=1, ) 1
— (X, F(X))=0

This clearly proves that ®3(X, F(X)) is a C-function. [

To close this section, we point out that there exists matrix forms for ®3(X, F(X)) in
Proposition 3.103, one of them is

¢(M(X), fF(M(X))) 0
(X, F(X)) = X ¢(a(X), f(2(X))) 0
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Chapter 4

Optimization Algorithms using
Complementarity Functions

In this chapter, we present several optimization algorithms that utilize complementarity
functions. As discussed in Chapter 2, there are four well-established approaches for solv-
ing the NCP, each of which can be extended to broader settings such as the SOCCP, the
SDCP, and the SCCP. Accordingly, the chapter is organized into four sections, with each
section illustrating one or two representative algorithms within a given approach, accom-
panied by various complementarity functions to highlight the algorithmic applications of
C-functions. Numerous related algorithms employing C-functions can also be found in
the literature; for further reference, see [25, 38, 47, 48, 58, 106, 111, 219, 225].

4.1 Merit Function Approach

In this section, we present the merit function approach for solving the SOCCP (3.1).
As will be shown, the problem is reformulated as an unconstrained minimization of an
appropriately defined merit function over IR”. We then introduce a descent method to
solve this unconstrained reformulation. Recall the SOCCP (3.1): the goal is to find
¢ € IR" such that

(F(€),0) =0, F(Qek, (ek,

where (-, -) is the Euclidean inner product, F': IR" — IR" is a smooth (i.e., continuously
differentiable) mapping, and K is the Cartesian product of second-order cones. In other
words,

K=K" x - x ',

where m,nq,...,n,, > 1, 01 +---+n,, =n, and
K" = {(x1,29) € R x R™ | ||25]] < 21},

389
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with || - || denoting the Euclidean norm and X' denoting the set of nonnegative reals R .
In addition, we also recall the YF complementarity function:

¢YF(‘I” y) = ¢0(<ZE, y>) + wFB('T7y)7 (4'1)

where 1y : R — [0, 00) is any smooth function satisfying
Po(t) =0 VE<0  and  9((t) >0 Vt>0. (4.2)

In [220], ¢o(t) = 3(max{0,¢})* was considered. As shown in Section 3.1.4, the function
Yy, 1s a C-function as well as a merit function, which enjoys favorable properties as
what 1, has. Moreover, 1, possesses properties of bounded level sets and error bound.

In this section, we focus on the following equivalent reformulation of SOCCP, which
arises via the merit function v, defined as in (4.1)-(4.2):

min f,.(¢)  where  f,:(¢) =ty (F(C), ) - (4.3)

¢elrRm

The algorithm is described as below, where the proposed method uses d(¢) given in
Proposition 3.37, i.e.,

d(¢) := = (Yo((F(C), O))C + Vathey, (F(C), 0)) - (4.4)

as its direction.

Algorithm 4.1. (Step 0) Choose (° € R", ¢ > 0, 0 € (0,1/2), 8 € (0,1) and set
= 0.

(Step 1) If f,.(C*) < e, then stop.

(Step 2) Compute d(¢*) == — (s ((F(C"),¢*))¢* + Vit (F(¢F), ¢F)) -

(Step 3) Find a step-size t, := (™, where my, is the smallest nonnegative integer m
satisfying the Armijo’s rule:
for (€4 87d(C)) < (1 =082 fo (CF). (4.5)

(Step 4) Set ("1 :=(F+t, d(¢*), k:=k+1 and go to Step 1.

It is worth noting that the above algorithm is V F-free, that is, it does not require
computation of the Jacobian matrix of F'. Furthermore, the computational effort per
iteration is minimal, involving only a few vector multiplications. This type of algorithm
has also been studied in the context of the NCP (see [81]) and the SDCP (see [220]). A
distinctive feature of such methods is that both the step size and the search direction are
adaptively adjusted via Armijo’s rule. In practical implementations, the parameter o is
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typically chosen close to zero, while 3 is often selected in the interval (%, %), depending
on the degree of confidence in the quality of the initial step size; see [8] for further
discussion.

We now proceed to establish the global convergence of Algorithm 4.1. Without loss
of generality, we assume € = 0, so that the algorithm generates an infinite sequence ¢*.

Proposition 4.1. Suppose that F is monotone and the SOCCP (3.1) is strictly feasible.
Then, the sequence {C*} generated by Algorithm 4.1 has at least one accumulation point,
and any accumulation point is a solution of the SOCCP (3.1).

Proof. The proof is standard and can be found in [8]. For completeness, we here present
its proof by the following three steps.

(i) First, we show that, whenever ¢* is not a solution, there exists a nonnegative integer
my, in Step 3 of Algorithm 4.1. Suppose not, then for any positive integer m, we have

fYF (gk + Bm d(ck)) - fYF (Ck) > _U/BZWfYF(Ck)

where d(¢) is described as in (4.4). Dividing by ™ on both sides and letting m — oo
yields
(Vfye(Ch),d(¢h)) > 0. (4.6)

Since F' is monotone which is equivalent to VF(() is positive semidefinite, the inequality
(4.6) contradicts Proposition 3.37. Hence, we can find an integer m;, in Step 3.

(ii) Secondly, we show that the sequence {¢*} generated by the algorithm has at least one
accumulation point. By the descent property of Algorithm 4.1, the sequence { £, (¢*) }ren
is decreasing. Hence by Proposition 3.39, we obtain that {¢*} is bounded, and conse-
quently has at least one accumulation point.

(iii) Finally, we prove that any accumulation point of {¢¥} is a solution of the SOCCP
(3.1). Let ¢* be an arbitrary accumulation point of {(*}ren. In other words, there is
a subsequence {C*}rex converging to ¢*, where K is a subset of N. We know d(-) is
continuous (since ¥y and 9, are smooth) which implies {d(C*)}rex converges to d(¢*).
Next, we need to discuss two cases. First, we consider the case where there exists a
constant (3 such that g™ > 3 > 0 for all k € K. Then, from (4.5), we have

fYF(Ck+1) < (1 - 0-/32)fYF(§k)

for all k € K and the entire sequence {f,.(C*)}rer is decreasing. Thus, we obtain
fye(€*) = 0 (by taking the limit) which says (* is a solution of the SOCCP (3.1). Now,
we consider the other case where there exists a further subsequence such that g™ — 0.
Note that by Armijo’s rule (4.5) in Step 3, we have

Foe (€4 ™71 d(CY)) = £ (¢F) > —aBm D £ (CF).
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Dividing by 8™ ~! both sides and passing the limit on the further subsequence, we obtain

(Ve (¢, d(¢) =0,

which yields that ¢* is a solution of the SOCCP (3.1) by Proposition 3.37. O

Proposition 4.2. Let F' be a continuously differentiable and strongly monotone mapping.
Then, the sequence {C*} generated by Algorithm 4.1 converges to the unique solution of
the SOCCP (3.1).

Proof. The proof is routine (see [63]), however, we present it for completeness. We know
that the property of bounded level sets is also held when F' is strongly monotone, so
following the same arguments as in the proof of Proposition 4.1, we again obtain that
{¢*} has at least one accumulation point and any accumulation point is a solution of the
SOCCP (3.1).

On the other hand, the strong monotonicity of F' implies that the SOCCP (3.1) has at
most one solution. To see this, say there are two solutions (*,&* € IR™ such that

{ (F(¢).¢7) =0, and { (F().€7) =0,
F(¢r)eK™, fe k" F(&) ek, & e K.

Since F' is strongly monotone, we have (F(¢*) — F(£*),(* — &*) > 0. However,

(F(¢) = F(£),¢" = &)
= (F(¢), ")+ (F(£7),87) = (F(C7), €7) = (F(£7),¢7)
= —(F(¢),&) = (F(£),¢)

< 0

where the inequality is due to F'(¢*), ¢*, F'(£*), " are all in ™. Hence, it is a contradiction
and therefore there is at most one solution for the SOCCP (3.1).

From all the above, it says there is a unique solution *, so the entire sequence {z*} must
converge to ¢*. U

We observe that Proposition 3.39 plays a crucial role in establishing Proposition 4.1
and Proposition 4.2. Notably, the assumption of strict feasibility is essential for the valid-
ity of Proposition 3.39. For instance, if F'({) = 0, then every ¢ € K™ is a solution to the
SOCCP (3.1), resulting in an unbounded solution set. In what follows, we explore a fur-
ther refinement by replacing the strict feasibility condition with a weaker one—namely,
the assumption that F'is an Rgi-function. Under this framework, Proposition 3.39 and
Proposition 4.1 are improved and generalized as Lemma 4.1 and Proposition 4.3, respec-
tively. These results are of particular importance not only because they are novel but
also because they eliminate the need for strict feasibility assumptions.
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Lemma 4.1. Let f . be given as in (4.3). Suppose that F' is a Ry -function. Then the
level set

L(y) ={CeR"| f1x(¢) <~}
s bounded for all v > 0.

Proof. We will prove this result by contradiction. Suppose there exists an unbounded
sequence {¢*} C L(v) for some v > 0. It can be seen that the sequence of the smaller
spectral values of {¢*} and {F(¢*)} are bounded below. In fact, if not, it follows form
Lemma 3.15 that f,.(¢*) — oo, which contradicts {¢*} C L(y). Therefore, {(—C*),}
and {(—F(¢*)),} are bounded above, which says the conditions of Ry;-function given in
(1.51) are satisfied. Then, by the assumption of Rg;-function, we have

lim inf —<<k’ ()

A T ER

This yields (¢*, F(¢*)) — oo, and hence f,.(C*) — oo by definition of f,. given as in
(4.3). Thus, it is a contradiction to {¢*} C L(y). O

Proposition 4.3. Let F' be a continuously differentiable mapping. Suppose that F is
Roy-function. Then, the sequence {C*} generated by Algorithm 4.1 has at least one accu-
mulation point, and any accumulation point is a solution of the SOCCP (5.1).

Proof. By applying Lemma 4.1 and follow the same arguments as in Proposition 4.1,
the desired results hold. [

As shown in [140, 204], the Ry;-function condition is weaker than strong monotonicity
and, in a certain sense, also weaker than the combination of monotonicity and strict
feasibility. However, it remains unclear whether the Ry;-function condition can be further
relaxed to that of an Rgo-function.

4.2 Nonsmooth Function Approach

In this section, we introduce a semismooth Newton method for solving the SOCCP.
Specifically, we formulate the problem as a nonlinear least-squares problem by employing
the Fischer-Burmeister function and the plus function. Consider the general SOCCP: find
¢ € R" such that

where (-, -) denotes the Euclidean inner product, F' : R” — IR™ and G : IR" — IR" are
assumed to be continuously differentiable throughout this section, and K is the Cartesian
product of second-order cones (SOCs), i.e.,

K:’CHIXKnZX-HXIqu,
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where ¢,n1,...,ng > 1, 0y +ng 4+ - +n, =n, and
K= {({Eil,.’ﬁig) R x ]R,niil | Ti1 2 H[Iflg”}

In the rest of this section, corresponding to the Cartesian structure of K, we write
F = (F,...,F,) and G = (Gy,...,G,) with F; and G; being mappings from IR" to
R™.

As mentioned in Chapter 3, the SOCCP (4.7) can be reformulated as the following
system of nonsmooth equations

(bFB(FI(C)? GI(C))
P (C) == : =0, (4.8)
D (F4(C), G4(Q))

which induces a natural merit function ¥, : R® — IR, for (4.7), defined by

V(€)= %II‘PFB(C)H2 = Z%B (Fi(€), Gi(Q)) (4.9)
with '
wFB(‘ri7yi) = §H¢FB('ri7yi)H2' (4'1())

Recently, we analyzed in [163] that, to guarantee the boundedness of the level sets of the
FB merit function ¥, it requires that the mapping F' at least has the uniform Cartesian

P-property (also see Section 3.1). This means that ¢, has some limitations in handling
monotone SOCCPs.

Motivated by the work [118] for the NCP setting, we give a new reformulation for
(4.7) to overcome the disadvantage of ¢,,. Let ¢ : R™ x IR™ — IR, be given by

(b(](a:iuyi) = ma’X{Oax'—iryi} ) (411)
and define the operator ® : R™ — IR"*7 as

p1 Gp (F1(C), G1(C))

| b (F0.Go(0)
Q= (RO, G0 | (4.12)

o2 do(Ey(C). Ga(0))

where py, po are arbitrary but fixed constants from (0,1) used as the weights between
the first type of terms and the second one. In other words, we define ® by appending ¢
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components to the mapping ®_,. These additional components, as will be shown later,
play a crucial role in overcoming the disadvantage of ¥, . mentioned above. Noting that

(" solves (() =0 <= (" solves the SOCCP (4.7),

we have the following nonlinear least-square reformulation for the SOCCP (4.7)

1 q
wuin W(0) = SR = D v (F(Q), Gil)), (4.13)
=1
where |
Ui, yi) 7= Pt Yo (24, 95) + §P§ do(zi,y:)°. (4.14)

This reformulation offers several advantages. First, the function ¥ belongs to the class
of merit functions f,, introduced in [41], which will be shown to possess more favorable

properties than W .. Second, the function ® inherits the semismoothness of @, and even

FB?
exhibits strong semismoothness under certain conditions. Leveraging these properties,

we propose a semismooth Levenberg-Marquardt-type method for solving (4.13), and
establish superlinear, or even quadratic, convergence under the assumptions of strict
complementarity and a local error bound.

Lemma 4.2. Let ¢p: R" x R" — R be defined as in (4.11). Then,
(a) the square of ¢q is continuously differentiable everywhere;
(b) ¢ is strongly semismooth everywhere on R™ x IR";

(c) the B-subdifferential Oppo(x,y) of ¢o at any (x,y) € R™ x IR"™ is given by

Opgo(r,y) = [aB<33'Ty)+Z/T aB(xTy)erT];

where
{1} if 2Ty >0,
Op (xTy)+ =< {1,0} if 2Ty =0,
{0}y if2Ty<o.
Proof. The results come from direct computation. [

Using Proposition 3.3 (b) and Lemma 4.2 (b), we readily obtain the semismoothness
of ®.

Proposition 4.4. The operator ® : R™ — IR""? defined by (4.12) is semismooth. If, in
addition, F' and G’ are Lipschitz continuous, then ® is strongly semismooth.
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Proof. Let ®; denote the i-th component function of ® for i =1,2,...,2¢, i.e., ®;(¢) =
Bus (Fi(Q), GH(Q)) for i = 1,2,.....q and &,(C) = do(F(C), Gi(()) for i = g+ 1.2
Then, the mapping ® is (strongly) semismooth if every ®; is (strongly) semismooth. For
1=1,2,...,q, &, : R" = IR™ is the composite of the strongly semismooth function ¢,
and the smooth function ¢ — (F;(¢),Gi(¢)), whereas ®,.; : R™ — IR is the composite
of the strongly semismooth function ¢ and the function ¢ — (F;(¢), G;(¢)). Moreover,
when F" and G’ are Lipschitz continuous, { — (F;(¢),G;(C)) is strongly semismooth.
By [73, Theorem 19], we have that every component function of ® is semismooth, and
strongly semismooth if F” and G’ are Lipschitz continuous. [

Proposition 4.5. Let ® : IR" — R""Y be defined by (4.12). Then, for any given ¢ € R™,
Ip®(C)T S VE(Q) [ (AC) = 1) p2C(Q] +VG(Q)[p1 (B() — 1) p2D(C)]
where C(¢) = diag(C1(C), ..., Cy(C)) and D(¢) = diag(D1(C), ..., Dy(C)) with
Ci(¢) € Gi(Q)(Fi(Q)TG:(()y and  Dy(¢) € Fi(Q)Ip(Fi(¢)TGi(C))+,

and A(C) = diag(A1(¢),...,A4(Q)) and B(¢) = diag(B1((),...,B,(C)) with the block
diagonals A;(C), B;(¢) € IR™*™ having the following representation:

(a) If F;(¢)*+Gi(¢)* € intK™, then A;(C) = LFi(C)L;%C) and B;(¢) = LGi(C)L;%CV where
() = (Fi(Q)* + Gi(OH)M2.
(b) If Fi(¢)? + G;(¢)? € bd" K™, then [Ai(C), Gi(C)] belongs to the set

; 1 tUz'Z(OT lu -
{ 2v/ 2w (Q) brio ( Wwin(C) 4 — U_Jz-z(C)u‘)iQ(g)T> T U (L —wi2(C)7) ,
L 1 @ia(C)" Lo
?TQRBL@@<ﬂm«>4f—mxo@x0T>+§%“v ﬂ@>ﬂ‘

wi = (Uin, W), vy = (Vi1, Vi) satisty |wir| < JJuil| < 1, |va| < |lvia]] < 1}7

where w;(¢) = (wi (¢), wi2(C)) = Fi(¢)* + Gi(C)* and win(C) = wia(C)/|lwin(C)]]-
(c) If (Fi(€), Gi(Q)) = (0,0), then [Ai(C), Bi(C)] € {[La,, La,]

1, . 0 V
{ [551 (LwiTz) — §uz (—Lwi:g) + 2L;, ( 0 (] — wizw;) ) ’

1 _ 1 i X ’
o (1) = goi (=1 @h) + 2L, ( 0 (I - @uw}) ) } ‘

Wiy € R™™ satisfies |Wie|l =1 and & = ({1, &), ws = (win, wiz), 0 = (Mi1, Mi2)

v; = (Ui, Vi2), Si = (Si1, Siz), wi = (wi1, wiz) satisty |&] < & < 1,

312 +1|2:]]* = 1} or

ui| < Jlu|l < 1, na| < 2l < 1, Jva| < fuill <1, 1s6]17 + [Jwil]* < 1/2}-
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Proof. Let ®; denote the i-th component function of @, i.e., ®;(¢) = ¢, (Fi((), Gi(C))
and ®,.;(C) = ¢o(Fi(¢),Gi(¢)) for i = 1,...,q. By the definition of the B-subdifferential,

Op®(O)T C 9p®1(Q)" x p®2(Q)T X -+ x IpPay(C)T, (4.15)

where the latter means the set of all matrices whose (n;_; +1)-th to n;-th columns belong
to Op®;(¢)" with ng = 0, and (n+ 4)-th column belongs to d5®,.;(¢)". Notice that

9p2:(Q)" C p1[VE() VGi(Q)] 08¢y (Fi(C), Gi(0))T,
OpPe+i(C)T € p2 [VEI(C) VGi(C)] Opdo(Fi(C), Gi(Q)) . (4.16)

Moreover, using Proposition 3.9 and Lemma 4.2 (c), each element in g, (F;(¢), Gi(¢))T

and Oppo(F;(¢), Gi(¢))T has the form of [ 228 : 5 } and [ g’l(é)) } , respectively, with
Ai(C), Bi(¢) and Cy(C), D;(¢) fori = 1,2, ..., q characterized as in the proposition. There-

fore, combining with equations (4.15)-(4.16) yields the desired result. [

To prove the fast local convergence of nonsmooth Levenberg-Marquardt methods, we
need to know that under what assumptions every element H € dp®((*) has full rank n,
where (* is an optimal solution of the SOCCP (4.7). To the end, define the index sets

T = {@ €{1,2,....q} | Fi(C) =0, Gs(CY) € inth”i},

B = {ie{L2....q}|F(C)ebd K™, Gi(C") € bd* K™},

J = {z € {1,2,...,q}| F(C*) € intK™, Gi(¢*) = o}. (4.17)
If ¢* satisfies strict complementarity, i.e., F;((*)+G;(¢*) € intKC™ for all 4, then {1,2,..., ¢}

can be partitioned as ZU B U J. Thus, suppose that VG((*) is invertible, then by rear-
rangement the matrix P(¢*) = VG(¢*) 'V F((*) can be rewritten as

Pz P(C)zs P(C)zg

(")
P(C") = P(C*)sz P(C*)ss P((")Bs
Pz P(C*)gs P((Nag

Now we have the following results for the full rank of every element H € dg®((*).

Proposition 4.6. Let * be a strictly complementary solution to the SOCCP (4.7) and
Z, J, B be index sets described as in (4.17). Suppose that VG(C*) is invertible and
let P(C*) = VG(C*)'VF(C*). If P(C*)zz is nonsingular and its Schur-complement
P(¢")zz := P(¢M)ss — P(C*)r P(C*) 72 P(C*) 15, in the matriz

( P(¢*)zz P(¢")zB )
P(¢*)sz P((")sB

has the Cartesian P-property, then every element H € Og®(C*) has full column rank n.
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Proof. Let H € 05®((*). By Proposition 4.5, we know H = < Zlgl ) with H{ from the
2119

set Ip®(¢*)T x -+ x9p®P,(¢*)T. From Proposition 3.12, it follows that H] is nonsingular
under the given assumptions. This implies the desired result rank(H) =n. O

The proof of Proposition 4.6 relies on a key property of the first block H;. However,
even when H; is singular, the second block Hy may still contribute to ensuring that the
overall matrix H attains full column rank n.

Lemma 4.3. Let ¢* be a solution of (4.7) such that all elements in Op®((*) have full
column rank. Then, there exist constants € > 0 and ¢ > 0 such that H(HTH)_lH < c for
all || — ¢*|| < € and all H € 05®(C). Furthermore, for any given v >0, H'H + vI are
uniformly positive definite for all v € [0,7] and H € 0p®(() with || — *|| < e.

Proof. The proof is similar to [178, Lemma 2.6]. For completeness, we here include it.
Suppose that the claim of the lemma is not true. Then, there exists a sequence {¢*}
converging to ¢* and a corresponding sequence of matrices {Hy} with Hj, € 9p®(¢*) for
all k € IN such that either H] Hj, is singular or H(H,CTHk)*lH — 400 on a subsequence.
Noting that H[ H, is symmetric positive semidefinite, for the nonsingular case, we have

1

| (H{ Hy) 7| = o (HTHR)

which implies the condition H(H,;er)_lH — 400 is equivalent to Ay (HI Hy) — 0.
Since ¢¥ — ¢* and the mapping ¢ — Op®(¢) is upper semicontinuous, it follows that
the sequence {Hy} is bounded, and hence it has a convergent subsequence. Let H, be
a limit of such a sequence. Then, )\mm(H*T H,) = 0 by the continuity of the minimum
eigenvalue. This means that H] H, is singular. However, from the fact that the mapping
¢ — 0p®(Q) is closed, we have H, € dp®((*), which by the given condition implies that
HT H, is nonsingular. Thus, we obtain a contradiction.

By the definition of matrix norm and the result of the first part, there exist constants
e > 0and ¢ > 0 such that [Apn(H"H + 1/[)}_1 = ||[(HTH +vI)™!|| < cforall v € [0,7]
and H € 0p®(() with ¢ with ||¢ — (*|| < e. This implies

T (HTH 4+ vT) u > M (HTH + 1) Jul® = Sul® Ve R
( )t > Amin ( >

c
Therefore, the matrices H'H + v are uniformly positive definite. [

Lemma 4.4. Let ¢ : R" x R™ — IRy be defined as in (4.14). Then, for any z,y € R,
(@) Y(z,y) =0 <= Y (r,y) =0 <= € K", ye K", (z,y) =0;

(b) ¥(z,y) is continuously differentiable;
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(c) (z,Vaib(z,y)) + (v, Vyb(a,y)) = 20(z,y);
(d) (Va(z,y), Vy(x,y)) > 0, and the equality holds if and only if Y(z,y) = 0;
(e) Y(z,y) =0 <= Vi(z,y) = 0 <= Vub(2,y) = 0 <= V,(z,y) = 0.

Proof. Part (a) is direct by the definition of ¢, and part (b) is from Proposition 3.5 and
Lemma 4.2(a). We next consider part (c¢). By the definition of ¢, for any z,y € R",

Vo(z,y) = piVaethu(2,y) + p3do(z,y)y,
Vyh(z,y) = piVybe(@,y) + p3do(z, y)z. (4.18)

From Proposition 3.6 and the definition of ¢(x,y), it then follows that

(2, Vaob(z,y)) + (y, Vo (2, v))
= 01 [z, Vatbes (,9)) + (U, Ve (2, 9))] + 205 do (2, y)z Ty
= p% ”¢FB (.’E, y)H2 + 2p% ¢0($7 y)2

= 2 (/ﬁ U () + %pg <bo(:v,y)2) + 3 do(x,y)?
2¢(z,y).

v

(d) Using the formulas in (4.18) and Proposition 3.6, it follows that

(Vato(2,9), Voo (@,9)) = pi (Vatbes (2, 9), Vb (2,y)) + praTyéo(, y)?
+p105 60(2, ) [(2, Vatbey (2,9)) + (4, Vit (2, 9))]
= 1 (Vathps (2,9), Vytes (2, 9)) + p3 do(2, y)°
+20105 do(@, Y)Yes (7, ). (4.19)

Note that for the second equality, we use the fact

- s T T2 [ (@Ty)? ifaTy >0,
(z"y) do(x,y)* = (z7y) (max{0, 2" y}) _{ 0 otherwise,

which says 2 Ty¢o(r,y) = ¢o(z,y)®. The first term on the right hand side of (4.19) is
nonnegative by Proposition 3.6, and the last two terms are also nonnegative. Therefore,
(Vo(z,y), Vy(x,y)) > 0, and moreover, (V9 (z,y), Vy ¢ (z,y)) = 0 if and only if

<vwaB<$7y)7 VwaB@j?y» =0 and ¢0(x,y) =0,

which, together with Proposition 3.6, implies the desired result.

(e) If ¥(z,y) = 0, then from the definition of ¢, we have ¢, (z,y) = 0 and ¢g(x,y) =
0. From Proposition 3.4, we immediately obtain V¢, (x,y) = V, ., (x,y) = 0, and
consequently V ¢ (z,y) =0 and V,(z,y) = 0 by (4.18). If V¢)(x,y) = 0, then by part
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(c) and the nonnegativity of ¢ we get ¢(x,y) = 0. Thus we prove the first equivalence.
For the second equivalence, it suffices to prove the sufficiency. Suppose that V¢ (z,y) =
0. From part (d), we readily obtain ¢(z,y) = 0, which together with part (a) and
(4.18) implies V)(z,y) = 0. Consequently, Vi)(z,y) = 0 <= V,¥(z,y) = 0. Similarly,
Vi(z,y) =0 <= V,(z,y) = 0. This implies the last equivalence. [

From Lemma 4.4(b), it is clear that the function ¥ is continuously differentiable.
In addition, in light of Lemma 4.4(d), we shall prove that every stationary point of W
is a solution of (4.7) under mild conditions. To this end, we recall that, two matrices
My, My € IR™™ are called column monotone if, for any u,v € IR", Mju+ Myv =0 =
uTv = 0.

Proposition 4.7. Let U : R" — R, be defined by (4.13)-(4.14). Then, every stationary
point of U is a solution of the SOCCP (4.7) under one of the following assumptions:

(a) VF(¢) and =V G(() are column monotone for any ¢ € IR™.
(b) For any ¢ € R", VG(() is invertible and VG(¢) 'V F({) has Cartesian Py-property.

Proof. When the assumption (a) is satisfied, using the same arguments as those of [41,
Proposition 3] yields the desired result. Now suppose that the assumption (b) holds. Let
¢ be an arbitrary stationary point of ¥ and write

U
V,a(F(C),G(Q) = (Vi (Fi(S),Gi(0)) Wb

v (0), G4(Q)))
Vi W(F(0), G(0))) -

Iy
Fy(€)
Then,

VI(() = VE(QV.4(F(C),G(Q)) + VG(Q) V1 (F(C), G(C) = 0,

which, by the invertibility of VG, can be rewritten as

VG(Q)'VE(QOV1(F(C), G(Q) + Vi (F(C), G(C)) = 0. (4.20)

Suppose that ¢ is not the solution of (4.7). By Lemma 4.4(e), we necessarily have

VaU(F(Q), G(C)) #0.

From the Cartesian Py-property of VG(() "'V F((), there exists an index v € {1,2,...,q}
such that V., ¥ (F,((),G,(¢)) # 0 and

(Va, (F.(C), Gu(C)). [VG(O VOV (F(C), G(0))],) = 0. (4.21)

In addition, notice that (4.20) is equivalent to

(VGO VEOVA(F (), GO, + Vyt(Fi(€), Gi()) =0, i=1,2,....q.
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Making the inner product with V,, ¢ (F((), G(()) for the vth equality, we obtain

(Va, (F(Q), Go(Q)), [V T VF(Q VLt (F(C ) G()],)
H(Va, ¥(F,(0), Gu(Q)), Vi, ¥ (E,(C), Gu(Q))) =

The first term on the left hand side is nonnegative by (4.21), whereas the second term is
positive by Lemma 4.4(d) since ¢ is not a solution of (4.7). This leads to a contradiction,

and consequently ¢ must be a solution of (4.7). O

When VG(() is invertible for any ¢ € IR™, the assumption in Proposition 4.7(a)
is equivalent to the positive semidefiniteness of VG(()"'VF(() at any ¢ € IR", which
implies the Cartesian Py-property of VG(()"'VF(¢). Thus, when it reduces to the
SOCCP (3.1), the assumption in Proposition 4.7(a) is stronger than the assumption in
Proposition 4.7(b), which is now equivalent to the Cartesian Py-property of F'. Next we
provide a condition to guarantee the boundedness of the level sets of W

Lo(y) :={¢ € R"[¥(() <7}

for all v > 0. This property is important since it guarantees that the descent sequence
of ¥ must have a limit point, and furthermore, the solution set of (4.7) is bounded if it
is nonempty. It turns out that the following condition for F' and G is sufficient.

Condition 4.1. For any sequence {C*} satisfying ||C*|| — +oo, whenever
limsup || [-F(¢")]+|| < +o0 and  limsup ||[[-G(¢¥)]4 || < +oo, (4.22)

there exists an index v € {1,2,...,q} such that limsup <F,,(Ck), GV(Ck)> = +4o00.

Proposition 4.8. If the mappings F' and G satisfy Condition 4.1, then the level sets
Ly () are bounded for all v > 0.

Proof. Assume that there is a unbounded sequence {¢¥} C Ly (7) for some v > 0. Since
U (¢F) < for all k, the sequence {¥,.(¢*)} is bounded. By Lemma 3.7,

lim sup ||[—E(a:k)]+H < 400 and limsup H[—GAJC’“)MH < 400

hold for all ¢ € {1,2,...,q}. This shows that F' and G satisfy Condition 4.1, and hence
there exists an index v such that limsup (F, (¢¥), G, (¢*)) = +oc. From the definition of
U it follows that the sequence {¥(¢*)} is unbounded, which clearly contradicts the fact
that {¢*} C Ly (7). Thus, the proof is complete. O

Condition 4.1 is relatively mild for ensuring that ¥ has bounded level sets. As will be
shown below, this condition is satisfied under various settings, including jointly monotone
functions with a strictly feasible point, used in Section 3.1.4 for f, . and f,,, the jointly
uniform Cartesian P-functions with a feasible point, and the joint Ry-functions (see
Definition 1.16).
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Proposition 4.9. Condition 4.1 is satisfied if one of the following assumptions holds:

(a) F and G are jointly monotone mappings satisfying ”C”lim |FO|+[|G(Q)]| = +oo,
—+00
and there exists ¢ € R™ such that F(C), G(¢) € int(K).

(b) F and G have jointly uniform Cartesian P-property, and there ezists a poz’nté’ cR"

~ ~

such that F(¢),G(¢) € K.
(c) F and G have the joint R, -property.

Proof. In the proof, let {¢*} be a sequence such that ||¢*|] — +oo and (4.22) holds.
(a) First, {\[F(¢®)]} and {\[G(¢*)]} must be bounded from below. If not, using

I[=a]+]1” = (max{0, =Ai(2)})" + (max{0, =X ()})*,

we obtain lim sup ||[[—F(¢¥)] || = +oo or limsup ||[-G(¢*)]+|| = +o0, which contradicts
the assumption that {¢¥} satisfies (4.22). Noting that ||F(¢*)|| + ||G(¢¥)|| — +oo and

the lower boundness of {\;[F(¢¥)]} and {\[G(¢*)]} for i = 1,2 implies
limsup As [F(¢¥)] = 400 or limsup A, [G(CF)] = +oc.
From the proof of Lemma 3.15 (b), it then follows that
limsup { (F(C"), G(O)) + (F(O), G(¢)) | = +oc. (4.23)
Now suppose that Condition 4.1 is not satisfied. Then, we necessarily have
lim sup(F;(¢7), Gi(¢M)) < 400 forall i=1,2,...,q.

In addition, from the joint monotonicity of F' and G, we have

~

(F(C"),G(QO) + (F({),G(C) < (F(CM),G(¢h) + (F({),G(Q))
= Zm(c’“), Gi(¢") + (F({), G(Q))-

The last two equations imply lim sup{(F(¢*), G({)) + (F({), G(¢*))} < +o0. This clearly
contradicts (4.23), and consequently the desired result follows.
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(b) From Definition 1.10, there exists a constant p > 0 such that
it =8P < max {(A(CH) ~ F(O.Gi(¢) — G(O) ]
= (F,(¢"), Gu(¢) + (F(Q), —Gu(¢")
H(=F(¢"), G Q) + (F,(0), Gu()
(FL(¢*), Gu(¢M) + (Fu(C), [=Gul¢M)])
H([=F(M)]4 Gol(Q)) + (F(C), Gu (<)),

where v is one of the indices for which the max is attained which we have, without loss

IN

of generality, assumed to be independent of k, and the second inequality is since

F,(¢) e K™, G,(¢) e K™, [-F,(CM)- € -K™, [-G,(C")]-e-K™.
Dividing the last inequality by ||¢*||* and taking the limit, it follows from (4.22) that

L (6, Gu(h)

N T

>p>0,

which immediately implies the result.

(c) Clearly, {¢*} satisfies (1.58), and the result then follows from the following implica-
tions:

timing FELCEN g g MXAURE), GilC)}
k—s-too 11 pard 1]

= max{(F(¢h), Gi(()} — +oo.

>0

Thus, we complete the proof of this proposition. [

When G(¢) = ¢, if we replace (1.59) with limn inf (F(CH), GIC"N/NICEI? > 0, then

Definition 1.16 indicates that F is a Ry function. Thus, Proposition 4.8 and Proposition
4.9 (a) show that ¥ has bounded level sets under a weaker condition than the one given
by Proposition 3.39 for the class of merit functions f, .. Now, we show that the function
U provides a global error bound for the solution of the SOCCP (4.7) under the jointly
uniform Cartesian P-property of F' and GG. Since the jointly strong monotonicity implies
the jointly uniform Cartesian P-property, the global error bound condition is weaker
than the ones for Proposition 3.38 and Proposition 3.48.

Proposition 4.10. Let (* be a solution of the SOCCP (4.7). Suppose that F' and G
have the jointly uniform Cartesian P-property. Then, there exists a scalar k > 0 such
that

¢ = ¢ < kT2 V¢ e R™
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Proof. Since F' and G have the jointly uniform Cartesian P-property, there exists a
scalar p > 0 such that, for any ¢ € IR™, there is an index v € {1,2,..., ¢} such that

:OHC - Q*H2 S <Fu(<> - Fu(g*)v GV(C) - Gu(g*»
= <FI/(C)7 GV(C)) + <_FI/(C)? GV(C*)> + <FV(C*)7 _GV(C»
< G0(Fo(€), Gu(Q) + I[=F Q)+ NG (N + IE MGl
< (BBl Gl + = FA QL4 + =G ()]
< o(0(Fo(0): Gul)) + Hhen (F(0), Gul)?)
< o(V2Upatd/m) Q)

where ¢ := max{1, ||G,(C*)], ||F,(¢*)||}, the second inequality is using the fact that
G,(C*) € K™ and F,((*) € K™, and the next to last inequality is due to Lemma
3.7. Letting s := (¢/p)(v/2/pa 4+ 4/p1), we obtain the desired result. O

It is well known that the Levenberg-Marquardt method based on equation (4.12)
offers the advantage of reducing the complementarity gap (x, F'(x)) for the NCP more
effectively than the traditional nonsmooth method using equation (4.8) (see [118]). This
observation motivates our adoption of a Levenberg-Marquardt-type method with line
search for solving the nonlinear least-squares problem (4.13). The iterative scheme is
presented below.

Algorithm 4.2. (Semismooth Levenberg-Marquardt Method)

(S.0) Choose a starting point ° € R™, the parameters py, ps € (0,1), n,8 € (0,1), and
o€ (0,1/2). Given a tolerance € > 0, and set k := 0.

(S.1) If [|[VE(¢H)|| < e, then stop.
(S.2) Choose Hy, € Op®(¢*) and vy > 0. Find a solution d* € R™ of linear system
(HiHy + v l) d = =V¥(¢Y), (4.24)
where v, > 0 s the Levenberg-Marquardt parameter.

(S.3) If d* satisfies
lo(ck + )] < nlleh]. (4.25)

then ¢k = ¢k 4 d*. Otherwise, compute t;, = max{f' | 1 =0,1,2,---} such that

U(CF 4 td™) < U(CF) + o, VI (CF)TdF, (4.26)

and let (F+1 = ¢k 4 t.d".
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(S.4) Setk:=k+1, and go to (5.1).

Notice that the above method is different from the classical Levenberg-Marquardt
method for nonlinear least-square problems in that ® is not continuously differentiable.
If v, = 0, the solution of (4.24) is exactly the solution of the linear least-square problem

min = ||y + ()7,

since VU(¢*) = HI®(¢*). In this algorithm, we choose the parameter v, by

v := min {p1, p2||2(¢") ||}, (4.27)

where py,ps > 0 are given constants and g is a real number from interval [1,2]. Such
choice is consistent with the requirements for local superlinear (quadratic) convergence
stated in Proposition 4.12 and Proposition 4.13 below, as well as adopted by our numerical
experiments.

In the following, we examine the convergence properties of the proposed algorithm.
To facilitate this analysis, we assume ¢ = 0. We begin by presenting a result on global
convergence.

Proposition 4.11. Let {¢*} be the sequence generated by Algorithm 4.2 with vy, updated
by (4.27). Then every accumulation point of {C*} is a stationary point of W.

Proof. From the steps of Algorithm 4.2, {¢*} is well defined since v, > 0, and d*
determined by (4.24) is always a descent direction of ¥ at ¢*. Let ¢* be any accumulation
point of {¢¥} and {¢*}x be a subsequence converging to (*. Suppose that V¥(¢*) # 0.
Since {¥(¢*)} is monotonically decreasing and bounded below, and {W(¢*)}x converges
to W(C*), the entire sequence {¥(¢*)} converges to U(¢*) > 0. This implies that (4.25)
holds for only finitely many k € K, and the inequality (4.26) is satisfied for all sufficiently
large k. Since W(¢FY) — U(¢F) < o, VU(CF)Td* < 0 for all sufficiently large k, using
W(¢Ck+) — W(¢F) — 0 yields

{t,VU(C*)Td"} . — 0. (4.28)

We next prove {V\I/(Ck)Tdk}K has a nonzero limit as k — +oo. By the definition of d*,
VU(CH)Td* = —VW(CMT (HT Hy + wd)” VU(CF) V. (4.29)

Since the B-subdifferential 0p®(() is a nonempty compact set for any ¢ € R", {H}x
is bounded. Without loss of generality, assume that { H;}x — H,.. Considering that the
set-valued mapping ¢ — 9p®(() is closed and {¢*}x — ¢*, we have H, € 95®(¢*). In
addition, since ®(¢*) # 0, we have v, — v, with v, = min{py, p2||®({*)||¢} > 0. Thus,
{H!H}, + vjrex — HTH, +v.I = O. This, together with (4.29) and the continuity of
VU, implies that {VU(¢*)Td*} ¢ has a nonzero limit as k — +oo. From (4.28), it then
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follows that {tx}x — 0. Now, for all sufficiently large k, let [, € {0,1,...} be the unique
exponent such that ¢, = 8. Since {t;}x — 0, we have {l} }rex — 0o. From the Armijo
line search in (S.3), for all k € K sufficiently large,

U(¢k + phtdh) — (k)
/Blk—].
Taking the limit & — oo with & € K and using {l;}x — oo and {¢*}x — ¢*, we have

VU(¢)Td* > oVU(¢*)Td*. This means V¥ (¢*)Td* > 0. On the other hand, we learn
from (4.24) that {d*} — d* with d* being the solution of

> oV (¢F)Tdr

(HIH, +vI)d = -V,

which implies that V¥(¢*)7d* < 0 since (H] H, + v.1) = O. Thus, we obtain a contra-
diction. [

Observe that the sequence {¢*} generated by Algorithm 4.2 always belongs to the level
set Lg(P(¢?)). By Proposition 4.8 and Proposition 4.9, the existence of accumulation
points of {¢¥} is guaranteed by one of the assumptions of Proposition 4.9. Since, when
F and G have the jointly uniform Cartesian P-property, the SOCCP (4.7) has at most
one solution, {¢*} must have a unique accumulation point which is the unique solution
of (4.7) if F' and G satisfies the assumption (c) of Proposition 4.9. For the SOCCP (3.1),
the sequence {¢*} has accumulation points and each of them is a solution under the
assumption that F' is monotone and (3.1) is strictly feasible.

We now establish the superlinear (or quadratic) convergence rate of Algorithm 4.2
under the assumption of strict complementarity at the solution. While this condition
may appear somewhat stringent, we will subsequently relax it by employing a local error
bound assumption.

Proposition 4.12. Let {¢*} be generated by Algorithm 4.2 with vy given by (4.27).
Suppose that C* is an accumulation point of {C*} with ¢* being a strictly complementary
solution of (4.7), and F and G at (* satisfy the condition of Proposition 4.6. Then,

(a) the entire sequence {C*} converges to C*.

(b) The full stepsize tp = 1 is always accepted for sufficiently large k and the rate of
convergence is Q-superlinear.

(c) The rate of convergence is Q-quadratic if, in addition, F' and G" are locally Lipschitz
continuous around ¢* and vy, = O(||®(¢Y)])).

Proof. The proof is similar to the one given by [118]. For completeness, we include it.

(a) By the proof technique of [55, Theorem 3.1 (b)], it suffices to prove that (* is an
isolated solution. From Proposition 4.6 and Lemma 4.3, there exist €1, x; > 0 such that

IH(C = )P = (¢ = ¢VHTH(C = ¢) = kall¢ = ¢
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for all ¢ satisfying || — (*|| < 1 and all H € dp®((). In addition, the semismoothness
of ® implies that there exists 5 > 0 such that

12(C) — @(¢7) = H(C — Il < (VE/2)[I¢ = ¢
for all H € 0p®(¢) with ¢ satisfying || — ¢*|| < e2. Set ¢ = min{ey,e3}. Then, we have
SO [H(C =) + (2(C) = ©(¢7) = H(C =)l

> [ H(C =) = [19(¢) = 2(¢7) = H(C = ¢
> (Ve /2)l¢ =l

for all ¢ with || — ¢*|| < e. This means that ¢* is an isolated solution of the SOCCP.
(b) We first prove that for all sufficiently large k,

IS + @ = ¢l = o(lIc" = ¢ (4.30)

By part (a), the sequence {¢¥} converges to a solution (* satisfying the assumptions of
(HTHy + VkI)_lH < ¢ for

all k. Noting that the sequence { Hy} is bounded, there exists ¢; > 0 such that ||H,€T|| <
for all k. Using Proposition 4.11 and the fact that ®(¢*) = 0, we obtain

Theorem 4.6. From Lemma 4.3, there exists ¢ > 0 such that ‘

I¢F 4+ d* — ¢ 1" — (H{ Hy + vy ) 7'V (CF) = ¢l

I(Hy H + v D) IV (CY) — (HY Hy, + v )(¢F = ¢
c| Hf ®(¢*) — Hy Hy(¢F = ¢*) — wi(¢F = ¢

= | H(D(¢F) — @(¢) — Hi(¢" = () = m(¢" = O

c(erl|(¢F) = 2(¢") = Hil(¢* = )+ wllch = ¢l

Notice that ®(¢*) — ®(¢*) — Hi(¢* — ¢*) = o(]|¢* — ¢*||) by the semismoothness of @,
whereas v, — 0 by part (a) and the continuity of ®. Thus, the inequality implies (4.30).

VARVAN

IN

To prove that the full step is eventually accepted, by (4.25), it suffices to show that

_U(F+dr)
om0

Since all element V' € dp®,,(C*) are nonsingular by Proposition 3.12, from Lemma 4.3
and the proof of part (a), there exists a constant o > 0 such that

12| = p1l| @ (C)| = lIC" = ¢
Using the locally Lipschitz continuity of ® and (4.30) then yields

[2(¢* +d)]| _ 1®(¢* +d*) — (¢ _ LII¢" +d" — 7]
[R{CS] - al|¢r — ¢l - af¢t =

— 0,
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where L. > 0 denotes the locally Lipschitz constant of ®. Thus, the step size t, = 1 is
eventually accepted in the line search criterion, i.e., (¥ = (¥ +d* for all k large enough.
Consequently, Q-suplinear convergence of {¢*} to ¢* follows from (4.30).

(c) The proof is essentially same as for the superlinear convergence. We only note that

vy in (4.27) satisfies v, = O(||®(¢%)|]) = O(||¢F — ¢*||) for k large enough, and
O(Ch) — @(¢") — Hi(¢" = ¢") = O(lIc" = ¢*11?)

due to the strong semismoothness of ® by Proposition 4.4. [
Assumption A. There exist constants ko > 0 and 0 < § < 1 such that

k2 dist(¢, 87) < [[R(Q)] V¢ € N(C,9), (4.31)
where S* denotes the solution set of the SOCCP (4.7) and is assumed to be nonempty.
Lemma 4.5. Let (¥ be generated by Algorithm 4.2 with vy given by (4.27). Suppose
that F' and G' are Lipschitz continuous on N(C*,0) and Assumption A holds. If v, =
p2||®(CF)||2 and ¢F € N(C*,0/2), then there exists a constant ¢; > 0 such that ||d*|| <
cidist(Ck, S*). If, in addition, C* + d* € N'(C*,/2), then there exists a constant c3 > 0

such that
dist (¢ + d¥, 5) < ey dist (¢¥, 5%) @272

Proof. Let (" € S* be such that ||¢* — ¢¥|| = dist(¢*, 5%). Then, ¢¥ € N(¢*,6) since
[CF = ¢ < |I¢F =¥ + |1k = ¢ < 2]¢F = ¢
Noting that ® is Lipschitz continuous on N(¢*,¢), there is a constant L; > 0 such that
[@(¢H)]| = [|@(¢F) — (CM)|| < La[|¢" — ¥
Combining with the inequality (4.31), we have
pa w8 [|CF = CF||* < v = po [|@(CH)[|* < poLf || = CF|)° (4.32)

On the other hand, since ® is strongly semismooth on AN (¢*, ) by Proposition 4.4, there
exists a constant ¢ > 0 such that

[@(¢%) + Hi(¢" = (M| = [|[@(¢*) — @(¢") — Hi(¢" = M) < ¢
Now, define

<.

=P (4.33)

or(d) == || @(¢*) + Hyd||” + || (4.34)

Then, from (4.34), it is clear to check that d* is a minimizer of ¢y (d). This, together
with (4.33) and (4.32) yield

”dkHZ < on(dk> < ka(ék_gk) _ Hq)(gk)+Hk(ék_Ck)HQ—i_VkHEk_CHP
Vg Vi Vg
< é2p271/£279 Hék _ CkH‘P@ + Hc_k . <k

= (Ppytry 1) |0 ¢

I
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which implies the first part with ¢; = 1/é2p; 'k, ¢ + 1. Noting that

oe(d) < or(CF = 7)< | B + Ho( @ = |+ || = )

< & - M+ paLt |t - TP
< (éQergLf) Hgk_gk”%@’
we have
[o(c*+ )| = [[@(¢*+d") - @(¢h) — Hid® + ®(CF) + Hed"||
< ot d) - o) - ||+ Viauld)
< elld*|*+ (62+p2L§)1/2 HCk _CTkH(Q—i-Q)/Q
< é(é2p51,i;9 + 1) Hék . CkH2 4 (éz —i—ngf)l/Q HCk B ng(ngz)/z
< CQHCk_ng@HW

with ¢y = ¢(62py ko 2 4+ 1) + (62 + po L§)Y/2. Consequently,
1 _
dist(C* + ¥, %) < — H‘b(Ck +dk)” < ;_2 Hgk _ <kH(ng2)/2 — ¢y dist (ijs*)(gw)/z‘
2 2

Thus, we complete the proof of the second part. [

Invoking Lemma 4.5 and following arguments similar to those in [65, Theorem 2.1]
and [221, Theorem 3.1], we derive the quadratic convergence rate of Algorithm 4.2 under
Assumption A.

Proposition 4.13. Let {¢*} be generated by Algorithm 4.2 with vy, given by (4.27), and
C* be an accumulation point of {C¥}. If ¢* is a solution of (4.7), then the sequence {C*}
converges to (* superlinearly, and moreover, quadratically when o = 2, provided that F’
and G’ are locally Lipschitz continuous and Assumption A holds.

It remains unclear whether Assumption A is indeed weaker than the strict complemen-
tarity condition at the solution. While the assumptions in Proposition 4.13 are weaker
than those in Proposition 4.12, the latter ensures that every element of dp®((*) is nonsin-
gular, thereby guaranteeing that ||®(()|| provides a local error bound in a neighborhood
of the solution ¢*. In contrast, as noted in [221], the assumptions in Proposition 4.13 do
not imply the nonsingularity of each element in dg®(¢*). From the proof of Lemma 4.5,
we find that the condition (4.31) cannot be weakened to

kadist(C, ) < [|R(Q))IY? V¢ € N(¢,0),

in order to guarantee the superlinear (or quadratic) convergence of Algorithm 4.2, and
therefore the global error bound result of Proposition 4.10 may not be applied for it. If let
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U(¢) = ||®(¢)]|*/4 instead of ¥(¢) = ||®(¢)||?/2, then Assumption A holds automatically
under the jointly uniform Cartesian P-property of F' and G, but this will bring difficulty
to numerical implementation due to the bad scaling of ¥. Thus, it is worthwhile to study
what conditions of F' and G are sufficient for Assumption A to hold.

Numerical experiments and performance results for Algorithm 4.2 can be found in
[168]. In general, it has been observed that the Levenberg-Marquardt semismooth
method outperforms the Fischer—-Burmeister semismooth method primarily on more chal-
lenging problem instances.

4.3 Smoothing Function Approach

In this section, we present the smoothing function approach for solving the mixed com-
plementarity problem (MCP). The MCP arises in a wide range of applications, including
economics, engineering, and operations research [53, 70, 71, 89], and has garnered consid-
erable attention over the past few decades [12, 13, 67, 109, 118, 119]. A curated collection
of nonlinear mixed complementarity problems, known as MCPLIB, is available in [57].

Given a mapping F : [l,u] — IR® with F' = (Fy,..., F,)T, where [ = (I1,...,l,)T and
u=(uy,...,u,)" with [; € RU{—oo} and u; € RU {+00} being given lower and upper
bounds satisfying I; < u; for i =1,2,...,n. The MCP is to find a vector z* € [[,u] such
that each component z} satisfies exactly one of the following implications:

x; i >0
zf € (li,w) = Fi(z*) =0, (4.35)
<0

It is not hard to see that, when [; = —oco and u; = 400 for all i = 1,2,...,n, the MCP
(4.35) is equivalent to solving the nonlinear system of equations

whereas when [; = 0 and u; = +oo for all i = 1,2, ..., n, it reduces to the NCP, which is
to find a point z € IR” such that

r>0, F(x)>0, (z,F(x))=0.

In fact, from [56, Theorem 2], the MCP (4.35) is also equivalent to the famous variational
inequality problem (VIP) which is to find a vector z* € [, u| such that

(F(x"),x —a*) >0, Vazellul

In the rest of this section, we assume the mapping F' to be continuously differentiable.



4.3. SMOOTHING FUNCTION APPROACH 411

Lemma 4.6. Let ¢? : IR x R — IR be defined by (2.14). Then, the following limits
hold.

(a) lim (xl — i, 98 (wi — @5, —FZ(LE))) = =P (u; — 3, —Fi(x)).

lj——o0

(b) lim &f, (i = by @0, (us — i, = Fy())) = &}, (w5 — Ui, Fy(2)).

(c) lim lim ¢? (z; —1;,¢% (v, — x5, —Fi(2))) = —Fi(x).

l;—>—00 U;—00
Proof. Let {a*} C IR be any sequence converging to +oo as k — oo and b € IR be
any fixed real number. We will prove klirn qﬁ’;B(ak, b) = —b, and part(a) then follows by
—00

continuity arguments. Without loss of generality, assume that a* > 0 for each k. Then,

o, (a5 0) = " (1+(bl/a"))""" = a* — b
1+p(‘abk|) + 2;211 (g)2p+-..+
(1 —p)..y.lg;n—pwrp) (L—IJIJ)WJFO((%)W)] T

1P 1—p o (A-p)---(A—pntp) [p™
p(ak)p—l 2p2 (ak)2p—1 nlpn (ak)np—l
(a*) e o (bl /a*)™
(ak)re (|bl/a*)™

—b

+

where the second equality is using the Taylor expansion of the function (1+¢)"/? and the

[b["”
(ak)np—l — 0
for all n. This together with the last equation implies limy,_,o, ¢,(a*,b) = —b. This proves
part(a). Part (b) and (c) are direct by part(a) and the continuity of ¢? . [

notation o(t) means lim, o o(t)/t = 0. Since a* — +o0o as k — oo, we have

Below, we summarize the monotonicity properties of two scalar-valued functions that
will be used in the subsequent section. As the proofs are straightforward, they are omitted
here.

Lemma 4.7. For any fived 0 < py < ps, the following functions

-1

Al =4+ m) T = (t+pu) 7 (t>0)

and

folt) = (t+ )7 — (t+m)7  (t>0)

are decreasing on (0,+00), and furthermore, fo(t) < fo(0) = pP~ 1P — =177,
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For convenience, we adopt the following notations of index sets:

I = {ie{l,2,....,n}]| —o0<; <u =+o0},

I, = {ie{l,2,....n}]| —c0o=1; <u <+o0}, (4.36)
I, = {ie{l,2,...,n}| —o0o<l; <wu; < +oo}, '
Iy = {ie{l,2,...,n}| —oc0o=1I; <u =400}

With the generalized FB function phifbp, we define an operator ®? : IR" — IR" com-
ponentwise as

¢IF7B(1’@' —1;, Fi(x)) if 7€l
: —¢P (u; — x;, —Fy(x)) if iel,,
P\t — FB
(PP ) () = 0 Cos— 1 9 (15— 5, —Fi(2))) if i € (4.37)
—Fi(x) if i€l

where the minus sign for ¢ € I,, and ¢ € Iy is motivated by Lemma 4.6. In fact, all results
of this paper would be true without the minus sign. Using the fact that ¢ is an NCP
function, it is not difficult to verify that the following result holds.

Proposition 4.14. Let ®? : IR" — R" be defined as in (4.36)-(4.37). Then, z* € IR"
is a solution to the MCP (4.35) if and only if x* solves the nonlinear system of equations
PP (z) =0.

FB

We point out that, unlike for the NCP, when writing the generalized FB function ¢?
as ¢¥_(a,b) = (a +0b) — ||(a,b)]|,, the conclusion of Proposition 4.14 does not necessarily
hold since, if [; = {1,2,...,n}, then T = [ satisfies ®?_(z) = 0, but F(z) > 0 does
not necessarily hold. Similar phenomenon also appears when replacing ¢f = by the ¢,

function.

Since ¢ is not differentiable at the origin, the system ®?_(z) = 0 is nonsmooth. In
this paper, we will find a solution of nonsmooth system ®?_(z) = 0 by solving a sequence
of smooth approximations W2 _(x,e) = 0, where ¢ > 0 is a smoothing parameter and the
operator WP _: IR" X IR, — IR™ is defined componentwise as

VP (zi — b, Fi(z), €) if iel,
- =P (u; — x5, —Fi(), €) if iel,,
P\t S FB
(WP ) (x,€) 00 o — o0 (s — 20— Fy(a)se)6) i i € (4.38)
—Fi(z) if i€l
with
WP (a,b,e) == /|alp + |b|P + &P — (a +b). (4.39)

In the following, we focus on the favorable properties of the smoothing function 2 ~and
the associated operator W2 . We begin by presenting the key properties of ¢?_.
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Lemma 4.8. Let ¢? :IR* — IR be defined by (4.39). Then, the following result holds.

(a) For any fized € > 0, ¢P (a,b,€) is continuously differentiable at all (a,b) € R? with

FB

oYP (a,b oYr (a,b
< wFB(C% ,6) _9 < wFB(av 75)

-2 Oa <5 ob

<0. (4.40)

(b) For any fized (a,b) € IR?, ¢? (a,b, ) is continuously differentiable, strictly increas-
ing and convex with respect to € > 0. Moreover, for any 0 < g1 < &9,

0 <P (a,b,e2) =YL (a,b,e1) < (€2 —€1). (4.41)

In particular, Y (a,b,e) — ¢2_(a,b)| < e for alle > 0.

oYP (a,b,e) . OYP (a,b,e)
2 » \0 — : FB FB
(c) For any fized (a,b) € IR?, let (¥2)°(a,b) : (lgﬁr)l 9 ,lgiloq 0 :
Then,
lim ¢p(a + hla b+ h2) - ¢}€B (CL, b) - (@DgB)O(a + hla b+ hQ)Th —0.
h=(h1,h2)—(0,0) 172

(d) For any given e >0, if p > 2, then Y _(a,b,e) =0=a >0, b> O,6 2ab < %, and
whenever p > 1, Y (a,b,e) =0 = a >0, b >0, min{a,b} <

Yo —2

Proof. (a) Using an elementary calculation, we immediately obtain that

905, (0.5.) @l
Opy(@bie) S
o (TP +Top+e )
oYr (a,b,e) sgn(b)[bP~1
e 0 - 1. (4.42)
(4/lal+ Tl +=7 )

For any fixed € > 0, since

oYP (a,b,e) oY _(a,b,¢)
e and ————~

are continuous at all (a, b) € IR?,
a
it follows that ¥ (a,b,e) is continuously differentiable at all (a,b) € IR*. Noting that

sgn(b)[b["~"

(vaP TP e )

sgn(a)]al”!
(¢l TP +er )’

we readily achieve the inequality (4.40).

<1 and <1,
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(b) For any € > 0, an elementary calculation yields

P (a,b,e) _ ept =0
o (P rprre )
LS BV S R S T
= (Yaprrre) N b

Therefore, for any fixed (a,b) € IR?, ¢P (a,b,e) is continuously differentiable, strictly
increasing and convex with respect to ¢ > 0. By the Mean-Value Theorem, for any
0 < &1 < &9, there exists some eq € (€1, 3) such that

p

0
1/J£B<(l, b, 62) — 1/J§B<(l, b, 81) = g;B (CL, b, 60)(62 — 61).

Since 81253 (a,b,e9) < 1 by the proof of part(a), inequality (4.41) holds for all 0 < &1 < e.

Letting 1 | 0, the desired result then follows.

(c) Using the formula (4.42), it is easy to calculate that

sgn(a)|aP~!

OYP (a,b,e) =1 — 1 if (a,0) # (0,0),

lim =250 = ¢ (W/laP TP )

1 if (a,b) = (0,0);

sgn(b)|b|Pt ,
) 8¢§B (a, b, 5) ( )’ ‘ p—1 Lot (a,b) 7é (Oa())a
ip =g = (VT

~1 if (a,b) = (0,0).

da ob
only need to check the case (a,b) = (0,0). The desired result follows by

¢1;B<h1> h2) - ¢P(O’ O) - ¢g(h1’ hQ)Th

= [P [P+ [ho|P — Wl
({/1h1]P + [ho|P)r—t

= /I|P + |halP — {/|ha]P + |halr

= 0.

From this, we see that (¢?,)%(a,b) = (a¢p(a’b) %gB(a’b)) at (a,b)# (0,0). Therefore, we

(d) From the definition of ¢?_(a,b,¢), clearly, ¥'?_ (a,b,e) = 0 implies a + b > 0, and

hence a > 0 or b > 0. Note that, whenever a > 0,b < 0 or a < 0,b > 0, there holds

ol + o + 27 > /Jalr + bl > max{lal, o]} > a +,

i.e., ¥P (a,b,e) > 0. Hence, for any given € > 0, ¢?_(a,b,e) = 0 implies a > 0 and b > 0.
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(i) If p > 2, using the nonincreasing of p-norm with respect to p leads to

Yp(a,b,e) =0 <= a+b=/|alp 4+ b]p +er < \/]a|? + |b]? + &2
— (a+b)?<a®+b*+e* = 2ab< e

(ii) For p > 1, without loss of generality, we assume 0 < a < b. For any fixed a > 0,
consider f(t) = (t+a)? —t* —a? — P (t > 0). It is easy to verify that the function f is
strictly increasing on [0, +-00). Since ¥?_(a,b,c) = 0, we have f(b) = 0 which says féa) =
(2P — 2)aP — P < f(b) = 0. From this inequality, we obtain min{a,b} = a <

—Yw—2
O

Proposition 4.15. Let VP be defined by (4.38). Then, the following results hold.

(a) For any fized e > 0, WP (x,¢) is continuously differentiable on IR™ with
VoV (2,6) = Do(x,6) + VF(2)Dy(2, ),

where Dy(x,€) and Dy(x,€) are n x n diagonal matrices with the diagonal elements
(Dy,)ii(x,€) and (Dy)ii(x,€) defined as follows:

(al) Forie I,

sgn(xi — lz>|$2 — li|p*1
(Da)ii(%&f) = p—1 1,
[(zi — b, Fi(x), o) [,

Dy)is(x,€) = sgu(Fi(2)|[F(@) P
(De)ii(, €) I (z; — livﬂ($),€)||§_1 1

(a2) Forie I,,

D,)ii(x,e) = sgn(u; — x;)|u; — xi|p_1 -1,
Bl e = e R ol
—sgu(F(0)|[F(0)

(i = @i, Fy(w) o)l

(Dp)ii(w,e) =

(a3) Fori € I,

(Dy)ii(x,e) = aj(z,e) + bj(x,€)ci(x,e) and (Dy)y(z,e) = bi(x, e)d;(x, €)
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with

i = l)|xi = L
H(xz — s, wé’B(Ui — Ly, _Fi(x)v €)75>Hp

" osgn(P (u — m, = Fi(x),€)) |92, (u; — 25, —Fi(x),e)[P~!
i(T,6) = - -1
||(37z - liawgB(ui —x;, —Fi(z), ), 6)”2

ol _ _sgn(ui—xi)|u, x; [P~ 1
) = e —m B@rT
sen(Fi(2))| Fu(a)-!
(i —an B,

(ad) Forie I, (D,)ii(z,e) =0 and (Dp)i(z,e) = —1.

di(SC, E)

Moreover, =2 < (Dg)ii(z,e) < 0 and —2 < (Dy)y(z,e) <0 or alli € ;U 1,, and
—6 < (Da)“-(x,s) <0 and —4 < (Db)n»(x,e) <0 fOT’i e I,.

(b) For any given g1 > 0 and €2 > 0, we have
192, (2. 22) = W2, (@, 20)| < v (V24 1) |z — e, Vo € R
Particularly, for any given € > 0,

|9, (x.0) = @, (@) < Vi (V2 +1)e, Vo eR"

Proof. This is a direct consequence of Lemma 4.8 and the expression of W2 . []

The Jacobian consistency property is fundamental to the analysis of local fast con-
vergence in smoothing algorithms [49]. To establish that the smoothing operator W2
satisfies this property, we first present a characterization of the generalized Jacobian
Oc®P_(x), which follows directly from Proposition 2.1(f).

Proposition 4.16. For any gwen x € R", 9o PP (x)" = {D,(x) 4+ VF(x)Dy(x)}, where
D, (), Dy(x) are n X n diagonal matrices whose diagonal elements are given as below:

(a) Foriel, if (x; —1;, Fi(x)) # (0,0), then

() = sgn(w; — 1) | — L7t
(Dy)ii() | (z: — 1, Fy(x ))”5:1 1,
(Dyala) — BUE@) - R@PT

I — b B

and otherwise

((Da)a(@), (D)) € {(€ = 1.¢ = 1) € R e[ + [¢[7* <1}
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(b) Forie I, if (u; — x;, —F;(x)) # (0,0), then

() = N R s
(Da)ii(z) ||(Ui—55i,—Fz‘(x))||£_1 1,
_seu(Fi(2)) - [F(@)["!

I(us — zi, =Fi()lp

(Dp)ii(x) =
and otherwise

((Da)a(@). (De)u(@)) € { (6 = 1.¢ = 1) € R[|¢[#*7 +[¢|*T <1}

(c) Fori € I, (Dn)i(z) = a;(z) + bi(z)ci(x) and (Dy)i(xz) = bi(x)d;(x) where, if
(w5 — ls, @2 (u; — x5, —Fi())) # (0,0), then

LY s — P
a(e) = sgn(z; — 1) - |wi — 1] L

[ (e — 100, (s — i ~E@) [

bi(z) = -0 (68, (wi — @i, —Fi(2))) - |68, (wi — @i, —Fi(@) [ 1
| || (s = Ly @8, (wi — @5, = Fi(2)))| ot )

p

and otherwise
(@), bi@)) € { (6~ 1. = 1) € R [e[ 7 + [¢]7*7 < 1}
and if (u; — x;, —Fj(x)) # (0,0), then

—sgn(u; — ;) - |u; — x;|P7!
oy = )
[(ui — i, = Fi()) |

sen (Fi(z)) - [Fi(x) "

R T oS

and otherwise

(ca(e). @) € {(€+ 1,¢+ 1) € B[ €77 + [l <1}
(d) Forie If, (Dy)i(z) =0 and (Dy)ii(z) = —1.

Proposition 4.17. Let WV be defined by (4.38). Then, for any fired x € R™,

lim dist (VU (2,6)7,009F (z)) = 0.
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Proof. For the sake of notation, for any given x € IR", we define the index sets:

{i € | (x; = li; Fy(x)) = (0,0)}, Bu(2) == I\ Bu(2),

{i € L] (w; — 2, Fi(x)) = (0,0)}, fa(x) := L, \ Ba(x), (4.43)
= {i € L] (zi — b, p(ws — zi, —Fy(x))) = (0,0)}, Bs(z) := L\ Bs(x),

= {i € Bs(x) | (wi — i, Fi(2)) = (0,0)}, Ba(x) := Bs(2) \ Ba(w).

We proceed the arguments by the cases ¢ € [; U I, @ € I}, and ¢ € Iy, respectively.

&
~~ I~ /N
\_/\E?/\_/\_/
I

Case 1: i € [; U L,. When i € Si(x) U Ba(x), it is easy to see that
(Da)ii(ﬂf,f) = —1 and (Db)z‘z‘(l‘,{f) =—1.

By Proposition 4.15 (al) and (a2), V,(¥? )i(z,e)T = —e] — F/(z) for all € > 0. Since

(-1,-1) € {(6 - 1,¢ = 1) € R?| ¢l + (7T < 1},
from Proposition 4.16(a) and Proposition 4.16(b), we obtain V.(¥2, )i(z, )T € 3(82, ){(2).
When i € f1(x) U fa(z),

lé}f{)l (Da)ii(z,€) = (Da)ii(x) and 13&1 (Dy)ii(z,€) = (Dp)ii(),

which together with Proposition 4.15 (al) and (a2) implies

lgiigvx(\lfﬁ]g)i(%é?)T: (Da)i(x)e] + (Do)is(2)F(x) € dcPpi(x).

Since [; U I, = B1(x) U Ba(z) U B1(x) U Ba(w), the last two subcases show that

hﬂgl V(WP ) (z,e)" € 0c(PP ) (z), Vie[UI,. (4.44)

Case 2: i € I,. When i € f3(z), we have z; —l; = 0, ¢2_(u; — 23, —Fi(x)) = 0, us—x; > 0
and F;(z) = 0. Hence, ¢;(z) = 0 and d;(z) = 1. From Proposition 4.16(c), it follows that

dc(P? )(z) = {a;(x)e] + bi(z)F/(z)}
with ) )
(). b)) € {(€ ~ 1.C = 1) € R [ g7 + ¢ <1}

On the other hand, since a;(x,¢) = —1, d;(z,¢) = 1 and
i — &, —Fi(x), o)
P [ (7t 01| Y
(|thp(ui — x5, —Fi(w),€)|P +eP) »
|Ui - JJi‘p_l

(jus — il +29) =D

ci(z,e) = 1—
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from Proposition 4.15(a3), it follows that
i T T
V(U2 )V(z,e)" = (=1 +bi(z,e)ci(x,€)) ef + bi(x,e)F](x).
Taking
[p(ui — 24, —Fi(x),€)[P~!

([0p(us — 24, —Fy(x), ) [P + €P) 7
it is not hard to verify that |§ ]p%l +1¢ ’p% < 1, and consequently

—e; +bi(z,e)F(z) € 9c(D” ) ().

£=0 and ¢ =

Noting that

15%1 ||Vx(\IﬂF’B)i(x,g)T _ (—e;r + b;(z, 5)}?’1’(95)) H = lgif(r)l |6: (, 5)ci(m,5)eiT|| =0,

it then follows that

lim dist (V. (0, )'(z,€)T, 0o(®},)'(x)) = 0, i € Bs(w).

When i € B3(z), we have lim, | a;(z,¢) = a;(x) and lim. o b;(x, e) = b;(z). Also,
ci(r,e) =1, di(x,e) =1 for 1€ [y(x)
and

lig)l ci(z,e) = ¢i(x), lig]l di(z,€) = di(x) for i€ By(x).

Using Proposition 4.16(c) and noting that
(L1 € {(§+ 1.+ 1) € R?[Jel7 + g7 <1},

we obtain lgif(r)l V(WP ) (z,e)" € 0c(PP ) () for i € B3(z). Along with the above discus-
sions,

1551 V(WP ) (z,e)" € 0c(PP ) (x) for i € I, (4.45)
Case 3: i € I;. By Proposition 4.15 (a4) and Proposition 4.16(d), it is obvious that

133)1 V(WP Vi(x,e)" € Oc (PP, ) (x) forie Iy. (4.46)

Now the desired result follows from (4.44), (4.45), (4.46) and {1,2,...,n} = [;UL,UI,U
I, O

Proposition 4.17 implies that for any 6 > 0, there exists an e(x,d) > 0 such that
dist (V9% (z,€)", 0c®? (z)) <& forall 0 < e < e(x, ).

The following lemma offers a way to choose such ¢(z, d).
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Lemma 4.9. Let WP be defined by (4.38). Suppose that x is not a solution of (4.35).
Let

a(z) :=min{o(r), az(z), as(z)} >0, () := max{n(z),72(z), y3(z)} = 0

with

ap(x) = égm |z — L7 + | Fi(x)]?,

az(x) = min |u;— x| + |Fi(2)]F,
i€ B2 (x)UBa(z)

as(z) = min xi — Li|P + u; — i, —Fi(x))|?

3(@) B i) 1o (@)

m(x) = gga(x Hsgn (2 — 1;)|x; — ;[P e; + sgn(Fy(x)) | Fy(x )|p_1VF,-(x)H
i€B1(x)

Ya(z) = ax, [sen(F;(2)) | Fy(2) [P VFi(x) — sgn(u; — ;) |[u; — 23"~ 'ei|

v3(x) = é%af) i — 2P+ | F () [P
i€B4(

Then, for any 6 > 0, there exists an €(x,d) > 0 such that

dist (V,UP_(z,2)",0c9% (2)) <4 for all 0 < e < e(x,0),

where p=1

. 6 T

g(r,6) := min {50(x, 0),e1(x,0),e2(x,0),e3(x,0), (m) }

with

|u; — ;P71 v 1
go(z,0) = min . —Jui —if’| , ex(x,d) = min _m — i,

i€65(w) | (1 — §/y/n) 7 i 2
1 if (VO a(z) <0,
e1(x,0) = -
1(z,9) a(x)Q/p <\/ﬁg($) )p/(p—l) _ oz(x)) 8 otherwise,
1 if ¢P (ui— 2, —Fi(x)) >0,
0) =

ald) %[(ui— i —Fi(2)) = Jui— z;|” —|Fy(x)]"]'" otherwise.

Proof. From equation (4.43), clearly, the index set {1,2,...,n} can be partitioned as

I U By () U Bi(x) U Ba(x) U Ba(x) U B3(x) U Ba(z) U Ba(z).
In view of this, we proceed the proof by the following several cases.

Case 1: i € I;. From Proposition 4.15 (a4) and Proposition 4.16 (d), we have

Vao(Ph,) (z,6)" = —F/(x) and 9c(®},) (x) = —F/(x),
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which implies

dist (V4 (U2 ) (z,e)",0c(P ) (x)) =0 for all € > 0.

Case 2: i € f1(z) U fa(z). From Proposition 4.15 (al) and (a2), it follows that

V(WP )(z,e)" = —e] — F/(z).

(2

In addition, by Proposition 4.16 (a) and (b), we have V,(¥? )i(z,e)T € 9(P?_)'(x) since

(-1,-1) € {(6 - 1,¢— 1) € R2[Jgl"T + [T <1}
Therefore, we have

dist (V4 (P ) (z,e)",0c(P )/ (z)) =0 for all e > 0.

Case 3: i € f3(x). Under this case, ; — l; =0, ¢,(u; — x;, —Fi(x)) = 0, u; — z; > 0 and
F;(xz) = 0. Hence, ¢;(x) = 0 and d;(z) = 1. From Proposition 4.16(c), it follows that
0c(@0,)' () = {ai(w)e] + bi(z)F{(x)}
with
(as(2), bi(2)) € {(6 = 1, — 1) € R |¢[77 +[¢[77 <1}

On the other hand, since a;(x,e) = —1, d;(x,e) = 1 and

[P (u; — x;, —Fi(z), )P 4

p—1 )

(Joe, (u; — x5, —Fi(x), )P + ) »
lu; — ;[P

(jus — il + 200"

bi(x,¢€)

ci(r,e) = 1—

from Proposition 4.15 (a3) it follows that
Vm(\llk’fB)i(x, &) = (=1 +bi(z,&)ci(z,€))e] + bi(x,e)F!(x).

Taking

[P (s — 24, —Fy(x), ) [P~1
(|¢‘EB (uz — X4, —Fi(x), 5)|P + gp)T
we can verify that |§|ﬁ+|§|ﬁ < 1, and consequently _@iT+b¢(:E, £)F!(z) € 80((1)1;]3)1'@)_
Using the definition of g¢(z, d), it is easy to verify that, for all € < gy(z, ),

§=0 and ¢ =

[Va(W2,) (2, 6)" = (=€ +bi(w,e)F{(2))|| = [bi(z, e)ei(z, e)e] || < lei(w,e)] <

5=
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Therefore, for all 0 < € < g¢(z,9),

. . 5
dist (Vo (U2,) (x,2)T, 0c(P2,) (x)) < NG
Case 4: i € (1(z). From Proposition 4.16 (a) and Proposition 4.15 (al), it follows that
dist (v (WP ) (x,e)",0c(P8,) (x)) (4.47)

= Va0, (z.8)" = V(2p,)' (=)'

_ ( L 1 )
(@i — b B@)b" |2 — L Fo(a), o) |2

Jsen xz—zm—z e +sen(Fa) )P V()|

e
a1(@) +) 7" ) (o)

< (@)
< (a x (x) + sp) ) v(z)
= (Oé(iL‘) + gp) P a(g ’}/(27)
[az)(a(x) +er)] 7
< 2l z). (4.48)

=
[a(z)(a(z) +-eP)] 7

where the inequalities are using Lemma 4.7 and the definition of a(x) and v(z). Now
using equation (4.47), it is not hard to verify that for all 0 < ¢ < &¢(z,J)

dist (V. (U2 ) (z,2)",0c(PF ) (z)) < %. (4.49)

Indeed, if v(x) = 0, this inequality obviously holds for all ¢ > 0. Suppose that v(z) > 0.
Then, a simple calculation shows that

) ( V() )" )
T S 04(1’) > ¢ —ax) | .
la(z)(a(z) + )7~ Vn ( 0 )

Clearly, the inequality on the right hand side holds for all 0 < & < &1(x,¢). Consequently,
the result in (4.49) follows from the above equivalence and (4.47).

Case 5: i € fy(z). From Proposition 4.16(b) and Proposition 4.15 (a2), it follows that
dist (V4 (P ) (z,e)", 0o (PP, ) (z))
1 1

- (H(Uz v, () H(Uz‘—xiaFi(iﬁ)aE)Hﬁl)
|[sen(F; ))]F(x)|p 1VF'( )—Sgn(ui —a)|ui — [P e

(a2(2) 7" = (aal@) +27) 7" ) ala
(a(2)™" = (a(2) + ") 5" ) (@),

IA

IN
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where the inequalities are using Lemma 4.7 and the definition of a(x) and ~y(x). Using
the same arguments as Case 4, we can prove that for all 0 < & < g4(x, 9),

i P Yz e)T P (g i
dist (Vx(\IIFB)( ,€)", 0c(PP ) ( )) < T

Case 6: i € f4(x). Since (u; — x;, —F;(z)) = (0,0), we necessarily have
x; —1; >0, ¢§B(uz‘ — i, —Fi(r)) =0 and WEB(W —xi, —Fy(7),¢) = ¢,
which in turn implies a;(z) = 0 and b;(z) = —1. By Proposition 4.16 (c),
0c(D,)' () = {—ci(x)e] — di(x)F(x)}

with
(i), di(x)) € {(€+ 1.C+1) € R? | Jgf7 +[¢]T < 1}

In addition, we notice that under this case ¢;(z,¢) = 1, d;(z,e) = 1 and

|z — L[" er1
— 1, bi(I,€) = 1 1.

({/|xi—lz-|1’—|—25p )p_l <€/|xi—li|p+26p )p_

Therefore, from Proposition 4.15(a3), it follows that

a;(x,e) =

V(00T = (@l e) + bl el + bl )di(o, ) Fl(a)

ZT; —lz p—1 +€p—1
1 | +1]el
<</’.Tl — lZ’p + 2eP )p
gp~!
_ _W\ z\P+2p>p_1+1 "
i — b; £
We next want to prove that for any 0 < ¢ < ey(z,9),
_p_ _pb_
p—1 p—1
- p—1 p—1
T ek el + 2 <1, (4.50)

p—1 p—1
<€/’l’l—11’p+2€p) ({/’mz_ll|p+2(€p)
and consequently V(U2 ) (z,e)" € Oc(®®, ) (x). It is easily verified that the function

’l’i — li’p_l + Ep_l

hl(g) = (</|$7, — l1|p + 2P )pf].
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is increasing on [0, eo(z, 0)]. Since hy(0) = 1, we have hy(g) > 1 on [0, eo(z, 0)]. Therefore,

Pt P
b= p—
|.TJ,L' - li‘p_l +€p—1 €p_1

1= p—1 + p—1
({’/\xi—li|p+251”> ({’/|xi—li]p+25p>

_p_
1

_ v = LifP~ et . ' . eP

= — -

(’\”/\xi—li\PJngp )” i = Li|P + 2eP
= hg(éf).

We can verify that hy(e) is strictly increasing on [0, e5(z, d)] and

1 1/p
(ez) -

P

< [1+2)% 1] w1220,

P

p—1

ha(e2(x,6)) = ho(lz; — 1i]/2) < +1/2

where the second inequality is since (1+ t)l/ P < 14t/7 for t > 0. The last two equations
imply that the inequality (4.50) holds. Consequently,

dist (V4 (U? ) (z,e)",0c(PP, ) (z)) < % for all 0 < & < eq(,9).
n

Case 7: i € B4(x). Since (u; —z;, —Fy(x)) # (0,0), by Proposition 4.16(c) and Proposition
4.15(a3),

dist (Vo (¥, ) (x,2)T, e (97, )i (x))

= (aiz,8) — ai(x)) e + (bi(x, e)es(w, €) = bi(w)es(w)) &
+ (bi(z, €)di(x, ) = bi(w)ei(x)) VE ()]

= l(ai(z,8) — ai(x)) e + (b, €) = bi(x)) cs(w)ei + (b, €) = bi(x)) di(x) V Fi(x)
+hi(x,€) (i@, 8) — cil@)) e + bilw, €) (di(w, €) — di(x)) VE(x)]] . (4.51)

In what follows, we will successively estimate the value of |a;(z, £)—a;(x)|, |bi(x, €)—b;i(z)],
|ci(w,e) —ci(x)| and |di(x,e) —d;i(x)| for 0 < e < e3(x,d). Note that Y2 (u;—x;, —Fi(x), )
and ¢?_(u; — x4, —Fi(v)) have the same sign for all 0 < ¢ < e3(w,6). Indeed, if ¢2_(u;

vy, —Fi(x)) > 0, then Y2 (u; — 23, —Fj(x),e) > 0 clearly holds. Otherwise, since

PP (u; — x5, —Fi(x),¢) <0
ui — 2P + |Fi(2)[” + " < (w; — z; — Fi(2))”,
= < ((w—x— K@) — |u— 2" — [Fi(x)]")"?,
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the definition of e3(z, ) implies Y2_(u; — x;, —Fi(x),e) < 0 for all 0 < e < e3(x,9).

Stepl: to estimate |a;(z,e) — a;(x)|. For 0 < e < e3(x,d), we first estimate

r(x,e) = ! T~ 1 |-
H(iﬂz — L, p (u; — 4, —E(x),5)75)”p H(ﬂh — i, 2 (u; — x5, —Fz(ﬂf)))Hp
Let
91(e) = [0 (ui — i, —Fi(x), &) |" — |0y, (ui — i, —Fi(z))[”
and

Ale) =, (ui — xy, —Fi(w),€) — ¢F (ui — i, —Fi())

for 0 < e < e3(,6). If ¢p(u; — x5, —Fi(x)) > 0, then Y2 (u; — x;, —Fi(r),€) > 0, and
hence ¢;(¢) > 0. In addition, applying the Mean-Value Theorem and Lemma 4.8(c), we
have,

gi(e) = P (ui — —Fz‘(l')aé‘)p — ¢p,(u — @y, —F(2))P
o (wi —Fi(z)) + t1A(e )]p_l A(e) for some ¢, € (0,1)
Ei(

< p B, (w (7)) + e3(x,8))" (4.52)

Under this case, taking into account the definition of a3(z) and a(x), we have

r(z,e) = ! — — ! —
| (i = L, @2, (ws — i, — Fi(x)) Hp | (i — -—wi,—Fi(ﬂﬁ)aS)ﬁ)‘i
< Jas(@) 7~ (as(a) + ga(e) + )7 |
< |a@ " = (@) + @) +e) |
_ @@+0@+)T —a@)T (@@L T e
a(2)(alx) + g1(&) + )7 afx) "7

where the first three inequalities are due to Lemma 4.7, the last one is by (4.52), and

Mi(z) = [p [gbgB(uz — x;, —Fy(7)) + 53(1;75)}13—1 4 eg(z, 0y p—1

a(x)?/p
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If ¢ (u; — x5, —Fi(v)) <0, then Y2 (u; — x;, —Fj(x),e) < 0, and hence gi(g) < 0. Now,

1 1

r(z,e) =1 — )
H('TZ — li; wgB(Ui — Ty, —E(I),€),5)Hp H(ZL‘Z — lz', QS{ZB(UZ' — Xy, —E<I)),€)Hp

1 1
(i = by 02, (w = i, —Fi(@)), )| (| = L, 02, (s — i, —Fi(@)) |2
[, (us — g, —Fi(@)) P~ — [¥P (u; — 24, —Fi(2), €)[P~]
(i = 12, (wi = 25, = Fi(@), €), ) |07 || (s = iy @0, (i — 22, — Fi(a)), ©) [0

+ [ase) ™7 = (aslw) + &) 7]
< (o2, (ui — xi, —Fi(2)) [P~ — |92, (us — 3, = Fi(x),€) [P~
N H(xz — i, P (us — 4, —E-(x),g),s)H;p_Z
+ [as(e)™ 7 = (asle) +27) 75 . (4.53)

Notice that

@7 (u; — x5, —Fi(2)) [P = |ohp(u; — 2, —Fy(x), €)[P~"
= [~¢b, (wi =z, —Fi(@)])"" = [=42, (wi — 21, — Fi(w), )]
= (p—1) [~v" (u; — x5, —Fy(2),¢) +t2A( )]"7* A(e) for some t, € (0,1)
. {@—n[¢;wzzm—<mﬂ if p> 2,
= (0= 1) =, (us — wi, —Fi(x),e5(2,0)]" Ce if1<p<2,

and

H(IZ - li’¢£B(ui — Xy, —.FZ‘(ZE),€)7€)HP Z H(l‘z - li,@bgB(ui — Xy, —E(I),&fg(l‘, (5)))“[) .

Therefore,

[¢8, (ui — @i, = Fi(2)) [P~ — |92, (ui — @y, = Fy(), )"
s = L, (u am—muxeeuw”
< -1 [0, (wi — @i, —Fy(2))]" " e + [—98, (us %7—5(2,23(%5))?_ 3
H(%—ZM%’B( Uj ZEZ,—F’Z( )753(1'75))“1,

[— ¢, (i — s, —Fi(x»}p—Q
S - —+1]e
. ((:Ei — Ly Y, (w; — zi, = Fi(2), 32, 0)) ||} )
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This together with (4.53) and Lemma 4.7 yields

P )5
r(z,e) < My(z)e+ (afz) + &) a(z:;l
la(z)(a(x) +er)] 7
gp~1
< MQ(I)g—i_ 2(p—1)
afz)” 7
< M;(z)e if p>2
= | Ma(z)ertt ifl<p<?2
where
p—2
M) + 2O if p > 2
Mg(l‘) = a(x) P

My(2)e3(2,0)> 7 + afz) 7 if1<p<2

Summing up the above discussions, it then follows that

_ max { M (z), M3(z)e3(z, 6)/7} I if p>2;
r@,e) < max {Ml(x), M;(z)es(x, 5)(’”%72)} S ifl< p <2,
< Mi(a)e'7,

where
M,(z) ;= max {Ml(x), Ms(2)es(x,0)7, My(z)es(x, 6)(p+1/p72)} '

Consequently, we establish

|ai(z,€) — a;(x)| = r(z,e)|a; — LP~H < My(x)|a; — lz‘|p_15ijl.

Step 2: to estimate |b;(z,e) — b;(x)|. From the expressions of b;(x,¢) and b;(x),

Sgn(wZFjB (uz — T, _E(x)v 5))|¢€B(ul — T4, —E(l‘), 5>|p_1

|bi(, ) = bi()]

(i = iy p(ui — @3, —Fy(), ), ) [P
sgn(¢P, (u; — x4, —Fi(2))) |07, (wi — x4, —Fy(x)) P~

(s — Ly (u; — 23, —Fy(2), ), 2) |2
+Sgn(¢§3 (ui — i, —Fi())) |92, (i — x5, = Fi(2)) [P~

”(xl - lia %(Uz — Ly, _F’i(x)v 5)7 5)”571

sgn(QP, (u; — x5, —Fi(2))) |02 (us — x5, —Fy(x)) P71

| (i = Ly 2, (u; — @i, —Fy(x))) Hi_l
92(¢)
| = tvp, (= 2o~ Fie),2),2) [
+r(z,e)|¢? (w; — i, —Fy(x)) [P,

IN
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(4.54)
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where r(z,¢) is same as above, and go(¢) is defined by

g2(e) = [sen(v?, (u; — xi, —Fy(x), €)) |8, (ui — w3, —Fy(), )"
—sgn(¢P, (u; — xi, —Fy(@))) |00, (ws — 25, —F3(x)) [P

If ¢ (u; — x;, —Fi(x)) > 0, then Y2 (u; — x;, —Fi(x),€) > 0, and therefore
g2(e) = wﬁB( ,— o, —Fi(x), )P — o (wi — x4, — Fy(x))r
- 1) [¢2, (u; — 2, —F3(2)) + tgA(e)]p_2 A(e) for some t3 € (0,1)

{ p—1)[¢2, (i —Fi(x)) +e3(2,0)]" e if p>2;
(p—1) [¢h, (wi thﬂuwrﬁs if1<p<2.

If 7 (u; — 5, —Fy(2)) < 0, then ¢?_(u; — z;, —Fy(x),¢) < 0 and
WP, (i — i, = Fy(w),e) P70 < |, (i — @, —Fy(@))[P~" for 0 <e < ey(x,0).
Consequently,
ga(e) = [=¢8, (wi— wi,—Fi(x))]"" = [=¢2, (i — 35, = Fi(2),2)]""
= (p— )[ WP B(ui—xi, —F() a)+t4A( )77 Ale) for some 4 € (0,1)

@—1H—%Ju (ﬂﬂ Y EE
1) [ Fi(z), e3(z, »V‘sﬁ1<p<z

1

In addition, if ¢?_(u; — x;, —Fj(x)) > 0, then
—1 -1
|| (CCZ - liﬂﬁﬁB(Ui — x5, —Fi(x), €), 5) ”2 > H(»’Uz — s, ¢§B(U1 — X, _E(x)))||2 5
whereas if ¢P_(u; — x5, —Fj(z)) < 0, then for all 0 < e < e3(x,9),
-1 _
H(xz_luwgB(u'L_wza_E($)>€)7€)H; > |¢§B(ui_'ri7_Fi<x)7€)‘p !
> b, (ui — 24, —Fi(z), e3(z, 0)) [P
The above discussions show that for all 0 < € < e5(z, ), we have

92(€)
H<x2 - lia W;B (uz — Ty, _E(gj)v €

‘Vl_(-—UMﬂ)

where

(|67, (us — 25, —Fi())| + es(w, 8)]"
Ms(z) = | (i = Ly 2, (ui — 5, —E(m)))”iil
max{|¢§B (m — I, _E(IE)”P*Q? |¢§B (ui —x;, —Fi<a';)7 53(377 5))|p—2}
[Ye (u; — x4, —Fi(x), e3(x, 6)) [P~

ifp>2

ifl<p<2.
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This along with (4.54) and the result of Step 1 gives |b;(x, ) — b;(z)] < Mﬁ(x)g% where

Mg(x) = (p — 1) Ms(2)es(x, )P + My(2)|¢P (u; — z, — Fi(2)) P~ (4.55)

Step 3: to estimate |¢;(z,e) — ¢;(z)| and |d;(x,€) — d;(x)|. Using Lemma 4.7 gives

sgn(ui — i) |u; — P~ sgn(u; — @) |u; — P!

ci(w,e) —ci(z)| =

(w2 =F@. )5 (=i ~Fi@)l
_ i — P! |ui — P~
(i =z, —E @[5 1w — @i, —Fi(), €)™
—p 1-p
< a@) " = (asfa) + &) F | fus = i
< a(@) = (al@) + )7 fus —
p—1 p—1
= (a(z) +eP) 7 — Oé(pl’;l ! lu; — a:i|P—1
a(2)(alx) +2)] 7
|u; — x; [P~ teP™?
— 2p—2
alx) »

Using the similar arguments, we also have |d;(z,¢) — d;(z)| < %
alz) P

Now using (4.51) and the results of the above three steps, and noting that |b;(z, )| < 1,
|d;(z)] <1 and |¢;(z)] < 1, it follows that for all 0 < & < e5(z,9),

dist (Vo (T2 )i(x,2)T, 00(P2, ) (x))

< My(@)|z; — Lle™ + Mg(z) (1 + |VE(@)]) e 7
u; — ;PP | Fy(a) | ter !
_'_ 2p—2 2p—2
alxz) » alx) »
< M(%)é“%

where

ww:mwmdmwmm+wmmwj$%.

Therefore, when i € B4(x), we have

p—1

- p i T p i 0 0 v
dist (Vo (P2 )'(2,2)",0c(PF ) (2)) < NG forall 0 <e < (m) :

Based on the analysis of the preceding seven cases and the definition of (x, §), the desired
result follows.  [J
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We are now prepared to describe the iterative steps of the smoothing algorithm, which
is based on the smooth approximation W2 (z,e) = 0 of the original equation ®?_(z) = 0.
In addition, we will present both global and local convergence results for the algorithm.
To this end, we first introduce the following merit functions:

O,() 1= 5|82, (2)]

and .
Hp(l‘a 8) = 5”\1/?]3 (l’, 5)”2’

Algorithm 4.3. (Smoothing Algorithm)

(S.0) Given a starting point 2° € R", the parameters p,a,n € (0,1) and v € (0, +00).
Choose o € (0, (1 — ) /2). Let By = || @7 (2°)]| and &9 1= 55 Set k :=0.

(S.1) Solve the following linear system of equations
k ko _k
P (%) 4+ VP (2", e%)d =0,

and denote its solution by d*.

(S.2) Let my be the smallest nonnegative integer m such that
Hp(xk + pmdkv 8k) o Hp(xka gk) S _2O-pm@p(xk)
Set ty, == p™ and "1 = 2F + t.d".
k . .

(S.3) If |®2_(a*1)|| =0, then terminate. If

0 < [} @2, ()] < max {0~ |22, () — w2 (@F )}, (456)

let B = ||PP (2F*1)|| and choose an eyy1 satisfying

. [ afri1 e
< — .
O<€k+1_mm{2\/ﬁ,2} (4.57)
and
dist (V0P (2" "), 0@ (2*1)) < Bipav. (4.58)

If "®§B<xk+l)’| > 0 but (4.56) does not hold, then let Bxi1 = B and g1 = €.

(S.4) Setk:=k+1, and go to (5.1).
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2
purposes: it ensures the existence of my, in step (S.2) and facilitates the superlinear con-

vergence analysis of the algorithm. The initial values 3y and g are set to ||®,,(x°)| and
ﬁﬁ’ respectively, primarily for the purpose of establishing global convergence. These
parameter choices are also adopted in the numerical experiments. Algorithm 4.3 is com-
putationally efficient, requiring only the solution of a linear system at each iteration.
Owing to the Jacobian consistency property of the operator WP _ it is always possible to
find an ;41 > 0 that satisfies conditions (4.57) and (4.58), by construction. Moreover,
Lemma 4.9 provides explicit guidance on how to select such an ;1 > 0 for the MCP
(4.35).

In Algorithm 4.3, the parameter o, chosen from the interval (0, (170‘)), serves two

Lemma 4.10. For any fived € > 0, the Jacobian matriz of WP at any v € IR™ is non-
singular if F'is a Py-function and the submatriz [F'(z)|r,1, is nonsingular. Particularly,
if Iy = 0, the Jacobian matriz of WP at any x € IR™ is nonsingular if and only if ' is a
Py-function.

Proof. For any given ¢ > 0, the Jacobian matrix of W? ~at any z € IR" is given by
V. ¥ (z, €)' = Dy(z,¢) + Dy(z,€)F'(z)

where D, (z,¢) and Dy(x, €) are nxn diagonal matrices whose diagonal elements (D, );;(x, )
and (Dy)y;(z,e) are negative for i € I; U I, U I}, and (D,);;(x,€) = 0, (Dp)si(x,e) = —1
for i € Ir. Now suppose that V,W? (z,¢)"z = 0. Then,

(Dy)ii(z, €)
(Da)ii(, €)

z = — (F'(2)z),, forie UL, UI

and
(F'(x)z), =0, forice Iy. (4.59)

Since F' is a continuously differentiable Py-function, F’(z) is a Py-matrix. From Lemma
1.5, we obtain z; = 0 for i € I; U I, U I,,. Substituting this into (4.59), we obtain

[F/("E)Ifff] 2z, =0,

where z7, is a vector consisting of z; with i € Iy. This along with the nonsingularity of
[F"(2)]1;1, implies z; = 0 for @ € I;. Thus, we prove z = 0, and consequently the first
part of the conclusions follows. The second part is implied by the above arguments. [

Remark 4.1. We want to point out when p — +o00, the diagonal elements (D,)i(z,¢€)
and (Dy)ii(x,€) fori € I; U1, U I, will tend to 0, though (Dg)s(x,€) + (Dp)ii(z,e) < 0.
This implies that for a larger p the nonsingularity of VVE_(x, ) actually requires stronger
conditions than those given by Lemma 4.10.
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By Lemma 4.10 and [49, Lemma 3.1], Algorithm 4.3 is well-defined under the assump-
tions that I is a Py-function and the submatrix [F'(z)];,;, is nonsingular. The following
lemma provides a sufficient condition to ensure that the merit function ©,(x) possesses
bounded level sets.

Lemma 4.11. The level sets L(7y) := {x € R"|[|®?_(2)|| <~} are bounded for ally > 0
if one of the following two condztzons 18 satisfied:

(a) 1 and u are both bounded.
(b) F is a uniform P-function.

Proof. Under the condition (a), we have {1,2,...,n} = Ij,. The result is clear by the
definition of ®? and Lemma 2.1(d). Next we prove the boundedness of £(7y) under the
condition (b). Suppose that there exists some > 0 such that £(v) is unbounded, i.e.,
there exists a sequence {zF} C L£(7) such that ||2*|| — oco. Define the index set

J:={ie{1,2,...,n}|{zf} is unbounded} .

Then J # (). We choose a bounded sequence y* with

Y17 2% otherwise.

f {O if i € J,

Since F' is a uniform P-function, there is a constant p > 0 such that

plla® —y¥|1? < maX(rL‘ — ") (F(=") = F(y"))
") —

= max(zf)(F(a") - F(y"))
< a1 () — Fio ()]

icJ

where jp is an index from {1,2,...,n} for which the maximum is attained, and without
loss of generality it is assumed to be independent of k. Clearly, j, € J, which means
that {«% } is unbounded. Consequently, there exists a subsequence, assumed to be {z¥ }
without loss of generality, such that |z% | — oo. Notice that

l2* = y*)1? > |} > =2k |* for each k.

Jjo y]o

Therefore, ufak [ < |ok || Fyy (a) — Fiy(y%)] and
plag, | < 1F(2%) = Fjo (y")] < [Fjo (@) + [ Fo (45,
which in turn implies |Fj,(z*)| — oo as |2 | = oo. Thus, we prove that

|28 | = 400 and  |Fj,(z")| = +o0. (4.60)
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On the other hand, we notice that (4.60) implies
5, =l = +o0 and [ F,(a")] = +oo.

Combining the last two equations with Lemma 2.1 (d), we have |(®? )% (z*)| — +oo

from the definition of ® . This contradicts the fact that {2*} C L(y). O

Proposition 4.18. Suppose that F is a uniform P-function. Then, the iteration sequence
{x*} generated by Algorithm 4.3 is well defined and converges to the unique solution x* of
the MCP (4.35) superlinearly. Furthermore, if F' is locally Lipschitz continuous around
x*, then the convergence rate is quadratic.

Proof. Using Lemma 4.10 and Lemma 4.11, following the same arguments as in [49], the
desired global and local convergence results are obtained. [

Detailed numerical experiments related to Algorithm 4.3 are reported in [39]. In
general, it has been observed that using a smaller value of p, particularly with p < 2,
tends to yield greater robustness compared to larger values of p. However, as p approaches
1, the algorithm typically requires more iterations to converge. Based on these findings,
choosing p within the range [1.1, 2] is generally recommended for a good balance between
robustness and efficiency. Additionally, the parameter « also influences the numerical
performance of Algorithm 4.3; empirical results suggest that selecting a from the interval
[0.3,0.7] tends to produce favorable outcomes.

4.4 Regularization Approach

It is well known that the regularization approach is developed to address ill-posed prob-
lems by replacing the original problem with a sequence of well-posed approximations,
whose solutions converge to that of the original problem; see [62, 100, 194] and refer-
ences therein. In this section, we present a regularization framework for solving com-
plementarity problems. Specifically, we consider two distinct settings: (i) applying the
regularization approach to the NCP using ¢?_, and (ii) applying it to the SOCCP using

¢FB :

In the context of nonlinear complementarity problems (2.1), if we consider the so
called Tikhonov regularization, this scheme consists of solving a sequence of nonlinear
complementarity problems NCP(F}):

x>0, F.x)>0, (z,F.(x))=0, (4.61)
where € > 0 is a parameter tending to zero and F; is given by

F.(z) = F(z)+ex. (4.62)
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Let F.;(z) denote the i-th component of F.(x) given as in (4.62) and define the map
®,.:R" — R" by
o (21, Fea(x))

D, (z) = : . (4.63)

Then the regularized problem NCP(F;) for any given € > 0 (described as in (4.61)) can
be reformulated as

P, .(z) =0,
which leads to a merit function ¥, : R" — IR, for the NCP(F}):

1
Upe(@) = 5[ ®pe(@)]* = Z¢ (i, Fe())”. (4.64)

Therefore, the original NCP (2.1) is effectively equivalent to solving a sequence of nons-
mooth systems of equations @, .(z) = 0 as ¢ — 0. In this context, the parameter ¢ serves
a role analogous to that of smoothing parameter in traditional smoothing methods for
the NCP, with the key distinction that ¢ is applied to the mapping F', rather than to the
NCP function ¢? .

As will be shown later, the sequence of subproblems &, .(z) = 0, with ¢ — 0, will
be approximately solved using a generalized Newton method applied to an augmented
system of equations that is equivalent to the original NCP. Specifically, we let z := (¢, z) €
IR, x IR™ by viewing ¢ as a variable, and define the mapping H, : R, x R" — IR"*! by

p(z) = | T : (4.65)

& (2, Fonl(2))

Notice that if the function @, (x) defined by (4.63) is viewed as a function of € and =,
then we may denote it as ®?_(z) := ®2_(g,2) = @, (). Hence, (4.65) is the same as

o= | g |

It is easily verified that the NCP is equivalent to the augmented system of equations
HP(’Z) = HP(€7x) = 07 (466)

which naturally induces a merit function G, : R"™ — IR, given by

(€ + 1 Ppe(@)]*) = e U (2). (4.67)

N | =

Go(2) = 5 IH ()P =
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The function H, is locally Lipschitz continuous, owing to the Lipschitz continuity of
@P_; see Proposition 2.1(e). Moreover, H, is semismooth. Based on this, we employ
the generalized Newton method developed in [178, 181] to solve (4.66), thereby formu-
lating a regularized semismooth Newton-type algorithm in which each iteration approxi-
mately solves the regularized problem NCP(F;). Compared with the semismooth Newton
method based on (2.16), this approach offers a notable advantage in handling FPy-NCPs,
as the associated merit function ¥, () possesses bounded level sets for such problems.

Proposition 4.19. The mapping H, : Ry x R" — R" defined as in (4.65) is semis-
mooth. Moreover, it is strongly semismooth if F' is locally Lipschitz continuous.

Proof. Since a function is (strongly) semismooth if and only if its component functions
are (strongly) semismooth, to prove that H, is (strongly) semismooth we only need to
prove that Hy;, ¢ = 1,2,--- ,n + 1 are (strongly) semismooth. Apparently, H,; is
strongly semismooth by formula (1.42) since H,;(z) = . For H,;, i =2,3,--- ,n+ 1,
since ¢, is strongly semismooth by Proposition 2.16 and the composite of two (strongly)
semismooth functions is (strongly) semismooth by [73, Theorem 19], we conclude that

H,;, i=2,3,--- ,n+1 are semismooth. If F’ is locally Lipschitz continuous, then F; is
strongly semismooth, and consequently, H,;, i = 2,3,--- ,n+1 are strongly semismooth.
O

We next give the estimation of the generalized Jacobian of H,, by Proposition 2.1(f).

Proposition 4.20. Let H, : Ry x IR"® — IR" be defined as in (4.65). For any z =
(e,2) € Ry x IR™, we have

1 2T B(2)

O D" € | (42) = 1)+ (VF(x) +eD(BE) - 1) |

(4.68)

where A(z) and B(z) are possibly multi-valued n x n diagonal matrices with i-th diagonal
elements Ay (z) and By(z) given by

_ Sgn<Fs,i(x)) . |F€’Z’<x>|P—1

A2 — sgn(w;) - |ziP~! Bi(z) =
) ) (2, Fea()) 157

i, Fea))llp

if (z;, F.i(x)) # (0,0); and otherwise given by

Aii(z) =&, Bii(z) =¢ for any (&,(;) such that \§i|p%1 + M# < 1.

Proof. According to the known rules on the evaluation of the generalized Jacobian (see
[52, Proposition 2.6.2(e)]), we have

OH,(2)T COH,1(2) x OHp(2) X -+ x OHp,11(2)
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where the right-hand side denotes a set of matrices whose i-th column belongs to 0H, ;(2),
and H,; is the i-th component function of H,. Clearly,

OH, 1 (2) = ( . ) e R,

NP
aHp,j(Z') _ (Sgn(xz) |$z’ — _1) ( 0 )
“(mlaFe,z(x))Hp €;

(oree) Mieman )

if (z;, F.;(x)) # (0,0); and otherwise

X

o) =60 (0 )+ (rr s oo ) G-

with \EZ|P%1 + \Q[ﬁ < 1, where e; denotes the vector whose i-th element is zero and
other elements are 1. From these equalities, the conclusion easily follows. [

Utilizing the estimation of 0H,(z) given in (4.68), we now present a sufficient condition
to ensure the nonsingularity of all generalized Jacobians of H, at a solution z* of (4.66).
This result is crucial for establishing the superlinear (or quadratic) convergence of the
semismooth Newton method; see [64]. Let z* = (¢*,2*) € Ry x IR™ be a solution of
(4.66). Clearly, ¢* = 0 and z* is a solution of the NCP. For the sake of notation, let

7T := {iE{l,Z,---,n}]x;.k>0, E(-’E*):O},
J = {ie{1,2,--- ,n}|z; =0, Fi(z") =0},
K = {26{1,2,,n}|x:207 E(SL’*>>O}

By rearrangement we assume that VF'(z*) can be written as

VFZI(.’E*) VFIJ<.’IZ'*) VF1K<$*)
VFKI(JI*) VF;CJ(.T*) VF]CK(ZL’*)

The NCP is called R-regular at z* if V Fzz(z*) is nonsingular and its Schur-complement
VFII(CL’*) VFIJ((II*)

is a P-matrix.
VEzr(z*) VFzz(x")

in the matrix

Proposition 4.21. Suppose that z* = (e*,2*) € Ry x IR™ be a solution of (4.66) and
the NCP is R-regular at x*, then all V' € O0H,(z*) are nonsingular.
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Proof. From Proposition 4.20, it is easy to see that for any V € dH,(z*)", there exists
a vector u(z*) € IR" and a matrix W(z*) € IR"*" such that

v=[1ul]

where
W)= (A(z*) = I)+ (VF(z*) + ") (B(z*) — I)

with A(z*) and B(z*) characterized as in Proposition 4.20. Therefore, proving that V' is
nonsingular is equivalent to arguing that W (z*) is nonsingular. Using the expression of
VF(z*) in (4.69) and noting that e* = 0, we can rewrite W (z*) in the partitioned form

—VFrz VFEr7(Bsg —177) Ozxc
W(z*)= | =VFyr VFr5(Bgg—1I75)+(Ag7 —177) Ogx
—VFkz VEks7(Bygs —177) — Ik

where for convenience we dispense with the notations z* and z*. The rest of the proof is
identical to that of [64, Proposition 3.2]. O

Proposition 4.22. For any ¢ > 0, the function V, . defined by (4.64) is continuously
differentiable everywhere, and consequently, G, defined as in (4.67) is continuously dif-
ferentiable everywhere and VG,(z) = VT H,(2) for any V € 0H,(z).

Proof. By applying [35, Proposition 3.2(c)] and Theorem 2.6.6 from [52], we immediately
arrive at the conclusion. [

Proposition 4.23. Suppose that F is a Py-function and €, € are two given positive
numbers such that ¢ < . Then, the merit function G, defined as in (4.67) has the
property:

lim G,(z*) = +o0

k—+4o0
for any sequence {2* = (¥, 2%)} such that € € [¢,&] and ||2*|| — +o0.
Proof. We prove this by contradiction which is a standard and common technique.

Suppose limy,_, 4 oo G,(2¥) # +00. Then from (4.67) and (4.64) it follows that there exists
an unbounded sequence {z*} such that {¥, «(z*)} is bounded. Let

J:={ie{1,2,---,n}|{zf} is unbounded} .

Since {z*} is unbounded, we have J # (). Without loss of generality, we assume that
{|2¥]} — oo for any j € J. Now, we define a bounded sequence by

s [0 ifiel
Yim ok ifig

2
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From the definition of {¢*} and F being a Py-function, we have

0 < max(z —y)(F(*) — F(y"))
ok yk

= maxal - (Fi(z") — Fi(y")) (4.70)

ied '

= 2 (F () = Fy(y"),

where jy is one of the indices for which the max is attained. Since j, € J, we have
that {|z% [} — 400 as k — +o0. If 2% — —oo as k — +o0, using Proposition (2.8)
immediately yields that ¢?_(zh, Fls j (2%)) = +oo. If 2 — 400 as k — +oo, not-
ing that F},(y*) is bounded by the continuity of F},, we have from (4.70) that Fj, (z¥)

Jo»

does not tend to —oco, which in turn implies that {Fj,(z*) + *z5} — +oo. From

Proposition (2.8) where {z}} — 400 and {Fj,(2") 4+ 25} — +o0, we also obtain

that @2 (x%  F. ; (2%)) — +o0o. Thus, both cases yield ¢? (¥ F.i; (z¥)) — +oo
which is a contradiction to the boundedness of {¥,_.(z*)}. Consequently, we prove
that limy_, 00 Gp(2%) = +00. [

Remark 4.2. Proposition 4.23 establishes that V, . possesses bounded level sets under
the assumption that F is a Py-function. In contrast, as shown in [35, Proposition 3.5],
a stronger condition, namely, that F' is a uniform P-function, is required to ensure the
boundedness of the level sets of WP .

We now present two results that will be instrumental in analyzing the global conver-
gence of the algorithm in the subsequent section. The first is adapted from [62, Theorem
5.4], while the second follows from Lemma 2.3 and employs arguments similar to those
used in [194, Proposition 2.2].

Proposition 4.24. Suppose that F is a Py-function and the solution set S* of the NCP
is nonempty and bounded. Suppose that {e*} and {z*} are two infinite sequences such
that for each k > 0, ¥ > 0, n* > 0 satisfying limy_, o €* = 0, limj_, 1o n* = 0. For each
k>0, let 2F € R™ satisfy || @8 (¥, 2%)|| < n*. Then, {2*} remains bounded and every
accumulation point of {x*} is a solution of the NCP.

Proposition 4.25. Suppose that F' is a monotone function and the solution set S* of
the NCP is nonempty. Suppose that {e*} and {z*} are two infinite sequences such that
for each k > 0, ¥ > 0, n* > 0, n* > Ce* and limy_, o€ = 0, where C > 0 is
a constant. For each k > 0, let ¥ € IR"™ satisfy H@{jB(sk,xk)H < nk. Suppose that
r* = argmin,g.||z|| and F is Lipschitz continuous. Then, {z*} remains bounded and
every accumulation point of {x*} is a solution of the NCP.
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We are now ready to describe the specific algorithm, adopting notation that closely
follows that of [194]. Choose € € (0,4+00) and v € (0, 1) such that v& < 1. Let t € [1/2,1]
and z := (£,0) € IRy x IR™. We define 5: R,y x R" — IR, by

B(z) == ymin{1,G,(2)"} (4.71)

and denote

Q:={z=(g,2) e Ry xR"|e > B(2)&}. (4.72)

Note that f(z) <~ for any z € IRy x IR" by (4.71). Hence, (&, x) € Q for any x € R™. In
addition, by the definition of 3(z), it is easily verified that the following relation holds.

Proposition 4.26. Let H, and 3 be defined as in (4.65) and (4.71), respectively. Then,

Hy(2)=0 <= p(z)=0 <= Hy(z)=7p(2)z.

Algorithm 4.4. (The Regularization Newton Algorithm)

(Step 0) Given any p > 1 and choose constants 6 € (0,1), t € [1/2,1] and o € (1,1/2).
Let ¥ := & and 2° € IR™ be an arbitrary point. Set k := 0.

(Step 1) If H,(z*) =0, then stop. Otherwise, let
Br := B(z*) = ymin {1, G,(z")"} .
Step 2) Choose Vi, € OH,(2*) and compute AzF = (Ae¥, Az¥) € R x IR™ by
P

H,(2%) + Vi AZY = B2 (4.73)

(Step 3) Let Iy, be the smallest nonnegative integer | such that
Gy(2F + 8'AZF) < [1 = 20(1 —~8)8'] G,(2).
Set 2FH1 = 2k 4§ AR,

(Step 4) Set k:=k+1 and go to Step 1.

From Proposition 4.20, we know that for any V' € 0H,(z) with z = (¢,2) € R4 xIR",
there exists a W = (u(z) W(z)) € 9092 _(z) with u(z) € IR" and W (z) € IR"*" such that

Suppose that F'is a Py-function. Then, by Proposition 1.6(a), F!(x) is a P-matrix.
Hence, for any x € R™ and € > 0, W(z) is nonsingular by the proof of [105, Proposition
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3.2]. It thus follows that all V' € 0H,(z) with z = (¢,2) € IR;; x IR™ are nonsingular.
Therefore, the Newton step in (4.73) is well-defined, and moreover, from (4.73), for any
k>0 and e* > 0, there exists a W), € 9 _(z*) such that

(VP (") TAZY = 0P (F)TWAZF = —0F (27)ToP (%) = —20P (2F). (4.74)

Using the equality and Proposition 4.26, we next show that Algorithm 4.4 is well-defined.

Proposition 4.27. Suppose that F is a Py-function and z* = (¥, 2%) € R, x R™ for
k> 0. Then, "' € R, x R" and Algorithm 4.4 is well-defined.

Proof. Since €¥ > 0, from the definition of 3(z) it follows that 8, = 8(z*) > 0. From
the first component in the relation (4.73) in Algorithm 4.4, we have

b+ Ak = Bg = A = —F + e
Then, for any « € [0, 1], there has
eF +alAe® = (1 —a)e® + aBpe > 0. (4.75)

Thus, combining the fact that 8(z) < vG,(2)Y? with (4.73) and (4.75) yields

(" + aAek)Q = [(1- )"+ aB]
= (1-0a)?(")?+2(1 — a)appe™s + o*B
< (1= a)*(M)? + 2aBeke + O(a?)
< (1= )’ (%) + 200Gy(2M) V2| Hy (") ]|2 + O(?)
= (1—20a)(")? + 2v200G,(2F) + O(a?). (4.76)

Now, we define
0(c) = VP (2" +al2") — U (2F) — (VP (2F))TAZF

Since WP is continuously differentiable at any 2 € Ry, x IR™ by Proposition 4.22, we
obtain §(a) = o(a). On the other hand, from (4.73) and (4.74), it follows that

%H@iB(zk—i-aAzkﬂf = VP (2" + ")
= VP (") + (VI (2%)TAZ + 0(a) (4.77)
P (2*) — 2007 (%) 4 o(a)
= (1-20)%7 (") + o(a)
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for any a € [0, 1]. Therefore, using equations (4.76) and (4.77), we obtain

Gp(2F +aAh) = % ||Hp(zk + OzAzk)H2

1 1

5(5’“ + aAe*)? + §H<I>§B(zk + aAZR) |2
1
2

IN

(1 = 20)(e")? + V2a72G, (%) + (1 — 20) 0P (%) + o(a)

(1—-20)G,(z M+ 2047§Gp(zk) + o(«)
[1—2(1 —~&)a] Gp(zk) + o(«) (4.78)

IN

for any a € [0,1]. The inequality (4.78) implies that there exists @ € (0, 1] such that
G, (2F + aA2®) < [1 - 20(1 —~8)a] G,(2*) Va € [0,al,

which indicates that Algorithm 4.4 is well-defined. [

Proposition 4.28. Let ) be defined as in (4.72). Suppose that F is a Py-function. For
each k >0, if ¥ > 0 and 2* € Q, then for any a € [0, 1] such that

Gy (2" + aAZ¥) < [1=20(1 —~8)a] G,(2"), (4.79)
there holds that zF + aAzF € Q.

Proof. We prove this proposition by considering the following two cases:

Case (i): Gp(2%) > 1. Then B = v. From 2* € Q and B(2) = ymin{l, G,(2)!} < v for
any z € IR, x IR™, it follows that for any « € [0, 1],
(" + ane®) — B+ aA)E > (1 —a)e +appe — e
> (1—a)Bké +abe — e
0. (4.80)

Case (ii): G,(2*) < 1. Then, for any « € [0, 1] satisfying (4.79), we have
G, (2F + aAZ") <1 —20(1 —78)a] G, (") < 1. (4.81)

Therefore, for any « € [0, 1] satisfying (4.79),

B(2* 4+ aA2*) = 4G, (2F + annh)t
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Using the fact that 2* € Q and the first inequality in (4.81), we then obtain that for any
a € [0, 1] satisfying (4.79),

(" + ane®) — B(ZF + aAZF)z

> (1 — ) + apfre — G, (2" + ant)'e

> (1 — Q)Bué + afré — [l — 20(1 — y&)a)'G,(2")'e

= Bpe — [l — 20(1 — v8)a]'G,(zF)'e

= G (e — 1 = 20(1 — 78)a] G (2F)te

= ~ {1 —[1—20(1 - vé)a}t} G,(ZF)e

> 0. (4.82)

Combining (4.80) and (4.82) immediately yields the desired result. [

Proposition 4.29. Suppose that F' is a Py-function. Then, Algorithm 4.4 generates an
infinite sequence {28} with 2% € Q for all k and

0<e" <ef <z forall k. (4.83)

Proof. Since 2° = (£,2°) € Q, the first part of the conclusions follows by repeatedly

resorting to Proposition 4.27 and Proposition 4.28. We next concentrate on the proof
of (4.83). First, e = & > 0. From the design of Algorithm 4.4 and the fact that
B(z) = ymin{l, G,(2)'} <~ for any z € R, x R", it then follows that

eh=(1 - ") +6"p(2")e < (1 — o)+ e < e

Hence (4.83) holds for £ = 0. Suppose that (4.83) holds for £ = i — 1. We next prove
that (4.83) holds for k£ = i. From the design of Algorithm 4.4, we have

e = (1 —d0%)e! + 81 B(2Y)z.
Noting that &' > B(2")¢ since 2 € Q, we then obtain
€i+1 S (1 o 512‘)8@' + 6li€i — gi

and
e > (1—6")B(2")E +0"B(2")e = B(z")g > 0.
Therefore, (4.83) holds for k = i. Thus, the proof is complete. [
Now, by applying Propositions 4.23-4.25 and Proposition 4.29, and following the

same line of reasoning as in [194], we derive the following global convergence results for
Algorithm 4.4.
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Proposition 4.30. Suppose that F' is a Py-function and the solution set S* of the NCP
is nonempty and bounded. Then the infinite sequence {z*} generated by Algorithm 4.4 is
bounded and any accumulation point of {z*} is a solution of H(z) = 0.

Proposition 4.31. Suppose that F' is a monotone function and in Algorithm 4.4 the

parameter t = % Then, if the iteration sequence {z*} is bounded, then the solution set
S* of the NCP is nonempty. Conversely, if the solution set S* of the NCP is nonempty
and F is Lipschitz continuous, then the infinite sequence {z*} generated by Algorithm

4.1 is bounded and any accumulation point of {z*} is a solution of H(z) = 0.

In addition, by applying Proposition 4.19 and following a proof similar to that of
[194, Theorem 5.1], we establish the local superlinear (or quadratic) convergence results
for Algorithm 4.4.

Proposition 4.32. Suppose that F' is a Py-function and the solution set S* of the NCP
is nonempty and bounded. Suppose that z* = (¢*,2*) € R x IR"™ is an accumulation
point of the infinite sequence {z*} generated by Algorithm 4.4 and all V € OH,(z*) are
nonsingular. Then, the whole sequence {2*} converges to z* with

244 = 2 = ol = 7], €+ = ofeh).
Furthermore, if F' is locally Lipschitz continuous around x*, then

24— 2 = 0| = ='[P), =+ = O

Moreover, Proposition 4.21 implies that all conclusions of Proposition 4.32 remain
valid if the assumption that all V' € 0H,(z*) are nonsingular is replaced by the condition
that the nonlinear complementarity problem is R-regular at x*. Numerical performance
of Algorithm 4.4 is reported in [36], where the results indicate that choosing a smaller
value of p, particularly within the range p € [1.1, 2], generally yields superior numerical
performance. In this regard, the generalized Fischer-Burmeister functions ¢? = with p €
[1.1,2) can serve as effective alternatives to the classical squared Fischer-Burmeister
function ¢2 .

Next, we demonstrate the regularization approach by using the Fischer-Burmeister
SOC complementarity function for solving the SOCCP (3.1). Again, in the context of
SOCCPs, the regularization scheme consists in solving a sequence of SOCCP(F):

(ek, F(Qek, (¢FA(Q) =0, (4.84)

where ¢ is a positive parameter tending to zero and F. : IR™ — IR" is given by

Q) = F(Q) + <. (4.85)
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For convenience, we continue to use z(¢) in place of {(¢) to denote the solution trajectory.
Specifically, drawing parallels to the classical results of regularization methods in convex
optimization, we aim to extend, as broadly as possible, the following results to the general
class of SOCCPs in which F' possesses the Cartesian Fy-property

(a) The regularized problem SOCCP(F;) has a unique solution for every € > 0.
(b) The trajectory z(e) is continuous for € > 0.

(c) For e — 0, the trajectory x(e) converges to the least lo-norm solution of SOCCP(F)
if the SOCCP(F’) has a nonempty solution set, and otherwise it diverges.

We now proceed to show that the regularized problem SOCCP(F;) (4.84) admits a
unique solution z(g) for every € > 0, under the assumption that F satisfies the Cartesian
Py-property and the following condition:

Condition 4.2. For any sequence {z*} C IR"™, when there exists i € {1,2,...,m} such

that the sequences {||z¥||} and {HITI kﬁ)”} are unbounded, there holds

k (K
limsup< i , Fi(@) >>O

koo N\l I IFi (M)

Analogously, for the SOCCP(F.), we define the operator ®. : IR" — IR" by

¢FB($17 F5’1<£L'>>
O (1) = : , (4.86)
G (Tms Fem (7))

where F,; : IR" — IR™ denotes the i-th subvector of F.. The natural merit function
U, : R™ — IR, corresponding to ®. given as (4.86) is then described by

V() :%H@ |* = Z\|¢FB i, Fea@)|. (4.87)

Proposition 4.33. Suppose that F : R — IR"™ has the Cartesian Py-property and
satisfies Condition 4.2. Then, the function V. given as (4.87) for any ¢ > 0 is coercive,
1.e.,

Proof. Suppose by contradiction that the conclusion does not hold Then, we can find
an unbounded sequence {z*} C IR"™ with % = (z%,... 2%) and 2% € IR™ such that the

sequence {W,(z*)} is bounded. Define the index set

J = {z e{1,2,....m}|{||=F]|} is unbounded}.
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Since {x*} is unbounded, J # (). Subsequencing if necessary, we assume without loss of
generality that {||z¥||} — +oo for all i € J. For each i € J, we define

Ji = {y €{1,2,...,n;}| {]2% |} is unbounded}.

Let {y*} be a bounded sequence with y* = (y*,...,y*) and y* € IR™ defined as follows:
1 m 7

k

x;, otherwise.

yk—{ 0 ifieJandve J;

From the definition of {y*} and the Cartesian Py-property of F, it follows that
max (z) —yf, Fi(z"

1<i<m F’l( k)>

) =
= (aF —yf, F(z") - F(y")
< nllgle%}fxf” [Fw( ) Fw( )}

= nayy [Fy(a®) — Fy(y")] (4.88)

0

IN

where i is an index from J for which the first maximum is attained, and j is an index
from J; for which the second maximum is attained. Without loss of generality, we assume
that 7 and j are independent of k. Since 1 € J and j € J;,

5] — oo, (4.89)

We now consider the two cases where x - — 400 and :c - — —00, respectively.

Case (1): z}; — +o0. In this case, since Fi;(y") is bounded by the continuity of Fj;(y),
the inequality (4.88) implies that Fj;(2*) does not tend to —oo. This in turn implies that

{Fw +5$2J} — +00.

Case (2): xf; = —oo. Now, using the inequality (4.88) and the boundedness of Fy;(y*)
immediately yields that Fj;(z") does not tend to +oo. This in turn implies that

{Fij(a") +eafs} — —oc. (4.90)
From equations (4.89)-(4.90) and the definition of F. ;(x), we thus obtain
|2%|| = +o0, || Fei(z®)| = 4o0. (4.91)

If Al(xf) — —00 or A\ [F.;(z")] = —o0, then from Lemma 3.15(a) we readily obtain that
|Ppp (%, Fri(2%))|| = 400. Otherwise, equation (4.91) implies that {z¥} and {F_;(z")}
are bounded below, but Ay(zF) — +o00 and \o[FL;(2*)] — +00. We next prove that

zk F.i(2%)

lim !

erioe o] TFza(ah)]

- 0, (4.92)
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and consequently from Lemma 3.15(b) it follows that ||¢,, (z¥, F.;(z*))|| = +o0. From
the first two equations of (4.88) and the boundedness of {y*} and {F;(y*)}, it is not hard

to verify that <W’ m> > 0 for all sufficiently large k. Notice that

£ (o bR :
< v el >:< ) >+ ol yr o)
[l 1 (%) 2l ([ Fes (@) /o ([ Fea(2R)]]

Therefore, if the sequence {”7{%?”} is bounded, then equality (4.93) implies that
D )
lim sup< N > > 0. (4.94)
koroo \|2F7 1P (@)

Hfﬁ'(u’lg'i)ll
is easy to verify that (4.94) also holds. Clearly, equation (4.94) implies (4.92), and we
thus achieve || @, (zF, FLi(2*))|| — +o0o. This contradicts the boundedness of {¥_(z*)}.

O

If the sequence { } is unbounded, then using Condition A and equality (4.93), it

Notice that Proposition 4.33 is equivalent to saying that the level set
£,(2) = {o € R" | V.() < )

is bounded for every v > 0.

Proposition 4.34. Assume that the mapping F : IR™ — IR™ has the Cartesian Fy-
property and satisfies Condition 4.2. Then, for every e > 0 the problem SOCCP(F.) has
a unique bounded solution x(e).

Proof. Let € > 0. Then, the mapping F. has the Cartesian P-property by Proposition
1.6(b). This means that the regularized problem SOCCP(F.) has at most one solution.
Now let us prove the fact by contradiction. Suppose that z(¢) and Z(e) are two different
solutions of the SOCCP(F.). Then, from the Cartesian P-property of F., there exists an
index i € {1,2,...,m} such that

0 < (wzi(e) —2i(e), Fri(z(e)) — Foi(z(e)))
( ) )

(
(@) — (Ti(e), Fri(z(e))), (4.95)

where the last equality is due to (z;(¢), F.i(x(€))) = 0 and (#;(¢), F.;(&(e))) = 0. Note
that the two terms on the right hand side of (4.95) are non-positive since z;(¢), z;(¢) € K™
and F;;(x(e)), F.;(2(e)) € K™. Then we obtain a contradiction with the inequality
(4.95).
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To prove the existence of a solution, let 2° € IR™ be an arbitrary point and define

v := ¥ (2"). By Proposition 4.33, the corresponding level set £, (z) is nonempty and
compact. Therefore, the continuous function W.(x) attains a global minimum z(¢) on
L. (z) which, by the definition of level sets, is also a global minimum of W.(x) on R".
Therefore, z(¢) is a stationary point of W.(x). Since the mapping F. has the Cartesian P-
property, we have from Proposition 3.13 that x(e) is a solution of the regularized problem
SOCCP(F;). Furthermore, this solution is bounded. Combining with the discussions
above, we thus complete the proof. [

From Proposition 4.34, we learn that the regularized problem SOCCP(F;) for every
e > 0 has a unique solution z(¢) when the mapping F' has the Cartesian Py-property and
satisfies Condition A. Thus, as the parameter € tends to 0, the solution of the regularized
problem SOCCP(F;) generates a solution path P := {z(¢)|e > 0}. The aim of the
subsequent work is to study the properties of the trajectory P. Specifically, we prove
that the path P is bounded as € — 0 if F' has the uniform Cartesian P-property, but the
bound is dependent on the constant p involved in the uniform Cartesian P-property. We
also illustrate that in this case the path P is not locally Lipschitz continuous as ¢ — 0.
Then, for the case that F' has the Cartesian Py-property and satisfies Condition A, we
provide the condition to guarantee that x(e) remains bounded as ¢ — 0. The reason why
we are interested in the boundedness of z(¢) is due to the following evident result.

Proposition 4.35. Let {e} be a sequence of positive values converging to 0. If {x(ex)}
converges to a point T, then T solves the SOCCP(F).

The following proposition establishes that the solution z(e) of SOCCP(F;) remains
bounded for all ¢ > 0, provided that F' possesses the uniform Cartesian P-property.
However, the bound on z(¢) depends on the constant p associated with this property.

Proposition 4.36. Suppose that the mapping F' has the uniform Cartesian P-property.
Then, for any € > 0, we have

lz@)l < p~ I[=F0)]+4] (4.96)
where p > 0 is the constant involved in the uniform Cartesian P-property.

Proof. Since the uniform Cartesian P-property implies the Cartesian Rgo-property and
the P-property, from [204, Theorem 3.1] and the proof of Proposition 4.40(b) in the
sequel, it follows that x(e) exists for any ¢ > 0. If x(¢) = 0 for any € > 0, then the
inequality (4.96) is direct. Suppose that xz(g) # 0 for some € > 0. Since z(¢) is the
solution of the SOCCP(F.), it follows that

zi(e) € K", F.;(xz(e)) € K" and (x;(¢), F.i(zx(e))) =0, i=1,2,...,m.
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Using the fact and the uniform Cartesian P-property of F', we have that

pleE)” < max (zi(e), Fi(x(e)) - F(0)

1<

= max (zi(e), —exi(e) — F(0))
< max (x(0), ~F(0)
Slrggy()[ E(0))+)
< lz@IHIT=FO)] 4l
where the third inequality is since z;(¢) € K™, —F;(0) = [—F;(0)]+ + [-F;(0)]- and

[—F;(0)]- € —K™. This leads to the desired result. [

Remark 4.3. (a) From Proposition 4.36, when F' has the uniform Cartesian P-property,
the SOCCP(F') has a unique bounded solution. Furthermore, if F(0) € K, the reg-
ularized problem SOCCP(F;) for every € > 0 has the unique solution z(¢) = 0.

(b) When F is an affine function Mz + q with M € IR™*" and q € R", the assumption
of Proposition 4.36 is equivalent to requiring that M has the Cartesian P-property.

Proposition 4.37. Suppose that the mapping F' has the uniform Cartesian P-property.
Then, for any €1,e9 > 0, there holds that

[2(e1) = z(e2)[| < p~Hlerz(er) — e2z(ea) |,
where p > 0 1s the constant same as Proposition 4.36.

Proof. Without loss of generality, we assume that e; # e5. Let

y(e1) == I, (x(e1)), y(e2) == Foy(a(e2)).
Since z(e1) and z(e9) are the solution of the problem SOCCP(F.,) and SOCCP(F,,),
respectively, we have x;(g1),y;(g1) € K™ with (x;(g1),y:(£1)) = 0 and x;(e2), y;(2) € K™
with (z;(e2),y:(g2)) = 0 for all : = 1,2,...,m. From this, it then follows that
(zi(e1) — mile2), Fiz(e1)) — Fi(x(e2)))
(zi(e1) — mile2), wiler) —erwi(er) — yile2) + amwi(e2))
= —(wile1),yile2)) — (wile2), yiler)) + (wiler) — wilea), eamilez) —erzi(er))
< (wi(e1) — wi(e2), eami(er) — e1mi(er))
where the second inequality holds since —(x;(e1),vi(e2)) < 0 and —(z;(e2), y;(e1)) < 0.
Using the last inequality and the uniform Cartesian P-property of F', we have that

pla(er) —z(e)* < max (zi(er) — zi(e2), Fi(w(e) - Fi(w(e2)))

< lril'aix <£L‘i(€1) — IL’Z(EQ) 521’1'(52) - 51xi(51)> )
< lrga<x llxi(e1) — xi(e2) ]| ||eaxi(e2) — ermi(er) ||
< lz(er) — 2(e)|l le2z(e2) — erz(en)|l
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which immediately implies the desired result. Thus, we complete the proof. [

Propositions 4.36 and 4.37 characterize certain properties of the solution path P
as ¢ — 0, under the uniform Cartesian P-property of F. However, these results do
not guarantee the local Lipschitz continuity of P in the limit ¢ — 0. The following
counterexample illustrates this limitation.

Example 4.1. Let m =2 and ny = ny = 2. Let F be given by F(x) = Mz + q, where

1 000 —%
0100 0 .

M = 0020 | 97 0 for any given € > 0.
00 0 2 0

Since the matriz M has the Cartesian P-property, the mapping F' has the uniform Carte-
sian P-property. For the SOCCP(F;), i.e., to find x such that

T €K xK? F.(r)eK*xK? (x, F.(x))=0,

we can verify that x(e) = (1/£,0,0,0)T is the unique solution. Obviously, x(e) is not
locally Lipschitz continuous as € — 0. Furthermore, z(¢) even has no bound since the
constant p involved in the uniform Cartesian P-property of F' approaches to 0.

We now focus on the case where F' satisfies the Cartesian FPy-property and Condition
A. Unlike the NCP setting, we are currently unable to establish the continuity of the
mapping € — x(e) at any € > 0. The primary difficulty lies in the lack of an analogue
to [133, Theorem 3.1] under the Cartesian P-property of F. Although the Cartesian P-
property is preserved by every principal block of VF(x), and by the Schur complement
of a matrix possessing this property (as shown in Proposition 1.4), these facts alone are
insufficient to derive the desired continuity result. In this case, we state the following
result without proof.

Proposition 4.38. Suppose that the mapping F' has the Cartesian Py-property and sat-
isfies Condition 4.2. If the solution set S* of the SOCCP(F') is nonempty and bounded,
then the path P = {z(c) |e € (0,€ |} is bounded for any € > 0 and

lali[r)l dist (z(¢)|S™) = 0.

Proposition 4.39. Suppose that the mapping F' has the Cartesian Py-property and sat-
isfies Condition 4.2. If the SOCCP(F ) has a unique solution T, then lim. o x(e) = 7.

Proof. This is an immediate consequence of Proposition 4.38. [

As demonstrated in [62, Example 4.6], the boundedness assumption of S* is essential,
removing it may result in the loss of boundedness of the solution path P:. To this end,
we now present several conditions that ensure the nonemptiness and boundedness of S*.
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Proposition 4.40. The SOCCP(F) has a nonempty and bounded solution set S* if one
of the following conditions holds:

(a) The mapping F is monotone, and the SOCCP(F) is strictly feasible, i.e., there exists
a point T € R" satisfying T, F(Z) € int(K).

(b) The mapping F has the Py-property and the Cartesian Rge-property.

Proof. (a) Since F(z) is monotone and V F'(z) is positive semidefinite, the result directly
follows from Proposition 3.50.

(b) We prove that a stronger result holds for this case, i.e. the following SOCCP(F, q)
relk, Fl)+qek, (z,F(z)+q =0 (4.97)

has a nonempty and bounded solution set for all ¢ € IR". By [204, Theorem 3.1], we only
need to prove that for any A > 0, the following set

{z : x solves (4.97) with ||q|| < A} (4.98)

is bounded. Suppose that the set is not bounded. Then there exists a sequence {¢*}
with [|¢*|| < A and a sequence {z*} with ||z*|| — 400 such that for any &,

" ek, yf=FE")+¢d" €k and 2FoyF=0. (4.99)

This is equivalent to saying that for any k,
1 & 2
5 Z “¢F3(xf> yzk)” =0.
i=1

Using Lemma 3.7 and the boundedness of ¢*, we then obtain

[—=¥] ¢ [—y"] 1[¢"]

|lz¥|| = +oo, lim — 0, lim * 50, and lim +l — 0. (4.100)
k—too || xk|| k—+oo  ||zk|| k—+oo || zF||
Noting that
[[d"]+ || = [[[v* = F®)]4|| = [[[=FEM)

where the inequality is due to Lemma 1.1(c), we have from the last term in (4.100) that

lEFEL

— 0.
fe—+o00 || <% ||

This together with the first two terms in (4.100) shows that {z*} satisfies the condition
(1.49). By the Cartesian Rgo-property of F, there exists a v € {1,2,...,m} such that

k 2
lim inf Aslz, 0 F,(27)]

it == 0
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However, from the equation (4.99) and the boundedness of ¢*, we have

Moleb o F(eY] _ dal-zbod)
[T P |

This leads to a contradiction. Consequently, the set defined by (4.98) is bounded. O

It is worth noting that the Cartesian Rge-property is implied by the Ry-property as
discussed in [204]. Therefore, Proposition 4.40(b) offers a weaker condition under which
the solution set S* is guaranteed to be nonempty and bounded. Combining Proposition
4.34, Proposition 4.40(b), and Proposition 1.7(b), we obtain the following result.

Proposition 4.41. Suppose that F has the Cartesian Py-property and the Cartesian
Ros-property and satisfies Condition 4.2. Then, the path P: = {x(5)|5 € (0, ]} is
bounded for any &€ > 0 and lig)l dist (z(¢) |S*) = 0.

The preceding discussion demonstrates that the original SOCCP(F') can, in princi-
ple, be solved by computing the exact solutions to a sequence of regularized problems
SOCCP(F;). However, in practical settings, it is often infeasible to solve each SOCCP(F;)
exactly for every € > 0. To address this, we propose an inexact regularization algorithm
that allows for approximate solutions to the subproblems, while still preserving all the
convergence properties of its exact counterpart.

Algorithm 4.5. (Inexact Regularization Method)
(S.0) Choose gy >0 and 79 > 0, and set k := 0.
(S.1) Compute an approximate solution z* of SOCCP (F.) such that

\Ilg(ajk) < 7.

(S.2) Terminate the iteration if a suitable criterion is satisfied.

(S.3) Choose g1 >0 and 141 > 0, set k:=k+ 1, and go to (S.1).

Clearly, if we take 7, = 0 at each iteration, then 2* = z(g;). In addition, we note that
the point z* can be easily obtained by applying any effective gradient-type unconstrained
optimization algorithm to the minimization problem

in W 4.101
min V. (z), (4.101)
because the objective function W, (x) in (4.101) is continuously differentiable everywhere
and has bounded level sets for those SOCCPs with F' having the Cartesian FPy-property
and satisfying Condition 4.2. In our numerical experiments, we adopt the BFGS algo-
rithm to compute z*.
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Lemma 4.12. Suppose that f : R" — IR is smooth and coercive. Let C' C IR™ be a

nonempty compact set and denote ¢ by the least value of f on the boundary of C, i.e.,

¢ = mé% f(z). If there have two points a € C and b ¢ C such that f(a) < ¢ and f(b) < ¢,
xe

then there ezists a point z € R™ such that Vf(z) =0 and f(z) > ¢.

Proof. This is the well-known Mountain Pass Theorem [162], which will be employed in
the convergence analysis of Algorithm 4.5. [

We now proceed to establish the convergence results of Algorithm 4.5. To this end,
we assume that the algorithm generates an infinite sequence—that is, the termination
criterion in step (S.2) is never triggered.

Proposition 4.42. Let F' be the mapping having the Cartesian Py-property and satisfying
Condition 4.2. Assume that the solution set S* of the SOCCP(F') is nonempty and
bounded. If e, — 0 and 7, — 0, then the sequence {z*} generated by Algorithm 4.5
remains bounded, and every accumulation point of {x*} is a solution of the SOCCP(F ).

Proof. Suppose that the sequence {2*} is unbounded. Then, passing to a subsequence
if necessary, we assume that {||z*||} — +o0. This together with the boundedness of S*
means that there exists a compact set C C IR™ with §* C intC and z* ¢ C for sufficiently
large k. Let z* € §* be a solution of the SOCCP(F"). Then, we have

U.(@*)=0 and ¢:=minV_ () >0. (4.102)

Let 0 := ¢/4. Notice that U (z) viewed as the function of  and ¢ is continuous on the

compact set C' x [0,£], and so is uniformly continuous on C' x [0,£]. Hence, there exists
an € > 0 such that for all z € C' and ¢ € [0, £]

|\IJ€(:E) - \IIFB (JZ)| < J. (4103)

Combining (4.103) with (4.102), we have that for all sufficiently large k,

1
U (%) < e (4.104)
and 3
= mi > —C. .
¢:= min U, (z) > 1€ (4.105)
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This says that Z is a stationary point of W, (x), but not a solution of the SOCCP (£, ).
However, by Proposition 3.13, we know that any stationary point of ¥, (x) is a solution
of the SOCCP(F, ). Thus, we obtain a contradiction. [

Clearly, Proposition 4.38 follows directly from Proposition 4.42 by setting 7, = 0 for
all k. Moreover, Proposition 4.39 and Proposition 4.41 can be readily extended to the
inexact framework.

Proposition 4.43. Suppose that the mapping F' has the Cartesian Py-property and sat-
isfies Condition 4.2. Let {x*} be the sequence generated by Algorithm 4.5. If g, — 0 and
7w — 0, and the SOCCP(F) has a unique solution T, then we have lim,, o 2" = Z.

Proposition 4.44. Suppose that F' has the Cartesian Py-property and the Cartesian Ros-
property and satisfies Condition 4.2. Let {x*} be the sequence generated by Algorithm
4.5. If e, — 0 and 7, — 0, then {z*} is bounded and its every accumulation point is a
solution of the SOCCP(F ).

Proposition 4.45. Suppose that F' is a monotone mapping satisfying Condition 4.2 and
the SOCCP(F ) is strictly feasible. Let {x*} be the sequence generated by Algorithm 4.5.
If ex — 0 and 7, — 0, then {z*} is bounded and every accumulation point is a solution

of the SOCCP(F).

Proof. Applying Proposition 4.40(a), the desired result follows. [

Detailed numerical performance of Algorithm 4.5 is reported in [165]. We highlight
several aspects regarding its implementation. To assess the effectiveness of the regulariza-
tion method, we first applied the inexact regularization algorithm to a class of monotone
SOCCPs arising as the KKT optimality conditions of linear SOCPs from the DIMACS
Implementation Challenge library [174]. In addition, we tested the method on a class
of SOCCPs where the mapping F' satisfies the Cartesian Fy-property. Since suitable
benchmark examples are not readily available in the literature, we considered the case
F = Mx + q, where M € R™" and ¢ = (q1,-..,¢n) is generated randomly, with M
constructed to satisfy the Cartesian Fy-property.

Several open questions merit further investigation in future work. First, for monotone
SOCCPs, it remains to establish sufficient conditions under which the solution path z(¢)
is continuous, and to determine whether the trajectory z(¢) converges to the least l;-norm
solution of the SOCCP(F') when the solution set is nonempty and bounded. Second,
for SOCCPs with the Cartesian Fy-property, it is of interest to identify appropriate
conditions that guarantee the continuity of the solution path z(¢), and to examine the
convergence behavior of the trajectory z(e) under boundedness.



454CHAPTER 4. OPTIMIZATION ALGORITHMS USING COMPLEMENTARITY FUNCTIONS



Chapter 5

Dynamical Methods using
Complementarity Functions

In this chapter, we explore the applications of complementarity functions within neural
network methods. In particular, we present two classes of target problems, nonlinear com-
plementarity problems and optimization problems involving second-order cones (SOCs);
and demonstrate how they can be addressed using neural networks in conjunction with
complementarity functions.

Neural network approaches to optimization were first introduced in the 1980s by Hop-
field and Tank [93, 203]. Since then, they have been successfully applied to a wide range of
optimization problems, including linear and nonlinear programming, variational inequal-
ities, and both linear and nonlinear complementarity problems; see [54, 59, 60, 88, 97, 98,
121, 137, 213-215, 224, 226]. Moreover, neural networks have also found applications in
solving real-world problems across various domains, as discussed in [159, 189, 227]|. The
central idea behind neural network approaches to optimization is to construct a nonnega-
tive energy function and to design a dynamic system—typically modeled by a first-order
ordinary differential equation (ODE), whose evolution simulates the behavior of an arti-
ficial neural network. The system is expected to converge to a steady state (equilibrium
point), which corresponds to a solution of the underlying optimization problem. Addi-
tionally, these neural networks are hardware implementable and can be realized using
integrated circuit technologies.

In essence, neural networks serve as ODE-based models whose trajectories represent
the solution paths of the target problems. Unlike traditional optimization algorithms,
the stability of these systems is interpreted as the analog of convergence and conver-
gence rate. To set the stage for subsequent discussions, we begin by reviewing a few
fundamental concepts related to trajectories and stability, which are standard in the the-
ory of ordinary differential equations; see, for instance, [156]. Consider the first order
differential equations (ODE):

#(t) = H(z(t)), a(ty) =o€ R" (5.1)
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where H : IR" — IR" is a mapping.

Definition 5.1. A point * = x(t*) is called an equilibrium point or a steady state of the
dynamic system (5.1) if H(x*) = 0. If there is a neighborhood Q* C IR™ of z* such that
H(z*) =0 and H(x) # 0 Yo € Q*\{z*}, then x* is called an isolated equilibrium point.

Lemma 5.1. Assume that H : IR™ — IR"™ is a continuous mapping. Then, for any ty > 0
and xo € R", there exists a local solution x(t) for (5.1) with t € [ty,T) for some T > t;.
If, in addition, H is locally Lipschitz continuous at xq, then the solution is unique; if H
18 Lipschitz continuous in IR™, then T can be extended to oc.

If a local solution defined on [ty, 7) cannot be extended to a local solution on a larger
interval [tg, 1), 71 > T, then it is called a maximal solution, and the interval [ty, 7) is the
maximal interval of existence. Clearly, any local solution has an extension to a maximal
one. We denote [ty, 7(z¢)) by the maximal interval of existence associated with z.

Lemma 5.2. Assume that H : R" — IR" is continuous. [f x(t) with t € [to, 7(x0)) is a
mazimal solution and T(xo) < 0o, then Thm lz(t)| =
t

Definition 5.2. (Stability in the sense of Lyapunov) Let z(t) be a solution for (5.1).
An isolated equilibrium point x* is Lyapunov stable if for any xo = x(ty) and any & > 0,
there ezists a § > 0 such that ||x(t) — z*|| < e for all t >ty and ||x(ty) — z*|| < 4.

Definition 5.3. (Asymptotic stability) An isolated equilibrium point x* is said to be
asymptotically stable if in addition to being Lyapunov stable, it has the property that
x(t) = x* ast — oo for all ||x(ty) — x*|| < 6.

Definition 5.4. (Lyapunov function) Let Q@ C IR™ be an open neighborhood of .
continuously differentiable function W : IR™ — IR s said to be a Lyapunov function at
the state T over the set Q0 for equation (5.1) if

W(z) =0, W(x)>0, Yre\{z).

w = VW (2(t)TH (x(t) <0, Vae Q.

(5.2)

Lemma 5.3. (a) An isolated equilibrium point x* is Lyapunov stable if there exists a
Lyapunov function over some neighborhood §2* of x*.
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(b) An isolated equilibrium point x* is asymptotically stable if there is a Lyapunov func-

dW (z(t)) L
T<0f0rallx€9 \{z*}.

tion over some neighborhood Q0* of x* such that

Definition 5.5. (Ezponential stability) An isolated equilibrium point x* is exponentially
stable if there exists a 6 > 0 such that arbitrary point x(t) of (5.1) with the initial
condition z(ty) = xo and ||x(ty) — z*|| < § is well-defined on [0, +00) and satisfies

l=(t) = 2"|l2 < ce™"[lx(to) — 2|Vt > 1o,

where ¢ > 0 and w > 0 are constants independent of the initial point.

5.1 Neural Networks for NCP

5.1.1 Neural Network using ¢y?_  for NCP

In this section, we focus on a neural network approach to the NCP (2.1), utilizing W2 ()
as the energy function. As discussed in Chapter 2, the NCP can be reformulated as the
following unconstrained smooth minimization problem:

. 1
min U7, (2) = S [[@2, (2)]°

Accordingly, it is natural to adopt the following steepest descent-based neural network

model for the NCP:
dx(t)

dt
where p > 0 is a scaling factor. Most neural network models in the existing literature
are projection-based and rely on alternative NCP functions, such as the natural residual
function (e.g., [98, 215]) or the regularized gap function (e.g., [54]). More recently, neural
networks based on the Fischer-Burmeister (FB) function have been developed for linear
and quadratic programming, as well as for nonlinear complementarity problems [60, 137].
The model considered here is based on the generalized FB function, thereby extending
the approaches found in [60, 137].

= VUL (x(t)),  (0) = o, (53)

We shall demonstrate that the neural network defined in (5.3) possesses desirable sta-
bility properties: it is Lyapunov stable, asymptotically stable, and exponentially stable.
Furthermore, as observed in [30], the parameter p significantly influences the numerical
performance of certain descent-type methods. Specifically, larger values of p tend to
improve convergence rates, while smaller values promote better global convergence. In
addition, we investigate whether similar phenomena arise in the context of our neural
network model.
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From Proposition 2.2(c), we know that the function W2 _ is continuously differentiable
everywhere with

VU (2) =VT® (z) for any V € 0P” (z) (5.4)
VUL, (2) = Ve, (x, F(z) + VE(2)Vey, (x, F(z)) (5.5)
with
Voo, (2, Fz)) = [VaWF?B(iUl, Fi(2)),..., Vb (zn, Fn(a:))}T ,
Vet (2, F(2)) = [V, (w1, Fi(2)), ..., Vel (@0, Fu(2))] .

In view of the above, there have two ways to compute VW2 (), which is needed in the
network (5.3). One is to use formula (5.4), for which we give an algorithm (see Algorithm
5.1 below), to evaluate an element V' € 992 (z), see Proposition 2.1 for 9¢?_(z;, Fi(x)).
The other is to adopt formula (5.5).

Algorithm 5.1. (The procedure to evaluate an element V € 992 (7))

(S.0) Let x € R™ be given, and let V; denote the i-th row of a matriz V- € R™ ™.
(S.1) Set I(x) :={ie{1,2,...,n}|x; = F;(x) = 0}.
(S.2) Set z € R™ such that z; =0 fori ¢ I(x), and z; = 1 for i € I(x).

p—1

(S.3) Forie I(x), let u; = [|zz|% + |VE([E)TZ|%] ", and
, ()T
Vi = (ﬁ - 1> el + (M - 1) VE(z)T.
U; U;

(S.4) Fori¢ I(x), set

o ()b Y o (@) R o
(||<xi7m<x>>||£—1 1) ,+( (o, Ei()) [ 1) (@)

The procedure outlined above represents the conventional approach to computing
VU2 (x(t)). For instance, the neural network model in [137] employs equation (5.4)
along with a similar algorithm to evaluate an element of V' € 0®_ (x). In contrast, we
propose a simpler and more efficient method for computing VW2 _(x(t)): specifically, by
using the formula given in (5.5) rather than (5.4). This alternative formulation not only
simplifies computation but also provides valuable insight into how the neural network
(5.3) can be implemented in hardware. See Figure 5.1 below for an illustration.

We now assert that WP serves as a global error bound for the solution of the NCP.
This result is of fundamental importance, as it will be used to analyze the influence of

the parameter p on the convergence rate of the trajectory x(t) generated by the neural
network (5.3).
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Vo Vau? (z, F(z))
T } F(z) —
< o Vi (2, F(z))
L VF(x)

Figure 5.1: A simplified block diagram for the neural network (5.3).

Proposition 5.1. Suppose F' is a uniform P-function with modulus k > 0 and Lipschitz
continuous with constant L > 0. Then, the NCP has a unique solution x*, and
4172
* (|2 n
HZE—.Z'H quﬂ;}g(%) Vr € IR".
Proof. Since F' is a uniform P-function, by Proposition 2.5, there exists a global min-
imizer of W2_(x) which says the NCP has a solution. Assume that the NCP has two
different solutions z* and y*, then by Definition 1.7(f) we have
Al =y < max (2 — yi)(Fi(2) = Fi(y"))

T 1<i<m

_ 2 Fou) — ot F(e) b <
gg;{ v Fi(y") —yi il )} <0
where the equality is due to the fact that =} Fi(z*) = y/Fi(y*) = 0 for i = 1,2,...,n
(note that x* and y* are the solutions to the NCP), and the last inequality holds since
x*,y* > 0 and F(z*), F(y*) > 0. This leads to a contradiction. Hence, the NCP has a
unique solution.

For any # € IR", let r(x) = (ri(2),...,7m.(2))" with r;(z) = min{xz;, F;(z)} for i =
1,...,n. Since F' is Lipschitz continuous with constant L > 0, by [113, Lemma 7.4] we
have

(2 — a7)(Fi(x) = Fi(2")) < 2L|ri(a)[Je — =7,

for all z € IR™ and 7 = 1,2,...,n. On the other hand, since F' is a uniform P-function
with modulus k£ > 0, from Definition 1.7(f) it follows that

sl — a2 < max (z: — o) (i) — Fi(a"))
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for any x € IR". Combining the last two equations yields
|z —2*|| < (2L/k) max Iri(x)] Vo e R™

This together with Lemma 2.3 implies
2L 2L

P G I < 7 ||pP
Consequently, we obtain the desired result. [

Next, we turn to the convergence and stability properties of the neural network (5.3).
Our analysis focuses on the behavior of the solution trajectory, including its existence
and convergence, and we establish three types of stability for an isolated equilibrium
point. We begin by stating the relationship between an equilibrium point of (5.3) and a
solution to the NCP.

Proposition 5.2. (a) FEvery solution to the NCP is an equilibrium point of the neural
network (5.3).

(b) If F is an Py-function, then every equilibrium point of (5.3) is a solution to the
NCP.

Proof. (a) Suppose that z is a solution to the NCP. Then, from Proposition 2.3, it is
clear that ®? (z) = 0. Using Proposition 2.2(e) and (5.5), we then have VU?_(z) = 0.
This, by Definition 5.1, shows that z is an equilibrium point of (5.3).

(b) This is a direct consequence of Proposition 2.4. [

Lemma 5.4. Let V2 : IR" — R be given by (2.17). Then, the function WP (x(t)) is
nonincreasing with respect to t.

Proof. By the definition of W? (z) and (5.3), it is not difficult to compute

dW? (x(t)) dx(t)
FB — ‘;[;p T
— VP (z(t)) I
= V\IlgB(:c(t))T (—pV\IJ’;B (:U(t))) (5.6)
= —pIVE¥2_(x(t)|I” <O0.
Therefore, \I”F’B(w(t)) is a monotonically decreasing function with respect to t. O

Proposition 5.3. For any fixed p > 2, the following hold.

(a) For any initial state xo = x(to), there exists exactly one maximal solution x(t) with
t € [to, (o)) for the neural network (5.3).
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(b) If the level set L(xg) = {x € R" | WP _(x) < WP _(x0)} is bounded or F is Lipschitz
continuous, then T(xg) = +00.

Proof. (a) Since F' is continuously differentiable, VF(x) is continuous, and therefore,
VF(z) is bounded on a local compact neighborhood of z. On the other hand, V.92 and
waij are Lipschitz continuous by Lemma 2.5. These two facts together with formula
(5.5) show that VWP _(x) is locally Lipschitz continuous. Thus, applying Lemma 5.1 leads
to the desired result.

(b) We proceed the arguments by the two cases as shown below.

Case (i): The level set L(zg) is bounded. We prove the result by contradiction. Suppose
T(z9) < co. Then, by Lemma 5.2, Tli{n) |x(t)|] = oco. Let L(xo) := R™\L(z0) and
tT7(xo

7o :=inf{s > 0| s < 7(x0),x(s) € L(x0)} < 00.

We know that z(7p) lies on the boundary of L(xy) and L(zy). Moreover, L(zg) is
compact since it is bounded by assumption and it is also closed because of the continuity
of W2 (x). Therefore, we have x(7) € L(x¢) and 75 < 7(), implying that

WP (x(s)) > WP (20) > WP (x(79)) for some s € (70, 7(70)). (5.7)

However, Lemma 5.4 says that W2_(x(-)) is nonincreasing on [to, 7(2o)), which contradicts
(5.7). This completes the proof of Case (i).

Case (ii): F" is Lipschitz continuous. From the proof of part (a), we know that VU?_(x)
is Lipschitz continuous. Thus, by Lemma 5.1, we have 7(xy) = co. O

Proposition 5.4. (a) Let x(t) with t € [ty, T(x0)) be the unique mazimal solution to the
neural network (5.3). If 7(x9) = oo and {x(t)} is bounded, then tliglo VP (z(t)) =
0.

(b) If F is strongly monotone or a uniform P-function, then L(xq) is bounded and every
accumulation point of the trajectory x(t) is a solution to the NCP.

Proof. With Proposition 2.4, Lemma 5.4, and Proposition 5.3 in place, the subsequent
arguments follow directly from those in [137, Corollary 4.3]. Therefore, we omit the
details here. [

From Proposition 5.2(a), every solution z* to the NCP corresponds to an equilibrium
point of the neural network (5.3). Moreover, if z* is an isolated equilibrium point of
(5.3), then it can be shown that z* is not only Lyapunov stable but also asymptotically
stable.

Proposition 5.5. Let x* be an isolated equilibrium point of the neural network (5.3).
Then, x* is Lyapunov stable for the neural network (5.3), and furthermore, it is asymp-
totically stable.



462CHAPTER 5. DYNAMICAL METHODS USING COMPLEMENTARITY FUNCTIONS

Proof. Since z* is a solution to the NCP, ¥?_(z*) = 0. In addition, since z* is an isolated
equilibrium point of (5.3), there exists a neighborhood 2* C IR" of x* such that

VU? (2%) =0, and VUV (z)#0 VreQ\{z"}.

Next, we argue that WP () is indeed a Lyapunov function at 2* over the set (2* for
(5.3) by showing that the conditions in (5.2) are satisfied. First, notice that W?_(x) > 0.
Suppose that there is an 7 € Q*\{z*} such that W2 (z) = 0. Then, by formula (5.5)
and Proposition 2.2(e), we have VU (Z) = 0, i.e., T is also an equilibrium point of (5.3),
which clearly contradicts the assumption that x* is an isolated equilibrium point in 2*.
Thus, we prove that W2 (x) > 0 for any » € Q*\{z*}. This together with (5.6) shows
that the conditions in (5.2) are satisfied, and hence W?_(z) is a Lyapunov function at 2*
over the set Q* for (5.3). Therefore, 2* is Lyapunov stable by Lemma 5.3(a).
Now, we show that z* is asymptotically stable. Since z* is isolated, from (5.6) we have
AP (z(t
% <0, Va(t)eQ\{z"}.
This, by Lemma 5.3(b), implies that z* is asymptotically stable. O

Proposition 5.6. If * is a reqular solution of the NCP, then it is exponentially stable.

Proof. Recall that * is a regular solution to the NCP if every element V' € 9®_(x*)
is nonsingular. Then, using the same arguments, we can verify that the neural network
(5.3) is also exponentially stable if z* is a regular solution to the NCP. [

To conclude this section, we provide further elaboration on the various notions, con-
ditions, and related numerical issues.

1. Using arguments similar to those used in [64, Proposition 3.2], we can prove that
x* is regular if VF,, is nonsingular and the Schur complement of VF,,, in

VEo(x*) VEus(x*)
Vo (z*) VEFgg(z*)

is an P-matrix, where o := {i | 2} > 0} and §:= {i | 2} = F;(2*) = 0}. Clearly, if
V F' is positive definite, then the conditions hold true.

2. From Definition 5.5, if an isolated equilibrium point z* is exponentially stable, then
there exists a 0 > 0 such that z(t) with xy = (to), and ||z(ty) — 2*|| < 0 satisfies

() = 2|l < ce™"[l(to) — 2| VE = to,

which together with Proposition 5.1 implies that

2cL

|z(t) — || < (2 — 27

e (xzo)e™" Vit > to. (5.8)
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Since the strong monotonicity of F' implies that F' is a uniform P-function and
that VI is positive definite, from (5.8), we obtain that the neural network (5.3)
can yield a trajectory with an exponential convergence rate under the condition
that F' is strongly monotone and Lipschitz continuous.

3. From equation (5.8), we observe that as the parameter p increases, the coefficient
of the exponential term e~“* on the right-hand side decreases. This indicates that a
larger p leads to a faster convergence rate, a conclusion consistent with the findings
of [30] for descent-type methods based on W2 . Furthermore, (5.8) also reveals that
the energy of the initial state, W2 (xo), affects the convergence behavior. Specifi-
cally, a higher initial energy tends to result in a slower convergence rate.

4. For detailed numerical simulations, please see [32].

5.1.2 Neural Network using ¢’

NR’

p
oF > and ¢  for NCP
Analogous to what we do in Section 5.1.1, we consider the steepest descent-based neural
network :

dx(t)

dt
where p > 0 is a time-scaling factor. Here, we will employ different types of NCP
functions to work along with dynamical system (5.9). To this end, given an NCP function

pe{g? ,° ,¥P _}, we denote

= —pVU(z(t), =x(ty) = 2°, (5.9)

1
¢(a> b) = §|¢(av b)|2 (510)
Moreover, let ® : IR™ — IR™ be defined by

¢(x1, Fi(x))
d(z) = : (5.11)

and ¥ : IR™ — IR, be given by
1
U(z) = Slle@)[* (5.12)

To proceed, we first summarize several key lemmas and important properties of W, as
defined in (5.12), for general NCP functions. These results can be found in Chapter 2.

Lemma 5.5. Let F be locally Lipschitzian. If allV € OF (x) are nonsingular, then there

is a neighborhood N(x) of x and a constant C such that for any y € N(z) and any
V € OF(y), V is nonsingular and |V < C
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Proof. Please see [181, Propositions 3.1]. [

Proposition 5.7. Let ¥ : R™ — IR, be defined as in (5.12) with ¢ being any NCP
function and i being given as in (5.10). Suppose that F' is continuously differentiable.
Then, the following hold.

(a) Y(z) >0 for all x € R™. If the NCP (2.1) has a solution, x is a global minimizer
of ¥(zx) if and only if x solves the NCP.

(b) W(xz(t)) is a nonincreasing function of t, where x(t) is a solution of (5.9).

(c) Let x € R™, and suppose that ¢ is differentiable at (z;, F;(x)) for each i =1,...,n.

Then,
VVU(x) = V(z, F(z)) + VF(2)Vy(x, F(x)) (5.13)
where
Vab(w, F(x) = [Va(er, Fi(2)),..., Vatb(zn, Fu(2))]
Vib(z, F(z)) = [Vy(zr, Fi(2)), ..., Vet (za, Ful@))]" .

(d) Let x be a solution to the NCP such that ¢ is differentiable at (x;, Fi(x)) for each
1=1,...,n. Then, x is a stationary point of V.

(e) Every accumulation point of a solution x(t) of neural network (5.9) is an equilibrium
point.

Proof. (a) It is clear that ¥ > 0. Notice that ¥(x) = 0 if and only if ®(z) = 0,
which occurs if and only if ¢(z;, Fi(x)) = 0 for all i. Since ¢ is an NCP-function, this is
equivalent to having x; > 0, F;(z) > 0 and x;F;(x) = 0. Thus, ¥(z) = 0 if and only if
x>0, F(z) >0 and (z, F(x)) = 0. This proves part (a).

(b) The desired result follows from

dv(z(t)) T dx
— = VU (x(t)) i
= V()T (—pVT(x(t)))

— VTP <0

for all solutions z(t).

(¢) The formula is clear from chain rule.

(d) First, note that from equation (5.10), we have Vi (a,b) = ¢(a,b) - Vo(a,b). Thus, if
x is a solution to the NCP, it gives Vi)(x;, Fi(z)) = 0 for alli =1, ..., n. Then, it follows
from formula (5.13) in part(c) that VW (x) = 0. That is, z is a stationary point of W.

(e) Please see page 232 in [212] for a proof. [
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As mentioned, we adopt the neural network (5.9) with W(z) = 1{|®(z)|?, where ®

is given by (5.11) with ¢ € {¢? ,¢2 P }. The function @ corresponding to ¢%_,

NR’ S—NR

o, and P is denoted, respectively, by ®F . ®F  and ®¢ . Their corresponding
merit functions will be denoted by W2 WP and WP respectively. We note that by

formula (5.13) and the differentiability of ¥ € {¥?_ WP wP 1}, the neural network

NR’ 7 S1-NR’ = S2-NR
(5.9) can be implemented on hardware as in Figure 5.1.

Proposition 5.8. Let p > 1 be an odd integer. Then, the following hold.

(a) W2 and WE  are both continuously differentiable on IR™.

(b) WP is continuously differentiable on the open set Q = {x € R" | x; # Fi(v),Vi =
1,2,--- ,n}.

Consequently, the neural network (5.9) with W2 or WP has a unique solution for all

2% € R". The neural network (5.9) with WP has a unique solution for all e Q.

Proof. Parts (a) and (b) follow directly from Proposition 5.7(c), Proposition 2.23, Propo-
sition 2.27, and Proposition 2.33. The existence and uniqueness of the solutions are
guaranteed by Lemma 5.1, given the continuous differentiability of F', as well as that of

wP PP (on ), and WP O

NR’ ~ S1-NR S2-NR '

As noted in Proposition 5.8(b), we restrict our consideration of the neural network
(5.9) with ¥ = WP to the domain (), treating it as a dynamical system defined on
this set. Our next objective is to identify conditions under which the equilibrium points
of (5.9) coincide with the global minimizers of ¥. When the underlying NCP function

satisfies the following properties:
(P1) Va(a,b) - Vy(a,b) > 0 for all (a,b) € IR?; and
(P2) For all (a,b) € R?, V,1b(a,b) =0 < Vyh(a,b) = 0 < ¢(a,b) = 0.

an equilibrium point of the neural network corresponds to a global minimizer of W,
provided that F'is a Fy-function. However, as discussed in Section 2.2, the functions ¢?_,
o> and YP  satisfy these properties only on a proper subset of IR". Consequently,
we seek alternative conditions to achieve the desired characterization. We begin by
examining the merit function W2 .

Proposition 5.9. If F' is strongly monotone with modulus p > 1, then every stationary
point of WP is a global minimizer.

Proof. Let z* be a stationary point of U? . that is, VWT (x*) = 0. For convenience, we
denote by A(z*) and B(z*) the diagonal matrices such that for each i = 1,... n,

Ai(z*) = (27"t and  Bi(z) = (27 — F(a*))P (2] — Fi(a")) 4.
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Then, by formula (5.13) and Proposition 2.23, we have
plA(z") — B(a")]®}, (z7) + pVF (") B(z") D} («7) = 0,
which yields
A(x")®8 (2%) + (VF(z") — I)B(x*)®Y_(2*) = 0. (5.14)
Analogous to the technique in [81], pre-multiplying both sides of (5.14) by (B(z*)® (z*))T
leads to
* * * * * * T * * *
O () [B(z*)A(z*)| 9P (2*) + (B(z")®" (2*)) (VF(z*) — I)B(z*)®? (z*) = 0.
(5.15)
Since p is odd integer, we have A(z*) > 0 and B(z*) > 0; and hence,
*\T * * *
@7, () T[Ba") A)]9%, (a*) = .
On the other hand, since F' is strongly monotone with modulus p > 1, defining G(z) :=
F(z) — x gives
(r =y, G(z) =Gy) = (
=
(

>
>

—y, F(z) —z—F(y) +y)
—y, F(x) = F(y) — |z —y|?
p—= 1)z —yl?
0,

for all z,y € IR". Note then that VG(x) = VF(x) — I is positive definite. Consequently,
each term of the left-hand side of (5.15) is non-negative. With (VF(x*)—1) being positive
definite, it yields B(z*)®? (2*) = 0. In addition, from (5.14), we have A(z*)®%_(z*) = 0.
To sum up, we have proved that Ay (z*)¢? (o7, Fi(z*)) = 0 and By(z*)¢? (7}, Fi(z*)) =
0 for all ¢.

Now, if ¢2 (z7, Fi(x*)) # 0 for some 4, then we must have A;;(z*) = By(2*) = 0. Thus,
(z7)P~' =0 (ie., 2f = 0), and z} < Fj(z*). Since ¢¢  is an NCP-function, the latter
implies that ¢?_ (xz, i(r*)) = 0. Hence, ¢¥ (v, Fi(2*)) = 0 for all i, that is, 2 is a
global minimizer of W? . This completes the proof 0

The following proposition establishes a weaker condition on F' under which any sta-
tionary point of W2 is guaranteed to be a global minimizer.

Proposition 5.10. If (VF — I) is a P-matriz, then every stationary point of W2 is a
global minimizer.

Proof. Suppose that VU2 (z*) = 0. If B(2*)®? (2*) = 0, then A(z*)®2_(2*) = 0 by
equation (5.14). As in the preceding proof, we obtain ®* (2*) = 0, and hence we are
done. It remains to consider another case that B(z*)®? (z*) # 0. Note that

(B(2") Y, (7))
= (2] = Fi(2")" (] — Fi(a")) 4 87, (27, Fi(a"))
{ 0 if zf < Fy(z*) or z} > Fy(z*) = 0,
(o1 — R, (a, Fir) it ot > Fia*) and E(e) 0.
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Thus, the nonzero entries of B(z*)®? (x*) appear at indices i where x7 > Fj(z*) and
F;(xz*) # 0. To proceed, we denote

I o= {i]a} #0and (B")a2, (1)) £ 0},
Iy = {i|zj =0and (B(z")® (2")); # 0}.

With these notations, we observe the following facts.

(i) For i € I, since p is odd, it is clear that the i-th entry of A(z*)® (z*) and
B(z*)®?_(z*)) are both nonzero and have the same sign.

(ii) For i € I, then (B(z*)®2_(2*)); # 0 and (A(z*)®2_(z*)); = 0.

Because (VF —I) is a P-matrix, it follows from Lemma 1.5 that there exists an index j
such that
(B(z") @, (27));,[(VE (") = [)(B(z") @7, (¢7))]; > 0.

This says that (B(z*)®2 (z*)); # 0 and therefore j € I; U I,. Note that by (i)
above, (A(z*)®? (2*)); and (B(z*)®? (2*)); have the same sign if j € I; which will
contradict equation (5.14). On the other hand, if j € I, we have from fact (ii) that
(A(z*)®2_(z*)); = 0. However, we also have that [(VF(z*) — I)(B(z*)®2_(2%))]; # 0.
This certainly violates equation (5.14). Thus, we conclude that B(z*)®? (z*) = 0, and
hence ®? (2*) = 0. Then, the proof is complete. [

Remark 5.1. In fact, if the function F' is nonnegative (or if we at least have F(z*) >0
for an equilibrium point x*), then case (ii) in the above proof cannot happen. Thus, the
above result is valid even when (VF — 1) is a Py-matriz by Lemma 1.5.

As shown in Proposition 2.27 and Proposition 2.33, the structures of V&? and

S1—-NR
vor ., corresponding to the NCP functions ¢F and P are inherently complex

—NR S—NR’

due to the piecewise nature of these functions. This complexity presents significant chal-
lenges in identifying conditions on F' that ensure a stationary point of W2 or WP
is also a global minimizer. Nevertheless, under the assumption that F'is a nonnegative

function, we can establish the following result.

Proposition 5.11. Suppose that F' is a nonnegative Py-function and z* > 0. If x* is a

stationary point of W2 or WE . then it is a global minimizer.

Proof. If we can show that the aforementioned properties (P1) and (P2) hold for ¢?
and ¢?  on the nonnegative quadrant IR?, then we can proceed as in the proof of [35,
Proposition 3.4]. Thus, it is enough to show that (P1) and (P2) hold on IR%. Indeed,

they clearly follow from Proposition 2.28 and Proposition 2.35.

For completeness, we include the detailed arguments here. To simplify our notations, we
denote ¢1 = ¢f . ¢ = Y and ¢; = £]¢5|* (i = 1,2). Note that the domain of

S—NR’
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AVA\Z4 is {z|z; # Fi(z) or ; = F;(x) = 0}. Thus, for ¢4, it suffices to check that it

S1-NR

has properties (P1) and (P2) only on the set {(a,b) € R |a # b or a = b = 0}.

To proceed, we observe that
Vawi(aa b) = (/bi(a’a b>va¢i<a7 b) and Vb%(aa b) = ¢i(a7 b>vb¢i(a7 b)7

which imply

Vawi(a’ b) : Vb¢i(a7 b) = <¢i(a7 b))2 : Vaﬁbi(a? b) : vb¢i(a’ b)? 1=1,2.

Ifa>b=0o0rb>a=0, then ¢;(a,b) = 0; and thus, the above product is zero.
Otherwise, the above product is positive by Proposition 2.24. This asserts (P1).

To show (P2), note that it is obvious that V,1;(a,b) = Vihi(a,b) = 0 if ¢;(a,b) = 0 for
i=1,2.

To show the converse, it is enough to argue that if V,¢;(a,b) = 0 or V,¢;(a,b) = 0,
then ¢;(a,b) = 0. First, we analyze the case for ¢;. Suppose that V,¢1(a,b) = 0. From
Proposition 2.27, we know

. a’~t —(a—0bPt ifa>0b
5vﬂﬂmm: 0 ifa=b=0 (5.16)
(b—a)P! ifa<b

For a = b = 0, then ¢;(a,b) = 0. For a > b, then a = |a — b| = a — b since p is an odd
integer. Thus, b = 0 and because a > b, we obtain ¢;(a,b) = 0. For a < b, we have from
(5.16) that (b — a)?~! = 0, which is impossible. This proves that V,¢(a,b) = 0 implies
that ¢1(a,b) = 0. Similarly, we can show that V,¢;(a,b) = 0 implies that ¢;(a,b) = 0.
This asserts (P2) for the function ;.

Analogously, for 1,, assume that V,¢2(a,b) = 0. From Proposition 2.33, we have

aP~ P — (a — b)P~LpP if a>b,
1 2p—1 :
—Vapo(a,b) =< a® if a=0b,
p aP~ P — (b —a)PaP™t + (b — a)P"ta? if a <b.

For a = b, then a®~! = 0, and hence a = 0 and ¢s(a,b) = 0. For a > b, then
a?~ 1P — (a — )PP = 0. For b = 0, we obtain ¢o(a,b) = 0 by using a > b. Otherwise,
a?~! — (a — b)»"! = 0. Because p is odd and a > b, we have a = |a — b| = a — b.
consequently, b = 0 and ¢5(a,b) = 0. For a < b, then we have from the above formula
for V,¢o that a?~'b? — (b — a)Pa?~* + (b — a)P"'a? = 0. For a = 0, then ¢3(a,b) = 0 due
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to a < b. Otherwise, a > 0 and

0 = ¥—(b—af+(b-aP'a
= W —(b—a)’'(b-2a)
= (a+kP—KkYk—a) wherek=b—a>0

p—1

= 3 (P)e K+ ak!
1=0 ’

>

which is a contradiction. To sum up, we have shown that V,¢9(a,b) = 0 implies that
¢2(a,b) = 0. Similarly, it can be verified ¢(a,b) = 0 provided Vypo(a,b) = 0. Thus, 1)y
possesses the property (P2). This completes the proof. [

We now examine the properties of the neural network (5.9) concerning the behavior
of its solution trajectories. The following results follow directly from Proposition 5.7(a),
Proposition 5.7(d), Proposition 5.10, and Proposition 5.11.

Proposition 5.12. Consider the neural network (5.9) with ¥ e {¥?  ¥P wro 1

NR’ 7 S1-NR’ = S2—NR

(a) Ewvery solution of the NCP is an equilibrium point.

(b) If (VF 1) is a P-matriz, then every equilibrium point of (5.9) with ¥ = WP solves
the NCP.

(c) If F is a nonnegative Py-function, every equilibrium point x* > 0 of (5.9) with
U e {wr wr 1 solves the NCP.

S1-NR’ ~ S2—-NR

Proposition 5.13. Let F' be a uniform P-function and let ¥ € {U? WP S

NR’ 7 S1-NR’ = S2—NR

(a) The level sets L(V,7) == {z € R"|¥(x) < v} of U are bounded for any v > 0.
Consequently, the trajectory x(t) through any initial condition x° € R™ is defined
for all t > 0.

(b) The trajectory x(t) of the neural network (5.9) through any z° € R™ converges to
an equilitbrium point.

Proof. (a) Suppose otherwise. Then, there exists a sequence {z*}?°, C L(¥,~) such
that ||z%|] — oo as k — oo. A similar argument as in [64] shows that there exists an
index i such that |z¥| — oo and |Fj(2*)| — oo as k — oo. By Proposition 2.36, we
have |¢(x}, Fi(z*))] — oo, where ¢ € {¢? ,¢F P 1} But, this is impossible since

(%) <~ for all k. Thus, the level set £(¥, ) is bounded. The remaining part of the
theorem can be proved similar to Proposition 4.2(b) in [32].

(b) From part(a), the level sets of ¥ are compact and so by LaSalle’s Invariance Principle
[134], we reach the desired conclusion. [
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Proposition 5.14. Suppose x* is an isolated equilibrium point of the neural network
(5.9). Then, x* is asymptotically stable provided that either

(i) Y=V and (VF —1I) is a P-matriz; or

(ii)) v e {wr WP .} F s a nonnegative Fy-function, and the equilibrium point is

nonnegative.
Proof. Let 2* be an isolated equilibrium point of (5.9). Then, it has a neighborhood O

such that
VU(z*) =0 and VU(x)+#0 for all z € O\{z"}.

We claim that ¥ is a Lyapunov function at z* over ). To proceed, we note first that
U(x) > 0. By Proposition 5.12(b) and Proposition 5.12(c), ¥(z*) = 0. Further, if
U(x) = 0 for some z € O\{z*}, then x solves the NCP and by Proposition 5.12(a), it
is an equilibrium point. This contradicts the isolation of x*. Thus, ¥(z) > 0 for all
x € O\{z*}. Finally, it is clear that

d¥(x(t))
dt

over the set O\{z*}. Then, applying Lemma 5.3 yields that z* is asymptotically stable.
0

— | VE((®)]? < 0

Proposition 5.15. Consider the neural network (5.9) with ¥ € {¥?_ WP w1

NR’ 7 S1-NR’ = S2—-NR
If VO(z*) is nonsingular for some isolated equilibrium point x*, then z* solves the NCP

and x* is exponentially stable .

Proof. Let z* be an equilibrium point such that V®(z*) is nonsingular. Note that
VU (z*) = VO(z*)P(x*), and so VU (z*) = 0 implies that ®(z*) = 0. This proves
the first claim of this proposition. Further, using ¥ as a Lyapunov function as in the
preceding theorem, x* is asymptotically stable.

Note that since ® is differentiable at x*, we have
O(z) = VO(2) (v — 2*) + o(||lx — 2*||) asz — o~ (5.17)

By Lemma 5.5, there exists § > 0 and a constant C' such that V®(z) is nonsingular for
all x with ||z — z*|| < d, and ||[V®(x)"!|] < C. Then, it gives

kllyll? < Ve (z)y)* (5.18)

for any z in the d-neighborhood (call it N;) and any y € IR", where x = 1/C?.

Let € < 2pk. Since x* is asymptotically stable, we may choose ¢ small enough so that
o(||lx — z*||?) < g||lx — z*||* and z(t) — z* as t — oo for any initial condition z(0) € Nj.
Now, define g : [0,00) — IR by

g(t) = |lz(t) — 2|
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where z(t) is the unique solution through z(0) € N;. Using equations (5.17) and (5.18),
we obtain

. 2(x(t) —27)

I

|
DO

s

IA I
Tl
[(\@)

S =
xR
4+ =
™

Then, it follows that g(t) < e(=2?%+2)g(0), which says
() — 2*|| < P2 2(0) — 2,

where —pr + £/2 < 0. This proves that z* is exponentially stable. [
Detailed simulations involving the neural network (5.9) with ¥ € {W?_ WP e}

NR’ ~ S1-NR’ = S2—-NR
are provided in [2]. In addition, a variety of comparative analyses are presented, includ-
ing convergence rate comparisons across different values of p, as well as performance

comparisons between these networks and those based on ¢, and ¢% .

5.1.3 Neural Network using gbp

N

g gbp o and ws « for NCP

Following the same idea in Section 5.1.1 and Section 5.1.2, the neural network considered
for solving the NCP is the gradient dynamical system

dx

— = —PVUn(e(t)), 2(0) =", (5.19)

which is based on the unconstrained minimization problem min,cg» Vg (z), where
1 2
Ui (r) = 5 [[Pr(a)|* = Z¢ zj, Fy(@))?, (5.20)

In this section, we will employ three functions $§R, gngR and @f/;é’iNR for the ¢ function
n (5.20). Note that p could be any positive real number and the case when p is an odd
integer greater than 1, the neural network (5.19) reduces to the neural network (5.9)
studied in previous section.

Proposition 5.16. Let p > 1 and consider (5.20). Then the following hold:

(a) If (VF —1) is a P-matriz, then every stationary point of CI;iR is a global minimizer.
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(b) If F(z*) >0, (VF(z*)—1) is a Py-matriz and z* is a stationary point of \flﬁR, then

x* 15 a global minimizer of WP .

(c) Suppose that x* € Qp and VF(z*) is a Po-matriz. If x*is a stationary point of

p D * - e
we  orWE o, then x* is a global minimizer.

Proof. To prove (a) and (b), we define two diagonal matrices A(z*) and B(z*) where
Ai(a”) = l2}|""" and  Bu(a®) = (2] — Fi(a"))sgn(a] — Fi(a"))+,

where z* is an equilibrium point of (5.19) with Up = \Tfi - Then, analogous arguments as
in the proof of Proposition 5.10 lead to the desired conclusion. To prove (c), we proceed
as in the proof of Proposition 5.11. That is, we verify the following properties:

(P1) V(a,b) € RZ, we have V,t(a,b) - Vytp(a,b) > 0; and
(P2) V(a,b) € R%, we have V,(a,b) = 0 <= Vyip(a,b) = 0 <= ¢(a,b) =0,

where 1) 1= %(;52 and ¢ € {&S’_NR,W? }. Property (P1) can be easily verified. To show

S—NR

(P2), we only need to show that given a,b > 0, the following holds:

(i) Va&g_NR(a, b) = 0 implies $g_NR(a, b) = 0; and
(i) Vo  (a,b) = 0 implies ¥ _ (a,b) = 0.

We first prove (i). If va&g_m(a, b) = 0, then we see from Proposition 2.38(b) that we

must have a > b or a = b = 0. Otherwise, VG&S’_NR(OL, b) = p(b—a)P~! would be positive.
~ _ e

If a =1b=0,then ¢¢  (a,b) = 0 as desired. If a > b, then 0 = V98 _ (a,b) =

aP~t — (a = b)P~'. Since t — t*7! is strictly increasing on [0,00), then a = a — b, i..

b= 0. Then, ¢¢  (a,b) =0 since a > b= 0 and ¢7 _ is an NCP function. To prove

S—NR

(ii), assume that Vo¢? (a,b) = 0. From Proposition 2.38(c), we must have

1~ aP~ P — (a — b)PbP it a>b
= — P — —
0 pval/)s,NR(aa b) { a? P — (b —a)PaP~' 4 (b —a)?"'a? if a <.

If a > b, then we can proceed as in Proposition 5.11. If a < b, then
0=a’""" — (b—a)’a’ ' + (b—a)’'a? = a? (0¥ — (b—a)’ + (b—a)’ta). (5.21)

From here, we conclude that ¢ = 0. Otherwise, we must have b > (b — a)? and so
W —(b—a)’+(b—a)’"a> (b—a)’'a > 0. This contradicts (5.21). Hence, a = 0 and
since b > a = 0, we obtain that ¥? _ (a,b) = 0 by definition of an NCP function. [

S—NR

In light of the above proposition, we now present analogous stability results to those
established in Section 5.1.2. Due to the close similarity in the underlying arguments, the
proofs are omitted.
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Proposition 5.17. Let x* be an equilibrium point of dynamical system (5.19).

(a) If Up € {UL 0P P} and F is a uniformly P-function, then the solution

NR’ 1-NR’ =~ S2—-NR

to (5.19) through any x° € R™ converges to x*.

(b) If Vg = \TJ{;R, then x* € SOL(F) provided that (VF — I) is a P-matriz . If z* is
1solated, then it is asymptotically stable.

(c) Ifr* € Qp and Vp = V2 or Up = {IVI’S’%NR, then x* € SOL(F') provided that F is

a Py-function . If x* is isolated, then it is asymptotically stable.

(d) If VOgp(z*) is nonsingular, where ¢ € {Eégr{,?égfm,zlgfm}, and x* 1is isolated, then
x* € SOL(F) and x* is exponentially stable.

The parameter p plays a crucial role in determining the convergence rate of the neural
network. For discrete-type families, numerical experiments conducted in [2] on a selected
set of test problems revealed that smaller values of p € {3,5,7, ...} often result in faster
convergence. However, there is currently no theoretical justification for this phenomenon.
In fact, as we shall observe later, the convergence behavior can vary significantly with
different choices of p. Specifically, a smaller value of p does not always guarantee faster
convergence; in some instances, higher values of p yield superior performance.

The numerical results presented in the later sections indicate that no simple or uniform
relationship can be established between the performance of the neural network (5.19)
and the parameter p, particularly when Up € {@ﬁw\igl_m"igz_m}' Moreover, the
suggest that the initial conditions have a significant influence on both the convergence
behavior and the sensitivity of the network to the choice of p. To better understand these
phenomena, we establish the following theorem. The first part of the proof derives an
error bound for the NCP(F') (see equation (5.24)), assuming that F is a locally Lipschitz
uniformly P-function. The derivation technique follows a similar line of reasoning to that
employed in [63, Proposition 6.3.1].

Proposition 5.18. Consider the neural network (5.19) with Vg = \igl_NR for a given
p > 1. Suppose that z* € SOL(F) is exponentially stable and F' is a uniformly P-function
that is locally Lipschitz continuous. Then there exist positive constants K, w and 6 such

that for all t > 0, we have

1
1 = s
|z(t) — 2°|| < K (ﬂ 2 (:1:0)) e ¥ € Qp M Ny(2”),

S1-NR
p

where Ns(z*) = {y : ||y — z*|| < d}.

Proof. Suppose F is uniformly P with modulus k > 0. Given z € R"™, let j € {1,...,n}
such that
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Then

Klle = 2"|* < (25 — 25)(Fj(2) — Fj(a")) = —2;F;(2") — (2 — 2;) Fj (). (5.22)

J

Meanwhile, note that (s—t)(t4—t) > 0 for any s > 0 and ¢t € R. Since min{z;, Fj(x)} =
xj — (v; — Fj(x))4, then taking s = x5 > 0 and t = z; — Fj(r), we have

(2 — a; + min{z;, Fj(x)})(Fj(x) — min{z;, F;(z)}) = 0
which implies that
(2 — ) () = (] — a;) min{x;, Fj(2)} — Fj(z) min{z;, Fj(2)}. (5.23)

Since x; > min{x;, F;(z)} and F;(z*) > 0, we have from inequalities (5.22) and (5.23)
that

Kl — 27| (F(z) = Fj(z7)) = (] — ;)] min{z;, F()}

([E(z) = F(z*)[| + [l = 2" [} min{z;, Fj(2)}]

IAIA

Since [ is locally Lipschitz, we conclude that given any x € IR™ in some neighborhood
of z*, there exists an index j = j(z) and L > 0 such that

ke — 2| < (1+ L) - [min{a;, Fj(2)} - [lz — 27 (5.24)

Now, let 20 € Qp. We have from part (a) of the proof of Proposition 2.36 and using
Lemma 2.10 that gb” L(a,b) > “Lo(min{a, b})? for any a,b > 0. By (5.24), there exists
j=7j" e{1,... ,n} such that

PEIS (@0 B (5.25)

Klla® — 2" < 1+ L) -

Since x* is exponentially stable, there exist positive constants 9, ¢ and w such that for any
t >0, |z(t) — z*|| < cem#!||z® — x*|| for all z° € Ns(z*). This, together with inequality
(5.25), gives the desired result with K := E(1 +L). O

K

Proposition 5.19. Consider the neural network (5.19) for a given p > 1, and let x* €
SOL(F') be exponentially stable. Suppose that F is a uniformly P-function and locally
Lipschitz continuous. Then

(a) If Up = {Iv/{\’IR, there exist positive constants K, w and § such that for all t > 0, we
have

1 /= >
||x<>—x||<K(p; ng(asO)) e € O Ny ()
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(b) If Vg = P there exist positive constants K, w and 0 such that for allt > 0, we

S2—-NR’
have
1

1 /= %
|lz(t) — 2| < K (]% 2P (x0)> e ! V2 € Qp N Ni(z*).

S2—NR

Proof. For a > b > 0, then gfm(a, b) = 5571\@{(&7[’) > S47bP as in part (a) of the proof
of Proposition 2.36. When 0 < a < b, we have ggp (a,b) = a? > Iﬁa”. It follows

NR

that %R(a,b) > 2r(min{a,b})?. On the other hand, using the identity (2.49) and the
fact that ¢ _ (a,b) > -2 (min{a, b})? for any a,b > 0, we derive that Jé’,m(%b) >

S—NR

-2 (min{a, b})?. Using these identities and the same arguments as in Proposition 5.18,

we get the desired inequalities. [

As mentioned in the discussion before Proposition 5.18, there is no simple relation
describing the influence of p. To see this clearly, consider the function ¢f . From the
proof of Proposition 5.18, there exists an index j = j(z°) given any 2° € QF close enough
to x* such that

() — "] <

WL @ne)| e wzo. )

K 3
For a fixed 2° € Qp N Ng(z*), we define the function

ga,b(p> = {]%155_1\“1(@7 b):| ' )

where a = 29 and b = Fj;(2°) and p > 1. Without loss of generality, by taking into

account the symmetry of ggfs’f we may suppose that a > b. Then

NR’

p+1 »

dualp) = |25 @ = (o= o)

Note that M := lim, .~ g.s(p) = a. As we shall see in the following example, the function
Jap 1S not necessarily monotonic, and the values of a and b have a significant effect on
the behavior of g, .

Example 5.1. In Figure 5.2, we see that g.,(p) increases for increasing values of p for
(a,b) = (4,0.5) on the interval (1,25]. In view of the error bound (5.26), this indicates
that lower values of p € (1,25] will provide faster convergence rate. We shall note that
ga05 does not continue to increase on [25,00). In particular, it is increasing from p = 1
to p ~ 34.4458, then decreases afterwards (see Figure 5.8). On the other hand, Figure
5.2 suggests that for (a,b) = (4,3), higher values of p result to faster convergence rate.
Finally, the nonmonotonic graph depicted in Figure 5.2 for (a,b) = (4,2) indicates dif-
ferent convergence behaviors for values of p on different intervals. However, observe too
that the values of gi2(p) are close to the limit value M = 4 when p belongs to some
interval (1,14 ¢€), for some small € > 0.
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Figure 5.2: Graph of upper bound for the error term ||z(t) — z*|| for some values of a
and b with a,b > 0 and a > b.
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Figure 5.3: Graph of ¢405(p) on the interval [30,40].
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Remark 5.2.

(a) The preceding example clearly illustrates that the effect of varying the parameter
p on the upper bound is highly sensitive to the choice of initial condition for the
neural network (5.19). Nonetheless, it is important to note that the function g, (p)
exhibits minimal variation for large values of p. As a result, we expect that the
convergence behavior of the neural network remains largely unaffected as p becomes
large.

(b) We remark that these observed behaviors hold under the hypotheses of Proposition
5.18 and Proposition 5.19, which include very strong assumptions on F and on
the equilibrium point x*. Hence, we expect more varying convergence behaviors for
other classes of functions F'.

(c) Finally, note that for the generalized FB function ¢¥_ we may define a similar upper
bound function hqy (see [32]) as

|48, (0, )]
hap(p) = ﬁ,

In contrast to the function g.p, the function h,p, as defined above, can be verified

p> 1

to be strictly monotonically decreasing. Consistent with this observation, it was
reported in [32] that neural network approaches employing ¢¥ tend to achieve faster
convergence rates when larger values of p are used.

The preceding example and accompanying remarks highlight the complex and nu-
anced role of the parameter p, a phenomenon we will further illustrate through numerical
examples in the next section. Precisely characterizing the effect of p on the convergence
behavior of the ODE trajectories remains an open question. Nevertheless, we have pro-
vided theoretical justification for the observed non-monotonic relationship between p and
convergence rates when employing dynamical systems based on %gR, &;NR and @Z&NR'
For further details and simulation results, we refer the reader to [3].

5.2 Neural Networks for Optimization Problems in-
volving SOC

In this section, we explore neural network methods for solving optimization problems
involving second-order cones (SOCs), including the standard second-order cone program-
ming (SOCP) problem, a more general class of SOCPs, and second-order cone constrained
variational inequality (SOCCVI) problems. To construct the neural networks for these
problems, we utilize certain C-functions introduced in Chapter 3. The section is orga-
nized into three subsections, each devoted to one of the aforementioned problem classes:
the standard SOCP, the generalized SOCP, and the SOCCVI, respectively.
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5.2.1 Neural Networks using ¢,, and projection for standard
SOCP

The target problem that we will tackle is the second-order cone program in the form of

min f(z)

st. Ar=0b, v € K.
Here f : IR™ — IR is a nonlinear continuously differentiable function, A € IR™*" is a full
row rank matrix, b € IR™ is a vector, and K is a Cartesian product of second-order cones

(or Lorentz cones) given as in (3.2). The KKT optimality conditions for (5.27) are given
by

(5.27)

Vf(z) — ATy = A =0,
" A=0,zeK, NeKk, (5.28)
Ar =0,
where y € IR™ and A € IR". When f is convex, these conditions are sufficient for
optimality. It also can be written as

{ T (Vf(z)—ATy) =0, 2 € K, Vf(z) - ATy € K,

Ag — b, (5.29)

By solving the system (5.29), one can obtain a primal-dual optimal solution to the SOCP
(5.27). It is worth noting that the system (5.29) involves a second-order cone complemen-
tarity problem (SOCCP). To solve it efficiently, we propose neural network approaches
based on the Fischer-Burmeister function ¢, and the natural residual function ¢, as
described below.

In [41], the system (5.29) is shown to be equivalent to an unconstrained smooth
minimization problem via the merit function approach, described by

1
min B(z,y) = Wy, (2, Vf(2) — ATy) + 5 || Az — b, (5.30)

N
1
where E(z,y) is a merit function, ¥_,(z,y) = 5 Z |bps (5,912, © = (21, ,2n)T,
i=1
y=(yi,  ,yn) € R™ x --- x R™W, and ¢, is the Fischer-Burmeister function given
by (3.10). Based on the gradient of the objective E(z,y) in minimization problem (5.30),
we propose the first neural network for solving the SOCP, with the following dynamic

equation
d [z —V.E(z,y)
i — 31
dt(?;) p<—VyE(x7y)>’ (531)

where p is a positive scaling factor and
V.E(z,y) = VoV, (2,Vf(x)— ATy)+V2f(z) -V, ¥ . (2, Vf(z) — ATy)
+AT(Az —b),
V,E(z,y) = —A-V,V (2, Vf(z)— ATy).
(5.32)
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The neural network realization of the proposed model requires n 4+ m integrators, n
processors for computing V f(x), n? processors for V2f(z), n processors for VU ., m
processors for V, W .. along with 4mn connection weights and several summing units.
Moreover, as shown in the analysis below, the neural network (5.31) is asymptotically
stable.

Proposition 5.20. If u* = (z*,y*) is an isolated equilibrium point of neural network
(5.31), then u* = (z*,y*) is asymptotically stable for (5.31).

Proof. We assume that u* = (2*, y*) is an isolated equilibrium point of neural network
(5.31) over a neighborhood @, C IR™ of u* such that VE(z*,y*) = 0 and VE(z,y) # 0,
V(z,y) € Q. \ {(z*,y*)}. First we show that E(z,y) is a Lyapunov function for u* at (..
Since

V,E(*,y")=—-A -V, U (2", Vf(z") — ATy*) =0,

from Proposition 3.2 and Proposition 3.4, we have
Vol (2%, Vf(a") = ATy") = V, Uy (27, V f(2) — ATy") = 0.
Moreover, from Proposition 3.6(b) and Proposition 3.2, this says
W, (2", Vf (") — ATy) = 0.
Then from equation (5.32),

V.E(x*,y*) = V.U (2% Vf(z*)— ATy*)
+V2f(a*) - VU (2%, Vf(z*) — ATy*) + AT(Az* —b) =0,

which implies that AT(Az* —b) = 0. Because A € IR™*" is a full row rank matrix, we
must have Az* — b = 0, which yields

* * * * * 1 *
E(z*,y*) =V, (2", Vf(x )—ATy )+ §||Ax —b||* =0.

Next, we claim that E(z,y) > 0, ¥(z,y) € Q. \ {(z*,y*)}. If not, there is an (z,y) €
Q\{(z*,y*)} such that E(x,y) = 0, this says that U__(z, Vf(z)—ATy) = 0 and Az = b,
then V,E(z,y) = 0 and V,E(z,y) = 0. Hence, (x,y) is an equilibrium point of neural
network (5.31), contradicting with that u* = (z*,y*) is an isolate equilibrium point.
Finally,

dE(x(t), y(t))
dt
= [VawwmnE@®),y0))] (= pV @ um) E@ ), (1))

= || Viwwn B ), y@)||”
< 0.
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Therefore, the function E(z,y) is a Lyapunov function for neural network (5.31) over the
set €,. Since u* = (z*,y*) is an isolated equilibrium point of neural network (5.31), w

have
M <0, V(x(t),y(h) € 2N\ {@"y"))-

Thus, u* is asymptotically stable for neural network (5.31). O

Next, we consider an alternative neural network model based on the cone projection
function to solve the system (5.29) for obtaining the SOCP solution. We also examine the
stability of this network. In fact, as shown in (1.11), the projection onto the second-order
cone K™ admits a closed-form expression given by

Min(2) = Pu(z)]sul + Do ()] pu?, (5:33)
where [ -] means the scalar projection, A;(2), A2(2) and uV, uf? are the spectral values

and the associated spectral vectors of z = (21, 25) € IR x IR"!, respectively, given by
Ai(z) = 21+ (= 1) 22|,

@ 1 < i 2
uy’ =—(1,(-1)
2 [ 22|

for i = 1,2. Moreover using Proposition 1.3, the system (5.29) can be equivalently written
as

{ ¢NR<§E, Vf(z)-— ATy) =0, — { x — (z — Vf(a:) + ATQ) =0, (5'34>

Ar —b=0, Ar —b=0,
where x = (z1,-++ ,on)T € R™ x -+« x R™ with z; = (1, Ti2,+ , Tin,) ", i =1,--+ | N,
and Hic(z) = [Tlgm (21), -+, Mienw (z)] " Based on the equivalent formulation in (5.34)

and employing the similar idea as mentioned earlier, we consider the second neural net-
work for solving the SOCP, with the following dynamic equations:

5y (T )

where p is a positive scaling factor.

The dynamic equations can be implemented using a recurrent neural network incor-
porating the cone projection function, as illustrated in Figure 5.4. The neural network
realization requires n + m integrators, n processors for computing V f(z), N processors
for cone projection mapping Ilx, 2mn connection weights, and several summing units.
Compared to the first neural network described in (5.31), the second neural network
(5.35) does not require the computation of V2 f(x), thereby reducing the overall model
complexity.

To analyze the stability of the neural network defined by (5.35), we begin by presenting
three lemmas and a key proposition.
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L L

Vf(z) —{2 ) — HK—iz-»%—»m
TJr

o —Az+b Hp%_»y

Figure 5.4: Block diagram of the proposed neural network with projection function.

A4

Lemma 5.6. Let F(u) be defined as

F(u) := F(z,y) := (5.36)

—x + i (z — Vf(x) + ATy)
—Ax+b '

Then, F(u) is semi-smooth. Moreover, F(u) is strongly semi-smooth if V2 f(x) is locally
Lipschitz continuous.

Proof. This is an immediate consequence of [112, Theorem 1]. O

Proposition 5.21. For any initial point uy = (xg, yo) where xy := x(ty) € K, there exists
a unique solution u(t) = (x(t),y(t)) for neural network (5.35). Moreover, z(t) € K.

Proof. For simplicity, we assume K = K". The analysis can be carried over to the
general case where I is the Cartesian product of second-order cones. From Lemma 5.6,
F(u) := F(z,y) is semi-smooth and Lipschitz continuous. Thus, there exists a unique
solution u(t) = (z(t),y(t)) for neural network (5.35). Therefore, it remains to show that
x(t) € K™. For convenience, we denote z(t) := (z1(t), z2(t)) € R x IR""!. To complete
the proof, we need to verify two things: (i) x1(t) > 0 and (ii) ||z2(t)]] < z1(t). First,
from (5.35), we have

Z_f 4 pa(t) = pllgn(x — Vf(z) + ATy).

The solution of the first-order ordinary differential equation above is

t
x(t) = e P g (ty) + ,oept/ e Tlicn (v — V () + ATy)ds.

to
If we let z(tg) := (w1(to), z2(to)) € R x IR"! and denote z(t) := (21(ty), 22(t0)) as the
term Ilin(x — (Vf(x) — ATy)), which leads to

t
1 (t) = e_p(t_tO)xl(t0)+pe_pt/ e’z (s)ds,

to

t
To(t) = e‘p(t_tO)xg(to)—i-pe_pt/ ePzo(s)ds.

to
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Due to both zy(t) and z(t) belong to K", there have x;(ty) > 0, ||z2(to)|| < z1(tp) and
21(t) >0, [|z2(t)|| < 2z1(t). Therefore, x1(t) > 0 since both terms in the right-hand side
are nonnegative. In addition,

t
[z < ep(ttO)llsz(to)Herept/ e[| za(s)||ds

to
#
< e_”(t_tO)xl(to)+pe_pt/ e’ z1(s)ds
to
= IL‘l(t),

which implies that z(t) € £*. O
Lemma 5.7. Let H(u) be defined as

Vi) = Aly } . (5.37)

H(u) := H(z,y) ::{ A —

Then, H is a monotone function if f is a convex function. Moreover, VH (u) is positive
semi-definite if and only if V2 f(x) is positive semi-definite.

Proof. Let u = (z,y) and @ = (Z,7). Then, the monotonicity of H holds since

(u
= (@ —8)"(Vf(x) = V(@) - (z—1)" (A (y—9) + (v — )" (Alz — 7))
(x

> 0,

where the last inequality is due to the convexity of f(z), see [160, Theorem 3.4.5]. Fur-
thermore, we observe that

it - [0 7
Thus, we have
u"VH (u)u
[T [
= 2'V2f(z)z,

which indicates that the positive semi-definiteness of VH (u) is equivalent to the positive
semi-definiteness of V2f(z). O

Lemma 5.8. Let F(u), H(u) be defined as in (5.36) and (5.37), respectively. Also, let
u* = (x*,y*) be an equilibrium point of neural network (5.35) with x* being an optimal

solution of SOCP. Then, the following inequalities hold:
(F(u) +u —u*)" (—F(u) — H(u)) > 0. (5.38)
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Proof. First, we denote \ := Vf(z) — ATy. Then, we obtain

(F'(u )T(—FYU)—1¥@Q)
{—x%—l‘[;c x—A)—i—(x—:z:*)] [ r—Tlc(r =) = A }
Az +b) + (y — y*) (Az —b) — (Axz —b)
_ { —x* + T (x — N) }T{(x—/\)—ﬂ;c(x—)\)}
—Az+b)+ (y — y*) 0
:-x—ndx—mf«x—»—ndx—my

Since z* € K, applying Lemma 1.1(b) gives
(z* = Tx(z = A)" ((z = A) = Hg(z — \)) <0.

Thus, inequality (5.38) is proved. O

We now investigate the stability and convergence properties of the neural network
(5.35). We begin by analyzing the behavior of its solution trajectories, including their
existence and convergence. Subsequently, we establish two forms of stability for an
isolated equilibrium point. In particular, it is known that every solution u* to the SOCP
corresponds to an equilibrium point of the neural network (5.35). Moreover, if u* is an
isolated equilibrium point, we show that it is Lyapunov stable.

Proposition 5.22. If f is convex and twice differentiable, then the solution of neural net-
work (5.85), with initial point ug = (xq, yo) where xq € K, is Lyapunov stable. Moreover,
the solution trajectory of neural network (5.35) is extendable to the global existence.

Proof. Again, for simplicity, we assume K = K". From Proposition 5.21, there exists
a unique solution u(t) = (x(t),y(t)) for neural network (5.35) and z(t) € K". Let
u* = (z*,y*) be an equilibrium point of neural network (5.35) with 2* being an optimal
solution of SOCP. We define a Lyapunov function as below:

B(u) := Blx,y) = ~H(w) F) — JF@P+ gJu—u'l’, (539

where F'(u) and H(u) are given as in (5.36) and (5.37), respectively. From [77, Theorem
3.2], we know that E is continuously differentiable with

VE(u) = H(u) — [VH(u) — I|F(u) 4+ (u — u*).
It is also trivial that F(u*) = 0. Then, we have

dE(u(t)) T du
o = VE(u) )
= {H(u)— [VH(u) — I|F(u) + (u — u*)} pF(u)
— p{[H@) + (w—u")] F(u) + )| — F)TVH(@w)F(u) |
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Hence, inequality (5.38) in Lemma 5.8 implies
(H(w) +u—u)" Flu) < —H(u) (u—u) = | F(u)]?
which yields
dE(u(t))
dt (5.40)
< p{-HWw)"(u—u*)— F(u)"VH(u)F(u)} :
= p{-H(u) (u—u*)~ (H(u) = Hw")) (u—u) = F(u)"VH(u)F(u)} .
On the other hand, we know that
(F(u*) +u* — )" (= F(u*) — H(u"))
= — (v —Hg(a* = M) ((a* = X*) = I (z* — ).
Since z € K", applying Lemma 1.1(d) gives
(z — M (a™ = A)) T ((z* = X*) — Ie(z* — A7) < 0.
Thus, we have (F(u*)+u*—u)T (= F(u*)— H(u*)) > 0. Note that F(u*) = 0, we therefore
obtain —H (u*)T(u—u*)T < 0. Also the monotonicity of H implies —(H (u)— H (u*)) T (u—
u*) < 0. In addition, f is convex and twice differentiable if and only if V2 f(x) is positive

semidefinite and hence V H is positive semidefinite by Lemma 5.7, i.e., the second term
—F(u)"VH(u)F(u) <0. The above discussions lead to dE(u(t))/dt < 0.

To establish that E(u) serves as a Lyapunov function and that u* is Lyapunov stable, it
suffices to show the following inequality:

—H(u)"F(u) > ||F(u)] (5.41)
To see this, we first observe that
IE@))? + H(w) F(u) = (z = M(z = A) (& = A) = (e = X))
Since z € K, applying Lemma 1.1(d) again, there holds
(& = (= A)" (& =) = (e = 1) <0,

which yields the desired inequality (5.41). By combining equation (5.39) and inequality
(5.41), we have

1 1 .
Bw) 2 SIF@)P + 5l — |

which says E(u) > 0 if u # u*. Hence E(u) is indeed a Lyapunov function and u* is
Lyapunov stable. Moreover, it holds that

1
E(ug) > E(u) > §||u —u*||* for t>to, (5.42)

which means the solution trajectory u(t) is bounded. Hence, it can be extended to global
existence. [J
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Proposition 5.23. Let u* = (z*,y*) be an equilibrium point of (5.35) with x* being an
optimal solution of SOCP. If f is twice differentiable and NV f(x) is positive definite, the
solution of neural network (5.35), with initial point ug = (xo, yo) where xy € K, is globally
convergent to u* and has finite convergence time.

Proof. From (5.42), it is clear that the level set
L(uo) := {u] E(u) < E(uo)}

is bounded. Then, the Invariant Set Theorem [83] implies the solution trajectory w(t)
converges to 6 as t — oo where 0 is the largest invariant set in

) o},

S = {u € L(ug) 7

We will show that du/dt = 0 if and only if dE(u(t))/dt = 0 which yields that u(t)
converges globally to the equilibrium point u* = (z*,y*). Suppose du/dt = 0, then
it is clear that dE(u(t))/dt = VE(u)"(du/dt) = 0. Let 4 = (2,9) € S which says
dE(u(t))/dt = 0. From (5.40), we know that

LD < (@) = H) (0 - ') = F@TVH@F@)}

Both terms inside the big parenthesis are nonpositive as shown in Lemma 5.7, so (H (@) —
H(u*))" (i — u*) = 0, F(a)"VH(@)F(a) = 0, and

F(0)"VH(4)F ()
= {~&+ k(@ — V(@) + A9} V2 f(@){~2 + (@ — Vf(@) + AT9)}
= 0.

The condition of V2 f (&) being positive definite leads to
—&+ (2 — Vf(&)+ ATg) =

which is equivalent to dz/dt = 0. On the other hand, similar to the arguments in Lemma
5.7, we have

(i —u
= Ei‘—x*)T(Vf(i’) f(z))
= 0,

where z, € [z*,#]. Again, the condition of V2 f(z,) being positive definite yields & = z*.
Hence dy/dt = 0 and therefore du(t)/dt = 0. From above, u(t) converges globally to the
equilibrium point v* = (z*, y*). Moreover, with Proposition 5.22 and following the same
arguments as in [215, Theorem 2|, the neural network (5.35) has finite convergence time.
0
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It is worth noting that the neural network employing the cone projection Il is equiv-
alent to the one based on the natural residual function ¢, as shown in (5.34). In other
words, this section presents neural network approaches for solving SOCPs using both the
Fischer-Burmeister function ¢, and the natural residual function ¢,,. For details on
simulation results, we refer the reader to [124]. Furthermore, these functions can also be
used to solve second-order cone constrained variational inequality (SOCCVI) problems;
see [193].

Since the KKT conditions of SOCPs can be reformulated as a variational inequal-
ity problem, the framework in [193] addresses a broader class of optimization problems.
In general, the neural networks considered therein differ from those studied in this sec-
tion. Specifically, the FB-based method in [193] utilizes a smoothed version of the Fis-
cher—Burmeister function, whereas the approach discussed here is based on the standard
(non-smoothed) FB function. Similarly, the cone projection method in [193] is derived
from a Lagrangian formulation which, even when specialized to SOCPs, is distinct from
the model explored here. Owing to these fundamental differences, the assumptions re-
quired to establish stability also differ. These distinctions will be elaborated upon in
Section 5.2.3.

5.2.2 Neural Networks for general SOCCP

We now turn our attention to a more general class of SOCPs beyond the standard for-
mulation (5.27), which was examined in Section 5.2.1. Specifically, we aim to find a
solution to the following nonlinear convex optimization problem subject to second-order
cone constraints:

min  f(z)
st. Ar =50 (5.43)
—g(z) €K

where A € IR™*" has full row rank, b€ R™, f:R" - R, g = [g1, - ,q]" : R* - R
with f and g;’s being two order continuous differentiable and convex on IR"”, and K is a
Cartesian product of second-order cones (also called Lorentz cones), expressed as

K=K" x K" x ... x K"
with N,nq,--- ,ny >1,n1+---+ny=1_0and

K = {(%’17%27 ce ,l’mi)T c IR™

(i, - s i )| < wan } -

Compared with (5.27), we see that the constraint —g(z) € K in (5.43) extends the one
x € K in (5.27). In fact, the problem (5.43) is equivalent to the following variational
inequality problem, which is to find z € D satisfying

(Vf(z),y—z)>0 YyeD,
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where D = {z € R"| Az = b, —¢g(x) € K}. Many problems in the engineering, trans-
portation science, and economics communities can be solved by transforming the original
problems into the mentioned convex optimization problems or variational inequality prob-
lems, see [5, 54, 63, 107, 145]. Similarly, we first look into the KKT conditions of the
problem (5.43), which are presented as below:

Vf(z)— ATy + Vg(z)z =0,
zeK, —g(x) e K, zTg(x) =0, (5.44)
Axr —b=0,

where y € R™, Vg(z) denotes the gradient matrix of g. According to the KKT condition,
it is well known that if the problem (5.43) satisfies Slater’s condition, which means
there exists a strictly feasible point for (5.43), i.e., there exists an x € IR™ such that
—g(z) € int(K) and Az = b. Then z* is a solution of the problem (5.43) if and only
if there exist y*, z* such that (z*,y*, z*) satisfies the KKT conditions (5.44). Hence, we
assume that the problem (5.43) satisfies the Slater’s condition in this section.

In view of the projection mapping onto SOC given as in (5.33) and the non-differentiability
of ¢, we consider a class of smoothed NR complementarity function. To this end, we
employ a continuously differentiable convex function ¢ : IR — IR such that

lim g(a) =0, lim(g(a)—a)=0, and 0<§'(a)<1. (5.45)

a——0o0 a—r 00

What kind of functions satisfies the condition (5.45)7 Here we present two examples:

244
g(a) = # and g(a) =In(e* +1).

Suppose z = Alugl) + A2u£2), where \; and u’ for i = 1,2 are the spectral values and
spectral vectors of z, respectively. By applying the function g(-), we define the following

function: \ \
Pu(2):=pg (g) ul) + g (f) ul?). (5.46)

Fukushima, Luo, and Tseng [78] show that P, is smooth for any p > 0; moreover P, is
a smoothing function of the projection Pk, i.e., lim, o P, = Px. Hence, a smoothed NR
complementarity function is given in the form of

Ou(x,y) =2 — Py(x —y).

In particular, from [78, Proposition 5.1|, there exists a positive constant v > 0 such that

1Pu(2,y) = Oun (2, 9)]| < 700

for any g > 0 and (z,y) € R™ x IR™.
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Now we look into the KKT conditions (5.44) again. Let
L(z,y,2) = V[f(z) = Ay + Vg(2)z,  H(u):=

and

1
() = SIHW)
1 2 1 2 1 2 1 2
= S 19u(e —g @) + Gy, 2P + Az = b + S

where u = (u,z,y,2) € Ry x R® x R™ x R It is well known that U, (u) serves
as a smoothing approximation of the merit function W .. This implies that the KKT
conditions (5.44) can be reformulated, via the merit function approach, as the following
unconstrained minimization problem:
) 1

min ¥, (u) := §HH(u)H2 (5.47)

Proposition 5.24. (a) Let P, be defined by (5.46). Then, VP, (z) and I —VP,(z) are
positive definite for any > 0 and z € IR! .

(b) Let W, be defined as in (5.47). Then, the smoothed merit function U, is continuously
differentiable everywhere with VV,(u) = VH (u)H (u) where

.
1 0 0 _ (%ﬁg(m»)
VHu) = | 0 AT V2f(2)+V2q(z)+ -+ V() —V.P.(z+g(x))
0 0 —A 0
0 0 Vg(x)" I —V,P,(z+g(z))

Proof. For the function P,(2) defined as in (5.46), the gradient matrix of P,(z) is
described as below.

g’(%)] if 2=0;
VP,(2) = b
w\2) = " 2] itz #£0,
cuz2 I b — 222,
B e P
where
9(%2) —9(3h)
o = X A
w w
1/, dae N\
by = 5 (9(— +g’—>,
o= 5 (e
1 e N
o = 5 (75 -9Ch).
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and I denotes the identity matrix. Form the proof of [91, Proposition 3.1], it is clear
that VP,(z) and I — VP,(z) are positive definite for any u > 0 and z € IR!. With the
help of the definition of the smoothed merit function ¥, part(b) easily follows from the
chain rule. 0

Following the core principles for constructing artificial neural networks (see [51] for
details), we formulate a specific first-order ordinary differential equation to define an
artificial neural network model. In particular, based on the gradient of the objective
function ¥, in the minimization problem (5.47), we consider the following neural network
model for solving the KKT system (5.44) associated with the nonlinear SOCP (5.43):

du(t

L~y W), ulto) = o (5.49
where p > 0 is a time scaling factor. In fact, if 7 = pt, then % = pdq“;—(:). Hence, it
follows from (5.48) that dZ—(:) = —VV,(u). In view of this, for simplicity and convenience,

we set p = 1. Indeed, the dynamical system (5.48) can be realized by an architecture

with the cone projection function shown in Figure 5.5. Moreover, the architecture of

this artificial neural network is categorized as a “recurrent” neural network according to

the classifications of artificial neural networks as in [51, Chapter 2.3.1]. The circuit for

(5.48) requires n+m + 1+ 1 integrators, n processors for V f(z), [ processors for g(x), In
!

processors for Vg(z), (I+1)*n processors for V2 f(x) + Z VZ2g;i(x), 1 processor for ¢, 1
i=1

0P
processor for a—“, n processors for V. P,, | processors for V,P,, n* +4mn + 3ln + > +1

connection weights and a few summers.

:; —p ={%—> u=(p,,Y,2)

=

X Je—— H(u) [« L(z,y, 2)

L (e —gla)) etz

Pu(z + g(x)) 22

Ty, 2

A

VH(u)

Tu,x

A

Figure 5.5: Block diagram of the proposed neural network with smoothed NR function.

To analyze the stability of the proposed neural network (5.48) for solving the problem
(5.43), we begin by introducing an assumption that will be essential for the subsequent
analysis.
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Assumption 5.1. (a) The problem (5.43) satisfies the Slater’s condition.

(b) The matriz V2 f(z) + V?g1(z) + - - - + V2g(x) is positive definite for each x.

We briefly comment on Assumption 5.1(a) and (b). Assumption 5.1(a) corresponds
to Slater’s condition, a classical and widely adopted regularity condition in the field of
optimization. Although Assumption 5.1(b) may appear stringent at first glance, it is
readily satisfied in many practical cases. Specifically, if the objective function f and the
constraint functions g; are twice continuously differentiable and convex on IR", then the
assumption holds provided that at least one of these functions is strictly convex.

Lemma 5.9. (a) For any u, we have
|H(u) — H(u") = V(u—u)|| =o(]Ju —u*|]) for u—u" and V € 0H(u)
where OH (u) denotes the Clarke generalized Jacobian at u.

(b) Under Assumption 5.1, VH(u)" is nonsingular for any v = (u,z,y,2) € Ry, X
IR™ x R™ x IR!, where R, denotes the set {u|p > 0}.

(c) Under Assumption 5.1 andV € dPy(w) being a positive definite matriz where 0Py(w)
denotes the Clarke generalized Jacobian of the project function P at w, there has

T € OH (u)
;
1 0 0 _<3Pu(2:g(x))> |u:0
_ 0 AT VZf(z)+ Vig(2) + -+ Vig(z) —VTVy(x) V € dPy(W)
0 O —A 0
0 0 Vg(z)T -V

is nonsingular for any u = (0,z,y,z) € {0} x R™ x R™ x R
(d) W,(u(t)) is nonincreasing with respect to t.

Proof. (a) This result follows directly from the definition of semismoothness of H, see
[171] for more details.

(b) From the expression of VH (u) in Proposition 5.24, it follows that VH (u)T is nonsin-
gular if and only if the following matrix

A 0 0
M= | V2f(z) + Vigi(z) + -+ Vig(z) —AT V()
—V,P.(z+ g(z)T 0 (I =V.P(2+g(z)T

is nonsingular. Suppose v = (z,y,z) € R" x R™ x IR!. To show the nonsingularity of
M, it is enough to prove that

Myv=0 = 2=0, y=0 and z=0.
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Because —V,P,(2+¢(z))" = =V P,(w)"Vg(z)T, where w = 2+g(z) € R}, from Mv = 0,
we have

Az =0, (V*f(z)+Vqi(z)+ -+ Vig(x)z— ATy + Vg(z)z =0 (5.49)

and
~VP,(w)"Vg(z)"z + (I = VP,(w)) 2 = 0. (5.50)

From (5.49), it follows that
2t (V2 f(2) + Vi) + -+ Vig(z)) o + (Vg(x)Tx)T z=0. (5.51)
Moveover, equation (5.50) and Proposition 5.24 yield
Vg(z) 'z = (VP,(w)") NI — VP, (w))" 2. (5.52)

Combining (5.51)-(5.52) and Proposition 5.24, under the condition of Assumption 5.1, it
is not hard to obtain that z = 0 and z = 0. By looking at equation (5.49) again, since A
is full row rank, we have y = 0. Therefore, VH (u)" is nonsingular.

(¢) The proof of part(c) is similar to that of part(b), in which the only option is to replace
VP,(w) with V € 0F(w).

(d) According to the definition of W, (u(t)) and Eq. (5.48), it is clear that

A, (u(t du(t)
W) _ Gy, ey P40~ 9w, (o)) 2 < 0.
dt dt
Consequently, ¥, (u(t)) is nonincreasing with respect to t. O

Proposition 5.25. Assume that V H (u) is nonsingular for any u € IRy x IR™ x R™ x R!.
Then,

(a) (z*,y*, 2%) satisfies the KKT conditions (5.44) if and only if (0,x*,y*, 2*) is an equi-
librium point of the neural network (5.48);

(b) wunder the Slater’s condition, x* is a solution to the problem (5.43) if and only if
(0, z*,y*, 2*) is an equilibrium point of the neural network (5.48).

Proof. (a) Because ¢y = ¢, when p = 0, it follows that (z*,y*, 2*) satisfies the KKT
conditions (5.44) if and only if H(u*) = 0, where u* = (0,2*,y*, 2*)T. Since VH (u) is
nonsingular, we have that H(u*) = 0 if and only if V¥,(u*) = VH(u*)"H(u*) = 0.
Thus, the desired result follows.

(b) Under Slater’s condition, it is well known that =* is a solution to the problem (5.43)
if and only if there exist y* and z* such that (z*,y*, 2*) satisfies the KKT conditions
(5.44). Consequently, by part (a), it follows that (0, z*, y*, z*) is an equilibrium point of
the neural network (5.48). O
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Proposition 5.26. (a) For any initial point uy = u(ty), there exists a unique contin-
uously mazimal solution u(t) with t € [to, ) for the neural network (5.48), where
[to, T) is the maximal interval of existence.

(b) If the level set L(ug) = {u|¥,(u) < V,(ug)} is bounded, then T can be extended to
+00.

Proof. The proof follows exactly the same reasoning as that of Proposition 5.3, and is
therefore omitted here. [

Proposition 5.27. Assume that VH (u) is nonsingular and that u* is an isolated equilib-
rium point of the neural network (5.48). Then, the solution of the neural network (5.48)
with any tnitial point ug 1s Lyapunov stable.

Proof. From Lemma 5.3, we only need to argue that there exists a Lyapunov function
over some neighborhood €2 of u*. Now, we consider the smoothed merit function

W) = S| H @)

Since u* is an isolated equilibrium point of (5.48), there is a neighborhood € of u* such
that

VY, (u") =0 and VV¥,(u(t)) #0, Yu(t) € Q\{u"}.
By the nonsingularity of VH(u) and the definition of ¥,, it is easy to obtain that
U, (u*) = 0. From the definition of ¥, we claim that ¥, (u(t)) > 0 for any u(t) € Q\{u"},
where 2 is a neighborhood of u*. Suppose not, namely, ¥, (u(t)) = 0. It follows that
H(u(t)) = 0. Then, we have V¥ ,(u(t)) = 0 which contradicts with the assumption that
u* is an isolated equilibrium point of (5.48). Thus, ¥, (u(t)) > 0 for any u(t) € Q\{u*}.
Furthermore, by the proof of Lemma 5.9(d), we know that for any u(t) € Q

v, (u(t)) du(t)

dt dt

Consequently, the function ¥, is a Lyapunov function over (2. This implies that u* is

= VU, (u(t))—— = —p [ VI, (u®)]* <0. (5.53)

Lyapunov stable for the neural network (5.48). O

Proposition 5.28. Assume that V H(u) is nonsingular and that u* is an isolated equi-
librium point of the neural network (5.48). Then, u* is asymptotically stable for neural

network (5.48).

Proof. From the proof of Proposition 5.27, we consider again the Lyapunov function ¥,,.
By Lemma 5.3 again, we only need to verify that the Lyapunov function ¥, over some
neighborhood €2 of u* satisfies
AW, (u(t))
dt
In fact, by using (5.53) and the definition of the isolated equilibrium point, it is not hard
to check that the equation (5.54) is true. Hence, u* is asymptotically stable. [

<0, Yu(t) € Q\{ul. (5.54)



5.2. NEURAL NETWORKS FOR OPTIMIZATION PROBLEMS INVOLVING SOC493

Proposition 5.29. Assume that u* is an isolated equilibrium point of the neural network
(5.48). If VH(u)T is nonsingular for any u = (u,7,y,2) € Ry x R" x R™ x R!, then
u* is exponentially stable for the neural network (5.48).

Proof. From the definition of H(u), we know that H is semismooth. Hence, by Lemma
5.9, we have

H(u) = H(u*) + VH(u®) (v —u*) +o(|lu—u*]), Vue Q\{u}, (5.55)
where VH (u(t))T € 0H (u(t)) and € is a neighborhood of u*. Now, we let
g(u(t)) = llu(t) — u*||*, t € [to, 00).

Then, we have

dt dt
= —2p(u(t) — u) TV, (u(t)) (5.56)
= —2p(u(t) —u*)"VH(u)H(u).
Substituting Eq. (5.55) into Eq. (5.56) yields
dg(u(t))
dt

= —2p(u(t) — ") "VH(u(t))(H(u") + VH(u(t)" (u(t) — u") + o [Ju(t) — u’[]))
= —2p(u(t) — u")TVH(u(t))VH(u(t)" (u(t) — u) + of[|u(t) — u”[|*).

Because VH(u) and VH (u)" are nonsingular, we claim that there exists an x > 0 such
that
(u(t) —u*)"VH(u)VHu) (u(t) —u*) > klju(t) — o (5.57)

Otherwise, if (u(t) — u*)TVH (u(t))VH(u(t)) " (u(t) — u*) = 0, it implies that
VH(u(t) (ut) —u*) = 0.

Indeed, from the nonsingularity of H(u), we have u(t) — u* = 0, i.e., u(t) = u* which
contradicts with the assumption of u* being an isolated equilibrium point. Consequently,
there exists an x > 0 such that (5.57) holds. Moreover, for o(||u(t) — u*||?), there is € > 0
such that o(||u(t) — u*||?) < e|lu(t) — u*||>. Hence,

dg(u(t))
dt

< (=2p5 + &) Ju(t) — w’||* = (=2pr + £)g(u(t)).

This implies
g(u(t)) < =2 g(u(to))
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which means
Ju(t) —u'l] < e P2 lu(ty) — u||.

Thus, u* is exponentially stable for the neural network (5.48). [

Next, we consider a neural network by using ¢?  for solving (5.43). Recall that the
generalized FB merit function ¢? : R" x R" — IR™ associated with second-order cone

is defined by
O (1, 9) = |2 + [ylP = (2 +y).
In view of the KKT conditions (5.44) again, we denote
L(z,y,2) = Vf(z) — ATy + Vg(2)z,

Az —b
H(u) = L(z,y, z)
Py (2, —9(x))

Therefore, we consider the merit function as below
D . 1 2
Ues () = Sl H(w)|
1 2 1 2 1 2
where u = (7,7,2)" € R® x R™ x IR!. From Proposition 3.26, we know that
P (z,—g(x) =0<= 2z €K, —g(z) €K, —z"g(z) =0.

Hence, the KKT conditions (5.44) are equivalent to H(u) = 0, i.e., V2_(u) = 0. Then,
it follows that the KKT conditions (5.44) are equivalent to the following unconstrained
minimization problem with zero optimal value via the merit function approach:

min U?_(u) := %HH(U)H2 (5.58)

Accordingly, the neural network for solving the nonlinear SOCP (5.43) is naturally con-
sidered as below:

du(t)
7R —p VI (u), u(to) = uo, (5.59)
where p > 0 is a time scaling factor. In fact, if 7 = pt, then dq;gt) = de—(TT). Hence, it
follows from (5.59) that dq;—(:) = —VVUP_(u). For simplicity and convenience, one can set

p=1.

Lemma 5.10. For z = (21,20) € R x R"™! and z = (71, 22) € R x R"™ with z = z,
we have \;j(z) > N\i(z) fori=1,2.
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Proof. Since z =x x, we may express z = = + y where * = (z1,75) € R x R"™!,
y=(y1,y2) € R x R" and y = 2 — & = 0. This implies y; > ||y2|| and

M(z) = (z14y1) — o2 + v2l
> (z1+y1) = 22 = llgel
>

r1 — ||z2]]

Thus, we have

Ma(2) = (w1 + 1) + 22 + g2l = (0 +y) + [lz2]l = [lvell|

{ 1+ Y1+ ||zl = ell, i |22 > [yl
1y — |2 e, i [Jze]| < [yl

S { w1+ zall, Af - [lzall = [yl
T Loty [l < lyell
> x|l

= A7)
which is the desired result. O

Lemma 5.11. Let w := w(x,y) = |z|P + |y|?, t = t(x,y) := Yw and ¢°°(z) = |z|F.
Then, the following three matrices

Voot
Vgsoc (t )
(Vg™e(t) — Vg™ (z)) (Vg™ (t) — Vg™ (y))

are all positive semi-definite for p = % with n € N.

<

Q
17
Q
a

S

)_ )7
) = )

Proof. From the expression of V¢*°(z) in Lemma 3.29, that is, (3.140)-(3.141), we know
that the eigenvalues of V¢*¢(x) for x5 # 0 are

b(x) —c(x), a(z), - -, a(z), and b(x) + c(x).
Let w := (wy,w;) € R x IR"1. Then, applying (3.136) gives
Po@)P + @) PP + A @)

w, =

2 2
Ao(2)[P — [ ()P A P— A p
w, = 2@ = M@P @) — M)l .
2 2
where Zo = ”;”—2” if 7, # 0, and otherwise Z, is an arbitrary vector in IR"~! satisfying
|Z2|| = 1. Similar situation applies for g,. Thus, we will proceed the proof by discussing

two cases: we = 0 or wy # 0.
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Case 1. For wy = 0, we have Vg*°(t) = py/w, I where

_ @+ @) | @) + @)l
2 2

(5.60)

Under the condition of wy = 0, there are the following two subcases.

(i) If zg = 0, then wy = |z, |p+M which implies that p@/w; > p sgn(zy)|z [P~
Hence, we see that the matrix Vg*°°(t) — V¢*°(z) is positive semi-definite. Indeed, if
x # 0, Vg*o(t) — Vg*°(x) is positive definite.

(ii) If 25 # 0, it follows from ws = 0 that

Ao ()" — | Aa ()"
2

> (5.61)

_ ’|>\2(?/)|p — [ M(y)?

We want to prove that the matrix Vg*°°(t) — Vg*°°(x) is positive semi-definite. It is
sufficient to show that

p/wy > max {b(x) — c(x),a(x),b(x) + c(z)} .

It is obvious that pww; — (b(x) — ¢(x)) > 0 when Aj(x) < 0. When Ay(z) > 0, using
(5.60) and Ag(z) > A1 (z), we have

py/wr = (b(x) = c(2))
P/ (@) = psgn(Aa(2)) ()7

AVARAYS

Next, we verify that p/w;—a(x) > 0. For [A{(x)| > |A2(x)], it is clear that py/wi —a(z) >
0. For [A(x)] < |A2(z)], it follows from Ay(z) > Aj(z) that z; > 0, which yields

(@) — M@ Aaf2) — [M()]?
Ao() = Ai () M) = [Aa(2)]

1

Let p= " (n,m € N), a = Xy(x)m and b = |A1(z)|#. From p > 1, it follows that n > m.
Then, we have 0 < b < a and

( ) a® — bn an—l + an—Qb 4+t abn—Q + bn—l
a\r) = = .
am — bm amfl + ameb 4+ .. 4 abm72 + bmfl

Now, letting f(v) = 2= with v € [0, a], we obtain

am—ym

n—l(am _ ,Um) + mvm—l(an _ ,Un)

(am — vm)?

—nv

f'(v) =

In addition, it follows from f’(v) = 0 that
a® — " n
a”—vm™  m
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Since f(0) = &% = "™ with v = 0 and f(a) = Za"~™ with v = q, it is easy to verify
that f(b) < Za™ ™ for 0 < b < a, i.e.,

Ao ()" — [Aa ()"
/\2(1‘) — Al(fb) -

P [Aa() P

Hence, we have

py/wy — a(x)
> py/max{|As(z)[7, [A1(2)[?} + min{[Xa(y) 7, [ (y)[7}
CRe@) P = [Aa(@) P
Ao(z) — Ai(z)
> py/Ao(x)? — p[Ao(z) P
> 0,

where the first inequality holds due to (5.61). Lastly, we also see that

py/wi — (b(x) + c(x))

> p/max{a(2) [P, [ M (2) [P} + min{ Ao (y) [P, | M (y)I7}
—psgn(Aa(x))[ e ()P

> py/max{a(2)]P, [M(2) [P} - psgn(Ae(2)) Ae(2) !

> 0.

To sum up, under this case z3 # 0, we prove that the matrix Vg*°(t) — Vg*°(z) is
positive semi-definite.

Case 2. For wsy # 0, from the expression of ¢(z,y) and the properties of the spectral
values of the vector-valued function |z|P with p = § for n € N, all the eigenvalues of the
matrix Vg*°(t) are

b(t) — c(t) < a(t) < b(t) + c(t). (5.62)
When x5, = 0, we note that

b(t) — c(t) — psgn(@y)|a: [~

p
— p|: )\l(w)] —psgn(xl)\xllp’I
B {|A2(I)|p+|)\1($)|p A2 ()P + [ A1 (y)[P
= p +
2 2
o(2)P — |\ Mo (W)P — )P 157
H| 2(7)] \ 1(z) [P x2+| 2(y)] 2| 1(y)] |
—I?Sg;lfl($1)|f'31|p_1
plzi P~ — psgn(e)|a [P
0,

AVARAYS



498CHAPTER 5. DYNAMICAL METHODS USING COMPLEMENTARITY FUNCTIONS

where 7, denotes 7, = nz_iu when 9, # 0, and otherwise ¥, is an arbitrary vector in IR"~!
satisfying ||g2|| = 1. Now, applying the relation of the eigenvalues in (5.62), we have

b(t) + c(t) = a(t) = psgn(a)|a|”,

which implies that the matrix Vg*°(t) — V¢*°°(z) is positive semi-definite.

When x5 # 0, we also note that

b(t) = (t) = (o) — el)) = p [/NaC@)] " = psgniuta) a7

For A\i(z) < 0, it is clear that b(t) — ¢(t) — (b(z) — ¢(z)) > 0. For A;(z) > 0, we have
Xo(z) > Ai(z) > 0, which leads to

)\1(11])
D@l + M@l | el + aly)P
2 2
Dalel — e, , Pl Pl |

2 2 2
Ao (@)P + A (@)P [ Aalz) P — [M(2)[P
= 2 2
M)+ M@ | AP = M)
+ 2 2

> ()]

Thus, it follows that b(t) — ¢(t) — (b(z) — ¢(z)) > 0. Moreover, since t =, |z|, by Lemma
5.10 and the eigenvalue of |z| being |A;(z)| and |A2(z)|, we have

Ao(t) = max{[Ar ()], |Ao(z)[} and Ay (t) = min{[Ar ()], |Aa(2)[}- (5.63)

When p = § with n € N, then, we have

_ e®f - N®F Pel@ — ()l
a(t) — a(x) = ol M) M@ =)

If [Aa(x)] < [Ai(x)], it is obvious that a(t) — a(x) > 0. If [A2(x)| > |Ai(x)], in light of
Aa(x) > Ai(z), we obtain that z; > 0 and A2(z) > 0. Now, let

a=X(t)7, b= ()2, c:= \y(2)2 and d := |\, (1)]7.
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Then, we obtain that

a(t) —a(z)

a® — bn v — dn

az — b2 2 — 2

(@ P+ a2+ +ab" 2+ 0" (e + d)

(a+0b)(c+d)
(a+b)(c" P+ 2d+ -+ ced 4+ d")
a (a +b)(c+d)
o a" e+ be(a P+ a" B+ -+ abm B 40" ?)
B (a+b)(c+d)
. ad(@" 2 +a" b+ - +ab" P + 0" + 0"
(a+b)(c+d)
ac ' +ad(c" 4" Pd+ -+ ed P+ d?)
(a+b)(c+d)
be(c 2+ Bd+ -+ ced 3 + dV2) + bd™ !
a (a +b)(c+d) ’

which together with (5.63) implies that
a>c, b>d>0 and a(t) —a(zx) > 0.
In addition , we also verity that

b(t) + cft) — () + c(x)) = pO()P! — psgn(a(a)) Do) 1 > 0.
Therefore, for any x € IR"”, we have
2" (Vg*e(t) — Vg™ (z))z
— xTvgsoc@)m o xTVgSOC(x)x
= [b(t) —c(t) + (n —2)a(t) +b(t) +c(t)] 2"z
— [b(a) = c(@) + (n = 2)a(z) + b(z) + c(x)] ="a
> 0,
which shows that the matrix Vg*°°(t) — V¢*°(z) is positive semi-definite.

With the same arguments, we can verify that the matrix Vg*°(t) — Vg*°(y) is also
positive semi-definite.

Finally, using the properties of eigenvalues of symmetric matrix product, i.e.,
Mi(AB) > Ni(A)Amin(B), i=1,---,n, VA BeSY",

where S™*" denotes n order symmetric matrix, we easily achieve that the matrix (Vg*°(t)—
Vg () (Vg*oc(t) — Vg*<(y)) is also positive semi-definite.  [J
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Remark 5.3. From the above proof of Lemma 5.11, when x # 0 and y # 0, we have the
matrices

Vgoi(t) = Vg™i(z), Vgo(t) — Vg™ (y), (Vg™(t) — Vg™ (x)) (Vg™ (t) — Vg™ (y))

are all positive definite.

Proposition 5.30. Let WP be defined as in (5.58).
(a) The matriz Vg*°°(x) is positive definite for all 0 # x € K.

(b) The function WP _ for p € (1,4) is continuously differentiable everywhere. Moreover,
VU2 (u) = VH(u)H (u) where

AT sz<x7 Y, Z) —Vg(l')‘/l

VH@w) = | 0 A 0 (5.64)
0 Vy(z)" Vs
with
0 if w(z,—g(x)) =[P +[—g(x)]P =0,

v, =< Vg@)Vee @)t =1 if w(z,—g(z)) € int(K),

T smCa@la@rt g - o
/I— @+l if w(z,—g(x)) € IK\{0}

and

0 if w(z,—g(x)) = |2[" + [ = g(x)[" =0,
V, =< Vg(z)Vgee(t) =1 i w(z, —g(x)) € int(K),
a1 i (e —gla)) € OV}

|=91(@)[P+|z1|P
with t :== {/w(z, —g(x)).

Proof. (a) For all 0 # x € K, if o = 0, it is obvious that the matrix Vg*°(z) =
psgn(zy)|x [P is positive definite. If z # 0, from the expression of V¢*¢(x) in Lemma
3.29 and x € K, we have b(z) > 0. In order to prove that the matrix Vg¢*°(z) is positive
definite, it suffices to show that the Schur complement of b(x) in the matrix V¢*°(z) is
positive definite. In fact, from the expression of V¢*°(x), the Schur complement has the
form

b(x)
= a(z) (I — 22 Z5) + b(z) (1 %) Tola
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Since x € K, we have \y(x) > Aj(z) > 0, which implies that a(x) > 0 and b(z) > c¢(z) >
0. Note that the matrices I — ZoZ4 and Z,ZJ are positive semi-definite. Thus, the Schur
complement is positive definite. Further, we obtain that V¢*°(x) is positive definite for
all 0 # x € K.

(b) From Proposition 3.28, we know that the function ¢?_ for p € (1,4) is continuously
differentiable everywhere. Hence, in view of the definition of the function WP and the
chain rule, the expression of VW2 (u) is obtained. [

Assumption 5.2. (a) The SOCP problem (5.43) satisfies the Slater’s condition.

(b) The matriz [AT Vg(z)] is full column rank, and the matriz V,L(x,y, z) is positive
definite on the null space {u|Au =0} of A.

We also briefly comment on Assumption 5.2(a) and (b). Assumption 5.2(a) corre-
sponds to Slater’s condition, a standard and widely used regularity condition in the field
of optimization. When the constraint function ¢ is linear, Assumption 5.2(b) is equivalent
to the commonly used condition that V2 f(z) is positive definite.

Proposition 5.31. Let p = % € (1,4) with n € N. Then, the following hold.

(a) Under the condition of Assumption 5.2, VH(u) is nonsingular for u = (x,y,2) €
R™ x R™ x R! with (z, —g(z)) # 0.

(b) Ewery stationary point of U, is a global minimizer of problem (5.58) for (z, —g(z)) #
0.

(c) W,(u(t)) is nonincreasing with respect to t.

Proof. (a) Suppose £ = (s,t,v) € R" x IR™ x IR'. From the expression (5.64) of VH (u)
in Proposition 5.30, to show the nonsingularity of VH (u), it is enough to prove that

VHuw(=0 = s=0, t=0 and v=0.
Indeed, by VH(u)é = 0, we have
—At =0, ATs+V,L(z,y,2)t — Vg(z)Viv =0 (5.65)

and

Vg(z)"t + Vou = 0. (5.66)
From (5.65), it follows that

t"V.L(z,y,2)t —t"'Vg(z)Viv = 0. (5.67)
Moveover, by equation (5.66), we obtain

t'Vy(z) = -0V, (5.68)
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Then, combining (5.67) and (5.68), this yields that
tTV o L(x,y, 2)t +0 V' Viv = 0.

By Lemma 5.11 and Assumption 5.2(b), it is not hard to see that ¢ = 0. In addition,
from (5.65) and (5.66), we have

ATs —Vg(z)Viv =0 and Vyv = 0.
Due to Assumption 5.2(b) again, we also obtain
s=0 and Vjv=0.
Thus, combining Lemma 5.11 with the expression V; and V5, in Proposition 5.30, we have

v = 0. Therefore, VH(u)" is nonsingular.

(b) Suppose that u* is a stationary point of W2 . This says VU2 _(u*) = 0, and from
Proposition 5.30, we have VH (u*)H (u*) = 0. According to part(a), VH (u) is nonsin-
gular. Hence, it follows that H(u*) = 0, i.e., W2 _(u*) = 0, which says u* is a global
minimizer of (5.58).

(c) By the definition of W2 _(u(t)) and (5.59), it is clear that

AWy, (u(t)) du(t) 2
— e = VU (u(t)) — = = —p [V, (u(®) || < 0.
Therefore, W2 (u(t)) is nonincreasing with respect to t. [

Proposition 5.32. Assume that VH(u) is nonsingular for any u € R™ x IR™ x IR! and
p=7% € (1,4) withn € N. Then,

(a) (z*,y*, 2*) satisfies the KKT conditions (5.44) if and only if (x*,y*,2*) is an equi-
librium point of the neural network (5.59);

(b) wunder the Slater’s condition, x* is a solution of the problem (5.43) if and only if
(x*,y*, 2%) is an equilibrium point of the neural network (5.59).

Proof. (a) It is easy to prove that (z*,y*, 2*) satisfies the KKT conditions (5.44) if and
only if H(u*) = 0 where u* = (z*,y* 2*)T. According to the condition that VH (u) is
nonsingular, we have that H(u*) = 0 if and only if VU? (u*) = VH(u*)"H(u*) = 0.
Then, the desired result follows.

(b) Under Slater’s condition, it is well established that z* is a solution to the problem
(5.43) if and only if there exist y* and z* such that (z*, y*, z*) satisfies the KKT conditions
(5.44). Therefore, by part (a), it follows that (z*,y*, z*) is an equilibrium point of the
neural network (5.59). O
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Proposition 5.33. For any fived p = % € (1,4) with n € N, the following hold.

(a) For any initial point uy = u(ty), there exists a unique continuously mazimal solution
u(t) with t € [to,T) for the neural network (5.59), where [ty,T) is the mazimal
interval of existence.

(b) If the level set L(ug) := {u| WP _(u) < WP (ug)} is bounded, then T can be extended
to +o00.

Proof. Again, the proof is exactly the same as the one for Proposition 5.3, and therefore
omitted here. [

Proposition 5.34. Assume that VH (u) is nonsingular and u* is an isolated equilibrium
point of the neural network (5.59). Then, the solution of the neural network (5.59) with
any wnitial point ug s Lyapunov stable.

Proof. From Lemma 5.3, we only need to argue that there exists a Lyapunov function
over some neighborhood €2 of u*. To this end, we consider the smoothed merit function
forp =14 € (1,4) withn € N

W, () = Sl H )

Since u* is an isolated equilibrium point of (5.59), there is a neighborhood 2 of u* such
that

VU (u*) =0 and VP (u(t)) #0, Vu(t) e Q\{u"}.
By the nonsingularity of V.H (u) and the definition of W _, it is easy to see that W2_(u*) =
0. In view of the definition of W?_, we claim that W2 (u(t)) > 0 for any u(t) € Q\{u*},
where  is a neighborhood of u*. If not, that is, ¥, (u(t)) = 0, it follows that H(u(t)) =
0. Then, we have VWP (u(t)) = 0, which contradicts with the assumption that u* is
an isolated equilibrium point of (5.59). Thus, W2 _(u(t)) > 0 for any u(t) € Q\{u"}.
Moreover, by the proof of Lemma 5.31(c), we know that for any u(t) € Q

dW? (u(t)) du(t)

L = VU (u(t) == = —p|V L, (u(t))||* < o. (5.69)

Therefore, the function WP is a Lyapunov function over €. This implies that u* is
Lyapunov stable for the neural network (5.59). O

Proposition 5.35. Assume that VH (u) is nonsingular and u* is an isolated equilibrium
point of the neural network (5.59). Then, u* is asymptotically stable for neural network
(5.59).

Proof. From the proof of Proposition 5.34, we consider again the Lyapunov function
W2 for p = 5 € (1,4) with n € N. By Lemma 5.3 again, we only need to verify that the
Lyapunov function W~ over some neighborhood (2 of u* satisfies

avr_ (u(t))

Lo <0, Valt) € \fu'). (5.70)
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In fact, by using (5.69) and the definition of the isolated equilibrium point, it is not hard
to check that the equation (5.70) is true. Hence, u* is asymptotically stable. [

Proposition 5.36. Assume that u* is an isolated equilibrium point of the neural network
(5.59). If VH(u)" is nonsingular for any u = (z,y,z) € R® x IR™ x R!, then u* is
exponentially stable for the neural network (5.59).

Proof. From the definition of H(u), Proposition 3.27 and Proposition 3.28, we have
H(u) = Hw*) + VH(u(t) (v —u*) + o(||u —u*]]), Yuec Q\{u*}, (5.71)
where VH (u(t))" € 0H (u(t)) and Q is the neighborhood of u*. Now, letting

g(u(t)) = [lu(t) — u"||*, t € [to, 00),

we have
dg(u(t)) o1 du(t)
y7 = 2(u(t) — u") o
= —2p(u(t) — u*) TV (u(t)) (5.72)

= —2p(u(t) —u*)"VH(u)H(u).

Substituting (5.71) into (5.72) yields

dg(gt“” = —9p(u(t) — u*) IV H (u(t)) (H (u")
CVH ()T (u(t) — u) + oflJult) — u*|]))
= —9p(ult) — u) TV H(u(t))VH (u(t) T (u(t) — u)
o(lu(t) — ).

Since VH (u) and VH (u)T are nonsingular, we claim that there exists an x > 0 such that
(u(t) —u*)"VH(u)VHu) (u(t) —u*) > klju(t) — o (5.73)
Otherwise, if (u(t) — u*)TVH (u(t))VH(u(t)) " (u(t) —u*) = 0, it implies that
VH(u(t) (ut) —u*) = 0.

Indeed, from the nonsingularity of H(u), we have u(t) —u* = 0, i.e., u(t) = u*, which
contradicts with the assumption of u* that is an isolated equilibrium point. Therefore,
there exists an x > 0 such that (5.73) holds. Moreover, for o(||u(t) —u*||*), there is € > 0
such that o(|Ju(t) — u*||*) < e|lu(t) — u*||*>. Hence,

dg(u(t) _

o (=2pk + &) lu(t) — w’||* = (=2pr + €)g(u(t)).
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This implies
glu(t)) < e g (u(t)),

which means
Ju(t) — u'l] < e "2 lu(ty) — u||.

Thus, u* is exponentially stable for the neural network (5.59). [

Proposition 5.32 suggests that the parameter p, typically set to p = § € (1,4), must
be chosen within this interval due to the theoretical smoothness of W2 ~being established
only for p € (1,4) in the SOC setting. This raises a natural question: can the results be
extended to more general values of p? In other words, is it possible to relax the condition
p=7% € (1,4) to include a broader range of real values? This remains an open question
and warrants further investigation.

For simulation results of the two neural networks considered in this section for solving
the general convex SOCP (5.43), we refer the reader to [151, 152]. In the next section, we
broaden our focus to the second-order cone constrained variational inequality (SOCCVI)
problem, which generalizes both SOCP formulations (5.27) and (5.43) as special cases.

5.2.3 Neural Networks for SOCCVI

The variational inequality (VI) problem, originally introduced by Stampacchia and col-
laborators [90, 139, 145, 191, 192], has garnered significant attention from researchers
across diverse fields, including engineering, mathematics, optimization, transportation
science, and economics; see, for example, [1, 108, 122]. It is well known that VIs encom-
pass a wide array of mathematical problems, such as systems of equations, complementar-
ity problems, and certain classes of fixed-point problems. For comprehensive discussions
on finite-dimensional VI problems and their associated solution methods, we refer the
interested reader to the authoritative survey by Facchinei and Pang [63], the monograph
by Patriksson [175], the survey article by Harker and Pang [89], and the Ph.D. thesis of
Hammond [87], along with the references therein.

In this section, we focus on solving the second-order cone constrained variational
inequality (SOCCVI) problem, in which the feasible set is defined by a Cartesian product
of second-order cones (SOCs). Specifically, the SOCCVI problem seeks a point = € C
such that

(F(z),y—x) >0, YyeC, (5.74)

where the feasible set C' is finitely representable as
C={rxeR"|h(x)=0, —g(x) € L}. (5.75)

Here (-,-) denotes the Euclidean inner product, F : R" — IR", h : R" — R' and
g : IR" — IR™ are continuously differentiable functions and K is a Cartesian product of
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second-order cones, expressed as

K=K" x K" x ... x K", (5.76)
where [ > 0, mq,mg, -+ ,m, > 1, my +mg +---+m, =m, and
KM= {(xilaxi% e 7:Cim¢>T e R™ ‘(1'127 T 7$1m1)H < x’il}
with || - || denoting the Euclidean norm and K! the set of nonnegative reals IR,. A
special case of equation (5.76) is L = IR", namely the nonnegative orthant in IR", which
corresponds to p =n and my = --- = m, = 1. When h is affine, an important special case

of the SOCCVI problem corresponds to the KK'T conditions of the convex second-order
cone program (CSOCP):

min f(z)

st. Ax=0b, —g(x) €K, (5:77)

where A € IR”™ has full row rank, b € R!, g : R® — IR™ and f : IR® — IR. Furthermore,
when f is a convex twice continuously differentiable function, problem (5.77) is equivalent
to the following SOCCVI problem: Find x € C' satistying

<Vf($),y—$> 207 V?/EQ

where

C={reR"'"|Az—-b=0, —g(z) € K}.

Analogous to other optimization problems, the SOCCVI problem (5.74)-(5.75) can be
solved by analyzing its KK'T conditions:

L(z,pu,\) =0,
(g(x),\) =0, —g(z) €K, N €K, (5.78)
h(z) =0,
where
Lz, p, \) = F(x) + Vh(z)p + Vg(x)A (5.79)

is the variational inequality Lagrangian function, i € IR' and A € IR™.

Recall that the Fischer-Burmeister function associated with SOC, which is semis-
mooth and defined by

o (a,b) = (a® + %)% = (a + ).

Accordingly, we consider the smoothed Fischer-Burmeister function given by
¢ (a,b) = (a® +b* + 826)1/2 —(a+0) (5.80)

with ¢ € R; and e = (1,0,--- ,0)T € IR
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Lemma 5.12. Let ¢:_ be defined as in (5.80) and ¢ # 0. Then, ¢:_ is continuously
differentiable everywhere and

Voo (a,0) =€ L 'Lee, Voo (a,b)=L'Ly—1, Vu¢° (a,b)=L "L, —1,

-
where z = (a® + b? +€26)1/2, I is identity mapping and L, = [Zl a 3_2 ] Jor a =
2 Qilp—1

(a1;a9) € R x R™1.

Proof. The proof follows a similar argument to that of Lemma 3.10(a), which computes
the gradient of ¢¢ , and is therefore omitted here. [

By employing the smoothed Fischer-Burmeister function defined in (5.80), the KKT
system (5.78) can be reformulated as the following unconstrained smooth minimization
problem:

) 1
min ¥(w) := §HS(w)H2 (5.81)
Here ¥(w), w = (g, 2, u, \) € R+ i a merit function, and S(w) is defined by
£
Lz, p, A)
. ~hiz)
W= 65y (=g (@) Am) |

925‘;13 (_gmp (ZE), Amp)

with gm, (2), A, € R™:. In other words, W(w) given in (5.81) is a smooth merit function
for the KKT system (5.78). Based on the smooth minimization problem (5.81), it is
natural to propose the following neural network model for solving the KKT system (5.78)
associated with the SOCCVI problem:

WOy vuw(). wlte) =, (552

where p > 0 is a scaling factor. In fact, we can also adopt another merit function which
is based on the FB function without the element . In other words, we can define

L(z, p, A)
—h(z)
S, i, \) = | Pes(—9mi (@), Amy) | (5.83)

D (= Gy (1) M)

The neural network model (5.82) can also be derived directly, owing to the smoothness
of the squared Fischer-Burmeister function ||¢,,||>. However, it is observed that the



508CHAPTER 5. DYNAMICAL METHODS USING COMPLEMENTARITY FUNCTIONS

gradient mapping VW involves more intricate expressions, particularly because the term
(—gm, (2))* 4+ A2, may lie either on the boundary or in the interior of the second-order
cone, as discussed in Proposition 3.4. This leads to increased computational cost in prac-
tical implementations. Therefore, introducing the one-dimensional smoothing parameter
¢ not only leaves the theoretical results unaffected, but also simplifies the numerical
computations.

To facilitate the analysis of the properties of the neural network model (5.82), we
impose the following assumption, which is employed to avoid the singularity of V.S(w);
see [201].

Assumption 5.3. (a) the gradients {Vh;(x)|j = 1,--- I} U{Vygi(z)|i =1,--- ,m}
are linear independent.

(b) V.L(x,u,A) is positive definite on the null space of the gradients {Vh;(x)|j =
1,1},

When the SOCCVI problem (5.74)—(5.75) arises as the KKT system of a convex
second-order cone program (CSOCP) of the form (5.77), where both h and g are linear
functions, Assumption 5.3(b) becomes equivalent to the commonly used condition that
V2f(x) is positive definite; see, for example, [215, Corollary 1].

Proposition 5.37. Let U : R+ ™ — R, be defined as in (5.81). Then, ¥(w) > 0
for w = (g,2,pu,\) € RUWHH™ gnd U(w) = 0 if and only if (x,p, \) solves the KKT
system (5.78).

Proof. The proof is straightforward.  [J

Proposition 5.38. Let ¥ : R""+™ — R, be defined as in (5.81). Then, the following
results hold.

(a) The function ¥ is continuously differentiable everywhere with

V¥ (w) = VS(w)S(w),

where
1 0 0 diag { Vo2 (=g, (€), Am,) }r_,
o 0 V:}:L(ma 23 )‘)T —Vh(l') —Vg(x)dlag {ngi (b;B (_gmi (33), Amz) }1-7:1
VS(w) = T '
0 Vh(zx) 0 0
0 V()T 0 diag { V., ¢, (—gm. (), Am) }1_,

(b) Suppose that assumption 5.8 holds. Then, VS(w) is nonsingular for any w €
R Moreover, if (0,2, 1, \) € RITHE™ s g stationary point of W, then
(2, 1, \) € R™H™ is o KKT triple of the SOCCVI problem.
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(c) Y(w(t)) is nonincreasing with respect to t.

Proof. Part(a) follows from the chain rule. For part(b), we know that VS(w) is nonsin-
gular if and only if the following matrix

VoL(z, 1, \)T =Vh(z) —Vg(x)diag {Vy,, ¢= (=gm, (), Am)}_
Vh(z)" 0 0
Vg(x)" 0 diag {Vx,, &%, (—gm, (), Am,) }

i=1
is nonsingular. In fact, from [201, Theorem 3.1] and [201, Proposition 4.1], the above
matrix is nonsingular and (z, u, A) € R*™*™ is a KKT triple of the SOCCVI problem
if (0,2, p,\) € RYHHM i a stationary point of W. It remains to show part(c). By the
definition of ¥(w) and (5.82), it is not difficult to compute

dWU(w(t dw(t
(dt( ) = 9o —di ) VB <0, (5.84)
Therefore, W(w(t)) is a monotonically decreasing function with respect to t. O

We are now prepared to analyze the behavior of the solution trajectory of (5.82)
and to establish the properties corresponding to three types of stability for an isolated
equilibrium point.

Proposition 5.39. (a) If (x,u, \) € R"™™ is a KKT triple of SOCCVI problem, then
(0,2, p, A) € RM™HH™ s an equilibrium point of (5.82).

(b) If Assumption 5.3 holds and (0, x, i, \) € R ™ s an equilibrium point of (5.82),
then (z, u, \) € R"4™ s a KKT triple of SOCCVI problem.

Proof. (a) From Proposition 5.37 and (z, i1, \) € IR"**™ being a KKT triple of SOCCVI
problem, it is clear that S(0,z,u,A\) = 0. Hence, V¥(0,z,u,\) = 0. Besides, by
Proposition 5.38, we know that if ¢ # 0, then V¥(e,x,u,A) # 0. This shows that
(0,2, , A) is an equilibrium point of (5.82).

(b) It follows from (0,z,u,\) € R*™H+™ heing an equilibrium point of (5.82) that
VVU(0,z,pu,A) = 0. In other words, (0,x,u, \) is the stationary point of W. Then, the
result is a direct consequence of Proposition 5.38(b). O

Proposition 5.40. (a) For any initial state wy = w(ty), there exists exactly one mazi-
mal solution w(t) with t € [to, T(wo)) for the neural network (5.82).

(b) If the level set L(wy) = {w € R | U(w) < U(wy)} is bounded, then T(wg) =
+00.

Proof. (a) Since S is continuous differentiable, V.S is continuous, and therefore, VS is
bounded on a local compact neighborhood of w. That means VW (w) is locally Lipschitz
continuous. Thus, applying Lemma 5.1 leads to the desired result.

(b) This proof is similar to the one of Case(i) in Proposition 5.3(b). O
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Remark 5.4. We point out that whether the level sets
L(V,7) = {w e R [ ¥(w) <~}

are bounded for all v € R is still open. It seems that there needs more subtle properties
of F', h and g to finish it.

Proposition 5.41. (a) Let w(t) with t € [to, T(wp)) be the unique maximal solution to
(5.82). If T(wy) = +00 and {w(t)} is bounded, then lim; ., V¥ (w(t)) = 0.

(b) If Assumption 5.8 holds and (¢, x, i, A) € R ™ s the accumulation point of the
trajectory w(t), then (z,u,\) € R"*™ is a KKT triple of SOCCVI problem.

Proof. With Proposition 5.38(b) and (c) and Proposition 5.39, the arguments are exactly
the same as those for [137, Corollary 4.3]. Thus, we omit them. [

Proposition 5.42. Let w* be an isolated equilibrium point of the neural network (5.82).
Then, the following results hold.

(a) w* is asymptotically stable.
(b) If Assumption 5.8 holds, then it is exponentially stable.

Proof. Since w* is an isolated equilibrium point of (5.82), there exists a neighborhood
Q* C R of w* such that

VU (w*)=0 and V¥ (w)#0 VYwe Q" \{w'}.

Next, we argue that W(w) is indeed a Lyapunov function at x* over the set Q* for (5.82) by
showing that the conditions in (5.2) are satisfied. First, notice that W(w) > 0. Suppose
that there is an w € Q* \ {w*} such that ¥(w) = 0. Then, we can easily obtain that
VU (w) = 0, i.e., w is also an equilibrium point of (5.82), which clearly contradicts the
assumption that w* is an isolated equilibrium point in 2*. Thus, we prove that ¥(w) > 0
for any w € Q*\ {w*}. This together with (5.84) shows that the condition in (5.2) are
satisfied. Because w* is isolated, from (5.84), we have

d¥(w(t))

o< 0, Vw(t) e\ {w}.

This implies that w* is asymptotically stable. Furthermore, if Assumption 5.3 holds, we
can obtain that VS is nonsingular. In addition, we have

S(w)=S(w*)+VS(w")(w—w") +o(||Jw —w*|]), VweQ \{w} (5.85)
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From ||S(w(t))|| being a monotonically decreasing function with respect to ¢ and (5.85),
we can deduce that

lw(®) = wll < (VS ) M IS (w(t) = Sw )| + o|lw(#) — w[])
< I(VS@) IS (w(te)) = Sl + o([lw(t) — w|)
< VS ) THHINVS ()l w(to) — w[| + ollw(to) — w”[])]
+o([w(t) —w™[]).
That is,

[w(t) = w*[| = o(lw(t) —w)
< VS ) THHINVS (w))llw(to) — w | + o(fJw(to) — w?[])].

The above inequality implies that the neural network (5.82) is also exponentially stable.
[

As demonstrated in Section 5.2.1, the cone projection function can also be utilized
to construct a neural network for solving the SOCCVI problem (5.74)—(5.75). To this
end, we begin by introducing some notation. Specifically, we define the function U :
IR*H+™ — IR™+™ and the vector w as follows:

L(x, p, N) x
Ulw) = —h(x) , w=| u |, (5.86)
—9(z) A

where L(x, i, A) = F(x)+Vh(x)u+Vg(x)A is the Lagrange function. To avoid confusion,
we emphasize that, for any w € IR"**™, we have

w; €R, if 1<i<n+l,
w; € RMi-t+0 0 if n4l4+1<i<n+1+p.

Then, we may write (5.86) as

Ui - (U(w))l = (L(ac,,u, )‘))17 W; = T4, 1= 17 Lo,
Untj = (U(w))nﬂ' = _hj(x), Wt = Mj, J=1,... 1,

p
Uniive = (U(0))nyisr = —gr(x) € R™ wpqp = A € R™, k=1,...,p, ka =m.
=1

With this, the KKT conditions (5.78) can be further recast as

U =0, i=12,....,.n,n+1,...,n+1,
(Us,wy) =0, Uy = (Unsis1, Unsisas -+ s Unap) T € K, (5.87)
Wy = (Wntt41, Wnpi42, s Wntip) ' € K.
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Thus, (z*, p*, \*) is a KKT triple for (5.74) if and only if (z*, u*, \*) is a solution to (5.87).

It is well known that the nonlinear complementarity problem, which is denoted by
NCP(F, K) and to find an = € IR" such that

reK, F(r)eK and (F(x),z)=0

where K is a closed convex set of IR", is equivalent to the following VI(F, K') problem:
finding an € K such that

(F(x),y—x) >0 VyeK,
Furthermore, if K = IR", then NCP(F, K') becomes the system of nonlinear equations
F(z)=0.

Based on the above, solution of (5.87) is equivalent to solution of the following VI prob-
lem: find w € K such that

(U(w),v —w) >0, YveK, (5.88)

where K = IR""' x K. In addition, by applying the Lemma 1.1(d), its solution is equivalent
to solution of below projection formulation

Mg(w—U(w)) =w with K=R""x K, (5.89)
where function U and vector w are defined in (5.86). Now, according to (5.89), we give
the following neural network:

Cfi—zf = p {llx(w — U(w)) — w}, (5.90)

where p > 0. Note that K is a closed and convex set. For any w € IR*™*™ IIx means

Ik (w) = [k (wi), Mg (wa), -+ i (wpd), e (W), i (wepisa), - -+ i (W) ]
where
HK(wz) = Wi, 1= 17 7n+l7
i (wnsi45) = [M(Wnig)]+ - USLBHH + Ao (wWntirg)]+ - Ug2+l+j7 Jg=1-,p

Here, for the sake of simplicity, we denote the vector wy;4; by v for the moment, and
[]s is the scalar projection, A (v), Ao(v) and u”, ul? are the spectral values and the

associated spectral vectors of v = (vy;vy) € IR x IR™ !, respectively, given by

Xi(v) = o1 + (1) |oa,
{ =1 (1,(—1)i = )

U
o2l ]2
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for i = 1,2, see [41, 166].

The dynamical system described by (5.90) can be interpreted as a recurrent neural
network with a single-layer structure. To analyze the stability properties of (5.90), we be-
gin by introducing the following lemmas and proposition, which will form the foundation
of our subsequent analysis.

Lemma 5.13. Let L(z,pu, \) be the Lagrangian function defined as in (5.79). If the
gradient of L(x,pu, \) is positive semi-definite (respectively, positive definite), then the
gradient of U in (5.86) is positive semi-definite (respectively, positive definite).

Proof. Since we have

V.L(z, i, \)T —Vh(z) —Vg(z)
VU (x,pu,A) = Vh(x)T 0 0 :
Vg(z)T 0 0

for any nonzero vector d = (p',q",r")T € R""*™ we obtain that

VoL(e, T —Vh(z) —Vg()] [p
d"VU(z,p,N)d = (p" ¢ rT) Vh(z)T 0 0 q
Vg(x)T 0 0 r

= p'V.L(z,p, \)p.
This leads to the desired results. OJ

Proposition 5.43. For any initial point wy = (o, fo, o) with Ao := A(tg) € K, there
exist a unique solution w(t) = (z(t), u(t), A(t)) for neural network (5.90), Moreover,
A(t) € K.

Proof. For simplicity, we assume K = K™. The analysis can be carried over to the
general case where K is the Cartesian product of second-order cones. Since F|h, g are
continuous differentiable, the function

F(w) :=g(w—U(w)) —w with K=R""x K" (5.91)

is semi-smooth and Lipschitz continuous. Thus, there exists a unique solution w(t) =
(x(t), u(t), A(t)) for neural network (5.90). Therefore, it remains to show that \(¢) € K™.
For convenience, we denote A(t) := (A1(t), A2(t)) € IR x R™"!. To complete the proof,
we need to verify two things: (i) A\;(t) > 0 and (ii) |[A2(¢)]| < Ai(¢). First, from (5.90),
we have

— M) = pTlicn (A + ().

The solution of the above first-order ordinary differential equation is

t
At) = e PN\ () + pe‘pt/ pe?Icm (A + g(x))ds. (5.92)

to
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If we let A(tg) := (A\i(to), Ma(tp)) € IR x R™™! and denote Ixm (A + g(x)) as z(ty) :=
(z1(to), 22(t0)), then (5.92) leads to

¢
A (t) = e PN (¢) + pept/ pef®z1(s)ds, (5.93)

to

t

Aa(t) = e P Ny (8y) + pe_”t/ pe’zo(s)ds. (5.94)

to
Due to both A(ty) and z(¢) belong to K™, there have A (tg) > 0, || X2(to)]] < Ai(to) and
|22(t)]] < z1(t). Therefore, A;(t) > 0 since both terms in the right-hand side of (5.93)
are nonnegative. In addition, from (5.94), it can be verified

A=)l =Py (to)]| + pe” ptft pe’*||z2(s) || ds
e Pt )\ (o) + pe~ "tf pefiz(s)ds

Ai(t),
which implies that A(t) e K™ O

I IA A

Lemma 5.14. Let U(w), F(w) be defined as in (5.86) and (5.91), respectively. Suppose

*

w* = (%, 1", N*) is an equilibrium point of neural network (5.90) with (x*, u*, \*) being
an KKT triple of SOCCVI problem. Then, the following inequality holds:

(F(w) 4w —w")" (=F(w) — U(w)) > 0. (5.95)
Proof. Notice that
(F(w) +w—w)" (=F(w) — U(w))
= [~w+Hg(w — U(w)) +w — w*]" [w—Hg(w — U(w)) — U(w)]
= [~w + Tk (w = U(w))]" [w — g (w — U(w)) = U
= —w = Tg(w - U(w))]" [w—U(w) —Tg(w - U(w))].
Since w* € K, applying Lemma 1.1(d) gives
[w* — Tl (w — U(w))]" [w — U (w) — T (w — U(w))] < 0.
Thus, we have
(F(w) +w—w)" (=F(w) = U(w)) >0,
which is the desired result. ]

Proposition 5.44. Let L(x,u, \) be the Lagrangian function defined as in (5.79) and
w(t) == (x(t), u(t), \(t). If V.L(w) is positive semi-definite (respectively, positive defi-
nite), the the solution of neural network (5.90) with initial point wo = (g, to, Ao) where
Xo € K is Lyapunov stable (respectively, asymptotically stable). Moreover, the solution
tragectory of neural network (5.90) is extendable to the global existence.
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Proof. Again, for simplicity, we assume K = K™. From Proposition 5.43, there exists
a unique solution w(t) = (z(t), u(t), A(t)) for neural network (5.90) and A(t) € K™. Let
w* = (x*, u*, A*) be an equilibrium point of neural network (5.90). We define a Lyapunov
function as below:

V(w) :=V(z,pu ) = —U(w) F(w) - %\|F(w)||2 + %Hw —w*||% (5.96)

From [77, Theorem 3.2}, we know that V' is continuously differentiable with
VV(w) =U(w) — [VU(w) — I]F(w) + (w — w*).
It is also trivial that V(w*) = 0. Then, we have

T dw

= V()

= {U(w) = [VU(w) = [JF(w) + (w — w")}" pF(w)
= p{lU(w) + (w —w")]"F(w) + | F(w)||* = F(w) VU (w)F(w)} .

dV(w(t))
dt

Inequality (5.95) in Lemma 5.14 implies
U(w) + (w = w)]" Fw) < =U(w)"(w —w") | F(w)|,

which yields

p {~U ()T (w — w*) — F(w) VU (w) F(w)}
p {~U ) (w —w) — (U(w) — U (w — w*) — F(uw) VU (w) F(w)}

Note that w* is the solution of the variational inequality (5.88). Since w € K, we therefore
obtain —U(w*)T(w — w*) < 0. Because U(w) is continuous differentiable and VU (w)
is positive semi-definite, by [160, Theorem 5.4.3], we obtain that U(w) is monotone.
Hence, we have —(U(w) — U(w*))T(w — w*) < 0 and —F(w)"VU(w)F(w) < 0. The
above discussions lead to W < 0. Also, by [160, Theorem 5.4.3], we know that if
VU (w) is positive definite, then U(w) is strictly monotone, which implies % < 0in
this case.

In order to obtain V' (w) is a Lyapunov function and w* is Lyapunov stable, we will show
the following inequality:
~U(w)"F(w) > ||F(w)|* (5.97)

To see this, we first observe that

I1E(w)]* + U(w)TF(w) = w = T (w = Uw))]" [w = U(w) = Mg (w - Uw))].
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Since w € K, applying Lemma 1.1(b) again, there holds
[w — g (w — U(w))]" [w = U(w) = (w = U(w))] <0,

which yields the desired inequality (5.97). By combining equation (5.96) and (5.97), we
have

1 1 )
V(w) 2 SIIF@W)” + 5 llw — [,

which says V(w) > 0 if w # w*. Hence V(w) is indeed a Lyapunov function and w* is

Lyapunov stable. Furthermore, if V,L(w) is positive definite, we have w* is asymptoti-

cally stable. Moreover, it holds that

V(we) > V(w) > =|jw —w*||* for t > to, (5.98)

DN | —

—~

which tells us the solution trajectory w(t) is bounded. Hence, it can be extended to

global existence. [

Proposition 5.45. Let w* = (2%, u*, \*) be an equilibrium point of (5.90). If V,L(w) is
positive definite, the solution of neural network (5.90) with initial point wy = (g, f10, Ao)
where \g € K is globally convergent to w* and has finite convergence time.

Proof. From (5.98), the level set
L(wo) == {w [V (w) <V (wo)}

is bounded. Then, the Invariant Set Theorem [83] implies the solution trajectory w(t)
converges to 6 as t — 400 where 6 is the largest invariant set in

A= {w € L(wo) p

We will show that dw/dt = 0 if and only if dV (w(t))/dt = 0 which yields that w(t)
converges globally to the equilibrium point w* = (z*, u*, \*). Suppose dw/dt = 0, then
it is clear that dV (w(t))/dt = VV ()T (dw/dt) = 0. Let © = (i, 1, \) € A which says
dV(w(t))/dt = 0. From (5.95), we know that

AV (@ () /dt < p {(~U () — U(w)T (@ — w*) — F() VU (@) F(i)}.

Both terms inside the big parenthesis are nonpositive as shown in Proposition 5.44, so
(U(w) — U(w*))" (0w — w*) = 0, F(0)"VU(w)F () = 0. The condition V,L(w) being
positive definite leads to VU (w) being positive definite. Hence,

F(ib) = =i + My (& — U()) = 0,

which is equivalent to dw/dt = 0. From the above, w(t) converges globally to the
equilibrium point w* = (z*, p*, \*). Moreover, with Proposition 5.44 and following the
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same argument as in [215, Theorem 2], the neural network (5.90) has finite convergence
time. [

Simulations and numerical reports can be found in [193]. In general, both neural
networks have merits of their own. In addition, using other discrete types of C-functions,

¢F . given by
¢f (x,y) =2” —[(x —y)4]F, p>1being an odd integer,

and ¢F  given by

p
o (x,y) = (x/xQ + y2) — (z+y)?, p> 1 being an odd integer,

for the same dynamic model (5.82) and the same SOCCVI problem (5.74)-(5.75) were
studied in [200]. Similar results—namely, Lyapunov stability, asymptotic stability, and
exponential stability—can be established for this neural network model. Since the argu-
ments closely mirror those presented earlier, we omit the details here. For comprehensive
simulation results and further discussions, we refer the reader to [200].

Next, we introduce another efficient neural network for solving the SOCCVTI problem
(5.74)—(5.75), this time based on the smoothed cone projection mapping. The approach is
motivated by revisiting the KKT conditions (5.78), in a manner analogous to the neural
networks (5.82) and (5.90). However, before presenting the smoothed cone projection
mapping, we must first review a few notations and foundational concepts. Recall from
(5.33) that the projection mapping onto the second-order cone K™ is defined by

[icm () = [M(2)] 1 C1(2) + [Ao(@)] +ca(),

where [-]+ means the scalar projection, A\i(x), A2(x) and c¢;(z), ca2(x) are the spectral
values and the spectral vectors of z = (29, Z) € IR x IR™™!, respectively. Indeed, plugging
in \;(x) as below

N(@) =20+ (—1) |7l (i =1,2)

and ¢;(z) given by

with w being an arbitrary unit vector in IR™!, there is another expression for projection
mapping:

3
2 [zl ‘

(o, T), if [|Z]| < o,
0, if [|z]] < —xo.

L+ @izl z), i feol < izl
H]C"L(x) == O’j,‘

The following lemma provides a formula for the directional derivative of the cone
projection mapping Ilx, as defined in (5.33). Throughout the discussion, we use int(X),
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bd(K), and cl(K) to denote the interior, boundary, and closure of a set K C IR",
respectively.

Lemma 5.15. [161, Lemma 2] The projection mapping i (+) is directionally differen-
tiable at x for any d € R™. Moreover, the directional derivative is described by

;

J e (2)d it 2 e R™\(KmU—Km),
d if € int(K™),
) o d—2 [C(l‘)Td}f ci(z) if € bd(K™)\{0},
Mem (z;d) = 0 if x € —int(K™),
2 [CQ(x)Td]Jr co(x) if x € —bd(K™)\{0},
where -
| ! Tel
T
Jen() =51 5 B x0T |
— I+ I— o ——
1]l [ R o
[er(z)Td] == min{0,c(2)"d},

[CQ(x)Td]+ = max {0, cx(z)"d} .

For convenience in the subsequent discussions, we recall the definitions of the tangent
cone, regular (Fréchet) normal cone, and limiting (Mordukhovich) normal cone of a closed
set at a given point. These foundational concepts are well established and can be found
in [186].

Definition 5.6. For a closed set K C IR"™ and a point * € K, we define the following
sets:

(a) the tangent (Bouligand) cone

K3
Tk(Z) = lirrtlﬁ)up x;

(b) the reqular (Fréchet) normal cone

Ni(7) = {v € R" | (v,y — 7) < ollly — z|)), Yy € K};

(c) the limiting (in the sense of Mordukhovich) normal cone

N (Z) := lim sup N (z).
K
T
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When K is a closed convex set, it is known that Tk (Z) = cl(K + IRz) and
Ni(z) = Ng(7) = Tre(2)° = {v € K°| (v, z) < 0},

where K° denotes the polar of K. The tangent cone and second-order tangent cone can
be explicitly characterized, as stated in the following result.

Lemma 5.16. [14, Lemma 2.5] The tangent and second-order tangent cones of K™ at
x € K™ are described, respectively, by

R™ if x € int(K™),
Ticm () = K if =0,
{d = (do,d) € R x R™'[(d,Z) — wodo < 0} if x € bd(K™)\{0}.
and
R™ if =€ int(Tiem(x)),
Ten(z,d) = Tiem (d) if =0,

{w = (wy,w) € R x R™1| (w0, 35) — wozyg < d% — ||d||*} otherwise.

We also review several notations that will be used throughout the remainder of this
section. Given a sequence {t,} € IR, we write t,, | 0 to mean that {¢,} is monotone
decreasing and converges to zero. The distance from a point x to a set K C IR”, denoted
by dist(z, K) is given by

dist(z, K) := inf{||z — g|| | Vy € K}.

By linK, we mean the linear subspace generated by K. Given x,y € IR", we write x L y
if and only if (z,y) = 0.

We now introduce the smoothed natural residual function as a foundation for design-
ing a neural network model. To begin, we define a smoothing metric projector function

®: R, x R™ — R™ as follows:
1
O(e,u) := 5 (u + Ve2e + u2> , Y(e,u) € Ry x R™. (5.99)

Observe that ®(0,u) = ITxm (u), which means it is an extension of cone projection map-
ping. Moreover, ® is continuously differentiable on any neighborhood of (¢, u) € IR x IR™
provided that (g2e + u?)g # ||e%e + u?||. From [98], it is known that ® is globally Lip-
schitz continuous and is strongly semismooth for all (0,u) € IR x IR™. Furthermore,
applying the concept of SOC-functions in [28], it can be verified that the function ®(e, u)
given in (5.99) can alternatively be expressed as

O(e,u) = d(e, A\1)er + ¢(g, Aa)ca, (5.100)
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where ¢(z,t) := 1(t++/22 4+ 12), \; and ¢; are the spectral values and the spectral vectors,
respectively. Hence, we can write out the function ® as

1 1 VEZ+ A2+ /22 + A _—
2" <\/€2+)\%+\/€2—)\§)ﬁ a0,

1(“0+V52+“(2>> if 4 =0
0 ’ '

2

O(e, u) = (5.101)

For (e2e + u?)g # ||e%e + u?||, we calculate the derivative of ® with respect to e as below:

V®(e,u) = % (%qﬁ(a, el + %qﬁ(e,/\g)cg)

1 ec! N ecy
2\ \e2+ A e2+ N
As for the differentiability of ® with respect to u, we have two cases:

Case(i): For u # 0,

145 A 22 vT
V. ®(g,u) = 5 t2 (\/s2+/\§ + \/62-1—)\%) : (5.102)
Y Z
where
v — 1 Ao A1 u
2\Ve2r a2 e az) llaf
and

+\/52+/\§—\/52+>\%

Z = |1 I,._
Xo — A !
i 1 )\1 i )\2 _\/52“—)\%—\/52‘{‘)\% aﬂT.
2\VeE+ N e+ A2 — A |a)*’

Case(ii): For u =0,

. 1 Uo

For (e2e + u?)y = ||e%e +u?||, ® is nonsmooth at (g,u), but its B-subdifferential can
nevertheless be computed.

In light of the above ® (g, u) given in (5.99), (5.100) or (5.101), we are ready to present
the smoothing NR function, which is given by

O (@,y) =2 — P(e, 2 —y). (5.103)
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It will be the basis of our neural network. More specifically, we define S : IR x IR x IR! x
R™ - R x R" x R x R™ by

9
L(x, p, N)
5(2) = h(z)

¢;R (_gml (.’L’), )‘m1) ’

L ¢16\IR (_gmp(x>’)\mp) .
where z = (g,z, 4, \) € IR x IR"® x IR! x IR™. Then, it is clear to see that solving the
KKT system (5.78) is equivalent to solving the problem

min W(z) = % 1SC)|2. (5.104)

Clearly, ¥ defined as in (5.104) is a merit function for (5.78) and in turn, we consider
the dynamical system given by

d;(tt) —pVU(2(t)) = —p VS (2(t))S(2(1)),

Z(to) = 2o,

(5.105)

where p > 0 is a scaling factor, for solving the SOCCVI. We refer to the above as
“the smoothed NR neural network”. The block diagram of the above neural network
is presented in Figure 5.6. The circuit for (5.105) requires n + [ + m + 1 integrators,
n processors for F'(x), m processors for g(x), mn processors for Vg(z), [ processors for
h(z), In processors for Vh(z), (1+m+1)n? processors for V, L(z, u,\), 2m+2> " m?
processors for ® and its derivatives, and some analog multipliers and summers.

47{,0 =|/ » 2= (e, 2, 1, \)

{65 (= gmi(@), Ami) P 222

T fhy A

A

?
J 2
K3

A

L(z, p, N)

{(I)(87 _gmi(x) - )\mi)}?zl ¢ SR

A
A

VS(2)

Te,w,)\

Figure 5.6: Block diagram of the neural network with ¢ .
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Let U, = —gm,; () — A\m,;. For subsequent use in the numerical simulations, we note
that
VS(z)
[ 1 0 0 {=V:0(c,um,) }_,
B 0 V.L(z,u,\)T Vh(z) —Vg(z) (I - diag{VumiCD(e,umi)}le)
B 0 Vh(z)" 0 0
0 Vyg(x)T 0 diag{V.,, ®(&,tm,)}i—;
(1 0 0 {_vsq)<57 _gmz(x> - /\mz) f:l
. 0 V.L(z,p, /\)T Vh(z) —Vg(x) (I + diag{vgmi@(sv —Gm; (T) = Am,) f:l)
B 0 Vh(z)" 0 0
| 0 Vg(l,>T 0 —diag{VAmiq)(e, —Gm; (ZL‘) - )‘mz) f:l

It is evident that ¥ is a nonnegative function, attaining the value zero at a point z =
(e,z,p, A) if and only if (z, p, ) is a KKT point. Moreover, every KKT point corresponds
to an equilibrium point of the system (5.105), and the converse holds under the condition
that V.S(z) is nonsingular. The stability analysis of the system (5.105) follows standard
techniques and is analogous to the analysis of the smoothed Fischer-Burmeister neural
network discussed earlier.

Nevertheless, our primary contributions, highlighted in the forthcoming analysis, are
twofold: (i) we investigate second-order sufficient conditions that ensure the nonsingu-
larity of V.S(z); and (ii) we demonstrate that the proposed network exhibits superior
numerical performance compared to existing neural network models for SOCCVTI prob-
lems. For completeness, we present below a fundamental stability result, the proof of
which is similar to earlier arguments and is therefore omitted.

Proposition 5.46. Isolated equilibrium points of (5.105) are asymptotically stable. More-
over, we obtain exponentially stability if VS(2) is nonsingular.

Proposition 5.46 highlights the critical role of the nonsingularity of the transposed
Jacobian VS(z). In what follows, we investigate sufficient conditions that ensure this
property holds. To this end, we write out the first-order optimality conditions for the
SOCCVI problem (5.74)-(5.75). Let L(x,u,A) be given by (5.79) and let (u,\) =
(s Ay 3 Ay ) € R! x R™ x --- x IR™ = IR! x R™. Suppose that z* is a solution of
the SOCCVI problem (5.74)-(5.75), and the Robinson’s constraint qualification

( —Vth((x;Z)T ) R" + Ton <k (M(x"), —g(2")) = R x IR™

holds at z*. The first-order optimality condition is

(F(z*),d) >0, Vde To(z"), (5.106)
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where

Te(z*) = {d|Vh(z*)'d =0, =Vg(z*)"d € Tic(—g(z*))} .

It is known that T¢(2*) is convex and
Ne(z") = VAR + {Vg(z)| — A € Ne(—g(z")},

where Ni(y) := Nicm1 (Y, ) X Ncma (Yimy) X -+ - X Nigmo (Y, ) 01 y = (Ymys -+, Um,) € R™,
and

Nicmi (Ym,) = {tm, € R™

is the normal cone of K,,, at y,,,,. Note that (5.106) holds if and only if 0 € F(z*)+ N (z*)
which is equivalent to 3 € R!, A € IR™ such that

(U s U — Ym,) <0, Vv e K™}

L(z",p,A) =0, —X € N(—g(z"))

and the set of multipliers (u, A) denoted by A(x*) is nonempty compact. Therefore, x*
satisfies the following Karush-Kuhn-Tucker condition,

L(z*, pu, \) =0,
h(z*) =0,
—A € Ni(—g(z")).

Using the metric projector and the definition of the normal cone, the KKT conditions
can be expressed as

L(z, p, )
Sz, pu, \) = h(z) =0,
—g(x) — H(=g(x) = A)

where
Mc(—g(z) = A) := (emi (=g, () = Am) T+ ioms (=g, (2) = Am,) )
It is particularly emphasized that
Mie(=g(x) = A;d) := diag{icmy (—gum, (€) = Am,; dim,) i1,
for d € IR™.
Definition 5.7. [14] The critical cone at x* is defined by

C(z*)={d|d e Tc(z"), dLF(z")}.
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Proposition 5.47. Suppose that x* is a feasible point of the SOCCVI problem (5.74)-
(5.75) such that A(x*) = {(p, \)} is nonempty and compact. If JF(x*) is positive semidef-
inite and Robinson’s CQ holds at x*, then

o AL A d) = (N T(—g(a), ~Vg(a)Td))} > 0, ¥d € Cla)\{0}
: (5.107)

is the second-order sufficient condition of the SOCCVI problem (5.74)-(5.75), where

0" (M TR(—g(z"), =Vg(z*)"d))
{ 0 if A€ Ng(—g(z*)) and (\, =Vg(2*)Td) =0,

+00 otherwise.

Proof. Let z* be a solution of the SOCCVI problem (5.74)-(5.75). Since JF(z*) is

positive semidefinite, we see that for some small € > 0,
(F(x*),x —2*) >0, VrebB.(z)NC,
where B.(z*) denotes the e-neighborhood of xz*. Equivalently,
r* € argmin {(F(z*),z — %) |z € B.(z*) N C} (5.108)

Again, due to JF(z*) being positive semidefinite, it is clear that (5.108) holds if and only
if

x* € argmin {(F(z*),x — ") + (JF(2")(x — 2%),x — 2*) |z € B.(z*)nC}. (5.109)

Therefore, we turn to deduce the second-order sufficient condition of (5.109). To this
end, we consider the optimization problem

min (F(z*),z —2*) +
st. zeB(z")NC.

% (JF(z*)(x — %),z — x*)

(5.110)

First, it is known that x* is the stationary point of problem (5.110) if and only if
where
NB.@nc(2”) = Np. @ (2%) + Ne(z®) = No(z") (5.112)

On the other hand, (5.111) and (5.112) imply that 0 € F/(2*) + N¢(z*). Hence, if z* is
a solution of the SOCCVI problem (5.74)-(5.75), we conclude that x* is the stationary
point of problem (5.110).
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Now, we prove that the critical cones C,(z*) and C(z*) of (5.110) and the SOCCVI
problem (5.74)-(5.75), respectively, are equal. Indeed,

Vh(z*)Td
—Vg(z*)'d | € Tiopuicxn. @ (h(x"), —g(z¥), z"),

Cp(z*) = {de]R"
d

and (d, F(z*) + JF(z")(x — 2¥)) = 0}.

Notice that

TioyxkcxB.(z+)(h(x"), —g(z¥), 2™)
Tioyxxc(h(z*), —g(x")) X Tp. (2= (")
= Tioyxx(h(z"), —g(2")) x R™.

This yields that

Cp(z*) = {deIR”

VhG)Td e F )
( —Vg(z*)Td ) € Tioprc(h(z7), —g(27)), {d, F(2")) = o}

= C(x").

Next, the Lagrange function of problem (5.110) is

L(x* N\ p,v) = (F(z"),(x —x")) +

which gives
Vo L(x" A\ p,v) = F(a*)+ JF(2")(x —2") + Vh(z)u+ v+ Vg(z)A,

l m
V2 L(z* N\ p,v) = JF(z*)+ Z 1 V2 (z*) + Z A V2gi(x*).
i=1 i=1

Here, we note that V2 _L(x* \, p,v) = J,L(z* A, i1).

On the other hand, in light of [15, Proposition 3.269], we can check that {0} x K is
second order regular at (h(z*), —g(z*)) along the direction (VA(z*)"d, —Vg(z*)Td) with

*\T
—Vth(:(ﬁxz)T ) for all d € C(«*). Then, using the definition of
the second-order regularity (see [15, Definition 3.85]) yields

Yn = ( _hg(z;)) > +tn ( _Vvhéf;z;ﬁld ) + %tn"'rn, Yy, € {0} x K,

respect to the mapping (
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Vh(z*)Tw,
where tn J/ 07 Tn = ( _vg(x*)—l—wn
tpw, — 0, (n — +00) such that

) + a, with a, being a convergent sequence and

lim dist (r, T*(opic((h(27), —g(27)), (Vh(z")'d, —=Vg(2")"d))) = 0.

n—oo

According to the above result, for all P, € {0} x K x B.(z*), we have

h(x*) Vh(z*)Td

1
Po=| —g@) | +t. | —Vgla)Td | +=t,° < " ) ,
. 2 n
T d
. Vh(xz*)Tw, " "
where, t, | 0, < q" ) = | Vg w, |+ ( b" ) with ( b" ) being a convergent
n wn n n

sequence and t,w, — 0, (n — 4+00). Therefore, we obtain

lim dist (Tm TQ{O}XIC((h(I*)7 —g(I*)), (Vh(x*)Td, —Vg(:}j*)Td))> =0

n—o0

and

n—oo n

lim dist { ( " ) T2 gy, () ("), —g(7), 7). (Vh(z*)Td, ~Vg(a*)Td, d))}

= lim dist {( 2” ) T oy ((h(a), —g(27)), (Vh(z")Td, =V g(2") " d)) x TZBE(fB*)(iE*,d)}

n—oo n

= lim dist {r,, T?(0pic ((R(2*), —g(2*)), (VR(2*)d, —Vg(x*)Td))}

n—o0

= 0,

and thus, {0} x I x B.(z*) is second-order regular at the point (h(z*), —g(z*),z*) along
Vh(z*)T
(Vh(z*)Td, —Vg(2*)"d, d) with respect to the mapping [ —Vg(z*)7 | foralld € C(z*),
I
with I as the identity map.

This together with [15, Theorem 3.86] indicates that for (5.110), the second-order suffi-
cient condition is

(A uv)eA(z*)

(Vh(z*)Td, —Vg(z*)Td, d)))} >0, Vde Cy(z*)\{0}.

sup {V2xx[’(x*a )\7 2 V) -0 ((,U, )\7 I/)7 TQ{O}XICXBE(:E*)«}L(:U*)a _g(x*)a l'*),
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We can further simplify it as

sup {VZME(x*, A, v)(d,d) — 5*((u, A\ V), TQ{O}X,CXgS(x*)((h(x*), —g(z*),z"),
(Aopv)EA(z*)
(Vh(a")Td, ~Vg(a")Td,d)) |
= sup {VQML(w*, A s ) (dy d) — 8% (s A, v), T? oy (R(2%), VR(2*) T d)
(M)A ()
X T2e(—g(a"), = Vg(a")Td) x T, () (2",d) }

= sup {V%ﬁ(w*, A v)(dyd) = 6% (1, A, v), {0} x T2k (—g(z*), =Vg(z*)Td x R") }
(A p,v)EA(z*)

= s {ULLE A p)(dd) = 8 (M T%(—g(a"), ~Vg(a")Td)) }.

(1 A)EA(z*)

To sum up, the second-order sufficient condition of the SOCCVI problem (5.74)-(5.75)
is described by

( A?E/I\)( *) {<JIL(‘T*7 )‘a ,U)dv d) — 0" ()‘ ’ TzK(_g(‘r*)v —Vg(x*)Td)>} >0 Vde C(ZB*)\{O},

as desired. O

As shown in Proposition 5.46, the nonsingularity of V.S(0, z*, u*, A*) is essential for
ensuring that the equilibrium point of the neural network corresponds to a solution of
the SOCCVI problem (5.74)—(5.75), and that it exhibits exponential stability. We now
present several conditions under which the nonsingularity of V.S(0,x*, u*, A*) can be
guaranteed.

Proposition 5.48. Suppose (x*, u*, \*) is a KKT point of the SOCCVI problem (5.74)-
(5.75). Then, VS(0,x*, u*, \*) is nonsingular if

(D) A7) ={(, A} #0;
(ii) the second-order sufficient condition (5.107) holds;
(iii) —A* € intNi(—g(z*)) holds; and

(iv) the following constraint nondegeneracy holds:

Vh(z*)T A . . .
( ~Vg(a*)T )IR + 1T,y (h(z"), —g(27)) = R x R™.

Proof. It is enough to verify that M given by

Vo L(z*, i \)T Vh(zt) —Vg(a®) (1_diag{hmﬁov%é(au%) g;l)
M = Vh(z*)T 0 0
Vg(z)T 0 diag{lim,_, Vufniq)(a,ujni) -
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is nonsingular, where u;, = —gm,(z*) — Ay,. From Lemma 5.15 and (5.102), we can
deduce .

. . ! .

}:1_I>I(1) [V.@(g,u)] ' d = Hjem (u; d)

for d € IR™ and u € R™\ (K™ U —K™) or u € intKC™. Then, for ¢ — 0 and (dz, du, d\) €
IR" x R' x R™, we have

dx Jo L(x*, @, N )dx + Vh(x*)dp + Vg(z*)dA
M| du | = Vh(z*)Tdz
dA H

where
N
H = (I-diag{lm¥.; &0, )}, ) (~Vo(a")Tde
T
+ (diag{yg% Vi, 0(e, 1) 5;1) d\
= —Vyg(z*)dr — (diag{li_{% Vi, ©(e,uy,,) 51>T [—Vg(z*)Tdz — d)]
= —Vg(z*)'dzx — O (—g(z*) — A5 =Vg(z*) dz — d)) .

Therefore, we have

dx JoL(x*, ', X )dx + Vh(x*)dp + Vg(z*)dA
M| du | = Vh(z*)Tdx (5.113)
d\ —Vg(z*)Tde — I (—g(z*) — X*; =Vg(z*) Tdz — dX)
dx
Suppose that M | du | = 0. We need to show that dx = 0, du = 0, d\ = 0. First,
d\

from the 2nd and 3rd expressions of (5.113), we obtain

{ Vh(z*)Tdz = 0

_Vg(m*)TdJ; — H/IC (—g(x*) . )\*; —Vg(x*)de . d)\) (5114)

which implies that dx € C(z*). In addition, from the first expression of (5.113), we obtain
(JoL(x*, 1, XY, dx) + (Vg(2z*) Tdx, d\) = 0. (5.115)

To proceed, we consider the following sets:

I" = {i|—gm, (") €eint(K™),i=1,---p};
B* = {i| gmz(x*>€ d(K™), g, (x*) # 0} ;
Z" = Ailgm(z7) = 0}.

Note that
Ce(—g(z*)) = {d e R"| = Vg(z*)Td € Tic(—g(z"))}
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and

g4 (=*)

Tic(—g(z")) = {d —Vgé(x*)d‘f‘ Vg (z* )Td >0,1€2*

Since —AL — g(x), we see that

—Vgi(z*)Td— Y2&)d > g e p }

Am, =0, i € T
A=A [\, = o(—go(a),5'(z*)), 0 >0, i € B*
Am, € Int(K™), i € Z*

— G, () € Int(K™), i € I*
[—g(z*) = X, = { (1 = o) (=g5(2)), (1 +0)(=7'(z*))), i € B*
Am; € Int(K™), i€ Z*

On the other hand, Condition (iii) implies

C(z") = {d

and C(z*) is a linear space. Therefore, we have

—V g (2*)7d € Tic(—gms (%)), (Amis =V, (2*)Td) =0, i € B*

Vh(z*)Td =0, =V, (z *)Td =0,ieZ* }

’L

5 (M T2=gw), =Tgta)Ta)) = 3 —os [V (er) T~ [[Vg'(a) o]
i€eB*
with A, = (A, \Y).

Case (1). If i € B*, we have X}, = (—og}(z*),05'(2*)). Then, applying Lemma 5.15
and (5.114), we obtain

Miem, (—gmi (%) = A =S g, (27)dw — d/\mi)

111 wr -
- = i V G, dx — d\, 5.116
2 |: Wi 1+UI - 1+0 ’w :| ( g ( ) ! l) ( )

= A (=Vgm (2")Tdz — d\,)
= _ngi(x*)dev

where -
111 w,
A= 2 [ wi =l — F2waw] }
and w; = H_gg ((x”)' Now we need to prove that dz € To(z*) and

g'(a*)"Vg'(a*)da
lg* ()]

~Vgi(z*)Tdx > (5.117)
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From —gi(z*) = [|g (&), we know
A p— . e
m; < +U§Z($*) ) Ug()(x ) < —w; )
where ||w;|| =1 and w; = ;?Exg Hg ( for i € B*. Hence, we achieve
NA = 1= JJwg)? w] — LwT + 1;wTszHQ = (0,0). (5.118)
i o l4o0 Y 140

Combining (5.116) and (5.118) yields
</\* —Vm, (x Td:p> =0
which means dz € C(2*). Then, it follows from (5.116) that

A; (=Yg, (z*)Tdx — d\y,) = =V g, (z*) da

= (A — D(=Vgm, (2*)Tdr) = Asd\,, (5.119)
1 1, T 7 *\T
_oTY | T2 2l —Vgo(a*) da
1 1 T 7
= m{%w RV Y Kw)

In summary, we deduce that

_ _ i ()T
(11w—l— o +1 1 UwT)( Vgo(:c)dx>:()

2 T s T T —Vg'(x*)Tdx

which is equivalent to
—Vgi(z*)Tdz
1. wr 0 =
( 17wz) ( —ng(x*)de 0
g'(z")'Vg'(z*)Tdw
lg* ()]l ’

This indicates

—Vgo(z") do =

(5.120)

and hence (5.117) holds.
Case (2). Let i € Z*. From the second equation of (5.114), we have

e (0= Apis =V, (@) da — dAn,) = =V, (2%) " da

Hence, —V g, (z*)Tdz = 0.
Case (3). Let i € I*. Again, from the second equation of (5.114), we have

I (—gmi(x*), —V G, (2*) T dx — d)\mi) = —Vm, () dr — d\p, = —V g, (2*) T da
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which says d\,,, = 0.

From all the above, we conclude that dz € C(z*) implies

YV gm, (2*)Tdx =0, i € Z*
gi(x*)Vgi(z*)Tdx = g'(xz*) Vg (x*)Tdx, i € B*.
Applying (5.113) and (5.114), we have the following three identities.

JoL(x", @, N dx + Vh(x™)dp + Vg(x™)dA =0 (5.121)
Vh(z*) dx =0 (5.122)
—Vg(z*)Tdr — e (—g(z*) — X —Vg(a*)Tdr —d)\) =0 (5.123)

Using (5.121) and (5.122) gives
0 = (dz, J.L(xz", u*, \)dx + Vh(z")du + Vg(z*)dN\)
= (da, J,L(x", 1", N)dx) = Y (=Vgm, (2")dx, dAy,) .

ieB*
Thus, for © € B*,
(=V g, (z*) T dz, dN, )
= —Vygo(z")dz d\y + (=Vg' (z*)dz, d\")

= Vgi(z*) dx - Hglg ;Hd)\’—<Vg “Ydz, d\") (5.124)
_ gl(SC*)TVgZ( )d:b'gl( Td)\Z <Vg Yz d)\2>

)P o
15" ()]l
On the other hand, from (5.119), we have
. T
Ve 45 - g (@) de
swi (=Vgy(z*)Tde — wl Vg (a*) e h—i) — 155 (=Vg'(z*) dz)
SdN) + 2w TdX
( %wz(d)\’ — H—gwle/\’) + _d>\7' ) (5125)

From (5.120), we can deduce that

1 , , 1— ,
S Wi (—ng](x*)de —w, Vg'(z*) dx - T Z) + 7 _T_ UVg’(x*)Tda:

1

. 1
= —w; (—Vg(’)(x*)de -

;awiTVgi(a:*)Td:B> + ngi(iﬂ*)sz

2 1+o0 1+o0

_ 1 ifoa\T l—0_ ; o1

= QWi (—Vgo(il? ) dx + 1o +UV90(33 ) dx) +
g b (% —i(, %

= 15 (W(=Va) de) + Vg'(2") de)

o —i( \T
126
Vg ) de (5.126)
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1 . 1—0 _.
o, dz__ sz
2w2< Ao o )\)+

1 N 1 _.
— Zw; (dX 5.127
2w (d)\0+1+0_ 0)+1+O' ( )
1 . 1 _.
= ——w;d\, + ——d\'
I i
1 . _.
= —— (wd\y +d\') .
1+0(w ot )

and

Therefore, applying (5.125), (5.126) and (5.127) implies

1

i i o i( Y.

which means
widNy + dN = —o (w;Vgh(z*) dx — Vg'(z*) " dz) . (5.128)
Note that

widNy + dN = (I — ww] ) dN = (1-3lf;l—435—
g ()]
Then, it follows from (5.124), (5.128) and (5.129) that

Q|
—~
*
~—
—
N——
U
>Z
—~
ot
—_
[\
Ne)
~—

Ton i)
(v T
- < vt (1 SR %)
= o (-4 (") dr,wi (~Vb(a*) dr) ) ~ | Vg (@) de])

)\0 i (T 2 i T 2
= . Vgo(z®) dz|| —||Vg'(z") dx
> =ity (I9sbtaTaelf” = 9g'a)Tas )
= & (M| TR(—g(2"); =Vg(a*) dz)) .
This together with (5.115) yields
(JoL(z*, p*, N)dz, da) — 8" (N Tic*(—g(2"); =Vg(2*)"dz)) = 0.

Now using the second-order sufficient condition (condition (ii)), we reach dx = 0. Plug-
ging this into (5.121) leads to

Vh(z*)dp + Vg(z*)dX = 0.

Applying (5.123) together with condition (iv) yields duy = 0 and d\ = 0. Thus, the
matrix M is nonsingular, and the proof is complete. [
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We illustrate the effectiveness of the smoothed natural residual (NR) neural network
in solving several representative SOCCVI problems defined by (5.74)—(5.75). In addition,
we provide a comprehensive numerical comparison between the neural network (5.105)
and other neural network models from the SOCCVI literature. Specifically, we consider
six standard benchmark problems for SOCCVI and employ the MATLAB solver ode23s
for all simulations. The stopping criterion is set to ||[V¥(z(¢)|| < 1 x 107%. For each
example, the neural network (5.105) is simulated from five randomly generated initial
points zy. The solution trajectories for these test problems are displayed in Figure 5.7
— Figure 5.12. Notably, all trajectories successfully converge to the SOCCVT solution,
denoted by x*.

Example 5.2. Let

2%1 + i) -+ 1
T+ 6.732 — T3 — 2
—T9 + 3ZE3 — gZL‘4 + 3
r - —gl'g + 224 + %sin T4 COST58inxg + 6
() = 1 coszysinzs sinwg + 25 — 2
COS X4 COS X5 COS Tg + 21X + }l COoS xg Sin x7 cos xg + 1
Lsin 2 cos zy cos xg + 4wy — 2

4
—L5in zg sin z; sin xg + 225 + %

4

1
2

C={rcR' —g(x)=2¢cK>xK*x K.

Here, z* = (0.3820,0.1148, —0.3644, 0.0000, 0.0000, 0.0000, 0.5000, —0.2500) is the SOC-
CVI solution.

Example 5.3. Let

1
<§D:B,y—:v> >0, WweC

where
C={xeR"|Az —a =0, Bx—b =0},
A e R>*" B e R™™, D e R is symmetric, d € IR, a € R! and b € R™, with
[+m <n.
As in [201, Example 5.1], we let
2, 1=J
D = (Dij)an, Where Dij = ]_, |Z —]| =1 s
0, otherwise
A= I le(nfl):|l ) B = |:Om><(n7m) Imxm] ; @ = 01, b= (6m17 R emp)a where
Xn mXxXn

em; = (1,0,---,0)T € R™. We set [ = m = 3 and n = 6 for the simulations, and the
SOCCVI has z* = (0,0,0,0,0,0) as its solution.
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l x; — 0.3820 —— x5 — 0.0000
Lo —— x;—0.1148 — x — 0.0000
R —— x3— —0.3644 x7 — 0.5000
—— x4 — 0.0000 x3 — —0.2500
< 05f
=
o
8
3 0.0r
E=j
F
—0.5¢
—1.0f
0 20 40 60 80 100 120
Time ¢

Figure 5.7: Convergence of z(t) to the SOCCVI solution in Example 5.2 using five random
initial points, where p = 103.

1.00F
x1 — 0.0 x4 — 0.0
0.75¢ x; — 0.0 xs — 0.0 A
x3— 0.0 x¢ — 0.0
0.50+
\R/ 0.25¢
)
St
2 0.00t
Q
'd)
<
£ —0.25}
—0.50}
—0.75¢
0 10 20 30 40 50 60
Time ¢

Figure 5.8: Convergence of z(t) to the SOCCVT solution in Example 5.3 using five random
initial points, where p = 103 .
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Example 5.4. Let

zzexp(x123) + 6(z1 + x2)

2(2z9 —
6(33'1 + %’2) + ( 2 x3)
\/1 + (21’2 — I’3)2
F(z) = zrrexp(xixsg) — 203 —
\/1 + (2.7)2 - I3)2
Xy
Ts
and
C={zeR|h(z)=0—g(x) € £ x K},
with

h(z) = =625 + 587y + 16725 — 2923 — x4 — 35 + 11,
—3x3 — 21y + x3 — 573
513 — 4wy + 2w3 — 1023
g(x) = 23
14
—3x;5

Here, z* = (0.6287,0.0039, —0.2717,0.1761, 0.0587).

Example 5.5. Let
25[)1 —4
e’ —1
F(.CL’) = 3(133 - 4,
—sin(xy)
L5
and

C={reR’| —g(x)=z2€Kk’}.
Here, z* = (2,0,1.3333,0,0).

Example 5.6. Consider the variational inequality

4ri —sinzycoszy + 1
— Ccos z1 sin xg + 629 + %l‘g + 2
%LIZ’Q + 81’3 +3
2.734 + 1

F(z) =

and
C={zeR' h(z)=0,—g(z) € £*}.

h(z) = < T~ agTats s > and g(x) = ( o ) .

2
T3+ 2y — 9

with
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1.5+ x1 — 0.6287 x4 — 0.1761
x2 — 0.0039 x5 — 0.0587
x3 — —0.2717
1.0}
= 05}
2
o
32
'g 0.0
F
—0.5}
~1.0}
0 20 40 60 80 100
Time ¢

Figure 5.9: Convergence of z(t) to the SOCCVT solution in Example 5.4 using five random
initial points, where p = 103 .

2.5+
2.0
1.5¢
=
> 1.0r
2
3
'g 0.5¢
=
0.0r
x|y —2 x4 —0
—0.5 x;—0 x5 —0
X3 — %
—1.0r ) ) ) ) ) )
0 5 10 15 20 25 30 35

Time ¢

Figure 5.10: Convergence of z(t) to the SOCCVI solution in Example 5.5 using five
random initial points, where p = 103 .
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1.00F—
075}
0.50+
— 025
=
> 0.00f
8
Q
2 025}
S
=
~0.50}
—— x—0.2391
~0.75¢ — xy— —0.2391 -
—— x3— —0.0558
—1.00r Xy = —0.0031 |
0 50 100 150 200 250 300 350

Time ¢

Figure 5.11: Convergence of x(t) to the SOCCVI solution in Example 5.6 using five

random initial points, where p = 103 .
0.30

0.25¢

—

0.201

0.15r

0.101 x1 — 0.2324
x; = —0.0731
x3 — 0.2206

0.05-

Trajectory x(7)

0.00-

—0.05

—0.10t

—0.15

0 1 2 3 4 5 6
Time ¢

Figure 5.12: Convergence of z(t) to the SOCCVI solution in Example 5.7 using five
random initial points, where p = 10° .
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Here, z* = (0.2391, —0.2391, —0.0558, —0.0031).

Example 5.7. Consider the CSOCP [112]

min exp(z; — x3) + 3(211 — 29)* + /1 + (3o + 5x3)2
daq + 629 4+ 323 — 1
-1 + 7%2 — 5953 + 2
st. —g(z) = T € K? x K.
X2
T3

For this CSOCP, z* = (0.2324, —0.07309,0.2206) is the approximate solution. This
problem can be recast as an SOCCVI problem as discussed in the beginning of Section
5.2.3.

Example 5.8. We consider the grasping-force optimization problem for multifingered
robotic hands [141, 216], which involves determining the minimum force that each finger
must exert on an object so as to maintain the finger’s grasp. In particular, we consider
the problem in [216] involving a three-fingered robotic hand with fingers positioned at
(0,1,0), (1,0.5,0) and (0,—1,0). The optimization problem is given by

min %yTy
st. Gy=—feu

Vi +uh < pivis ((=1,...,m)

where y = (Y11, Y12, Y13, - - -, Ymz) € IR, G € 3™ s the grasping transformation
Matrix, feq 18 the (time-varying) external wrench, and p; is the friction coefficient at
fingeri. As in [216], we let u; = p = 0.6 for all i,

0 1 0 0 0 -11 0 07

0 -1 0O -1 00 01

G -1 0 0 -1 0 00 —-120
-1 0 0 -05 0 00 10|’

0o 0 O 10 00 0O

. 0 -1 0 0 -1 05 1 0 0]

and fope = (0, fosin0(t), —Mg + f.cos0(t),0,0,0)T, where g = 9.8 m/s*, M is the mass
of the object (assumed to be 0.1 kg), f. = Mv*/r and 0(t) = vt/r. The hand moves along
a circular path of radius r = 0.5 m and constant velocity v = 0.4 m/s.

In order to use our neural network, we recast the above problem as an SOCCVI. First,
we let (v, xio, xi3) = (Wfis, fir, fiz). By this transformation, it can be shown that the
problem corresponds to the SOCCVI with F, g and h given as below:

F(x) = diag (1/p%,1,1,1/p°,1,1,1/p,1,1) x
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—g(z) =2 € K* x K* x K*
h(z) = Gx + four

where
0 0 1 —1/u 0 0 01 O
—1/p 0 0 0 0 -1 1/uw 0 0
G 0O -1 0 0O -1 0 00 —1
0O -1 0 0 -05 0 0 0 —1
0O 0 O 0 1 0 00 O

0 0 —1 05/ 0 -1 01 0

We note that external wrench f..; applied varies over time. In Figure 5.13, we show the
optimal force required as time varies from 0 sec to 1 sec.

- )13
1.5¢ - . yu
2
)3
A3
2
0.5F . Y33
Y31

%\\f\ V32
0.0~

1.01

Grasping Force (Newton)

|
o
n

0.0 0.2 0.4 0.6 0.8 1.0
Time (Sec)

Figure 5.13: Time-varying optimal grasping force for the three-fingered robotic hand.

We now present a comparative analysis of the five neural network models discussed in
this section for solving the SOCCVI problem. The first model is based on the smoothed
Fischer-Burmeister (FB) function ¢¢_, where the smoothing parameter ¢ is gradually
reduced to zero. The second model, given by (5.90), is formulated using a projection-
based approach derived from an equivalent transformation of the KKT conditions. In
addition, two neural networks were proposed in [200], each constructed from discrete
generalizations of the FB and NR functions, namely, ¢? _ and ¢?_, as defined in (3.177)
and (3.176), respectively. For clarity, we refer to these two networks as “DFB-NN" and
“DNR-NN".
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Table 5.1: Summary of Successful and Unsuccessful Simulation Results for the Five
Neural Networks

Ex. 1| Ex 2| Ex. 3|Ex. 4|Ex. 5| Ex. 6

NN (5.105) by ¢, | + v / v / /
NN (5.82) by 62 | v / v / /
NN (5.90) by . | + v X X X /
DFB-NN by ¢» | X v X X v/ X

X v X X X X

DNR-NN by ¢

We begin by summarizing our findings based on several numerical experiments that
assess the performance of the four previously studied neural networks, as reported in
[193] and [200]. Among these models, the smoothed FB neural network consistently
demonstrated the most robust numerical performance. It proved to be more reliable
in solving SOCCVI problems across a range of instances and exhibited less sensitivity
to variations in initial conditions. The projection-based neural network also performed
well numerically. In cases where both the smoothed FB and projection-based models
converged to the SOCCVT solution, the latter generally achieved faster convergence times.
However, it was also observed that the projection-based neural network failed to solve
certain problems that the smoothed FB neural network could handle successfully. Lastly,
the DFB-NN and DNR-NN models, constructed from discrete generalizations of the FB
and NR functions, were found to be considerably more sensitive to initial conditions,
which often hindered their convergence reliability in practice.

We now compare the performance of our proposed smoothed NR neural network
(5.105) with the four neural network models previously discussed. Overall, our model
demonstrates superior stability and convergence properties. To support this claim, we
conduct simulations on a suite of benchmark SOCCVI problems. Table 5.1 presents a
summary of the simulation results for our model and the four existing neural networks
from the literature. A check mark (“v/”) indicates successful convergence to a solution
of the SOCCVI, while a cross (“X”) denotes failure to do so. To assess and compare con-
vergence rates, we simulate the solution trajectories z(t) = (x(t), u(t), A(t)) and compute
the error ||z(t) — z*||, where x* denotes the known SOCCVI solution. The error trajec-
tories for each problem instance are displayed in Figures 5.14-5.19. Our key findings are
summarized as follows:

e As shown in Table 5.1, only the neural network (5.105) based on the smoothed
natural residual function ¢7  and the smoothed FB neural network (5.82) based
on ¢¢ , successfully solved all the tested SOCCVI problems. The projection-based
neural network achieved moderate performance, solving approximately half of the
problems. In contrast, the two discrete-based neural networks, DFB-NN and DNR-
NN, demonstrated the lowest success rate across the test suite.
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e The projection-based neural network (5.90), constructed using the cone projection
operator Ilx, exhibits a notably fast convergence rate when it successfully ap-
proaches the SOCCVI solution, as observed in Example 5.2 and Example 5.7 (see
Figure 5.14 and Figure 5.19, respectively). However, in certain instances, specif-
ically, Example 5.4 and Example 5.6, its trajectories display oscillatory behavior,
ultimately failing to converge to the solution.

e Despite the rapid convergence exhibited by the projection-based neural network
(5.90) using Ik, the smoothed NR neural network (5.105) based on ¢g  still out-
performs it in certain cases, as illustrated in Figure 5.15. It is also worth noting
that while both DFB-NN (using ¢? ) and DNR-NN (using ¢? ) are able to solve
Example 5.3, their convergence rates are exceedingly slow.

e The error plots presented in Figure 5.14 — Figure 5.19 indicate that the smoothed
NR and smoothed FB neural networks exhibit nearly identical convergence rates.
Moreover, both models demonstrate a notable insensitivity to variations in initial
conditions. These observations suggest that the smoothed NR and smoothed FB
neural networks are particularly well-suited for designing robust and reliable neural
network frameworks for solving SOCCVI problems.

e Our numerical experiments indicate that the smoothed NR neural network (5.105),
based on ¢f . is less sensitive to initial conditions than the smoothed FB neural
network (5.82), based on ¢° . For example, in Example 5.2, it can be readily
verified that the smoothed FB neural network fails to converge when initialized at
20=1(0,...,0)Tor 20 = (1,...,1)T.

Based on the above observations, we conclude that the smoothed NR neural net-
work (5.105), based on ¢S, and the smoothed FB neural network (5.82), based on ¢,
demonstrate the best overall performance in solving SOCCVI problems. However, as
previously noted, the smoothed FB neural network exhibits greater sensitivity to initial
conditions, with divergence more likely to occur from certain starting points compared
to the smoothed NR model.

Furthermore, a notable advantage of our smoothed NR neural network lies in its com-
putational efficiency. In contrast, the smoothed FB neural network incurs significantly
higher computational cost, primarily due to the complexity involved in evaluating the
derivatives of the smoothed FB function ¢¢ , as defined in (5.80). To see this, recall from
[193, Lemma 3.1] that for any ¢ # 0,

Voot (a,b) = e" L L.,
Vaoi (a,b) = L7'Ly—1,
Vot (a,b) = LI'Ly—1,
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-
where z = (a2 + b2 +526)1/2 and L, = Zl . CIL2 ] for a — (al,az)T cR x R™!. It
2 Qilp—1

is important to note that all of the formulas discussed above involve the computation of
matrix inverses, which can be computationally intensive. In particular, the smoothed FB
neural network requires more extensive calculations during implementation, primarily
due to the complexity of its underlying function and associated derivatives.

Finally, we offer a few remarks regarding the computational complexity of the five
neural network models considered. While the architecture of the smoothed FB neural
network is structurally similar to that of the smoothed NR neural network (see [193]), our
findings indicate that the smoothed NR network offers superior convergence behavior.
In contrast, the DEFB-NN and DNR-NN models, though slightly less complex (see [200]),
exhibit limited robustness and slower convergence. The projection-based neural network
has the simplest architecture and the lowest computational complexity. However, as
previously discussed, it suffers from stability issues and is not as reliable across problem
instances.

10°
1071,
"
|
= 1072¢
=
o
LE —— Smoothed NR
10-31 Smoothed FB |
—— Projection-Based
—— DFB-NN
—— DNR-NN
1074 L L L L L
0 20 40 60 80 100 120 140

Time ¢

Figure 5.14: Comparison of decay rates of ||z(t) — *|| for the five neural networks for
Example 5.2.

To conclude, we summarize the neural network models discussed in this section in
Table 5.2.
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Figure 5.15: Comparison of decay rates of ||z(t) — z*|| for the five neural networks for
Example 5.3.
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Figure 5.16: Comparison of decay rates of ||z(t) — z*|| for the five neural networks for
Example 5.4.
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Figure 5.17: Comparison of decay rates of ||z(t) — z*|| for the five neural networks for
Example 5.5.
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E —— Smoothed NR

Time ¢

Figure 5.18: Comparison of decay rates of ||z(t) — z*|| for the five neural networks for
Example 5.6.
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Figure 5.19: Comparison of decay rates of ||z(t) — z*|| for the five neural networks for
Example 5.7.
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