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Lipschitz continuity of the gradient of a one-parametric class
of SOC merit functions
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In this article, we show that a one-parametric class of SOC merit functions has
a Lipschitz continuous gradient; and moreover, the Lipschitz constant is related
to the parameter in this class of SOC merit functions. This fact will lay a building
block when the merit function approach as well as the Newton-type method are
employed for solving the second-order cone complementarity problem with this
class of merit functions.
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1. Introduction

A well-known approach to solving the non-linear complementarity problem (NCP) is to
reformulate it as the global minimization via a certain merit function over IR”. For the
approach to be effective, the choice of the merit function is crucial. A popular choice is the
squared norm of the Fischer—Burmeister (FB) function y¥p:IR"” x IR” — IR . defined by

1 n
Yen(a.b) =5 3 [drn(ai b)) (0
i=1

for all a=(ay,...,a,)" €IR" and b=(by,...,b,)" €IR", where ¢rg:IR x IR — IR is the
Fischer—Burmeister NCP function given as

drp(ai, bi) = W —a; — b;. )

It has been shown that g enjoys many desirable properties [8,9], for example,
smoothness (continuous differentiability). This merit function and its analysis were
subsequently extended by Tseng [18] to the semidefinite complementarity problem (SDCP)
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although only differentiability, not continuous differentiability, was established. In fact,
the FB function for the SDCP is the matrix-valued function ®gg:S" x §" — §" defined by

CDFB(X’ Y) = (X2 + Y2)1/2 - (X+ Y)a
while the squared norm of the FB function for the SDCP is the function Wgg:S" x §" —
IR, given by

1
Wy (X, 1) =S O, VI,

where S”" denotes the set of real n x n symmetric matrices. The function ®gp has been
proved to be strongly semismooth [17]. More recently, the squared norm of the matrix-
valued FB function Wgg was reported in [16] to be smooth and its gradient is Lipschitz
continuous.

The second-order cone (SOC), also called the Lorentz cone, in IR” is defined as

K" i={(x1,x) e Rx R"™ | lx2]| < x1}, 3)

where |- || denotes the Euclidean norm. By definition, ' is the set of non-negative
reals IR .. The second-order cone complementarity problem (SOCCP) is to find x, y € IR”
satisfying

x=Ff, y=06(), (xy)=0, xek' yek’, “4)

where (-,-) is the Euclidean inner product and F, G:IR" — IR" are continuous (possibly
non-linear) mappings. The merit function approach based on reformulating the NCP
as an equivalent unconstrained minimization can be extended to the SOCCP case [0].
This approach aims to find a smooth function ¢ : IR” x IR” — IR, such that

Y(x,)=0 < xek" yek', (x))=0. (5)

We call such ¢ a SOC merit function. Then the SOCCP can be expressed as an
unconstrained smooth (global) minimization problem:

gﬁp J(©) := Y(F(©), G(2)). (6)

Analogously, the squared norm of FB function can be considered in the SOCCP setting.
We define ygp : IR” x IR” — IR associated with the second-order cone K" as

1
FB(%y) = 3 lgesx I, (7
where ¢pp : IR” x IR” — IR” is the FB function defined by

pra(x, ) = (> +)"* —x — . (8)

More specifically, for any x=(x;,x5), y=(y1,12) € R x IR""!, we define their Jordan
product associated with K" as

xoy:=({x,p), yixa+x1)2). ©)

The Jordan product o, unlike scalar or matrix multiplication, is not associative, which is
a main source of complication in the analysis of SOCCP. The identity element under this
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product is e:=(1,0,...,0)" € IR”. We write x* to mean xo x and write x +y to mean the
usual componentwise addition of vectors. It is known that x*eK” for all xeIR".
Moreover, if x € K", then there exists a unique vector in K, denoted by x'/, such that
(x> =x"? o x!'? = x. Thus, ¢pp defined as in (8) is well-defined for all (x, y) € R" x IR"
and maps IR” x IR” to IR”. It was shown in [10] that ¢pp satisfies the relation (5). Hence,
Yrp as defined in (7) is a merit function for the SOCCP. In the recent manuscript [5], this
SOC merit function was shown to be an LC' function (a smooth function with its gradient
being locally Lipschitz continuous).
Another popular SOC merit function is the natural residual merit function

YNR(Y, Y) == oY )P, (10)
which is induced by the natural residual function ¢ngr : IR” x IR” — IR”
HNR(X, ) 1= x — [x — )], (11)

where [ - ], means the projection onto K”. The natural residual function ¢ng was studied in
[10,11] which is involved in smoothing methods for the SOCCP. A drawback of y¥nr is its
non-differentiability compared to ¥gg. Some other classes of SOC merit functions for the
SOCCEP are also recently studied in [1,2].

In this article, we consider the following one-parametric class of SOC merit functions
which was originally proposed in [12] for the NCP case:

1
Ye(x,9) = 3 lgex I (12)
where ¢, : IR” x IR” — IR" is a family of functions associated with the SOC, defined by

e, 0) =[x = ) + 1(x 0 )] P = (x + 1), (13)

and 7 is a fixed parameter such that t € (0,4). It can be verified that for any x, y € IR”

-2 \? (4 — 1)
y)+ »?

2 4
=2\ 4-1) ,

—<y+ > x)—i— 4 X

> 0, (14)

Zxn

(x=y)’ +1(xo0y) = <X+

where the inequality holds because 7 € (0,4). Therefore, ¢, in (13) is well-defined. Notice
that ¢, reduces to the FB function ¢ when t=2, whereas it becomes a multiple of the
natural residual function ¢ng When t— 0. Thus, this class of SOC complementarity
functions covers the current two most important SOC complementarity functions so that
a closer look and study for this new class of functions is worthwhile.

In fact, as mentioned in [5], when solving the equivalent unconstrained minimization via
SOC merit functions, it is very important to show that the gradient of the employed SOC
merit function is sufficiently smooth so as to warrant the convergence of appropriate
computational methods. Here, we are particularly concerned with the conjugate gradient
method. The method generally requires the Lipschitz continuity of the gradient (f'e LC' by
our notation). The main purpose of this article is to show that the function . as defined in
(12) has a globally Lipschitz continuous gradient. Thus, this article can be regarded as
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a follow-up of [5] since it extends the LC" property of ¥y to the class of SOC merit functions
Y.. Nonetheless, the technique used here is a bit different and the analysis is more tedious
and subtle. In particular, from the extension work, we see that the Lipschitz continuity of the
gradient of ¥, becomes worse when t — 0. This fact will provide an instructional help for the
design of algorithms with this class of SOC merit functions.

Throughout this article, IR” denotes the space of n-dimensional real column vectors
and the supscript “T” represents the transpose. For any differentiable function /: IR” — IR,
Vf(x) denotes the gradient of f at x. For any differentiable mapping
F=(F,...,F,)":IR"— IR", VF(x)=[VF(x) --- VF,(x)] is a n x m matrix denoting the
transposed Jacobian of F at x. For non-negative scalars « and B, we write o = O(pB) to
mean « < CB, with C independent of « and S.

2. Preliminaries
It is known that K" is a closed convex self-dual cone with non-empty interior given as
K= (v, x2) € Rx R [lxz]) < xi}.

For any x=(x1,x,) € R x IR"™", we define the determinant and the trace of x as follows:
det(x) := x% — Il tr(x) = 2x;.

In general, det(x o y) £ det(x)det( ) unless x and y are collinear, i.e. x =y for some « € IR.

A vector x = (x1, x») € IR x IR" ! is said to be invertible if det(x) £ 0. If x is invertible, then

there exists a unique y=(y;,y,) € IR x IR""" satisfying xoy=yox=e. We call this y the

inverse of x and denote it by x~'. In fact, we have

- (tr(x)e - x).

1 1
:7|2(X1, —X2) :m

X~ [|xal

It is not difficult to see that xeint(K”) if and only if x'eint(K,). For any
x=(x1,x2) € IR x IR""!, we define the matrix L, by

T
Ly := [xl 2 ]
X2 X]]

It is easily verified that L., ,= L.+ L, and xoy= L,y for any x, y € IR", and L, is positive
definite (and hence invertible) if and only if x € int(K"). However, L'y # x~! o y, for some
xeint(K") and yeR", ie. L' # L.

We next recall from [10] that each x=(x;,x»)€IR x IR"™" admits a spectral
factorization, associated with K", of the form

x = ()Y + A (o)u?, (15)

where A;(x), Ao(x) and uD, 1 are the spectral values and the associated spectral vectors of
x, with respect to K", given by

2i(x) = x1 + (=1)[Ix2 ], (16)

1 . X2 .

—(1,(-1)— f 0
2<,( )lllel)’ if x #0,
1
2

0 =

(17
(L (=1)"m), if x; =0,
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for i=1, 2, with W, being any vector in IR"™' satisfying |w,|| = 1. The spectral
factorization of x, x* and x'/? as well as the matrix L. have various interesting properties
(cf. [10]). We list some properties that we will use later.

Property 2.1  For any x = (x1, x») € IR x IR"™" with spectral values 1(x), A»(x) and spectral
vectors u&l), uff), the following results hold.

(@) x? =22 + 23(x)u® e K.
(b) If xe K", then 0 <A i(x) < Aa(x) and x'/* = /a1 (x) ul) + /Ao (x) u®.
(c) If xeint(K", then 0 < A(x) < Ax(x), and L, is invertible with

X —x!

det 1
¢ (x)1+—xzx2T
X1 X1

-1 _

(d) The determinant, the trace and the Euclidean norm of x can be denoted by A(x),
Aa(x):

() = M0, 100 = M)+ (), Ixf? = HOFEHC)

Before giving out several technical lemmas that will be applied in the next section,
we introduce some notations that will be frequently used in the subsequent analysis.
Unless otherwise stated, in this article, we always write

w=wx,p) =x—y +1(xoy) and z=z(x,y):=[(x—y) +t(xo]? (I8
Since (x — y)’ 4+ t(x0y)=x>+ 1?4+ (1 —2) (xoy) € K" for any x, y € IR”, we have
2 2 T
) — Dx
. (m) _ I + 11+ (= DTy . a9
) 20x1x2 + y1y2) + (T = 2)(x1)2 + y1x2)
From this, it follows that the spectral values of w are given by
2 () = X017+ Y17 + (2 = 2)xTy = 12(x122 + y132) + (T = 2)(x102 + y1x2),
da(w) = el + V1P + (7 = 2%y + 112(x162 + p132) + (7 = 2)(x1p2 + 013)]. (20)
By Property 2.1(b), the vector z has the spectral values /A;(w), /A2(w) and

P (wq(w) VR0 VR0 — VR %)’ an

2 2

where Wy := (wa/||wa]l) if w,#0 and otherwise W, is any vector in IR"™' satisfying
w2l = 1.

The following four technical lemmas are crucial in proving our main results.
Lemma 2.1 measures how close w comes to the boundary of K", and Lemma 2.2 describes
the behaviour of (x,y) when w lies on the boundary of K". Lemma 2.3 talks about the
differential rule for the Jordan product function. Lemma 2.4 gives the gradient of the
function z(x, y).



666 J.-S. Chen and S. Pan

Lemma 2.1 [4, Lemma 3.4] For any x=(x1,x5), y=(y1,12) € R x R""" and 7 <(0,4),
if Wo =2(x1X2 + y112) + (T — 2)(x 112 + y1X2) #0, then we have

|:(xl +5 ; 23’1) + (—1)[<x2 +T;_2y2>T . T

[[w2ll

T—2 wa

lwal

<

»)+ 0 (a0 + 52 0)

< x4+ I1? + (r = 2)(x, ) + (= 1) w2
< Xi(w)

(Xz +

for i=1, 2, and furthermore these relations also hold when interchanging x and y.

LEmMA 2.2 [5, Lemma 3.2] For any x=(x1,x2), y=(y1, ) € R x R"" and 7 €(0,4),
if w=(x =)+ t(xoy)¢int(K"), then there always holds that

xt =[xl ¥ =yl xiv=x3p2. X192 = yix;
X404 (1= Dxipn = [xixs 4y + (1= 2)x1pa||
= %2 + 2l + (& = 2)x3 2.
If, in addition, (x, ) # (0, 0), then w, =2(x1X5+ y1)> + (t — 2)x1y2) # 0, and furthermore,

T W2 11%) T W2 1 1%)
Xo7 ——=X1, Xio——F—=X2, Voo =V, Vig_—;=)2.
w2l w2l w2l (w2l

LemMma 2.3 [6,Lemma3.1] Letw:IR" x IR" — IR be given by w(x, y) :=u(x, y) o v(x, y),
where u, v : IR" x IR" — IR™ are differentiable mappings. Then, w is differentiable and

an)(x, y) = qu(x> y)Lv(x,y) + VX V(X, y)Lu(x,y)y
Vya)(x, y) = Vyu(x, y)Lv(x,y) + Vy V(X, y)Lu(x,y) .

In particular, when w(x, y)=xoy, there holds

Vio(x,y)=L,, V,o(x,y)= Ly
and when o(x, y) = x* o y?, there holds
wa(xa y) = 2LxLyz ° Vya)(x, y) = 2L}’Lx2 .

LEMMA 2.4 For any x, y€IR" and t€(0,4), let z(x,y) be defined as in (18). Then the
Sfunction  z(x,y) is continuously  differentiable at a point (x,y) satisfying
(x—y)*+ 1(x 0 y) € int(K"). Moreover, we have that

T—2 _
VxZ(xa y) = <LX + TL}') z(,}(,}")’

T—2 _
V,z(x,y) = <Ly +— Lx> Ly

Proof The differentiability of z(x,y) is an immediate consequence of [13], see also
[3, Prop. 4]. Since z*(x, y) = (x — »)* + t(x 0 y), applying Lemma 2.3 yields

OV, 2(X, ¥) Loy = 2Ly + Ly = 2Ly + (1 — 2)L,.
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Hence, Viz(x,y) = (Lx + (t — 2/2)L},)L_,_(L - In view of the symmetry of x and y in the

z(x, y), there also holds that V,z(x,y) = (L}, +(t— 2/2)Lx)LZ‘("w,). [

3. Main results

In this section, we present the proof showing that the gradient function of v, is Lipschitz
continuous. By the notation in Section 2, the function v, can be rewritten as

1
(6.3) =5 [0e =39 + 7w 0 ' = (x4 9
= 3 e P+ )T = P e 3 o
1 [M(W) + 2 ()

=5 [P ] = G i = 07 o )

=%[2||x||2 + 2217 + 7 o )] = (r + )1 = )* + wx 0 )]
= 6l + 17 + 3 (o) = G4 )16 =7 + w02, (22)

where the third equality is due to Property 2.1(d). Clearly, the gradient of the function
x> + [[yII* + (z/2)(x o y) is globally Lipschitz continuous. Therefore, to show that the
gradient of v, is globally Lipschitz continuous, we only need to show that following
function

Fx,p) = (x+0)[(x =) + t(xo )] (23)
has a Lipschitz continuous gradient. The following lemma states the gradient of F(x, y).

LemMa 3.1 For any x, y€IR" and 1 €(0,4), let F: IR" x IR" — IR be defined as in (23).
Then, the function F(x,y) is continuously differentiable everywhere. Moreover,
V..F(0,0)=V,F(0,0)=0. If (x,y) #(0,0) and (x — »)? +t(xo0y) eint(K"), then

-2 _
ViF(x,y) = z(x,y) + <Lx ‘l'TLy)L;(_Ly)(X +)

V,F(x,y) = z(x,¥) + <L}, + %2LX>LZ(;J)(>C + ). (24)
If (x,») #(0,0) and (x — y)* + t(x 0 p) ¢ int(K"), then
Vo F(x,y) = 2(x,3) + xS (x+)
s+ =2
V,F(x,y) = z(x,y) + » T;zle (x+y). (25)

S+ @ =2y,

Proof Case I x=y=0. For any &, k € IR", let j1; < 11> be the spectral values and v" and
v be the corresponding vectors of (h — k)*>+ t(hok). Then, by Property 2.1(b),

Il(h — k) + 2(h o k)]'? || = /v + Vi@ || < (Vi + Vi)/N2 < 21
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Therefore,
F(h, k) — F(0,0) = (h+ k) [(h — k)* + t(h o k)]"/?
< 02 = k)* + w(h o ) 2(l1h + K|
< V2 - (121l + [1K1)
< \/2(||h||2 + Ikl* + (= ATk - (Nl + N1kl
= O(|[II* + IIk[1*).

This shows that F(x, y) is differentiable at (0,0) with V,F(0,0)=V F(0,0)=0.

Case 2 (x,)#(0,0) and (x — y)* + 7(x 0 y) € int(K"). Using Lemma 2.4, we readily obtain
the formula in (24). Clearly, in this case, V. [f(x,y) and V,F(x,y) are continuous, and
consequently, F(x,y) is continuously differentiable at such points.

Case 3 (x,y)#(0,0) and (x — y)> + t(x 0 y) ¢ int(K"). Since A;(w) =0, now it follows from
(18) and (21) that

1 \T
26,3 = [(x =+ wx 0 9] = 5 (V2. Vs )
Moreover, by Lemma 2.2, we can compute that
wy = 2(x1%2 + y1ya 4 (T = 2)x1p2), Aa(w) = 4(x] + 37 4 (r = 2xiy1) = 2[wa .

Therefore, under this case, we have that

N R
x1X2 + 3132 + (T — 2)x1)2
\/X% +_V% + (T — 2)x1y1

2(x, ) = [(x — »)* + t(x 0 p)]'/? =

By this, it is easy to verify that the formula (25) holds.

Note that z(x, y) is a continuous function. This together with the proof of Case (i) and
Case (iii) of [4, Proposition 3.3] means that the gradient functions V.F(x,y) and V,F(x, )
are continuous at every (x,y)€IR” x IR"”. Hence, F(x,y) is continuously differentiable
everywhere. Thus, we complete the proof. ]

For the symmetry of x and y in V. f(x,y) and V, F(x, y), in the rest of this section, we
concentrate on the proof of globally Lipschitz continuity of V. F(x,y). We first define
a smooth approximation of V, F(x,y). For any € > 0, we let

W= (x,y,€) = (x —»)> + 1(x 0 y) + €e,

(26)
2=2(x,y,6) =[x =) + 1(x0y) +e]'?,
where e is the identity element under the Jordan product. It is not hard to see that
Wi=wi+e Wwr=wy, AW =AW +e  A(0) =r(w)+e, 27)

and furthermore,

2= (1,2 = 3 (V) + Vi, (Vi - Vi) i) (28)
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where W, := (wa/||w»||) if w»#0 and otherwise w, is any vector in IR"™' satisfying
w2 || = 1. We define the mapping G(,-,€):IR” x R” — IR" by

. T—2 _
G(x,p,€) = 2(x,p,€) + (L + TLy)LE(;y’E)(x +). (29)
By Lemmas 3.2 and 3.4 below, G(x, y, €) is actually a smooth approximation of V F(x, y).
Based on the relation, in the sequel, we will prove the Lipschitz continuity of V. .F(x,y)
through arguing that G(x, y,€) is globally Lipschitz continuous.

LemMa 3.2 For any x, y€IR" and € > 0, let G(x, y, €) be defined as in (29). Then,
lirél G(x,p,€) = VF(x, ).
e—0t

Proof 1If (x,y)=(0,0), then G(x, y, €)= (ee)"/* for any € > 0. Therefore,

lim G(0.0,€) = V,(0.0) = 0.

If (x,y)#(0,0) and (x — y)* + t(x o ) €int(K"), then by (27), (28) and Property 2.1(c), it is
easy to verify that lim._¢+ L;(J'Y’V’E) = LZ‘(LJ,). This together with lime_ o+ Lz, = Lo(xy)

implies that the conclusion holds.
Next, we consider (x, ) # (0,0) and (x — y)> + z(x 0 y) ¢ int(K"). For convenience, let

X, u(x,y,€) = L;&’y’e)g, v(x,y,€) = L;(;’y’e)h. (30)

'—‘c+T_2 h = +T
g=x+——y hi=y+—

By Property 2.1(c), it is easy to compute that

-2 2,
u=u(x,y,e) = @ | 2, deAt(z)H_ Ai22§2 [g142]
L Z] Z]
| [~ 8121 — &2
= = . det(z 2.
det(2) | —g122+ A( )gz +g% 2%,
L Z] Z]
u
L2
up
[ 2 —5
( ) 1 ! 2 hy
V=WX,),€) = ~
PO e | ey O, e
L 1 Z]
1 B hz; — hgfz
=—— . det(z hiz,
det(®) | —pyz, + 3G, 1oy
L Z] Z]

V1
= [ } (32)
v
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Using (28) and Lemma 2.2, we have that

- 1 \/Al(lf/)-F\/)\Q(VT/)g +\/)\.1(1’¢\’ —\/)\.2(1@ gTﬂ’
LT ) 2 ! 2 2W2

1 - 1
2300 (g‘ o Wz) 21 ()
g1

- VAa(w) + €

1y = 1 \/kl(ﬁ/) — \/kz(ﬁ/)glwz + 2\/)”(\/’1\/)\/)\.2(12/) o
VA1 P)A2(0) 2 VAL(W) + /A2 00)

(Vi - V@)
+ g
2V ) + V(D) ?
_ (& + g3 )W, (& - gaw)Wy | 28y — 2g3 wawa
W) R0 )+ )
&

VA2 (w) + e

Similarly, we can also obtain that

(gl - g}%)

(since gty = g1)

1;’2 w 2

. - T -
(since g1y = g2, g, W2 = g1)

/’l] /12

Via(w) + e "2 VA (w) + €

From the above expressions of « and v, it then follows that

1=

2 T—2 T—2
. _1 _ . _1
Jim L) = Jim L3 (v T v+ 5 2)

2 .
2y 04000

1 ( )T
——(x1 + v, %0 + )
) 1 TV, X2 T )2

This together with Lemma 2.2 yields that

. . ~ 'L'—2 . -1
lim G(x., ) = lim 2(x.3.0) + (Ly + 5L, ) lim Lz}, ,(x+2)

T—2 T—2 Xt
T, ToAT
Caeps| T2 2| [ Vi
’ — T—2 X2+
X + »2 (X1+—2 .VI)I )
T—2
1 Z(Xl +3 yl)(xl +1)
=z(x,y) +

vA2(w) 2(x2 i ; 2yz)(X1 + 1)

(33)

(34)
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T
1 2(x1 + 5 y1>(xl + 1)

/ ; T—2
A2(w) 2<X1 +— yl)(xz +2)
X1 +%y1

\/xf + 3+ t(xip1)

=z(x,y) +

= z(x.p) +

(x+y).

Thus, we complete the proof. ]

In what follows, we argue that the gradient function of G(x, y, €) is uniformly bounded,
and then, by applying the mean-value theorem for vector-valued functions, we conclude
that G(x, y, €) is globally Lipschitz continuous. The following two lemmas are crucial in
proving our main result.

LemmA 3.3 Forany x, yeIR" and € > 0, let Z: R" x R" — R" be given as in (26). Then,
the function Z(x,y,€) is continuously differentiable everywhere. Moreover, there exists
a constant C independent of x, y and €, t such that

T—2 1
T L,V)Lf(x,y,e)

. T—2
IV,2(x. v €)= H (L+5~

1V:2(x. 3. 9l = H (Lo +

=C,

—1
L)L 0| = C

2

Proof The first part of the conclusion follows directly from [10, Proposition 5.2].
The second part is implied by the proof of [15, Proposition 3.1]. ]

LemmMa 3.4 For any x, yeIR" and € > 0, let G : IR" x IR" — IR" be defined as in (29).
Then, the function G(x, y, €) is continuously differentiable everywhere. Moreover, there exists
a constant C such that |V,G(x, y,€)l| < C(1+171) and |V,G(x, p,€)|| < CA+17").

Proof The first part of the conclusion is due to [10, Proposition 5.2]. For the second part,
by Lemma 3.3, it suffices to prove that the gradient of the following function:

T—2 _
H(X, Y, 6) = <L\ + TLJ’)LAS(:C,}’,G)(X + y)

is uniformly bounded. From the definition of H(x, y, €), we notice that

2 T—2 _ T—2 T—2
H(xayaé):;<L’~+TLy>L2(}Cl,€)<X+Ty+y+Tx>

=%[xo(u+v)+%2yo(u+v)i|

where u and v are defined as in (30). Therefore, applying Lemma 2.3 yields that

2 -2
VXH(xn Vs 6) = ; I:LM-H’ + (qu(xa Vs 6) + va(xn Vs 6)) (Lx + TTL}')]a
) (39)

2[r T—2
vyH(xa Vs 6) = ; [2 Lu+v + (Vyu(xa s 6) + Vyv(xa ) 6)) (L\ + 2L)>i|
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To show that ||V H(x, y,€)| is uniformly bounded, we shall verify that both |L,,|| and
I(Viu(x, y,€) + Vov(x,y, €))Ly + (t — 2/2)L,)|| are uniformly bounded.

(1) To prove that ||L,,|| is uniformly bounded, it is sufficient to argue that |u], ||us]]

and |v|, |luz|| are both uniformly bounded. First, we argue that |u;| and |v,| are
uniformly bounded. From (33), we have that

up = 1 (gl + g;%) + _ (gl - g;ﬁ?),
2/ 2a(00) 2/ (W)

v = 2\/W(h1+ 2W2>+2\/ﬁ(h1 h2wz>

Note that g1 = x1 + (v — 2/2)y1,82 = x2 + (v — 2/2)y2 and =y = y1 + (v — 2/2)xy,

=y, + (t—2/2)x5, and wy = (wp/||w2]]). Therefore, applying Lemma 2.1
yields that

lgr — 32| < VAw) < VAD), g1 + g3 w2l < VAa(w) < VA (D) (36)

and

|y — h3Wwa| < Va(w) < VaOh),  Thy + h3wa| < Vaa(w) < V/A(h). (37)

Combing with the expressions of u; and v; given as above, we get |u;] <1 and
<1
Second, we argue that ||us|| and ||v,|| are also uniformly bounded. By (34),

B (g1 —i—g}ﬁ/z)ﬂ/z 3 (g1 — ggﬂzz)ﬂ/z 2g) — 2g§ﬂ’2ﬁ’2
2/ (%) 2JM (%) M) + VA ()

(h1 + hng)ﬂ/z (h1 - hgﬂfz)wz 2hy — 2h2 WaWn

24/ (W) - 2/ A1 (W) ,/)»1(w + V(b))

Using (36) and (37) and the fact that ||w;| = 1, we obtain that

V) =

(g1 +g3m2) 0y (g1 — g3 W2) W
2/5 (%) 2/m0h)
H (A1 +h3w2)iwa (= hyiva) )

2/ 2 (W) 2/ (W)

w2l =1,

<Ly 42
=5l

1
—||W2|| +5 ||W2|| =1

2gzj2g§wzw{ < Al _ 4l <4
VIO 4+ VD) |~ Va0h) T VI F P+ (= 2xTy 4 €
2hy — 2hT Wl < 4||hzu - 4|l ha |l <4
VA + V00| T VA0 T VIxP 4 1P+ (= 2)xTy + €
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The above inequalities imply that |u,| and |v,| are uniformly bounded. This
together with the uniform boundedness of |u;| and |v;| implies that

||L+||:H|:ul+‘)l (u2+V2)Ti|H
o uy+vy (uy +v)l

is also uniformly bounded.

(i) Now, it comes to show that [[(V.u(x,y,€)+ Viv(x,y, €))Ly + (t —2/2)L,)| is
uniformly bounded. From the definition of u(x, y, €) and v(x, y, €) as given in (30),
we have

(x4 )

26,3 0 (u(x, . )+ ¥(x.7.€) = =

Applying Lemma 2.3 then gives that
ViZ(x, ¥, € Lugy + (Vat(X, v, €) + Viv(X, p, €)) Lry.0 = (T/2)1.
This is equivalent to saying that
(Vauu(x, p, €) + Viev(X, V) Lax o) = (T/2)] — Vi2(X, ¥, €) Lyt
— %1— (Lx 41 ; 2L >L_(§} oLutrs

where the second equality is due to Lemma 2.4. Therefore,

-2
(qu(x, v, €)+ Von(x, y, e)) <Lx + fTLy>

T T—2 1 -1 T—2
= [5 - (Lx +—— Ly) Liye Lu+v} Liye (Lx t—L

T -2 T2 -2
= 2L7(\} €) (L +— B L > - (L‘C +— > L )LA(\ v E)LM+1’L2(V ,€) (L + TL}">

T T—2 _ T
=3[ (Lot 5L Lo
-2 _ T—2 _ B
—_ Lx + 2 L L \} e) LLH~V Lx + TLy f(x,y,e) .

Now we have that

H (qu(xn Y, 6) + VXV(X’ Y, 6)) (LV + .’:;—2 LJ’) H

T—2 - :
) L.+ TL}' Lf(x,y,e)

T—2 _ T—2 _ T
+ H |:<Lx + T L}') Lf(,}c.y,e)i| H N LIl - H |:<Lx + T L,V) Lf(.fl\',y,e)] :

From Lemma 3.3, [[(Ly+(r—2/2)L, )L"(w 6)] | is uniformly bounded.
This together with the uniform boundedness of |L,,,| yields that
I(Viu(x, y,€) + Viv(x, p, €))Ly + (t — 2/2)L,)|| is uniformly bounded.

=)
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From (i), (ii) and (35), we conclude that ||V, H(x, y, €)|| is uniformly bounded with the
bound related to t—'. Using similar arguments, we can prove that IV H(x,y, €| is
uniformly bounded with the bound related to ~'. Combining with Lemma 3.3, we then
show that there exists a constant C such that ||[V,G(x,y,€)|<C(1+7"") and
IV,G(x, .0l < C1+771). O

THEOREM 3.1 For any x, y € IR" and t€(0,4), let F(x,y) be given as in (23). Then, their
gradient functions V. .F(x,y) and V ,F(x, y) are globally Lipschitz continuous, i.e. there exists
a constant C such that

IV F(x,y) — ViF(a,b)| < C(1 + T HII(x,») — (a.b)],
IV, F(x,y) — V,Fla,b)| < C(1 + T HI(x,») — (a, D) (38)
for all (x,y), (a,b) e IR" x IR".

Proof We first prove that the function G(x,y,¢) defined by (29) is globally Lipschitz
continuous for any € > 0. For any (x, y) € IR” x IR” and (a, b) € IR” x IR”, we have that

G(x,p,€) = G(a,b,€) = G(x,y,€) — G(a,y,€) + G(a, p,€) — G(a, b, €).

From Lemma 3.4,we know that G(x,y,€) is continuously differentiable everywhere.
Hence, from the mean-value theorem, it follows that

1
G(x,y,€) — G(a,y,¢€) = /0 V.G(a+ t(x — a),y,e)(x — a)dt,

1
G(a.3.9) = Gla.b.) = [ ¥,6(ab+ i(y = ey~ b
0

Combining the last two equations and using Lemma 3.4, we then obtain that
1
1660~ Gia. b, = | [ V.6ta+ itx = ..o — x|
0

1
+ ‘/ V,G(a, b+ 1y —b),e)(y — b)dl”
0

1
S/ IViG(a+ 1(x — a), y, )llllx — alldt
0

+ /0] IViG(a+ 1(x — a), y, O)llll(x — a)lldt
< C( 4+ HlICx,») = (a, )], (39)
where C is a constant independent of x, y and €, 7. From Lemma 3.2, we know that
lim G(x, y, ) = ViF(x, y)
for any x, y € R” x IR". This together with (39) immediately yields that
IVFx, ) = Vi@ D)l = | lim GCx,y,€) = lim Gla,b, )]
= lim [G(x. 7.0 = G(@ b, )]

< C(1 4+t HIx ) — (@b)].
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Thus, we prove that V. F(x, y) is globally Lipschitz continuous. Similarly, we may prove
that V,F(x, y) is also globally Lipchitz continuous. Ll

From the above theorem, we immediately obtain the following corollary.

COROLLARY 3.1 Let y, with T €(0,4) be defined as in (12). Then v, is an LC" function, i.e.
the gradient functions V. r(x,y) and V (x,y) are globally Liptchitz continuous with the
Lipschitz constant being O(1+1t1).
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