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SMOOTH ANALYSIS ON CONE FUNCTION ASSOCIATED
WITH ELLIPSOIDAL CONE

YUE LU* AND JEIN-SHAN CHENT

ABSTRACT. As an important prototype in closed convex cones, ellipsoidal cone
covers several practical instances such as second-order cone, circular cone and
elliptic cone. In virtue of a recent study on its decomposition expression, we
present a symmetric type of ellipsoidal cone function and show that this vector-
valued function inherits some smooth properties from its corresponding scalar
function, particularly in continuity, directional differentiability, differentiability
and continuous differentiability. We believe that these results will play important
roles on further analysis and study about conic programming problems associated
with ellipsoidal cone.

1. INTRODUCTION
Consider the ellipsoidal cone [2, 21, 22, 23] with the form
(1.1) Ke = {x eR"|2TQxr <0, ulz > 0} )

where @ € R™™"™ is a real-valued nonsingular symmetric matrix and (\;, u;) € RxR"
denotes its i-th eigenpair. In addition, these pairs satisfy the underline relations:

UT

Ty =1, ifi=j

> 000> 1 ) ) )

A > > M1 >0> )N, and { ’LLZTUJ':O, 1f27é]
Under the standard Euclidean inner product (-,-) and the norm || - || defined on
R™, its dual cone (ICg)z‘_ , has an explicit expression (due to [16, Theorem 2.1]) as

follows:

(1.2) (Ke)iy ={weR" [y Q 'y <0, uyy > 0}.

It is not difficult to see that the ellipsoidal cone K¢ defined as in (1.1) can be viewed
as a type of nonsymmetric cones.

During the past two decades, conic programming have been extensively studied
[4, 6, 7, 8,9, 12, 13, 14, 20|, particularly in three types of closed convex cones,
i.e., the nonnegative octant R'', second-order cone K™ and positive semi-definite
cone S%. All of these cones are fully addressed and some fundamental topics such
as projection, spectral decomposition, cone function and cone-convexity have been
studied. A fascinating feature among them is to unify all these results under the
framework of Euclidean Jordan Algebra defined on symmetric cones, we refer to the

2010 Mathematics Subject Classification. 90C25.

Key words and phrases. Nonsymmetric cones, ellipsoidal cones, cone function.

*The author’s work is supported by National Natural Science Foundation of China (Grant Num-
ber: 11601389), Doctoral Foundation of Tianjin Normal University (Grant Number: 52XB1513).

fCorresponding author. The author’s work is supported by Ministry of Science and Technology,
Taiwan.



1328 Y. LU AND J.S. CHEN

monograph [10] for more details. A natural question is how to extend these observa-
tions on symmetric cones suitable for nonsymmetric counterparts? Recently, Miao,
Lu and Chen [18] look into the first three items in the setting of some nonsym-
metric cases such as circular cone, p-order cone, geometric cone, exponential cone
and power cone, in which the lack of explicit projection formulae onto these cones
(except for the circular cone case) become the main hurdle for non-symmetric cone
optimization problems and cause some unpleasant consequences. For example, the
classical Moreau decomposition in convex analysis cannot be used directly; the as-
sociated decomposition expressions and cone functions are correspondingly missing.
These observations motivate us to focus on algebraic properties of nonsymmetric
cones and to provide a systematical study on their analytic features.

As an important prototype, several famous instances can be generated from el-
lipsoidal cones by different choices of parameters (@, u,). For instances, let us take

[ Li-i 0 In_q 0 MTM 0 _
Q—[ 0 _1}or[ 0 —tanzﬁ]or[ 0 q and u, = e,,

where I, 1 denotes the identity matrix of order n —1, § € (0, 5), M is any nonsin-
gular matrix of order n — 1 and e, is the n-th column vector of I,,. In these cases,
the ellipsoidal cone respectively reduces to the second-order cone [5, §]:

K™ = {(Zn-1,2n) € R" VX R|||Zp1]| <z},
the circular cone [3, 24]:
Lo :={(Tn-1,2n) € R X R|||Zp1] < n tan 6}
and the elliptic cone [1]:
b= {(@n1,20) €R' X R[[|M Iy || < 2}

Therefore, ellipsoidal cone is a natural generalization of second-order cone, circular
cone and elliptic cone.

For algebraic properties of ellipsoidal cones, there have been several literatures in
recent studies. More specifically, Lu and Chen [16] discuss its self-duality and pos-
itive homogeneity, in which the authors observe that ellipsoidal cone can become
self-dual by introducing a new inner product and the associated automorphism
group can be characterized as the similarity transformation of its special coun-
terpart in the second-order cone setting with an appropriate nonsingular matrix.
Furthermore, they also provide an investigation on its variational geometry, pro-
jection expression and decomposition, see [17] for more details. In particular, the
decomposition of the given point associated with the ellipsoidal cone is characterized
in [17, Theorem 8]. For completeness, we restate it as follows. Due to the eigenvalue
decomposition, we rewrite Q € R™*" as the form Q = UAU”T with an orthogonal

matrix U € R™*" and a diagonal matrix A € R"*"  where U := [U,_1, u,] € R™*",

Upn—1 := [u,u2, ..., Up—1] € R™(=1) and A := diag(Ap_1,\n) € R™" A, g =
diag (A1, A2, ..., Ap_1) € RZDX(=1),

Theorem 1.1 (Decomposition). [17, Theorem 8] Let g € R™ be an ellipsoidal

cone defined as in (1.1) and (Kg)? y be its dual cone defined as in (1.2). For any
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given x € R™, it has the following decomposition:
{ i @) v (@) + s (a) -0} (@) if Uiy 20,
D) oD@+ PP it 0720,
where sg(ll)(x),sgi)(x),sg)(x),sg)(x) and vg)(:z) (2)(33) v§b)(x),v§f)(x) are respec-
tively given by

1 1 1 Un1UL |z

. (@) = une + IOzl o) @) = 5 | g ag +un> € Ke,
2 —r 7 2 1 Un—lUn—l

sg-a)(x) =ulz — | MUL |z, Uga)(m) =5 —m + Un) € Ke,
1 1 1 (Upw

sgb)(:p) = uz:xy v%}(x) — 3 (||Mw|| +Un) € Ke,
2 2 1 Up—1w

with any given nonzero vector w € R"™! and a diagonal matriz M looks like

Ug—l(Q - AnunuZ)Un—l 2
(=An)

_ dia A1 A2 An—1
g (*)‘n)7 (*An)w” ’ (*)‘n) ‘

Theorem 1.1 indicates that by denoting

(1.3)

(@A @), uf @), (@)
(L4) sty (@), 52 (@), vg>< oo (@) iU ja #0,

1 2 1 2 o
shy (@), 5 (@), v (@), 0 (@) i ULz =0,
the decomposition formula now can be rewritten as follows:
(1.5) =2 @) uV @) + AP @) P (@), vaeRrn

For any function f : R — R, the following vector-valued function associated with
K¢ is considered:

(L6) @) = fOP @) - uf @) + O @) o (@), Ve eR™
If f is defined only on the subset of R, then f[ is defined on the corresponding

subset of R”. Notice that the expression (1.6) is well-defined whether U,z # 0 or
Ugflx = 0. In the sequel, we call this function a symmetric type of ellipsoidal cone
function, due to the fact that the vectors u( )( ), ug )( ) in (1.4) are both contained
in K¢. For any given z € R", )\Y)(:c),ugz)( ) (i = 1,2) are the spectral values and
the spectral vectors of z, respectively.
In this paper, we aim to study smooth properties of the vector-valued function
EC particularly in continuity, directional differentiability, differentiability, contin-
uous differentiability inherited by f}EC from f. As a byproduct, we also establish
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these results for some special cases of ellipsoidal cone such as second-order cone,
circular cone and elliptic cone.

The rest of this paper is organized as follows. In Section 2, we present some
technical lemmas used in the sequel. The main conclusions will be established in
Section 3. We next discuss some special examples in Section 4. Finally, some
concluding remarks are drawn.

1.1. Notation and terminology. In what follows, we review some basic concepts
about vector-valued functions. For the mapping F' : R" — R™, we say F' to be
continuous at x € R™ if
F(y) —» F(z) as y—uz,

and F is continuous if F' is continuous at every z € R". Similarly, we say F' is
directionally differentiable at x € R™ if
F(x +th) — F(x)

t
exists for all h € R™ and F' is directionally differentiable if F' is directionally dif-
ferentiable at every z € R™. Moreover, F' is differentiable (in the Fréchet sense) at
x € R™ if there exists a linear mapping DF : R®™ — R™ such that

F(z + h) — F(z) — DF(z)h = o(||h])).

We call DF(x) the Jacobian of F' at « € R™. Furthermore, if F is differentiable at
every x € R™ and DF(z) is also continuous, then F' is continuous differentiable. For
a differentiable mapping ¢ : R™ — R, the gradient of g with respect to the variable
x € R” is denoted by Vg.

F'(z:h) = li
(w5 h) im

2. PRELIMINARIES

Before establishing smooth analytic properties of fIEC, we need the following
technical lemmas.

Lemma 2.1 (Perturbation of spectral values). Let )\(Ii) (z) (i =1,2) be the spectral

values of x € R™ and my) (y) (i =1,2) be the spectral values of y € R™. Then, we
have

(2.1) N(@) = mPw)| < (1 + IMTE)) -l =yl vi=1,2,
where | MUY || is the induced matriz norm on the space R"=1D>*" of MUT | as

follows: o o
IMU;_ || = sup{|| MUz _yz||| 2] = 1. = € R"}.

Proof. The proof can be obtained easily by simple calculation. Note that
A (@) = m ()

< ug (@ —y)| + [I1MU ]| = 1M Uyl
< unll - e =yl + 1MU;_y (2 = )|
< (LHIIMULA) - lle =yl Vi=1,2,

where the second inequality follows from the facts |a”b| < |lal - ||bll, |||a]| — [|6]|] <
|la —bl|, Ya,b € R". O
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Lemma 2.2 (Perturbation of spectral vectors). Let uy) () (i =1,2) be the spectral
vectors of x € R™ and pg-l) (y) (i =1,2) be the spectral vectors of y € R".

(a) If UL 12 #0, ULy #0, then we have

, . 7 U7 7 ML
22 |6 -0 < . (MI1U SV (el R ”)wm—m

[MU,_ | MU |

for any i = 1,2. In this case, u([i) (x) and p(li)(y) are the unique spectral
vectors of x and y, respectively. .
(b) If either UL o =0 or ULy = 0, then we can choose ug)(a:), p(IZ)(y) such

that the left hand side of the above inequality (2.2) is zero.

Proof. (a) If UL jx # 0, UL ;y # 0, according to the decomposition in Theorem
1.1 and (1.4), we obtain

7 7T 7 rr T
Wy _ L (Un1Unaz @ _ L1 [_UnalUpa2
= QMWHM+%/’W0w 2 \ "o g T )

(1) 1 Un 1[7 (2) 1 Un 1[7
L = B
f <M4 Tl ) R N Tz

From the above, we see that u( )( ), p(li) (y) (i = 1,2) are unique. In addition, we
have

nuYNx>——p¥Ny>u

_ 1 U,_ 1U Un 1UT

B IMU, 137H IMULy]|

< 1 Un_lU 1$—Un 1Un,1y Un 1U Un 1UT

-2 MU, x| IMU, 1$H IMULy]|
1 ([|Un-1U1 4] [T M|

< S\ Gomr o e - ||+7 MUyl = |1MU,_ |
2<HM T el R |
1 ([|Un-1U; 4] [Una M7
P Brey = el |4 —y||+7 MU, _1(y — )|l
2<M4 ol MO 2]
1 [ ||Up-1 Up 1M~ - ||MU, ,

(IO T W8T
2\ MU 190H MU, 2|

(b) It is clear that we can choose the same spectral vectors for z and y from the
relation (1.4), since either U ;2 =0 or UL ;y = 0. O
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Lemma 2.3 (Gradients). Let A € R"*"™ B € R**" and x € R™. If Bx # 0, then
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we have
Ax 1 (BTB)(x2™)] 1
(2.3) v( ): [I—A,
“\IIBz| HB I | Bz|?
(2.4) Va(||Bz||) = — BT Bu.
| Bz|
Proof. Let us rewrite
[ann ans ain al
A | a2 am | _ al e
L anl Aan2 Ann (Iz;
[ b1 b bin
bay boa ... by
B=| . T 7 " |=[Bi B2 ... B,]eR¥"
b bs2 bsn

with a; € R™ (i = ..,n)and B.; € R® (j =1,2,...,n). Therefore, we have

(i=1,2,.
ayx alz alz
V( )- I (i) = (28) . (28]
IIBﬂJII | B|| | B|| | Ba||
where V, ( afz (i=1,2,...,n) is defined as follows:
0 ()
9a1 \TBa]
T 0 al'x
(m) = | 2 \IBel) | e
| Bz| :
o (als
L Ozy \ || Bzl /]

By direct calculation, we have

0 ( alx ) 1 r (Bx)'B.; .
| :ai'7_<ai x)iﬁj j=
Oz \ || Bl 7| B | Bx|?

1 1

1,2,...,n.

_ B S
B HBIEHA ||BxH3[(A )(Bzx)" B]
L[ e
Bz [ " | Bz|? ]A
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which shows that Eq. (2.3) holds. On the other hand, similar to the first part, we
obtain

0 (Bx)'B.;
7(HBI.H): ’]a ]:1,2,...,7’L,
Oz, | Bl
and therefore the gradient of || Bz|| with respect to x is given by
0 1 [ Bx)'B, ]
7(HB$||) 1Bz]|
Bx TB. 2
S L T B -l B RN
: : ~ [IBa]
9 (Bx)TB
55 1Bzl) A
- O - L Bz
which implies that Eq. (2.4) is true. O

3. SMOOTH ANALYSIS

In this section, we aim to show the properties of continuity and differentiability
between the scalar function f and its associated cone function f; EC Now, after the
above preparations, we are ready to present our first main result about continuity
between f and fIEC.

Theorem 3.1 (Continuous). For any given function f : R — R, let f; EC be its
corresponding cone function defined as in (1.6). Then, the following statements are
equivalent to each other.

(a) f is continuous at )\y)(az) (i=1,2). ‘
(b) fEC is continuous at x € R™ with spectral values )\y) (x) (i=1,2).

Proof. (a) = (b) Suppose f is continuous at )\gi) (x) (i =1,2). For any fixed z € R"
and y — x, let x and y be decomposed as

2=\ @) uf (@) + AP (@) P (@), y=mP @) p @)+ mP ) pP ).
Then, we consider the following two cases:
Case (a): If U ;x # 0, then we have
£y —
= fmP W) 2w + FmP @) pP ()
<§ (@) - ui" (@) — (AP (@) - @)()
= f(m ><y>> 0 () - <”< )+ (FmP @) = FOM (@) - ui (@)
( 2 2 2

7 ()

(1) W) 6 W) @)+ (f < P ) = FOP @) - (@)
Since f is continuous at )\gi) (z) (i = 1,2) and the inequality (2.1) in Lemma 2.1, we
obtain

FmP @) = FOP@) (=1,2) as y -
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According to the relation (2.2) in Lemma 2.2, we also know
o7 () @) 0 (i =12) as y—a
Moreover, the equation (3.1) and the boundedness of f (my) (v)), uy) (x) yield that
FCy) = 1) as y—oa
Therefore, f IEC is continuous at = € R".

Case (b): If Ugﬁlx = 0, we can arrange that z,y have the same vector parts,
regardless of U! ,y is equal to zero or not. At the same time, we obtain

1 1 1 2 2 2
FO) = 17 @) = Fm?) = S -+ () = FOF)) - .
By similar arguments as Case (a), we know that fIEC is continuous at x € R™.
(b) = (a) The proof for this direction is straightforward and has a similar arguments

for [5, Proposition 2]. O

Theorem 3.2 (Directionally Differentiable). For any given function f : R — R,
let f EC be its corresponding cone function defined as in (1.6). Then, the following
statements are equivalent to each other.

(a) f is directionally differentiable at )\gi) (x) (i=1,2).
(b) fEC is directionally differentiable at x € R™ with spectral values )\gz)(:v)
(i=1,2).
Proof. (a) = (b) Suppose f is directionally differentiable at )\gi) (x) (i=1,2). We
divide our proof into the following two cases:
Case (a): If U ;x # 0, then we have

f(z) = 0P @) - u @) + 1P (@) - @)( ),

where the scalars )\(1) (x), )\5-2) (x) and the vectors u; )(:1:) ( ) are given by
1 2
A (@) = ufx + | MU ] N (@) = ulx || MUY el
(1) 1 Un IU (2) 1 Un 1U
uy () = =+ 7+un ,ou () =< | -
! 2\ IMU,;_; | ! 2 IIMUg—ﬁH

Due to the nonsingularity of M defined as in (1.3), we obtain MUI ;z # 0. From

Lemma 2.3, we know that )\Zl(x),uy)(x) (i = 1,2) are Fréchet-differentiable with
respect to the variable z, i.e.,

VoA (@) = w, + Uy MTMUL )z,

Bz
) o
Vx/\([ )(1‘) = Up — W(Un—lMTMUE—l)xa
1%
7 VR Viidh T

(1) 1 UnaM" MU, _y)(xz7) | = =7
V. In — Vil Un-1Un

ur ) = 2| MU, 2| MU 2|? (et

7 vy _T T

o 1 (Upaa M"MU N(z2®) | 1
Vm = - I — Un* Un_ ’

4 ) = Nl Bk (i)
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To show that fIEC is directionally differentiable at x € R™ with spectral values

)\gi)(a:) (i = 1,2), we only need to verify the directional differentiability of the

composition functions f()\gi)(x)) (¢ = 1,2) with respect to z € R"” and then use the
product rule and the chain rule on f}EC.

Since f is directionally differentiable at )\([1)(:5), then it is easy to see that

FOP @)+t 1) — FOP (@)

Jim, - L = P (@) ),
Wy 1) — D (g

i LD =0D = SO _ iy,

p SO @) o) — fN @) _

t—0+ t

Using the fact that )\gl)(a:) is Fréchet-differentiable at x, we obtain
AV @ 4 th) = AW (@) + - BTV A (@) + o(1).

Let y = thx)\gl)(l’) + @, then y — hTVz)\gl)(m) ast — 01, If hTVx)\gl)(:v) <0,
then y < 0 as t is sufficiently close to 0 and we obtain

FO @+ th)) — FO ()

lim
t—0+ t
o 0P @ ) — 0P @)
t—0+ t
W) — () - 1) — FOAD (2
- L0 = (tg)ty)n FOP@)
B {0 €0 R G R Ve {0V R C0) N
L0+ (—ty) t—0+ Y

= AP @)1 (VA (@)
= £ @iV (@),
where the last equation follows from the positive homogeneous property of direc-

tionally differentiable functions. On the other hand, we can also deduce a similar
result

o SO @+ ) — Ff (@)
im

t—0T t
under the case hTVx)\gl)(x) > 0. Therefore, the directional differentiability of
f()\gl)@)) with respect to z € R” is fulfilled and so does f()\?) (x)) by repeating
the above procedure. Consequently, we obtain

(fF9) (@:h)

= SOP @AY @) @) + PO @)V (@) - (2)

(32 OV @) (Vaup @) bt FOP @) (Vou? (@) h,

= 0P @) h TV AW (@)
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where the terms hTVI)\y) (x), (qugi) (x))Th, (i = 1,2) are defined as follows:
o
M U?Tflﬂf |
W'V A (@) = ulh — ————aT (O, \MTMUL_)h,
MU,z
N
2| MU
w5
2| MU, |

KTV AW (2) = ulh + 2" (U s MT MU, _)h,

(:)::):T)(Un_lMTMUZ_l)
MU |2

(xxT)(Un_lMT]\Z/Uanl)
MUY 2|2

(Voul (2))"h = (Uner UL ) |1, —

)

(Voul (@)Th = - (U UL ) |1 — h.

Hence, we obtain

FOP@); " AN (@) -V (@) + FOP (@) TV AP (@) - ol (2)

1 _ e
o (e e L T
—1
1 _ — Un 1U
— O @)ulh — —— DUy MTMUL_)h) | - o=l
! IMUT x| )M mr
1 10y (1) T 1 2T (0 T 77T
+§' f()\z (x);unh+m (UnflM MUn—l)h)
1
1 _ o
3.3 'O @)ulh - —— T (O, MTMTL_ )R | - uy,
33)  + /0P @) T g Gt T )| -u
and
FOM @) - (v, u(fl)(w))Th+f(A§2)(w)>-(Vzu?)(x))Th
_ 10P@) S0P @) g T @) O ITRTE)
2| MU 1x|| " MU ]2
sy = JO0@) —S0P@) o or | @D MO
' Agl)(w)—/\gz)(x) S MU 2|? ,

where the last equation uses the relation Agl)(x) - /\(12)(30) = 2|MUL z||. From
(3.2), we can rewrite (fF¢)’(z;h) in a more compact form as below:
(7Y (s h)
= SO @)V AP (@) - uD (@) + FOP (@) BTV AP (@) - ul? ()
FO (@)~ f < ? 7)) (w2T) (U MT MUY )

( o h
AP (@) = AP () MU, |2 ’

(3.5)  + (Un-1Up_y) | In —

Case (b): If UL ;x = 0, then we have
FC ) = FOM (@) - ui @) + F 0P (@) - oD (),
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where the scalars )\gl)(a;), )\?) () and the vectors ugl)(a:), u?) (x) are given by

1
1 Up_1w 2 Un w

where w is any given nonzero vector in R"~1. If UL | h £ 0, then Ul | (x +th) # 0
and fEC(x + th) has the following decomposition

EC x4 th) = fFOW (@ + th)) - u\V (@ + th) + FOP (@ + th)) - ul®P (2 + th),

where the scalars )\gl)(x +th), )\52) (z +th) and the vectors ug )(a: +th),u (2 )(l’ +th)
satisfy the following relations

AP (@ + th) = ul (x + th) + | MTT_ (2 + th)| = AV (z) + AP (),
/\(2)(16 +th) = ul(z + th) — | MUT_ (z + th)| = AP
1 (U, 1UT 1(a:+th) (

() 1)
th — = h
wrth) =5\ tor @y ) =
(1) 1 Un 1U 1(z +th) )
th — = h
ur ) = o\ T @y ) )

In addition, if we choose w = U ,h, then ugl)(a:) = ugl)(x + th) = ugl)(h) and
(12)( ) = u(IQ) (x 4+ th) = §2)(h), which show that

[z +th) — f7¢ ()

t
_ S0P @+ 0) = 0P @) o,
_ t (
O @ P 0) = 107 @) e
t

Therefore, the following relation is fulfilled under the directionally differentiability
of fat A\ (2) (i =1,2):

(3:6) (£ (sh) = IO @3 A ) - () 4 1 O @) AP () - ().
On the other hand, if UL |h = 0, then U ;(z + th) = 0. In this case, we know
EC(z 4 th) = fOW (@ + th)) - ul (@ + th) + FOP (@ + th)) - ul? (2 + th),

where the scalars )\g )(:1: +th), )\( )(:c +th) and the vectors ug )(a: +th),u (2 )(a: +th)
now can be rewritten as follows:

AP (@ 4 th) = ul (z + th) = XV (@) + AP (),
(

I
AP (@ 4 th) = ul(z + th) = A\ (2) + AP (n),
1 Un 17
ult )(x—i-th) 5 (HMUH —|—un) = ugl),
1 Un—
ull )(:L‘+th) 5 —”M;ﬁ—i—un = u(12),
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where 7 is any given nonzero vector in R"~!. In addition, if we choose w = n # 0,

then ugl)@) = ugl)(m +th) = ugl),u?) () = ugz) (x +th) = u§2). Similarly, we have

37 EY@n) = 0P @ AP 0) -l + 0P (@) AP () - ul?.

In summary, we show that f FC is directionally differentiable at x € R™ with spectral
values )\y) () (i=1,2).

(b) = (a) The proof for this direction is trivial by adapting the arguments for [5,
Proposition 3]. O

Theorem 3.3 (Differentiable). For any given function f : R — R, let fEC be its
corresponding cone function defined as in (1.6). Then, the following statements are
equivalent to each other.

(a) f is differentiable at )\gi) (x) (i=1,2). ‘
(b) fEC is differentiable at x € R™ with spectral values )\gl) (x) (i =1,2).

Moreover, the corresponding Jacobian of f}EC at x is defined as follows:

DfFC (x)
[ rOP @) - P @)
= (Un—lUg—l) )I\(Il) (;1;‘) B A([2) (x) ($UZ)
2

P @) + 0P @)

ﬂﬁ”@»—f@?%ﬂ)G,_4(wﬂﬂa%ﬂﬂﬁﬂﬁ?ﬁ>]
)

(3.8) +

f%A?Rx»-+f%A?Nx»I]
2 n
if UL |z # 0; otherwise,

(3.9) DfEC(z) = f'(ulz)I,.

Proof. (a) = (b) The proof for this direction can be adapted from Theorem 3.2, in
which we only need to use “differentiable” to replace “directionally differentiable”.

At the same time, we know that f’()\y) (x),-) (i =1,2) are linear, in other words,
(310)  FO@),a+0) = FOP@)a+ FOP @), VabeR,

since f is differentiable at )\(Ii)(x) (1=1,2).
Next, the remaining part will be verified under the following two cases:
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Case (a): If UL,z # 0, according to the relations (3.3)-(3.5) and (3.10), then we
have

(fF€) (2 h)

= 5| OPE) - FOP @)l
PO @) + FOPE) 1y ] Dl
e R e N s e
45 [P0 @) + 7O @)l
SN @) = 0P @)

FOP @) - rOP (@) f (227 (U1 MT MU )
’ A@%)—A?’Em e MU z]? 1
e ol @) - 0P @)
= (Un—lUg—l) 1)(1‘) )\(2() (‘TUZ)
2

PP @) + 707 (@)
AP () = AP ()2
O @) - F0P (@) ( L <mT>(0n1MTMUE_1>>]
T S R e

+2-

(22)(Un1 MT MU, _4)

oy [F0F @) = 0P @)
+(””)[ M (@) - AP @)

FOP @) + 70 Wzn] .

(unxT) (Un_1 MTMUE_l)

* 2

where the last equation follows from the fact )\gl) () — )\?) (v) = 2|MUL |z|. The

above relation shows that (fF¢) (z;h) = DfFC (x)h, where DfFC(z) is defined as
n (3.8).

Case (b): If U ;2 = 0, then AV (z) = AP () = uTz. In addition, if U7 b # 0,
similar to the above discussion in Case (a), we obtain

FFOY @) = FOP @A (R) - u () + O @)AP () - uf® (h)

(A

1 ULl \h
= f(up o) (ugh+ | MO b)) - 2(M+ )
1
2

U,1UL |h
+f/ () (ul b — | MO ) - 5 | — Tt + > ;

MU bl
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otherwise, we have
(f7CY (w; )
= f( kx»x9kh>-u?”+f%A?kx»A?%h>-u?)

(1
I
— T T Un 17 1y T T 1 _Un_lT]
= fekaedn) 3 (i +on) + 7o (- + o).

By direct calculation, in both cases the following relations hold:

( EC)’(a:'h) = f’(uT:c)(unuT +U,_ 1UT Dh=f (u x)Inh,

where the last equation uses the fact uyu,, T4 U, 1U _1 = Ip,. Therefore, the relation
(3.9) is fulfilled under this case.

(b) = (a) Let fFC be differentiable at € R with spectral values )\y) (z) (i =1,2).
By contradiction, without loss of generality, assume that f is not differentiable at
)\gl)(:c), the following limits

L SO @+ = 10 @)
t—0+ t ’
o SO @)+ = F0 @)
t—0~ t

either are unequal or one of them does not exist. Now, we choose
1 1 2
=N G@) ) (@) 4 AP @) (),
h=1-uM(z)+0-u(2).

Then, we know x + th = (/\g )(m) +1) -u}l)(a:) + )\gz) (x) -u?) (z) and fEC(z +th) =
f()\gl)(:v) +1)- ugl) (x) + f()\$~2) (x)) - u§2) (x), which implies

O ) o N Y Co k) B (YR ) OO
t—0+ t t—0t+ t ! ’
. FO(z +th) — fFC(x) -~ FOP @) +1) - FOP (@) o ()
t—0- t 0 t !

It follows that these two limits either are unequal or one of them does not exist,
which contradicts with the assumption that f}EC is differentiable at x € R".

Theorem 3.4 (Continuously Differentiable). For any given function f : R — R,
let f; EC be its corresponding cone function defined as in (1.6). Then, the following
statements are equivalent to each other.

(a) f is continuously differentiable at )\?‘) (x) (i=1,2).

(b) fEC is continuously differentiable at x € R™ with spectral values /\y)(x)
(i=1,2).

Proof (a) = (b) Suppose f is continuously differentiable at )\Y) () 1=1,2). If
T 2 #0, it follows from (3.8) that DfFC is continuous at x € R”. We only need



SMOOTH ANALYSIS ON CONE FUNCTION ASSOCIATED WITH ELLIPSOIDAL CONE 1341

to verify that DfIEC is continuous at every x € R™ with Ul ;2 = 0. In this case,
we know

(3.11) AP (@) = AP (@) = ula.
Let 3 be any sequence converging to z. If UL y* = 0, from (3.9) we obtain

(3.12) lim  DfFYy")=  lm  f(uTy")I, = DfF(a);

Y HxU _1y7=0 Y %xU _1y7=0
otherwise, i.e., UL ;y” # 0. According to the relation (3.8), we have
DfF(y")

o f’(A(l)( ) = FOP ()
= (U,.UL L
( 1 1) (V) >\§2)(yl’)

FOM ) + f (AP < Y)

" AP ) - >\(2) 2 W ")) (Onmr M MU, )
. <A<”< N =07 (I ">T><Un1MTMU§_1>>]
v (2 n ) v (2) \\2
A () — A (y) = A7 (y"))
Dy [FO2@D) = PO oy i
" )\1 y” Ag)(y”) " "
_|_

[\)

W)+ IOP ), ]

In addition, the following relation holds when v — = and U, 1y #0:

o FOP ) - r0Pe)

vl AP ) =X )

IOP ) = 0P ") MUY " g
MUl

= lim
y"—m,UE_ly”;éO 2

= 0,

where the last equation follows from the differentiability of f at )\ ( ), f! (/\y) (y")) —

MU 1y
PO @) (0 =1,2), M) = 2P () = 2IMOTT |, —=—2— is bounded
! ! ! MUy
and (3.11). For simplicity, we assume that

MUZ

7-) GRn_l with =1.
e oo TAIOT g 6 I€l
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Similarly, we obtain

y"))

2

(Up—1 MTMUL_))]

lim
Yy —x Un 1YY #0

[zf'(A&“(y”)) IO
AP ) = AP )
(Tnd U ) (0" ()T

= f(uf2)Up A M MU, ),

. [f(A&”(y”))—f( ;
y’—a, Ul yr#0 /\gl)(y”) — )\?) (y¥

, <y”<y”>T><Un_1MTMUZ_1>>]
= [(up2)Up1Un_y — f'(un2)Upr MTIEETMU,_y,

(wT) [f’(A?)(yV)) — SO ")
o AP @) = 2P )
(

lim
yl’—mU _1y¥#0

FOP ) + 1026 ]
5 n
= flulz)u,ul.
Summing up these equations, we obtain
lim  DfF(”) = f(upe)(unuy, + Uno1Un_y) = f'(up2) I = DfFC(x).

y—z, U7y #0
This together with (3.12) imply that DfFC is continuous at every z € R with
Ul jx=0.
(b) = (a) Suppose f£¢ is continuously differentiable at x € R™ with spectral values
)\y) () (¢ = 1,2). From Theorem 3.3, f is differentiable at the neighborhoods around
A (@) (i =1,2). I TT |z =0, then

(3.13) A (@) = AP (@) =ul2, DFEC(2) = f/(ul )L,

For any h € R*! and U,:f_lh =0, then U | (z+h) = 0 and hence DfEC(x + h) =
f(u (x + h))I,. Since DfFY(z) is continuous at z, then limy o DfFC(z + h) =
DfEC (), which implies limy,_,o f'(ul (z +h)) = f'(ulx). This together with (3.13)
show that f/(z) is continuous at )\(I)( ) (¢ = 1,2). On the other hand, similar to

the one for [5, Proposition 5|, through adapting its proof, the same result is also
fulfilled under this case. O
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4. EXAMPLES

According to Theorem 1.1, in this section we investigate on some properties of
three special cases for ellipsoidal cone in the following examples.

Example 4.1. Consider the second-order cone
K" = {(Zn-1,20) € R" I xR[|Z]| < 20} .
In this case, we know

I 07 - ) )
Q: |: nol _1 :|7 Un—l :En—17 un:eny M:[n_1’ )\’I’L:_l,

where E,,_1 := [e1,e2,...,en_1] € R™*("=1)  With respect to the second-order cone
K", we can decompose x € R" as

z =2\ @) - u (@) + 2P @) - o (@)
with )\gi)(x),u(;)(x) (1 =1,2) given by

M (@) = 2 + (= 1) | Zoa ],

(—1)it ot
% Ha_jn—lH if Tn—1 7& 07
(4.1) o () = 1
I i (_ )i—i—l&
3 [Jwl| if Z,—1 =0,

where w is any given nonzero vector in R"~!. It is easy to see that the above
decomposition reduces to the classical decomposition expression associated with the
second-order cone [5, 11]. Let f : R — R be a scalar function, the corresponding
second-order cone function is given by

o) = O @) - uM @) + FOP @) - ul (@),

where )\gi) (x), ugi) (x) (i = 1,2) are defined as in (4.1). Similar to the above theorems,
we can obtain the following relations between f and f*°¢; which is also found in [5,
Section 5].

Theorem 4.2 (Second-order Cone Case). For any given function f: R — R and

x € R"”, let )\E-i)(a:), ug-i) (x) (1 =1,2) be defined as in (4.1). The following statements
hold:
(a) f is continuous at )\gl)(x), )\?) () if and only if f5°¢ is continuous at x € R"
with spectral values )\gl)(w), /\([2) ().
(b) f is directionally differentiable at /\gl)(x), )\?)(a:) if and only if f5°¢ is direc-
tionally differentiable at x € R™ with spectral values )\gl)(z:), )\?) ().
(c) f is differentiable at )\51)(33),)\?) (x) if and only if f°°¢ is differentiable at
x € R™ with spectral values /\gl)(x), )\32)(:1:).
(d) f is continuously differentiable at )\gl)(l‘), )\?) () if and only if f5°° is con-

tinuously differentiable at x € R™ with spectral values Agl)(x), Ag2)(x).
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Example 4.3. Consider the circular cone

Lo:={(Tn-1,2n) € R" X R|||Zp_1]| < z, tand}
In this case, we know

Q= I 0 9 y Up1=FEn_1, un=¢€n, M =1,_1, A\, = —tan’6.
0 —tan=60
With respect to the circular cone Ly, we can decompose z € R" as
=" (@) - uf (@) + AP (@) - o (@)

with /\y) (m),u(li) (x) (i =1,2) given by

)\([Z)(.Z‘) =z, + (__1)i+1 cot QH?n—le

L= )iHL

5 COtHH.@n_lu if 2,1 # 0,
I r (_ >i+1 w

3 cot 0fw| if Z,1 =0,

where w is any given nonzero vector in R”~!. Notice that the above decomposition
is different with the existing decomposition expression associated with the circular
cone, see [24, Theorem 3.1] for more details. Let f : R — R be a scalar function,
the corresponding circular cone function is given by

circ 1 1 2 2
() = FOP @) - (@) + SO (@) -0 (@),
where Agi) (x), ugi) (x) (i = 1,2) are defined as in (4.2). Consequently, we can also
obtain the similar relations between f and f in the following theorem.

Theorem 4.4 (Circular Cone Case). For any given function f : R — R and z € R",
let )\gz) (z), uy) (z) (i =1,2) be defined as in (4.2). The following statements hold:

a) f is continuous at AW ,)\(2) x) if and only if f¢¢ is continuous at v € R™
I I

with spectral values )\51)(3:), )\?) (x).

(b) f is directionally differentiable at )\gl)(x), /\gz) (z) if and only if f€r¢ is di-
rectionally differentiable at © € R™ with spectral values /\gl)(a:), )\?) (z).

(c) f is differentiable at )\gl)(x),/\?) (x) if and only if f€¢ is differentiable at
x € R™ with spectral values )\gl)(x), /\§2) (z).

(d) f is continuously differentiable at )\gl)(:n), )\gz) (x) if and only if f€"¢ is con-
tinuously differentiable at x € R™ with spectral values )\gl)(x), )\?) ().

Example 4.5. Consider the elliptic cone

tr={(@n-1,20) ER" X R MZy || < 2}
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In this case, we know

MTM 0 - Un—1n—
Q:|: 0 _1:|7Un1:|: né,nl]’unzen’
M == (Ug—l’n—lMTMﬁn—l,n—l)1/27 A’VL = —1,
where M is any nonsingular matrix of order n - 1 and Izn—llnjl e R(r=1x(n-1)
is an orthogonal matrix satisfying the condition Un,Ln,lMTMUE_Ln_1 =MTM.
Therefore, we obtain

(MUL )T MUY |z = xTUn_lUnT,Ln,lMTMUn_l,n_lUg,lx
=zl  MTMz, i,
(MU )" MUYz = xT[_]n_lﬁgflmflMTMUn_l,n_l[_]nTAx
=z’ MTMz,_,
which show that |[MU! x| = [|[MZ,_1| and |[M1UL x| = [[(M~Y)Tz,_4|. If
J 1n—17, then 1 # 0 and Up—1w = (n,0) € R*! x R, since w # 0

and the orthogonal property of Up—1n—1. Moreover, by simple calculation, we also
obtain

we set w = UT

(Mw)T Mw = wTUE_lm_lMTMUnfl,nflw
=" MT Mn,
(M w)T M ~w = wTﬁE_l’n_lel(MT)AUn_l,n_lw
=" (MM )T,
therefore we have || Mw| = ||Mn|| and ||M~tw|| = ||(M~1)Tn||. With respect to the
elliptic cone K%,, we can decompose x € R™ as

v =X @) (@) + AP (@) - (@)
with )\Ej) ($),u5~i) () (1 =1,2) given by

A (@) = @ + (1) Mo,

()
i | M Zp_1]| if Z,,_1 # 0,
(4.3) @), 1
u[ (l’) - = . 77
Ly e
5 , | M| if Z,—1 =0,

where 7 is any given nonzero vector in R"~!. Again, let f : R — R be a scalar
function, the corresponding elliptic cone function is given by

F@) = FOM @) - ufD (@) + AP (@) - ulP (),

where Agi)(x), u?)(x) (1 = 1,2) are defined as in (4.3). At the same time, the
relations between f and f¢! are fulfilled in the following theorem.
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Theqrem 4.6 (Elliptic Cone Case). For any given function f : R — R and x € R™,
let )\y) (x), ugl) (x) (i =1,2) be defined as in (4.3). The following statements hold:

(a) f is continuous at )\gl)(w), /\([2) (z) if and only if f is continuous at x € R"

with spectral values )\gl)(x), )\gz) (z).

b) f is directionally differentiable at AW ,)\(2) z) if and only if f is direc-
I 1

tionally differentiable at x € R™ with spectral values )\51)(33), )\?) ().

(c) f is differentiable at )\gl)(m),/\?)(x) if and only if f¥ is differentiable at

x € R™ with spectral values )\5-1)(1:), A?) (z).

(d) f is continuously differentiable at )\(Il)(:v),)\§2) (z) if and only if f is con-
tinuously differentiable at x € R™ with spectral values )\gl)(:c), /\gz) (x).

5. CONCLUDING REMARKS

In this paper, we introduce a symmetric type of ellipsoidal cone function and
have proved the underline results of this vector-valued function as follows:

(a) f is continuous at )\gl) (x), )\§2) (z) if and only if fFC is continuous at x € R™
with spectral values )\gl)(x), )\?) (x).

b) f is directionally differentiable at AW (2 ,/\(2) x) if and only if fZC is direc-
I I I

tionally differentiable at € R™ with spectral values Agl)(x), )\gz) ().

(c) f is differentiable at /\gl)(m), )\?) (z) if and only if fF¢ is differentiable at
x € R™ with spectral values )\gl)(a}), )\?) ().

d) f is continuously differentiable at AW ( ,)\(2) z) if and only if fF¢ is con-
I I I

tinuously differentiable at z € R™ with spectral values )\51) (x), )\52) ().

We believe these results are useful for designing smooth numerical algorithms for
solving ellipsoidal cone programming problems. A potential application is to analyze
the following ellipsoidal cone complementarity problems

S ICgv Yy e (ng)z‘,’_), <$7y> =0, F(x7y7C) =0,
where F : R” x R” x R! is a continuously differentiable mapping, which is similar to
its special case under the second-order cone setting [11]. We leave further discussion
on this topic as our future work.
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