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More specifically, given matrices A,B,C ∈ IRn×n, the QEiCP consists of finding
(x, y, λ) ∈ IRn × IRn × IR such that

y = λ2Ax+ λBx+ Cx,
x ≥ 0, y ≥ 0, xT y = 0,
aTx = 1.

In the literature, further extensions of the EiCP and the QEiCP are introduced in
[1, 3, 11, 15], which include second-order cone eigenvalue complementarity problem
(SOCEiCP) and general closed convex cone eigenvalue complementarity problem.
Their general format are as below:

(1.2)


y = λBx− Cx,
x ∈ K, y ∈ K∗, xT y = 0,
aTx = 1,

or


y = λ2Ax+ λBx+ Cx,
x ∈ K, y ∈ K∗, xT y = 0,
aTx = 1,

where K is a closed convex cone, K∗ denotes its dual cone, and a ∈ int(K) is
arbitrary fixed point. When K represents the second-order cone (denoted by Kn),
they become second-order cone eigenvalue complementarity problem (SOCEiCP)
and second-order cone quadratic eigenvalue complementarity problem (SOCQEiCP)
[17]. For the concept and related properties of second-order cone, please refer to
[2, 6, 7, 8, 9, 12, 13, 14, 26].

Roughly, there are two main research directions regarding the eigenvalue com-
plementarity problems. One is on the theoretical side in which their corresponding
solution properties are investigated, see [3, 4, 5, 11, 21, 23, 24, 25]. The other
one focuses on the numerical algorithm for solving the problems, which include
the Lattice projection method, the semismooth Newton methods, the RLT-based
branch and bound method (BBRLT) and so on, see [1, 3, 4, 5, 15, 21, 22, 23, 24]
and references therein. As seen in the literature, almost all the attention is paid
to the standard eigenvalue complementarity problems and second-order cone eigen-
value complementarity problems [17]. However, the study about other special conic
eigenvalue complementarity problems is very limited. On the other hand, more
and more nonsymmetric cones (for instance, circular cone, p-order cone) appear in
plenty of real applications. Hence, in this manuscript, we are therefore motivated
to extend the concepts and properties of the EiCP and the QEiCP to the setting of
the circular cone Lθ and p-order cone Kp. In other words, the cone K in problem
(1.2) is circular cone Lθ and p-order cone Kp. For the concepts of circular cone Lθ

and p-order cone Kp, we will review them in details in the next section.

In this paper, several results about the solutions of the eigenvalue complementar-
ity problem (EiCP) and the quadratic eigenvalue complementarity problems (QE-
iCP) are extended to the version of circular cones Lθ and p-order cones Kn, respec-
tively. In the setting of circular cone, the relationship between the solution of the
circular cone eigenvalue complementarity problems (CCEiCP) and the solution of
the corresponding circular cone complementarity problems (or the solution of the
circular cone quadratic eigenvalue complementarity problems (CCQEiCP) and the
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solution of the corresponding circular cone complementarity problems) are estab-
lished. Besides, for the p-order cone eigenvalue complementarity problems (POCE-
iCP) and p-order cone eigenvalue complementarity problems (POCQEiCP), we also
sum up the corresponding theoretical results. The solutions of the POCEiCP or the
POCQEiCP and the solutions of the corresponding p-order cone complementarity
problems correspond to each other. These results build up a theoretical basis for
designing numerical solution algorithm or making further study about their corre-
sponding eigenvalue complementarity problems in the future.

The remainder of this paper is organized as follows. In section 2, we recall some
background materials regarding circular cone and p-order cone. In section 3, we
study the properties of the solutions for the eigenvalue complementarity problems
and quadratic eigenvalue complementarity problems in the setting of circular cone,
respectively. In section 4, based on the cases of circular cone eigenvalue optimiza-
tion problems, we study the corresponding properties of the solutions for p-order
cone eigenvalue complementarity problems and p-order cone quadratic eigenvalue
complementarity problems, respectively.

2. Preliminaries

In this section, we briefly review some basic concepts and background materials
about the circular cone Lθ and the p-order cone Kp, which will be extensively used
in the subsequent sections. More details can be found in [10, 16, 18, 20, 27, 28].

Let Lθ denote the circular cone (see [10, 16, 18, 28]) in IRn, which is defined by

Lθ := {x = (x1, x2) ∈ IR× IRn−1 | ∥x2∥ ≤ x1 tan θ}

with ∥ · ∥ denoting the Euclidean norm and θ ∈ (0, π2 ). It is well known that the
dual cone of Lθ can be expressed as

(Lθ)
∗ = {x = (x1, x2) ∈ IR× IRn−1 | ∥x2∥ ≤ x1 cot θ} = Lπ

2
−θ.

Moreover, Zhou and Chen [28] gave the below spectral decomposition of x =
(x1, x2) ∈ IR× IRn−1 with respect to Lθ:

x = µ1(x)v
(1)
x + µ2(x)v

(2)
x ,

where µ1(x), µ2(x), v
(1)
x , and v

(2)
x are expressed as

µ1(x) = x1 − ∥x2∥ cot θ, µ2(x) = x1 + ∥x2∥ tan θ,

and

v(1)x =
1

1 + cot2 θ

[
1

− cot θ · w

]
, v(2)x =

1

1 + tan2 θ

[
1

tan θ · w

]
.

with w = x2
∥x2∥ if x2 ̸= 0, or any vector in IRn−1 satisfying ∥w∥ = 1 if x2 = 0.

As for the p-order cone. Let Kp denote the p-order cone (p > 1) (see [19, 20, 27])
in IRn, which is defined by

Kp := {x = (x1, x2) ∈ IR× IRn−1 | ∥x2∥p ≤ x1}
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with ∥ · ∥p denoting the p-norm. It is clear to see that when p = 2, K2 is exactly
the second-order cone, which confirms that the second-order cone is a special case
of p-order cone. It is also well known that the dual cone of Kp can be expressed as

(Kp)
∗ = {x = (x1, x2) ∈ IR× IRn−1 | ∥x2∥q ≤ x1} = Kq,

where q > 1 and satisfies 1
p + 1

q = 1. Miao, Qi and Chen [20] gave the following

spectral decomposition of x = (x1, x2) ∈ IR× IRn−1 with respect to Kp:

x = α1(x)v
(1)
x + α2(x)v

(2)
x ,

where α1(x), α2(x), v
1
x, and v2x are expressed as

α1(x) =
(x1 + ∥x2∥p)

2
, α2(x) =

(x1 − ∥x2∥p)
2

,

and

v(1)x =

[
1
w

]
, v(2)x =

[
1

−w

]
.

with w = x2
∥x2∥p if x2 ̸= 0, or any vector in IRn−1 satisfying ∥w∥p = 1 if x2 = 0.

3. Circular cone eigenvalue complementarity problems

Now, we consider the eigenvalue complementarity problems and circular cone
quadratic eigenvalue complementarity problems in the setting of the circular cone
Lθ. We will sum up the relationship between the solution of circular cone eigen-
value complementarity problems (or the solution of circular cone quadratic eigen-
value complementarity problems) and the solution of the corresponding circular
cone complementarity problems, respectively.

3.1. Circular cone eigenvalue complementarity problems. Consider the cir-
cular cone eigenvalue complementarity problems (CCEiCP for short): find (x, y, λ) ∈
IRn × IRn × IR such that

(3.1) CCEiCP(B,C) :


y = λBx− Cx,
x ∈ Lθ, y ∈ (Lθ)

∗, xT y = 0,
aTx = 1,

where B,C ∈ IRn×n and a is an arbitrary fixed point with a ∈ int((Lθ)
∗). We first

study the solvability of the CCEiCP that will be used in subsequent analysis.

Proposition 1. Suppose that x := (x1, x2) ∈ Lθ, y := (y1, y2) ∈ (Lθ)
∗. Then, the

following hold.

(a) xT y ≥ 0.
(b) If y ∈ int(Lθ), then xT y > 0 if and only if x ̸= 0.
(c) If x ̸= 0 and y ̸= 0, then

xT y = 0 ⇐⇒ x1 tan θ = ∥x2∥ y1 cot θ = ∥y2∥ and y = α(x1 tan
2 θ,−x2),

where α is a positive constant, or x = β(y1 cot
2 θ,−y2) with a positive con-

stant β.
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Proof. (a) It is obvious by the definition of dual cone.

(b) The result that xT y > 0 implies x ̸= 0 is trivial. We only prove the other
direction as follows. Since x ̸= 0, we know that x1 > 0. Otherwise, we have that
∥x2∥ ≤ x1 = 0 implies x = 0. Then, it follows that

xT y = x1y1 + xT2 y2 ≥ x1y1 − ∥x2∥∥y2∥ > x1y1 − x1 tan θ y1 cot θ = 0.

(c) The proof of this direction “⇐” is trivial. We only need to prove the direction
“⇒”. By the assumption x ̸= 0, we know that x1 > 0. Similarly, we obtain that
y1 > 0. Using the condition xT y = 0, the Schwarz’s inequality and the definition of
circular cones , we have

(3.2) x1y1 = |xT2 y2| ≤ ∥x2∥∥y2∥ ≤ (x1 tan θ)(y1 cot θ) = x1y1.

Thus, it follows that

(3.3) (x1 tan θ)(y1 cot θ) = x1y1 = ∥x2∥∥y2∥.

By combining ∥x2∥ ≤ x1 tan θ, ∥y2∥ ≤ y1 cot θ and (3.3), it yields

(3.4) x1 tan θ = ∥x2∥ and y1 cot θ = ∥y2∥.

Besides, by (3.2), (3.3) and (3.4) again, we have

xT2 y2 = −x1y1 = −∥x2∥∥y2∥.

This implies the equality holds in the Schwarz’s inequality. Hence, there exists a
constant k such that

(3.5) y2 = kx2.

Since k∥y2∥2 = xT2 y2 = −x1y1 < 0, we have k < 0. Choosing α = −k, it leads to
α > 0 and y2 = −αx2. Then, it follows from (3.4) and (3.5) that

y1 = ∥y2∥ tan θ = ∥ − αx2∥ tan θ = | − α|∥x2∥ tan θ = α∥x2∥ tan θ = αx1 tan
2 θ.

By this, we have y = α(x1 tan
2 θ,−x2). Thus, the proof is complete. 2

In the next theorem, we establish the relation between CCEiCP and the below
special circular cone complementarity problem (CCCP):

(3.6) CCCP(F ) : x ∈ Lθ, F (x) ∈ (Lθ)
∗, xTF (x) = 0,

where

(3.7) F (x) =

{
xTCx
xTBx

Bx− Cx if x ̸= 0,

0 if x = 0.

Theorem 3.1. Consider the CCEiCP(B,C) given as in (3.1) where B is positive
definite. Let F : IRn → IRn be defined as in (3.7). Then, the following hold.

(a) If (x∗, λ∗) solves the CCEiCP(B,C), then x∗ solves the CCCP(F ) (3.6).
(b) If x̄ is a nonzero solution of the CCCP(F ) (3.6), then (x∗, λ∗) solves the

CCEiCP(B,C) with λ∗ = x̄TCx̄
x̄TBx̄

and x∗ = x̄
aT x̄

.
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Proof. Part(a) is trivial and we only need to prove part(b). Suppose that x̄ is a
nonzero solution to the CCCP(F ) (3.6). Then, we have

x̄ ∈ Lθ,
x̄TCx̄

x̄TBx̄
·Bx̄− Cx̄ ∈ (Lθ)

∗, and x̄T
(
x̄TCx̄

x̄TBx̄
Bx̄− Cx̄

)
= 0.

Using a ∈ int((Lθ)
∗) and x̄ ∈ Lθ, we have 1

aT x̄
> 0. In view of all the above, we

conclude that

x∗ := 1
aT x̄

x̄ ∈ Lθ,

w∗ := λ∗Bx∗ − Cx∗ = 1
aT x̄

[(
x̄TCx̄
x̄TBx̄

)
Bx̄− Cx̄

]
∈ (Lθ)

∗,

(x∗)Tw∗ =
(

1
aT x̄

)2 [
x̄T

(
x̄TCx̄
x̄TBx̄

Bx̄− Cx̄
)]

= 0,

aTx∗ = aT x̄
aT x̄

= 1.

Thus, (x∗, λ∗) is a solution to the CCEiCP(B,C). 2

Remark 3.2. For the CCCP(F ) (3.6), based on Proposition 1, we note that if x is

a solution of the CCCP(F ) and x has the spectral decomposition: x = µ1(x)v
(1)
x +

µ2(x)v
(2)
x , F (x) can be written by F (x) = µ1(F (x))v

(2)
x + µ2(F (x))v

(1)
x . Therefore,

we only need to check both x ∈ bd(Lθ) and F (x) ∈ bd((Lθ)
∗). In addition, we

define

H1(x) =


µ1(x)

...
µ1(x)

µ1(F (x)).

 ∈ IRn and g1(z) :=
1

2
∥H1(z)∥2 =

1

2
H1(z)

TH1(z).

In fact, g is a merit function for the CCCP(F ). Then, we can obtain a solution of
the CCEiCP (3.1) by using Newton method for solving the equations H1(x) = 0.

Next, we consider the three special kinds of the circular cone complementarity
problems, which have the following forms:

(3.8) CCLCP(−C, 0) : x ∈ Lθ, −Cx ∈ (Lθ)
∗, xT (−Cx) = 0;

(3.9) CCCP(G1) :


x ∈ Lθ, λ ≥ 0,
λBx− Cx ∈ (Lθ)

∗, aTx− 1 ≥ 0,
xT (λBx− Cx) + λ(aTx− 1) = 0;

and

(3.10) CCCP(G2) :


x ∈ Lθ, λ ≥ 0,
−λBx− Cx ∈ (Lθ)

∗, aTx− 1 ≥ 0,
xT (−λBx− Cx) + λ(aTx− 1) = 0.

In fact, the solutions of the CCEiCP (3.1) have a close correspondence with the
solutions of the above three kinds of complementarity problems. We shall show the
relationship between the CCEiCP and the CCCP in the following theorems.
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Theorem 3.3. Let (x∗, λ∗) solves the CCEiCP(B,C) (3.1). Then, the following
hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the CCCP(G1) (3.9).
(b) If λ∗ < 0, then (x∗,−λ∗) solvesthe CCCP(G2) (3.10).
(c) If λ∗ = 0, then x∗ solves the CCLCP(−C,0) (3.8).

Proof. From the assumption that (x∗, λ∗) solves the CCEiCP(B,C) (3.1), we have

x∗ ∈ Lθ, λ
∗Bx∗ − Cx∗ ∈ (Lθ)

∗, (x∗)T (λ∗Bx∗ − Cx∗) = 0 and aTx∗ = 1.

To proceed, we discuss three cases of λ∗.

(a) If λ∗ > 0, then we have

(x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = (x∗)T (λ∗Bx∗ − Cx∗) = 0,

which implies that (x∗, λ∗) solves the CCCP (G1) (3.9).

(b) If λ∗ < 0, then we get that −λ∗ > 0 and

(x∗)T (λ∗Bx∗ − Cx∗)− λ∗(aTx∗ − 1) = (x∗)T (λ∗Bx∗ − Cx∗) = 0.

This indicates that (x∗,−λ∗) solves the CCCP(G2) (3.10).

(c) If λ∗ = 0, then it follows that

λ∗Bx∗ − Cx∗ = −Cx∗ ∈ (Lθ)
∗ and (x∗)T (−Cx∗) = (x∗)T (λ∗Bx∗ − Cx∗) = 0.

This implies that (x∗, 0) solves the CCLCP(−C,0) (3.8).

Based on the above arguments, the proof is complete. 2

Theorem 3.4. (a) If λ∗ ̸= 0 and (x∗, λ∗) solves the CCCP(G1) (3.9), then
(x∗, λ∗) solves the CCEiCP(B,C) (3.1).

(b) If λ∗ ̸= 0 and (x∗, λ∗) solves the CCCP(G2) (3.10), then (x∗,−λ∗) solves
the CCEiCP(B,C) (3.1).

(c) If x∗ solves the CCLCP(−C, 0) (3.8) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) solves the
CCEiCP(B,C) (3.1).

Proof. The proof is done by the below three cases..

Case (a): if λ∗ ̸= 0 and (x∗, λ∗) solves the CCCP(G1) (3.9), then we have
x∗ ∈ Lθ, λ∗ > 0,
λ∗Bx∗ − Cx∗ ∈ (Lθ)

∗, aTx∗ − 1 ≥ 0,
(x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

Combining with the definition of the dual cone again, it gives

(x∗)T (λ∗Bx∗ − Cx∗) = 0 and λ∗(aTx∗ − 1) = 0.

It follows from λ∗ > 0 that aTx∗− 1 = 0. Hence, (x∗, λ∗) solves the CCEiCP(B,C)
(3.1).
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Case (b): if λ∗ ̸= 0 and (x∗, λ∗) solves the CCCP(G2) (3.10), we have
x∗ ∈ Lθ, λ∗ > 0,
−λBx∗ − Cx∗ ∈ (Lθ)

∗, aTx∗ − 1 ≥ 0,
(x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

Then, it follows that (x∗)T (−λ∗Bx∗−Cx∗) = 0 and aTx∗−1 = 0. Hence, (x∗,−λ∗)
solves the CCEiCP(B,C) (3.1).

Case (c): if x∗ is a solution of CCLCP(−C, 0) (3.8) and x∗ ̸= 0, then it is easy to
see that ( x∗

aT x∗ , 0) solves the CCEiCP(B,C) (3.1).

Based on the above arguments, the proof is complete. 2

Remark 3.5. If let ϕ1 : IR
n×IRn → IR be a circular cone complementarity function

[16], based on Theorem 3.3 and Theorem 3.4, then the CCEiCP(B,C) in (3.1) can
be reformulated as the following nonsmooth system of equations

Φ1(z) = Φ1(x, y, λ) :=

 ϕ1(x, y)
λBx− Cx− y

aTx− 1

 = 0.(3.11)

By this, we can solve the CCEiCP (3.1) via using semismooth Newton method to
solve the nonsmooth system of equations (3.11).

Example 1. In the CCEiCP(B,C) (3.1) or the CCCP(G1) (3.9) and the CCCP(G2)
(3.10), let θ = π

3 . Suppose that the matrix B is the identity matrix, i.e., B := I,
and the matrix C takes the following matrices, respectively:

C1 :=

[
1 −1
0 2

]
, C2 :=

[
−1 1
0 −2

]
and C3 :=

[
0 1
−1 0

]
.

For the CCEiCP(B,C1), we find that w∗
1 := (x∗1 = (α, 0)T , λ∗

1 = 1) for any α > 0
are the solutions of this problems. At this moment, λ∗

1 = 1 > 0, by Theorem 3.3, it
follows that w∗

1 = (x∗1 = (α, 0)T , λ∗
1 = 1) are also the solutions of CCCP(G1) (3.9).

For the CCEiCP(B,C2), we know that w∗
2 := (x∗2 = (α, 0)T , λ∗

2 = −1) for any α > 0
are the solutions of this problems. Here, λ∗

2 = −1 < 0, by Theorem 3.3, it follows
that (x∗2 = (α, 0)T ,−λ∗

2 = 1) are the solutions of the CCCP(G2) (3.10).

For the CCEiCP(B,C3), it is easy to see that w∗
3 := (x∗3 = (1,−

√
3)T , λ∗

3 = 0)
is a solution of this problems. Now, λ∗

3 = 0, by Theorem 3.3 again, we have

x∗3 = (1,−
√
3)T is a solution of the CCCP(−C3, 0) (3.8).

Conversely, we know that w∗
1, w

∗
2 and x∗3 solve the CCCP(G1) (3.9), the CCCP(G2)

(3.10) and the CCCP(−C3, 0) (3.8), respectively. By Theorem 3.4, based on the

value of λ∗
i for i = 1, 2, 3, it follows that w∗

1, (x
∗
2,−λ∗

2) and (
x∗
3

aT x∗
3
, 0) are the solutions

of CCEiCP(B,Ci) for i = 1, 2, 3.
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3.2. Circular cone quadratic eigenvalue complementarity problems. In
this subsection, we consider the following circular cone quadratic eigenvalue com-
plementarity problems (CCQEiCP for short). Given matrices A,B,C ∈ IRn×n, the
CCQEiCP seeks to find (x, y, λ) ∈ IRn × IRn × IR such that

(3.12) CCQEiCP(A,B,C) :


y = λ2Ax+ λBx+ Cx,
x ∈ Lθ, y ∈ (Lθ)

∗, xT y = 0,
aTx = 1,

where a is an arbitrary fixed point with a ∈ int((Lθ)
∗).

Before discussing the properties of the CCQEiCP (3.12), we first introduce the
definition of Lθ-hyperbolic that will be used later.

Definition 1. A triple (A,B,C), with A,B,C ∈ IRn×n is called Lθ-hyperbolic if

(xTBx)2 ≥ 4(xTAx)(xTCx),

for all nonzero x ∈ Lθ.

Again, similar to Theorem 3.1, we build up the relation between the CCQEiCP
(3.12) and the CCCP (3.6).

Theorem 3.6. Consider the CCQEiCP(A,B,C) given as in (3.12) where A is
positive definite and a triple (A,B,C) is Lθ-hyperbolic. Let Fi : IRn → IRn be
defined as follows:

(3.13) Fi(x) =

{
λ2
i (x)Ax+ λi(x)Bx+ Cx if x ̸= 0,

0 if x = 0,

where λi(x) =
−(xTBx)+(−1)i+1

√
(xTBx)2−4(xTAx)(xTCx)

2(xTAx)
for i = 1, 2. Then the follow-

ing hold.

(a) If (x∗, λ∗) is a solution to the CCQEiCP(A,B,C), then x∗ solves either the
CCCP(F1) or the CCCP(F2).

(b) If x̄ is a nonzero solution to the CCCP(F1) or the CCCP(F2), then (x∗, λ∗)
is a solution of the CCQEiCP(A,B,C) with x∗ = x̄

aT x̄
and λ∗ = λ1(x̄) or

λ2(x̄).

Proof. The result of part(a) is trivial. We only need to prove part(b). Suppose that
x̄ is a nonzero solution to the CCCP(Fi) with Fi as in (3.13) for i = 1, 2. Then, for
each i, we know that

x̄ ∈ Lθ, λ2
i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄ ∈ Lθ and x̄T (λ2

i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄) = 0.

Since a ∈ int((Lθ)
∗) and x̄ ∈ Lθ, we have

1
aT x̄

> 0. From all the above, we conclude
that

x∗ := 1
aT x̄

x̄ ∈ Lθ,

w∗ := (λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ = 1
aT x̄

(
λ2
i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄

)
∈ (Lθ)

∗,

(x∗)Tw∗ =
(

1
aT x̄

)2 [
x̄T (λ2

i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄)

]
= 0,

aTx∗ = aT x̄
aT x̄

= 1.
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Thus, (λ∗, x∗) solves the CCQEiCP(A,B,C) and the proof is complete. 2

Remark 3.7. Similar to Remark 3.2, for the CCCP(Fi), where Fi is defined as in
(3.13) (i = 1, 2), we use the same skills to define

Hi1(x) =


µ1(x)

...
µ1(x)

µ1(Fi(x)).

 ∈ IRn

with i = 1, 2. Then, we obtain a solution of the CCQEiCP (3.12) via using Newton
method for solving the equation Hi1(x) = 0 (i = 1, 2).

Next, we consider two special classes of the circular cone complementarity prob-
lems, which have the following forms:

(3.14) CCCP(G4) :


x ∈ Lθ, λ ≥ 0,
λ2Ax+ λBx+ Cx ∈ (Lθ)

∗, aTx− 1 ≥ 0,
xT (λ2Ax+ λBx+ Cx) + λ(aTx− 1) = 0,

and

(3.15) CCCP(G5) :


x ∈ Lθ, λ ≥ 0,
λ2Ax− λBx+ Cx ∈ (Lθ)

∗, aTx− 1 ≥ 0,
xT (λ2Ax− λBx+ Cx) + λ(aTx− 1) = 0,

Similar to the cases of the CCEiCP (3.1), We will show the relationship between
the CCQEiCP(A,B,C), the CCLCP(C, 0) and the CCCP(Gi) for i = 4, 5.

Theorem 3.8. Let (x∗, λ∗) solves the CCQEiCP(A,B,C) (3.12). Then, the follow-
ing hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the CCCP(G4) (3.14).
(b) If λ∗ < 0, then (x∗,−λ∗) solves the CCCP(G5) (3.15).
(c) If λ∗ = 0, then x∗ solves the CCLCP(C,0) (3.8).

Proof. From the assumption that (x∗, λ∗) solves the CCQEiCP(A,B,C) (3.12), we
have

x∗ ∈ Lθ, (λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ ∈ (Lθ)
∗, (x∗)T

[
(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗

]
= 0

and aTx∗ = 1. To proceed, we discuss three cases.

Case (a): if λ∗ > 0, then we have

(x∗)T [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗] + λ∗(aTx∗ − 1) = 0.

This implies that (x∗, λ∗) solves the CCCP(G4) (3.14).

Case (b): if λ∗ < 0, then we have −λ∗ > 0 and

(x∗)T
[
(λ∗)2Ax∗ − λ∗Bx∗ + Cx∗

]
− λ∗(aTx∗ − 1) = 0.

This indicates that (x∗,−λ∗) solves the CCCP(G5) (3.15).
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Case (c): if λ∗ = 0, then we have

(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ = Cx∗ ∈ Lθ and (x∗)TCx∗ = 0.

This says that (x∗, 0) solves the CCLCP(C,0) (3.8).

Based on the above arguments, we prove the desired result. 2

Theorem 3.9. (a) If λ∗ ̸= 0 and (x∗, λ∗) solves the CCCP(G4) (3.14), then
(x∗, λ∗) solves the CCQEiCP(A,B,C) (3.12).

(b) If (x∗, λ∗) solves the CCCP(G5) (3.15) and λ∗ ̸= 0, then (x∗,−λ∗) solves
the CCQEiCP(A,B,C) (3.12).

(c) If x∗ solves CCLCP(−C, 0) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) is a solution to the
CCQEiCP(A,B,C) (3.12).

Proof. Again, the proof is done by discussing three cases.

Case (a): if λ∗ ̸= 0 and (x∗, λ∗) solves the CCCP(G4) (3.14), then we have
x∗ ∈ Lθ, λ∗ > 0,
(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ ∈ (Lθ)

∗, aTx∗ − 1 ≥ 0,
(x∗)T

[
(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗

]
+ λ∗(aTx∗ − 1) = 0.

By the definition of the dual cone, this implies (x∗)T [(λ∗)2Ax∗ + λ∗Bx∗ +Cx∗] = 0
and λ∗(aTx∗−1) = 0. In addition, it follows from λ∗ > 0 that aTx∗−1 = 0. Hence,
we obtain that (x∗, λ∗) solves the CCQEiCP(A,B,C) (3.12).

Case (b): if λ∗ ̸= 0 and (x∗, λ∗) solves the CCCP(G5) (3.15), then we have
x∗ ∈ Lθ, λ∗ > 0,
(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗ ∈ (Lθ)

∗, aTx∗ − 1 ≥ 0,
(x∗)T

[
(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗

]
+ λ∗(aTx∗ − 1) = 0.

This says that (x∗)T [(−λ∗)2Ax∗ + (−λ∗)Bx∗ +Cx∗] = 0 and aTx∗ − 1 = 0. Hence,
we obtain that (x∗,−λ∗) solves the CCQEiCP(A,B,C) (3.12).

Case (c): if x∗ solves the CCLCP(−C, 0) (3.8) and x∗ ̸= 0, then it is easy to see
that ( x∗

aT x∗ , 0) solves the CCQEiCP(A,B,C) (3.12).

Based on the above arguments, the proof is complete. 2

Remark 3.10. Similar to Remark 3.5, the CCQEiCP(A,B,C) in (3.12) can be
reformulated as the following nonsmooth system of equations

Ψ1(z) = Ψ1(x, y, λ) :=

 ϕ1(x, y)
λ2Ax+ λBx+ Cx− y

aTx− 1

 = 0,(3.16)

From this, we can solve the CCQEiCP(A,B,C) (3.12) via using semismooth Newton

method to solve the nonsmooth system of equations (3.16).
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4. p-order cone eigenvalue complementarity problems

In this section, we consider p-order cone eigenvalue complementarity problems
and p-order cone quadratic eigenvalue complementarity problems. Similar to the
cases of the circular cone, we will show the relationship between the solution of
p-order cone eigenvalue complementarity problems (or the solution of p-order cone
quadratic eigenvalue complementarity problems) and the solution of the correspond-
ing p-order cone complementarity problems, respectively.

4.1. p-order cone eigenvalue complementarity problems. Consider the p-
order cone eigenvalue complementarity problems (POCEiCP for short): find (x, y, λ) ∈
IRn × IRn × IR such that

(4.1) POCEiCP(B,C) :


y = λBx− Cx,
x ∈ Kp, y ∈ (Kp)

∗, xT y = 0,
aTx = 1,

where B,C ∈ IRn×n and a is an arbitrary fixed point with a ∈ int((Kp)
∗). First,

we introduce some notations for the sake of convenience. If x = (x1, x2) ∈ IR ×
IRn−1 and x2 = (x

(1)
2 , ..., x

(n−1)
2 )T , then we denote

(
|x(1)2 |p, · · · , |x(n−1)

2 |p
)T

by |x2|p.
Similar to the CCEiCP (Proposition 1), by Hölder’s inequality, we achieve the
version of p-order cone as the following proposition.

Proposition 2. Suppose that x := (x1, x2) ∈ Kp, y := (y1, y2) ∈ (Kp)
∗. Then, the

following hold.

(a) xT y ≥ 0.
(b) If y ∈ int(Kp), then xT y > 0 if and only if x ̸= 0.
(c) If x ̸= 0 and y ̸= 0, then

xT y = 0 ⇒ x1 = ∥x2∥p and |y2|q = α|x2|p,

where α is a positive constant. Similarly, if x ̸= 0 and y ̸= 0, then

xT y = 0 ⇒ y1 = ∥y2∥q and |x2|p = β|y2|q,

where β is a positive constant.

Proof. By the definition of dual cones, part(a) is obvious. For part(b), it is also
trivial that xT y > 0 implies x ̸= 0. We only prove the other direction as follows.
Since x ̸= 0, we know that x1 > 0. Otherwise, we have that ∥x2∥p ≤ x1 = 0 implies
x = 0. Thus, it yields

xT y = x1y1 + xT2 y2 ≥ x1y1 − ∥x2∥p∥y2∥q > x1y1 − x1y1 = 0.

Hence, we prove the result of part(b).

(c) “⇐” The proof of this direction is trivial. “⇒” By the assumption x ̸= 0, we
know that x1 > 0. Similarly, we know that y1 > 0. Using the condition of xT y = 0,
the Hölder’s inequality and the definition of circular cones, we have

(4.2) x1y1 = |xT2 y2| ≤ ∥x2∥p∥y2∥q ≤ x1y1
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which leads to

(4.3) x1y1 = ∥x2∥p∥y2∥q.

From x1 > 0, y1 > 0, x1 ≥ ∥x2∥p, y1 ≥ ∥y2∥q and the equality (4.3), it follows that

(4.4) x1 = ∥x2∥p and y1 = ∥y2∥q.

Moreover, by (4.2), (4.3) and (4.4) again, we have

xT2 y2 = −x1y1 = −∥x2∥∥y2∥.

This implies the equality holds in the Hölder’s inequality. Thus, there exists a
constant α such that

|y2|q = α|x2|p.
Then, the proof is complete. 2

Based on the cases of circular cone, we build up the relation between the POCE-
iCP and the below p-order cone complementarity problem (POCCP):

(4.5) POCCP(F ) : x ∈ Kp, F (x) ∈ (Kp)
∗, xTF (x) = 0,

where F : IRn → IRn be defined as in (3.7), i.e.,

F (x) =

{
xTCx
xTBx

Bx− Cx if x ̸= 0,

0 if x = 0.

Similar to Theorem 3.1, we use the same technique to establish the relation between

the POCEiCP and the POCCP.

Theorem 4.1. Consider the POCEiCP(B,C) given as in (4.1) where B is positive
definite. Then, the following hold.

(a) If (x∗, λ∗) solves the POCEiCP(B,C), then x∗ solves the POCCP(F ) (4.5).
(b) If x̄ is a nonzero solution to the POCCP(F ) (4.5), then (x∗, λ∗) solves the

POCEiCP(B,C) with λ∗ = x̄TCx̄
x̄TBx̄

and x∗ = x̄
aT x̄

.

Proof. The proof is similar to Theorem 3.1. Hence, we omit it. 2

Likewise, we consider the following three special classes of the p-order cone com-
plementarity problems:

(4.6) POCLCP(−C, 0) : x ∈ Kp, −Cx ∈ (Kp)
∗, xT (−Cx) = 0,

(4.7) POCCP(G1) :


x ∈ Kp, λ ≥ 0,
λBx− Cx ∈ (Kp)

∗, aTx− 1 ≥ 0,
xT (λBx− Cx) + λ(aTx− 1) = 0,
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and

(4.8) POCCP(G2) :


x ∈ Kp, λ ≥ 0,
−λBx− Cx ∈ (Kp)

∗, aTx− 1 ≥ 0,
xT (−λBx− Cx) + λ(aTx− 1) = 0,

where the matrixes B,C are given as in the POCEiCP (4.1).

Analogous to Theorem 3.3 and Theorem 3.4, we have the relation between the
POCEiCP and the POCCP.

Theorem 4.2. Let (x∗, λ∗) solves thePOCEiCP(B,C) (4.1). Then, the following
hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the POCCP(G1) (4.7).
(b) If λ∗ < 0, then (x∗,−λ∗) solves the POCCP(G2) (4.8).
(c) If λ∗ = 0, then x∗ solves the POCLCP(−C,0)(4.6).

Proof. The proof is similar to Theorem 3.3. Hence, we omit it. 2

Theorem 4.3. (a) If λ∗ ̸= 0 and (x∗, λ∗) solves the POCCP(G1) (4.7), then
(x∗, λ∗) solves the POCEiCP(B,C) (4.1).

(b) If λ∗ ̸= 0 and (x∗, λ∗) solves the POCCP(G2) (4.8), then (x∗,−λ∗) solves
the POCEiCP(B,C) (4.1).

(c) If x∗ solves the POCLCP(−C, 0)(4.6) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) solves the
POCEiCP(B,C) (4.1).

Proof. The proof is similar to Theorem 3.4. Hence, we omit it. 2

Remark 4.4. If let ϕ2 : IR
n×IRn → IR be a p-order cone complementarity function,

based on Theorem 4.2 and Theorem 4.3, then the POCEiCP(B,C) in (4.1) can be
reformulated as the following nonsmooth system of equations:

Φ2(z) = Φ2(x, y, λ) :=

 ϕ2(x, y)
λBx− Cx− y

aTx− 1

 = 0.(4.9)

Accordingly, we can solve the POCEiCP (4.1) via using semismooth Newton method
to solve the nonsmooth system of equations (4.9).

4.2. p-order Cone quadratic eigenvalue complementarity problems. Now,
we consider the p-order cone quadratic eigenvalue complementarity problems (POC-
QEiCP for short) as follows: given matrices A,B,C ∈ IRn×n, the POCQEiCP seeks
to find (x, y, λ) ∈ IRn × IRn × IR such that

(4.10) POCQEiCP(A,B,C) :


y = λ2Ax+ λBx+ Cx,
x ∈ Kp, y ∈ (Kp)

∗, xT y = 0,
aTx = 1,
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where a is an arbitrary fixed point with a ∈ int((Kp)
∗). We first introduce the

definition of Kp-hyperbolic, which will be used later.

Definition 2. A triple (A,B,C), with A,B,C ∈ IRn×n is called Kp-hyperbolic if

(xTBx)2 ≥ 4(xTAx)(xTCx),

for all nonzero x ∈ Kp.

Again, analogous to Theorem 3.6, we build up the relation between POCQEiCP
and the POCCP.

Theorem 4.5. Consider the POCQEiCP(A,B,C) given as in (4.10) where A is
positive definite and the triple (A,B,C) is Kp-hyperbolic. Let Fi : IRn → IRn be
defined as in (3.13). Then, the following hold.

(a) If (x∗, λ∗) solves the POCQEiCP(A,B,C), then x∗ solves either the POCCP(F1)
or the POCCP(F2).

(b) If x̄ is a nonzero solution to the POCCP(F1) or the POCCP(F2), then
(x∗, λ∗) solves the POCQEiCP(A,B,C) with x∗ = x̄

aT x̄
and λ∗ = λ1(x̄) or

λ2(x̄), where

λi(x) =
−(xTBx) + (−1)i+1

√
(xTBx)2 − 4(xTAx)(xTCx)

2(xTAx)

for i = 1, 2.

Proof. The proof is similar to Theorem 3.6. Hence, we omit it. 2

Lastly, we consider the following two special kinds of p-order cone complemen-
tarity problems:

(4.11) POCCP(G4) :


x ∈ Kp, λ ≥ 0,
λ2Ax+ λBx+ Cx ∈ (Kp)

∗, aTx− 1 ≥ 0,
xT (λ2Ax+ λBx+ Cx) + λ(aTx− 1) = 0,

and

(4.12) POCCP(G5) :


x ∈ Kp, λ ≥ 0,
λ2Ax− λBx+ Cx ∈ (Kp)

∗, aTx− 1 ≥ 0,
xT (λ2Ax− λBx+ Cx) + λ(aTx− 1) = 0.

Accordingly, we have the relation between the POCEiCP and the POCCP.

Theorem 4.6. Let (x∗, λ∗) solves the POCQEiCP(A,B,C) (4.10). Then, the fol-
lowing hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the POCCP (G4) (4.11).
(b) If λ∗ < 0, then (x∗,−λ∗) solves the POCCP(G5) (4.12).
(c) If λ∗ = 0, then x∗ solves the POCLCP(C,0).
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Proof. The proof is similar to Theorem 3.8. Hence, we omit it. 2

Theorem 4.7. (a) If λ∗ ̸= 0 and (x∗, λ∗) solves the POCCP(G4) (4.11), then
(x∗, λ∗) solves the POCQEiCP(A,B,C) (4.10).

(b) If λ∗ ̸= 0 and (x∗, λ∗) solves the POCCP(G5) (4.12), then (x∗,−λ∗) solves
POCQEiCP(A,B,C) (4.10).

(c) If x∗ solves POCLCP(−C, 0) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) is a solution of the
POCLCP(−C,0).

Proof. The proof is similar to Theorem 3.9. Hence, we omit it. 2

Remark 4.8. Similar to Remark 3.10, the POCQEiCP(A,B,C) in (4.10) can be
reformulated as the following nonsmooth system of equations:

Ψ2(z) = Ψ2(x, y, λ) :=

 ϕ2(x, y)
λ2Ax+ λBx+ Cx− y

aTx− 1

 = 0.(4.13)

From this, we can solve the POCQEiCP(A,B,C) (4.10) vis using semismooth New-

ton method to solve the nonsmooth system of equations (4.13).
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