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Abstract. In this paper, we investigate the issue of error bounds for sym-

metric cone complementarity problems (SCCPs). In particular, we show that
the distance between an arbitrary point in Euclidean Jordan algebra and the

solution set of the symmetric cone complementarity problem can be bounded

above by some merit functions such as Fischer-Burmeister merit function, the
natural residual function and the implicit Lagrangian function. The so-called

R0-type conditions, which are new and weaker than existing ones in the lit-

erature, are assumed to guarantee that such merit functions can provide local
and global error bounds for SCCPs. Moreover, when SCCPs reduce to lin-

ear cases, we demonstrate such merit functions cannot serve as global error

bounds under general monotone condition, which implicitly indicates that the
proposed R0-type conditions cannot be replaced by P -type conditions which

include monotone condition as special cases.

1. Introduction. The symmetric cone complementarity problem (henceforth SC-
CP) is to find a vector x ∈ V such that

x ∈ K, F (x) ∈ K and 〈x, F (x)〉 = 0, (1)

where V is a Euclidean Jordan algebra, K ⊂ V is a symmetric cone (see Section 2
for details), 〈·, ·〉 denotes the usual Euclidean inner product and F is a continuous
mapping from V into itself. When F reduces to a linear transformation L, i.e.,
F (x) = L(x) + q with q ∈ V, the above symmetric cone complementarity problem
becomes

x ∈ K, L(x) + q ∈ K and 〈x, L(x) + q〉 = 0,

which is called a symmetric cone linear complementarity problem and denoted by
SCLCP.

In this paper, we focus on the issue of error bounds for symmetric cone comple-
mentarity problems. More specifically, we want to know, under what conditions,
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the distance between an arbitrary point x ∈ V and the solution set of SCCPs can
be bounded above by a merit function. Recall that a function ψ : V → R is called
a merit function for SCCPs if ψ(x) ≥ 0 for all x and ψ(x) = 0 ⇔ x solves SCCPs.
Error bounds for complementarity problems have received increasing attention in
the recent literature because they play important roles in sensitivity analysis where
the problem data is subject to perturbation, and convergence analysis of some well-
known iterative algorithms [7, 10, 11, 13] for solving the complementarity problems,
see [16, 20]. Usually, finding global error bound through the following merit function

ψ
NR

(x) := ‖φ
NR

(x, F (x))‖2 where φ
NR

(x, y) = x− (x− y)+ ∀x, y ∈ V (2)

is a popular way because it is easier to compute, where φ
NR

is the natural residual
complementarity function and z+ is the the metric projection of z ∈ V onto the
symmetric cone K. There are other merit functions which can provide global er-
ror bounds such as Fischer-Burmeister merit function and the implicit Lagrangian
function. In particular, for symmetric cone complementarity problems, such merit
functions are defined as follows.

ψFB(x) :=
1

2
‖φFB(x, F (x))‖2 where φFB(x, y) = (x+ y)− (x2 + y2)

1
2 ∀x, y ∈ V

(3)
and

ψMS(x) := 2α〈x, F (x)〉+ {‖(−αF (x) + x)+‖2

−‖x‖2 + ‖(−αx+ F (x))+‖2 − ‖F (x)‖2}. (4)

Here x2 = x ◦ x denotes the Jordan product of x and x, x
1
2 is the unique element

that satisfies (x
1
2 )2 = x, ‖ · ‖ denotes the standard Euclidean norm, and α > 0 is a

penalty parameter.
Issues regarding error bounds have been studied for classical linear or nonlinear

complementarity problems. For linear complementarity problems (LCPs), ψ
NR

(x),
ψFB(x) and ψMS(x) are shown to be local error bounds for any LCPs [15, 16, 25],
whereas ψNR(x) and ψMS(x) are shown to be global error bounds for LCPs under
the condition of R0-matrix [15, 19] or P -matrix [18]. In addition, Chen and Xiang
[5] give a computable error bound for the P -matrix LCPs. In general, in order to
obtain global error bounds for nonlinear complementarity problems (NCPs), ψ

NR
(x)

needs to satisfy some stronger conditions such as F being a uniform P -function and
Lipschitz continuity, or F being a strongly monotone [4, 12]. Furthermore, the
so-called R0-type conditions for NCPs are investigated by Chen in [2].

It is known that symmetric cone complementarity problems provide a unified
framework for nonlinear complementarity problems (NCPs), semidefinite comple-
mentarity problems (SDCPs) and second-order cone complementarity problems
(SOCCPs). Along this line, there is some research work on error bounds for SCCP-
s. For instance, Chen [3] gives some conditions towards error bounds and bounded
level sets for SOCCPs; Pan and Chen [22] consider error bound and bounded level
sets of a one-parametric class of merit functions for SCCPs; Kong, Tuncel and Xiu
[14] study error bounds of the implicit Lagrangian ψ

MS
(x) for SCCPs. In gener-

al, one needs conditions such as F has the uniform Cartesian P -property and is
Lipschitz continuous. Besides, Liu, Zhang and Wang [17] study error bounds of a
class of merit functions for SCCPs, where the transformation F needs to be uniform
P ∗-property which is a more stringent condition. In this paper, motivated by [2],
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we consider other conditions, which are indeed different from the aforementioned
ones and called R0-type conditions, to find error bounds for SCCPs.

The paper is organized as follows. In section 2, some preliminaries on Euclidean
Jordan algebra associated with symmetric cone are introduced. Moreover, we define
a class of R0-type functions in Euclidean Jordan algebra V. In section 3, we show
the same growth of Fischer-Burmeister merit function ψ

FB
(x), the natural residual

function ψNR(x) and the implicit Lagrangian function ψMS(x). In sections 4 and
5, we provide local and global error bounds for SCCPs or SCLCPs with R0-type
conditions, respectively. Concluding remarks are given in section 6.

Throughout this paper, let R denote the space of real numbers. For an x ∈ V,
(·)− be defined by x− := x+ − x. In fact, x− is the metric projection of −x onto
the symmetric cone K (see [26]). In this paper, we need the concept of BD-regular
function [21]. For a locally Lipsctizian function H : V→ V, the set

∂BH(x) = {lim∇H(xk) : xk → x, xk ∈ DH}
is called the B-subdifferential of H at x, where DH denotes the set of points where H
is F -differentiable. The function H is said to be BD-regular at x if all the elements
in ∂BH(x) are nonsingular. In addition, S denotes the solution set of SCCPs and
we assume that S 6= ∅.

2. Preliminaries. In this section, we briefly review some basic concepts and back-
ground materials on Euclidean Jordan algebra, which is a basic tool extensively used
in the subsequent analysis. More details can be found in [6, 26].

A triple (V, ◦, 〈·, ·〉) (V for short) is called a Euclidean Jordan algebra where
(V, 〈·, ·〉) is a finite dimensional inner product space over R and (x, y) 7→ x ◦ y :
V× V→ V is a bilinear mapping satisfying

(i): x ◦ y = y ◦ x for all x, y ∈ V
(ii): x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V
(iii): 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ V

where x2 := x ◦ x, and x ◦ y is called the Jordan product of x and y. If a Jordan
product only satisfies the conditions (i) and (ii) in the definition of Euclidean Jordan
algebra V, the algebra V is said to be a Jordan algebra. Throughout the paper we
assume that V is a Euclidean Jordan algebra with an identity element e and with
the property x ◦ e = x for all x ∈ V. In a given Euclidean Jordan algebra V, the set
of squares K := {x2 : x ∈ V} is a symmetric cone [6, Theorem III.2.1]. This means
that K is a self-dual closed convex cone and, for any two elements x, y ∈ int(K),
there exists an invertible linear transformation Γ : V → V such that Γ(x) = y and
Γ(K) = K. Consider the Euclidean Jordan algebra V and the convex cone K ⊂ V.
This K induces a partial order on V, i.e., for any x ∈ V,

x ∈ K (x ∈ int(K)) ⇐⇒ x � 0 (x � 0).

An element c ∈ V such that c2 = c is called an idempotent in V; it is a primitive
idempotent if it is nonzero and cannot be written as a sum of two nonzero idempo-
tents. We say that a finite set {e1, e2, · · · , er} of primitive idempotents in V is a
Jordan frame if

ei ◦ ej = 0 for i 6= j, and

r∑
i=1

ei = e,

where r is called the rank of V. Now, we recall the spectral decomposition and
Peirce decomposition of an element x in V.
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Theorem 2.1. (The Spectral Decomposition Theorem) [6, Theorem III.1.2] Let V
be a Euclidean Jordan algebra. Then there is a number r such that, for every x ∈ V,
there exists a Jordan frame {e1, e2, · · · , er} and real numbers λ1, λ2, · · · , λr with

x = λ1e1 + · · ·+ λrer.

Here, the numbers λi (i = 1, · · · , r) are the eigenvalues of x and the expression
λ1e1 + · · ·+ λrer is the spectral decomposition (or the spectral expansion) of x.

In a Euclidean Jordan algebra V, let ‖ · ‖ be the norm induced by inner product

‖x‖ :=
√
〈x, x〉 for any x ∈ V. Corresponding to the closed convex cone K, let ΠK

denote the metric projection onto K, that is, for an x ∈ V, x∗ = ΠK(x) if and only
if x∗ ∈ K and ‖x− x∗‖ ≤ ‖x− y‖ for all y ∈ K. It is well known that x∗ is unique.
For any x ∈ V, let x+ denote the metric projection ΠK(x) of x onto K in this paper.
Combining the spectral decomposition of x with the metric projection of x onto K,
we have the expression of metric projection x+ as follows [9]:

x+ = ΠK(x) = max{0, λ1}e1 + · · ·+ max{0, λr}er,
and

x− = ΠK(x) = max{0,−λ1}e1 + · · ·+ max{0,−λr}er.
Further, we have x = x+ − x−, 〈x+, x−〉 = 0 and x+ ◦ x− = 0. Corresponding to
each x ∈ V, let λi(x) (i = 1, 2, · · · , r) denote the eigenvalues of x. In the sequel, we
write

ω(x) := max
1≤i≤r

λi(x) and ν(x) := min
1≤i≤r

λi(x).

With these notations, we note that

−x ∈ K ⇐⇒ ω(x) ≤ 0 and x ∈ K ⇐⇒ ν(x) ≥ 0.

We want to point out that different elements x, y have their own Jordan frames in
spectral decomposition, which are not easy to handle when we need to do operations
for x and y. Thus, we need another so-called Peirce decomposition to conquer such
difficulty. In other words, in Peirce decomposition, different elements x, y share the
same Jordan frame. We elaborate them more as below.

The Peirce decomposition: Fix a Jordan frame {e1, e2, · · · , er} in a Euclidean
Jordan algebra V. For i, j ∈ {1, 2, · · · , r}, we define the following eigenspaces

Vii := {x ∈ V | x ◦ ei = x} = Rei

and

Vij :=

{
x ∈ V | x ◦ ei =

1

2
x = x ◦ ej

}
for i 6= j.

Theorem 2.2. [6, Theorem IV.2.1] The space V is the orthogonal direct sum of
spaces Vij(i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj ,
Vij ◦ Vjk ⊂ Vik, if i 6= k,

Vij ◦ Vkl = {0}, if {i, j} ∩ {k, l} = ∅.
Hence, given any Jordan frame {e1, e2, · · · , er}, we can write any element x ∈ V as

x =

r∑
i=1

xiei +
∑
i<j

xij ,
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where xi ∈ R and xij ∈ Vij. The expression
∑r
i=1 xiei +

∑
i<j xij is called the

Peirce decomposition of x.

Given a Euclidean Jordan algebra V with dim(V) = n > 1, from Proposition
III 4.4-4.5 and Theorem V.3.7 in [6], we know that any Euclidean Jordan algebra
V and its corresponding symmetric cone K are, in a unique way, a direct sum
of simple Euclidean Jordan algebras and the constituent symmetric cones therein,
respectively, i.e.,

V = V1 × · · · × Vm and K = K1 × · · · × Km,

where every Vi is a simple Euclidean Jordan algebra (that cannot be a direct sum
of two Euclidean Jordan algebras) with the corresponding symmetric cone Ki for
i = 1, · · · ,m, and n =

∑m
i=1 ni (ni is the dimension of Vi). Therefore, for any

x = (x1, · · · , xm)T and y = (y1, · · · , ym)T ∈ V with xi, yi ∈ Vi, we have

x ◦ y = (x1 ◦ y1, · · · , xm ◦ ym)T ∈ V and 〈x, y〉 = 〈x1, y1〉+ · · ·+ 〈xm, ym〉.

We end this section with some concepts on R0-type functions, which are crucial
to establishing global error bounds. First, for any x ∈ V, let λi(x)(i = 1, · · · , r)
denote the eigenvalues of x and

ω(x) := max
1≤i≤r

λi(x).

Definition 2.3. A function F : V→ V is called

(a): an Rs0-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+
‖xk‖

→ 0,
(−F (xk))+
‖xk‖

→ 0,

we have

lim inf
k→∞

ω(φNR(xk, F (xk)))

‖xk‖
> 0;

(b): an Rs01-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+
‖xk‖

→ 0,
(−F (xk))+
‖xk‖

→ 0,

we have

lim inf
k→∞

〈xk, F (xk)〉
‖xk‖

> 0;

(c): an Rs02-function if for any sequence {xk} that satisfies

‖xk‖ → ∞,
(−xk)+
‖xk‖

→ 0,
(−F (xk))+
‖xk‖

→ 0,

we have

lim inf
k→∞

ω(xk ◦ F (xk))

‖xk‖
> 0.

From the property 〈x, y〉 ≤ ω(x ◦ y)‖e‖2 (see [26, Proposition 2.1(ii)]) and the
above concepts, it is not hard to see that Rs01 ⇒ Rs02. In addition, by applying
the Peirce Decomposition Theorem, the following lemma shows another implication
Rs0 ⇒ Rs02.

Lemma 2.4. If the function F : V → V is an Rs0-function, then F is an Rs02-
function.
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Proof. For the sake of simplicity, for any x, y ∈ V, we let

x u y := x− (x− y)+, x t y := y + (x− y)+.

It is easy to verify that x t y := y + (x− y)+ = x+ (y − x)+. Moreover, these are
commutative operations with

(x u y) ◦ (x t y) = x ◦ y, x u y + x t y = x+ y

and
x t y − x u y = |y − x| ∈ K.

If we consider the element x u y = x− (x− y)+ ∈ V and apply Spectral decompo-
sition (Theorem 2.1), there exist a Jordan frame {e1, e2, · · · , er} and real numbers
λ1, λ2, · · · , λr such that

x u y = λ1e1 + · · ·+ λrer.

On the other hand, considering the element xt y = x+ (y− x)+ ∈ V and applying
Peirce decomposition (Theorem 2.2), we know

x t y =

r∑
i=1

xiei +
∑
i<j

xij

with xi ∈ R and xij ∈ Vij . Without loss of generality, let λ1 = ω(xuy). To proceed
the arguments, we first establish an inequality:

x1 ≥ λ1.
Note that

(x t y − x u y) =

r∑
i=1

(xi − λi)ei +
∑
i<j

xij ∈ K.

Thus, it follows that

〈x t y − x u y, e1〉 = (x1 − λ1)‖e1‖2 ≥ 0,

which yields x1 ≥ λ1. Now suppose Rs0 condition holds. Take a sequence {xk}
satisfying the required condition in Definition 2.3 (c), i.e.,

‖xk‖ → ∞,
(−xk)+
‖xk‖

→ 0,
(−yk)+
‖xk‖

→ 0,

where yk := F (xk). From Rs0 condition, we have

lim inf
k→∞

ω(xk u yk)

‖xk‖
= lim inf

k→∞

λ1
‖xk‖

> 0 and λ1 > 0. (5)

For the element xk ◦ yk ∈ V, applying Spectral decomposition (Theorem 2.1) again,
there exist a Jordan frame {f1, f2, · · · , fr} and real numbers µ1, µ2, · · · , µr with
µ1 ≥ µ2 ≥ · · · ≥ µr such that

xk ◦ yk = µ1f1 + · · ·+ µrfr.

Then, we have ω(xk ◦ yk) = µ1. On the other hand,

xk ◦ yk = (xk u yk) ◦ (xk t yk)

= (λ1e1 + · · ·+ λrer) ◦ (

r∑
i=1

xiei +
∑
i<j

xij)

=

r∑
i=1

λixiei +

r∑
i=1

λiei ◦ (
∑
i<j

xij)
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=

r∑
i=1

λixiei +

r∑
i=1

λi
2

∑
i<j

xij .

Hence,

λ1x1〈e1, e1〉 = 〈xk ◦ yk, e1〉
= µ1〈f1, e1〉+ µ2〈f2, e1〉+ · · ·+ µr〈fr, e1〉
≤ µ1〈f1, e1〉+ µ1〈f2, e1〉+ · · ·+ µ1〈fr, e1〉
≤ rµ1θ,

where θ = max{〈f1, e1〉, · · · , 〈fr, e1〉}. This leads to

µ1

‖xk‖
≥ λ1x1〈e1, e1〉

rθ‖xk‖
,

which combining with the formula (5) implies that

lim inf
k→∞

ω(xk ◦ yk)

‖xk‖
= lim inf

k→∞

µ1

‖xk‖
≥ lim inf

k→∞

λ1x1〈e1, e1〉
rθ‖xk‖

> 0,

where the second inequality holds due to x1 ≥ λ1 > 0 and 〈e1,e1〉rθ > 0. Therefore,
the implication Rs0 ⇒ Rs02 holds.

Next, we introduce the so-called weak R0-type functions, which will be used to
establish bounded level sets for SCCPs.

Definition 2.5. A function F : V→ V is called an Rw0 -function if for any sequence
{xk} that satisfies

‖xk‖ → ∞, lim sup
k→∞

ω((−xk)+) <∞, lim sup
k→∞

ω((−F (xk))+) <∞,

we have
ω(xk u F (xk))→∞.

When the mapping F is a linear mapping, that is, F (x) = L(x) + q for q ∈ V,
Rs0-function and Rw0 -function are equivalent to R0-property (or R0-matrix) of L
(i.e., the SCLCP with q = 0 has a unique zero solution). Those proofs are similar
to proofs for [2, Proposition 2.2]. Hence, we omit them. Moreover, by the definition
2.3 and 2.5, we have the following relation between Rs0 and Rw0 .

Theorem 2.6. For the function F : V→ V, we have

Rs0 =⇒ Rw0 .

Proof. Suppose Rs0 condition holds. Take a sequence {xk} satisfying the required
condition in Definition 2.5, i.e.,

‖xk‖ → ∞, lim sup
k→∞

ω((−xk)+) <∞, lim sup
k→∞

ω((−F (xk))+) <∞.

It follows that

‖xk‖ → ∞,
(−xk)+
‖xk‖

→ 0,
(−yk)+
‖xk‖

→ 0.

By the definition of Rs0, we have

lim inf
k→∞

ω(xk u yk)

‖xk‖
> 0.

Combining with ‖xk‖ → ∞ implies that

ω(xk u yk)→∞.
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Therefore, the implication Rs0 ⇒ Rw0 holds.

3. Growth behavior of ψFB , ψNR and ψMS . In this section, we show results
that indicate the same growth of merit functions ψ

FB
, ψ

NR
and ψ

MS
. The following

theorem tells us that ψ
NR

and ψ
MS

have the same growth behavior.

Theorem 3.1. Let ψ
NR

and ψ
MS

be defined as in (2) and (4), respectively. For
each α > 1, the following holds

2(α− 1)ψ
NR

(x) ≤ ψ
MS

(x) ≤ 2α(α− 1)ψ
NR

(x) ∀x ∈ V. (6)

Proof. To begin the proof, we denote

f(x, α) := −〈αF (x), (x− αF (x))+ − x〉 −
1

2
‖(x− αF (x))+ − x‖2 .

We want to point out that there is another expression for f(x, α) as given below,
see [8, Thm 3.1].

f(x, α) = max
y∈K
−
〈
αF (x) +

1

2
(y − x), y − x

〉
= −

〈
αF (x) +

1

2
((x− αF (x))+ − x), (x− αF (x))+ − x

〉
(7)

≥ −
〈
αF (x) +

1

2
((x− F (x))+ − x), (x− F (x))+ − x

〉
.

Now, we compute

1

α
f(x, α) = −〈F (x), (x− αF (x))+ − x〉 −

1

2α
‖(x− αF (x))+ − x‖2

= 〈x, F (x)〉+
1

α
〈x− αF (x), (x− αF (x))+〉

− 1

2α
‖(x− αF (x))+‖2 −

1

2α
‖x‖2

= 〈x, F (x)〉+
1

2α

(
‖(x− αF (x))+‖2 − ‖x‖2

)
.

Likewise,

f(x, 1) = −
〈
F (x) +

1

2
((x− F (x))+ − x), (x− F (x))+ − x

〉
and

αf(x,
1

α
) = − 1

2α

(
‖(−αx+ F (x))+‖2 − ‖F (x)‖2

)
.

Combining the above two equations, we obtain an identity for ψMS(x)

ψMS(x) = 2α

(
1

α
f(x, α)− αf(x,

1

α
)

)
. (8)

To show the desired two inequalities, we proceed by two steps. The first step is to
verify the left-hand side of (6). To see this,

ψMS(x) = 2α

(
1

α
f(x, α)− αf(x,

1

α
)

)
= 2α

(
1

α
f(x, α)− f(x, 1)

)
+ 2α

(
f(x, 1)− αf(x,

1

α
)

)
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≥ 2α

[
− 〈F (x), (x− F (x))+ − x〉 −

1

2α
‖(x− F (x))+ − x‖2

+〈F (x), (x− F (x))+ − x〉+
1

2
‖(x− F (x))+ − x‖2

]
+2α

(
f(x, 1)− αf(x,

1

α
)

)
= 2α

α− 1

2α
ψNR(x) + 2α

(
f(x, 1)− αf(x,

1

α
)

)
= (α− 1)ψ

NR
(x) + 2α

[
− 〈F (x), (x− F (x))+ − x〉

−1

2
‖(x− F (x))+ − x‖2 +

〈
F (x), (x− 1

α
F (x))+ − x

〉
+
α

2
‖(x− 1

α
F (x))+ − x‖2

]
≥ (α− 1)ψ

NR
(x) + 2α

α− 1

2α
ψ

NR
(x)

= 2(α− 1)ψ
NR

(x),

where the first inequality follows from (7). Next, we verify the right-hand side of
(6). To this end, we observe two things:

1

α
f(x, α)− f(x, 1)

= −〈F (x), (x− αF (x))+ − x〉 −
1

2α
‖(x− αF (x))+ − x‖2

+〈F (x), (x− F (x))+ − x〉+
1

2
‖(x− F (x))+ − x‖2

=
α− 1

2α
ψNR(x) +

1

2α
ψNR(x)− 1

2α
‖(x− αF (x))+ − x‖2

+〈F (x), (x− F (x))+ − (x− αF (x))+〉

=
α− 1

2
ψNR(x)− (α− 1)2

2α
ψNR(x)

− 1

2α
‖(x− αF (x))+ − (x− F (x))+‖2 +

1

α
‖(x− F (x))+ − x‖2

− 1

α
〈(x− αF (x))+ − x, (x− F (x))+ − x〉

+〈F (x), (x− F (x))+ − (x− αF (x))+〉

=
α− 1

2
ψNR(x)

− 1

2α
‖(α− 1)(x− (x− F (x))+) + (x− αF (x))+ − (x− F (x))+‖2

−〈(x− F (x))+ − x+ F (x), (x− αF (x))+ − (x− F (x))+〉

≤ α− 1

2
ψNR(x)

and

f(x, 1)− αf(x,
1

α
)
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= −〈F (x), (x− F (x))+ − x〉 −
1

2
‖(x− F (x))+ − x‖2

+〈F (x), (x− 1

α
F (x))+ − x〉+

α

2

∥∥∥∥(x− 1

α
F (x))+ − x

∥∥∥∥2
= max

y∈K
−〈F (x) +

1

2
(y − x), y − x〉+ αmin

y∈K
〈 1
α
F (x) +

1

2
(y − x), y − x〉

≤ −
〈
F (x) +

1

2
((x− F (x))+ − x), (x− F (x))+ − x

〉
+
〈
F (x) +

α

2
((x− F (x))+ − x), (x− F (x))+ − x

〉
=

α− 1

2
‖(x− F (x))+ − x‖2

=
α− 1

2
ψ

NR
(x).

The above two expressions together with the identity (8) yield

ψ
MS

(x) ≤ 2α

(
α− 1

2
ψ

NR
(x) +

α− 1

2
ψ

NR
(x)

)
= 2α(α− 1)ψNR(x).

Thus, the proof is complete.

The same growth of the ψNR and ψFB is already proved in [1, Proposition 3.1]
that we present it as below theorem.

Theorem 3.2. Let ψNR and ψFB be defined as in (2) and (3), respectively. Then,(
2−
√

2
)
‖φNR(x, y)‖ ≤ ‖φFB(x, y)‖ ≤

(
2 +
√

2
)
‖φNR(x, y)‖

for any x, y ∈ V.

Combining Theorem 3.1 and Theorem 3.2, we can reach the conclusion that ψ
FB

,
ψ

NR
, and ψ

MS
have the same growth.

4. Local Error Bounds. This section contains the proofs of boundedness of level
set and local error bounds for SCCPs. To obtain such properties, we first present
the definition of the local error bound and two lemmas that play important roles in
the following analysis.

Definition 4.1. For the residual function r(x) = ‖φNR(x, F (x))‖, the function r(x)
is a local error bound if there exist constants c > 0 and δ > 0 such that for each
x ∈ {x ∈ V | d(x, S) ≤ δ}, there holds

d(x, S) ≤ cr(x),

where S denote the solution set of the problem (1) and d(x, S) = infy∈S ‖x− y‖.

Lemma 4.2. Let φ
FB

be defined as in (3). Then, for any x, y ∈ V,

‖(φ
FB

(x, y))+‖2 ≥
1

2

(
‖(−x)+‖2 + ‖(−y)+‖2

)
.

Proof. This is the result of [22, Lemma 5.2].
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Lemma 4.3. Let φNR be defined as in (2). Then, for any x, y ∈ V, there is a
constant β > 0 such that

‖φNR(x, y)‖2 ≥ β

2

(
‖(−x)+‖2 + ‖(−y)+‖2

)
.

Proof. By applying Theorem 3.2 and Lemma 4.2, the desired result is obtained
immediately.

For simplicity, we denote r(x) := ‖φ
NR

(x, F (x))‖ in the remaining part of this

paper and call it a residual function. It is trivial that r(x) = (ψNR(x))
1
2 for any

x ∈ V.

Theorem 4.4. Consider the residual function r(x) = ‖φ
NR

(x, F (x))‖. If F is an
Rw0 -function, then the level set L(γ) := {x ∈ V| r(x) ≤ γ} is bounded for all γ ≥ 0.

Proof. Suppose there is an unbounded sequence {xk} ⊆ L(γ) for some γ > 0. If
lim supω((−xk)+) =∞, then (through a subsequence) ‖(−xk)+‖ → ∞, by Lemma
4.3, which implies that r(xk) → ∞. This contradicts the boundness of L(γ). A
similar contradiction ensues if lim supω((F (−xk))+) = ∞. Thus, for the specified
unbounded sequence {xk} satisfing the condition in Definition 2.5, by Definition
2.5, we also obtain that ω(φNR(xk, F (xk)))→∞. With r(xk) = ‖φNR(xk, F (xk))‖,
it is easy to see that r(xk)→∞. This leads to a contradiction. Consequently, the
level set L(γ) := {x ∈ V| r(x) ≤ γ} is bounded for all γ ≥ 0.

Theorem 4.4 says that r(x) has property of bounded level set under R0-type
condition. However, r(x) cannot serve as local error bound under R0-type condition
only, even for NCP case which is a special case of SCCPs. An example is given in
[2] that illustrates r(x) cannot be a local error bound for an R0-type NCP (F is
R0-type function). More specifically, consider F : R → R with F (x) = x3, it is
easy to verify that F is an Rs0-function, and the corresponding NCP has a bounded
solution set S = {0}. However, r(x) cannot be a local error bound. A question arises
here: Under what additional condition, can r(x) be a local error bound for SCCPs?
The following theorem answers this question by providing a sufficient condition for
SCCPs.

Theorem 4.5. Consider the residual function r(x) = ‖φ
NR

(x, F (x))‖. Suppose
that the solution set S of SCCPs is nonempty and that φNR is BD-regular at all
solutions of SCCPs. Then, r(x) is a local error bound if it has a local bounded level
set.

Proof. Since r(x) has a local bounded level set, there exists ε > 0 such that the
level set L(ε) = {x| r(x) ≤ ε} is bounded. Thus the set L(ε) = {x| r(x) ≤ ε}
is compact. Suppose that the conclusion is wrong. Then, there exists a sequence
{xk} ⊂ L(ε) such that

r(xk)

dist(xk, S)
→ 0 as k →∞.

Here dist(xk, S) denotes the distance between xk and S. Thus, r(xk) → 0 and it
follows from compactness of L(ε) that there is a convergent subsequence. Without
loss of generality, let {xk} be a convergent sequence, and x̄ be its limit, that is,
xk → x̄ ∈ L(ε). Then, r(x̄) = 0, which implies x̄ ∈ S. It turns out that

r(xk)

‖xk − x̄‖
→ 0 as k →∞. (9)
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From [24], we know that φNR(x, F (x)) is semismooth. By applying [21, Proposition
3] and BD-regular property of φNR(x, F (x)), there exist constants c > 0 and δ > 0
such that r(x) ≥ c‖x − x̄‖ for any x with ‖x − x̄‖ < δ. This contradicts (9).
Consequently, the residual function r(x) is a local error bound for SCCPs.

Results analogous to Theorem 4.5 can be stated for the other two merit functions,
with Theorem 3.1 and 3.2, we may conclude that ψFB and ψMS are local error bounds
for SCCPs.

5. Global Error Bound. In this section, we find a global error bound for SCCPs
by using an R0-type condition and a BD-regular condition. To achieve these results,
we present the following definition and a technical lemma.

Definition 5.1. For the residual function r(x) = ‖φNR(x, F (x))‖, the function r(x)
is a global error bound if there exist constant c > 0 such that for each x ∈ V,

d(x, S) ≤ cr(x),

where S denote the solution set of the problem (1) and d(x, S) = infy∈S ‖x− y‖.

Lemma 5.2. Let {xk} be any sequence such that ‖xk‖ → ∞. If F is an Rs0-
function, then

lim inf
k→∞

r(xk)

‖xk‖
> 0.

Proof. Suppose that the result is false. There exists a subsequence xnk
with ‖xnk

‖ →
∞ such that

r(xnk
)

‖xnk
‖
→ 0. (10)

From Lemma 4.3, it follows that

(−xnk
)+

‖xnk
‖
→ 0 and

(−F (xnk
))+

‖xnk
‖

→ 0.

This together with the definition of Rs0-function implies

lim inf
k→∞

ω(φNR(xnk
, F (xnk

)))

‖xnk
‖

> 0,

which contradicts the formula (10). Consequently, we have the desired result.

Theorem 5.3. Suppose that F is an Rs0-function and that φNR is BD-regular at
all solutions of SCCPs. Then, there exists a κ > 0 such that for any x ∈ V

dist(x, S) ≤ κr(x),

where S is the solution set of SCCPs, dist(x, S) denotes the distance between x and
S.

Proof. By the definition of Rs0-function, Theorem 4.4 and Theorem 4.5, we claim
that r(x) is a local error bound so there exist c > 0 and δ > 0 such that

r(x) < δ ⇒ d(x, S) ≤ cr(x).

Suppose r(x) does not have the global error bound property. Then, there exists xk
such that for any fixed x̄ ∈ S,

‖xk − x̄‖ ≥ dist(xk, S) > kr(xk) (11)
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for all k. Clearly, the inequality r(xk) < δ cannot hold for infinitely many k′s, else
kr(xk) < d(xk, S) ≤ cr(xk) implies that k ≤ c for infinitely many k′s. Therefore,
r(xk) ≥ δ for all large k. Now,

‖xk − x̄‖ ≥ d(xk, S) ≥ kr(xk) ≥ kδ

for infinitely many k′s. This implies that ‖xk‖ → ∞. Now divide the inequality
and take the limit k →∞, we have

1 = lim
k→∞

‖xk − x̄‖
‖xk‖

≥ lim
k→∞

k
r(xk)

‖xk‖
→ ∞,

where the last implication holds because F is an Rs0-function and Lemma 5.2. This
clearly is a contradiction.

Adopting Theorem 3.1, Theorem 3.2 and Theorem 5.3, we have the following
corollary for SCCPs.

Corollary 1. Under the same conditions as in Theorem 5.3, both the merit function
ψ

FB
(x) and the implicit Lagrangian function ψ

MS
(x) are global error bounds for

SCCPs.

When F : V→ V is a linear mapping, that is, F (x) = L(x) + q with q ∈ V, if L
has R0-property, then r(x) being a local error bound can be improved as being a
global error bound for SCLCPs, which is shown in the following theorem.

Theorem 5.4. Suppose that r(x) is a local error bound for SCLCPs and the linear
transformation L has R0-property. Then, there exists k > 0 such that dist(x, S) ≤
kr(x) for every x ∈ V.

Proof. Suppose that the conclusion is false. Then, for any integer k > 0, there
exists an xk ∈ Rn such that dist(xk, S) > kr(xk). Let z(xk) denote the closest
solution of SCLCPs to xk. Choosing a fixed solution x0 ∈ S, we have

‖xk − x0‖ ≥ ‖xk − z(xk)‖ ≥ dist(xk, S) > kr(xk). (12)

Since r(x) is a local error bound, it implies that there exist some integer K > 0 and
δ > 0 such that for all k > K, r(xk) > δ. If not, then for every integer K > 0 and
any δ > 0, there exist some k > K such that r(xk) ≤ δ. By property of local error
bound of r(x), we have

δ

k
‖xk − z(xk)‖ > δr(xk) ≥ ‖xk − z(xk)‖.

Thus, we obtain δ
k > 1. As k goes to infinity, this leads to a contradiction. Conse-

quently, r(xk) > δ. This together with (12) implies that ‖xk−x0‖ ≥ ‖xk−z(xk)‖ >
kδ which says that ‖xk‖ → ∞ as k → ∞. Now, we consider the sequence { xk

‖xk‖}.
There exist a subsequence {xki} such that

lim
i→∞

xki
‖xki‖

= x.

Hence, it follows from (12) that

1 = lim
i→∞

‖xki − x0‖
‖xki‖

≥ lim
i→∞

ki
r(xki)

‖xki‖
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= lim
i→∞

ki

∥∥∥∥∥ xki
‖xki‖

−
(

xki
‖xki‖

− L xki
‖xki‖

− q

‖xki‖

)
+

∥∥∥∥∥
= lim

i→∞
ki‖x− (x− L(x))+‖.

This implies that ‖x− (x− L(x))+‖ = 0, which shows that x is a nonzero solution
of SCLCPs with q ∈ V. It contradicts the R0-property of L. Then, the proof is
complete.

There is one thing worthy of pointing it out. If we replace the condition of R0-
property into the monotonicity for the linear transformation L, the conclusion of
Theorem 5.4 may not hold. This can be illustrated by the following example by
using the implicit Lagrangian function ψMS .

Example 5.1. Let L : R2 → R2 be defined as

L :=

[
1√
2
− 1√

2

− 1√
2

1√
2

]
and q :=

[
2
0

]
.

It is easy to prove that the symmetric cone is R2
+ and the corresponding SCLCP

has a unique solution x∗ = (0, 0)T . Choosing xk =
(
k√
2
, k√

2

)T
, k ≥ 0 gives

F (xk) = L(xk) + q = (2, 0)T . Then, for any k > 2
√

2α with α > 1, we have

ψ
MS

(xk) = 4α

(
k√
2

)
+

(
−2α+

k√
2

)2

+

(
k√
2

)2

− 2

(
k√
2

)2

− 4

= 4
(
α2 − 1

)
.

However, dist(xk, S) = ‖xk‖ = k. This implies dist(xk, S) > ψMS(xk) as k → ∞,
which explains that ψ

MS
(x) cannot serve as global error bound for SCLCPs.

6. Concluding Remarks. In this paper, we have established some local and
global error bounds for symmetric cone complementarity problems under the so-
called R0-type conditions. These new results on error bounds are based on the
Fischer-Burmeister merit function, the natural residual function, and the implic-
it Lagrangian function. For symmetric cone linear complementarity problems, we
have pointed out that global error bound do not exist under the condition of lin-
ear transformation L being monotone, which implicitly indicates that the proposed
R0-type conditions cannot be replaced by monotone condition as special cases.
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[24] D. Sun and J. Sun, Löwner’s operator and spectral functions on Euclidean Jordan algebras,
Mathematics of Operations Research, 33 (2008), 421–445.

[25] P. Tseng, Growth behavior of a class of merit functions for the nonlinear complementarity

problems, Journal of Optimization Theory and Applications, 89 (1996), 17–37.

[26] J. Tao and M. S. Gowda, Some P -properties for nonlinear transformations on Euclidean
Jordan algebras, Mathematics of Operations Research, 30 (2005), 985–1004.

Received May 2013; 1st revision June 2013, final revision August 2013.

E-mail address: xinhemiao@tju.edu.cn

E-mail address: jschen@math.ntnu.edu.tw

http://www.ams.org/mathscinet-getitem?mr=MR1955648&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1151767&return=pdf
http://dx.doi.org/10.1007/BF01585696
http://dx.doi.org/10.1007/BF01585696
http://www.ams.org/mathscinet-getitem?mr=MR2098615&return=pdf
http://dx.doi.org/10.1016/j.laa.2004.03.028
http://dx.doi.org/10.1016/j.laa.2004.03.028
http://www.ams.org/mathscinet-getitem?mr=MR2504979&return=pdf
http://dx.doi.org/10.1007/s11425-008-0170-4
http://dx.doi.org/10.1007/s11425-008-0170-4
http://www.ams.org/mathscinet-getitem?mr=MR2600896&return=pdf
http://dx.doi.org/10.1007/s10589-008-9180-y
http://dx.doi.org/10.1007/s10589-008-9180-y
http://www.ams.org/mathscinet-getitem?mr=MR1402624&return=pdf
http://dx.doi.org/10.1007/BF02189797
http://dx.doi.org/10.1007/BF02189797
http://www.ams.org/mathscinet-getitem?mr=MR2460730&return=pdf
http://dx.doi.org/10.1137/060676775
http://dx.doi.org/10.1137/060676775
http://www.ams.org/mathscinet-getitem?mr=MR2536038&return=pdf
http://dx.doi.org/10.1142/S0217595909002171
http://dx.doi.org/10.1142/S0217595909002171
http://www.ams.org/mathscinet-getitem?mr=MR1304628&return=pdf
http://dx.doi.org/10.1287/moor.19.4.880
http://dx.doi.org/10.1287/moor.19.4.880
http://www.ams.org/mathscinet-getitem?mr=MR1147882&return=pdf
http://dx.doi.org/10.1137/0802004
http://dx.doi.org/10.1137/0802004
http://www.ams.org/mathscinet-getitem?mr=MR2283097&return=pdf
http://dx.doi.org/10.1142/S0217595906000991
http://dx.doi.org/10.1142/S0217595906000991
http://www.ams.org/mathscinet-getitem?mr=MR1297065&return=pdf
http://dx.doi.org/10.1007/BF01581148
http://dx.doi.org/10.1007/BF01581148
http://www.ams.org/mathscinet-getitem?mr=MR862070&return=pdf
http://dx.doi.org/10.1007/BF02591991
http://dx.doi.org/10.1007/BF02591991
http://www.ams.org/mathscinet-getitem?mr=MR1230150&return=pdf
http://dx.doi.org/10.1137/0803021
http://www.ams.org/mathscinet-getitem?mr=MR2514462&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2009.01.064
http://dx.doi.org/10.1016/j.jmaa.2009.01.064
http://www.ams.org/mathscinet-getitem?mr=MR1466136&return=pdf
http://dx.doi.org/10.1016/S0025-5610(96)00077-9
http://www.ams.org/mathscinet-getitem?mr=MR2416001&return=pdf
http://dx.doi.org/10.1287/moor.1070.0300
http://www.ams.org/mathscinet-getitem?mr=MR1382528&return=pdf
http://dx.doi.org/10.1007/BF02192639
http://dx.doi.org/10.1007/BF02192639
http://www.ams.org/mathscinet-getitem?mr=MR2185826&return=pdf
http://dx.doi.org/10.1287/moor.1050.0157
http://dx.doi.org/10.1287/moor.1050.0157
mailto:xinhemiao@tju.edu.cn
mailto:jschen@math.ntnu.edu.tw

	1. Introduction
	2. Preliminaries
	3. Growth behavior of  FB ,  NR  and  MS 
	4. Local Error Bounds
	5. Global Error Bound
	6. Concluding Remarks
	REFERENCES

