
Journal of Optimization Theory and Applications          (2025) 205:57 
https://doi.org/10.1007/s10957-025-02654-z

Novel Constructions for Closed Convex Cones Through
Inequalities and Support Functions

Ching-Yu Yang1 · Yu-Lin Chang1 · Chu-Chin Hu1 · Jein-Shan Chen1

Received: 2 October 2024 / Accepted: 26 February 2025
© The Author(s) 2025

Abstract
Two novel ways to generate closed convex cones, the main ingredient of conic opti-
mization, are proposed in this study. The first way is constructing closed convex cones
via inequalities, whereas the second one is through support functions. The contribution
of this article is twofold. One is opening up new ideas for looking into structures of
closed convex cones. The other one is providing novel approaches and mediums for
investigating conic optimization.

Keywords Closed convex cone · Superadditivity · Subadditivity · Homogeneity ·
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1 Introduction

Conic optimization is a mathematical framework that holds a pivotal role in optimiza-
tion problems where the feasible set can be represented as a cone. This framework
extends beyond traditional linear programming and convex optimization, allowing
for the handling of more intricate structures. In particular, cone structure is the main
ingredient in tackling cone convexity, cone monotonicity, and cone decomposition
etc., which are needed for analysis in conic optimization. Needless to say, conic opti-
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Fig. 1 Degenerated
type-2 s-order cone in IR3

mization problems are noteworthy because they offer a versatile and efficient approach
to solving a diverse array of optimization problems across various fields, see [15] and
references therein.

Cones play a fundamental role in convex optimization, offering a geometric struc-
ture for defining convex sets. A cone formula refers to an expression that can be
represented as a cone in a vector space. In the literature, several useful cones have been
proposed and applied, including the second-order cone, circular cone, p-order cone,
geometric cone, exponential cone and power cone. Recently, Morshed, Vogiatzis, and
Noor-E-Alam introduced a new second-order cone, termed the type-2 second-order
cone, in 2021 [18]. It is defined as

Yn =
{
x ∈ IRn

∣∣∣∣ (x1 + x2)
2 ≥ 2

n∑
i=3

x2i , x1 ≥ x2, x1 + x2 ≥ 0

}
. (1.1)

This modified cone can be regarded as a conventional second-order cone with one
less dimension than the original one, achieved through an algebraic transformation.
In fact, this cone will degenerate to the polyhedral cone in IR3, see Fig. 1. For fur-
ther details, please refer to [18, Remark 1]. Furthermore, they have also introduced
the generalized formula for the so-called type-k cone involving more complicated
variables.

Ωn =
⎧⎨
⎩x ∈ IRn

∣∣∣∣
(

k∑
i=1

xi

)2

≥ ξk

n∑
j=k+1

x2j , gl(x1:k) ≥ 0, xr ≥ 0, r , l ∈ (1, 2, . . . , k)

⎫⎬
⎭ , (1.2)

where ξk is a constant dependent on k and gl represent additional constraints similar
to those in (1.1).
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Examining expressions (1.1) and (1.2), if we take the square root on both sides of
the cone formula inequalities, it leads to a linear combination of k variables on the
left side and a regular 2-norm of an (n − k)-dimensional vector on the right side in
the main cone inequality. This observation prompts us to consider the cone formula
as two real-valued functions connected by an inequality. In this paper, our emphasis
will be on exploring cone formula generated by an inequality of functions that adhere
to closed convex cone properties, as illustrated in the below expression:

K = {(x1, x2) ∈ IRm × IRn | F(x1) ≥ G(x2)},

where F : D ⊆ IRm → IR and G : E ⊆ IRn → IR are two real-valued functions,
with the sets D and E being subsets of the domains of F and G, respectively.

To proceed, we review several cone formulas that have been elucidated in the
literature. It is noteworthy that we consistently represent the inequality using the
greater than or equal sign. The definitions of these cones can be found in [1, 3, 6, 8,
11, 13, 16, 17, 27, 29].

– second-order cone:

Kn =
{
(x1, x2) ∈ IR × IRn−1 | x1 ≥ ‖x2‖

}
, (1.3)

where ‖ · ‖ means the Euclidean norm or 2-norm ‖ · ‖2.
– circular cone:

Lθ =
{
(x1, x2) ∈ IR × IRn−1 | x1 ≥ ‖x2‖ cot θ

}
, (1.4)

where θ ∈ (0, π/2) is its half-aperture angle.
– p-order cone:

Kp =
{
(x1, x2) ∈ IR × IRn−1 | x1 ≥ ‖x2‖p

}
(p ≥ 1), (1.5)

where ‖ · ‖p means the l p-norm.
– geometric cone:

Gn = cl

{
(x, θ) ∈ IRn+ × IR++

∣∣∣∣ 1 ≥
n∑

i=1

e− xi
θ

}
, (1.6)

where x = (x1, x2, . . . , xn)T ∈ IRn+ and cl{·} means the closure of the set.
– exponential cone:

Ke = cl

{
(x1, x2, x3) ∈ IR3

∣∣ x3 ≥ x2e
x1
x2 , x2 > 0

}
. (1.7)
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– power cone:

Kα
m,n =

{
(x, z) ∈ IRm+ × IRn

∣∣∣∣
m∏
i=1

xαi
i ≥ ‖z‖

}
, (1.8)

where αi > 0 and
∑m

i=1 αi = 1.

In this paper, we attribute properties which form a closed convex cone to positively
homogeneous sub/super-additive functions as a means to articulate the representation
of the formula by an inequality. Besides, we explore the characteristics of the cone
and investigate the cone formula generated by the support/dual support functions
corresponding to closed convex sets. Nice results about the formula of dual/polar cone
associated to convex cones generated by the inequality are established. Through this
paper, we aim to conduct a more comprehensive and diverse study on the generating
methods of cones. In summary, the contribution of this article is twofold. One is
opening up new ideas for looking into structures of closed convex cones. The other
one is providing novel approaches and mediums for investigating conic optimization.

2 Closed Convex Cones by Inequalities

To comprehend the structure of the cone formula, let us begin by looking into the
definition of a convex cone, which is available in various textbook sources, including
[4, 24].

Definition 2.1 Let K be a nonempty set in a vector space V , K is called a convex cone
if the following two properties hold:

(1) For all x ∈ K and all λ > 0, there holds λx ∈ K .
(2) For all x, y ∈ K , there holds x + y ∈ K .

The property (1) ensures that K is a cone, while the property (2) with the help of
property (1) guarantees convexity of K . We shall consider two real-valued functions
linked by an inequality, which satisfies the property (1) to form a cone and plug them
into our cone formula (2.1) in the first step, then deal with the convexity property (2) in
the subsequence discussion. More specifically, we consider a nonempty set K defined
by

K = {(x1, x2) ∈ IRm × IRn | F(x1) ≥ G(x2)}, (2.1)

where F : D ⊆ IRm → IR and G : E ⊆ IRn → IR are two real-valued functions,
with the sets D and E being subsets of the domains of F and G, respectively.

Lemma 2.1 Let K be the set defined as in (2.1). If K satisfies condition:

(C1) F(λx1) ≥ G(λx2) for all λ > 0 and (x1, x2) ∈ K,
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then K is a cone.

Proof The condition (C1) ensures that if x = (x1, x2) ∈ K and λ > 0, then λx =
(λx1, λx2) ∈ K which means K is a cone by Definition 2.1. ��
Example 2.1 Consider the nonnegative closed half space in IRn , which is described as

{(x1, x2) ∈ IR × IRn−1 | x1 ≥ 0}.

We define F : IR+ → IR and G : IRn−1 → IR as F(x1) = x1 and G(x2) = 0 in
above inequality of formula, i.e., F(x1) ≥ G(x2). Accordingly, these two real valued
functions satisfy (C1), that is,

F(λx1) = λx1 ≥ λ · 0 = 0 = G(λx2),

for all λ > 0 and (x1, x2) in the nonnegative closed half space. Hence, it is a cone by
Lemma 2.1 for sure. In fact, almost all cones appeared in the literature including (1.3)
to (1.8) satisfy Lemma 2.1.

However, using condition (C1) in Lemma 2.1 directly to find new functions and to
generate a cone is not so intuitive.We propose another approach and idea by employing
homogeneous functions.

Definition 2.2 A function f : IRn → IR is called a homogeneous function of degree
k (k is an integer) if it satisfies

f (λx) = λk f (x)

for all x ∈ IRn and all λ 	= 0. If no specifically indicated, f is homogeneous means
that f is homogeneous of degree 1. In this paper, we call f is positively homogeneous
if λ > 0. We also call functions F and G are positively homogeneous of degree k
in K given as in (2.1) means if (x1, x2) ∈ K , there hold F(λx1) = λk F(x1) and
G(λx2) = λkG(x2).

The positively homogeneous functions of the same degree implies condition (C1)
in Lemma 2.1, hence we build up another lemma as below.

Lemma 2.2 Let K be the set defined as in (2.1). If K satisfies condition:

(C2) F and G are positively homogeneous of the same degree k in K ,

then K is a cone.

Proof If x = (x1, x2) ∈ K and λ > 0, then we have

F(λx1) = λk F(x1) ≥ λkG(x2) = G(λx2),

where the equalities are due to condition (C2) and the inequality is from definition of
K . This indicates that λx is also in K , hence K is a cone. ��
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Fig. 2 {(x, y, z) ∈ IR × IR2 |
x2 ≥ y2 + z2}

If we regard known cones listed from (1.3) to (1.8) in the literature as the expression
of functions inequality (2.1), most of the functions on both sides of inequality sign
are positively homogeneous of degree 1 except the geometric cone (1.6). In fact, the
formula in the geometric cone (1.6) is written as the special formula with positively
homogeneous functions of degree k = 0. If we rewrite it as

Gn = cl

{
(x, θ) ∈ IRn+ × IR++

∣∣∣∣ x1 ≥ −θ ln(1 −
n∑

i=2

e− xi
θ )

}
, (2.2)

then the functions on both sides of inequality are also positively homogeneous of
degree 1.

Example 2.2 The cone defined by

{
(x, y, z) ∈ IR × IR2 | x2 ≥ y2 + z2

}

satisfies condition (C2) in Lemma 2.2 with F(x) = x2 and G(y, z) = y2 + z2, where
F and G are both positively homogeneous of degree 2, see Fig. 2 below. Furthermore,
following up this cone, we can define a generalized cone by

{
(x, z) ∈ IR × IRn−1

∣∣∣∣ xk ≥
n−1∑
i=1

|zi |k
}

,

where z = (z1, . . . , zn−1)
T ∈ IRn−1, k is a positive integer and F(x) = xk , G(z) =∑n−1

i=1 |zi |k . Then, F and G are both positively homogeneous of degree k. Note that
this generalized cone is not convex if k is even; and it becomes the k-order cone (1.5)
if k is odd.
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In view of Example 2.2, it is possible to establish convex cones formulas with
functions as in (2.1), which are also positively homogeneous of degree k > 1. The
next lemma reflects and confirms this idea.

Lemma 2.3 Suppose that the set K (2.1) satisfy the following conditions:

(C2) F and G are positively homogeneous of the same degree k in K ;
(C3) F(x1 + y1) ≥ G(x2 + y2) for all (x1, x2), (y1, y2) ∈ K .

Then, K is a convex cone.

Proof The cone property (1) in Definition 2.1 holds due to Lemma 2.2. On the other
hand, condition (C3) directly leads to the property (2) in Definition 2.1. Hence, K is
a convex cone. ��

Example 2.3 The toppled second-order cone in IR3 is defined by

Ktoppled =
{
(x, y, z) ∈ IR2 × IR | xy ≥ z2, x ≥ 0, y ≥ 0

}
. (2.3)

Consider F : IR2+ → IR and G : IR → IR by F(x, y) = xy and G(z) = z2 in above
formula. The positive homogeneity of degree 2 of F and G are obvious. It remains to
check condition (C3) inLemma2.3.To see this, for any (x, y, z), (x ′, y′, z′) ∈ Ktoppled,
we have

F(x + x ′, y + y′) = (x + x ′)(y + y′)
= xy + x ′y′ + xy′ + x ′y
≥ z2 + z′2 + 2

√
xy′x ′y

≥ z2 + z′2 + 2|z||z′|
≥ z2 + z′2 + 2zz′
= (z + z′)2
= G(z + z′).

Hence, the condition (C3) in Lemma 2.3 holds, which says that Ktoppled is a con-
vex cone. The graph of this cone is depicted in Fig. 3. Moreover, this cone can be
generalized by the following extension:

{
(x, y, z) ∈ IR2 × IRn | xy ≥ ‖z‖2, x ≥ 0, y ≥ 0

}
.

For more detailed discussion about its algebraic structure, please refer to [2].

Overall, it is still challenging to seek two functions directly satisfying the condi-
tions (C2) and (C3) in Lemma 2.3. To overcome this, we introduce subadditivity and
superadditivity of real-valued functions.
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Fig. 3 Ktoppled = {(x, y, z) ∈
IR3 | xy ≥ z2, x ≥ 0, y ≥ 0}

Definition 2.3 A function f : D ⊆ IRm → IR is called superadditive if it satisfies

f (x + y) ≥ f (x) + f (y)

for all x, y in D. A function g : E ⊆ IRn → IR is called subadditive if it satisfies

g(x + y) ≤ g(x) + g(y)

for all x, y in E . In this paper, we call F is superadditive and G is subadditive in K
(2.1) means if (x1, x2), (y1, y2) ∈ K , then we have F(x1 + y1) ≥ F(x1)+ F(y1) and
G(x2 + y2) ≤ G(x2) + G(y2).

Building upon the aforementioned concepts, we modify the conditions of Lemma
2.3 to the following reasonable lemma.

Lemma 2.4 Let K be the set defined as in (2.1). Suppose that K satisfies conditions:

(C2) F and G are positively homogeneous of the same degree k in K ;
(C4) F is superadditive and G is subadditive in K .

Then, K is a convex cone.

Proof Again, Condition (C2) leads to the cone property (1) by Lemma 2.2. As to
convexity, since F is superadditive and G is subadditive in K , we have

F(x1 + y1) ≥ F(x1) + F(y1) ≥ G(x2) + G(y2) ≥ G(x2 + y2),

for all (x1, x2), (y1, y2) ∈ K . The property (2) in Definition 2.1 holds. ��

Unfortunately, we do not have a nontrivial example of a convex cone which satisfies
conditions in Lemma 2.4 if the homogeneity degree k 	= 1. Part of the reason is, if
F and G are both positively homogeneous of degree k > 1, they normally can’t
keep the original super/sub-additivity at the same time. Please see Example 1.1.2 and
Example 1.1.6 in [25] for more details. If k = 1, several known cones such as the
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second-order cone (1.3), circular cone (1.4) and p-order cone (1.5) can be examples
because the L p norm is positively homogeneous subadditive, and the identity function
is clearly positively homogeneous superadditive. Additionally, the power cone (1.8)
also satisfies Lemma 2.4.

Remark 2.1 The nontrivial example we mentioned in previous paragraph is a cone
which does not like the trivial cone as follows:

{(x, y) ∈ IR × IR | x2 ≥ 0, x ≥ 0}.

Define F : IR+ → IR and G : IR → IR by F(x) = x2 and G(y) = 0. In this
context, F and G are both positively homogeneous of degree 2. Additionally, F is
superadditive when x ≥ 0, while G can be considered a subadditive function. This
cone is the trivial nonnegative orthant cone in IR2. Another trivial case arises from the
toppled second-order cone:

{(x, y, z) ∈ IR2 × IR | xy ≥ −z2, x ≥ 0, y ≥ 0, z ≥ 0}.

Define F : IR2+ → IR and G : IR+ → IR by F(x, y) = xy and G(z) = −z2.
Both of them are positively homogeneous of degree 2 and F is superadditive when
x ≥ 0, y ≥ 0; andG is subadditive when z ≥ 0. However, this cone is the nonnegative
orthant cone of IR3 space. From this point of view we can create many trivial cone of
any homogeneity degree k > 1, but it may be meaningless.

Several properties related to homogeneity and super/sub-additivity have been
explored in previous studies. Now, we leverage these properties to develop additional
concepts concerning our cone formula. Most of the proofs for these properties can be
found in [14, 24, 25].

Property 2.1 (1) If f : IRn → IR is superadditive, then f (0) ≤ 0. If g : IRn → IR is
subadditive, then g(0) ≥ 0.

(2) If f : IRn → IR is superadditive, then f (−x) ≤ − f (x) for all x ∈ IRn . If
g : IRn → IR is subadditive, then g(−x) ≥ −g(x) for all x ∈ IRn .

(3) If f1, f2 : IRn → IR are superadditive (respectively, subadditive) functions and
c1, c2 ≥ 0, then f = c1 f1 + c2 f2 is superadditive (respectively, subadditive).

(4) If f : IRn → IR is homogeneous of degree k 	= 0, then f (0) = 0.
(5) If f : IRn → IR is positively homogeneous of degree 1, then f is superadditive if

and only if f is concave. If g : IRn → IR is positively homogeneous of degree 1,
then g is subadditive if and only if g is convex.

(6) If f : IRn → IR+ is superadditive, then f k is also superadditive where k is a
positive integer; if g : IRn → IR+ is subadditive, then g1/k is also subadditive
where k is a positive integer.

Proof (1) It is from [14, Lemma 16.1.3].

(2) See [14, Lemma 16.1.5].
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(3) See [25, Theorem 1.3.1(α)].

(4) Choosing λ > 1 yields f (0) = f (λ · 0) = λk f (0). Hence, f (0) = 0.

(5) See [24, Theorem 4.7].

(6) Since f is superadditive and f (x) ≥ 0 for all x ∈ IRn , we have

f k(x + y) ≥ ( f (x) + f (y))k ≥ f (x)k + f (y)k = f k(x) + f k(y),

for any x, y ∈ IRn and k ≥ 1. Hence, f k is superadditive. Moreover, g is subadditive
and g(x) ≥ 0 for all x ∈ IRn . In addition, because k ≥ 1, we obtain

g1/k(x + y) ≤ (g(x) + g(y))1/k ≤ g(x)1/k + g(y)1/k = g1/k(x) + g1/k(y),

for any x, y ∈ IRn . Thus, g1/k is subadditive. ��

In fact, homogeneity of degree 1 will result in the necessary and sufficient condition
for subadditivity and convexity (or superadditivity and concavity), as indicated in
Property 2.1(5). The next theorem provides a more comprehensive understanding of
the cone formula.

Theorem 2.1 Suppose that the set K (2.1) satisfies conditions:

(i) F and G are positively homogeneous (of degree 1) in K ,
(ii) F is superadditive (concave) and G is subadditive (convex) in K .

Then, the following hold.

(1) K is a convex cone.
(2) cl(K ) is a closed convex cone.
(3) If both F and G are continuous and both D and E are closed, then K = cl(K ) is

a closed convex cone.

Proof (1) Applying Lemma 2.4 and Property 2.1(5), the proof is straightforward and
we omit it here. (2) The closure of K is closed by definition. It is straightforward to
verify that the closure of K preserves both the conicity and convexity of K . Therefore,
cl(K ) is a closed convex cone. (3) If the functions F and G are both continuous and
D and E are both closed, we assert that K is closed. For every limit point (z1, z2) of
K , there exists a sequence {(x(1)n , x(2)n )} ⊆ K \ {(z1, z2)} such that

lim
n→∞(x(1)n , x(2)n ) = (z1, z2),

which mean limn→∞ x(1)n = z1 and limn→∞ x(2)n = z2, where x
(1)
n ∈ D and x(2)n ∈ E .

Based on the assumption that D and E are closed, we have z1 ∈ D and z2 ∈ E . Now
because (x(1)n , x(2)n ) ∈ K , we have

F(x(1)n ) ≥ G(x(2)n ), ∀n = 1, 2, 3, . . . .
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By the continuity of F andG, it follows that F is continuous at z1 and G is continuous
at z2, and

lim
n→∞ F(x(1)n ) = F(z1) ≥ G(z2) = lim

n→∞G(x(2)n ).

This implies that every limit point (z1, z2) of K is in K , then K is closed. Hence,
K = cl(K ) is a closed convex cone. ��

Notice that from Property 2.1(4), the cones described in Theorem 2.1 must satisfy
F(0) = G(0) = 0 if 0 ∈ D and 0 ∈ E , since F and G are both positively homo-
geneous. A positively homogeneous subadditive function is also called a sublinear
function in some materials. We point out that there have results in the literature con-
cerning Theorem 2.1 already.More specifically, the epigraph of any sublinear function
from IRn to IR is a nonempty cone in IRn × IR, please see Proposition 11.1 in [19] or
[26]. Indeed, the aforementioned result is a special case in Theorem 2.1.

The toppled second-order cone in Example 2.3 is a special cone which we will use
it again as an example below.

Example 2.4 The toppled second-order cone (2.3) can be reformulated as

Ktoppled = {(x, y, z) ∈ IR2 × IR | √
xy ≥ |z|, x ≥ 0, y ≥ 0}. (2.4)

If we define F : IR2+ → IR and G : IR → IR by F(x, y) = √
xy and G(z) = |z|,

then F and G are positively homogeneous and G is subadditive clearly. For any
(x, y, z), (x ′, y′, z′) ∈ Ktoppled, we have

F(x + x ′, y + y′) = √
(x + x ′)(y + y′)

= √
xy + x ′y′ + xy′ + x ′y

≥
√√

xy2 + √
x ′y′2 + 2

√
xy′x ′y

= √
xy + √

x ′y′
= F(x, y) + F(x ′, y′).

Hence, F is superadditive in Ktoppled. As the same point of view in Example 2.3, we
can generalize this cone (2.4) as the following cone:

Kn
toppled = {(x, y, z) ∈ IR2 × IRn | √

xy ≥ ||z||, x ≥ 0, y ≥ 0},

which still satisfies Theorem 2.1.

Remark 2.2 We point out something by reviewing the formula of two toppled second-
order cones (2.3), (2.4) and the Property 2.1(6). In particular, F(x, y) = √

xy is
superadditive when x, y ≥ 0 and its square function F2(x, y) = xy is also superad-
ditive when x, y ≥ 0 according to Property 2.1(6). However, we cannot derive from
G(z) = |z| is subadditive that its square function G2(z) = z2 is subadditive. In fact,
G2 is superadditive when z ≥ 0, while G2 is convex for z ∈ IR. This is why it is hard
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Fig. 4 {(x, y, z) ∈ IR × IR2 |
x ≥ (

√
y −√

z)2, y ≥ 0, z ≥ 0}

to find a nontrivial example to satisfy conditions in Lemma 2.4 if the homogeneity
degree k 	= 1.

By Property 2.1(3), it is clear to see that the positive combinations of posi-
tively homogeneous super/sub-additive functions are also positively homogeneous
super/sub-additive. We illustrate the formulas of several extended cones derived from
simple super/sub-additive functions or well-known convex cones through the combi-
nation of them.

Example 2.5 From Example 2.4, H(y, z) = √
yz is superadditive when y, z ≥ 0, it

follows that−H(y, z) = −√
yz is subadditive when y, z ≥ 0 by definition.We obtain

G(y, z) = y + z − 2
√
yz = (

√
y − √

z)2 is also subadditive when y, z ≥ 0. Hence,
the set

{(x, y, z) ∈ IR × IR2 | x ≥ (
√
y − √

z)2, y ≥ 0, z ≥ 0}

is a convex cone by Theorem 2.1. However, the continuity of both F and G in their
closed domains leads to the closeness of this cone. Please refer to Fig. 4 for the graph
of this cone.

Example 2.6 The well-known Fischer–Burmeister NCP-function φ : IR2 → IR is
defined by

φFB(a, b) =
√
a2 + b2 − (a + b).

This function is generalized to φp : IR2 → IR in [7] as follows:

φp(a, b) = ‖(a, b)‖p − (a + b), p ≥ 1.
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In fact, φp is a subadditive function minus an additive function which is also subad-
ditive. Hence, the set defined by

KFB = {(x, y, z) ∈ IR × IR2 | x ≥ ‖(y, z)‖p − (y + z)} (2.5)

is a convex cone by Theorem 2.1. In fact, it is also closed according to the continuity
of their associated functions. The geometric views of φp function or the generalized
Fischer–Burmeister cone KFB is fully revealed and depicted in [28].

Example 2.7 Let F : D ⊆ IRm → IR, G : IRn1 × IRn2 × · · · × IRns → IR be defined
by

F(x) =
m∑
i=1

xi , G(z) =
s∑

j=1

‖zj‖p j , p j ≥ 1,

where ‖ · ‖p j is the p j -norm in IRn j , j = 1, 2, . . . , s, and x = (x1, . . . , xm)T ∈ IRm ,
z = (z1, . . . , zs)T ∈ IRn1 × IRn2 × · · · × IRns , and D = {x ∈ IRm | ∑m

i=1 xi ≥ 0}.
It is easy to see that F is additive, and the positive linear combination of subadditive
functions G (norms) is subadditive, both of them are positively homogeneous. Then,
the set

Kms =
⎧⎨
⎩(x, z) ∈ IRm × IRn1+···+ns

∣∣∣∣
m∑
i=1

xi ≥
s∑

j=1

‖zj‖p j , p j ≥ 1

⎫⎬
⎭

is a closed convex cone in IRm+n1+···+ns by the continuity of F , G in their closed
domains and Theorem 2.1. However, we can identify nonzero vectors (x, 0) where
x1 = −∑m

i=2 xi 	= 0 and its negative vector (−x, 0) 	= 0 is also in this cone. This
implies that the cone is not pointed unless additional constraints, similar to those in
the type-2 (1.1) or type-k second-order cone, are imposed.

The coneKms is essentially a trivial extension of the second-order or p-order cone.
Specifically, they correspond some special cases:

– If m = 1 and s = 1, then Kms is the p1-order cone in Rn1+1.
– If m = 2, s = 1, and p1 = 2, then Kms is akin to the type-2 second order cone
(1.1) which appeared in [18]. They differ only by a constant multiple

√
2 and the

additional constraint x1 ≥ x2.

Another example below is modified from the formula of the exponential cone (1.7) to
a higher dimensional form.

Example 2.8 Let F : IR2++ → IR, G : IRn → IR be defined by

F(y, z) = y ln
z

y
, y > 0, z > 0, G(x) = ‖x‖p, p ≥ 1.
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Fig. 5 Comparison of the exponential cone and K̃e with n = 1

Because F is concave, G is subadditive and both of them are positively homogeneous,
then the set

K̃e = cl {(y, z, x) ∈ IR2 × IRn | y ln z

y
≥ ||x||p, y > 0, z > 0}

is a closed convex cone in IRn+2 by Theorem 2.1. If n = 1, then K̃e will degenerate
to a variant type of the exponential cone in IR3. Please refer to Fig. 5a for the original
exponential cone and Fig. 5b for this specific cone to appreciate their distinctions.

Remark 2.3 For reference in this example, if we substitute the L p-norm value with the
sum of elements

∑n
i=1 xi on the right side of the inequality, we create another type

of extension cone. This cone will degenerate to the original exponential cone when
n = 1.

As below, we outline sufficient conditions for a convex cone is pointed. A convex
cone K is termed pointed if K

⋂
(−K ) = {0}.

Theorem 2.2 If the convex cone

K = {(x1, x2) ∈ IRm × IRn | F(x1) ≥ G(x2)},

where F : D ⊆ IRm → IR is positively homogeneous and superadditive (or concave)
in K and G : E ⊆ IRn → IR is positively homogeneous and subadditive (or convex)
in K and satisfy the following two conditions:

(a) G(x2) ≥ 0 for any (x1, x2) ∈ K.
(b) If x = (x1, x2) ∈ K, then F(x1) = 0 implies x1 = 0 and G(x2) = 0 implies

x2 = 0.

Then, K is pointed.
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Proof Suppose x = (x1, x2) ∈ K and −x ∈ K , we claim that x = 0. Since F is
superadditive, F(−x1) ≤ −F(x1) from Property 2.1(2). By condition (a) we have
F(x1) ≥ G(x2) ≥ 0. Again −x ∈ K , we have −F(x1) ≥ F(−x1) ≥ G(−x2) ≥ 0.
These imply F(x1) = G(x2) = 0, then we have x = (x1, x2) = 0 from condition (b).
Hence, K is pointed. ��

We declare that Theorem 2.2 only provides sufficient conditions for a convex cone
being pointed. Most of cones in the literature satisfy them except the power cone (1.8),
the toppled second-order cone (2.3), (2.4) and the generalizedFischer–Burmeister cone
(2.5). In fact, the toppled second-order cone is the degenerated case of the generalized
power cone. In the toppled second-order cone, if we consider point x = (x1, x2) =
((1, 0), 0), it is clear to see that F(1, 0) = G(0) = 0 but x1 	= 0. It does not satisfy
condition (b) of Theorem 2.2, however it’s indeed a pointed cone.

To end this section, we provide a list of examples of homogeneous and super/sub-
additive functions for reference, more examples can be found in [25]. Additionally,
we summarize the detailing well-known closed convex cones mentioned in previous
of this section in Table 1.
Let x = (x1, . . . , xn) ∈ IRn , s, t, ai ∈ IR.

• f (x1, . . . , xn) = a1x1 + a2x2 + · · · + ... + anxn , ai ∈ IR, is subadditive, superad-
ditive and homogeneous.

Examples of subadditive functions:

– L p norm ‖x‖p with p ≥ 1.
– f (t) = √

t for t ≥ 0.
– f (t) = ln(1 + t) for t ≥ 0.
– the support function of a closed convex set in IRn is subadditive and homogeneous.

Examples of superadditive functions:

– f (t) = t2 for t ≥ 0.
– f (s, t) = st for s, t ≥ 0.

Examples of homogeneous functions:

– L p norm ‖x‖p with p ≥ 1 (positively homogeneous).
– homogeneous polynomial function of degree k.

Remark 2.4 The corresponding functions F and G of the geometric cone in Table 1
has been rewritten to fit the requirements of Theorem 2.1. The original formula of the

geometric cone is 1 ≥ ∑n
i=1 e

− xi
θ .

Remark 2.5 The support function of any closed convex set in IRn is a suitable func-
tion to be incorporated in the right side of cone formula (2.1) in the capacity of the
function G. This is because the support function is both subadditive and positively
homogeneous. A detailed discussion of this types of cones will be presented in the
next section.
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Table 1 Some known cones through inequality F ≥ G

F G Cone

x1 ‖x2‖ The second-order cone

‖x2‖p The p-order cone
√
xy ‖z‖ The toppled second-order cone

x1 ‖x2‖ cot θ The circular cone

x ‖(y, z)‖p − (y + z) The Fischer–Burmeister cone

x1 −θ ln(1 − ∑n
i=2 e

− xi
θ ) The geometric cone

x3 x2e
x1
x2 The exponential cone

m∏
i=1

x
αi
i ‖z‖ The power cone

3 Generating Cones by Support Functions

3.1 Support Function Cones

Definition 3.1 The support function hA : E ⊆ IRn → IR of a nonempty closed convex
set A in IRn is given by

hA(x) = sup{〈x, a〉 | a ∈ A},

where 〈·, ·〉 is the inner product in IRn .

The support function hA describes the (signed) distances of supporting hyperplanes
of A from the origin with the unit direction x. The value of a support function may
become infinity if the associated closed convex set is unbounded, so we only consider
the domain that hA becomes not infinite for convenience in this paper. Here are some
examples of support functions:

– The support function of a singleton A = {a} is hA(x) = 〈x, a〉.
– The support function of the Euclidean unit ball B = {y ∈ IRn | ‖y‖2 ≤ 1} is
hB(x) = ‖x‖2.

– If C is a line segment through the origin with endpoints −a and a, then its corre-
sponding support function is hC (x) = |〈x, a〉|.
It is straightforward to verify that the support function is positively homogeneous

and subadditive. The continuity of the support function associated to a bounded closed
convex set can be found in [4, Example 11.2]. Therefore, we can place the associated
support function on the right side of the inequality in (2.1), assuming the role of the
function G, to generate the corresponding convex cone as illustrated in Fig. 6.

Now, we present the main result regarding cones generated by support functions.
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Fig. 6 KA cone generated by support function

Theorem 3.1 Let A be a nonempty closed convex set in IRn and hA : E ⊆ IRn → IR
is the associated support function with A, that is,

hA(x) = sup{〈x, a〉 | a ∈ A}.

Suppose that F : D ⊆ IRm → IR is a positively homogeneous superadditive (concave)
function and the set KA is defined by

KA := {(z, x) ∈ IRm × IRn | F(z) ≥ hA(x)}, (3.1)

then the following hold.

(1) KA is a convex cone.
(2) cl(KA) is a closed convex cone.
(3) If F is continuous and D is closed, and hA is continuous and E is closed, then

KA = cl(KA) is a closed convex cone.

Proof (1) Since A is a nonempty closed convex set, its corresponding support func-
tion hA is positively homogeneous and subadditive. By assumption, F is a positively
homogeneous superadditive (concave) function, applying Theorem 2.1 yields that KA

is a convex cone. The reasons for (2) and (3) are the same as the proofs provided in
Theorem 2.1. ��

For illustrative purposes, we showcase the p-order cones in IR3 as familiar examples
and another 3-dimensional cone generated by a 2-dimensional convex set, which can
be visualized by using graphic software. In Example 3.1 and Example 3.2, the identity
function F(z) = z will be employed as the role F in Theorem 3.1. We have included
the calculations of all the support functions presented in this paper in the Appendix
section for reference.

Example 3.1 We demonstrate the p-order cones in IR3.

– Given A = {(x, y) ∈ IR2 | ‖(x, y)‖1 = |x | + |y| ≤ 1}, hA(x, y) =
max{|x |, |y|} = ‖(x, y)‖∞. They generate the maximal-order cone {(z, x, y) ∈
IR3 | z ≥ ‖(x, y)‖∞}.
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Fig. 7 KA cone generated by support function

– Given A = {(x, y) ∈ IR2 | ‖(x, y)‖2 = √
x2 + y2 ≤ 1}, hA(x, y) =√

x2 + y2 = ‖(x, y)‖2. They generate the second-order cone {(z, x, y) ∈ IR3 |
z ≥ ‖(x, y)‖2}.

– Given A = {(x, y) ∈ IR2 | ‖(x, y)‖p ≤ 1}, hA(x, y) = ||(x, y)||q , where p ≥ 1
and 1

p + 1
q = 1. They generate the q-order cone {(z, x, y) ∈ IR3 | z ≥ ‖(x, y)‖q}.

– Given A = {(x, y) ∈ IR2 | ‖(x, y)‖∞ = max{|x |, |y|} ≤ 1}, hA(x, y) = |x | +
|y| = ‖(x, y)‖1. They generate the 1-order cone {(z, x, y) ∈ IR3 | z ≥ ‖(x, y)‖1}.

Considering the p-order cones discussed in Example 3.1, we are intrigued by the
possibility that the cone generated by the support function might be the dual cone of
some related cone. This constitutes another aspect that we will delve into as part of
this paper later.

Example 3.2 Consider the closed convex set

A = {(x, y) ∈ IR2 | x2 + y ≤ 1},

shown as in Fig. 7a and its associated support function

hA(x, y) = y + x2

4y
, y > 0.

Then, the set

KA := cl

{
(z, x, y) ∈ IR3 | z ≥ y + x2

4y
, y > 0

}

forms a closed convex cone in IR3, as illustrated in Fig. 7c. It is worth mentioning
that this cone includes its limit points {(x, y, z) ∈ IR3 | x = y = 0, z ≥ 0}, i.e., the
nonnegative z-axis.
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In the preceding example within the IR2 space, it is feasible to represent any closed
convex set numerically through the utilizationof computer graphic tools such asMatlab
to ascertain the associated values of the support function.Building upon this conceptual
framework, we can further devise computational algorithms to generate 3-dimensional
cone representations based on closed convex set data within the scope of further
research.

3.2 Dual Support Function and Dual Cone

As mentioned in Sect. 3.1, we aim to develop the similar support function, which can
be placed on the left side of cone inequality (2.1). In view of notations, we name it the
dual support function as follows.

Definition 3.2 If A is a nonempty closed convex set in IRn , the corresponding dual
support function σA : D ⊆ IRn → IR is defined by

σA(x) := inf{〈x, a〉 | a ∈ A},

where 〈·, ·〉 represents the inner product in IRn .

As the same reason to support functions, the value of a dual support function may
become negative infinity for the associated closed convex set, so we only consider the
domain that σA becomes not negative infinite in this paper. It is clear to see that such
a dual support function is superadditive and positively homogeneous. We notice that
σA(x) = −hA(−x), and this can lead to the continuity of the dual support function if
A is bounded. Below are some examples of dual support functions.

– In IR1, the dual support function of A = {x ∈ IR | x ≥ 1} is σA(x) = x , where
x ≥ 0.

– The dual support function of the Euclidean unit ball B = {y ∈ IRn | ‖y‖2 ≤ 1} is
σB(x) = −‖x‖2.

– The dual support function of the set A = {(x, y) ∈ IR2 | 4xy ≥ 1, x, y > 0} is
σA(x, y) = √

xy, where x, y ≥ 0.

Next, we place the suitable dual support function into the left side of cone inequality
(2.1). Another main result comes out shown as in the following theorem.

Theorem 3.2 Let A be a nonempty closed convex set in IRm and σA : D ⊆ IRm → IR
is the associated dual support function with A, that is,

σA(z) = inf{〈z, a〉 | a ∈ A}.

Let B be a nonempty closed convex set in IRn and hB : E ⊆ IRn → IR is the associated
support function with B, that is,

hB(z) = sup{〈z,b〉 | b ∈ B}.
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Fig. 8 KA,B cone generated by dual support and support functions

The set KA,B is defined by

KA,B := {(z1, z2) ∈ IRm × IRn | σA(z1) ≥ hB(z2)}.

Then, the following hold.

(1) KA,B is a convex cone.
(2) cl(KA,B) is a closed convex cone.
(3) If both σA and hB are continuous and both D and E are closed, then KA,B =

cl(KA,B) is a closed convex cone.

Proof (1) Note that the support function is positively homogeneous and subadditive;
and the dual support function is positively homogeneous and superadditive. Accord-
ingly, the set KA,B is certainly a convex cone by Theorem 2.1. The reasons for (2) and
(3) are the same as the proofs provided in Theorem 2.1. ��

Example 3.3 Consider the closed convex set

A = {(x, y) ∈ IR2 | 4xy ≥ 1, x, y > 0}

with its associated dual support function

σA(x, y) = √
xy, x, y ≥ 0.

In addition, consider the set B = {z ∈ IR | |z| ≤ 1} with its support function
hB(z) = |z|. Then, the generated set

KA,B := {(x, y, z) ∈ IR3 | √
xy ≥ |z|, x, y ≥ 0}

is exactly the toppled second-order cone Ktoppled (2.4) in IR3 as illustrated in Fig. 8.

Before we discuss further about the dual cone formula, some properties regarding
support and dual support functions will be presented as below.
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Lemma 3.1 If f : D ⊆ IRn → IR is concave, g : E ⊆ IRn → IR is convex, A is a
nonempty closed convex set in IRn,

then the following properties hold.

(a) 0 ∈ A if and only if hA(x) ≥ 0 for all x ∈ IRn.
(b) 0 ∈ A if and only if σA(x) ≤ 0 for all x ∈ IRn.
(c) For any r ∈ IR, the sets {x ∈ IRn | f (x) ≥ r} and {x ∈ IRn | g(x) ≤ r} are

convex.

Proof (a) (⇒) Since 0 ∈ A, the supremum of 〈x, a〉 must be greater or equal to the
value at the 0 point. Hence, we have

hA(x) ≥ 〈x, 0〉 = 0, for all x ∈ IRn .

(⇐)Assume, for the sake of contradiction, that 0 /∈ A. Given that A is a nonempty,
closed and convex set in IRn and 0 is not an element of A, according to Theorem 3.14
in [4], there exists a unique projection point p of 0. For all x ∈ A, we have

〈0 − p, x − p〉 ≤ 0

�⇒ 〈−p, x〉 ≤ −‖p‖2 < 0

�⇒ hA(−p) ≤ −‖p‖2 < 0.

Apparently, this leads to a contradiction.

(b) For all x ∈ IRn , we have

σA(x) = −hA(−x) ≤ 0

if and only if 0 ∈ A by applying part (a).

(c) The set {x ∈ IRn | f (x) ≥ r} can be viewed as {x ∈ IRn | − f (x) ≤ −r}. Since
f is concave, − f is convex, making this set the level set of the convex function − f .
Therefore, it is a convex set. Moreover, the set {x ∈ IRn | g(x) ≤ r} is the level set of
the convex function g, it is convex as well. ��

Using Lemma 3.1, the connection between a pointed convex cone and its dual/polar
cone will be presented in below theorem.

Theorem 3.3 Let K be the pointed convex cone defined by

K = {(x1, x2) ∈ IRm × IRn | F(x1) ≥ G(x2)},

where functions F and G satisfy the sufficient conditions in Theorem 2.2. Consider
A = {x1 ∈ IRm | F(x1) ≥ 1}, B = {x2 ∈ IRn | G(x2) ≤ 1}. Then, the cone

K D
A,B := {(y1, y2) ∈ IRm × IRn | σA(y1) ≥ hB(−y2)}
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is the dual cone of K and the cone

K P
A,B := {(y1, y2) ∈ IRm × IRn | σA(−y1) ≥ hB(y2)}

is the polar cone of K , where σA is the dual support function of A and hB is the
support function of B.

Proof For the sake of analysis need, we write out the dual cone of K as

K ∗ = {(y1, y2) ∈ IRm × IRn | 〈(y1, y2), (x1, x2)〉 ≥ 0, ∀(x1, x2) ∈ K }.

First, we claim that K D
A,B ⊆ K ∗. If (y1, y2) ∈ K D

A,B , for any (x1, x2) ∈ K , we
have F(x1) ≥ G(x2) ≥ 0 by condition (a) of K in Theorem 2.2. We will prove
〈(y1, y2), (x1, x2)〉 ≥ 0 by discussing two cases.

Case I: G(x2) = 0. If F(x1) = G(x2) = 0, then x1 = x2 = 0 by condition (b) of
K in Theorem 2.2. This is the trivial case. If F(x1) > G(x2) = 0, then x2 = 0 by
condition (b) of K in Theorem 2.2. Let λ = F(x1) > 0, then F( x1

λ
) = 1 due to the

homogeneity of F , that is, x1
λ
is in the set A. Hence, we have

〈(y1, y2), (x1, x2)〉 = 〈y1, x1〉 + 〈y2, x2〉
= λ〈y1, x1

λ
〉

≥ λσA(y1)
≥ λhB(−y2), since (y1, y2) ∈ KD

A,B
≥ 0.

The last inequality is because 0 ∈ B and by Lemma 3.1 (a).

Case II: G(x2) > 0. Let G(x2) = k > 0. Then, F( x1k ) ≥ G( x2k ) = 1 due to the
homogeneity of F and G, which means x1

k ∈ A, x2
k ∈ B and

〈(y1, y2), (x1, x2)〉 = 〈y1, x1〉 + 〈y2, x2〉
= k〈y1, x1

k 〉 − k〈−y2,
x2
k 〉

≥ k(σA(y1) − hB(−y2))
≥ 0.

The last inequality comes from (y1, y2) ∈ K D
A,B .

From the above discussions, we have shown that K D
A,B ⊆ K ∗.

It remains to claim that K ∗ ⊆ K D
A,B . For any (y1, y2) ∈ K ∗ and a ∈ A, b ∈ B, we

have F(a) ≥ 1 ≥ G(b), which means (a,b) ∈ K . From the definition of dual cone,
we know

〈(y1, y2), (a,b)〉 = 〈y1, a〉 + 〈y2,b〉 ≥ 0
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which implies

〈y1, a〉 ≥ 〈−y2,b〉, ∀ a ∈ A, ∀ b ∈ B.

Hence, we obtain σA(y1) ≥ hB(−y2). This says (y1, y2) ∈ K D
A,B , and hence K ∗ ⊆

K D
A,B .

To sum up, by the above discussion, we have proved that K D
A,B is the dual cone of K .

Moreover, if K ◦ is the polar cone of K , then (y1, y2) ∈ K ◦ = −K ∗ = −K D
A,B if and

only if σA(−y1) ≥ hB(−(−y2)) = hB(y2). It is equivalent to (y1, y2) ∈ K P
A,B ; hence

K P
A,B is the polar cone of K . ��

Example 3.4 Consider the circular cone in IRn defined by

Lθ =
{
(x1, x2) ∈ IR × IRn−1 | x1 ≥ ‖x2‖ cot θ

}
,

where θ ∈ (0, π/2) is its half-aperture angle. Let A = {x1 ∈ IR | x1 ≥ 1} and
B = {x2 ∈ IRn−1 | ‖x2‖ cot θ ≤ 1}, the corresponding dual support and support
functions are respectively σA(y1) = y1 where y1 ≥ 0 and hB(−y2) = ‖y2‖ tan θ

where y2 ∈ IRn−1. By Theorem 3.3, we have the dual cone L∗
θ as

L∗
θ =

{
(y1, y2) ∈ IR × IRn−1 | y1 ≥ ‖y2‖ tan θ

}
.

Likewise, σA(−y1) = −y1 where y1 ≤ 0 and hB(y2) = ‖y2‖ tan θ where y2 ∈ IRn−1.
Then, as also depicted in Fig. 9, the polar cone of Lθ is

L◦
θ =

{
(y1, y2) ∈ IR × IRn−1 | −y1 ≥ ‖y2‖ tan θ

}
= −L∗

θ .

Those cones described in Theorem 3.3 require sufficient conditions as in Theorem
2.2, which does not include all of the convex cones. However, the contribution of
Theorem 3.3 is that we can easily employ functions F and G in a cone formula to
define convex sets A and B, and then obtain the associated dual support and support
function to formulate the dual/polar cone. In the next theorem, we drop the sufficient
conditions of the pointed property to find the associated dual/polar cone, even though
the process is not so practical as in Theorem 3.3.

Theorem 3.4 Let K be the convex cone defined by

K = {(x1, x2) ∈ IRm × IRn | F(x1) ≥ G(x2)},
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Fig. 9 Lθ ,L∗
θ and L◦

θ with
θ = π/6

where functions F and G satisfy conditions in Theorem 2.1. Consider the sets A(r) ⊆
IRm, B(s) ⊆ IRn defined by

A(r) = {x1 ∈ IRm | F(x1) ≥ r},
B(s) = {x2 ∈ IRn | G(x2) ≤ s},

where r , s are real numbers. For any x = (x1, x2) ∈ K, by choosing a real number
cx such that F(x1) ≥ cx ≥ G(x2) and define convex cones K D

cx as

K D
cx := {(y1, y2) ∈ IRm × IRn | σA(cx)(y1) ≥ hB(cx)(−y2)}.

Then, the set K D = ⋂
x∈K

K D
cx is the dual cone of K . Moreover, define convex cones

K P
cx as

K P
cx := {(y1, y2) ∈ IRm × IRn | σA(cx)(−y1) ≥ hB(cx)(y2)}.

Then, the set K P = ⋂
x∈K

K P
cx is the polar cone of K .

Proof Since K D and K P are the intersection of nonempty convex cones, they are both
convex cones. For convenience, we denote K ∗ be the dual cone of K .

First, we will claim K D ⊆ K ∗. For any (y1, y2) ∈ K D and x = (x1, x2) ∈ K , we
have

〈(y1, y2), (x1, x2)〉 = 〈y1, x1〉 − 〈−y2, x2〉
≥ σA(cx)(y1) − hB(cx)(−y2)
≥ 0.

The first inequality comes from x = (x1, x2) ∈ K and x1 ∈ A(cx), x2 ∈ B(cx);
whereas the last inequality is due to (y1, y2) ∈ K D ⊆ K D

cx . Hence, we prove K D ⊆
K ∗.
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It remains to verify K ∗ ⊆ K D . For any (y1, y2) ∈ K ∗ and x = (x1, x2) ∈ K , for all
a ∈ A(cx), b ∈ B(cx), we have F(a) ≥ cx ≥ G(b) which means (a,b) ∈ K . From
the definition of dual cone, it yields

〈(y1, y2), (a,b)〉 = 〈y1, a〉 − 〈−y2,b〉 ≥ 0
⇒ 〈y1, a〉 ≥ 〈−y2,b〉, ∀a ∈ A(cx), ∀b ∈ B(cx)
⇒ σA(cx)(y1) ≥ hB(cx)(−y2)
⇒ (y1, y2) ∈ K D

cx , ∀x = (x1, x2) ∈ K

⇒ (y1, y2) ∈ K D.

Then, we obtain K ∗ ⊆ K D; hence K D is the dual cone of K .

Moreover, if K ◦ is the polar cone of K , then (y1, y2) ∈ K ◦ = −K ∗ = −K D =⋂
x∈K

−K D
cx if and only if

σA(cx)(−y1) ≥ hB(cx)(−(−y2)), ∀x = (x1, x2) ∈ K
⇐⇒ σA(cx)(−y1) ≥ hB(cx)(y2), ∀x = (x1, x2) ∈ K .

The last inequality is equivalent to (y1, y2) ∈ K P , which says that K P is the polar
cone of K .

��

For a practical derivation process to determine the dual cone, we can consider cx
as an uncertain real number to find the associated dual support and support functions.
As we mentioned before, the generalized toppled second-order cone (3.2) does not
satisfy Theorem 2.2, so we cannot apply Theorem 3.3 to find its dual cone. Instead,
we will do it by using Theorem 3.4 as below.

Example 3.5 Consider the generalized toppled second-order cone defined by

Kn
toppled = {(x, y, z) ∈ IR2 × IRn | √

xy ≥ ‖z‖, x ≥ 0, y ≥ 0}. (3.2)

For any x = (x, y, z) ∈ Kn
toppled, there exists real number cx such that

√
xy ≥ cx ≥ ‖z‖,

where cx ≥ 0. Let the sets A(cx) ⊆ IR2, B(cx) ⊆ IRn be defined by

A(cx) = {(x, y) ∈ IR2 | √
xy ≥ cx, x, y ≥ 0}, B(cx) = {z ∈ IRn | ‖z‖ ≤ cx}.

Then, we have

σA(cx)(x, y) = 2cx
√
xy when x, y ≥ 0, hB(cx)(−z) = cx‖z‖.
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Fig. 10 The toppled
second-order cone and its dual
cone in IR3

Dividing by cx on both sides of the following inequality

2cx
√
xy ≥ cx‖z‖, x, y ≥ 0

yields

2
√
xy ≥ ‖z‖, ∀x ∈ Kn

toppled

From Theorem 3.4, every K D
cx has the same formula as above. Hence, we obtain the

dual cone formula as the following expression.

Kn∗
toppled = {(x, y, z) ∈ IR2 × IRn | 2√xy ≥ ‖z‖, x ≥ 0, y ≥ 0}. (3.3)

Please refer to the graph (Fig. 10) of the dual cone (3.3) below. Apparently, the dual
cone (3.3) is not identical to (3.2), it is not self-dual under the standard inner product
of the

IRn+2 space. However, the authors in paper [2] provided another version of inner
product to make it to be self-dual. That is another perspective.

4 FutureWorks

Apparently, there are a few research directions worthy of further investigation as long
as we have new ways to construct cones. We list some possible future works based on
the bricks of this article.

– Explore cone decomposition, cone convexity, conemonotonicity, and Jordan prod-
uct associated with the constructed cones. These will be foundations for analyzing
the corresponding conic optimization problems.

– Look for real applicationswhichfit in the cone structures generated by the proposed
ways in this study.
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Fig. 11 A fixed vector x and the
supremum vector a

– Analyze the KKT conditions and design solution methods for the generated conic
optimization problems.

– Discover key features and establish important inequalities from the cone structures.
– Establish error bounds for conic feasibility problems based on various conic struc-
tures.

Appendix

The Calculations of Support Functions and Dual Support Functions

There are two approaches to achieving the associated support or dual support function
for a closed convex set. In fact, it is essentially an optimization problem. To obtain
the support function hA(x), we consider a fixed vector x in IRn and the following
supremum optimization problem:

sup 〈x, a〉
subject to a ∈ A.

(5.1)

The solution of (5.1) will yield the value of hA(x). For example, if the set A is defined
by a real-valued convex function f as A = {x ∈ IRn | f (x) ≤ 1}, then the constraint
becomes f (a) ≤ 1 to evaluate the supremumof 〈x, a〉. The first approach is employing
algebraic or analytical calculation techniques to derive the result. If this approach
proves challenging, an alternative method involves considering the problem from a
geometric perspective. First, 〈x, a〉 = ‖x‖ · ‖a‖ cos θ where θ is the angle between
vectors x and a. Because x is fixed and ‖a‖ cos θ is the length of projection from a in
A to the vector x, the supremum of 〈x, a〉 will depend on the supremum of ‖a‖ cos θ

where a ∈ A. Geometrically, as an example, refer to Fig. 11 below. The supremum of
‖a‖ cos θ is attained when a lies on the boundary of A, and the supporting hyperplane
at a is perpendicular to x. Thus, we can obtain the supremum of 〈x, a〉 by identifying
such a vector a. The same approaches can be applied on the dual support function by
replacing supremum with infimum.
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Fig. 12 A line segment with x is
closer to a

Next, we will derive the support functions and dual support functions presented in
this paper as follows.

1. Examples following Definition 3.1.

– A = {a} a singleton. hA(x) = sup{〈x, a〉} = 〈x, a〉 clearly.
– The Euclidean ball B = {y ∈ IRn | ‖y‖2 ≤ 1}. For any y ∈ B, 〈x, y〉 ≤

‖x‖‖y‖ ≤ ‖x‖. Hence hB(x) = ‖x‖2.
– If C is a line segment through the origin with endpoints −a and a, we observe
that if x is closer to a, then hC (x) = 〈x, a〉; otherwise, hC (x) = 〈x,−a〉 =
−〈x, a〉. Hence hC (x) = |〈x, a〉|. Please refer to Fig. 12.

2. Example 3.1, the p-order cones in IR3. Let’s take a shortcut. The boundary of the
set A in the following cases is symmetric with respect to the x-axis, the y-axis and
the origin. It is evident that if (x, y) ∈ IR2 is in one of the four quadrants, the point
(a, b) that satisfies hA(x, y) = 〈(x, y), (a, b)〉 lies in the same quadrant. Addi-
tionally, the role of the point (a, b)maintains symmetry with respect to the x-axis,
the y-axis and the origin. For example, considering symmetry with respect to the
y-axis, if (a, b) is the point that satisfies hA(x, y) = 〈(x, y), (a, b)〉, then (−a, b)
will be the point that satisfies hA(−x, y) = 〈(−x, y), (−a, b)〉 = hA(x, y). It
turns out that we can replace x with |x | in the function hA(x, y) due to symmetry.
The same rule applies to symmetry with respect to the x-axis and the origin. There-
fore, considering the first quadrant case is sufficient in this example by symmetry.

• Given A = {(x, y) ∈ IR2 | ‖(x, y)‖1 = |x |+|y| ≤ 1}, consider any (a, b) ∈ A
in the first quadrant, a + b ≤ 1, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1. Now fix a vector
(x, y), x ≥ 0, y ≥ 0, we have

〈(x, y), (a, b)〉 = xa + yb ≤ xa + y(1 − a) = (x − y)a + y

≤
{

(x − y) · 1 + y = x, if x ≥ y
(x − y) · 0 + y = y, if x ≤ y

= max{x, y}.

By symmetry, we have hA(x, y) = max{|x |, |y|} = ‖(x, y)‖∞.
• Given A = {(x, y) ∈ IR2 | ‖(x, y)‖2 = √

x2 + y2 ≤ 1}, this is a special case
of the Euclidean ball. hA(x, y) = ‖(x, y)‖2.

• Given A = {(x, y) ∈ IR2 | ‖(x, y)‖p ≤ 1}, we consider the first quadrant case
and use the second approach from the geometric point of view. Suppose (a, b)
is the point that satisfies hA(x, y) = 〈(x, y), (a, b)〉 for a fixed (x, y) in the
first quadrant, we have

a p + bp = 1. (5.2)
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The tangent line at (a, b), where b 	= 0, with the slope− a p−1

bp−1 , is perpendicular
to the vector (x, y), where x 	= 0. It leads to

− a p−1

bp−1 · y
x

= −1. (5.3)

From (5.2), b = (1 − a p)
1
p , a = (1 − bp)

1
p . By taking b, a into (5.3) respec-

tively, and using the relation 1
p + 1

q = 1, we have

a = x
q
p

(xq + yq)
1
p

, b = y
q
p

(xq + yq)
1
p

.

Then,

hA(x, y) = xa + yb = x
q
p +1 + y

q
p +1

(xq + yq)
1
p

= xq + yq

(xq + yq)
1
p

= (xq + yq)
1
q .

Notice that b = 0 is a special case of hA(x, 0) = x , while x = 0 is the special

case of hA(0, y) = y. By symmetry, hA(x, y) = (|x |q + |y|q) 1
q = ‖(x, y)‖q .

• Given A = {(x, y) ∈ IR2 | ‖(x, y)‖∞ = max{|x |, |y|} ≤ 1}. Consider the first
quadrant case, for any (a, b) ∈ A, max{a, b} ≤ 1 and 0 ≤ a ≤ 1, 0 ≤ b ≤ 1,
and a fixed (x, y) ∈ IR2+, it is easy to see that

〈(x, y), (a, b)〉 = xa + yb ≤ x + y.

By symmetry, hA(x, y) = |x | + |y| = ‖(x, y)‖1.
3. Example 3.2, A = {(x, y) ∈ IR2 | x2+y ≤ 1}. For any (a, b) ∈ Awith a2+b ≤ 1,

and a fixed vector (x, y) with y 	= 0, we have

〈(x .y), (a, b)〉 = xa + yb ≤ xa + y(1 − a2) = −ya2 + xa + y

= −y(a − x
2y )

2 + y + x2
4y

≤ y + x2
4y , if y > 0.

(5.4)

If y < 0, the supremum value of above equation will approach infinity. Hence
we have hA(x, y) = y + x2

4y , y > 0. It is evident from (5.4) that the supremum
occurs when a = x

2y , where the slope is −2a = − x
y . This is consistent with the

geometric approach, where the tangent line passing through the supremum point
is perpendicular to the vector (x, y).

4. Examples following Definition 3.2.

• A = {x ∈ IR | x ≥ 1}. For any a ∈ A with a ≥ 1, it is evident that
〈x, a〉 = xa ≥ x if x ≥ 0; the infimum approaches negative infinity if x < 0.
Hence σA(x) = x, x ≥ 0.
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• The Euclidean unit ball B = {y ∈ IRn | ‖y‖2 ≤ 1}. For any y ∈ B with
‖y‖ ≤ 1, we have 〈x, y〉 ≥ −‖x‖‖y‖ ≥ −‖x‖. Hence σB(x) = −‖x‖.

• A = {(x, y) ∈ IR2 | 4xy ≥ 1, x, y > 0}. For any (a, b) ∈ A with 4ab ≥ 1
and a, b > 0, and a fixed (x, y) with x, y > 0, we have

〈(x, y), (a, b)〉 = xa + yb ≥ xa + y
4a

=
x(a −

√
y

2
√
x
)2

a
+ √

xy.

The infimum of the above equation occurs when a =
√
y

2
√
x
and the slope

at this point is −1
4a2

= − x
y . Notice that x = 0 is the special case where

〈(0, y), (a, b)〉 = yb ≥ 0 for y ≥ 0 and a, b > 0, while y = 0 is the
special cases where 〈(x, 0), (a, b)〉 = xa ≥ 0 for x ≥ 0 and a, b > 0. Hence,
σA(x, y) = √

xy, x, y ≥ 0.

5. Example 3.3. The dual support function of A and support function of B in this
example have been included in item 4 and item 1 above.

6. Example 3.4. A = {x1 ∈ IR | x1 ≥ 1}. The dual support function of A is the
same as in item 4, where σA(y1) = y1, y1 ≥ 0. As to the set B = {x2 ∈ IRn−1 |
‖x2‖ cot θ ≤ 1}, for b ∈ B with ‖b‖ cot θ ≤ 1, and a fixed y2 ∈ IRn−1, we have

〈y2,b〉 ≤ ‖y2‖‖b‖ ≤ ‖y2‖ tan θ.

Hence, hB(y2) = ‖y2‖ tan θ, y2 ∈ IRn−1. It is evident that hB(−y2) =
‖−y2‖ tan θ = ‖y2‖ tan θ , where −y2 ∈ IRn−1, i.e., y2 ∈ IRn−1. Additionally,
hA(−y1) = −y1 where −y1 ≥ 0, i.e, y1 ≤ 0.

7. Example 3.5. The sets in this example are defined by

A(cx) = {(x, y) ∈ IR2 | √
xy ≥ cx, x, y ≥ 0}, B(cx) = {z ∈ IRn | ‖z‖ ≤ cx},

where cx ≥ 0. For any (a, b) ∈ A(cx) with
√
ab ≥ cx, a > 0, b ≥ 0, and a fixed

vector (x, y), where x > 0, y ≥ 0, we have

〈(x, y), (a, b)〉 = xa + yb ≥ xa + y · c
2
x

a
=

x(a − cx
√
y√
x

)2

a
+ 2cx

√
xy.

The infimum of above equation occurs when a = cx
√
y√
x
, and the value is

σA(cx)(x, y) = 2cx
√
xy, where x > 0 and y ≥ 0. Notice that a = 0 is the

special case when cx = 0, where 〈(x, y), (0, b)〉 = yb ≥ 0, x, y ≥ 0 and b ≥ 0;
while x = 0 is the special case where 〈(0, y), (a, b)〉 = yb ≥ 0 when y ≥ 0 and
a, b ≥ 0. Hence σA(cx)(x, y) = 2cx

√
xy, x, y ≥ 0. As to B(cx), for any b ∈ B(cx)

with ‖b‖ ≤ cx, and a fixed z ∈ IRn , we have

〈z,b〉 ≤ ‖z‖‖b‖ ≤ cx‖z‖.
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Hence hB(cx)(z) = cx‖z‖. It is evident that hB(cx)(−z) = cx‖ − z‖ = cx‖z‖.

Two Extended Cones

We point out that there are additional cones mentioned in the literature that are not
included in this paper. Some of these cones fit our settings, while others may not. In
this subsection, we look into some of these cones for reference.

The monotone extended second-order cone Lp,q was first introduced by Ferreira
et al. [10], it also appeared in [12]. It is defined by

Lp,q = {(x,u) ∈ IRp × IRq | x1 ≥ x2 ≥ · · · ≥ xp ≥ ‖u‖ }, (5.5)

where p, q ≥ 1 and x = (x1, x2, . . . .xp)T ∈ IRp. If p = 1, it degenerates to
the second-order cone in IRq+1. If q = 0, the cone Lp,q becomes the monotone
nonnegative cone in [5, 12] as below:

Cp = {x ∈ IRp | x1 ≥ x2 ≥ · · · ≥ xp ≥ 0 }.

In our setting, we define F : D ⊆ IRp → IR and G : IRq → IR by

F(x) = xp, G(u) = ‖u‖,

where D = {x ∈ IRp | x1 ≥ x2 ≥ · · · ≥ xp ≥ 0 }. Obviously, F ,G are positively
homogeneous, while F is additive and G is subadditive. Additionally, D is closed and
F , G are continuous. Hence, by applying Theorem 2.1, Lp,q is a closed convex cone.
Moreover, we can apply Theorem 3.4 to obtain its dual cone by considering closed
convex sets

A(cz) = {x ∈ IRp | xp ≥ cz, x1 ≥ x2 ≥ · · · ≥ xp}, B(cz) = {u ∈ IRq | ‖u‖ ≤ cz},

where z = (x,u), cz ≥ 0. For any a = (a1, a2, . . . , ap)T ∈ A(cz), and a fixed
y = (y1, y2, . . . , yp)T ∈ IRp, we have
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〈y, a〉 = ∑p
i=1 yiai

≥ ∑2
i=1 yia2 + ∑p

i=3 yiai , if y1 ≥ 0
≥ ∑3

i=1 yia3 + ∑p
i=4 yiai , if y1 + y2 ≥ 0

≥ · · ·
≥ ∑p−1

i=1 yiap−1 + ypap, if
∑p−2

i=1 yi ≥ 0
≥ ∑p

i=1 yiap, if
∑p−1

i=1 yi ≥ 0

≥ cz
∑p

i=1 yi .

It follows that σA(cz)(y) = cz
∑p

i=1 yi when
∑ j

i=1 yi ≥ 0, j = 1, 2, . . . , p−1. From
Sect. 5.1, item 7, we have hB(cz)(−v) = cz‖v‖, v ∈ IRq . Hence, by Theorem 3.4, the
dual cone of Lp,q becomes

L∗
p,q = {(y, v) ∈ IRp × IRq |

p∑
i=1

yi ≥ ‖v‖,
j∑

i=1

yi ≥ 0, j = 1, 2, . . . , p − 1}.

The above dual cone formula is the same as in [10, Proposition 2].
Another kind of extended second-order cone, which was named the extended

Lorentz cone, was first revealed by S.Z. Németh and G. Zhang in 2015 [21]. This
cone has been extensively studied in subsequent research papers [9, 20, 22, 23]. The
extended Lorentz cone is defined by

L(p, q) = {(x,u) ∈ IRp × IRq | x ≥ ‖u‖e}, (5.6)

where e = (1, 1, . . . , 1)T ∈ IRp. In equation (5.6), the authors employ the componen-
twise inequality. If p = 1, L(p, q) is the (q + 1)-dimensional second-order cone. It
appears that this cone is incompatible with our settings, as the corresponding functions
adjacent to the inequality in (5.6) are not real-valued. However, we can approach the
problem from this perspective. Let x = (x1, x2, . . . , xp)T ∈ IRp, the cone L(p, q)

(5.6) is equivalent to

L(p, q) = {(x,u) ∈ IRp × IRq | min
i

{xi } ≥ ‖u‖}.

Wedefine F : IRp → IR andG : IRq → IR by F(x) = mini {xi } andG(u) = ‖u‖, then
F is concave, G is convex and both F and G are continuous, satisfying the conditions
in Theorem 2.1. Therefore, L(p, q) is a closed convex cone. The same approach can
be used to obtain its dual cone by considering the following closed convex sets:

A(cz) = {x ∈ IRp | min
i

{xi } ≥ cz},

B(cz) = {u ∈ IRq | ‖u‖ ≤ cz},
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where z = (x,u), cz ≥ 0. Using the same technique, for any a = (a1, a2, . . . , ap)T ∈
A(cz) and a fixed x = (x1, x2, . . . , xp)T ∈ IRp, we have

〈x, a〉 =
p∑

i=1

xiai ≥ cz

p∑
i=1

xi , if xi ≥ 0, i = 1, 2, . . . , p.

Hence, σA(cz)(x) = cz
∑p

i=1 xi , xi ≥ 0, i = 1, 2, . . . , p. Again, hB(cz)(−u) =
cz‖u‖,u ∈ IRq . By Theorem 3.4, the dual cone of L(p, q) becomes

M(p, q) = {(x,u) ∈ IRp × IRq |
p∑

i=1

xi ≥ ‖u‖, xi ≥ 0, i = 1, 2, . . . , p}.

The above formula is equivalent to

M(p, q) = {(x,u) ∈ IRp × IRq | 〈x, e〉 ≥ ‖u‖, x ≥ 0},

which is the same as in [21, (6)].
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