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whereas the natural residual function ϕNR : R2 → R is given by

ϕNR(a, b) = a− (a− b)+ = min{a, b}.

Recently, the generalized Fischer-Burmeister function ϕp
FB

: R2 → R, which includes
the Fischer-Burmeister as a special case, was considered in [1, 2, 3, 6, 17, 25]. Indeed, the
function ϕp

FB
is a natural extension of the popular ϕFB function, in which the 2-norm in

ϕ
FB
(a, b) is replaced by general p-norm. In other words, ϕp

FB
is defined as

ϕp
FB
(a, b) = ∥(a, b)∥p − (a+ b), p > 1 (1.1)

and its geometric view is depicted in [25]. The effect of perturbing p for different kinds
of algorithms are investigated in [4, 5, 6, 7, 8]. To the contrast, “Is there an extension of
natural residual function?” and “If yes, how does the extension of ϕNR look like?” remain
open. As mentioned, there exist many NCP-functions which are variants of ϕNR , but there
is no literature talking about the extension of natural residual function. The main hurdle
lies on lacking continuous norm generalization like what we do for ϕp

FB
. In this paper, we

give an affirmative answer to the long-standing open question. In fact, the main ideas rely
on “discrete generalization”, not the “continuous generalization”. More specifically, the
generalized natural residual function, denoted by ϕp

NR
, is defined by

ϕp
NR

(a, b) = ap − (a− b)p+ with p > 1 being a positive odd integer, (1.2)

where (a−b)p+ = [(a−b)+]
p and (a−b)+ = max{a−b, 0}. Here p being a positive odd integer

is necessary (that is, we require that p = 2k+1, where k = 1, 2, 3, · · · ). We will explain this
in Section 2. Notice that when p = 1, ϕp

NR
reduces to the natural residual function ϕNR , i.e.,

when k = 0, it corresponds to

ϕ1
NR

(a, b) = a− (a− b)+ = min{a, b} = ϕNR(a, b).

This is why we call it the “generalized natural residual function”. We point it out again
that the considered extension is based on “discrete generalization”. For different values of
p, it is no longer an NCP-function. A special feature of ϕp

NR
is that it is twice differentiable

which will be proved in Section 2. It is well known that the generalized Fischer-Burmeister
ϕp

FB
given as in (1.1) is not differentiable, while ∥ϕp

FB
(a, b)∥2 is differentiable everywhere.

This yields that ∥ϕp
FB
(a, b)∥2 is usually adapted when using merit function approach and

ϕp
FB
(a, b) is employed when applying nonsmooth function approach. Compared to the non-

differentiability of ϕp
FB
, the function ϕp

NR
with p = 2k+1 is twice continuously differentiable.

This feature enables that many methods like Newton method can be employed directly for
solving NCP. This is a new discovery to the literature and is the main contribution of this
paper.

2 Generalized Natural Residual Function

In this section, we show that the function ϕp
NR

defined as in (1.2) is an NCP-function and
present its twice differentiability.

Proposition 2.1. Let ϕp
NR

be defined as in (1.2). Then, ϕp
NR

is an NCP-function.

Proof. First, we note that for any fixed real number ξ ≥ 0 and odd integer p, the equation
tp − ξp = 0 has exactly one real solution t = ξ because the function tp is strictly monotone.



WHAT IS THE GENERALIZATION OF NATURAL RESIDUAL FUNCTION FOR NCP? 21

Thus, we observe that

ϕp
NR

(a, b) = 0

⇐⇒ ap − (a− b)p+ = 0

⇐⇒ a− (a− b)+ = 0

⇐⇒ min{a, b} = 0

⇐⇒ a, b ≥ 0, ab = 0.

This shows that ϕp
NR

is an NCP-function.

Remarks: We elaborate more about the function ϕp
NR

.

(a) For p being an even integer, ϕp
NR

is not a NCP-function. A counterexample is given as
below.

ϕ2
NR

(−2,−4) = (−2)2 − (−2 + 4)2+ = 0.

(b) The function ϕp
NR

is neither convex nor concave function. To see this, taking p = 3 and
using the following argument verify the assertion.

−1 = ϕ3
NR

(−1,−1) >
1

2
ϕ3

NR
(−2,−1) +

1

2
ϕ3

NR
(0,−1) =

−8

2
+

−1

2
= −9

2

Proposition 2.2. Let p > 1 be a positive odd integer. Then, we have

[(a− b)+]
p = [(a− b)p]+, (2.1)

and hence
ϕp

NR
(a, b) = ap − [(a− b)+]

p = ap − [(a− b)p]+.

Proof. For any α ∈ R, we know that [α]+ = 1
2 (α+ |α|). In addition, looking the coefficients

of the binomial (1 + x)p, we have

p∑
j=0, even

C(p, j) =

p∑
j=0,odd

C(p, j) =
1

2

p∑
j=0

C(p, j) =
2p

2
= 2p−1.

These two facts lead to

[(a− b)+]
p

=
1

2p
(a− b+ |a− b|)p

=
1

2p

 p∑
j=0

C(p, j)|a− b|j(a− b)p−j


=

1

2p

 p∑
j=0, even

C(p, j)|a− b|j(a− b)p−j +

p∑
j=0,odd

C(p, j)|a− b|j(a− b)p−j


=

1

2p

 p∑
j=0, even

C(p, j)(a− b)p +

p∑
j=0,odd

C(p, j)|a− b|(a− b)p−1


=

1

2p
(
2p−1(a− b)p + 2p−1|a− b|(a− b)p−1

)
=

1

2

(
(a− b)p + |a− b|(a− b)p−1

)
= [(a− b)p]+
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where the last equality holds because p is an positive odd integer. Thus, the proof is
complete.

Remark: In Proposition 2.2, note that the equality in (2.1) holds only when p is positive
odd integer. When p is an even integer, [(a − b)+]

p ̸= [(a − b)p]+. This also explains that
requiring p being an positive odd integer is necessary in the definition of ϕp

NR
. Next, we

provide an alternative expression for ϕp
NR

and show its twice differentiability. To this end,
we need a technical lemma.

Lemma 2.3. Let p > 1. Then,

(a) the function f(t) = |t|p is differentiable and f ′(t) = p sgn(t)|t|p−1;

(b) the function f(t) = tp|t| is differentiable and f ′(t) = (p+ 1)tp−1|t|.

Proof. The proofs are straightforward which are omitted here.

Proposition 2.4. Let p = 2k + 1 where k = 1, 2, 3 · · · . Then, we have

(a) ϕp
NR

(a, b) = a2k+1 − 1
2

(
(a− b)2k+1 + (a− b)2k|a− b|

)
;

(b) ϕp
NR

is continuously differentiable with

∇ϕp
NR

(a, b)

= p

[
ap−1 − (a− b)p−2(a− b)+

(a− b)p−2(a− b)+

]
;

(c) ϕp
NR

is twice continuously differentiable with

∇2ϕp
NR

(a, b)

= p(p− 1)

[
ap−2 − (a− b)p−3(a− b)+ (a− b)p−3(a− b)+

(a− b)p−3(a− b)+ −(a− b)p−3(a− b)+

]
.

Proof. (a) This alternative expression follows from Proposition 2.2.
(b) From Lemma 2.3, we compute that

∂ϕp
NR

∂a
(a, b)

=
∂

∂a

(
a2k+1 − 1

2
((a− b)2k+1 + (a− b)2k|a− b|

)
= (2k + 1)a2k − (2k + 1)

2
(a− b)2k − (2k + 1)

2
(a− b)2k−1|a− b|

and

∂ϕp
NR

∂b
(a, b)

=
∂

∂b

(
a2k+1 − 1

2
((a− b)2k+1 + (a− b)2k|a− b|

)
=

(2k + 1)

2
(a− b)2k +

(2k + 1)

2
(a− b)2k−1|a− b|.
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Hence, we obtain

∇ϕp
NR

(a, b)

=
2k + 1

2

[
2a2k − (a− b)2k − (a− b)2k−1|a− b|

(a− b)2k + (a− b)2k−1|a− b|

]
=

2k + 1

2

[
2a2k − 2(a− b)2k−1(a− b)+

2(a− b)2k−1(a− b)+

]
= p

[
ap−1 − (a− b)p−2(a− b)+

(a− b)p−2(a− b)+

]
which proves part (b).
(c) Similarly, with Lemma 2.3 again, the Hessian matrix can be calculated as below.

∇2ϕp
NR

(a, b)

= k(2k + 1)[
2a2k−1 − (a− b)2k−1 − (a− b)2k−2|a− b| (a− b)2k−1 + (a− b)2k−2|a− b|

(a− b)2k−1 + (a− b)2k−2|a− b| −(a− b)2k−1 − (a− b)2k−2|a− b|

]
= p(p− 1)

[
ap−2 − (a− b)p−3(a− b)+ (a− b)p−3(a− b)+

(a− b)p−3(a− b)+ −(a− b)p−3(a− b)+

]

Finally, we present some other variants of ϕp
NR

. Indeed, analogous to those functions in
[24], the variants of ϕp

NR
as below can be verified being NCP-functions.

φ1(a, b) = ϕp
NR

(a, b) + α(a)+(b)+, α > 0.

φ2(a, b) = ϕp
NR

(a, b) + α ((a)+(b)+)
2
, α > 0.

φ3(a, b) =
(
ϕp

NR
(a, b)

)2
+ α ((ab)+)

4
, α > 0.

φ4(a, b) =
(
ϕp

NR
(a, b)

)2
+ α ((ab)+)

2
, α > 0.

Lemma 2.5. The value of ϕp
NR

(a, b) is positive only in the first quadrant, i.e., ϕp
NR

(a, b) > 0
if and only if a > 0, b > 0.

Proof. We know that f(t) = tp is a strictly increasing function since p is odd. Using this
fact yields

a > 0, b > 0

⇐⇒ a+ b > |a− b|

⇐⇒ a >
a− b+ |a− b|

2
⇐⇒ a > (a− b)+

⇐⇒ ap > (a− b)p+

⇐⇒ ϕp
NR

(a, b) > 0,

which is the desired result.

Proposition 2.6. All the above functions φi, i ∈ {1, 2, 3, 4} are NCP-functions.
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Proof. We will only show that φ1 is an NCP-function and the same argument can be applied
to the other cases. Let Ω := {(a, b) | a > 0, b > 0} and suppose φ1(a, b) = 0. If (a, b) ∈
Ω, then ϕp

NR
(a, b) > 0 by Lemma 2.5; and hence, φ1(a, b) > 0. This is a contradiction.

Therefore, there must have (a, b) ∈ Ωc which says (a)+(b)+ = 0. This further implies
ϕp

NR
(a, b) = 0 which is equivalent to a, b ≥ 0, ab = 0. Then, one direction is proved. The

converse direction is straightforward.

3 Geometric View of ϕp
NR

In this section, we depict the surfaces of ϕp
NR

with various values of p so that we may have
more insight for this new family of NCP-functions. Figure 1 is the surface if ϕNR(a, b)
from which we see that it is concave and increasing along the direction (t, t) in the first
quadrant. Figure 2 presents the surface of ϕp

NR
(a, b) in which we see that it is neither convex

nor concave. In addition, the value of ϕp
NR

(a, b) is positive only when a > 0 and b > 0 as
mentioned in Lemma 2.5. The surfaces of ϕp

NR
with various values of p is shown in Figure 3.

Figure 1: The surface of z = ϕp
NR

(a, b) with p = 1 and (a, b) ∈ [−10, 10]× [−10, 10]

Figure 2: The surface of z = ϕp
NR

(a, b) with p = 3 and (a, b) ∈ [−10, 10]× [−10, 10]
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Figure 3: The surface of z = ϕp
NR

(a, b) with different values of p

To sum up, we propose a new family of new NCP-functions in this short paper. This
answers a long-standing open question: what is the generalization of natural residual NCP-
function? With this new discovery, many directions can be explored in the future, including
numerical comparisons between ϕp

FB
and ϕp

NR
involved in various algorithms, studying the

effect when perturbing the parameter p, applying this new family of NCP-functions to
suitable optimization problems, and extending it as complementarity function associated
with second-order cone and symmetric cone.
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