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Abstract In the solution methods of the symmetric cone complementarity problem
(SCCP), the squared norm of a complementarity function serves naturally as a merit
function for the problem itself or the equivalent system of equations reformulation.
In this paper, we study the growth behavior of two classes of such merit functions,
which are induced by the smooth EP complementarity functions and the smooth im-
plicit Lagrangian complementarity function, respectively. We show that, for the linear
symmetric cone complementarity problem (SCLCP), both the EP merit functions and
the implicit Lagrangian merit function are coercive if the underlying linear transfor-
mation has the P-property; for the general SCCP, the EP merit functions are coercive
only if the underlying mapping has the uniform Jordan P-property, whereas the co-
erciveness of the implicit Lagrangian merit function requires an additional condition
for the mapping, for example, the Lipschitz continuity or the assumption as in (45).

Keywords Symmetric cone complementarity problem - Jordan algebra - EP merit
functions - Implicit Lagrangian function - Coerciveness

Communicated by M. Fukushima.

The authors would like to thank the two anonymous referees for their helpful comments which
improved the presentation of this paper greatly.
The research of J.-S. Chen was partially supported by National Science Council of Taiwan.

S.H. Pan
School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China
e-mail: shhpan@scut.edu.cn

J.-S. Chen (X))
Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
e-mail: jschen @math.ntnu.edu.tw

@ Springer


mailto:shhpan@scut.edu.cn
mailto:jschen@math.ntnu.edu.tw

168 J Optim Theory Appl (2009) 141: 167-191

1 Introduction

[P

Given a Euclidean Jordan algebra A = (V, o, (-, -)), where ‘o’ denotes the Jordan
product and V is a finite-dimensional vector space over the real field R equipped
with the inner product (-, -), let X be a symmetric cone in V and let F : V — V be
a continuous mapping. The symmetric cone complementarity problem (SCCP) is to
find ¢ € V such that

tek, F@Q)ek, (¢ F()=0. ey

The model provides a simple unified framework for various existing complementar-
ity problems such as the nonlinear complementarity problem over nonnegative or-
thant cone (NCP), the second-order cone complementarity problem (SOCCP) and
the semidefinite complementarity problem (SDCP), and hence has extensive applica-
tions in engineering, economics, management science, and other fields; see [1-4] and
references therein. When F(¢) = L(¢) + b, L : V — V being a linear transformation
and b € V, the SCCP becomes the linear complementarity problem over symmetric
cones (SCLCP),

ek, L)+bek, (¢, Li)+Db)=0. 2)

Recently, there is much interest in the study of merit functions or complemen-
tarity functions associated with symmetric cones and the development of the merit
function approach or the smoothing method for solving the SCCP. For example, Liu,
Zhang and Wang [5] extended a class of merit functions proposed in [6] to the SCCP,
Kong, Tuncel and Xiu [7] studied the extension of the implicit Lagrangian function
proposed by Mangasarian and Solodov [8] to symmetric cones; Kong, Sun and Xiu
[9] proposed a regularized smoothing method by the natural residual complementar-
ity function associated with symmetric cones; and Huang and Ni [10] developed a
smoothing-type algorithm with the regularized CHKS smoothing function over the
symmetric cone.

A mapping ¢ : V x V — V is called a complementarity function associated with
the symmetric cone /C if the following equivalence holds:

¢(x,y)=0 — xek,yek, (x,y)=0. 3)

By Propositions 111.4.4—4.5 and Theorem V.3.7 of [11], the Euclidean Jordan algebra
V and the corresponding symmetric cone K can be written as

V=V xVyx---xV, and K=K'xK>x---x K", )
where each (V;, o, (-,-)) is a simple Euclidean Jordan algebra and K' is the sym-
metric cone in V;. Moreover, for any x = (x1,...,Xp),y = V1, ..., Ym) € V with
xi,yi €V,

Xoy=(X10¥l,...,xmoyym) and (x,y)=(x1,y1)+ -+ Xm, Ym)-
Therefore, the characterization (3) of complementarity function is equivalent to

Pp(x,)=0 — xieK,yieK', (xi,y)=0 foralli=1,2,...,m. (5)
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This means that, if ¢ is a complementarity function associated with the cone /C,
then ¢ (x, y) forany x = (x1, ..., Xm), Yy = (V1,..., ym) € V with x;, y; € V; can be
written as

90, y) = (9P 011 9P 020 32), o 6 (s ) )

where qﬁ(" ):V; xV; > V;isa complementarity function associated with Kiie.,
V(i) =0 = xeK.yeK, (v y)=0. ©)
Consequently, the SCCP can be reformulated as the following system of equations:

oV (¢, F1(0))
Q@) =g, F(0) = : =0,
" (G, Fu(0))

which naturally induces a merit function f : V — R for the SCCP, defined as

@ =IO =1/2) Y 16 @, FE)I*.

i=1

In the rest of this paper, corresponding to the Cartesian structure of V, we always
write F = (Fy, ..., Fy) with F;:V— V; and ¢ = (¢1, ..., §n) With & € V5.

The merit function f is often involved in the design of the merit function methods
or the equation reformulation methods for the SCCP. For these methods, the coer-
civeness of f plays a crucial role in establishing the global convergence results. In
this paper, we will study the growth behavior of two classes of such merit functions,
which respectively correspond to the EP-functions introduced by Evtushenko and
Purtov [12] and the implicit Lagrangian function by Mangasarian and Solodov [8].
The EP-functions over the symmetric cone /C were first introduced by Kong and
Xiu [13], defined by

¢, (x,3) i=—xoy+ (120 [(x+»-]", O<a<l, @)
By(ry) = —xoy+ (128 [ +(0?], 0<p<l ®

where (-)_ denotes the minimum metric projection onto —K. They showed that ¢,
and ¢, are continuously differentiable and strongly semismooth complementarity
functions associated with K. In addition, Kong, Tuncel and Xiu [7] extended the
implicit Lagrangian function to the symmetric cone K and studied its continuous
differentiability and strongly semismoothness. The function is defined as follows:

bus(x.3) i=x 0y + (1/20) {[(x —ay) P =+ [0 = P =y2) . ©)

where o > 0 (# 1) is a fixed constant, and (-)+ denotes the minimum metric projec-
tion on /C. Particularly, for the implicit Lagrangian merit function of the SCCP, they
presented a mild stationary point condition and proved that it can provide a global
error bound under the uniform Cartesian P-property and Lipschitz continuity of F.
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This paper is mainly concerned with the growth behavior of the merit functions
induced by the above three types of smooth complementarity functions, that is,

£,©) =1/, (&, FE)>=(1/2) Y 1P @ F (I, (10)

i=1

£,©) = /Dy ¢ FEOIP = (1/2) Y o @i, B, (11

i=1

Fus @) = (1/)lpys €. FOI* = (1/2) Y 16D @i F@OI®,  (12)

i=1

where qbi”, ¢/§i), ¢ﬁ; defined as in (7), (8), (9), respectively, are a complementarity

function associated with K. Specifically, we show that for the SCLCP (2), the EP
merit functions f, and f, and the implicit Lagrangian function f,,s are coercive only
if the linear transformation L has the P-property; for the general SCCP, f, and f, are
coercive if the mapping F has the uniform Jordan P-property, but the coerciveness of
fus needs an additional condition of F', for example, the Lipschitz continuity or the
assumption as in (45). When V =R" and “o” denotes the componentwise product of
the vectors, the obtaining results precisely reduce to those of Theorems 2.1 and 2.3
in [14] and Theorem 4.1 in [15]. However, for the general Euclidean Jordan algebra
even the Lorentz algebra, to the best of our knowledge, similar results have not been
established for these merit functions.

Throughout this paper, || - || represents the norm induced by the inner prod-
uct (-, -), int() denotes the interior of the symmetric cone K, and (x,...,x;) €
Vi x --- x 'V, is viewed as a column vectorin V=V x --- x V,,,. For any x € V,
(x)+ and (x)_ denotes the metric projection of x onto K and —/C, respectively, i.e.,

(x) 4 :=argmin, i {[lx — yll}.

2 Preliminaries

This section recalls some concepts and materials of Euclidean Jordan algebras that
will be used in the subsequent analysis. More detailed expositions of Euclidean Jor-
dan algebras can be found in Koecher’s lecture notes [16] and the monograph by
Faraut and Koréanyi [11]. Besides, one can find excellent summaries in [17-19].

A Euclidean Jordan algebra is a triple (V, o, (-, -)v), where (V, (-, -)y) is a finite-
dimensional inner product space over the real field R and (x, y) > x0y : VxV -V
is a bilinear mapping satisfying the following three conditions:

(i) xoy=yoxforallx,yeV,
(i) xo (x?20y)=x20(xoy) forall x, y € V, where x
(i) (xoy,z)v=(y,xoz)y forall x,y,z€ V.

Z:=xox;

We assume that there is an element e € V such that x o e = x for all x € V and
call e the unit element. Let ¢ (x) be the degree of the minimal polynomial of x € V,
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which can be equivalently defined as ¢ (x) := min{k : {e, x, X2 ..., xk} are linearly

dependent}. Since ¢(x) < dim(V) where dim(V) denotes the dimension of V, the
rank of (V, o) is well defined by ¢ := max{¢(x) : x € V}. In a Euclidean Jordan
algebra (V, o, (-, -)y), we denote K := {x? : x € V} by the set of squares. From The-
orem II1.2.1 of [11], K is a symmetric cone. This means that K is a self-dual closed
convex cone with nonempty interior int(/C), and for any x, y € int(K), there exists an
invertible linear transformation 7 : V — V such that 7 () = K.

A Euclidean Jordan algebra is said to be simple if it is not the direct sum of two
Euclidean Jordan algebras. By Propositions I11.4.4-111.4.5 and Theorem V.3.7 of [11],
any Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean
Jordan algebras. Moreover, the symmetric cone in a given Euclidean Jordan alge-
bra is, in a unique way, a direct sum of symmetric cones in the constituent simple
Euclidean Jordan algebras. Here are two popular examples of simple Euclidean Jor-
dan algebras. One is the algebra S"” of n x n real symmetric matrices with the inner
product (X, Y)s» := Tr(XY) and the Jordan product X o Y := (XY + Y X)/2, where
Tr(X) is the trace of X and XY is the usual matrix multiplication of X and Y. In
this case, the unit element is the identity matrix in S"” and the cone K is the set of
all positive semidefinite matrices. The other is the Lorentz algebra £", also called the
quadratic forms algebra, with V. =R", (-, -)y being the usual inner product in R" and
the Jordan product defined by

xoy:=((x,y)re, X1y2 + y1x2), (13)

for any x = (x1,x2),y = (y1,y2) € R x R"~!. Under this case, the unit element
e=(1,0,...,0) € R", and the associate cone, called the Lorentz cone (or the second-
order cone), is given by K := {x = (x1, x2) e R x R"7!: [|x2]| < x1}.

Recall that an element ¢ € V is said to be idempotent if ¢> = ¢. Two idempotents ¢
and d are said to be orthogonal if c od = 0. We say that {c1, ¢3, ..., ¢t} is a complete
system of orthogonal idempotents if

k
cd=cj,  cjoc=0 ifj#i, ji=12...k and Y cj=e.
j=1

A nonzero idempotent is said to be primitive if it cannot be written as the sum of
two other nonzero idempotents. We call a complete system of orthogonal primitive
idempotents a Jordan frame. Then, we have the following spectral decomposition
theorem (see Theorem II1.1.2 in [11]).

Theorem 2.1 Suppose that A = (V, o, (-, -)y) is a Euclidean Jordan algebra with

rank q. Then, for each x €V, there exist a Jordan frame {c1, c2, ..., c4} and real
numbers Ay (x), A2(x), ..., Ay (x) such that x = Z‘:l Aj(x)cj. The numbers X j(x)

(counting multiplicities), which are uniquely determined by x, are called the eigen-
values of x.

In the sequel, we denote by Apax (x) and Amin (x) the maximum eigenvalue and the
minimum eigenvalue of x respectively and by tr(x) := Z?: | ~j(x) the trace of x.
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By Proposition III.1.5 of [11], a Jordan algebra A = (V, o) over R with a unit
element e € V is Euclidean if and only if the symmetric bilinear form tr(x o y) is
positive definite. Therefore, we may define an inner product (-, -) on V by

(x,y):=tr(xoy), Vx,yeV.

Let || - || be the norm on V induced by the inner product (-, -), namely,

q 172
lx]l :=+/(x,x) = (Zﬁ(x)) , VxeV.
=1

Then, by the Schwartz inequality, it is easy to verify that

lxoyl <lxll-lyl, Vx,yeV. (14)
For a given x € V, we define the linear operator £ : V — V by

L(x)y:=xoy, foreveryyeV.

Since the inner product (-, -) is associative by the associativity of tr(-) (see Propo-
sition I1.4.3 of [11]), i.e., for all x, y,z € V, it holds that (x, y o z) = (y, x o z), the
linear operator £(x) for each x € V is symmetric with respect to (-, -) in the sense
that

(L(x)y, z) =y, L(x)z), Vy,zeV.

We say that elements x and y operator commute if £(x) and £(y) commute, i.e.,

L)L(y) = LOY)L(x).

Let ¢ : R — R be a real-valued function. Then, it is natural to define a vector-
valued function associated with the Euclidean Jordan algebra A = (V, o, (-, -)) by

@y () == @1 (x)er +oa(x))ea + - + (g (x))cg, 15)

where x € V has the spectral decomposition x = Z‘;zl Aj(x)cj. The function ¢, is
also called the Lowner operator in [19] and shown to inherit many properties from
¢. Especially, when ¢(¢) is chosen as max{0, ¢t} and min{0, 7} for ¢ € R, respectively,
¢y, becomes the metric projection operator onto K and —/C,

q q
()4 =Y _max {0, 1;(x)}c;. (@)=Y min{0.A;(x)}c;.  (16)

j=1 j=1

It is easy to verify that x = (x)4 + (x)_, |x| = (x)4 — (x)_ and [x]® = [|(xX)+ > +
1112

An important part in the theory of Euclidean Jordan algebras is the Peirce decom-
position theorem which is stated as follows (see Theorem IV.2.1 of [11]).
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Theorem 2.2 Let A = (V, o, (-, -)) be a Euclidean Jordan algebra with rank q and
let{c1,ca,...,cq4} be aJordan frame in V. Fori, j € {1,2, ..., q}, define

Vii = {er: xoci:x}, Vij = {er: xoci:(l/2)x:xocj}, i#].

Then, the space V is the orthogonal direct sum of subspaces V;j (i < j). Further-
more,

(@) VijoVij € Vi +Vj;
(b) Vij oV SV ifi #k;
(©) VijoVu={0}if{i, j} N {k. 1} =0.

To close this section, we recall the concepts of the P-property and the uniform
Jordan P-property for a linear transformation and a nonlinear mapping.

Definition 2.1 A linear transformation L : V — V is said to have the P-property if

¢ and L(¢) operator commute

CoL(t)e—K x=0.

Definition 2.2 A mapping F = (Fy, ..., Fy;) with F; : V — V; is said to have:

(i) the uniform Cartesian P-property if there is a positive scalar p such that, for any
£,& €V, thereis anindex v € {1,2, ..., m} such that

(&v — &, Fu(2) — Fo(&)) > pllc — &I,

(i1) the uniform Jordan P-property if there is a positive scalar p such that, for any
’,& €V, thereis anindex v € {1, 2, ..., m} such that

Amax [(Cy — &) 0 (Fu(¢) — Fy ()] = pllc — £1°.

Unless otherwise stated, in the subsequent analysis, we assume that A =
(V, 0, (-, -)) is a simple Euclidean Jordan algebra of rank ¢ and dim(V) = n.
3 Coerciveness of f, and f,

In this section, we study the conditions under which the EP merit functions f, and f,
are coercive. For this purpose, we need Lemma 3.1 of [13], which is stated as follows.

Lemma 3.1 For a given Jordan frame {c1, c2, ..., ¢4}, if z € V can be written as
q
Z=ZZiCi + Z Zij
i=1 Isi<j=q
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withz; e Rfori=1,2,...,qand z;; € V;j for 1 <i < j < q, then

Z+—ZS,C,+ Z Sijs Zw ¢+ Z Wij,

I<i<j=<q I<i<j=q
where s; > (zi)+ = 0,0 > (z;)— > w; with s; +w; =z; for i =1,...,q, and

sij, wij € Vijwithsij +w;j =z for1 <i < j<gq.

The following lemma summarizes some important inequalities involved in the
maximum eigenvalue and the minimum eigenvalue for any x € V. Since their proofs
can be found in Lemma 14 of [17] and Proposition 2.1 of [20], we here omit them.

Lemma 3.2 Forany x,y €V, the following inequalities always hold:

(a) )»min(x)||c||2 <(x,c) < Amax(x) ||c||2for any nonzero idempotent c;
() [Amax(x + ) — Amax (O] < Iyl and [Amin(x +¥) — Amin ()] < ||yl
(©) Amax(X +¥) < Amax (X) + Amax (3) and Amin(x + ¥) = Amin(x) + Amin ().

Using Lemmas 3.1-3.2, we may establish a lower bound for [|¢,(x, y)|l and

llg (x, Y-

Lemma 3.3 Let ¢, and ¢, be given by (7) and (8), respectively. Then, for any
x,yeV,

19, G601 = | @t =)/ @) | max { [ Genin (-, [GminOD-T2}. (1)

I, e )1 = [ = B2/@B) | max { (i) -1 [Gamin)- P} (18)

Proof Suppose that x has the spectral decomposition x = Z?: 1 xici with x; € R and

{c1,¢2,..., ¢4} being a Jordan frame. From Theorem 2.2, y € V can be expressed by
y= Zylc,+ > i (19)
I<i<j<q

where y; e Rfori =1,2,...,q and y;; € V;;. Therefore, forany / € {1, 2, ..., ¢},

{ci,xoy)={ciox,y) <XICI,Z}’;C:+ Z yl]>

1<i<j<q

q
= x,<c;, Zyici> +xz<61, > yij>

i=1 1<i<j=<q
= X[V, (20)

where the last equality is due to the fact that {(c;, ) _; <i<j<gqYij) = 0 by the orthogo-
nality of V;; (i < j).
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We next prove the inequality (17). From (19) and the spectral decomposition of x,

q
x+y=Z(xi + yi)ei + Z Yij»

i=1 I<i<j<q

which together with Lemma 3.1 implies that

q
(x+y)-= Zuici + Z Uij,
i=1 l<i<j<q
where u; < (x; +y;)- <0fori=1,2,...,q and u;; € V;;. By this, we can compute
q
<cz, [(x +y)—]2> = <cz ° (Zuiq + > uij)» (x +y)—>
i=1 I<i<j=q

q
=<u1c1+<czo Z Mij),zuici+ Z Mij>
i=1

l<i<j=q I<i<j=q

q
:u12+ul<cl, Z u,'.,'>+< Z ujj, C]OZM,'C,’>
i=1

1si<j=q 1si<jzq
+<Cl° 2w ), “if>
Isi<jsq  1si<jsq
2
=u12+<cz,< > u,-j) > Vi=1,2,....q, 1)
I<i<j=q

where the last equality is due to the fact that (¢, Zl§i<i§q u;j) = 0 by the orthogo-
nality of V;; (i < j). Now, using (20)—(21), we obtain that

(.=, (x.) ={erx oy — (1200 [ +)-T)

2
:xlyl—(1/2oz)[u,2+<cl,( > u,;,‘) ﬂ

I=i<j=q

<xyi— (120 [ +y)-], VI=1,2,....q, (22

where the inequality is due to the following facts

2
up < x;+y)- <0 and <cl,< Z Mij)>20.

I<i<j=q
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On the other hand, from Lemma 3.2(a) we have that

(c1, =, (6, 1)) = Amin(—¢, (&, ) lerl]* = hmin(—¢, (x, ), VI=1,2,....q.
Thus, combining (22) with (23), it follows that 29
20 hmin(—¢, (¥, 1)) < 2ex;yr — [ +y) -1, VI=1,2,....q.

Let Amin(x) = x, withv € {1,2,..., g}. Then, we have particularly that
2athmin(—9, (x, ¥)) < 20hmin (¥) ¥y = [Crmin (1) + 1) - 1% 24)

We next proceed to the proof for two cases: Amin(x) <0 and Amin(x) > 0.
Case (1): Amin(x) < 0. Under this case, we prove the following inequality:

20 min () Yy = [(Amin(¥) + 1) - 1* < —Qa — D) [Cemin ()12 (25)
which, together with (24), implies immediately
16, (6 1 = min (5, (6 3| = [ @ = 62/ C) | [Gomin ). (26)
In fact, if Apin(x) + ¥, > 0, then we can deduce that

20 Amin (¥) Yy — [Cmin () 4+ ¥2) = 1% = 2 Cmin () — (3 +
< —Qa — aH)[(Amin(x) 1%
otherwise, we have that
2Ol)\min(x)yv — [(Amin(x) + )}v)—]z = 2Ol)\min(x)yv — [(Amin(x) + YV)]z
< — Qo — &) [Amin(¥)1?
= —(Q2a — &) [(Amin (X)) 1%

Case (ii): Amin(x) > 0. Under this case, the inequality (26) clearly holds.
Summing up the above discussions, the inequality (26) holds for any x,y € V. In
view of the symmetry of x and y in ¢, (x, y), we also have that

16, (e )1l = [ 2o = @)/ ) | [Ghmin ()~
for any x, y € V. Thus, the proof of the inequality (17) is completed.
We next prove the inequality (18). By the spectral decomposition of x, we have
that (x_)? =37 [(x;)—1%c;, which in turn implies
{1, ) =100)-1, VI=1,2,....q. 27)
In addition, from Lemma 3.1 and the expression of y given by (19), it follows that
q
Y- :Zvici + Z Vijs
i=1 1<i<j<q
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where v; < (y;)- <0 fori=1,2,...,q9 and v;; € V;;. By the same arguments
as (21),

2
(c,,(y_)2)=v,2+<cl,( > v,;,) > vi=1,2,....q. (28)

I<i<j<q

Now, from (20), (27) and (28), it follows that

(e, —¢, (e, ) = (erx 0y = (1/28) [ 60) + -2

2
=XIy1—(1/2,3)[((XI))2+v12+<61,< > Uij) H

Isi<j=q
=2y = (1/28) (- + @)’
<y = (128 [ + (2], V=120,

where the first inequality is due to the nonnegativity of (c;, (3_; ;- j<q Vi j)z) and the
second one is due to the fact that v; < (y;)— < 0. On the other hand, by Lemma 3.2(a),

(c1s =5 (2 ) = Amin (= 0t Y et]? = Aanin(—, (e, ¥)), VI =1,2,....¢.

Combining the last two inequalities leads immediately to
hmin(= 8, (. ) <130 = (1728) [ (G- + (0] Vi=1.2,..0.
Let Amin(x) = x, with v € {1,2, ..., g}, and suppose that Amin(x) < 0. Then,
Amin(=65 (6, 3)) = Amin(03s = (1/28) [ (Gemin(6) )% + (01))?]
= [Gomin @)1 =1 = (1/28) | (Gomin (@) ) + ()]
= =128 {[BCGmin(0)- = ()= + (1 = B[ Cin(6))-
== [ =£/CB | 1m0,
which in turn implies
165 06 DI = rmin (=, (6. 0| = [(1 = 85/ (Gamine) -1 29)

If Amin(x) = x, > 0, then the inequality (29) is obvious. Thus, (29) holds for any
x,y € V. In view of the symmetry of x and y in ¢, (x, y), we also have

165 (6 1 = Pamin (=, (2, ¥)] = [(1 = B2/2B) | [Gmin(6))-
for any x, y € V. Consequently, the desired result follows. O
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The following proposition characterizes an important property for the smooth EP
complementarity functions ¢, and ¢, under a unified framework.

Proposition 3.1 Letr ¢, and ¢, be given as in (7) and (8), respectively. Let xkrcv
and {y*} C 'V be sequences satisfying one of the following conditions:

(i) either Amin(x¥) = —00 0F Amin (yk) — —00;
(i) )Lmin(xk), )\min(yk) > —0Q, )\max(xk), xmax(yk) — 400 and ”xk © yk” — +00.

Then, ||, (x*, y) | = o0 and ||¢, (x*, y)|| = +o0.

Proof Under Case (i) the assertion is direct by Lemma 3.3. In what follows, we
will prove the assertion under Case (ii). Notice that, in this case, the sequences
{xk}, {yk} and {xk + yk} are all bounded below since Amin(xk),kmin(yk) > —00
and Amin (xk + yk) > Amin (xk) + Amin (yk) > —o0. Therefore, the sequences {[(xk +
YO_1?), {((x*)-)2} and {((yk),)z} are bounded. In addition, we also have Ampin (x¥ o
y*) = —00 or Amax (x¥ 0 y*) = 400, since ||x* o y*|| — +o00.

If Apmin (x* o yk) — —00 as k — oo, then by Lemma 3.2(c) there holds that

Mmin(—, (5, ¥)) = Amin | (& 05 = (17260 (6" + )7

’

< hmin(x¥ 0 39) + (1/20) | (G6F 4 9)-)?

Amin(= 8, (5, 1)) = homin | 099) = (1728) (@))% + (69)-?) |

b

< hmin(x 0 35 + (1728) | (5% + (69)-)?

which, together with the boundedness of || ((x* + y¥)_)?| and || (x¥) )2+ ((Y5)-)?|l,
implies that Amin(—@, (x*, y)) = —00 and Amin(—¢, (x¥, y¥)) - —o0. Since

I, &, Y = [Amin (=0, (e, )| and I, (%, YOI = [Amin(—gb5 (x, ),

we obtain immediately that ||¢, (x¥, y)|| — 400 and [0 K,y — +o0.
If Amax (x¥ 0 y¥) — +00 as k — oo, from Lemma 3.2(c) it then follows that

Aman (=, (¥, ) = e | (6 0 39) = (1200 + ¥9))?]

’

> hman (6 0 3% = (17200 [ (0F + 392

Aman (=5 (6, ) = hma [ (5 0 35 = (1/28) (6902 4+ (07

F

which, by the boundedness of ||((x* + y¥)_)?|| and ||((x*)_)? + ((*)_)?||, implies
that Amax (—@, (x*, y¥)) = 400 and Amax (— @, (xk, yk)) — +00. Noting that

=m0 39) = (1/28) [ (9% + ()

b, &5, Y = Ihmax (=, (5, )| and 1, (x*, YOI = [Amax (—6b, (£, YD1
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we obtain readily that |, (x¥, y¥)[| = +oc0 and [|¢, (x¥, y¥)|| = +o0. O

When V =R", ‘o’ being the componentwise product of the vectors, |x% o y|| —
+o00 automatically holds if Apax (xk ), Amax (yk) — +00, and Proposition 3.1 reduces
to the result of Lemma 2.5 in [21] for the NCPs. However, for the general Euclidean
Jordan algebra, this condition is necessary as illustrated by the following example.

Example 3.1 Consider the Lorentz algebra £" = (R",o, (-, -)rs) introduced in
Sect. 2. Assume that n = 3 and take the sequences {xk} and { yk} as follows:

k k
=1k , yk= —k |, foreachk.
0

0

It is easy to verify that Amin(x*) = 0, Amin(Y¥) = 0, Amax (%), Amax (¥¥) — +00,
but ||xk o yk|| -+ —400. For such {xk} and {yk}, by computation we have that
g, (X, y*)I = 0 and [|¢, (x*, y*)|l = 0, i.e. the conclusion of Proposition 3.1 does
not hold.

In the subsequent analysis, we use often the continuity of the Jordan product stated
by the following lemma. Since the proof can be found in [10], we omit it.

Lemma 3.4 Let {x*} and {y*} be the sequences such that x* — % and y* — 5 when
k — oco. Then, we have that x* o y¥ — % o y.

Now, we are in a position to establish the coerciveness of f, and f,. Assume that
A= (V,o,(,")) is a general Euclidean Jordan algebra. We consider first the SCLCP
case.

Theorem 3.1 Let f, and f, be given by (10) and (12), respectively. If F(¢) =
L(¢) + b, with the linear transformation L having the P-property, then f, and f,
are coercive.

Proof Let {¢¥} be a sequence such that ||¥|| — +o0. We need only to prove that
£,@H = 00, f,(c) = +o0. (30)

By passing to a subsequence if necessary, we assume that ¥/||¢¥|| — ¢, and conse-
quently (L(Z%) + b)/|Ic¥K|| = L(Z). If Amin(¢¥) — —o0, then from Proposition 3.1
it follows that [|¢, (¢%, LX) + b) |, ¢, (¢*, L&) + b)|l — oo, which in turn im-
plies (30).

Now, assume that {¢¥} is bounded below. We argue that the sequence {L (%) + b}
is unbounded by contradiction. Suppose that {L(¢%) + b} is bounded. Then,

L@ = lim [ +m/1E41]=0e K.
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Since {g“’i} is bounded below and Amax(gk) — 400 by ||¢¥|| = 400, there is an
element d € V such that (¢* — d)/||¢*¥ — d|| € K for each k. Noting that K is closed,
we have

kli‘Eo“k —d)/Itk—dl=¢/Icl=¢ eK.

Thus, € K, L(¢) € K and ¢ o L(Z) = 0. From Proposition 6 of [18], it follows
that ¢ and L(¢) operator commute. This, together with ¢ o L(¢) =0 € —K and the
P-property of L, implies that { = 0, yielding a contradiction to ||| = 1. Hence, the
sequence {L (¢ kY + b} is unbounded. Without loss of generality, assume that || L (¢ ky 4+
b|| = +oo.

If Amin(L(Z%) + b) - —o0, then using Proposition 3.1 yields the desired re-
sult (30). We next assume that the sequence {L({k) + b} is bounded below. We prove
that

@/ o [ L&)+ )/ 1551 ] 0. 31

Suppose that (31) does not hold; then, from Lemma 3.4, it follows that
oL@ = tim [ =a/Ickl]o[@LEh+b-ayicil]=0 vieV. 32)
k—+o00

Since {¢*} and {L(¢*) + b} are bounded below and Amax(¢¥), Amax (L(Z*) + b) —
+00, there is an element d such that {¥ —d € K and L(¢%) + b — d € K for each k.
Therefore,

(e =dnci]ex.  [aehH+b-dyti]ex, vk

Noting that K is closed, ¢ = limp_ 00 (ZX — d) /1% and L(Z)=limg_oo[(L(Z%)+
b —d)/|Ic*||], we have

ek, L) ek. (33)

From (32) and (33) and Proposition 6 of [18], it follows that ¢ and L (Z) operator com-
mute. Using the P-property of L and noting that £ o L(¢) =0 € —K, we then obtain
¢ =0, which clearly contradicts ||| = 1. Therefore, (31) holds. Since [|¢¥| — 400,
we have ||2¥ o (L(¢%) + b)|| — +o00. Combining with Amin (), Amin (L(25) 4+ b) >
—oo and ||Z¥]|, [IL(¢%) + b|| — 400, it follows that the sequences {¢} and {L(¢¥) +
b} satisfy condition (ii) of Proposition 3.1. This means that the result (30) holds.

Theorem 3.2 Let f, and f, be defined as in (10) and (12), respectively. If the map-
ping F has the uniform Jordan P-property, then f, and f, are coercive.

Proof The proof technique is similar to that of Theorem 4.1 in [15]. For complete-
ness, we include it. Let {¥} be a sequence such that ||¢¥|| — 4o00. Corresponding to

the Cartesian structure of V, let £F = ({1" yeens ;,’,‘,) with g“l.k €V, for each k. Define

J= {i e {1.2,....m} | {ch}is unbounded}.
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Clearly, the set J # @, since {¢¥} is unbounded. Let {€¥} be a bounded sequence with
ék = (f;‘lk, R é,’ﬁ,) and éik eV, fori=1,2,...,m, where §l.k for each k is defined as
follows:

0, ifiel,
gz{

{ik, otherwise,

withi =1,2,...,m. Since F has the uniform Jordan P-property, there is a constant
o > 0 such that

pIEF =12 = max e [ =65 0 (FCH — Figh) |

= hmax [ £ 0 (Fu(9) = Fu(6")]
< gk o (Fy(c%) = FuE )l
< llckIF &% - FoEdI, (34)

where v is an index from {1, 2, ..., m} for which the maximum is attained and the
last inequality is due to (14). Clearly, v € J by the definition of {£¥}; consequently,
{{ﬁ} is unbounded. Without loss of generality, we assume that

gkl — +o0. (39)
Since
lch — 512 = llgk — 512 = llgkI1%,  for each k, (36)
dividing both sides of (34) by ||§f || then yields that
PlIEsl < 1Fu () = Fu @D < IF,EOH 1 + IR E9)I.

Notice that {F(£%)} is bounded, since the mapping F is continuous and (£} is
bounded. Hence, the last inequality implies immediately

I1Fs (&)l = +oo. (37)
In addition, we can verify by contradiction that
16 © Fu (&)l = +oo. (38)
In fact, if {||§§ o F,(¢%)||} is bounded, then on the one hand we have
Jim g o (Fu(e) = FuEDI/1ES11? =0,
but on the other hand, the inequality (36) implies
Jim plle =417/ = 0 >0,

which clearly contradicts the third inequality in (34). Thus, from (35), (37), (38),
the sequences {g“,’j} and {F, (¢%)} satisfy the conditions of Proposition 3.1. Therefore,
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there necessarily holds that ||¢£”)(§f, Fo(£%)|| = 400 and ||¢I§")(g“"f, Fo ()| —
+o00, which in turn implies f, (¢*) — +o00 and f, (¢¥) — 400 as k — oo. O

From Definition 2.2 and Lemma 3.2(a), clearly, the uniform Cartesian P-property
implies the uniform Jordan P-property. Hence, the functions f, and f, are also co-
ercive if F has the uniform Cartesian P-property. In addition, when V = R", ‘o’
being the componentwise product of the vectors, the uniform Cartesian P -property
and the uniform Jordan P-property of F are equivalent to saying that F is a uni-
form P-function; (see p. 299 of [1]), and now Theorem 3.2 recovers the known result
of [14].

4 Coerciveness of f,

In this section, we study the coerciveness of the implicit Lagrangian merit function
fus With the help of the natural residual complementarity function over symmetric
cones,

r,(x,y)i=x—x—-{1/a)y)y, Vx,yeVanda >0. 39

To this end, we characterize first the growth behavior of the residual function .
Lemma 4.1 Let r, be defined as in (39). Then, for any x,y € V, we have
hmin (r, (¥, ¥)) < min {Amin(6), (1/@)Amin ()}
Proof For any x, y € V, from the definition of r, and Lemma 3.2(c), we have
Amin (¥) = Amin [7,, (. ¥) + (x — (1/@)y) ]
> hnin(r, (¥, ¥)) 4 Amin [(x = (1/@)y) 1],
which implies that
Amin(ry, (¥, ¥)) < Amin (X) = Amin [(x = (1/@)y) 4] < Amin (x). (40)
On the other hand, we notice that the function r, can be rewritten as
ry(x,y) = —(1/a)y)- + (1/a)y.
Consequently,
(1/0)Amin(¥) = Amin [r, (x, ) — (x — (/) y) ]
> dmin(r, (4, ¥)) + Amin [—(x = (1/e)y) -]
= Amin (r,, (¥, 3)) + Amin [ (=% + (1/@) )]
This implies that

Amin(r, (%, ) < (1/6)Amin (¥) — Amin [(—=x + (1/@)y)+] < (1/&)Amin(y). (41
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From (40) and (41), we obtain immediately the first inequality. O

Proposition 4.1 Let r, be defined as in (39). Let {x*} C V and {y*} C V be the
sequences satisfying one of the following conditions

() either hmin(x¥) = —00 0r Amin(y¥) = —o0;
(i) Amin(XF), Amin(F) > =00, Amax (%), Amax (%) — +oo and (x*/||x¥|) o
OF /1y 1) - 0.

Then, ||r, (x*, y5) | = 4o0.
Proof If Case (i) holds, the result is direct by Lemma 4.1 and the fact that

7, %, YO = [Aminlr, (5, y9)11.

It remains to prove the desired result under Case (ii). Suppose that the sequence
{r, (xk, yk)} is bounded. From the definition of r,, we have that

5 =5k = (172) (6 = () = (172) ¢ = 1/

= (1/2) (x* + (1 /a)y*) = (172) ¢ = 1/,
Therefore,
[k = ey = (3 + (1 /ayh) = 2, (5, 4.

Squaring the two sides of the last equation then yields that
(l/ot)xk o yk =r, (x*, yk) o (xk + (l/a)yk> —[r, (xk, yk)]z.

Dividing the two sides by ||xk|| ||yk|| and using the boundedness of {r, (xk, yk)}, we
obtain

lim (x*/l1x51) o F/1y* 1) = 0.
k— 00
This contradicts the given assumption that k11251 o F/11vFID - 0. O

When V =R", ‘o’ being the componentwise product of the vectors, the condi-
tion Amax (x*), Amax (y*) = +o00 implies (x*/[x*|1) o (y*/I1*[l) - 0; consequently,
Proposition 4.1 gives an important property of the natural residual NCP function or
the minimum NCP function; see Lemma 2.5 of [21]. But, for the general Euclidean
Jordan algebra, the following example illustrates that (x*/||x¥[)) o (y*/||¥¥||) - 0 is
necessary.

Example 4.1 Consider the Lorentz algebra £" = (R", o, (-, -)gr) with n = 3. Take
the sequences {xk} and { yk} as follows:

k k
tf=|-k+D], yi=[k—1], foreachk.
(1/a) 1
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It is easy to verify that Amin(x¥) = —1, Amin(¥¥) = 1 and Apmax (x5), Amax (%) —
+o00, but

1/3/2 1/v/2
PV IS VAVGX LY Rl S I VVG
0 0

GF IR o GF 711y — 0.

Therefore, the sequences {x*} and {y*} do not satisfy the assumption k71151 o
(y*/1ly*1) - 0. For such sequences, by computation, we have that

k k+(1/2) — (1/2a) (1/20) = (1/2)
r,E = —k+ D) | = | =k=(1/2)+1/20) | = | —(1/20) — (1/2)
(1/e) 0 (1/@)

Clearly, ||r, (xk, yk )|l - +00, i.e., the conclusion of Proposition 4.1 does not hold.

The next lemma states that [|¢,,q(x, y)|| can be bounded by |r, (x,y)| or
714 (x, y)|| from below.

Lemma 4.2 Let ¢, and r, be defined as in (9) and (39), respectively. Then, for any
x,yeV,

s (6, )1l = max { @ = D/ a1, (x, I,

[(1 =)/ QallelN]ryatr, 1I2}
Proof First, for any x, y € V, the following identity always holds:

(€. s (1, 1)) = (5,3 + (17200 {1 = a2 = 612+ 16 = @) 12 = 1P
= (y, (x = (1/&)y)4) + (@/D)llx — (x — (/) y)4]*
— (v, (x —ay)4) — (1/2a) lx — (x — ay)4||*. 42)
In fact, for any x, y € V, we can compute that
(v, (x = (1/a)y)4) + (@/2)]lx — (x — (1/a)y)4 |12

= (y, (/@) (@x — y)4 — x) + (v, x) + (@/2) (1 /@) (@x — y)+ — x|

= (a/2)|(1/a)(ax — y)1 — x + (1/a)ylI* + (v, x) — (1/2a) |||

= (1/20)[| = (v — ax)— + (y — ax)[|* + (y, x) — (1/20) | y|I*

= (1/2a)[I(y — ax) 4 |I* + (y, x) — (1/2a) ||y 1?
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and

(v, (x —ay)) + (1/2a) |lx — (x — ay) 4|
= (1/20) | (x —ay)+ 11> = (1/a) (x —ay, (x —ay)1) + (1/2a)|x|*
=—(1/20) [|(x — ay)41* + (1/2a) [1x]1%.

The two equalities imply immediately (42). Now, consider the optimization problem

min(y, z) + (1/2a){(z — x,z — x).
zek

It is easy to verify that z* = (x — ay)4 is the unique optimal solution, whereas (x —
(1/a)y)+ is a feasible solution. Therefore, we have that

(v, (x —ay)) + (1/2a) |x — (x — ay) 4|
< {y, (x = (1/a)y)1) + (1/20) |x — (x — (1/a)y)+ ]I

Combining this inequality with (42) yields
(e, pys (x, 1)) = [(@® = 1)/ lx — (x — (1/a)y)4 1%,
which implies
s (s W = e/ llell, s (v, 1)) = [ @ = D/ Qatllel ] Ir, (e »IP. (43)
In addition, consider the following strictly convex optimization problem;

millcl(y,z) + (/2){z —x,z — x).

We can verify that z* = (x — (1/a)y)+ is the unique optimal solution, whereas (x —
ay) is a feasible solution. Consequently, we have that

(v, (= (1/e)y)4) + @/Dllx = (& = (L) y)4 >
< (v, (0= ay)4) + (@/2) |l = (x —ay)4 .
Combining this inequality with (42) then yields that
(e, s (v, ) = [ @ = D/ | Ilx = (r = ay)+ 1%,
which in turn implies that
s G 1 = —(e/ llell, By (5 1) = [(1 = @)/ Catllel) | I e, I @44y
From (43) and (44), we obtain the desired result. The proof is thus complete. U

Note that, in Lemma 4.2, ||e|| = /g, since the rank of V is assumed to be g. Now,
by Proposition 4.1 and Lemma 4.2, we readily have the following property of ¢,.
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Proposition 4.2 Let ¢,,; be defined as in (9). Let (x¥} € V and {y*} C V be the
sequences satisfying one of the following conditions:

() either Amin(x¥) = —00 0r Amin(¥Y*) = —o00;
(ii) )Lmin(xk),)hmin(yk) > —0Q, )\max(xk)’)\max(yk) — +oo and (xk/llxkll)o
O /1yEID = 0.

Then, ||y (x5, Y5) || — +o00.

Similar to Proposition 4.1, when V = R", o being the componentwise product, the
assumption k1K) o OF/1yEND - 0 is automatically satisfied, and from Propo-
sition 4.2 we readily obtain the result of Lemma 6.2 of [22] for the NCPs. However,
for the general Euclidean Jordan algebra, the following example shows that the as-
sumption k1151 o (Y*/11v¥) = 0 is also necessary.

Example 4.2 Consider the Lorentz algebra £" = (R", o, (-, -)rr) with n = 3 and take
the sequences {xk} and {y*} as follows:

k k>
= =k , yk =|k2+1], foreachk.
0 0

It is easy to verify that Amin(x¥) = 0, Amin (%) = —1 and Amax (x%), Amax (YF) = +00,
but

1 1
Kk = av -1, bk - ava ],
0 0

GE /IR o GF 71191 — 0.

This shows that the sequences {xk} and {y*} do not satisfy the assumption
* /1K1 o (VF/11y* 1) = 0. For such {x¥} and {y*}, we can show that

2ka + (a?/2)
((* —ay®))? — (8?2 = | —2ka — @2/2) |,
0
—(1/2)
(O* —axh)? =M= 12 |.
0
—k 2ka + (a?/2) —(1/2)
s Y = k |+ 120 | | —2ka—@2/2) |+ (1/2)
0 0 0
(a/4) — (1/4a)
=| —(a/4) + (1/4a)
0
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Clearly, ||y (x*, y*)|| - o0, i.e., the result of Proposition 4.2 does not hold.

Now, assume that A = (V, o, (-, -}) is a general Euclidean Jordan algebra. We es-
tablish the coercive properties of the merit function f,,; for the SCLCP and the SCCP.

Theorem 4.1 Let f, be given by (12). If F($) = L(¢) + b, with the linear transfor-
mation L having the P-property, then the function f is coercive.

Proof Let {¢¥} be a sequence such that ||¢¥|| — +00. By passing to a subsequence if
necessary, we can assume that {k/||§k|| — E, and hence (L({k) + b)/||§k|| — L(E).
By the proof of Theorem 3.1, L(Z) # 0 and {L(¢¥) + b} is unbounded. Without loss
of generality, assume that L% 4+ b|| - +o0.

If Amin(¢%) = —00 or Amin (L (%) + b) = —o0, then using Proposition 4.2 yields

s G5, LX) +D) | — +00,  fius(£5) — +o0.

We next assume that the sequences {¢*} and {L(¢¥) + b} are bounded below. Since
Amax (Z5), Amax (L(¢%) +b) — +o00 by (|51, | L(¢¥) + b|| — +o0, there is necessar-
ily an element d such that ¥ —d € K and L(¢¥) + b — d € K for each k, implying
that

& =ay/1ck1ek and L) +b—a)/ L") +b] €K, foreachk.
Using the fact that C is a closed convex cone and noting that

¢=lim (" —a)/Ictl, L@O/IL@] = Jim (L") +b—d)/ILE" +bl,

we have that ¢ € K and L(¢)/||L(¢)|| € K. Suppose that (C /||§ Do (L({ ) +
b)/|IL(c%) +b|| — 0. Then, from Lemma 3.4, it follows that £ o (L(Z)/||L(Z)|) =
Consequently,

ek, L(t)eK and CoL(¢)=0.

By Proposition 6 of [18], ¢ and L(¢) operator commute. This, together with
¢oL()=0e—K and the P- property of L, means that ; = 0, which is impossi-
ble, since ||Z|| = 1. Thus, (¢%/||Z¥|]) o (L({k) +b)/|IL(c%) + b|)) - 0. Notice that
Amin(€5), Amin(L(¢%) + b) > —o0 and [|¢¥], IL(¢¥) + bl — +o00; hence, the se-
quences (¢*} and {L(Z*) + b} satisfy the condition (ii) of Proposition 4.2, which
implies that f,,(¢%) — 4o0. O

Theorem 4.2 The function f, is coercive under one of the following conditions:

(C1) The mapping F has the uniform Jordan P-property and the Lipschitz continu-
ity.

(C2) F has the uniform Jordan P-property and, for any {¢*}, if there exists an index
i €{1,2,...,m} such that hmax(¢X) — +00 and hmax (Fi (¢¥)) — +o0, then

lim sup ¢/ 1l Fi €9/ IF €91 > 0. (45)
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Proof The proof is similar to that of Theorem 4.1 in [15], and we include it for
completeness. Let {¢ kY« Vbe any sequence such that ek — +oo. Corresponding
to the structure of V, we write ¢% = ({1" yeees {,ﬁ) with g“l.k € V; for each k. Define

J = {i e{l,2,...,m}| {;“ik} is unbounded}.

Clearly, the set J # @ since {¢*} is unbounded. Let {£€*} be a bounded sequence with
Sk = (E{‘, R E;ﬁ) and El.k eV;fori=1,2,...,m, where Eik for each k is defined as

Ek i 0, ifi € J,
i {ik, otherwise,

withi =1, 2, ..., m. If Condition C1 holds, then by the uniform Jordan P-property,
there is a p > 0 such that

pIEF €12 = max e [ =85 0 (F6H — Fieh) |

= Amax [gf o (F, (%) — Fv(é"))]

<l o (Fu (e = F. %))

< s Fy &) = FuEHI, (46)
where v is an index from {1, 2, ..., m} for which the maximum is attained; by the
definition of {€*}, clearly, v € J, and the last inequality is due to (14). Since v € J,
{g‘,’f} is unbounded. Without loss of generality, assume that

151l = oo @7)
Notice that
gk — &1 = gy — £51% = NES12, vk
Dividing the both sides of (46) by ||§,fc || then yields
PIEH < 1R (") = FEOI < IR+ IF, G,
which, together with the boundedness of { F), (& kyy, implies that
I1F, ()1 — +oo. (48)
From (47) and (48), we thus obtain that
IEsll = +o00,  IFE) = +oo. (49)

We next show that (¢X/1¢K|1) o (F,(&%)/IIF,(c%)[) - 0. If this does not hold, by
the continuity of Amax(-), we have that Amax[(ff/”(f”) o (Fv(é‘k)/”Fv(;k)”] — 0.
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Consequently,
Bim e [ 6 0 (Fu65 = R | /10811 F 10
< Jim o [@/1851D) 0 (RGO /IR |
o+ lim doma [~ 0 F69 ]/ [ 1K1 R 61 ]
—o0, (50)

where the inequality is due to Lemma 3.2(c). On the other hand, from the Lipschitz
continuity of the mapping F, there exists a scalar y > 0 such that

IF@*) = FO) <ylic" =0l =yl¢¥l, foreachk,
which in turn implies that
IF, &) < 1F @5 = Fo@) ) + 1 Fy Ol < v 124l + 1 Fy (O)]l, Vk.
From the last inequality, we obtain that
Jim plig" — €512 /11 Fu I

> lim plic — £ 2/UIE I I T+ 1 F )] = § >0.

This, together with (50), gives a contradiction to the first inequality in (46). Thus, the
sequences {{f} and {F, (¢%)} satisfy the conditions of Proposition 4.2. Consequently,

160 (¥, Pl > +00 and  fyys (65) — +oc.
If Condition C2 is satisfied, then from the above discussions we see that (46)—

(49) still hold. If Amin(¢X) — —00 or Amin(F,(¢*)) — —o0, then using Lemma 4.1
and Lemma 4.2 readily yields that ¢1$/|vs) (;f, F, (g")) — 00, hence f;q (;‘k) — +00.

Otherwise, by (49), we have Amax(¢X) — +00 and Amax (F, (¢%)) — 4-o00. From the
given assumption, it then follows that

timsup (£ /EE1, Fu @) /I FL 9 1) = 0,
k— o0
which, by Lemma 3.2(a), implies that
Him SUp A [ /18 o (P& /1RO > 0.
— 00
This shows that (¢X/||¢K|) o (F, (¢%) /| F, (£%)||) - 0. Hence, the sequences {¢¥} and
{F,(¢%)} satisfy the conditions of Proposition 4.2. Consequently, ||¢Ifd”s) ({f, Fo ()l

— +ooand fq (¢*¥) — +o0. The proof is then completed. O
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Notice that, when V = R", o being the componentwise product of the vectors, the
assumption (45) is automatically satisfied and the uniform Jordan P-property of F
is equivalent to saying that F is a uniform P-function. Thus, Theorem 4.2 reduces
to the known result of Theorem 4.1 of [15] for the NCPs. However, for the general
Euclidean Jordan algebra, besides the uniform Jordan P-property of F, it require
that F is Lipschitz continuous or satisfies the assumption (45) so that (;"j / ||§§ Do
(Fu(c)/IF, )1 = 0.

In addition, using Proposition 4.1 and the same arguments as in Theorems 4.1-4.2,
we can obtain the coerciveness of the natural residual merit function for the SCCP,

Ra(¢) = (1/2)|Ir, (¢, FO)II*. (51)

Theorem 4.3 The function Ry defined by (51) is coercive under Condition C1 or
C2 of Theorem 4.2. If F(¢) = L(¢) + b with the linear transformation L having the
P-property, then Ry is also coercive.

Furthermore, from Lemma 4.2 we have that the growth rate of f, is higher than
that of the natural residual merit function R, . See the corollary below.

Corollary 4.1 Let {¢¥} be a sequence such that ||c¥|| — +o0. If F satisfies Condi-
tion C1 or C2 of Theorem 4.2, then Ry (¢%) — +00, Sus (&%) — +o0 and

Fus (E) /IR (£ — 400, 0<o <.

5 Conclusions

In this paper, by using the P-properties of a mapping, we established the coerciveness
of two classes of merit functions for the SCCP, i.e., the EP merit functions f, and fﬂ
and the implicit Lagrangian merit function f,,;. The obtained results characterize the
growth behavior of the corresponding merit functions under a unified framework, and
also provide a theoretical basis for the global convergence of the merit function ap-
proach and the equation reformulation method based on these functions. In addition,
the results of this paper partially extend the work of [14] to the setting of symmetric
cones.
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