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whether or not it is possible to define a Hadamard product from V× V to V.

To proceed, we briefly recall the definition of Hadamard product for any two
matrices. Let A = [aij ] and B = [bij ] be two m × n matrices, their Hadamard
product or entry-wise product is defined as A ·B = [aijbij ]. The Hadamard product
has been an active research topic for a long time. For instance, in matrix theory,
especially proving inequalities involving Hadamard products, statistics, and physics.
For an interested reader, we refer to [4, 9]. In order to overcome the aforementioned
problem, Kum, Lim, Jeong [5] propose a novel Hadamard product on the Jordan
Spin Algebra Ln, which is really a bilinear mapping from Ln × Ln to Ln. Their
main idea is described as below. We say an element u ∈ Ln is semipositive if

u ∈ Kn = {(u1, ū) ∈ Ln |u1 ≥ ‖ū‖}.

In light of this concept, the celebrated Schur Theorem, which indicates every
Hadamard product of two semipositive elements is still semipositive, holds true
as well under their novel Hadamard product. Then, they try to find a bilinear
Hadamard product on the other Euclidean Jordan Algebras, but they encounter
troubles on quaternion Hermitian matrices Qn. More specifically, suppose that

A =

[
1 i
−i 1

]
, B =

[
1 j
−j 1

]
.

In [5], they try to define

A ·B =

[
1 k
k 1

]
.

However, this entry-wise product, which is the way people do in Sn , is not Her-
mitian again. This is the main difficulty behind. In this paper, we propose our
Hadamard Product on Qn with rank n = 2, and show that Schur Theorem and the
corresponding inequalities hold true. Although it is only a certain quaternion case,
it may open a new thinking to conquer the hurdle.

2. Preliminaries

This section recalls some results on Euclidean Jordan algebras that will be used
in subsequent analysis and definition of semismoothness . More detailed expositions
of Euclidean Jordan algebras can be found in Koecher’s lecture notes [6] and the
monograph by Faraut and Korányi [1].

Let V be an n-dimensional vector space over the real field R, endowed with a
bilinear mapping (x, y) 7→ x ◦ y from V × V into V. The pair (V, ◦) is called a
Jordan algebra if

(i) x ◦ y = y ◦ x for all x, y ∈ V,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V.

Note that a Jordan algebra is not necessarily associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z
may not hold for all x, y, z ∈ V. We call an element e ∈ V the identity element if
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x ◦ e = e ◦ x = x for all x ∈ V. A Jordan algebra (V, ◦) with an identity element e
is called a Euclidean Jordan algebra if there is an inner product, 〈·, ·〉V , such that

(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V for all x, y, z ∈ V.
Given a Euclidean Jordan algebra A = (V, ◦, 〈·, ·〉V), we denote the set of squares as

K :=
{
x2 | x ∈ V

}
.

By [1, Theorem III.2.1], K is a symmetric cone. This means that K is a self-dual
closed convex cone with nonempty interior and for any two elements x, y ∈ int(K),
there exists an invertible linear transformation T : V → V such that T (K) = K and
T (x) = y.

With this cone K, we can define a partial order on V.

Definition 2.1. x � y if x− y ∈ K and x � y if x− y ∈ int(K).

For any given x ∈ A, let ζ(x) be the degree of the minimal polynomial of x, i.e.,

ζ(x) := min
{
k : {e, x, x2, · · · , xk} are linearly dependent

}
.

Then the rank of A is defined as max{ζ(x) : x ∈ V}. In this paper, we use r to
denote the rank of the underlying Euclidean Jordan algebra. Recall that an element
c ∈ V is idempotent if c2 = c. Two idempotents ci and cj are said to be orthogonal
if ci ◦ cj = 0. One says that {c1, c2, . . . , ck} is a complete system of orthogonal
idempotents if

c2j = cj , cj ◦ ci = 0 if j 6= i for all j, i = 1, 2, · · · , k, and
∑k

j=1 cj = e.

An idempotent is primitive if it is nonzero and cannot be written as the sum of
two other nonzero idempotents. We call a complete system of orthogonal primitive
idempotents a Jordan frame. Now we state the second version of the spectral
decomposition theorem.

Theorem 2.2 ([1, Theorem III.1.2]). Suppose that A is a Euclidean Jordan algebra
with the rank r. Then for any x ∈ V, there exists a Jordan frame {c1, . . . , cr} and
real numbers λ1(x), . . . , λr(x), arranged in the decreasing order λ1(x) ≥ λ2(x) ≥
· · · ≥ λr(x), such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr.

The numbers λj(x) (counting multiplicities), which are uniquely determined by x,
are called the eigenvalues and tr(x) =

∑r
j=1 λj(x) the trace of x.

To move on, we point out a few facts. Suppose x = λ1(x)c1 + λ2(x)c2 + · · · +
λr(x)cr. Then,

x2 := x ◦ x = λ1(x)
2c1 + λ2(x)

2c2 + · · ·+ λr(x)
2cr.

Moreover, if x � 0, then λi(x) > 0 for all i, and x has the inverse expression as

x−1 = λ1(x)
−1c1 + λ2(x)

−1c2 + · · ·+ λr(x)
−1cr.
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Theorem 2.3. Suppose that A is a Euclidean Jordan algebra with the rank r. For
any x ∈ V, if x � 0, then x+ x−1 � 2e.

Proof. The proof is straightforward by verifying

x+ x−1 = (λ1(x) + λ1(x)
−1)c1 + · · ·+

(
λr(x) + λr(x)

−1
)
cr � 2c1 + · · ·+ 2cr = 2e.

□

3. Hadamard product in quaternion Hermitian matrices

The algebra Qn of n× n quaternion Hermitian matrices.

The linear space of quaternions over R, denoted by Q, is 4-dimensional vector
space [8] with a basis {1, i, j, k}. This space becomes an associated algebra via the
following multiplication table.

1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

For any ζ = x01 + x1i + x2j + x3k ∈ Q, we define its real part by IR(ζ) := x0, its
conjugate by ζ̄ := x01 − x1i − x2j − x3k, and its norm by |x| =

√
xx̄. Note in

general ζξ 6= ξζ, i.e., Q is Not commutative. We do not have ζ̄ξ = ζ̄ ξ̄,
either. But luckily we do have ζ̄ξ = ξ̄ ζ̄. Moreover ‖ζξ‖2 = ‖ζ‖2‖ξ‖2. These
are crucial tools that we can employ for proceeding the analysis.

A square matrix A with quaternion entries is called Hermitian if A coincides
with its conjugate transpose. Let Qn be the set of all n × n quaternion Hermitian
matrices. For any X,Y ∈ Qn, we define

X ◦ Y :=
1

2
(XY + Y X) and 〈X,Y 〉 := IR(trace(XY )).

Then, Qn is a Euclidean Jordan algebra of rank n with e being the n × n identity
matrix In. Analogous to complex number, each quaternion ζ = a1+bi+cj+dk ∈ Q

can be represented as a 4 × 4 real matrix


a b c d
−b a −d c
−c d a −b
−d −c b a

 which is also

equivalent to

a


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+b


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

+ c


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

+ d


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .
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Indeed, embedding Qn into S4n yields that Qn can be viewed as a Jordan sub-algebra
of S4n. In particular, the embedding map under the case for Q2 is

Q2 3
[
α1 ζ
ζ̄ α2

]
7−→




α1 0 0 0
0 α1 0 0
0 0 α1 0
0 0 0 α1




a b c d
−b a −d c
−c d a −b
−d −c b a




a −b −c −d
b a d −c
c −d a b
d c −b a




α2 0 0 0
0 α2 0 0
0 0 α2 0
0 0 0 α2




∈ S8

where x = a1 + bi+ cj + dk.

Moreover, the general embedding map under this case is given by

Qn 3


α1 x · · · y
x̄ α2 · · · z
...

...
. . .

...
ȳ z̄ · · · αn

 7−→




α1 0 0 0
0 α1 0 0
0 0 α1 0
0 0 0 α1




a b c d
−b a −d c
−c d a −b
−d −c b a

 · · ·


e f g h
−f e −h g
−g h e −f
−h −g f e




a −b −c −d
b a d −c
c −d a b
d c −b a




α2 0 0 0
0 α2 0 0
0 0 α2 0
0 0 0 α2

 · · ·


p q r s
−q p −s r
−r s p −q
−s −r q p


...

...
. . .

...
e −f −g −h
f e h −g
g −h e f
h g −f e




p −q −r −s
q p s −r
r −s p q
s r −q p

 · · ·


αn 0 0 0
0 αn 0 0
0 0 αn 0
0 0 0 αn





∈ S4n

where x = a1 + bi+ cj + dk, y = e1 + fi+ gj + hk and z = p1 + qi+ rj + sk.

Note that the symmetric cone K = {A2|A ∈ Qn} is the set of all squares in Qn.
The following Proposition is easily to be verified.

Proposition 3.1. Suppose a quaternion Hermitian matrix A =

[
α1 ζ
ζ̄ α2

]
∈ Q2.

The following hold.

(i) tr(A) = α1 + α2, and det(A) = α1α2 − ‖ζ‖2.
(ii) A � 0 i.e. A ∈ K if and only if one of the following holds

(a) α1, α2 ≥ 0 and α1α2 − ‖ζ‖2 ≥ 0.
(b) tr(A) ≥ 0 and det(A) ≥ 0.
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(iii) A−1 = 1
det(A)

[
α2 −ζ
−ζ̄ α1

]
.

Now, we propose our version of Hadamard product associated with Q2.

Definition 3.2. Suppose two quaternion Hermitian matrices A =

[
α1 ζ
ζ̄ α2

]
and

B =

[
β1 ξ
ξ̄ β2

]
∈ Q2. We define the Hadamard product of A and B as

A ·B :=

[
α1β1 ζξ
ξ̄ ζ̄ α2β2

]
=

[
α1β1 ζξ
ζ̄ξ α2β2

]
∈ Q2.

It is an easy observation that this product is not commutative, since Q is not
commutative in general. But it is associative and distributive. To sum up, we see
that

• A ·B = B ·A does not hold.
• A · (B · C) = (A ·B) · C.
• A · (B + C) = A ·B +A · C.

We next show that our Hadamard product defined on Q2 satisfies the Schur
product theorem.

Theorem 3.3. Suppose two quaternion Hermitian matrices A =

[
α1 ζ
ζ̄ α2

]
� 0

and B =

[
β1 ξ
ξ̄ β2

]
� 0 ∈ Q2. Then, A ·B � 0.

Proof. Obviously, we have tr(A ·B) = α1β1+α2β2 ≥ 0 and det(A ·B) = α1α2β1β2−
‖ζ‖2‖ξ‖2 ≥ 0. By Proposition 3.1 (ii), the desired result holds. □

4. Inequalities involving Hadamard products

4.1. Oppenheim type inequalities.

Theorem 4.1. Suppose two quaternion Hermitian matrices A =

[
α1 ζ
ζ̄ α2

]
� 0

and B =

[
β1 ξ
ξ̄ β2

]
� 0 ∈ Q2. Then, we have detA detB ≤ α1α2 detB ≤ det(A ·

B), and detA detB ≤ β1β2 detA ≤ det(A ·B).

Proof. First, it is easy to see that A ·B =

[
α1β1 ζξ
ζ̄ξ α2β2

]
. This leads to

detA detB = (α1α2 − ‖ζ‖2) detB ≤ α1α2 detB.

Similarly, we have detA detB ≤ β1β2 detA. Moreover, it cab be verified that

α1α2 detB = α1α2 (β1β2 − ‖ξ‖2) = α1α2β1β2 − α1α2‖ξ‖2

≤ α1α2β1β2 − ‖ζξ‖2 = det(A ·B),
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where we use α1α2 ≥ ‖ζ‖2 since A � 0. Likewise, we have β1β2 detA ≤ det(A ·
B). □

Corollary 4.2. Suppose that X � 0 ∈ Q2 is a quaternion Hermitian matrix. Then,
we have 1 ≤ det(X ·X−1).

Proof. Let A = X and B = X−1. By Theorem 4.1, the inequality follows immedi-
ately. □

In fact, for general quaternion Hermitian matrices, we have the following special
equality.

Theorem 4.3. Suppose that A =

[
α1 ζ
ζ̄ α2

]
and B =

[
β1 ξ
ξ̄ β2

]
are two quater-

nion Hermitian matrices in Q2. Then, we have

α1α2 detB + β1β2detA = detA detB + det(A ·B).

Proof. It is easy to see that A ·B =

[
α1β1 ζξ
ζ̄ξ α2β2

]
. Accordingly, direct computa-

tion gives

α1α2 detB + β1β2detA = α1α2β1β2 − α1α2‖ξ‖2 + α1α2β1β2 − β1β2‖ζ‖2,

detA detB + det(A ·B) = (α1α2 − ‖ζ‖2)(β1β2 − ‖ξ‖2) + α1α2β1β2 − ‖ζξ‖2.
Then, the proof is complete. □

4.2. Fiedler type inequalities.

Theorem 4.4. Suppose that X =

[
α1 ζ
ζ̄ α2

]
� 0 is a quaternion Hermitian

matrices in Q2. Then, we have

X ·X−1 � I2 � (X ·X−1)−1.

Proof. First, we compute that X · X−1 = 1
detX

[
α1α2 −ζ2

−ζ̄2 α1α2

]
since X−1 =

1
detX

[
α2 −ζ
−ζ̄ α1

]
. Thus,

X ·X−1 − I2 =
1

detX

[
α1α2 − detX −ζ2

−ζ̄2 α1α2 − detX

]
=

1

detX

[
‖ζ‖2 −ζ2

−ζ̄2 ‖ζ‖2
]
.

hen, the first inequality follows from Proposition 3.1(ii).

Now, denote A = X ·X−1−I2 = λ1(A)c1+λ2(A)c2. By previous inequality A � I2,
we have λ1(A) ≥ 1 and λ2(A) ≥ 1. Then, its inverse A−1 = λ1(A)−1c1+λ2(A)−1c2.
In other words, the last inequality holds. □
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Theorem 4.5. Suppose that A =

[
α1 ζ
ζ̄ α2

]
� 0, and B =

[
β1 ξ
ξ̄ β2

]
� 0 are

two quaternion Hermitian matrices in Q2. Then, we have

A−1 ·B−1 � (A ·B)−1.

Proof. First, we compute that

A−1 ·B−1 =
1

detAdetB

[
α2 −ζ
−ζ̄ α1

]
·
[

β2 −ξ
−ξ̄ β1

]
=

1

detAdetB

[
α2β2 −ζξ
−ζ̄ξ α1β1

]
,

and

(A ·B)−1 =
1

det(A ·B)

[
α2β2 −ζξ
−ζ̄ξ α1β1

]
.

These yield

A−1 ·B−1 − (A ·B)−1 =

[
1

detAdetB
− 1

det(A ·B)

] [
α2β2 −ζξ
−ζ̄ξ α1β1

]
.

From the proof of Theorem 4.1, we have
[

1
detAdetB − 1

det(A·B)

]
> 0. Then, the

inequality follows from Proposition 3.1 (ii). □

Corollary 4.6. Suppose that A � 0, B � 0 are two quaternion Hermitian matrices
in Q2. Then, we have

A ·B−1 +A−1 ·B � 2I2.

Proof. By Theorem 4.5, we obtain A−1 ·B � (A ·B−1)−1. Hence, there holds

A ·B−1 +A−1 ·B � A ·B−1 + (A ·B−1)−1 � 2I2,

where the last inequality follows from Theorem 2.3. □

Corollary 4.7. Suppose that Xi � 0 are quaternion Hermitian matrices in Q2 for
1 ≤ i ≤ k. Then, we have(

Σk
i=1Xi

)
·
(
Σk
i=1X

−1
i

)
� k2I2.

Proof. Note that(
Σk
i=1Xi

)
·
(
Σk
i=1X

−1
i

)
= Σk

i=1Xi·X−1
i +Σk

i<jXi·X−1
j +X−1

i ·Xj � kI2+
k(k − 1)

2
2I2,

the inequality follows by Theorem 4.4 and Corollary 4.6. □
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4.3. Other inequalities.

Theorem 4.8. Suppose that A =

[
α1 ζ
ζ̄ α2

]
� 0, and B =

[
β1 ξ
ξ̄ β2

]
� 0 are

two quaternion Hermitian matrices in Q2. Then, we have

A2 ·B2 � (A ·B)2 .

Proof. First, we compute that

A2 =

[
α2
1 + ‖ζ‖2 (α1 + α2)ζ

(α1 + α2)ζ̄ α2
2 + ‖ζ‖2

]
, B2 =

[
β2
1 + ‖ξ‖2 (β1 + β2)ξ

(β1 + β2)ξ̄ β2
2 + ‖ξ‖2

]
,

A2 ·B2 =

[
(α2

1 + ‖ζ‖2)(β2
1 + ‖ξ‖2) (α1 + α2)(β1 + β2)ζξ

(α1 + α2)(β1 + β2)ζ̄ξ (α2
2 + ‖ζ‖2)(β2

2 + ‖ξ‖2)

]
,

and

(A ·B)2 =

[
α2
1β

2
1 + ‖ζξ‖2 (α1β1 + α2β2)ζξ

(α1β1 + α2β2)ζ̄ξ α2
2β

2
2 + ‖ζξ‖2

]
.

Thus, we obtain

A2 ·B2 − (A ·B)2 =

[
α2
1‖ξ‖2 + β2

1‖ζ‖2 (α1β2 + α2β1)ζξ
(α1β2 + α2β1)ζ̄ξ α2

2‖ξ‖2 + β2
2‖ζ‖2

]
.

Note that

(α2
1‖ξ‖2 + β2

1‖ζ‖2)(α2
2‖ξ‖2 + β2

2‖ζ‖2)− (α1β2 + α2β1)
2‖ζξ‖2

= α2
1α

2
2‖ξ‖4 + β2

1β
2
2‖ζ‖4 − 2α1α2β1β2‖ζξ‖2 ≥ 0.

Then, by A-G inequality, the inequality follows fromProposition 3.1(ii). □

For general quaternion Hermitian matrices, the following inequalities hold.

Theorem 4.9. Suppose that A is a quaternion Hermitian matrix in Q2. Then, we
have

(i) A ·A � A2 · I2,
(ii) (A · I2)2 � 1

2

(
A2 · I2 +A ·A

)
� A2 · I2.

Proof. By direct computation, we have

A ·A =

[
α2
1 ζ2

ζ̄2 α2
2

]
, A2 · I2 =

[
α2
1 + ‖ζ‖2 0

0 α2
2 + ‖ζ‖2

]
, (A · I2)2 =

[
α2
1 0
0 α2

2

]
.

Then, the inequalities hold by Proposition 3.1(ii). □
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5. Conclusions

In this short paper, we propose a Hadamard product on Q2. In general the
quaternion number system Q is not commutative. It causes the trouble when people
try to extend entry-wise product(Hadamard product in Sn) to Qn. But, we do have
ζ̄ξ = ξ̄ζ̄ in Q. This is the key property that we could define our Hadamard product
in Q2. In general, let

A =


α1 x · · · y
x̄ α2 · · · z
...

...
. . .

...
ȳ z̄ · · · αn

 , B =


β1 u · · · v
ū β2 · · · w
...

...
. . .

...
v̄ w̄ · · · βn

 ∈ Qn.

Define

(1) A ·B :=


α1β1 xu · · · yv
ūx̄ α2β2 · · · zw
...

...
. . .

...
v̄ȳ w̄z̄ · · · αnβn

 =


α1β1 xu · · · yv
x̄u α2β2 · · · zw
...

...
. . .

...
ȳv z̄w · · · αnβn

 ∈ Qn.

It is natural to make the following conjecture.

Conjecture 5.1. The product in (1) satisfy all inequalities in section 4.

In addition, as we point out in section 3, our Hadamard product is not commu-
tative. We leave it for future work to find out a Hadamard product in Qn that is
commutative, too.

References
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