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Abstract. In this paper, we propose a specific dynamical model for solving a class of vector equilibrium
problems with partial order induced by a polyhedral cone which is generated by some matrix. Unlike
the traditional dynamical models, it particularly possesses the feature of fractional-order system. The
so-called Mittag-Leffler stability of the dynamical system is studied, which verifies the convergence to
the solution of the corresponding vector equilibrium problems. This result is established by applying
the techniques involving Caputo fractional derivatives, Lipschitz-type continuity, and strong pseudo-
monotonicity assumptions with partial ordering based on a polyhedral cone. Numerical implementations
are demonstrated to illustrate the proposed approach. In addition, a real-world application to the general
framework of vector network equilibrium models based on polyhedral cone ordering is presented.

Keywords. Fractional-order dynamical system; Mittag-Leffler stability; Polyhedral cone; Vector equi-
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1. INTRODUCTION

The traditional scalar equilibrium problem is in form of

EP(C,h) : find z∗ ∈C such that h(z∗,u)≥ 0, for all u ∈C,

where C is a given set and h : C×C→ R is a bifunction satisfying h(z,z) = 0 for all z ∈ C.
The form of inequality in EP(C,h) was first used by Nikaido and Isoda [25] for a class of
non-cooperative convex games. Problem EP(C,h) is also known under the term “equilibrium
problem” in the papers of Blum and Oettli [3], and Muu and Oettli [24]. Equilibrium problems
are generalizations of important problems, such as variational inequalities, Nash equilibrium
problems, complementarity problems, and so on. Numerous remarkable applications of equi-
librium problems were studied in mechanics, network analysis, economics, transportation, and
operations research. For details, we refer the readers to [2, 16, 20] and the references therein.
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In recent years, the scalar equilibrium problems were extended to vector equilibrium prob-
lems, whose cost function is a vector-valued function based on partial order induced by various
kinds of cones ,such as nonnegative orthant, lexicographic cone and p-order cone (p≥ 2); see,
e.g., [16,18,19,34]. In particular, Gutiérrez et al. [9,10] considered a class of multiobjective op-
timization problems with partial ordering by a polyhedral cone generated by some matrix. They
claimed that their obtained results based on this conic ordering are attractive from a computa-
tional point of view. Using the partial order introduced in [10], Hai et al. [12] further explored
a vector equilibrium problem with a polyhedral cone ordering and employed variants of the
Ekeland variational principle to study approximate proper solutions for this class of problems.
Very recently, Hung et al. [14] investigated the vector equilibrium problem with polyhedral cone
ordering and established error bounds under assumptions involving polyhedral cone ordering.
They also proposed an interesting application to a model of traffic network equilibrium prob-
lems of the vector type in light of polyhedral cone ordering, which is a general framework of
network equilibrium models in many references; see, e.g., [5,36,37] and the references therein.
In addition, Tam [33] built up the Holder continuity of solutions for vector network equilibrium
model with a polyhedral cone ordering studied in [14] under parametric perturbations. This
article is devoted to finding new and novel approaches to solve the vector equilibrium problems
with polyhedral cone ordering and their applications to traffic network equilibrium models.

On the other hand, there exist a lot of results of dynamical systems by using ordinary differ-
ential equations for solving variational inequalities, variational inclusions, and fixed point prob-
lems; see [4, 6, 11, 13, 31, 32]. The key character of dynamical systems is that their trajectories
can reach a stable state, and then the equilibrium point of the dynamical system is the solution
of corresponding problems. Very recently, Vuong and Strodiot [35] introduced and investigated
a dynamical system for solving problem EP(C,h) under the strong pseudo-monotonicity and
Lipschitz-type continuity of cost function h. Ju et al. [15] developed a finite-time converging
proximal dynamical model to deal with problem EP(C,h) under some mild conditions.

To the contrast, a fractional-order system is a dynamical system that is modeled by a frac-
tional differential equation containing derivatives of non-integer order. In particular, fractional
differential equations based on fractional-order calculus [26] were explored to various applica-
tion fields in electronics, automatic control, and some interdisciplinary sciences [17, 23, 38, 39,
41]. This specific fractional-order system is also adopted for optimization problems. For exam-
ple, using the fractional-order calculus, Liang et al. [22] studied a class of dynamical systems
by employing a fractional differential equations based algorithm for solving convex optimiza-
tions. Moreover, Liang et al. [22] claimed that the convergence speed of the algorithm by using
fractional-order derivatives (in the sense of Mittag–Leffler stabilization) is faster than those with
the integer orders for some optimization problems.

Inspired by the above-given equilibrium problems and dynamical systems methods, we de-
cide to revisit the vector equilibrium problem based on polyhedral cone ordering, considered
in [14] and explore the method of fractional-order dynamical systems in [22] for solving such
problem. Nonetheless, the approach and techniques applied to the vector equilibrium problem
with polyhedral cone ordering are new. We highlight the main contributions of this paper as
below.
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(1) This is the first article considering a dynamical system involving fractional-order de-
rivative operators for solving the vector equilibrium problem with polyhedral ordering
cone.

(2) The second novelty is that we provide the stability of the dynamical system in the
Mittag-Leffler sense by employing some computational technologies involving Caputo
fractional-order derivatives, strong pseudo-monotonicity, strong monotonicity, and
Lipschitz-type continuity assumptions with respect to partial order constructed by a
polyhedral cone.

(3) A real-world problem, the traffic network equilibrium problems of the vector type based
on partial order given by a polyhedral cone, is demonstrated to verify the theoretical
results.

The structure of this paper is as follows. In Section 2, we recall some basic definitions,
concepts and properties on convex analysis, fractional-order derivative operators and revisit a
framework of the vector equilibrium problem with polyhedral ordering cones. Our main results
in this paper are presented in Section 3 which include imposing the hypotheses on the data,
establishing the fractional-order dynamical model for solving the vector equilibrium problem
with polyhedral ordering cone and proposing the Mittag-Leffler stability of the dynamical sys-
tem. Finally, in Section 4, we provide an application to a vector network equilibrium problem
to illustrate our theoretical results considered in Section 3.

2. PRELIMINARIES

In this section, we review some notations and concepts for subsequent needs. Throughout the
paper, let Rl be the l-dimensional Euclidean space and

Rl
+ = {(z1, . . . ,zl) ∈ Rl : zi ≥ 0,∀i = 1, . . . , l}.

For any two vectors z = (z1, . . . ,zl)
> and u = (u1, . . . ,ul)

> in Rl , we define the relationships
between tese two vectors:

(i) z≤ u if and only if zi ≤ ui for all i ∈ {1, . . . , l};
(ii) z < u if and only if zi < ui for all i ∈ {1, . . . , l}.
A nonempty set P ⊂Rl is a cone if λ z∈P for all z∈P and λ ≥ 0. A cone P is said to be

pointed if P ∩−P = {0}, where 0 = (0, . . . ,0)> ∈ Rl . A set P ⊂ Rm is a polyhedral cone if
P has a representation of the form P = {z ∈ Rm : 〈ai,z〉 ≥ 0, ∀i = 1, . . . , l} for some positive
integer l and some ai ∈ Rm, i = 1, . . . , l; see [28].

Definition 2.1. Let A ∈ Rl×m. Then, the set

PA = {z ∈ Rm : Az≥ 0}, (2.1)

is called a cone generated by A.

It is known that PA is polyhedral, so it is also convex and closed; see [7]. Given a matrix
A ∈ Rl×m, the mapping defined by the matrix A (also denoted by A), i.e., A : Rm → Rl with
z 7→ Az (or A(z)), is a bounded linear mapping.

Proposition 2.1. [29, Proposition 4 and Proposition 5] Let A ∈ Rl×m, where l ≥ m. Then the
following assertions hold.

(i) The cone PA defined by (2.1) is pointed if and only if rank(A) = m.
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(ii) If the matrix A has no zero rows, then int(PA) = {z ∈ Rm : Az > 0}.

Lemma 2.1. [40, Lemma 1] Let A ∈ Rl×m. If PA = {0}, then rank(A) = m and l > m.

Proposition 2.2. [30, Proposition 4.1] Let A be a mapping defined by a matrix A ∈ Rl×m.
Assume that the set {z ∈ Rm : Az≥ 0} is a pointed cone, or, equivalently, that rank(A) = m and
l ≥ m. Then, the following statements are satisfied.

(i) The mapping A is injective.
(ii) The image of the set {z ∈ Rm : Az≥ 0} under the mapping A is a convex cone included

in Rl
+.

(iii) If l = m, then the image of the space Rm under the mapping A is Rl and the image of
the cone {z ∈ Rm : Az≥ 0} is Rl

+.
(iv) If l > m, then the image of the space Rm under the mapping A is a proper subset of Rl

and the image of the cone {z ∈ Rm : Az≥ 0} is a proper subset of Rl
+.

In the following, let C be a nonempty subset of an Euclidean space, A = (ai j) be a real matrix
with l rows and m columns where l,m are positive integers such that l ≥ m and rank(A) = m,
and PA be a polyhedral cone generated by A with int(PA) 6= /0. To proceed, we recall the
notion of PA-convexity of a vector-valued function.

Definition 2.2. [14] For each k ∈ {1, . . . ,m}, let ψk : C→ R be a function. A function ψ :=
(ψ1, . . . ,ψm) defined by ψ(x) = (ψ1(x), . . . ,ψm(x)) is said to be PA-convex if, for all z,u ∈C
and λ ∈ [0,1], there holds λψ(z)+(1−λ )ψ(u)−ψ(λ z+(1−λ )u) ∈PA.

If aik ≥ 0 and ψk is a convex function for all i ∈ {1, . . . , l} and k ∈ {1, . . . ,m}, then ψ is
PA-convex. However, the reverse implication does not hold; see [14, Remark 3.1(ii)]. Besides,
the concept of strong convexity and some properties of a minimization problem are needed for
subsequent analysis.

Definition 2.3. (see [2]) A function φ : C→ R is said to be strongly convex with modulus τ if
there exists a constant τ > 0 such that for all z,u ∈C and for each λ ∈ [0,1], we have

φ(λ z+(1−λ )u)≤ λφ(z)+(1−λ )φ(u)−λ (1−λ )
τ

2
‖z−u‖2.

If τ = 0 in the above inequality, we obtain the usual definition of convexity of the function φ .

Lemma 2.2. [2, Theorem 2.1.9] Let C be a nonempty closed and convex subset. If φ : C→R is
strongly convex with modulus τ , then the minimization problem min{φ(z) : z ∈C} has a unique
solution z∗ and any z ∈C satisfies φ(z)≥ φ(z∗)+ τ

2‖z− z∗‖2.

Next, we recall a class of vector equilibrium problems with partial order induced by a poly-
hedral cone which is generated by some matrix A. It is indeed studied by Hung et al. [14] and
in form of VEP(C,H,PA): Find z∗ ∈C such that

H(z∗,u) /∈ −int(PA), ∀u ∈C, (2.2)

where H : C×C→ Rm is a vector-valued function such that H is continuous and H(z,z) = 0
for all z ∈ C. For convenience, we denote the solution set of problem VEP(C,H,PA) by
Sol(C,H,PA). Since the existence of vector equilibrium problems has been well investigated
in previous literature, we always assume that Sol(C,H,PA) 6= /0.
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From the computational point of view, applying Proposition 2.1, Proposition 2.2, and the
linearity of mapping A, Hung et al. [14] already showed that problem VEP(C,H,PA) can be
converted to a usual vector equilibrium problem. In other words, problem (2.2) is equivalent to
finding z∗ ∈C such that

(A◦H)(z∗,u) /∈ −int(Rl
+), ∀u ∈C, (2.3)

where the function H is given by H(z,u) = (H1(z,u), . . . ,Hm(z,u))> ∈ Rm for all z,u ∈C, and
the composition of the mapping A◦H is defined by

A◦H = ((A◦H)1, . . . .,(A◦H)l)
> and (A◦H)(z,u) = A[H(z,u)], ∀u,z ∈C.

We point out that problem (2.3) is a kind of equilibrium problems of the weak vector type
in finite-dimensional spaces depending on the data of matrix A and component functions of H.
This makes an interesting aspect from the computational point of view (see Example 3.1 in the
next section). In particular, by the form of problem VEP(C,H,PA) in (2.3), if m= l = 1, A≡ 1,
and H1 = h, then problem VEP(C,H,PA) reduces to scalar equilibrium problem EP(C,h)
mentioned in the first part of the Introduction.

To end this section, we recall some definitions and properties of fractional-order differential
operators which are used in the sequel. Grunwald–Letnikov derivative, Riemann–Liouville
derivative, and Caputo derivative are three well-known definitions of differential operators using
fractional-order calculus [17, 26]. Unlike the other two derivatives, the Caputo fractional-order
derivative was commonly used in physical applications because of its advantage that the Caputo
derivative of a constant is equal to zero and it satisfies linear relationship and takes the same
form as for classical differential equations in the initial conditions (see Remark 2.1). Therefore,
in this paper, we always adopt the fractional derivative in the Caputo sense for fractional-order
dynamic systems.

Definition 2.4. [17,26] The Riemann-Liouville fractional integral of order q > 0 for a suitable
function z is defined by

Iq
t0z(t) =

1
Γ(q)

∫ t

t0
(t−ζ )q−1z(ζ )dζ , for a.e. t > t0,

where t0 is the initial time and Γ(·) is the Gamma function defined by

Γ(q) =
∫ +∞

0
tq−1e−t dt.

It is well known that Γ(1) = 1 and Γ(q+1) = qΓ(q) for all q > 0.

Definition 2.5. [17, 26] For a suitable function z given on the interval (t0,+∞), the Caputo
fractional-order derivative of z of order q > 0 is defined by

C
t0 Dq

t z(t) =
1

Γ(n−q)

∫ t

t0

z(n)(ζ )
(t−ζ )q+1−n dζ ,

where t0 is the initial time, n = min{k ∈N : k > q}, and z(n)(t) is the nth-order derivative of z(t).
More specifically, it is noticed that

(i) when q is equal to a positive integer n, we define C
t0 Dq

t z(t) = z(n)(t);
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(ii) when 0 < q < 1, we have

C
t0 Dq

t z(t) =
1

Γ(1−q)

∫ t

t0

z′(ζ )
(t−ζ )q dζ .

Remark 2.1. There are a few facts worthy of being mentioned.

(a): For any constant S, it is clear that Ct0 Dq
t S = 0.

(b): The linearity of Caputo fractional-order derivative holds, that is,
C
t0 Dq

t (αz(t)+βu(t)) = α
C
t0 Dq

t z(t)+β
C
t0 Dq

t u(t),

where α , β are constants.
(c): Note that C

t0 Dq
t z(t) = In−q

t0 z(n)(t) and the Laplace transform of the Caputo fractional-
order derivative is given by

L
{
C
t0 Dq

t z(t)
}
= sqZ(s)−

n−1

∑
k=0

sq−k−1z(k)(t0), n−1 < q≤ n,

where s is the variable in Laplace domain and Z(s) denotes the Laplace transform of
z(t).

Lemma 2.3. [1] Let z(t) ∈ Rn be a differentiable vector-valued function. Then, for any time
instant t > t0, there holds

C
t0 Dq

t

[
1
2
‖z(t)‖2

]
≤
〈

z(t),Ct0 Dq
t z(t)

〉
. (2.4)

Lemma 2.4. [21] Let L be a continuous function on [t0,+∞) which satisfies C
t0 Dq

t L (t) ≤
ηL (t), where 0 < q < 1, η ∈ R and t0 is the initial time. Then, L (t)≤L (t0)Eq (η(t− t0)q) ,
where Eq(·) is a Mittag-Leffler function, given by

Eq(z) =
∞

∑
k=0

zk

Γ(qk+1)
. (2.5)

Note that from Lemma 2.4 Eq(0) = 1 and E1(z) = ez.

3. FRACTIONAL-ORDER DYNAMICAL MODEL AND STABILITY ANALYSIS

In this section, we propose a novel fractional-order dynamical model, which is capable of
solving problem VEP(C,H,PA). Then, the Mittag-Leffler stability of the system is established
under suitable assumptions. This result derives the convergence of the trajectory of fractional-
order dynamical system to the solution of problem VEP(C,H,PA).

Before proceeding, we impose the following hypotheses on the data of VEP(C,H,PA).

(IA): The matrix A ∈ Rl×m with A = (ai j) and l ≥ m satisfies that rank(A) = m and

min
1≤i≤l

{
m

∑
k=1

aik

}
> 0.

(IC): C is a nonempty closed and convex subset.
(IH)0: H is PA-convex in the second component;



A FRACTIONAL-ORDER DYNAMICAL APPROACH 441

(IH)1: H is (PA,µ)-strongly pseudo-monotone, i.e., there exists µ > 0 such that

H (z,u) /∈ −intPA =⇒ H(u,z)+µ‖z−u‖2e ∈ −PA, (3.1)

for all z,u ∈C and e = (1,1, . . . ,1)> ∈ Rm;
(IH)2: H is (PA,L)-Lipschitz-type continuous in the sense that there exists L > 0
such that

H (z,u)+H (u,v)−H (z,v)+L‖z−u‖‖u− v‖e ∈PA, (3.2)

for all z,u,v ∈C.

Remark 3.1. Here are some remarks regarding the hypotheses above.
(a): The (PA,µ)-strong pseudo-monotonicity in (IH)1 and the (PA,L)-Lipschitz-type

continuity in (IH)2 are defined on partial order provided by a polyhedral cone which
depends on the data of matrix A.

(b): In special cases of m = l = 1, A≡ 1 and H1 = h, conditions (3.1) and (3.2) are equiv-
alent to

h(z,u)≥ 0 =⇒ h(u,z)≤−µ‖z−u‖2,

and

h(z,u)+h(u,v)≥ h(z,v)−L‖z−u‖‖u− v‖, (3.3)

respectively for all z,u,v ∈ C. Thus, (IH)1 reduces to the usual definition of strongly
pseudo-monotone bifunctions and (IH)2 reduces to the Lipschitz-type continuity studied
by Quoc and Muu [27] for scalar equilibrium problem EP(C,h).

(c): The condition (3.2) is indeed equivalent to

A [H (z,u)+H (u,v)−H (z,v)+L‖z−u‖‖u− v‖e] ∈ Rl
+

that is, for any i ∈ {1, ..., l},
m

∑
k=1

aik [Hk (z,u)+Hk (u,v)−Hk (z,v)+L‖z−u‖‖u− v‖]≥ 0. (3.4)

In fact, we observe that, if aik ≥ 0 and Hk is a Lipschitz-type continuous function with
constant Lk > 0 in the form (3.3) for all i ∈ {1, ..., l} and k ∈ {1, ...,m}, then H is
(PA,L)-Lipschitz-type continuous with L > 0. Indeed, since Hk is Lipschitz-type con-
tinuous with constant Lk for all k ∈ {1, ...,m}, it follows from (3.3) that

Hk (z,u)+Hk (u,v)−Hk (z,v)≥−Lk‖z−u‖‖u− v‖

for all z,u,v ∈C. Then for each i ∈ {1, ..., l}, we have
m

∑
k=1

aik

[
Hk (z,u)+Hk (u,v)−Hk (z,v)+ max

1≤k≤m
{Lk}‖z−u‖‖u− v‖

]
≥ 0,

for all z,u,v ∈C. Thus, the inequality (3.4) holds with L = max1≤k≤m{Lk}> 0.

Remark 3.2. If conditions (IA) and (IH)1 hold, then VEP(C,H,PA) has a unique solution. To
see this, let z1,z2 ∈ Sol(C,H,PA), namely, z1,z2 ∈C such that

H(z j,u) /∈ −int(PA) (3.5)
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for all u ∈C and for j = 1,2. Since H is (PA,µ)-strong pseudo-monotone, there exists µ > 0
such that

H(u,z j)+µ‖z j−u‖2e ∈ −PA (3.6)

for all u ∈C and for j = 1,2. Taking u = z2 if j = 1 in (3.5) and u = z1 if j = 2 in (3.6), we have{
A [H(z1,z2)] /∈ −int(Rl

+),

A
[
H(z1,z2)+µ‖z1− z2‖2e

]
∈ −Rl

+.

Then, there exists i0 ∈ {1, . . . , l} such that{
∑

m
k=1 ai0kHk(z1,z2)≥ 0,

∑
m
k=1 ai0kHk(z1,z2)+∑

m
k=1 ai0kµ‖z1− z2‖2 ≤ 0.

Hence, there holds
m

∑
k=1

ai0kµ‖z1− z2‖2 ≤ 0. (3.7)

In addition, due to
m

∑
k=1

ai0kµ ≥ min
1≤i≤l

{
m

∑
k=1

aik

}
µ > 0,

inequality (3.7) implies that z1 = z2. Thus, VEP(C,H,PA) has a unique solution.

3.1. Fractional-order Dynamical Model. To construct the fractional-order dynamical system
for solving problem VEP(C,H,PA), we need the following technical results which connects
some properties of the solutions of problem VEP(C,H,PA). First, given ρ > 0 we consider
the function ϕρ : C×C→ R defined by

ϕρ(z,u) = ρ max
1≤i≤l

{
m

∑
k=1

aikHk(z,u)

}
+

1
2
‖u− z‖2 ∀z,u ∈C. (3.8)

Lemma 3.1. Suppose that assumptions (IA), (IC), and (IH)0 hold. Then, for any ρ > 0 and
z ∈C, the function u 7→ ϕρ(z,u) has a unique minimizer over C.

Proof. Applying the PA-convexity in the second component of H, for all i∈ {1, . . . , l}, u1,u2 ∈
C and λ ∈ [0,1], thanks to [14, Remark 3.1(i)], we obtain

m

∑
k=1

aikHk(z,λu1 +(1−λ )u2)≤ λ

m

∑
k=1

aikHk(z,u1)+(1−λ )
m

∑
k=1

aikHk(z,u2)

for all z ∈C. This implies that, for all i ∈ {1, . . . , l}, the function

u 7→
m

∑
k=1

aikHk(z,u)

is convex. Hence

u 7→ max
1≤i≤l

{
m

∑
k=1

aikHk(z,u)

}



A FRACTIONAL-ORDER DYNAMICAL APPROACH 443

is also a convex function. Then, for any ρ > 0 and z ∈C, the function

u 7→ ϕρ(z,u) = ρ max
1≤i≤l

{
m

∑
k=1

aikHk(z,u)

}
+

1
2
‖u− z‖2

is strongly convex with modulus 1 on C. Since C is a nonempty, closed, and convex set, it
follows from Lemma 2.2 that the function u 7→ ϕρ(z,u) has a unique minimizer over C. �

For any ρ > 0, we now consider the function ∆ρ given by

∆ρ(z) =−
1
ρ

inf
u∈C

ϕρ(z,u), ∀z ∈C. (3.9)

The following result provides some properties of ∆ρ .

Lemma 3.2. Suppose that assumptions (IA), (IC), and (IH)0 hold. Then, for any ρ > 0, the
function ∆ρ defined by (3.9) satisfies the following conditions:

(i) ∆ρ(z)≥ 0 for all z ∈C;
(ii) ∆ρ(z) = 0 if and only if z ∈ Sol(C,H,PA).

Proof. By the definition of function ∆ρ in (3.9), we have

∆ρ(z) = sup
u∈C

(
− max

1≤i≤l

{
m

∑
k=1

aikHk(z,u)

}
− 1

2ρ
‖u− z‖2

)
, ∀z ∈C.

From [14, Theorem 3.1], we know that ∆ρ is a gap function of VEP(C,H,PA), so it fol-
lows from [14, Definition 3.1] that ∆ρ(z) ≥ 0 for all z ∈ C and ∆ρ(z) = 0 if and only if
z ∈ Sol(C,H,PA). �

Using Lemma 3.1 and Lemma 3.2, we establish a characteristic of the minimizer of ϕρ and
the solution set Sol(C,H,PA).

Proposition 3.1. Suppose that assumptions (IA), (IC), and (IH)0 hold. Then, for any ρ > 0,
z∗ ∈ Sol(C,H,PA) if and only if z∗ = proxρH

C (z∗), where

proxρH
C (z) = argmin

u∈C
ϕρ(z,u), ∀z ∈C. (3.10)

Proof. (=⇒) Suppose that z∗ ∈ Sol(C,H,PA). Without loss of generality, we may assume that
there exists ī ∈ {1, . . . , l} such that

max
1≤i≤l

{
m

∑
k=1

aikHk(z,u)

}
=

m

∑
k=1

aīkHk(z,u)

for all z,u ∈C, so (3.8) can be rewritten as

ϕρ(z,u) = ρ

m

∑
k=1

aīkHk(z,u)+
1
2
‖u− z‖2 ∀z,u ∈C. (3.11)

It follows from the proof of Lemma 3.1 that ϕρ is a strongly convex function with modulus 1 on
C. Moreover, from (3.8), (3.10) and Lemma 3.1, we also obtain that, for each z ∈C, proxρH

C (z)
is a unique solution to the minimization problem

min{ϕρ(z,u) : u ∈C}.
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Then, applying Lemma 2.2 yields

1
2

∥∥∥u−proxρH
C (z)

∥∥∥2
≤ ϕρ(z,u)−ϕρ

(
z,proxρH

C (z)
)
, ∀z,u ∈C. (3.12)

Putting u = z∗ and z = z∗ into (3.12) leads to

1
2

∥∥∥z∗−proxρH
C (z∗)

∥∥∥2
≤ ϕρ(z∗,z∗)−ϕρ

(
z∗,proxρH

C (z∗)
)
. (3.13)

Since z∗ ∈ Sol(C,H,PA), it follows from Lemma 3.2 that ∆ρ(z∗) =0. By (3.9), we have

infu∈C ϕρ(z∗,u) = 0. Hence, from Lemma 3.1 and (3.10), one has ϕρ

(
z∗,proxρH

C (z∗)
)
= 0.

Furthermore, we note that ϕρ(z∗,z∗) = 0, so inequality (3.13) follows∥∥∥z∗−proxρH
C (z∗)

∥∥∥2
≤ 0.

Thus, it verifies z∗ = proxρH
C (z∗).

(⇐=) Let z∗ = proxρH
C (z∗). It follows from Lemma 3.1 and (3.10) that

∆ρ(z∗) =−
1
ρ

inf
u∈C

ϕρ(z∗,u) =−
1
ρ

ϕρ

(
z∗,proxρH

C (z∗)
)
.

Since z∗ = proxρH
C (z∗), ϕρ

(
z∗,proxρH

C (z∗)
)
= ϕρ (z∗,z∗) = 0, then ∆ρ(z∗) = 0. Applying

Lemma 3.2 immediately gives z∗ ∈ Sol(C,H,PA). �

In light of Proposition 3.1, for solving problem VEP(C,H,PA), we propose the fractional-
order dynamical model:C

t0 Dq
t z(t) =−κ

[
z(t)−proxρH

C (z(t))
]
∀t > t0,

z(t0) = z0,
(3.14)

where q ∈ (0,1], κ > 0, and z0 ∈C is fixed.
For further understanding this model, some special cases of (3.14) are elaborated below.

(a): If q = 1, then (3.14) reduces to the following dynamical system:ż(t) =−κ

[
z(t)−proxρH

C (z(t))
]
∀t > t0,

z(t0) = z0 ∈C,
(3.15)

where κ > 0.
(b): If m = l = 1, A ≡ 1 and H1 = h, then (3.14) reduces to the following dynamical

system: C
t0 Dq

t z(t) =−κ

[
z(t)− p̃roxρh

C (z(t))
]
∀t > t0,

z(t0) = z0 ∈C,
(3.16)

where q ∈ (0,1], κ > 0 and

p̃roxρh
C (z) = argmin

u∈C

{
ρh(z,u)+

1
2
‖u− z‖2

}
∀z ∈C.
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(c): If q = 1, m = l = 1, A≡ 1 and H1 = h, then (3.14) reduces to the following dynamical
system for solving problem EP(C,h), which was recently been studied by Vuong and
Strodiot [35]: ż(t) =−κ

[
z(t)− p̃roxρh

C (z(t))
]
∀t > t0,

z(t0) = z0 ∈C,
(3.17)

where κ > 0.

Remark 3.3. The dynamical system (3.15) in the case of (a) invoking to ordinary differential
equations is used to solve the problem VEP(C,H,PA). Besides, we obtain that the fractional-
order dynamical system (3.16) in the case of (b) solves the solution of scalar equilibrium prob-
lem EP(C,h). From the case of (c), it is clear to see that (3.16) includes the dynamical system
(3.17). Therefore, dynamical systems (3.15) and (3.16) are considered as useful tools for solv-
ing problems VEP(C,H,PA) and EP(C,h), respectively. To the best of our knowledge, they
have not been explored.

3.2. Mittag-Leffler stability. Now, in order to establish the stability of the proposed fractional-
order dynamical system, we describe the definitions of an equilibrium point and Mittag-Leffler
stability of dynamical system (3.14).

Definition 3.1. A point z∗ ∈C is said to be an equilibrium point of dynamical system (3.14) if
z∗ satisfies the following

0 =−κ

[
z∗−proxρH

C (z∗)
]
. (3.18)

Since κ > 0, condition (3.18) is equivalent to z∗ = proxρH
C (z∗). Thus, from Remark 3.2 and

Proposition 3.1, we can conclude that dynamical system (3.14) has a unique equilibrium point,
which is the unique solution to VEP(C,H,PA).

Definition 3.2. The equilibrium point z∗ of dynamical system (3.14) is said to be Mittag-Leffler
stable if there exist some positive constants M, α , and ω such that, for any solution z(t) of
dynamical system (3.14) with any initial value z(t0) = z0,

‖z(t)− z∗‖ ≤
{

M‖z0− z∗‖αEq (−ω(t− t0)q)
} 1

α . (3.19)

Moreover, dynamical system (3.14) is said to be Mittag-Leffler stable, if its equilibrium point
is Mittag-Leffler stable.

Obviously, Mittag–Leffler stability implies asymptotical stability, i.e., limt→+∞ z(t) = z∗.
When q = 1, inequality (3.19) is equivalent to the form

‖z(t)− z∗‖ ≤M′‖z0− z∗‖e−ω ′(t−t0),

where M′ and ω ′ are positive constants. This shows that the Mittag–Leffler stability of dynam-
ical system (3.14) reduces to the exponential stability of dynamical system (3.15).

We now present the key result on establishing an estimation to analysis the Mittag-Leffler
stability of dynamical system (3.14).
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Proposition 3.2. Assume that hypotheses (IA), (IC), (IH)0–(IH)2 hold. Let z∗ be the unique
solution to VEP(C,H,PA) and ρ > 0. Then, for any z ∈C,[

1+ρ

(
2aminµ−ρ (amaxL)2

)]∥∥∥proxρH
C (z)− z∗

∥∥∥2
≤ ‖z− z∗‖2, (3.20)

where

amin = min
1≤i≤l

{
m

∑
k=1

aik

}
and amax = max

1≤i≤l

{
m

∑
k=1

aik

}
. (3.21)

Proof. Let z∗ be the unique solution to VEP(C,H,PA) and ρ > 0. We recall the inequal-
ity (3.12) in the proof of Proposition 3.1:

1
2

∥∥∥u−proxρH
C (z)

∥∥∥2
≤ ϕρ(z,u)−ϕρ

(
z,proxρH

C (z)
)
, ∀z,u ∈C.

Inserting u = z∗ into the above inequality and using the definition of ϕρ in (3.11), we obtain∥∥∥z∗−proxρH
C (z)

∥∥∥2
≤ ‖z− z∗‖2−

∥∥∥z−proxρH
C (z)

∥∥∥2

+2ρ

m

∑
k=1

aīk

[
Hk(z,z∗)−Hk

(
z,proxρH

C (z)
)]

, (3.22)

for some ī ∈ {1, . . . , l}. Using the condition (IH)2 with u = proxρH
C (z) and v = z∗, it follows

from (3.2) that

A
[
H
(

z,proxρH
C (z)

)
+H

(
proxρH

C (z),z∗
)
−H (z,z∗)

+L
∥∥∥z−proxρH

C (z)
∥∥∥∥∥∥proxρH

C (z)− z∗
∥∥∥e
]
∈ Rl

+.

This further implies that

m

∑
k=1

aīk

[
Hk(z,z∗)−Hk

(
z,proxρH

C (z)
)]

≤
m

∑
k=1

aīkHk

(
proxρH

C (z),z∗
)
+

m

∑
k=1

aīkL
∥∥∥z−proxρH

C (z)
∥∥∥∥∥∥proxρH

C (z)− z∗
∥∥∥ . (3.23)

For ρ > 0, using Young’s inequality, we obtain

m

∑
k=1

aīkL
∥∥∥z−proxρH

C (z)
∥∥∥∥∥∥proxρH

C (z)− z∗
∥∥∥

≤ 1
2ρ

∥∥∥z−proxρH
C (z)

∥∥∥2
+

ρ (∑m
k=1 aīkL)2

2

∥∥∥proxρH
C (z)− z∗

∥∥∥2
.
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Hence, it follows from inequality (3.23) that
m

∑
k=1

aīk

[
Hk(z,z∗)−Hk

(
z,proxρH

C (z)
)]

≤
m

∑
k=1

aīkHk

(
proxρH

C (z),z∗
)
+

1
2ρ

∥∥∥z−proxρH
C (z)

∥∥∥2
+

ρ (∑m
k=1 aīkL)2

2

∥∥∥proxρH
C (z)− z∗

∥∥∥2

≤
m

∑
k=1

aīkHk

(
proxρH

C (z),z∗
)
+

1
2ρ

∥∥∥z−proxρH
C (z)

∥∥∥2
+

ρ (amaxL)2

2

∥∥∥proxρH
C (z)− z∗

∥∥∥2
,

(3.24)

where amax =max1≤i≤l
{

∑
m
k=1 aik

}
. Since z∗ is a solution to VEP(C,H,PA), H

(
z∗,proxρH

C (z)
)

/∈ −intPA. By the (PA,µ)-strong pseudo-monotonicity of H, one has

H
(

proxρH
C (z),z∗

)
+µ

∥∥∥proxρH
C (z)− z∗

∥∥∥2
e ∈ −PA,

that is,

A
[

H
(

proxρH
C (z),z∗

)
+µ

∥∥∥proxρH
C (z)− z∗

∥∥∥2
e
]
∈ −Rl

+

so we obtain
m

∑
k=1

aīkHk

(
proxρH

C (z),z∗
)
≤−

m

∑
k=1

aīkµ

∥∥∥proxρH
C (z)− z∗

∥∥∥2

≤−aminµ

∥∥∥proxρH
C (z)− z∗

∥∥∥2
, (3.25)

where amin = min1≤i≤l
{

∑
m
k=1 aik

}
. Combining (3.24) and (3.25), we have

m

∑
k=1

aīk

[
Hk(z,z∗)−Hk

(
z,proxρH

C (z)
)]

≤ 1
2ρ

∥∥∥z−proxρH
C (z)

∥∥∥2
+

(
ρ (amaxL)2

2
−aminµ

)∥∥∥proxρH
C (z)− z∗

∥∥∥2
. (3.26)

Putting (3.26) into (3.22), we obtain∥∥∥z∗−proxρH
C (z)

∥∥∥2
≤ ‖z− z∗‖2−

∥∥∥z−proxρH
C (z)

∥∥∥2

+
∥∥∥z−proxρH

C (z)
∥∥∥2

+ρ

(
ρ (amaxL)2−2aminµ

)∥∥∥proxρH
C (z)− z∗

∥∥∥2

= ‖z− z∗‖2 +ρ

(
ρ (amaxL)2−2aminµ

)∥∥∥proxρH
C (z)− z∗

∥∥∥2
.

This implies that[
1+ρ

(
2aminµ−ρ (amaxL)2

)]∥∥∥proxρH
C (z)− z∗

∥∥∥2
≤ ‖z− z∗‖2.

Thus, inequality (3.20) holds. �

In light of Proposition 3.2, the stability of fractional-order dynamical system (3.14) is estab-
lished as in the following theorem.



448 V.M. TAM, J.S. CHEN, J.L. CHERN, A. TAKEDA

Theorem 3.1. Suppose that hypotheses (IA), (IC), (IH)0–(IH)2 are satisfied, and let

0 < ρ <
2aminµ

(amaxL)2 , (3.27)

where amin and amax are given by (3.21). Then, (3.14) is Mittag-Leffler stable.

Proof. Let z∗ be the unique equilibrium point of system (3.14). We now consider the Lyapunov
function given by

L (t) :=
1
2
‖z(t)− z∗‖2, ∀z(t) ∈C.

From (3.14), using inequality (2.4) in calculating fractional derivative of order q leads to

C
t0 Dq

t L (t)≤
〈

z(t)− z∗,Ct0 Dq
t z(t)

〉
= κ

〈
z∗− z(t),z(t)−proxρH

C (z(t))
〉

= κ

〈
z∗− z(t),z∗−proxρH

C (z(t))
〉
−κ‖z(t)− z∗‖2. (3.28)

Applying Cauchy–Schwarz inequality, it follows from (3.20) and (3.27) that〈
z∗− z(t),z∗−proxρH

C (z(t))
〉
≤ ‖z∗− z(t)‖

∥∥∥z∗−proxρH
C (z(t))

∥∥∥
≤ 1√

1+ρ

(
2aminµ−ρ (amaxL)2

)‖z(t)− z∗‖2. (3.29)

Combining (3.28) and (3.29), we have

C
t0 Dq

t L (t)≤ κ

 1√
1+ρ

(
2aminµ−ρ (amaxL)2

) −1

‖z(t)− z∗‖2 =−ωL (t),

where

ω = 2κ

1− 1√
1+ρ

(
2aminµ−ρ (amaxL)2

)
> 0.

Thus, thanks to Lemma 2.4, we obtain L (t)≤L (t0)Eq (−ω(t− t0)q) , that is,

‖z(t)− x∗‖2 ≤ ‖z0− x∗‖2Eq (−ω(t− t0)q) .

Hence,

‖z(t)− z∗‖ ≤
{

M‖z0− z∗‖αEq (−ω(t− t0)q)
} 1

α , (3.30)

where M = 1,α = 2. Thus (3.14) is Mittag-Leffler stable. �

For 0 < q < 1, the Mittag-Leffler function Eq (−ω(t− t0)q) has the asymptotic behavior
as O(t−q) as t→+∞; see [26, page 34]. Then, it follows from (3.30) that z(t)→ z∗ as t→+∞

with at least the Mittag-Leffler convergence rate.
To illustrate Theorem 3.1, we present the below numerical example.
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Example 3.1. For problem VEP(C,H,PA), let l = m = 3 and the matrix A = (ai j) ∈ Rl×m be
defined by

A =

 1 0.5 0.4
0.2 1 0
1 0 0.5

 ,

the constraint set C be defined by

C =
{

z ∈ R5 : z1 + z2 + z3 + z4 + z5 ≥ 0, −4.5≤ zi ≤ 4.5, ∀i = 1,2,3,4,5
}
.

and H = (H1,H2,H3)
> : C×C→ R3 be defined as follows:

H(z,u) = (H1(z,u),H2(z,u),H3(z,u))>,

H1(z,u) = 〈u− z,0.3u+0.02z−0.44e〉 ,
H2(z,u) = 〈u− z,0.15u+0.03z−0.4e〉 ,
H3(z,u) = 〈u− z,0.2u+0.02z−0.9e〉 ,

where z = (z1,z2,z3,z4,z5)
>, u = (u1,u2,u3,u4,u5)

> ∈ C, and e = (1,1,1,1,1)> ∈ R5. Then,
rank(A) = 3 and we have

PA = {z = (z1,z2,z3)
> ∈ R3 : Az≥ 0}

= {z = (z1,z2,z3)
> ∈ R3 : z1 +0.5z2 +0.4z3 ≥ 0, 0.2z1 + z2 ≥ 0, z1 +0.5z3 ≥ 0},

amin = min
1≤i≤3

{
3

∑
k=1

aik

}
= 1.2 and amax = max

1≤i≤3

{
3

∑
k=1

aik

}
= 1.9.

and

(A◦H)(z,u) =

(
3

∑
k=1

a1kHk(z,u),
3

∑
k=1

a2kHk(z,u),
3

∑
k=1

a3kHk(z,u)

)>
= ( f1(z,u), f2(z,u), f2(z,u))

> ,

where
f1(z,u) = 〈u− z,0.455u+0.045z− e〉= 0.455‖z−u‖2 +0.5〈u− z,z−2e〉 ,

f2(z,u) = 〈u− z,0.21u+0.034z−0.488e〉= 0.21‖z−u‖2 +0.244〈u− z,z−2e〉 ,

f3(z,u) = 〈u− z,0.4u+0.045z−0.89e〉= 0.4‖z−u‖2 +0.445〈u− z,z−2e〉 .

(3.31)

Problem VEP(C,H,PA) is equivalent to finding z ∈C such that

( f1(z,u), f2(z,u), f3(z,u))
> /∈ −int(R3

+), ∀u ∈C.

By the direct calculation, it follows that z∗=(2,2,2,2,2)> is a unique solution to VEP(C,H,PA).
It is easy to see that conditions (IA) and (IC) hold. By the convexity of R5 3 u 7→ Hk(z,u) for
all z ∈R5 and k = 1,2,3, we can show that R5 3 u 7→H(z,u) is PA-convex, so condition (IH)0
is satisfied.

Next, we check that assumptions (IH)1 and (IH)2 hold.
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(IH)1 : For each (z,u) ∈C×C, we have

H (z,u)+H (u,z) =

 H1 (z,u)+H1 (u,z)
H2 (z,u)+H2 (u,z)
H3 (z,u)+H3 (u,z)


=

 〈u− z,0.3u+0.02z−0.44e〉+ 〈z−u,0.3z+0.02u−0.44e〉
〈u− z,0.15u+0.03z−0.4e〉+ 〈z−u,0.15z+0.03u−0.4e〉
〈u− z,0.2u+0.02z−0.9e〉+ 〈z−u,0.2z+0.02u−0.9e〉


=

 −0.28‖z−u‖2

−0.12‖z−u‖2

−0.18‖z−u‖2

 .

Then, for all i ∈ {1,2,3}, we obtain

3

∑
k=1

aik [Hk (z,u)+Hk (u,z)] =−(0.28ai1 +0.12ai2 +0.18ai3)‖z−u‖2

≤−
3

∑
k=1

aik0.12‖z−u‖2, ∀z,u ∈C. (3.32)

For any z,u ∈ C, assume that H (z,u) /∈ −intPA, i.e., A[H (z,u)] /∈ −intR3. Then there exists
i∗ ∈ {1,2,3} such that fi∗(z,u) = ∑

3
k=1 ai∗k [Hk (z,u)]≥ 0 for all z,u ∈C. It follows from (3.31)

that for all i ∈ {1,2,3}, we have

fi(z,u) =
3

∑
k=1

aik [Hk (z,u)]≥ 0, ∀z,u ∈C. (3.33)

Combining (3.32) and (3.33), we get that for all i ∈ {1,2,3},
3

∑
k=1

aik
[
Hk (z,u)+0.12‖z−u‖2]≤ 0, ∀z,u ∈C.

This implies H(u,z) + 0.12‖z− u‖2e ∈ −PA for all z,u ∈ C. Thus, H is (PA,µ)-strongly
pseudo-monotone with µ = 0.12.

(IH)2: For each (z,u) ∈C×C, we have

H1 (z,u)+H1 (u,v)−H1 (z,v)

= 〈u− z,0.3u+0.02z−0.44e〉+ 〈v−u,0.3v+0.02u−0.44e〉
−〈v− z,0.3v+0.02z−0.44e〉

= 0.28〈u− z,u− v〉 ≥ −0.28‖z−u‖‖u− v‖.

Similarly, we also obtain

H2 (z,u)+H2 (u,v)−H2 (z,v)≥−0.12‖z−u‖‖u− v‖

and

H3 (z,u)+H3 (u,v)−H3 (z,v)≥−0.18‖z−u‖‖u− v‖.
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Hence, for all i ∈ {1,2,3},
3

∑
k=1

aik [Hk (z,u)+Hk (u,v)−Hk (z,v)]≥−
3

∑
k=1

aik [0.28‖z−u‖‖u− v‖] ,

that is,
3

∑
k=1

aik [Hk (z,u)+Hk (u,v)−Hk (z,v)+0.28‖z−u‖‖u− v‖]≥ 0.

This implies that

H (z,u)+H (u,v)−H (z,v)+0.28‖z−u‖‖u− v‖e ∈PA.

Hence, H is (PA,L)-Lipschitz-type continuous with L = 0.28.

Thus, we conclude that all the assumptions of Theorem 3.1 are fulfilled with

0 < ρ <
2aminµ

(amaxL)2 ≈ 1.018,

so Theorem 3.1 is valid.
In what follows, we provide Figure 1 and Figure 2 which depict the trajectories generated by

the dynamical system (3.14) with the initial values z1
0 = (−4.021,1.308,−1.524,3.025,2.534)>

and z2
0 = (2.221,0.508,1.324,−1.025,3.534)> and some values of parameters ρ , κ and order

q ∈ (0,1). It is clear that z(t) converges to the unique equilibrium point z∗ = (2,2,2,2,2)>.
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0 5 10 15 20
t

-5

-4

-3

-2

-1

0

1

2

3

4

z(
t) z

1
(t)

z
2
(t)

z
3
(t)

z
4
(t)

z
5
(t)

0 5 10 15 20
t

-5

-4

-3

-2

-1

0

1

2

3

4

z(
t) z

1
(t)

z
2
(t)

z
3
(t)

z
4
(t)

z
5
(t)

c) q = 0.88, ρ = 0.15, κ = 45 d) q = 0.88, ρ = 0.15, κ = 25

FIGURE 1. Transient behavior of the trajectory of dynamical system (3.14) with the
initial value z1

0.



452 V.M. TAM, J.S. CHEN, J.L. CHERN, A. TAKEDA

0 5 10 15 20
t

-2

-1

0

1

2

3

4

z(
t)

z
1
(t)

z
2
(t)

z
3
(t)

z
4
(t)

z
5
(t)

0 5 10 15 20
t

-2

-1

0

1

2

3

4

z(
t)

z
1
(t)

z
2
(t)

z
3
(t)

z
4
(t)

z
5
(t)

a) q = 0.92, ρ = 0.15, κ = 15 b) q = 0.92, ρ = 0.15, κ = 40

0 5 10 15 20
t

-2

-1

0

1

2

3

4

z(
t)

z
1
(t)

z
2
(t)

z
3
(t)

z
4
(t)

z
5
(t)

0 5 10 15 20
t

-2

-1

0

1

2

3

4

z(
t)

z
1
(t)

z
2
(t)

z
3
(t)

z
4
(t)

z
5
(t)

c) q = 0.98, ρ = 0.15, κ = 20 d) q = 0.98, ρ = 0.15, κ = 15

FIGURE 2. Transient behavior of the trajectory of dynamical system (3.14) with the
initial value z2

0.

The Caputo fractional differential equations in system (3.14) were solved in Matlab with the
code fde12.m modified by the basic Predictor-Corrector method developed by Garrappa [8]
with t0 = 0, tfinal = 20 and order q ∈ (0,1). Step size for fde12.m was set to h = 2−6.

We now introduce two assumptions for problem VEP(C,H,PA) studied by Hung et al. [14]
and establish a result with using those assumptions.

(IH)3:
⋂l

i=1 Si :=
{

z ∈C : ∑
m
k=1 aikHk(z,u)≥ 0,∀u ∈C

}
6= /0;

(IH)4: H is (PA,µ)-strongly monotone, i.e., there exists µ > 0 if, for each (z,u) ∈
C×C,

H(z,u)+H(u,z)+µ‖z−u‖2e ∈ −PA.

Lemma 3.3. Let z∗ be the unique solution toVEP(C,H,PA) and z∈C. If conditions (IH)3 and
(IH)4 are satisfied, then inequality (3.25) holds.

Proof. Let z∗ be the unique solution to VEP(C,H,PA) and z ∈C. Using the condition (IH)4,
we have

A
[

H
(

z∗,proxρH
C (z)

)
+H

(
proxρH

C (z),z∗
)
+µ

∥∥∥proxρH
C (z)− z∗

∥∥∥2
e
]
∈ −Rl

+,

which implies
m

∑
k=1

aīk

[
Hk

(
z∗,proxρH

C (z)
)
+Hk

(
proxρH

C (z),z∗
)
+µ

∥∥∥proxρH
C (z)− z∗

∥∥∥2
]
≤ 0,
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for some ī ∈ {1, . . . , l}, so
m

∑
k=1

aīkHk

(
proxρH

C (z),z∗
)

≤−
m

∑
k=1

aīkHk

(
z∗,proxρH

C (z)
)
−

m

∑
k=1

aīkµ

∥∥∥proxρH
C (z)− z∗

∥∥∥2

≤−
m

∑
k=1

aīkHk

(
z∗,proxρH

C (z)
)
−aminµ

∥∥∥proxρH
C (z)− z∗

∥∥∥2
. (3.34)

Furthermore, by the condition (IH)3, without loss of generality, we may assume that x∗ ∈Sī,
i.e.,

m

∑
k=1

aīkHk

(
z∗,proxρH

C (z)
)
≥ 0.

Hence, (3.34) implies that
m

∑
k=1

aīkHk

(
proxρH

C (z),z∗
)
≤−aminµ

∥∥∥proxρH
C (z)− z∗

∥∥∥2
.

which implies that inequality (3.25) holds. �

From Lemma 3.3, if we replace condition (IH)1 by conditions (IH)3 and (IH)4, then the result
of Proposition 3.2 is still valid. Therefore, the following corollary can be directly obtained from
Theorem 3.1.

Corollary 3.1. Suppose that hypotheses (IA), (IC), (IH)0 and (IH)2–(IH)4 hold, and let

0 < ρ <
2aminµ

(amaxL)2 ,

where amin and amax are given by (3.21). Then, (3.14) is Mittag-Leffler stable.

Remark 3.4. Our main results in this paper, Theorem 3.1 and Corollary 3.1, provide the Mittag-
Leffler stability of the dynamical system (3.14) which derives the convergence to the solution of
problem VEP(C,H,PA). As mentioned in Introduction, the dynamical system (3.14) involving
Caputo fractional derivative operators for solving VEP(C,H,PA) has not been considered in
any previous literature. Thus, Theorem 3.1 and Corollary 3.1 are novel contributions in this
work.

Remark 3.5. For q = 1 and t0 = 0, we have Eq (−ω(t− t0)q) = e−ωt , so (3.30) implies that

‖z(t)− z∗‖ ≤ ‖z0− z∗‖e−ω̂t ,

where

ω̂ = κ

1− 1√
1+ρ

(
2aminµ−ρ (amaxL)2

)
 .

Also, (3.14) reduces to (3.15). By Theorem 3.1 and Corollary 3.1, we conclude that the trajec-
tories of (3.15) converge to z∗ at least with the exponential convergence rate, i.e., the unique
equilibrium point z∗ of dynamical system (3.15) is exponentially stable.
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Furthermore, with 0 < ρ <
2aminµ

(amaxL)2 , we can control the parameter ρ to obtain the maximum

convergence rate of the trajectory z(t) given by

ω̂ = ω̂
∗ = κ

1− amaxL√
(aminµ)2 +(amaxL)2

 ,
when ρ = ρ∗ =

aminµ

(amaxL)2 .

To sum up, Theorem 3.1 and Corollary 3.1 are a generalization of [35, Theorem 3.2 and
Corollary 3.2] and [15, Theorem 1 and Corollary 1] according to the following aspects; see also
Figure 3:

• Dynamical system (3.14) is based on Caputo fractional derivative operators.
• VEP(C,H,PA) is an equilibrium problem of the vector type with partial order given

by a polyhedral cone.
• Using computational technologies involving Caputo fractional-order derivatives, strong

pseudo-monotonicity, strong monotonicity, and Lipschitz-type continuity assumptions
with respect to partial order are constructed by a polyhedral cone.

Ordinary dynamical systems Fractional dynamical systems

EP(C,h) VEP(C,H,PA)

O
urnovelresults

T
heorem

3.1,C
orollary

3.1

V
uong-Strodiot(2020)

Ju
etal.(2024)

q = 1

C
t0 Dq

t z(t)→ ż(t)

m = l = 1

A≡ 1, H1 = h

Our novel results
Remark 3.5

FIGURE 3. Illustration of the development of dynamical systems for solving
different kinds of EP(C,h) and VEP(C,H,PA).

4. APPLICATION TO A TRAFFIC NETWORK EQUILIBRIUM PROBLEM

The aim of this section is to provide the applicability of the theoretical results studied in
Section 3. In particular, we look into the traffic network equilibrium problems of the vector
type based on polyhedral cone ordering introduced in [14]. Indeed, it is a general framework of
network equilibrium models that received much attentions recently; see, e.g., [5, 36, 37].

Let us given a transportation network M = (N ,A ), where N denotes the set of nodes and
A denotes the set of directed arcs. We denote by Ω the set of origin-destination (O-D) pairs and
Gω , ω ∈Ω denotes the set of available paths joining O-D pair ω . Let d = (dω)ω∈Ω denote the
demand vector, where dω denotes the demand of traffic flow on O-D pair ω . For a given path
p∈ Gω , we denote the traffic flow on p by fp and f= ( f1, . . . , fN)

> ∈RN , where N =∑ω∈Ω |Gω |
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being | · | the cardinality of Gω . The path flow vector f induces a flow ve on each arc e∈A given
by

ve = ∑
ω∈Ω

∑
p∈Gω

πep fp,

where [πep] ∈ Rτ×N (τ = |A |) is the arc path incidence matrix with

πep =

{
1 if arc e belongs to path p;
0 otherwise.

Let v=(v1, . . . ,vτ)
> ∈Rτ be the vector of arc flow. A path flow f satisfies demands if ∑p∈Gω

fp =
dω for all ω ∈ Ω. A path flow f is said to be feasible if f ≥ 0 satisfying the demand. Let us
consider the set

F =

{
f ∈ RN : f≥ 0, ∑

p∈Gω

fp = dω , ∀ω ∈Ω

}
.

Assume that F 6= /0. It is easy to check that F is compact and convex. Let ce : Rτ → Rm be a
vector-valued cost function for arc e. In general, ce is a function of all the arc flows. We assume
that ce(v) = (c1

e(v), . . . ,cm
e (v))> ∈ Rm. Let Kp : RN → Rm be a vector-valued cost function

along the path p. For each ω ∈ Ω and p ∈ Gω , the vector cost Kp is assumed to be the sum of
all the arc cost of the flow fp through arcs, which belong to the path p, i.e.,

Kp(f) = ∑
e∈A

πepce(v) =

 ∑e∈A πepc1
e(v)

...
∑e∈A πepcm

e (v)

 .

For each ω ∈Ω, p ∈ Gω , j ∈ {1, . . . ,m}, v ∈ Rτ and f ∈ F, let

K j
p (f) = ∑

e∈A
πepc j

e(v) and K j(f) = (K j
1 (f), . . . ,K j

N (f))> ∈ RN .

We always assume that K j
p (·) is continuous for all ω ∈ Ω, p ∈ Gω and j ∈ {1, . . . ,m}. Then,

for each f ∈ F, let

K (f) = (K 1(f), . . . ,K m(f))> = (K1(f), . . . ,KN(f)) ∈ Rm×N ,

that is,

K (f) =


K 1

1 (f) K 1
2 (f) · · · K 1

N (f)
K 2

1 (f) K 2
2 (f) · · · K 2

N (f)
...

... . . . ...
K m

1 (f) K m
2 (f) · · · K m

N (f)

 .

Definition 4.1. [14] A flow f ∈ F is said to be in PA-equilibrium if for all ω ∈Ω, p ∈ Gω and
k ∈ Gω ,

Kp(f)−Kk(f) ∈ int(PA) =⇒ fp = 0, (4.1)
where PA is the polyhedral cone generated by matrix A.

If l = m and A is the identity matrix of size m, then PA = {z ∈ Rm : Az≥ 0}= Rm
+. Accord-

ingly, (4.1) becomes
Kp(f)−Kk(f) ∈ int(Rm

+) =⇒ fp = 0.
Then, the flow f is in weak vector equilibrium; see [5, Definition 3.2].
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Proposition 4.1. [14] The path flow f∗ ∈ F is in PA-equilibrium if f∗ solves the vector varia-
tional inequality (for short, VVI(F,K ,PA)) :

∑
ω∈Ω

∑
p∈Gω

(hp− f ∗p)Kp(f∗) /∈ −int(PA), ∀h ∈ F.

Denote by S(F,K ,PA) the solution set of problem VVI(F,K ,PA). We always assume
that S(F,K ,PA) is nonempty. Now, we assume that the condition (IA) is satisfied and impose
the following assumptions for problem VVI(F,K ,PA):

(IK )1: K is (PA, µ̂)-strongly pseudo-monotone, i.e., there exists µ̂ > 0 such that

∑
ω∈Ω

∑
p∈Gω

(hp− fp)Kp(f) /∈ −intPA

=⇒ ∑
ω∈Ω

∑
p∈Gω

( fp−hp)Kp(h)+ µ̂‖f−h‖2e ∈ −PA,

for all f,h ∈ F;
(IK )2: For each i ∈ {1, . . . , l}, there exists Li > 0 such that

m

∑
j=1

ai j
[〈

K j(f)−K j(h),g−h
〉
+Li‖f−h‖‖g−h‖

]
≥ 0,

for all f,h,g ∈ F.

Now, let us consider the following function

p̂roxρK
F (f) = argmin

h∈F

(
ρ max

1≤i≤l

{
m

∑
j=1

ai j ∑
ω∈Ω

∑
p∈Gω

(hp− fp)K
j

p (f)

}
+

1
2
‖f−h‖2

)
,

for all f ∈ F. In order to apply the results presented in Section 3, for each j ∈ {1, . . . ,m}, let
C = F and functions H j : F×F→ R and H : F×F→ Rm be defined by

H j(f,h) = ∑
ω∈Ω

∑
p∈Gω

(hp− fp)K
j

p (f),

H(f,h) = (H1(f,h), . . . ,Hm(f,h))> ∈ Rm ∀f,h ∈ F.

Then, problem VVI(F,K ,PA) is equivalent to problem VEP(C,H,PA), i.e., p̂roxρK
F is

equivalent to the function proxρH
C .

Since F 3 h 7→H j(f,h) is an affine function for all j ∈ {1, . . . ,m}, it is easy to show that H is
PA-convex in the second component. By assumptions, F is a nonempty, compact, and convex
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set. Moreover, for all i ∈ {1, . . . , l}, one has
m

∑
j=1

ai j
[
H j (f,h)+H j (h,g)−H j (f,g)

]
=

m

∑
j=1

ai j ∑
ω∈Ω

∑
p∈Gω

[
(hp− fp)K

j
p (f)+(gp−hp)K

j
p (h)− (gp− fp)K

j
p (f)

]
=

m

∑
j=1

ai j ∑
ω∈Ω

∑
p∈Gω

(gp−hp)
(
K j

p (h)−K j
p (f)

)
=

m

∑
j=1

ai j
〈
K j(f)−K j(h),g−h

〉
,

for all f,h,g ∈ F. Using conditions (IA) and (IK )2, we obtain
m

∑
j=1

ai j
〈
K j(f)−K j(h),g−h

〉
≥−

m

∑
j=1

ai jLi‖f−h‖‖g−h‖

≥ −
m

∑
j=1

ai j max
1≤i≤l
{Li}‖f−h‖‖g−h‖

Hence, for all i ∈ {1, . . . , l},
m

∑
j=1

ai j

[
H j (f,h)+H j (h,g)−H j (f,g)+ max

1≤i≤l
{Li}‖h− f‖‖g−h‖

]
≥ 0,

that is,

A
[

H (f,h)+H (h,g)−H (f,g)+ max
1≤i≤l
{Li}‖h− f‖‖g−h‖e

]
∈ Rl

+.

for all f,h,g ∈ F. Thus

H (f,h)+H (h,g)−H (f,g)+ max
1≤i≤l
{Li}‖h− f‖‖g−h‖e ∈PA,

for all f,h,g ∈ F, so H is (PA,L)-Lipschitz-type continuous with L = max
1≤i≤l
{Li}> 0. It follows

from assumption (IK )1 that H is (PA, µ̂)-strongly pseudo-monotone. Therefore, all hypothe-
ses (IC) and (IH)0–(IH)2 are satisfied with C = F, µ = µ̂ and L = max

1≤i≤l
{Li}.

From the above discussions and Propositions 3.1-3.2 and Theorem 3.1, an immediate conse-
quence follows.

Theorem 4.1. For problem VVI(F,K ,PA), suppose that assumptions (IA), (IK )1, and (IK )2
hold, and let

0 < ρ <
2aminµ̂(

amax max
1≤i≤l
{Li}

)2 .

Then,

‖f(t)− f∗‖ ≤ ‖f0− f∗‖
√

Eq (−θ(t− t0)q), (4.2)

where
• f∗ is the unique solution of VVI(F,K ,PA);
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• f(t) is the trajectory of the following fractional-order dynamic systemC
t0 Dq

t f(t) =−κ

[
f(t)− p̂roxρK

F (f(t))
]
∀t > t0,

f(t0) = f0 ∈ F, κ > 0;
(4.3)

• the parameter θ is given by

θ = 2κ

1− 1√√√√1+ρ

[
2aminµ̂−ρ

(
amax max

1≤i≤l
{Li}

)2
]
> 0.

• amin and amax are given by (3.21).
• Eq(·) is the Mittag-Leffler function, as defined by (2.5).

It follows from (4.2) that the trajectory f(t) of (4.3) converges to f∗ as t→+∞ with at least the
Mittag-Leffler convergence rate. Also, (4.3) is Mittag-Leffler stable with the unique equilibrium
point f∗. In addition, applying Lemma 3.3 and Corollary 3.1, if condition (IK )2 is replaced by
the following conditions:

(IK )3:
⋂l

i=1 Ŝi :=
{

f ∈ F : ∑
m
j=1 ai j ∑ω∈Ω ∑p∈Gω

(hp− fp)K
j

p (f)≥ 0,∀h ∈ F
}
6= /0;

(IK )4: There exists µ̂ > 0 if, for each (f,h) ∈ F×F,

∑
ω∈Ω

∑
p∈Gω

[(hp− fp)Kp(f)+( fp−hp)Kp(h)]+ µ̂‖f−h‖2e ∈ −PA,

then the result of Theorem 4.1 is still valid for (4.3).
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