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1 Introduction

Conic optimization is a mathematical framework that holds a pivotal role in
optimization problems where the feasible set can be represented as a cone.
This framework extends beyond traditional linear programming and convex
optimization, allowing for the handling of more intricate structures. In par-
ticular, cone structure is the main ingredient in tackling cone convexity, cone
monotonicity, and cone decomposition etc., which are needed for analysis in
conic optimization. Needless to say, conic optimization problems are notewor-
thy because they offer a versatile and efficient approach to solving a diverse
array of optimization problems across various fields, see [14] and references
therein.

Cones play a fundamental role in convex optimization, offering a geomet-
ric structure for defining convex sets. A cone formula refers to an expression
that can be represented as a cone in a vector space. In the literature, several
useful cones have been proposed and applied, including the second-order cone,
circular cone, p-order cone, geometric cone, exponential cone and power cone.
Recently, Morshed, Vogiatzis, and Noor-E-Alam introduced a new second-
order cone, termed the type-2 second-order cone, in 2021 [18]. It is defined
as

Y n “

#

x P IRn

ˇ

ˇ

ˇ

ˇ

px1 ` x2q2 ě 2
n
ÿ

i“3

x2
i , x1 ě x2, x1 ` x2 ě 0

+

. (1.1)

This modified cone can be regarded as a conventional second-order cone
with one less dimension than the original one, achieved through an algebraic
transformation. In fact, this cone will degenerate to the polyhedral cone in IR3,
see Figure 1. For further details, please refer to [18, Remark 1]. Furthermore,
they have also introduced the generalized formula for the so-called type-k cone
involving more complicated variables.

Ωn “

$

&

%

x P IRn

ˇ

ˇ

ˇ

ˇ

˜

k
ÿ

i“1

xi

¸2

ě ξk

n
ÿ

j“k`1

x2
j , glpx1:kq ě 0, xr ě 0, r, l P p1, 2, ¨ ¨ ¨ , kq

,

.

-

,

(1.2)
where ξk is a constant dependent on k and gl represent additional constraints
similar to those in (1.1).

Examining expressions (1.1) and (1.2), if we take the square root on both
sides of the cone formula inequalities, it leads to a linear combination of k
variables on the left side and a regular 2-norm of an pn ´ kq-dimensional
vector on the right side in the main cone inequality. This observation prompts
us to consider the cone formula as two real-valued functions connected by
an inequality. In this paper, our emphasis will be on exploring cone formula
generated by an inequality of functions that adhere to closed convex cone
properties, as illustrated in the below expression:

K “ tpx1,x2q P IRm ˆ IRn | F px1q ě Gpx2qu,
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Fig. 1: Degenerated type-2 second-order cone in IR3

where F : D Ď IRm Ñ IR and G : E Ď IRn Ñ IR are two real-valued functions,
with the sets D and E being subsets of the domains of F and G, respectively.

To proceed, we review several cone formulas that have been elucidated in
the literature. It is noteworthy that we consistently represent the inequality
using the greater than or equal sign. The definitions of these cones can be
found in [1,3,6,8,10,13,16,17,26,29].

– second-order cone:

Kn “
␣

px1,x2q P IR ˆ IRn´1 | x1 ě }x2}
(

, (1.3)

where } ¨ } means the Euclidean norm or 2-norm } ¨ }2.
– circular cone:

Lθ “
␣

px1,x2q P IR ˆ IRn´1 | x1 ě }x2} cot θ
(

, (1.4)

where θ P p0, π{2q is its half-aperture angle.
– p-order cone:

Kp “
␣

px1,x2q P IR ˆ IRn´1 | x1 ě }x2}p
(

pp ě 1q, (1.5)

where } ¨ }p means the lp-norm.
– geometric cone:

Gn “ cl

#

px, θq P IRn
` ˆ IR``

ˇ

ˇ

ˇ

ˇ

1 ě

n
ÿ

i“1

e´
xi
θ

+

, (1.6)

where x “ px1, x2, ¨ ¨ ¨ , xnqT P IRn
` and clt¨u means the closure of the set.

– exponential cone:

Ke “ cl
!

px1, x2, x3q P IR3
ˇ

ˇx3 ě x2e
x1
x2 , x2 ą 0

)

. (1.7)
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– power cone:

Kα
m,n “

#

px, zq P IRm
` ˆ IRn

ˇ

ˇ

ˇ

ˇ

m
ź

i“1

xαi
i ě }z}

+

, (1.8)

where αi ą 0 and
řm

i“1 αi “ 1.

In this paper, we attribute properties which form a closed convex cone
to positively homogeneous sub/super-additive functions as a means to artic-
ulate the representation of the formula by an inequality. Besides, we explore
the characteristics of the cone and investigate the cone formula generated by
the support/dual support functions corresponding to closed convex sets. Nice
results about the formula of dual/polar cone associated to convex cones gener-
ated by the inequality are established. Through this paper, we aim to conduct
a more comprehensive and diverse study on the generating methods of cones.
In summary, the contribution of this article is twofold. One is opening up
new ideas for looking into structures of closed convex cones. The other one is
providing novel approaches and mediums for investigating conic optimization.

2 Closed convex cones by inequalities

To comprehend the structure of the cone formula, let us begin by looking into
the definition of a convex cone, which is available in various textbook sources,
including [12,24].

Definition 2.1 Let K be a nonempty set in a vector space V , K is called a
convex cone if the following two properties hold:

(1) For all x P K and all λ ą 0, there holds λx P K.
(2) For all x,y P K, there holds x ` y P K.

The property (1) ensures that K is a cone, while the property (2) with
the help of property (1) guarantees convexity of K. We shall consider two
real-valued functions linked by an inequality, which satisfies the property (1)
to form a cone and plug them into our cone formula (2.1) in the first step,
then deal with the convexity property (2) in the subsequence discussion. More
specifically, we consider a nonempty set K defined by

K “ tpx1,x2q P IRm ˆ IRn | F px1q ě Gpx2qu, (2.1)

where F : D Ď IRm Ñ IR and G : E Ď IRn Ñ IR are two real-valued functions,
with the sets D and E being subsets of the domains of F and G, respectively.

Lemma 2.1 Let K be the set defined as in (2.1). If K satisfies condition:

(C1) F pλx1q ě Gpλx2q for all λ ą 0 and px1,x2q P K,
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then K is a cone.

Proof The condition (C1) ensures that if x “ px1,x2q P K and λ ą 0, then
λx “ pλx1, λx2q P K which means K is a cone by Definition 2.1. [\

Example 2.1 Consider the nonnegative closed half space in IRn, which is de-
scribed as

tpx1,x2q P IR ˆ IRn´1 | x1 ě 0u.

We define F : IR` Ñ IR and G : IRn´1 Ñ IR as F px1q “ x1 and Gpx2q “ 0 in
above inequality of formula, i.e., F px1q ě Gpx2q. Accordingly, these two real
valued functions satisfy (C1), that is,

F pλx1q “ λx1 ě λ ¨ 0 “ 0 “ Gpλx2q,

for all λ ą 0 and px1,x2q in the nonnegative closed half space. Hence, it is a
cone by Lemma 2.1 for sure. In fact, almost all cones appeared in the literature
including (1.3) to (1.8) satisfy Lemma 2.1.

However, using condition (C1) in Lemma 2.1 directly to find new functions
and to generate a cone is not so intuitive. We propose another approach and
idea by employing homogeneous functions.

Definition 2.2 A function f : IRn Ñ IR is called a homogeneous function of
degree k (k is an integer) if it satisfies

fpλxq “ λkfpxq

for all x P IRn and all λ ‰ 0. If no specifically indicated, f is homogeneous
means that f is homogeneous of degree 1. In this paper, we call f is positively
homogeneous if λ ą 0. We also call functions F and G are positively homo-
geneous of degree k in K given as in (2.1) means if px1,x2q P K, there hold
F pλx1q “ λkF px1q and Gpλx2q “ λkGpx2q.

The positively homogeneous functions of the same degree implies condition
(C1) in Lemma 2.1, hence we build up another lemma as below.

Lemma 2.2 Let K be the set defined as in (2.1). If K satisfies condition:

(C2) F and G are positively homogeneous of the same degree k in K,

then K is a cone.

Proof If x “ px1,x2q P K and λ ą 0, then we have

F pλx1q “ λkF px1q ě λkGpx2q “ Gpλx2q,

where the equalities are due to condition (C2) and the inequality is from
definition of K. This indicates that λx is also in K, hence K is a cone. [\
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If we regard known cones listed from (1.3) to (1.8) in the literature as the
expression of functions inequality (2.1), most of the functions on both sides of
inequality sign are positively homogeneous of degree 1 except the geometric
cone (1.6). In fact, the formula in the geometric cone (1.6) is written as the
special formula with positively homogeneous functions of degree k “ 0. If we
rewrite it as

Gn “ cl

#

px, θq P IRn
` ˆ IR``

ˇ

ˇ

ˇ

ˇ

x1 ě ´θ lnp1 ´

n
ÿ

i“2

e´
xi
θ q

+

, (2.2)

then the functions on both sides of inequality are also positively homogeneous
of degree 1.

Example 2.2 The cone defined by
␣

px, y, zq P IR ˆ IR2 | x2 ě y2 ` z2
(

satisfies condition (C2) in Lemma 2.2 with F pxq “ x2 and Gpy, zq “ y2 ` z2,
where F and G are both positively homogeneous of degree 2, see Figure 2
below. Furthermore, following up this cone, we can define a generalized cone
by

#

px, zq P IR ˆ IRn´1

ˇ

ˇ

ˇ

ˇ

xk ě

n´1
ÿ

i“1

|zi|
k

+

,

where z “ pz1, ¨ ¨ ¨ , zn´1qT P IRn´1, k is a positive integer and F pxq “ xk,

Gpzq “
řn´1

i“1 |zi|
k. Then, F and G are both positively homogeneous of degree

k. Note that this generalized cone is not convex if k is even; and it becomes
the k-order cone (1.5) if k is odd.

Fig. 2: tpx, y, zq P IR ˆ IR2 | x2 ě y2 ` z2u
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In view of Example 2.2, it is possible to establish convex cones formulas
with functions as in (2.1), which are also positively homogeneous of degree
k ą 1. The next lemma reflects and confirms this idea.

Lemma 2.3 Suppose that the set K (2.1) satisfy the following conditions:

(C2) F and G are positively homogeneous of the same degree k in K;
(C3) F px1 ` y1q ě Gpx2 ` y2q for all px1,x2q, py1,y2q P K.

Then, K is a convex cone.

Proof The cone property (1) in Definition 2.1 holds due to Lemma 2.2. On the
other hand, condition (C3) directly leads to the property (2) in Definition 2.1.
Hence, K is a convex cone. [\

Example 2.3 The toppled second-order cone in IR3 is defined by

Ktoppled “
␣

px, y, zq P IR2 ˆ IR | xy ě z2, x ě 0, y ě 0
(

. (2.3)

Consider F : IR2
` Ñ IR and G : IR Ñ IR by F px, yq “ xy and Gpzq “

z2 in above formula. The positive homogeneity of degree 2 of F and G are
obvious. It remains to check condition (C3) in Lemma 2.3. To see this, for any
px, y, zq, px1, y1, z1q P Ktoppled, we have

F px ` x1, y ` y1q “ px ` x1qpy ` y1q

“ xy ` x1y1 ` xy1 ` x1y
ě z2 ` z12 ` 2

?
xy1x1y

ě z2 ` z12 ` 2|z||z1|

ě z2 ` z12 ` 2zz1

“ pz ` z1q2

“ Gpz ` z1q.

Hence, the condition (C3) in Lemma 2.3 holds, which says that Ktoppled is a
convex cone. The graph of this cone is depicted in Figure 3. Moreover, this
cone can be generalized by the following extension:

␣

px, y, zq P IR2 ˆ IRn | xy ě }z}2, x ě 0, y ě 0
(

.

For more detailed discussion about its algebraic structure, please refer to [2].

Overall, it is still challenging to seek two functions directly satisfying the
conditions (C2) and (C3) in Lemma 2.3. To overcome this, we introduce sub-
additivity and superadditivity of real-valued functions.

Definition 2.3 A function f : D Ď IRm Ñ IR is called superadditive if it
satisfies

fpx ` yq ě fpxq ` fpyq

for all x,y in D. A function g : E Ď IRn Ñ IR is called subadditive if it satisfies

gpx ` yq ď gpxq ` gpyq

for all x,y in E. In this paper, we call F is superadditive and G is subadditive
in K (2.1) means if px1,x2q, py1,y2q P K, then we have F px1`y1q ě F px1q`

F py1q and Gpx2 ` y2q ď Gpx2q ` Gpy2q.
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Fig. 3: Ktoppled “ tpx, y, zq P IR3 | xy ě z2, x ě 0, y ě 0u

Building upon the aforementioned concepts, we modify the conditions of
Lemma 2.3 to the following reasonable lemma.

Lemma 2.4 Let K be the set defined as in (2.1). Suppose that K satisfies
conditions:

(C2) F and G are positively homogeneous of the same degree k in K;
(C4) F is superadditive and G is subadditive in K.

Then, K is a convex cone.

Proof Again, Condition (C2) leads to the cone property (1) by Lemma 2.2. As
to convexity, since F is superadditive and G is subadditive in K, we have

F px1 ` y1q ě F px1q ` F py1q ě Gpx2q ` Gpy2q ě Gpx2 ` y2q,

for all px1,x2q, py1,y2q P K. The property (2) in Definition 2.1 holds. [\

Unfortunately, we do not have a nontrivial example of a convex cone which
satisfies conditions in Lemma 2.4 if the homogeneity degree k ‰ 1. Part of the
reason is, if F and G are both positively homogeneous of degree k ą 1, they
normally can’t keep the original super/sub-additivity at the same time. Please
see Example 1.1.2 and Example 1.1.6 in [25] for more details. If k “ 1, sev-
eral known cones such as the second-order cone (1.3), circular cone (1.4) and
p-order cone (1.5) can be examples because the Lp norm is positively homoge-
neous subadditive, and the identity function is clearly positively homogeneous
superadditive. Additionally, the power cone (1.8) also satisfies Lemma 2.4.

Remark 2.1 The nontrivial example we mentioned in previous paragraph is a
cone which does not like the trivial cone as follows:

tpx, yq P IR ˆ IR | x2 ě 0, x ě 0u.

Define F : IR` Ñ IR and G : IR Ñ IR by F pxq “ x2 and Gpyq “ 0. In this
context, F and G are both positively homogeneous of degree 2. Additionally, F
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is superadditive when x ě 0, while G can be considered a subadditive function.
This cone is the trivial nonnegative orthant cone in IR2. Another trivial case
arises from the toppled second-order cone:

tpx, y, zq P IR2 ˆ IR | xy ě ´z2, x ě 0, y ě 0, z ě 0u.

Define F : IR2
` Ñ IR and G : IR` Ñ IR by F px, yq “ xy and Gpzq “ ´z2.

Both of them are positively homogeneous of degree 2 and F is superadditive
when x ě 0, y ě 0; and G is subadditive when z ě 0. However, this cone is the
nonnegative orthant cone of IR3 space. From this point of view we can create
many trivial cone of any homogeneity degree k ą 1, but it may be meaningless.

Several properties related to homogeneity and super/sub-additivity have
been explored in previous studies. Now, we leverage these properties to develop
additional concepts concerning our cone formula. Most of the proofs for these
properties can be found in [24,25,15].

Property 2.1

(1) If f : IRn Ñ IR is superadditive, then fp0q ď 0. If g : IRn Ñ IR is
subadditive, then gp0q ě 0.

(2) If f : IRn Ñ IR is superadditive, then fp´xq ď ´fpxq for all x P IRn. If
g : IRn Ñ IR is subadditive, then gp´xq ě ´gpxq for all x P IRn.

(3) If f1, f2 : IRn Ñ IR are superadditive (respectively, subadditive) functions
and c1, c2 ě 0, then f “ c1f1 ` c2f2 is superadditive (respectively, subad-
ditive).

(4) If f : IRn Ñ IR is homogeneous of degree k ‰ 0, then fp0q “ 0.
(5) If f : IRn Ñ IR is positively homogeneous of degree 1, then f is superaddi-

tive if and only if f is concave. If g : IRn Ñ IR is positively homogeneous
of degree 1, then g is subadditive if and only if g is convex.

(6) If f : IRn Ñ IR` is superadditive, then fk is also superadditive where
k is a positive integer; if g : IRn Ñ IR` is subadditive, then g1{k is also
subadditive where k is a positive integer.

Proof (1) It is from [15, Lemma 16.1.3].

(2) See [15, Lemma 16.1.5].

(3) See [25, Theorem 1.3.1(α)].

(4) Choosing λ ą 1 yields fp0q “ fpλ ¨ 0q “ λkfp0q. Hence, fp0q “ 0.

(5) See [24, Theorem 4.7].

(6) Since f is superadditive and fpxq ě 0 for all x P IRn, we have

fkpx ` yq ě pfpxq ` fpyqqk ě fpxqk ` fpyqk “ fkpxq ` fkpyq,

for any x,y P IRn and k ě 1. Hence, fk is superadditive. Moreover, g is
subadditive and gpxq ě 0 for all x P IRn. In addition, because k ě 1, we
obtain

g1{kpx ` yq ď pgpxq ` gpyqq1{k ď gpxq1{k ` gpyq1{k “ g1{kpxq ` g1{kpyq,
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for any x,y P IRn. Thus, g1{k is subadditive. [\

In fact, homogeneity of degree 1 will result in the necessary and sufficient
condition for subadditivity and convexity (or superadditivity and concavity),
as indicated in Property 2.1(5). The next theorem provides a more compre-
hensive understanding of the cone formula.

Theorem 2.1 Suppose that the set K (2.1) satisfies conditions:

(i) F and G are positively homogeneous (of degree 1) in K,
(ii) F is superadditive (concave) and G is subadditive (convex) in K.

Then, the following hold.

(1) K is a convex cone.
(2) clpKq is a closed convex cone.
(3) If both F and G are continuous and both D and E are closed, then K “

clpKq is a closed convex cone.

Proof (1) Applying Lemma 2.4 and Property 2.1(5), the proof is straightfor-
ward and we omit it here. (2) The closure of K is closed by definition. It is
straightforward to verify that the closure of K preserves both the conicity
and convexity of K. Therefore, clpKq is a closed convex cone. (3) If the func-
tions F and G are both continuous and D and E are both closed, we assert
that K is closed. For every limit point pz1, z2q of K, there exists a sequence
tpxp1q

n ,xp2q
n qu Ď Kztpz1, z2qu such that

lim
nÑ8

pxp1q
n ,xp2q

n q “ pz1, z2q,

which mean limnÑ8 xp1q
n “ z1 and limnÑ8 xp2q

n “ z2, where xp1q
n P D and

xp2q
n P E. Based on the assumption that D and E are closed, we have z1 P D

and z2 P E. Now because pxp1q
n ,xp2q

n q P K, we have

F pxp1q
n q ě Gpxp2q

n q, @n “ 1, 2, 3, ¨ ¨ ¨ .

By the continuity of F and G, it follows that F is continuous at z1 and G is
continuous at z2, and

lim
nÑ8

F pxp1q
n q “ F pz1q ě Gpz2q “ lim

nÑ8
Gpxp2q

n q.

This implies that every limit point pz1, z2q of K is in K, then K is closed.
Hence, K “ clpKq is a closed convex cone. [\

Notice that from Property 2.1(4), the cones described in Theorem 2.1 must
satisfy F p0q “ Gp0q “ 0 if 0 P D and 0 P E, since F and G are both positively
homogeneous. A positively homogeneous subadditive function is also called a
sublinear function in some materials. We point out that there have results in
the literature concerning Theorem 2.1 already. More specifically, the epigraph
of any sublinear function from IRn to IR is a nonempty cone in IRn ˆ IR, please
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see Proposition 11.1 in [27] or [4]. Indeed, the aforementioned result is a special
case in Theorem 2.1.

The toppled second-order cone in Example 2.3 is a special cone which we
will use it again as an example below.

Example 2.4 The toppled second-order cone (2.3) can be reformulated as

Ktoppled “ tpx, y, zq P IR2 ˆ IR |
?
xy ě |z|, x ě 0, y ě 0u. (2.4)

If we define F : IR2
` Ñ IR and G : IR Ñ IR by F px, yq “

?
xy and Gpzq “ |z|,

then F and G are positively homogeneous and G is subadditive clearly. For
any px, y, zq, px1, y1, z1q P Ktoppled, we have

F px ` x1, y ` y1q “
a

px ` x1qpy ` y1q

“
?
xy ` x1y1 ` xy1 ` x1y

ě

b

?
xy2 `

?
x1y12 ` 2

?
xy1x1y

“
?
xy `

?
x1y1

“ F px, yq ` F px1, y1q.

Hence, F is superadditive in Ktoppled. As the same point of view in Example
2.3, we can generalize this cone (2.4) as the following cone:

Kn
toppled “ tpx, y, zq P IR2 ˆ IRn |

?
xy ě ||z||, x ě 0, y ě 0u,

which still satisfies Theorem 2.1.

Remark 2.2 We point out something by reviewing the formula of two top-
pled second-order cones (2.3), (2.4) and the Property 2.1(6). In particular,
F px, yq “

?
xy is superadditive when x, y ě 0 and its square function F 2px, yq “

xy is also superadditive when x, y ě 0 according to Property 2.1(6). How-
ever, we cannot derive from Gpzq “ |z| is subadditive that its square function
G2pzq “ z2 is subadditive. In fact, G2 is superadditive when z ě 0, while G2 is
convex for z P IR. This is why it is hard to find a nontrivial example to satisfy
conditions in Lemma 2.4 if the homogeneity degree k ‰ 1.

By Property 2.1(3), it is clear to see that the positive combinations of
positively homogeneous super/sub-additive functions are also positively ho-
mogeneous super/sub-additive. We illustrate the formulas of several extended
cones derived from simple super/sub-additive functions or well-known convex
cones through the combination of them.

Example 2.5 From Example 2.4, Hpy, zq “
?
yz is superadditive when y, z ě

0, it follows that ´Hpy, zq “ ´
?
yz is subadditive when y, z ě 0 by definition.

We obtain Gpy, zq “ y ` z ´ 2
?
yz “ p

?
y ´

?
zq2 is also subadditive when

y, z ě 0. Hence, the set

tpx, y, zq P IR ˆ IR2 | x ě p
?
y ´

?
zq2, y ě 0, z ě 0u

is a convex cone by Theorem 2.1. However, the continuity of both F and G in
their closed domains leads to the closeness of this cone. Please refer to Figure
4 for the graph of this cone.
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Fig. 4: tpx, y, zq P IR ˆ IR2 | x ě p
?
y ´

?
zq2, y ě 0, z ě 0u

Example 2.6 The well-known Fischer–Burmeister NCP-function ϕ : IR2 Ñ IR
is defined by

ϕ
FB

pa, bq “
a

a2 ` b2 ´ pa ` bq.

This function is generalized to ϕp : IR2 Ñ IR in [7] as follows:

ϕppa, bq “ }pa, bq}p ´ pa ` bq, p ě 1.

In fact, ϕp is a subadditive function minus an additive function which is also
subadditive. Hence, the set defined by

K
FB

“ tpx, y, zq P IR ˆ IR2 | x ě }py, zq}p ´ py ` zqu (2.5)

is a convex cone by Theorem 2.1. In fact, it is also closed according to the
continuity of their associated functions. The geometric views of ϕp function or
the generalized Fischer–Burmeister cone K

FB
is fully revealed and depicted in

[28].

Example 2.7 Let F : D Ď IRm Ñ IR, G : IRn1 ˆ IRn2 ˆ ¨ ¨ ¨ ˆ IRns Ñ IR be
defined by

F pxq “

m
ÿ

i“1

xi , Gpzq “

s
ÿ

j“1

}zj}pj
, pj ě 1,

where } ¨ }pj is the pj-norm in IRnj , j “ 1, 2, ¨ ¨ ¨ , s, and x “ px1, ¨ ¨ ¨ , xmqT P

IRm, z “ pz1, ¨ ¨ ¨ , zsqT P IRn1 ˆIRn2 ˆ¨ ¨ ¨ˆIRns , andD “ tx P IRm |
řm

i“1 xi ě

0u. It is easy to see that F is additive, and the positive linear combination of
subadditive functions G (norms) is subadditive, both of them are positively
homogeneous. Then, the set

Kms “

#

px, zq P IRm ˆ IRn1`¨¨¨`ns

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

xi ě

s
ÿ

j“1

}zj}pj , pj ě 1

+
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is a closed convex cone in IRm`n1`¨¨¨`ns by the continuity of F , G in their
closed domains and Theorem 2.1. However, we can identify nonzero vectors
px,0q where x1 “ ´

řm
i“2 xi ‰ 0 and its negative vector p´x,0q ‰ 0 is also

in this cone. This implies that the cone is not pointed unless additional con-
straints, similar to those in the type-2 (1.1) or type-k second-order cone, are
imposed.

The cone Kms is essentially a trivial extension of the second-order or p-
order cone. Specifically, they correspond some special cases:

– If m “ 1 and s “ 1, then Kms is the p1-order cone in Rn1`1.
– If m “ 2, s “ 1, and p1 “ 2, then Kms is akin to the type-2 second order

cone (1.1) which appeared in [18]. They differ only by a constant multiple?
2 and the additional constraint x1 ě x2.

Another example below is modified from the formula of the exponential cone
(1.7) to a higher dimensional form.

Example 2.8 Let F : IR2
`` Ñ IR, G : IRn Ñ IR be defined by

F py, zq “ y ln
z

y
, y ą 0, z ą 0, Gpxq “ }x}p, p ě 1.

Because F is concave, G is subadditive and both of them are positively homo-
geneous, then the set

ĂKe “ cl tpy, z,xq P IR2 ˆ IRn | y ln
z

y
ě ||x||p, y ą 0, z ą 0u

is a closed convex cone in IRn`2 by Theorem 2.1. If n “ 1, then ĂKe will
degenerate to a variant type of the exponential cone in IR3. Please refer to
Figure 5(a) for the original exponential cone and Figure 5(b) for this specific
cone to appreciate their distinctions.

(a) The exponential cone (b) ĂKe with n “ 1

Fig. 5: Comparison of the exponential cone and ĂKe with n “ 1
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Remark 2.3 For reference in this example, if we substitute the Lp-norm value
with the sum of elements

řn
i“1 xi on the right side of the inequality, we cre-

ate another type of extension cone. This cone will degenerate to the original
exponential cone when n “ 1.

As below, we outline sufficient conditions for a convex cone is pointed. A
convex cone K is termed pointed if K

Ş

p´Kq “ t0u.

Theorem 2.2 If the convex cone

K “ tpx1,x2q P IRm ˆ IRn | F px1q ě Gpx2qu,

where F : D Ď IRm Ñ IR is positively homogeneous and superadditive (or con-
cave) in K and G : E Ď IRn Ñ IR is positively homogeneous and subadditive
(or convex) in K and satisfy the following two conditions:

(a) Gpx2q ě 0 for any px1,x2q P K.
(b) If x “ px1,x2q P K, then F px1q “ 0 implies x1 “ 0 and Gpx2q “ 0

implies x2 “ 0.

Then, K is pointed.

Proof Suppose x “ px1,x2q P K and ´x P K, we claim that x “ 0. Since F
is superadditive, F p´x1q ď ´F px1q from Property 2.1(2). By condition (a)
we have F px1q ě Gpx2q ě 0. Again ´x P K, we have ´F px1q ě F p´x1q ě

Gp´x2q ě 0. These imply F px1q “ Gpx2q “ 0, then we have x “ px1,x2q “ 0
from condition (b). Hence, K is pointed. [\

We declare that Theorem 2.2 only provides sufficient conditions for a con-
vex cone being pointed. Most of cones in the literature satisfy them except
the power cone (1.8), the toppled second-order cone (2.3), (2.4) and the gen-
eralized Fischer–Burmeister cone (2.5). In fact, the toppled second-order cone
is the degenerated case of the generalized power cone. In the toppled second-
order cone, if we consider point x “ px1, x2q “ pp1, 0q, 0q, it is clear to see that
F p1, 0q “ Gp0q “ 0 but x1 ‰ 0. It does not satisfy condition (b) of Theorem
2.2, however it’s indeed a pointed cone.

To end this section, we provide a list of examples of homogeneous and
super/sub-additive functions for reference, more examples can be found in
[25]. Additionally, we summarize the detailing well-known closed convex cones
mentioned in previous of this section in Table 1.

Let x “ px1, ¨ ¨ ¨ , xnq P IRn, s, t, ai P IR.

– fpx1, ¨ ¨ ¨ , xnq “ a1x1 ` a2x2 ` ¨ ¨ ¨ ` ... ` anxn, ai P IR, is subadditive,
superadditive and homogeneous.

Examples of subadditive functions:

– Lp norm }x}p with p ě 1.
– fptq “

?
t for t ě 0.
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– fptq “ lnp1 ` tq for t ě 0.
– the support function of a closed convex set in IRn is subadditive and ho-

mogeneous.

Examples of superadditive functions:

– fptq “ t2 for t ě 0.
– fps, tq “ st for s, t ě 0.

Examples of homogeneous functions:

– Lp norm }x}p with p ě 1 (positively homogeneous).
– homogeneous polynomial function of degree k.

F G cone

x1
}x2} the second-order cone

}x2}p the p-order cone
?
xy }z} the toppled second-order cone

x1 }x2} cot θ the circular cone

x }py, zq}p ´ py ` zq the Fischer–Burmeister cone

x1 ´θ lnp1 ´
řn

i“2 e
´

xi
θ q the geometric cone

x3 x2e
x1
x2 the exponential cone

m
ź

i“1

x
αi
i }z} the power cone

Table 1: Some known cones through inequality F ě G.

Remark 2.4 The corresponding functions F and G of the geometric cone in
Table 1 has been rewritten to fit the requirements of Theorem 2.1. The original
formula of the geometric cone is 1 ě

řn
i“1 e

´
xi
θ .

Remark 2.5 The support function of any closed convex set in IRn is a suitable
function to be incorporated in the right side of cone formula (2.1) in the capac-
ity of the function G. This is because the support function is both subadditive
and positively homogeneous. A detailed discussion of this types of cones will
be presented in the next section.

3 Generating cones by support functions

3.1 Support function cones

Definition 3.1 The support function hA : E Ď IRn Ñ IR of a nonempty
closed convex set A in IRn is given by

hApxq “ suptxx,ay | a P Au,
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where x¨, ¨y is the inner product in IRn.

The support function hA describes the (signed) distances of supporting
hyperplanes of A from the origin with the unit direction x. The value of a
support function may become infinity if the associated closed convex set is
unbounded, so we only consider the domain that hA becomes not infinite for
convenience in this paper. Here are some examples of support functions:

– The support function of a singleton A “ tau is hApxq “ xx,ay.
– The support function of the Euclidean unit ball B “ ty P IRn | }y}2 ď 1u

is hBpxq “ }x}2.
– If C is a line segment through the origin with endpoints ´a and a, then

its corresponding support function is hCpxq “ |xx,ay|.

It is straightforward to verify that the support function is positively homo-
geneous and subadditive. The continuity of the support function associated to
a bounded closed convex set can be found in [12, Example 11.2]. Therefore, we
can place the associated support function on the right side of the inequality
in (2.1), assuming the role of the function G, to generate the corresponding
convex cone as illustrated in Figure 6.

(a) a closed convex set
A “ tz P IRn´1 | }z} ď 1u

(b) associated support function
hApzq “ }z}

(c) a closed convex cone
Kn “ tpx, zq P IR ˆ IRn´1

| x ě }z}u

Fig. 6: KA cone generated by support function

Now, we present the main result regarding cones generated by support
functions.

Theorem 3.1 Let A be a nonempty closed convex set in IRn and hA : E Ď

IRn Ñ IR is the associated support function with A, that is,

hApxq “ suptxx,ay | a P Au.

Suppose that F : D Ď IRm Ñ IR is a positively homogeneous superadditive
(concave) function and the set KA is defined by

KA :“ tpz,xq P IRm ˆ IRn | F pzq ě hApxqu, (3.1)

then the following hold.
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(1) KA is a convex cone.
(2) clpKAq is a closed convex cone.
(3) If F is continuous and D is closed, and hA is continuous and E is closed,

then KA “ clpKAq is a closed convex cone.

Proof (1) Since A is a nonempty closed convex set, its corresponding support
function hA is positively homogeneous and subadditive. By assumption, F is a
positively homogeneous superadditive (concave) function, applying Theorem
2.1 yields that KA is a convex cone. The reasons for (2) and (3) are the same
as the proofs provided in Theorem 2.1. [\

For illustrative purposes, we showcase the p-order cones in IR3 as familiar
examples and another 3-dimensional cone generated by a 2-dimensional convex
set, which can be visualized by using graphic software. In Example 3.1 and
Example 3.2, the identity function F pzq “ z will be employed as the role F in
Theorem 3.1. We have included the calculations of all the support functions
presented in this paper in the Appendix section for reference.

Example 3.1 We demonstrate the p-order cones in IR3.

– GivenA “ tpx, yq P IR2 | }px, yq}1 “ |x|`|y| ď 1u, hApx, yq “ maxt|x|, |y|u “

}px, yq}8. They generate the maximal-order cone tpz, x, yq P IR3 | z ě

}px, yq}8u.
– GivenA “ tpx, yq P IR2 | }px, yq}2 “

a

x2 ` y2 ď 1u, hApx, yq “
a

x2 ` y2 “

}px, yq}2. They generate the second-order cone tpz, x, yq P IR3 | z ě }px, yq}2u.
– Given A “ tpx, yq P IR2 | }px, yq}p ď 1u, hApx, yq “ ||px, yq||q, where p ě 1

and 1
p ` 1

q “ 1. They generate the q-order cone tpz, x, yq P IR3 | z ě

}px, yq}qu.
– Given A “ tpx, yq P IR2 | }px, yq}8 “ maxt|x|, |y|u ď 1u, hApx, yq “

|x| ` |y| “ }px, yq}1. They generate the 1-order cone tpz, x, yq P IR3 | z ě

}px, yq}1u.

Considering the p-order cones discussed in Example 3.1, we are intrigued
by the possibility that the cone generated by the support function might be
the dual cone of some related cone. This constitutes another aspect that we
will delve into as part of this paper later.

Example 3.2 Consider the closed convex set

A “ tpx, yq P IR2 | x2 ` y ď 1u,

shown as in Figure 7(a) and its associated support function

hApx, yq “ y `
x2

4y
, y ą 0.

Then, the set

KA :“ cl

"

pz, x, yq P IR3 | z ě y `
x2

4y
, y ą 0

*
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forms a closed convex cone in IR3, as illustrated in Figure 7(c). It is worth
mentioning that this cone includes its limit points tpx, y, zq P IR3 | x “ y “

0, z ě 0u, i.e., the nonnegative z-axis.

(a) a closed convex set
A “ tpx, yq P IR2 | x2 ` y ď 1u

(b) associated support function

hApx, yq “ y ` x2

4y
, y ą 0 (c) KA in IR3

Fig. 7: KA cone generated by support function

In the preceding example within the IR2 space, it is feasible to represent
any closed convex set numerically through the utilization of computer graphic
tools such as Matlab to ascertain the associated values of the support function.
Building upon this conceptual framework, we can further devise computational
algorithms to generate 3-dimensional cone representations based on closed
convex set data within the scope of further research.

3.2 Dual support function and dual cone

As mentioned in Section 3.1, we aim to develop the similar support function,
which can be placed on the left side of cone inequality (2.1). In view of nota-
tions, we name it the dual support function as follows.

Definition 3.2 If A is a nonempty closed convex set in IRn, the corresponding
dual support function σA : D Ď IRn Ñ IR is defined by

σApxq :“ inftxx,ay | a P Au,

where x¨, ¨y represents the inner product in IRn.

As the same reason to support functions, the value of a dual support func-
tion may become negative infinity for the associated closed convex set, so we
only consider the domain that σA becomes not negative infinite in this paper.
It is clear to see that such a dual support function is superadditive and posi-
tively homogeneous. We notice that σApxq “ ´hAp´xq, and this can lead to
the continuity of the dual support function if A is bounded. Below are some
examples of dual support functions.
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– In IR1, the dual support function of A “ tx P IR | x ě 1u is σApxq “ x,
where x ě 0.

– The dual support function of the Euclidean unit ball B “ ty P IRn | }y}2 ď

1u is σBpxq “ ´}x}2.
– The dual support function of the set A “ tpx, yq P IR2 | 4xy ě 1, x, y ą 0u

is σApx, yq “
?
xy, where x, y ě 0.

Next, we place the suitable dual support function into the left side of cone
inequality (2.1). Another main result comes out shown as in the following
theorem.

Theorem 3.2 Let A be a nonempty closed convex set in IRm and σA : D Ď

IRm Ñ IR is the associated dual support function with A, that is,

σApzq “ inftxz,ay | a P Au.

Let B be a nonempty closed convex set in IRn and hB : E Ď IRn Ñ IR is the
associated support function with B, that is,

hBpzq “ suptxz,by | b P Bu.

The set KA,B is defined by

KA,B :“ tpz1, z2q P IRm ˆ IRn | σApz1q ě hBpz2qu.

Then, the following hold.

(1) KA,B is a convex cone.
(2) clpKA,Bq is a closed convex cone.
(3) If both σA and hB are continuous and both D and E are closed, then

KA,B “ clpKA,Bq is a closed convex cone.

Proof (1) Note that the support function is positively homogeneous and sub-
additive; and the dual support function is positively homogeneous and super-
additive. Accordingly, the set KA,B is certainly a convex cone by Theorem 2.1.
The reasons for (2) and (3) are the same as the proofs provided in Theorem
2.1. [\

Example 3.3 Consider the closed convex set

A “ tpx, yq P IR2 | 4xy ě 1, x, y ą 0u

with its associated dual support function

σApx, yq “
?
xy, x, y ě 0.

In addition, consider the set B “ tz P IR | |z| ď 1u with its support function
hBpzq “ |z|. Then, the generated set

KA,B :“ tpx, y, zq P IR3 |
?
xy ě |z|, x, y ě 0u

is exactly the toppled second-order cone Ktoppled (2.4) in IR3 as illustrated in
Figure 8.
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Fig. 8: KA,B cone generated by dual support and support functions

Before we discuss further about the dual cone formula, some properties
regarding support and dual support functions will be presented as below.

Lemma 3.1 If f : D Ď IRn Ñ IR is concave, g : E Ď IRn Ñ IR is convex, A
is a nonempty closed convex set in IRn, then the following properties hold.

(a) 0 P A if and only if hApxq ě 0 for all x P IRn.
(b) 0 P A if and only if σApxq ď 0 for all x P IRn.
(c) For any r P IR, the sets tx P IRn | fpxq ě ru and tx P IRn | gpxq ď ru are

convex.

Proof (a) pñq Since 0 P A, the supremum of xx,ay must be greater or equal
to the value at the 0 point. Hence, we have

hApxq ě xx,0y “ 0, for all x P IRn.

pðq Assume, for the sake of contradiction, that 0 R A. Given that A is a
nonempty, closed and convex set in IRn and 0 is not an element of A, according
to Theorem 3.14 in [12], there exists a unique projection point p of 0. For all
x P A, we have

x0 ´ p,x ´ py ď 0

ùñ x´p,xy ď ´}p}2 ă 0

ùñ hAp´pq ď ´}p}2 ă 0.

Apparently, this leads to a contradiction.

(b) For all x P IRn, we have

σApxq “ ´hAp´xq ď 0

if and only if 0 P A by applying part (a).

(c) The set tx P IRn | fpxq ě ru can be viewed as tx P IRn | ´fpxq ď ´ru.
Since f is concave, ´f is convex, making this set the level set of the convex
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function ´f . Therefore, it is a convex set. Moreover, the set tx P IRn | gpxq ď

ru is the level set of the convex function g, it is convex as well. [\

Using Lemma 3.1, the connection between a pointed convex cone and its
dual/polar cone will be presented in below theorem.

Theorem 3.3 Let K be the pointed convex cone defined by

K “ tpx1,x2q P IRm ˆ IRn | F px1q ě Gpx2qu,

where functions F and G satisfy the sufficient conditions in Theorem 2.2.
Consider A “ tx1 P IRm | F px1q ě 1u, B “ tx2 P IRn | Gpx2q ď 1u. Then,
the cone

KD
A,B :“ tpy1,y2q P IRm ˆ IRn | σApy1q ě hBp´y2qu

is the dual cone of K and the cone

KP
A,B :“ tpy1,y2q P IRm ˆ IRn | σAp´y1q ě hBpy2qu

is the polar cone of K, where σA is the dual support function of A and hB is
the support function of B.

Proof For the sake of analysis need, we write out the dual cone of K as

K˚ “ tpy1,y2q P IRm ˆ IRn | xpy1,y2q, px1,x2qy ě 0, @px1,x2q P Ku.

First, we claim that KD
A,B Ď K˚. If py1,y2q P KD

A,B , for any px1,x2q P K, we
have F px1q ě Gpx2q ě 0 by condition (a) of K in Theorem 2.2. We will prove
xpy1,y2q, px1,x2qy ě 0 by discussing two cases.

Case I: Gpx2q “ 0. If F px1q “ Gpx2q “ 0, then x1 “ x2 “ 0 by condition
(b) of K in Theorem 2.2. This is the trivial case.
If F px1q ą Gpx2q “ 0, then x2 “ 0 by condition (b) of K in Theorem 2.2. Let
λ “ F px1q ą 0, then F px1

λ q “ 1 due to the homogeneity of F , that is, x1

λ is in
the set A. Hence, we have

xpy1,y2q, px1,x2qy “ xy1,x1y ` xy2,x2y

“ λxy1,
x1

λ y

ě λσApy1q

ě λhBp´y2q, since py1,y2q P KD
A,B

ě 0.

The last inequality is because 0 P B and by Lemma 3.1 (a).

Case II: Gpx2q ą 0. Let Gpx2q “ k ą 0. Then, F px1

k q ě Gpx2

k q “ 1 due to
the homogeneity of F and G, which means x1

k P A, x2

k P B and

xpy1,y2q, px1,x2qy “ xy1,x1y ` xy2,x2y

“ kxy1,
x1

k y ´ kx´y2,
x2

k y

ě kpσApy1q ´ hBp´y2qq

ě 0.
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The last inequality comes from py1,y2q P KD
A,B .

From the above discussions, we have shown that KD
A,B Ď K˚.

It remains to claim that K˚ Ď KD
A,B . For any py1,y2q P K˚ and a P A, b P B,

we have F paq ě 1 ě Gpbq, which means pa,bq P K. From the definition of
dual cone, we know

xpy1,y2q, pa,bqy “ xy1,ay ` xy2,by ě 0

which implies

xy1,ay ě x´y2,by, @ a P A, @ b P B.

Hence, we obtain σApy1q ě hBp´y2q. This says py1,y2q P KD
A,B , and hence

K˚ Ď KD
A,B .

To sum up, by the above discussion, we have proved that KD
A,B is the dual

cone of K.

Moreover, if K˝ is the polar cone of K, then py1,y2q P K˝ “ ´K˚ “ ´KD
A,B

if and only if σAp´y1q ě hBp´p´y2qq “ hBpy2q. It is equivalent to py1,y2q P

KP
A,B ; hence KP

A,B is the polar cone of K. [\

Example 3.4 Consider the circular cone in IRn defined by

Lθ “
␣

px1,x2q P IR ˆ IRn´1 | x1 ě }x2} cot θ
(

,

where θ P p0, π{2q is its half-aperture angle. Let A “ tx1 P IR | x1 ě 1u

and B “ tx2 P IRn´1 | }x2} cot θ ď 1u, the corresponding dual support and
support functions are respectively σApy1q “ y1 where y1 ě 0 and hBp´y2q “

}y2} tan θ where y2 P IRn´1. By Theorem 3.3, we have the dual cone L˚
θ as

L˚
θ “

␣

py1,y2q P IR ˆ IRn´1 | y1 ě }y2} tan θ
(

.

Likewise, σAp´y1q “ ´y1 where y1 ď 0 and hBpy2q “ }y2} tan θ where y2 P

IRn´1. Then, as also depicted in Figure 7, the polar cone of Lθ is

L˝
θ “

␣

py1,y2q P IR ˆ IRn´1 | ´y1 ě }y2} tan θ
(

“ ´L˚
θ .

Those cones described in Theorem 3.3 require sufficient conditions as in
Theorem 2.2, which does not include all of the convex cones. However, the
contribution of Theorem 3.3 is that we can easily employ functions F and G
in a cone formula to define convex sets A and B, and then obtain the associated
dual support and support function to formulate the dual/polar cone. In the
next theorem, we drop the sufficient conditions of the pointed property to find
the associated dual/polar cone, even though the process is not so practical as
in Theorem 3.3.
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Fig. 9: Lθ,L˚
θ and L˝

θ with θ “ π{6

Theorem 3.4 Let K be the convex cone defined by

K “ tpx1,x2q P IRm ˆ IRn | F px1q ě Gpx2qu,

where functions F and G satisfy conditions in Theorem 2.1. Consider the sets
Aprq Ď IRm, Bpsq Ď IRn defined by

Aprq “ tx1 P IRm | F px1q ě ru,

Bpsq “ tx2 P IRn | Gpx2q ď su,

where r, s are real numbers. For any x “ px1,x2q P K, by choosing a real
number cx such that F px1q ě cx ě Gpx2q and define convex cones KD

cx as

KD
cx :“ tpy1,y2q P IRm ˆ IRn | σApcxqpy1q ě hBpcxqp´y2qu.

Then, the set KD “
Ş

xPK

KD
cx is the dual cone of K. Moreover, define convex

cones KP
cx as

KP
cx :“ tpy1,y2q P IRm ˆ IRn | σApcxqp´y1q ě hBpcxqpy2qu.

Then, the set KP “
Ş

xPK

KP
cx is the polar cone of K.

Proof Since KD and KP are the intersection of nonempty convex cones, they
are both convex cones. For convenience, we denote K˚ be the dual cone of K.

First, we will claim KD Ď K˚. For any py1,y2q P KD and x “ px1,x2q P K,
we have

xpy1,y2q, px1,x2qy “ xy1,x1y ´ x´y2,x2y

ě σApcxqpy1q ´ hBpcxqp´y2q

ě 0.
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The first inequality comes from x “ px1,x2q P K and x1 P Apcxq, x2 P Bpcxq;
whereas the last inequality is due to py1,y2q P KD Ď KD

cx . Hence, we prove
KD Ď K˚.

It remains to verify K˚ Ď KD. For any py1,y2q P K˚ and x “ px1,x2q P K,
for all a P Apcxq, b P Bpcxq, we have F paq ě cx ě Gpbq which means pa,bq P

K. From the definition of dual cone, it yields

xpy1,y2q, pa,bqy “ xy1,ay ´ x´y2,by ě 0
ñ xy1,ay ě x´y2,by, @a P Apcxq, @b P Bpcxq

ñ σApcxqpy1q ě hBpcxqp´y2q

ñ py1,y2q P KD
cx , @x “ px1,x2q P K

ñ py1,y2q P KD

Then, we obtain K˚ Ď KD; hence KD is the dual cone of K.

Moreover, if K˝ is the polar cone of K, then py1,y2q P K˝ “ ´K˚ “ ´KD “
Ş

xPK

´KD
cx if and only if

σApcxqp´y1q ě hBpcxqp´p´y2qq, @x “ px1,x2q P K
ðñ σApcxqp´y1q ě hBpcxqpy2q, @x “ px1,x2q P K.

The last inequality is equivalent to py1,y2q P KP , which says that KP is the
polar cone of K. [\

For a practical derivation process to determine the dual cone, we can con-
sider cx as an uncertain real number to find the associated dual support and
support functions. As we mentioned before, the generalized toppled second-
order cone (3.2) does not satisfy Theorem 2.2, so we cannot apply Theorem
3.3 to find its dual cone. Instead, we will do it by using Theorem 3.4 as below.

Example 3.5 Consider the generalized toppled second-order cone defined by

Kn
toppled “ tpx, y, zq P IR2 ˆ IRn |

?
xy ě }z}, x ě 0, y ě 0u. (3.2)

For any x “ px, y, zq P Kn
toppled, there exists real number cx such that

?
xy ě cx ě }z},

where cx ě 0. Let the sets Apcxq Ď IR2, Bpcxq Ď IRn be defined by

Apcxq “ tpx, yq P IR2 |
?
xy ě cx, x, y ě 0u, Bpcxq “ tz P IRn | }z} ď cxu.

Then, we have

σApcxqpx, yq “ 2cx
?
xy when x, y ě 0, hBpcxqp´zq “ cx}z}.

Dividing by cx on both sides of the following inequality

2cx
?
xy ě cx}z}, x, y ě 0
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yields

2
?
xy ě }z}, @x P Kn

toppled

From Theorem 3.4, everyKD
cx has the same formula as above. Hence, we obtain

the dual cone formula as the following expression.

Kn˚
toppled “ tpx, y, zq P IR2 ˆ IRn | 2

?
xy ě }z}, x ě 0, y ě 0u. (3.3)

Please refer to the graph (Figure 10) of the dual cone (3.3) below. Appar-
ently, the dual cone (3.3) is not identical to (3.2), it is not self-dual under the
standard inner product of the IRn`2 space. However, the authors in paper [2]
provided another version of inner product to make it to be self-dual. That is
another perspective.

Fig. 10: The toppled second-order cone and its dual cone in IR3

4 Future Works

Apparently, there are a few research directions worthy of further investigation
as long as we have new ways to construct cones. We list some possible future
works based on the bricks of this article.

– Explore cone decomposition, cone convexity, cone monotonicity, and Jor-
dan product associated with the constructed cones. These will be founda-
tions for analyzing the corresponding conic optimization problems.

– Look for real applications which fit in the cone structures generated by the
proposed ways in this study.

– Analyze the KKT conditions and design solution methods for the generated
conic optimization problems.
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– Discover key features and establish important inequalities from the cone
structures.

– Establish error bounds for conic feasibility problems based on various conic
structures.

5 Appendix

5.1 The calculations of support functions and dual support functions

There are two approaches to achieving the associated support or dual support
function for a closed convex set. In fact, it is essentially an optimization prob-
lem. To obtain the support function hApxq, we consider a fixed vector x in IRn

and the following supremum optimization problem:

sup xx,ay

subject to a P A
(5.1)

The solution of (5.1) will yield the value of hApxq. For example, if the set A
is defined by a real-valued convex function f as A “ tx P IRn | fpxq ď 1u,
then the constraint becomes fpaq ď 1 to evaluate the supremum of xx,ay.
The first approach is employing algebraic or analytical calculation techniques
to derive the result. If this approach proves challenging, an alternative method
involves considering the problem from a geometric perspective. First, xx,ay “

}x} ¨ }a} cos θ where θ is the angle between vectors x and a. Because x is
fixed and }a} cos θ is the length of projection from a in A to the vector x, the
supremum of xx,ay will depend on the supremum of }a} cos θ where a P A.
Geometrically, as an example, refer to Figure 11 below. The supremum of
}a} cos θ is attained when a lies on the boundary of A, and the supporting
hyperplane at a is perpendicular to x. Thus, we can obtain the supremum of
xx,ay by identifying such a vector a. The same approaches can be applied on
the dual support function by replacing supremum with infimum.

Fig. 11: A fixed vector x and the supremum vector a
.
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Next, we will derive the support functions and dual support functions pre-
sented in this paper as follows.

1. Examples following Definition 3.1.
– A “ tau a singleton. hApxq “ suptxx,ayu “ xx,ay clearly.
– The Euclidean ball B “ ty P IRn | }y}2 ď 1u. For any y P B, xx,yy ď

}x}}y} ď }x}. Hence hBpxq “ }x}2.
– If C is a line segment through the origin with endpoints ´a and a, we

observe that if x is closer to a, then hCpxq “ xx,ay; otherwise, hCpxq “

xx,´ay “ ´xx,ay. Hence hCpxq “ |xx,ay|. Please refer to Figure 12.

Fig. 12: A line segment with x is closer to a
.

2. Example 3.1, the p-order cones in IR3. Let’s take a shortcut. The boundary
of the set A in the following cases is symmetric with respect to the x-axis,
the y-axis and the origin. It is evident that if px, yq P IR2 is in one of
the four quadrants, the point pa, bq that satisfies hApx, yq “ xpx, yq, pa, bqy

lies in the same quadrant. Additionally, the role of the point pa, bq main-
tains symmetry with respect to the x-axis, the y-axis and the origin. For
example, considering symmetry with respect to the y-axis, if pa, bq is the
point that satisfies hApx, yq “ xpx, yq, pa, bqy, then p´a, bq will be the point
that satisfies hAp´x, yq “ xp´x, yq, p´a, bqy “ hApx, yq. It turns out that
we can replace x with |x| in the function hApx, yq due to symmetry. The
same rule applies to symmetry with respect to the x-axis and the origin.
Therefore, considering the first quadrant case is sufficient in this example
by symmetry.

– Given A “ tpx, yq P IR2 | }px, yq}1 “ |x| ` |y| ď 1u, consider any
pa, bq P A in the first quadrant, a` b ď 1, 0 ď a ď 1, 0 ď b ď 1. Now fix
a vector px, yq, x ě 0, y ě 0, we have

xpx, yq, pa, bqy “ xa ` yb ď xa ` yp1 ´ aq “ px ´ yqa ` y

ď

"

px ´ yq ¨ 1 ` y “ x, if x ě y
px ´ yq ¨ 0 ` y “ y, if x ď y

“ maxtx, yu.

By symmetry, we have hApx, yq “ maxt|x|, |y|u “ }px, yq}8.
– Given A “ tpx, yq P IR2 | }px, yq}2 “

a

x2 ` y2 ď 1u, this is a special
case of the Euclidean ball. hApx, yq “ }px, yq}2.

– Given A “ tpx, yq P IR2 | }px, yq}p ď 1u, we consider the first quadrant
case and use the second approach from the geometric point of view.
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Suppose pa, bq is the point that satisfies hApx, yq “ xpx, yq, pa, bqy for a
fixed px, yq in the first quadrant, we have

ap ` bp “ 1 (5.2)

The tangent line at pa, bq, where b ‰ 0, with the slope ´ap´1

bp´1 , is per-
pendicular to the vector px, yq, where x ‰ 0. It leads to

´
ap´1

bp´1
¨
y

x
“ ´1 (5.3)

From (5.2), b “ p1 ´ apq
1
p , a “ p1 ´ bpq

1
p . By taking b, a into (5.3)

respectively, and using the relation 1
p ` 1

q “ 1, we have

a “
x

q
p

pxq ` yqq
1
p

, b “
y

q
p

pxq ` yqq
1
p

.

Then,

hApx, yq “ xa ` yb “
x

q
p `1

` y
q
p `1

pxq ` yqq
1
p

“
xq ` yq

pxq ` yqq
1
p

“ pxq ` yqq
1
q .

Notice that b “ 0 is a special case of hApx, 0q “ x, while x “ 0 is the

special case of hAp0, yq “ y. By symmetry, hApx, yq “ p|x|q ` |y|qq
1
q “

}px, yq}q.
– Given A “ tpx, yq P IR2 | }px, yq}8 “ maxt|x|, |y|u ď 1u. Consider the

first quadrant case, for any pa, bq P A, maxta, bu ď 1 and 0 ď a ď 1,
0 ď b ď 1, and a fixed px, yq P IR2

`, it is easy to see that

xpx, yq, pa, bqy “ xa ` yb ď x ` y.

By symmetry, hApx, yq “ |x| ` |y| “ }px, yq}1.

3. Example 3.2, A “ tpx, yq P IR2 | x2 ` y ď 1u. For any pa, bq P A with
a2 ` b ď 1, and a fixed vector px, yq with y ‰ 0, we have

xpx.yq, pa, bqy “ xa ` yb ď xa ` yp1 ´ a2q “ ´ya2 ` xa ` y

“ ´ypa ´ x
2y q2 ` y ` x2

4y

ď y ` x2

4y , if y ą 0.

(5.4)

If y ă 0, the supremum value of above equation will approach infinity.

Hence we have hApx, yq “ y ` x2

4y , y ą 0. It is evident from (5.4) that
the supremum occurs when a “ x

2y , where the slope is ´2a “ ´x
y . This

is consistent with the geometric approach, where the tangent line passing
through the supremum point is perpendicular to the vector px, yq.

4. Examples following Definition 3.2.
– A “ tx P IR | x ě 1u. For any a P A with a ě 1, it is evident that

xx, ay “ xa ě x if x ě 0; the infimum approaches negative infinity if
x ă 0. Hence σApxq “ x, x ě 0.
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– The Euclidean unit ball B “ ty P IRn | }y}2 ď 1u. For any y P B with
}y} ď 1, we have xx,yy ě ´}x}}y} ě ´}x}. Hence σBpxq “ ´}x}.

– A “ tpx, yq P IR2 | 4xy ě 1, x, y ą 0u. For any pa, bq P A with 4ab ě 1
and a, b ą 0, and a fixed px, yq with x, y ą 0, we have

xpx, yq, pa, bqy “ xa ` yb ě xa `
y
4a

“
xpa ´

?
y

2
?
x

q2

a
`

?
xy.

The infimum of the above equation occurs when a “
?
y

2
?
x
and the slope

at this point is ´1
4a2 “ ´x

y . Notice that x “ 0 is the special case where

xp0, yq, pa, bqy “ yb ě 0 for y ě 0 and a, b ą 0, while y “ 0 is the special
cases where xpx, 0q, pa, bqy “ xa ě 0 for x ě 0 and a, b ą 0. Hence,
σApx, yq “

?
xy, x, y ě 0.

5. Example 3.3. The dual support function of A and support function of B
in this example have been included in item 4 and item 1 above.

6. Example 3.4. A “ tx1 P IR | x1 ě 1u. The dual support function of
A is the same as in item 4, where σApy1q “ y1, y1 ě 0. As to the set
B “ tx2 P IRn´1 | }x2} cot θ ď 1u, for b P B with }b} cot θ ď 1, and a
fixed y2 P IRn´1, we have

xy2,by ď }y2}}b} ď }y2} tan θ.

Hence, hBpy2q “ }y2} tan θ, y2 P IRn´1. It is evident that hBp´y2q “

}´y2} tan θ “ }y2} tan θ, where ´y2 P IRn´1, i.e., y2 P IRn´1. Addition-
ally, hAp´y1q “ ´y1 where ´y1 ě 0, i.e, y1 ď 0.

7. Example 3.5. The sets in this example are defined by

Apcxq “ tpx, yq P IR2 |
?
xy ě cx, x, y ě 0u, Bpcxq “ tz P IRn | }z} ď cxu,

where cx ě 0. For any pa, bq P Apcxq with
?
ab ě cx, a ą 0, b ě 0, and a

fixed vector px, yq, where x ą 0, y ě 0, we have

xpx, yq, pa, bqy “ xa ` yb ě xa ` y ¨
c2x
a

“
xpa ´

cx
?
y

?
x

q2

a
` 2cx

?
xy.

The infimum of above equation occurs when a “
cx

?
y

?
x
, and the value is

σApcxqpx, yq “ 2cx
?
xy, where x ą 0 and y ě 0. Notice that a “ 0 is the

special case when cx “ 0, where xpx, yq, p0, bqy “ yb ě 0, x, y ě 0 and
b ě 0; while x “ 0 is the special case where xp0, yq, pa, bqy “ yb ě 0 when
y ě 0 and a, b ě 0. Hence σApcxqpx, yq “ 2cx

?
xy, x, y ě 0. As to Bpcxq,

for any b P Bpcxq with }b} ď cx, and a fixed z P IRn, we have

xz,by ď }z}}b} ď cx}z}.

Hence hBpcxqpzq “ cx}z}. It is evident that hBpcxqp´zq “ cx} ´ z} “ cx}z}.
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5.2 Two extended cones

We point out that there are additional cones mentioned in the literature that
are not included in this paper. Some of these cones fit our settings, while oth-
ers may not. In this subsection, we look into some of these cones for reference.

The monotone extended second-order cone Lp,q was first introduced by
O.P. Ferreira, Y. Gao and S. Z. Németh in 2022 [9], it also appeared in [11].
It is defined by

Lp,q “ tpx,uq P IRp ˆ IRq | x1 ě x2 ě ¨ ¨ ¨ ě xp ě }u} u, (5.5)

where p, q ě 1 and x “ px1, x2, ¨ ¨ ¨ .xpqT P IRp. If p “ 1, it degenerates to
the second-order cone in IRq`1. If q “ 0, the cone Lp,q becomes the monotone
nonnegative cone in [11,5] as below:

Cp “ tx P IRp | x1 ě x2 ě ¨ ¨ ¨ ě xp ě 0 u.

In our setting, we define F : D Ď IRp Ñ IR and G : IRq Ñ IR by

F pxq “ xp, Gpuq “ }u},

where D “ tx P IRp | x1 ě x2 ě ¨ ¨ ¨ ě xp ě 0 u. Obviously, F ,G are positively
homogeneous, while F is additive and G is subadditive. Additionally, D is
closed and F , G are continuous. Hence, by applying Theorem 2.1, Lp,q is a
closed convex cone. Moreover, we can apply Theorem 3.4 to obtain its dual
cone by considering closed convex sets

Apczq “ tx P IRp | xp ě cz, x1 ě x2 ě ¨ ¨ ¨ ě xpu, Bpczq “ tu P IRq | }u} ď czu,

where z “ px,uq, cz ě 0. For any a “ pa1, a2, ¨ ¨ ¨ , apqT P Apczq, and a fixed
y “ py1, y2, ¨ ¨ ¨ , ypqT P IRp, we have

xy,ay “
řp

i“1 yiai
ě
ř2

i“1 yia2 `
řp

i“3 yiai, if y1 ě 0

ě
ř3

i“1 yia3 `
řp

i“4 yiai, if y1 ` y2 ě 0
ě ¨ ¨ ¨

ě
řp´1

i“1 yiap´1 ` ypap, if
řp´2

i“1 yi ě 0

ě
řp

i“1 yiap, if
řp´1

i“1 yi ě 0
ě cz

řp
i“1 yi

It follows that σApczqpyq “ cz
řp

i“1 yi when
řj

i“1 yi ě 0, j “ 1, 2, ¨ ¨ ¨ , p ´ 1.
From Section 5.1, item 7, we have hBpczqp´vq “ cz}v}, v P IRq. Hence, by
Theorem 3.4, the dual cone of Lp,q becomes

L˚
p,q “ tpy,vq P IRp ˆ IRq |

p
ÿ

i“1

yi ě }v},
j
ÿ

i“1

yi ě 0, j “ 1, 2, ¨ ¨ ¨ , p ´ 1u.
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The above dual cone formula is the same as in [9, Proposition 2].

Another kind of extended second-order cone, which was named the ex-
tended Lorentz cone, was first revealed by S.Z. Németh and G. Zhang in 2015
[20]. This cone has been extensively studied in subsequent research papers [19,
21–23]. The extended Lorentz cone is defined by

Lpp, qq “ tpx,uq P IRp ˆ IRq | x ě }u}eu, (5.6)

where e “ p1, 1, ¨ ¨ ¨ , 1qT P IRp. In equation (5.6), the authors employ the
componentwise inequality. If p “ 1, Lpp, qq is the pq ` 1q-dimensional second-
order cone. It appears that this cone is incompatible with our settings, as
the corresponding functions adjacent to the inequality in (5.6) are not real-
valued. However, we can approach the problem from this perspective. Let
x “ px1, x2, ¨ ¨ ¨ , xpqT P IRp, the cone Lpp, qq (5.6) is equivalent to

Lpp, qq “ tpx,uq P IRp ˆ IRq | min
i

txiu ě }u}u.

We define F : IRp Ñ IR and G : IRq Ñ IR by F pxq “ minitxiu and Gpuq “ }u},
then F is concave, G is convex and both F and G are continuous, satisfying
the conditions in Theorem 2.1. Therefore, Lpp, qq is a closed convex cone. The
same approach can be used to obtain its dual cone by considering the following
closed convex sets:

Apczq “ tx P IRp | min
i

txiu ě czu,

Bpczq “ tu P IRq | }u} ď czu,

where z “ px,uq, cz ě 0. Using the same technique, for any a “ pa1, a2, ¨ ¨ ¨ , apqT P

Apczq and a fixed x “ px1, x2, ¨ ¨ ¨ , xpqT P IRp, we have

xx,ay “

p
ÿ

i“1

xiai ě cz

p
ÿ

i“1

xi, if xi ě 0, i “ 1, 2, ¨ ¨ ¨ , p.

Hence, σApczqpxq “ cz
řp

i“1 xi, xi ě 0, i “ 1, 2, ¨ ¨ ¨ , p. Again, hBpczqp´uq “

cz}u},u P IRq. By Theorem 3.4, the dual cone of Lpp, qq becomes

Mpp, qq “ tpx,uq P IRp ˆ IRq |

p
ÿ

i“1

xi ě }u}, xi ě 0, i “ 1, 2, ¨ ¨ ¨ , pu.

The above formula is equivalent to

Mpp, qq “ tpx,uq P IRp ˆ IRq | xx, ey ě }u}, x ě 0u,

which is the same as in [20, (6)].
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