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monograph [10] for more details. A natural question is how to extend these observa-
tions on symmetric cones suitable for nonsymmetric counterparts? Recently, Miao,
Lu and Chen [18] look into the first three items in the setting of some nonsym-
metric cases such as circular cone, p-order cone, geometric cone, exponential cone
and power cone, in which the lack of explicit projection formulae onto these cones
(except for the circular cone case) become the main hurdle for non-symmetric cone
optimization problems and cause some unpleasant consequences. For example, the
classical Moreau decomposition in convex analysis cannot be used directly; the as-
sociated decomposition expressions and cone functions are correspondingly missing.
These observations motivate us to focus on algebraic properties of nonsymmetric
cones and to provide a systematical study on their analytic features.

As an important prototype, several famous instances can be generated from el-
lipsoidal cones by different choices of parameters (Q,un). For instances, let us take

Q =

[
In−1 0
0 −1

]
or

[
In−1 0
0 − tan2 θ

]
or

[
MTM 0

0 −1

]
and un = en,

where In−1 denotes the identity matrix of order n− 1, θ ∈ (0, π2 ), M is any nonsin-
gular matrix of order n− 1 and en is the n-th column vector of In. In these cases,
the ellipsoidal cone respectively reduces to the second-order cone [5, 8]:

Kn :=
{
(x̄n−1, xn) ∈ Rn−1 × R | ∥x̄n−1∥ ≤ xn

}
,

the circular cone [3, 24]:

Lθ :=
{
(x̄n−1, xn) ∈ Rn−1 × R | ∥x̄n−1∥ ≤ xn tan θ

}
and the elliptic cone [1]:

Kn
M :=

{
(x̄n−1, xn) ∈ Rn−1 × R | ∥Mx̄n−1∥ ≤ xn

}
.

Therefore, ellipsoidal cone is a natural generalization of second-order cone, circular
cone and elliptic cone.

For algebraic properties of ellipsoidal cones, there have been several literatures in
recent studies. More specifically, Lu and Chen [16] discuss its self-duality and pos-
itive homogeneity, in which the authors observe that ellipsoidal cone can become
self-dual by introducing a new inner product and the associated automorphism
group can be characterized as the similarity transformation of its special coun-
terpart in the second-order cone setting with an appropriate nonsingular matrix.
Furthermore, they also provide an investigation on its variational geometry, pro-
jection expression and decomposition, see [17] for more details. In particular, the
decomposition of the given point associated with the ellipsoidal cone is characterized
in [17, Theorem 8]. For completeness, we restate it as follows. Due to the eigenvalue
decomposition, we rewrite Q ∈ Rn×n as the form Q = UΛUT with an orthogonal
matrix U ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n, where U := [Ūn−1, un] ∈ Rn×n,

Ūn−1 := [u1, u2, . . . , un−1] ∈ Rn×(n−1) and Λ := diag(Λ̄n−1, λn) ∈ Rn×n, Λ̄n−1 :=

diag (λ1, λ2, . . . , λn−1) ∈ R(n−1)×(n−1).

Theorem 1.1 (Decomposition). [17, Theorem 8] Let KE ∈ Rn be an ellipsoidal
cone defined as in (1.1) and (KE)

∗
⟨·,·⟩ be its dual cone defined as in (1.2). For any
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given x ∈ Rn, it has the following decomposition:

x =

{
s
(1)
Ia

(x) · v(1)Ia
(x) + s

(2)
Ia

(x) · v(2)Ia
(x) if ŪT

n−1x ̸= 0,

s
(1)
Ib

(x) · v(1)Ib
(x) + s

(2)
Ib

(x) · v(2)Ib
(x) if ŪT

n−1x = 0,

where s
(1)
Ia

(x), s
(2)
Ia

(x), s
(1)
Ib

(x), s
(2)
Ib

(x) and v
(1)
Ia

(x), v
(2)
Ia

(x), v
(1)
Ib

(x), v
(2)
Ib

(x) are respec-
tively given by

s
(1)
Ia

(x) := uTnx+ ∥M̄ŪT
n−1x∥, v

(1)
Ia

(x) :=
1

2
·

(
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+ un

)
∈ KE ,

s
(2)
Ia

(x) := uTnx− ∥M̄ŪT
n−1x∥, v

(2)
Ia

(x) :=
1

2
·

(
−
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+ un

)
∈ KE ,

s
(1)
Ib

(x) := uTnx, v
(1)
Ib

(x) :=
1

2
·
(
Ūn−1w

∥M̄w∥
+ un

)
∈ KE ,

s
(2)
Ib

(x) := uTnx, v
(2)
Ib

(x) :=
1

2
·
(
− Ūn−1w

∥M̄w∥
+ un

)
∈ KE

with any given nonzero vector w ∈ Rn−1 and a diagonal matrix M̄ looks like

(1.3)

M̄ :=

[
ŪT
n−1(Q− λnunu

T
n )Ūn−1

(−λn)

]1/2
= diag

(√
λ1

(−λn)
,

√
λ2

(−λn)
, . . . ,

√
λn−1

(−λn)

)
.

Theorem 1.1 indicates that by denoting

(1.4)

(
λ
(1)
I (x), λ

(2)
I (x), u

(1)
I (x), u

(2)
I (x)

)
:=


(
s
(1)
Ia

(x), s
(2)
Ia

(x), v
(1)
Ia

(x), v
(2)
Ia

(x)
)

if ŪT
n−1x ̸= 0,(

s
(1)
Ib

(x), s
(2)
Ib

(x), v
(1)
Ib

(x), v
(2)
Ib

(x)
)

if ŪT
n−1x = 0,

the decomposition formula now can be rewritten as follows:

(1.5) x = λ
(1)
I (x) · u(1)I (x) + λ

(2)
I (x) · u(2)I (x), ∀x ∈ Rn.

For any function f : R → R, the following vector-valued function associated with
KE is considered:

(1.6) fEC
I (x) = f(λ

(1)
I (x)) · u(1)I (x) + f(λ

(2)
I (x)) · u(2)I (x), ∀x ∈ Rn.

If f is defined only on the subset of R, then fEC
I is defined on the corresponding

subset of Rn. Notice that the expression (1.6) is well-defined whether ŪT
n−1x ̸= 0 or

ŪT
n−1x = 0. In the sequel, we call this function a symmetric type of ellipsoidal cone

function, due to the fact that the vectors u
(1)
I (x), u

(2)
I (x) in (1.4) are both contained

in KE . For any given x ∈ Rn, λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are the spectral values and

the spectral vectors of x, respectively.
In this paper, we aim to study smooth properties of the vector-valued function

fEC
I , particularly in continuity, directional differentiability, differentiability, contin-
uous differentiability inherited by fEC

I from f . As a byproduct, we also establish
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these results for some special cases of ellipsoidal cone such as second-order cone,
circular cone and elliptic cone.

The rest of this paper is organized as follows. In Section 2, we present some
technical lemmas used in the sequel. The main conclusions will be established in
Section 3. We next discuss some special examples in Section 4. Finally, some
concluding remarks are drawn.

1.1. Notation and terminology. In what follows, we review some basic concepts
about vector-valued functions. For the mapping F : Rn → Rm, we say F to be
continuous at x ∈ Rn if

F (y) → F (x) as y → x,

and F is continuous if F is continuous at every x ∈ Rn. Similarly, we say F is
directionally differentiable at x ∈ Rn if

F ′(x;h) = lim
t↓0

F (x+ th)− F (x)

t

exists for all h ∈ Rn and F is directionally differentiable if F is directionally dif-
ferentiable at every x ∈ Rn. Moreover, F is differentiable (in the Fréchet sense) at
x ∈ Rn if there exists a linear mapping DF : Rn → Rm such that

F (x+ h)− F (x)−DF (x)h = o(∥h∥).
We call DF (x) the Jacobian of F at x ∈ Rn. Furthermore, if F is differentiable at
every x ∈ Rn and DF (x) is also continuous, then F is continuous differentiable. For
a differentiable mapping g : Rn → R, the gradient of g with respect to the variable
x ∈ Rn is denoted by ∇xg.

2. Preliminaries

Before establishing smooth analytic properties of fEC
I , we need the following

technical lemmas.

Lemma 2.1 (Perturbation of spectral values). Let λ
(i)
I (x) (i = 1, 2) be the spectral

values of x ∈ Rn and m
(i)
I (y) (i = 1, 2) be the spectral values of y ∈ Rn. Then, we

have

(2.1)
∣∣∣λ(i)

I (x)−m
(i)
I (y)

∣∣∣ ≤ (1 + ∥M̄ŪT
n−1∥

)
· ∥x− y∥, ∀i = 1, 2,

where ∥M̄ŪT
n−1∥ is the induced matrix norm on the space R(n−1)×n of M̄ŪT

n−1 as
follows:

∥M̄ŪT
n−1∥ := sup{∥M̄ŪT

n−1x∥
∣∣ ∥x∥ = 1, x ∈ Rn}.

Proof. The proof can be obtained easily by simple calculation. Note that

|λ(i)
I (x)−m

(i)
I (y)|

≤
∣∣uTn (x− y)

∣∣+ ∣∣∥M̄ŪT
n−1x∥ − ∥M̄ŪT

n−1y∥
∣∣

≤ ∥un∥ · ∥x− y∥+ ∥M̄ŪT
n−1(x− y)∥

≤
(
1 + ∥M̄ŪT

n−1∥
)
· ∥x− y∥, ∀i = 1, 2,

where the second inequality follows from the facts |aT b| ≤ ∥a∥ · ∥b∥, |∥a∥ − ∥b∥| ≤
∥a− b∥, ∀a, b ∈ Rn. □
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Lemma 2.2 (Perturbation of spectral vectors). Let u
(i)
I (x) (i = 1, 2) be the spectral

vectors of x ∈ Rn and p
(i)
I (y) (i = 1, 2) be the spectral vectors of y ∈ Rn.

(a) If ŪT
n−1x ̸= 0, ŪT

n−1y ̸= 0, then we have

(2.2)
∥∥∥u(i)I (x)− p

(i)
I (y)

∥∥∥ ≤ 1

2

(
∥Ūn−1Ū

T
n−1∥

∥M̄ŪT
n−1x∥

+
∥Ūn−1M̄

−1∥ · ∥M̄ŪT
n−1∥

∥M̄ŪT
n−1x∥

)
· ∥x− y∥

for any i = 1, 2. In this case, u
(i)
I (x) and p

(i)
I (y) are the unique spectral

vectors of x and y, respectively.

(b) If either ŪT
n−1x = 0 or ŪT

n−1y = 0, then we can choose u
(i)
I (x), p

(i)
I (y) such

that the left hand side of the above inequality (2.2) is zero.

Proof. (a) If ŪT
n−1x ̸= 0, ŪT

n−1y ̸= 0, according to the decomposition in Theorem
1.1 and (1.4), we obtain

u
(1)
I (x) =

1

2
·

(
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+ un

)
, u

(2)
I (x) =

1

2
·

(
−
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+ un

)
,

p
(1)
I (y) =

1

2
·

(
Ūn−1Ū

T
n−1y

∥M̄ŪT
n−1y∥

+ un

)
, p

(2)
I (y) =

1

2
·

(
−
Ūn−1Ū

T
n−1y

∥M̄ŪT
n−1y∥

+ un

)
.

From the above, we see that u
(i)
I (x), p

(i)
I (y) (i = 1, 2) are unique. In addition, we

have

∥u(i)I (x)− p
(i)
I (y)∥

≤ 1

2

∥∥∥∥∥ Ūn−1Ū
T
n−1x

∥M̄ŪT
n−1x∥

−
Ūn−1Ū

T
n−1y

∥M̄ŪT
n−1y∥

∥∥∥∥∥
≤ 1

2

∥∥∥∥∥ Ūn−1Ū
T
n−1x− Ūn−1Ū

T
n−1y

∥M̄ŪT
n−1x∥

+
Ūn−1Ū

T
n−1y

∥M̄ŪT
n−1x∥

−
Ūn−1Ū

T
n−1y

∥M̄ŪT
n−1y∥

∥∥∥∥∥
≤ 1

2

(
∥Ūn−1Ū

T
n−1∥

∥M̄ŪT
n−1x∥

· ∥x− y∥+ ∥Ūn−1M̄
−1∥

∥M̄ŪT
n−1x∥

·
∣∣∥M̄ŪT

n−1y∥ − ∥M̄ŪT
n−1x∥

∣∣)

≤ 1

2

(
∥Ūn−1Ū

T
n−1∥

∥M̄ŪT
n−1x∥

· ∥x− y∥+ ∥Ūn−1M̄
−1∥

∥M̄ŪT
n−1x∥

· ∥M̄ŪT
n−1(y − x)∥

)

≤ 1

2

(
∥Ūn−1Ū

T
n−1∥

∥M̄ŪT
n−1x∥

+
∥Ūn−1M̄

−1∥ · ∥M̄ŪT
n−1∥

∥M̄ŪT
n−1x∥

)
· ∥x− y∥, ∀i = 1, 2.

(b) It is clear that we can choose the same spectral vectors for x and y from the
relation (1.4), since either ŪT

n−1x = 0 or ŪT
n−1y = 0. □
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Lemma 2.3 (Gradients). Let A ∈ Rn×n, B ∈ Rs×n and x ∈ Rn. If Bx ̸= 0, then
we have

∇x

(
Ax

∥Bx∥

)
=

1

∥Bx∥

[
In − (BTB)(xxT )

∥Bx∥2

]
AT ,(2.3)

∇x(∥Bx∥) = 1

∥Bx∥
BTBx.(2.4)

Proof. Let us rewrite

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 =


aT1
aT2
...
aTn

 ∈ Rn×n,

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bs1 bs2 . . . bsn

 =
[
B·,1 B·,2 . . . B·,n

]
∈ Rs×n

with ai ∈ Rn (i = 1, 2, . . . , n) and B·,j ∈ Rs (j = 1, 2, . . . , n). Therefore, we have

∇x

(
Ax

∥Bx∥

)
=

[
∇x

(
aT1 x

∥Bx∥

)
,∇x

(
aT2 x

∥Bx∥

)
, . . . ,∇x

(
aTnx

∥Bx∥

)]
,

where ∇x

(
aTi x
∥Bx∥

)
(i = 1, 2, . . . , n) is defined as follows:

∇x

(
aTi x

∥Bx∥

)
=



∂

∂x1

(
aTi x

∥Bx∥

)
∂

∂x2

(
aTi x

∥Bx∥

)
...

∂

∂xn

(
aTi x

∥Bx∥

)


∈ Rn.

By direct calculation, we have

∂

∂xj

(
aTi x

∥Bx∥

)
= aij

1

∥Bx∥
− (aTi x)

(Bx)TB·,j
∥Bx∥3

, j = 1, 2, . . . , n.

Consequently, we obtain

∇x

(
Ax

∥Bx∥

)
=

1

∥Bx∥
AT − 1

∥Bx∥3
[(Ax)(Bx)TB]T

=
1

∥Bx∥

[
In − (BTB)(xxT )

∥Bx∥2

]
AT ,
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which shows that Eq. (2.3) holds. On the other hand, similar to the first part, we
obtain

∂

∂xj
(∥Bx∥) = (Bx)TB·,j

∥Bx∥
, j = 1, 2, . . . , n,

and therefore the gradient of ∥Bx∥ with respect to x is given by

∇x(∥Bx∥) =



∂

∂x1
(∥Bx∥)

∂

∂x2
(∥Bx∥)
...

∂

∂xn
(∥Bx∥)


=



(Bx)TB·,1
∥Bx∥

(Bx)TB·,2
∥Bx∥

...
(Bx)TB·,n

∥Bx∥


=

1

∥Bx∥
BTBx,

which implies that Eq. (2.4) is true. □

3. Smooth analysis

In this section, we aim to show the properties of continuity and differentiability
between the scalar function f and its associated cone function fEC

I . Now, after the
above preparations, we are ready to present our first main result about continuity
between f and fEC

I .

Theorem 3.1 (Continuous). For any given function f : R → R, let fEC
I be its

corresponding cone function defined as in (1.6). Then, the following statements are
equivalent to each other.

(a) f is continuous at λ
(i)
I (x) (i = 1, 2).

(b) fEC
I is continuous at x ∈ Rn with spectral values λ

(i)
I (x) (i = 1, 2).

Proof. (a) ⇒ (b) Suppose f is continuous at λ
(i)
I (x) (i = 1, 2). For any fixed x ∈ Rn

and y → x, let x and y be decomposed as

x = λ
(1)
I (x) · u(1)I (x) + λ

(2)
I (x) · u(2)I (x), y = m

(1)
I (y) · p(1)I (y) +m

(2)
I (y) · p(2)I (y).

Then, we consider the following two cases:

Case (a): If ŪT
n−1x ̸= 0, then we have

fEC
I (y)− fEC

I (x)

= f(m
(1)
I (y)) · p(1)I (y) + f(m

(2)
I (y)) · p(2)I (y)

−f(λ
(1)
I (x)) · u(1)I (x)− f(λ

(2)
I (x)) · u(2)I (x)

= f(m
(1)
I (y)) · (p(1)I (y)− u

(1)
I (x)) + (f(m

(1)
I (y))− f(λ

(1)
I (x))) · u(1)I (x)

+f(m
(2)
I (y)) · (p(2)I (y)− u

(2)
I (x)) + (f(m

(2)
I (y))− f(λ

(2)
I (x))) · u(2)I (x).(3.1)

Since f is continuous at λ
(i)
I (x) (i = 1, 2) and the inequality (2.1) in Lemma 2.1, we

obtain

f(m
(i)
I (y)) → f(λ

(i)
I (x)) (i = 1, 2) as y → x.
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According to the relation (2.2) in Lemma 2.2, we also know

∥p(i)I (y)− u
(i)
I (x)∥ → 0 (i = 1, 2) as y → x.

Moreover, the equation (3.1) and the boundedness of f(m
(i)
I (y)), u

(i)
I (x) yield that

fEC
I (y) → fEC

I (x) as y → x.

Therefore, fEC
I is continuous at x ∈ Rn.

Case (b): If ŪT
n−1x = 0, we can arrange that x, y have the same vector parts,

regardless of ŪT
n−1y is equal to zero or not. At the same time, we obtain

fEC
I (y)− fEC

I (x) = (f(m
(1)
I )− f(λ

(1)
I )) · u(1)I + (f(m

(2)
I )− f(λ

(2)
I )) · u(2)I .

By similar arguments as Case (a), we know that fEC
I is continuous at x ∈ Rn.

(b)⇒ (a) The proof for this direction is straightforward and has a similar arguments
for [5, Proposition 2]. □
Theorem 3.2 (Directionally Differentiable). For any given function f : R → R,
let fEC

I be its corresponding cone function defined as in (1.6). Then, the following
statements are equivalent to each other.

(a) f is directionally differentiable at λ
(i)
I (x) (i = 1, 2).

(b) fEC
I is directionally differentiable at x ∈ Rn with spectral values λ

(i)
I (x)

(i = 1, 2).

Proof. (a) ⇒ (b) Suppose f is directionally differentiable at λ
(i)
I (x) (i = 1, 2). We

divide our proof into the following two cases:

Case (a): If ŪT
n−1x ̸= 0, then we have

f(x) = f(λ
(1)
I (x)) · u(1)I (x) + f(λ

(2)
I (x)) · u(2)I (x),

where the scalars λ
(1)
I (x), λ

(2)
I (x) and the vectors u

(1)
I (x), u

(2)
I (x) are given by

λ
(1)
I (x) = uTnx+ ∥M̄UT

n−1x∥, λ
(2)
I (x) = uTnx− ∥M̄UT

n−1x∥,

u
(1)
I (x) =

1

2
·

(
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+ un

)
, u

(2)
I (x) =

1

2
·

(
−
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+ un

)
.

Due to the nonsingularity of M̄ defined as in (1.3), we obtain M̄ŪT
n−1x ̸= 0. From

Lemma 2.3, we know that λi
I(x), u

(i)
I (x) (i = 1, 2) are Fréchet-differentiable with

respect to the variable x, i.e.,

∇xλ
(1)
I (x) = un +

1

∥M̄ŪT
n−1x∥

(Ūn−1M̄
T M̄ŪT

n−1)x,

∇xλ
(2)
I (x) = un − 1

∥M̄ŪT
n−1x∥

(Ūn−1M̄
T M̄ŪT

n−1)x,

∇xu
(1)
I (x) =

1

2∥M̄ŪT
n−1x∥

[
In −

(Ūn−1M̄
T M̄ŪT

n−1)(xx
T )

∥M̄ŪT
n−1x∥2

]
(Ūn−1Ū

T
n−1),

∇xu
(2)
I (x) = − 1

2∥M̄ŪT
n−1x∥

[
In −

(Ūn−1M̄
T M̄ŪT

n−1)(xx
T )

∥M̄ŪT
n−1x∥2

]
(Ūn−1Ū

T
n−1).
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To show that fEC
I is directionally differentiable at x ∈ Rn with spectral values

λ
(i)
I (x) (i = 1, 2), we only need to verify the directional differentiability of the

composition functions f(λ
(i)
I (x)) (i = 1, 2) with respect to x ∈ Rn and then use the

product rule and the chain rule on fEC
I .

Since f is directionally differentiable at λ
(1)
I (x), then it is easy to see that

lim
t→0+

f(λ
(1)
I (x) + t · 1)− f(λ

(1)
I (x))

t
= f ′(λ

(1)
I (x); 1),

lim
t→0+

f(λ
(1)
I (x)− t · 1)− f(λ

(1)
I (x))

t
= f ′(λ

(1)
I (x);−1),

lim
t→0+

f(λ
(1)
I (x) + o(t))− f(λ

(1)
I (x))

t
= 0.

Using the fact that λ
(1)
I (x) is Fréchet-differentiable at x, we obtain

λ
(1)
I (x+ th) = λ

(1)
I (x) + t · hT∇xλ

(1)
I (x) + o(t).

Let y = hT∇xλ
(1)
I (x) + o(t)

t , then y → hT∇xλ
(1)
I (x) as t → 0+. If hT∇xλ

(1)
I (x) < 0,

then y < 0 as t is sufficiently close to 0 and we obtain

lim
t→0+

f(λ
(1)
I (x+ th))− f(λ

(1)
I (x))

t

= lim
t→0+

f(λ
(1)
I (x) + ty)− f(λ

(1)
I (x))

t

= lim
t→0+

f(λ
(1)
I (x)− (−ty) · 1)− f(λ

(1)
I (x))

(−ty)
· (−y)

= lim
t→0+

f(λ
(1)
I (x)− (−ty) · 1)− f(λ

(1)
I (x))

(−ty)
· lim
t→0+

(−y)

= f ′(λ
(1)
I (x);−1) · (−hT∇xλ

(1)
I (x))

= f ′(λ
(1)
I (x);hT∇xλ

(1)
I (x)),

where the last equation follows from the positive homogeneous property of direc-
tionally differentiable functions. On the other hand, we can also deduce a similar
result

lim
t→0+

f(λ
(1)
I (x+ th))− f(λ

(1)
I (x))

t
= f ′(λ

(1)
I (x);hT∇xλ

(1)
I (x))

under the case hT∇xλ
(1)
I (x) ≥ 0. Therefore, the directional differentiability of

f(λ
(1)
I (x)) with respect to x ∈ Rn is fulfilled and so does f(λ

(2)
I (x)) by repeating

the above procedure. Consequently, we obtain

(fEC
I )′(x;h)

= f ′(λ
(1)
I (x);hT∇xλ

(1)
I (x)) · u(1)I (x) + f ′(λ

(2)
I (x);hT∇xλ

(2)
I (x)) · u(2)I (x)

+f(λ
(1)
I (x)) · (∇xu

(1)
I (x))Th+ f(λ

(2)
I (x)) · (∇xu

(2)
I (x))Th,(3.2)



1336 Y. LU AND J.S. CHEN

where the terms hT∇xλ
(i)
I (x), (∇xu

(i)
I (x))Th, (i = 1, 2) are defined as follows:

hT∇xλ
(1)
I (x) = uTnh+

1

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h,

hT∇xλ
(2)
I (x) = uTnh− 1

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h,

(∇xu
(1)
I (x))Th =

1

2∥M̄ŪT
n−1x∥

(Ūn−1Ū
T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

∥M̄ŪT
n−1x∥2

]
h,

(∇xu
(2)
I (x))Th = − 1

2∥M̄ŪT
n−1x∥

(Ūn−1Ū
T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

∥M̄ŪT
n−1x∥2

]
h.

Hence, we obtain

f ′(λ
(1)
I (x);hT∇xλ

(1)
I (x)) · u(1)I (x) + f ′(λ

(2)
I (x);hT∇xλ

(2)
I (x)) · u(2)I (x)

=
1

2
·

(
f ′(λ

(1)
I (x);uTnh+

1

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h)

− f ′(λ
(2)
I (x);uTnh− 1

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h)

)
·
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+
1

2
·

(
f ′(λ

(1)
I (x);uTnh+

1

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h)

+ f ′(λ
(2)
I (x);uTnh− 1

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h)

)
· un(3.3)

and

f(λ
(1)
I (x)) · (∇xu

(1)
I (x))Th+ f(λ

(2)
I (x)) · (∇xu

(2)
I (x))Th

=
f(λ

(1)
I (x))− f(λ

(2)
I (x))

2∥M̄ŪT
n−1x∥

· (Ūn−1Ū
T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

∥M̄ŪT
n−1x∥2

]
h

=
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

· (Ūn−1Ū
T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

∥M̄ŪT
n−1x∥2

]
h,(3.4)

where the last equation uses the relation λ
(1)
I (x) − λ

(2)
I (x) = 2∥M̄ŪT

n−1x∥. From

(3.2), we can rewrite (fEC
I )′(x;h) in a more compact form as below:

(fEC
I )′(x;h)

= f ′(λ
(1)
I (x);hT∇xλ

(1)
I (x)) · u(1)I (x) + f ′(λ

(2)
I (x);hT∇xλ

(2)
I (x)) · u(2)I (x)

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

· (Ūn−1Ū
T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

∥M̄ŪT
n−1x∥2

]
h.(3.5)

Case (b): If ŪT
n−1x = 0, then we have

fEC
I (x) = f(λ

(1)
I (x)) · u(1)I (x) + f(λ

(2)
I (x)) · u(2)I (x),
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where the scalars λ
(1)
I (x), λ

(2)
I (x) and the vectors u

(1)
I (x), u

(2)
I (x) are given by

λ
(1)
I (x) = uTnx, λ

(2)
I (x) = uTnx,

u
(1)
I (x) = 1

2 ·
(
Ūn−1w
∥M̄w∥ + un

)
, u

(2)
I (x) = 1

2 ·
(
− Ūn−1w

∥M̄w∥ + un

)
,

where w is any given nonzero vector in Rn−1. If ŪT
n−1h ≠ 0, then ŪT

n−1(x+ th) ̸= 0

and fEC
I (x+ th) has the following decomposition

fEC
I (x+ th) = f(λ

(1)
I (x+ th)) · u(1)I (x+ th) + f(λ

(2)
I (x+ th)) · u(2)I (x+ th),

where the scalars λ
(1)
I (x+ th), λ

(2)
I (x+ th) and the vectors u

(1)
I (x+ th), u

(2)
I (x+ th)

satisfy the following relations

λ
(1)
I (x+ th) = uTn (x+ th) + ∥M̄ŪT

n−1(x+ th)∥ = λ
(1)
I (x) + tλ

(1)
I (h),

λ
(2)
I (x+ th) = uTn (x+ th)− ∥M̄ŪT

n−1(x+ th)∥ = λ
(2)
I (x) + tλ

(2)
I (h),

u
(1)
I (x+ th) =

1

2
·

(
Ūn−1Ū

T
n−1(x+ th)

∥M̄ŪT
n−1(x+ th)∥

+ un

)
:= u

(1)
I (h),

u
(1)
I (x+ th) =

1

2
·

(
−
Ūn−1Ū

T
n−1(x+ th)

∥M̄ŪT
n−1(x+ th)∥

+ un

)
:= u

(2)
I (h).

In addition, if we choose w = ŪT
n−1h, then u

(1)
I (x) = u

(1)
I (x + th) = u

(1)
I (h) and

u
(2)
I (x) = u

(2)
I (x+ th) = u

(2)
I (h), which show that

fEC
I (x+ th)− fEC

I (x)

t

=
f(λ

(1)
I (x) + tλ

(1)
I (h))− f(λ

(1)
I (x))

t
· u(1)I (h)

+
f(λ

(2)
I (x) + tλ

(2)
I (h))− f(λ

(2)
I (x))

t
· u(2)I (h).

Therefore, the following relation is fulfilled under the directionally differentiability

of f at λ
(i)
I (x) (i = 1, 2):

(3.6) (fEC
I )′(x;h) = f ′(λ

(1)
I (x);λ

(1)
I (h)) · u(1)I (h) + f ′(λ

(2)
I (x);λ

(2)
I (h)) · u(2)I (h).

On the other hand, if ŪT
n−1h = 0, then ŪT

n−1(x+ th) = 0. In this case, we know

fEC
I (x+ th) = f(λ

(1)
I (x+ th)) · u(1)I (x+ th) + f(λ

(2)
I (x+ th)) · u(2)I (x+ th),

where the scalars λ
(1)
I (x+ th), λ

(2)
I (x+ th) and the vectors u

(1)
I (x+ th), u

(2)
I (x+ th)

now can be rewritten as follows:

λ
(1)
I (x+ th) = uTn (x+ th) = λ

(1)
I (x) + tλ

(1)
I (h),

λ
(2)
I (x+ th) = uTn (x+ th) = λ

(2)
I (x) + tλ

(2)
I (h),

u
(1)
I (x+ th) =

1

2
·
(
Ūn−1η

∥M̄η∥
+ un

)
:= u

(1)
I ,

u
(1)
I (x+ th) =

1

2
·
(
− Ūn−1η

∥M̄η∥
+ un

)
:= u

(2)
I ,
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where η is any given nonzero vector in Rn−1. In addition, if we choose w = η ̸= 0,

then u
(1)
I (x) = u

(1)
I (x+ th) = u

(1)
I , u

(2)
I (x) = u

(2)
I (x+ th) = u

(2)
I . Similarly, we have

(3.7) (fEC
I )′(x;h) = f ′(λ

(1)
I (x);λ

(1)
I (h)) · u(1)I + f ′(λ

(2)
I (x);λ

(2)
I (h)) · u(2)I .

In summary, we show that fEC
I is directionally differentiable at x ∈ Rn with spectral

values λ
(i)
I (x) (i = 1, 2).

(b) ⇒ (a) The proof for this direction is trivial by adapting the arguments for [5,
Proposition 3]. □

Theorem 3.3 (Differentiable). For any given function f : R → R, let fEC
I be its

corresponding cone function defined as in (1.6). Then, the following statements are
equivalent to each other.

(a) f is differentiable at λ
(i)
I (x) (i = 1, 2).

(b) fEC
I is differentiable at x ∈ Rn with spectral values λ

(i)
I (x) (i = 1, 2).

Moreover, the corresponding Jacobian of fEC
I at x is defined as follows:

DfEC
I (x)

= (Ūn−1Ū
T
n−1)

[
f ′(λ

(1)
I (x))− f ′(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

(xuTn )

+2 ·
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

(λ
(1)
I (x)− λ

(2)
I (x))2

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

(
In − 4 ·

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

(λ
(1)
I (x)− λ

(2)
I (x))2

)]

+(unu
T
n )

[
f ′(λ

(1)
I (x))− f ′(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

(unx
T )(Ūn−1M̄

T M̄ŪT
n−1)

+
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

2
In

]
(3.8)

if ŪT
n−1x ̸= 0; otherwise,

(3.9) DfEC
I (x) = f ′(uTnx)In.

Proof. (a) ⇒ (b) The proof for this direction can be adapted from Theorem 3.2, in
which we only need to use “differentiable” to replace “directionally differentiable”.

At the same time, we know that f ′(λ
(i)
I (x), ·) (i = 1, 2) are linear, in other words,

(3.10) f ′(λ
(i)
I (x), a+ b) = f ′(λ

(i)
I (x))a+ f ′(λ

(i)
I (x))b, ∀a, b ∈ R,

since f is differentiable at λ
(i)
I (x) (i = 1, 2).

Next, the remaining part will be verified under the following two cases:
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Case (a): If ŪT
n−1x ̸= 0, according to the relations (3.3)-(3.5) and (3.10), then we

have

(fEC
I )′(x;h)

=
1

2

[
(f ′(λ

(1)
I (x))− f ′(λ

(2)
I (x)))uTnh

+
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h

]
Ūn−1Ū

T
n−1x

∥M̄ŪT
n−1x∥

+
1

2

[
(f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x)))uTnh

+
f ′(λ

(1)
I (x))− f ′(λ

(2)
I (x))

∥M̄ŪT
n−1x∥

xT (Ūn−1M̄
T M̄ŪT

n−1)h

]
un

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

· (Ūn−1Ū
T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

∥M̄ŪT
n−1x∥2

]
h

= (Ūn−1Ū
T
n−1)

[
f ′(λ

(1)
I (x))− f ′(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

(xuTn )

+2 ·
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

(λ
(1)
I (x)− λ

(2)
I (x))2

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

(
In − 4 ·

(xxT )(Ūn−1M̄
T M̄ŪT

n−1)

(λ
(1)
I (x)− λ

(2)
I (x))2

)]
h

+(unu
T
n )

[
f ′(λ

(1)
I (x))− f ′(λ

(2)
I (x))

λ
(1)
I (x)− λ

(2)
I (x)

(unx
T )(Ūn−1M̄

T M̄ŪT
n−1)

+
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

2
In

]
h,

where the last equation follows from the fact λ
(1)
I (x)− λ

(2)
I (x) = 2∥M̄ŪT

n−1x∥. The
above relation shows that (fEC

I )′(x;h) = DfEC
I (x)h, where DfEC

I (x) is defined as
in (3.8).

Case (b): If ŪT
n−1x = 0, then λ

(1)
I (x) = λ

(2)
I (x) = uTnx. In addition, if ŪT

n−1h ̸= 0,
similar to the above discussion in Case (a), we obtain

(fEC
I )′(x;h) = f ′(λ

(1)
I (x))λ

(1)
I (h) · u(1)I (h) + f ′(λ

(2)
I (x))λ

(2)
I (h) · u(2)I (h)

= f ′(uTnx)(u
T
nh+ ∥M̄ŪT

n−1h∥) ·
1

2

(
Ūn−1Ū

T
n−1h

∥M̄ŪT
n−1h∥

+ un

)

+f ′(uTnx)(u
T
nh− ∥M̄ŪT

n−1h∥) ·
1

2

(
−
Ūn−1Ū

T
n−1h

∥M̄ŪT
n−1h∥

+ un

)
;
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otherwise, we have

(fEC
I )′(x;h)

= f ′(λ
(1)
I (x))λ

(1)
I (h) · u(1)I + f ′(λ

(2)
I (x))λ

(2)
I (h) · u(2)I

= f ′(uTnx)(u
T
nh) ·

1

2

(
Ūn−1η

∥M̄η∥
+ un

)
+ f ′(uTnx)(u

T
nh) ·

1

2

(
− Ūn−1η

∥M̄η∥
+ un

)
.

By direct calculation, in both cases the following relations hold:

(fEC
I )′(x;h) = f ′(uTnx)(unu

T
n + Ūn−1Ū

T
n−1)h = f ′(uTnx)Inh,

where the last equation uses the fact unu
T
n+Ūn−1Ū

T
n−1 = In. Therefore, the relation

(3.9) is fulfilled under this case.

(b) ⇒ (a) Let fEC
I be differentiable at x ∈ Rn with spectral values λ

(i)
I (x) (i = 1, 2).

By contradiction, without loss of generality, assume that f is not differentiable at

λ
(1)
I (x), the following limits

lim
t→0+

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t
,

lim
t→0−

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t

either are unequal or one of them does not exist. Now, we choose

x = λ
(1)
I (x) · u(1)I (x) + λ

(2)
I (x) · u(2)I (x),

h = 1 · u(1)I (x) + 0 · u(2)I (x).

Then, we know x+ th = (λ
(1)
I (x) + t) · u(1)I (x) + λ

(2)
I (x) · u(2)I (x) and fEC

I (x+ th) =

f(λ
(1)
I (x) + t) · u(1)I (x) + f(λ

(2)
I (x)) · u(2)I (x), which implies

lim
t→0+

fEC
I (x+ th)− fEC

I (x)

t
= lim

t→0+

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t
· u(1)I (x),

lim
t→0−

fEC
I (x+ th)− fEC

I (x)

t
= lim

t→0−

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t
· u(1)I (x).

It follows that these two limits either are unequal or one of them does not exist,
which contradicts with the assumption that fEC

I is differentiable at x ∈ Rn.

Theorem 3.4 (Continuously Differentiable). For any given function f : R → R,
let fEC

I be its corresponding cone function defined as in (1.6). Then, the following
statements are equivalent to each other.

(a) f is continuously differentiable at λ
(i)
I (x) (i = 1, 2).

(b) fEC
I is continuously differentiable at x ∈ Rn with spectral values λ

(i)
I (x)

(i = 1, 2).

Proof. (a) ⇒ (b) Suppose f is continuously differentiable at λ
(i)
I (x) (i = 1, 2). If

ŪT
n−1x ̸= 0, it follows from (3.8) that DfEC

I is continuous at x ∈ Rn. We only need
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to verify that DfEC
I is continuous at every x ∈ Rn with ŪT

n−1x = 0. In this case,
we know

(3.11) λ
(1)
I (x) = λ

(2)
I (x) = uTnx.

Let yν be any sequence converging to x. If ŪT
n−1y

ν = 0, from (3.9) we obtain

(3.12) lim
yν→x,ŪT

n−1y
ν=0

DfEC
I (yν) = lim

yν→x,ŪT
n−1y

ν=0
f ′(uT yν)In = DfEC

I (x);

otherwise, i.e., ŪT
n−1y

ν ̸= 0. According to the relation (3.8), we have

DfEC
I (yν)

= (Ūn−1Ū
T
n−1)

[
f ′(λ

(1)
I (yν))− f ′(λ

(2)
I (yν))

λ
(1)
I (yν)− λ

(2)
I (yν)

(yνuTn )

+2 ·
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

(λ
(1)
I (yν)− λ

(2)
I (yν))2

(yν(yν)T )(Ūn−1M̄
T M̄ŪT

n−1)

+
f(λ

(1)
I (yν))− f(λ

(2)
I (yν))

λ
(1)
I (yν)− λ

(2)
I (yν)

(
In − 4 ·

(yν(yν)T )(Ūn−1M̄
T M̄ŪT

n−1)

(λ
(1)
I (yν)− λ

(2)
I (yν))2

)]

+(unu
T
n )

[
f ′(λ

(1)
I (yν))− f ′(λ

(2)
I (yν))

λ
(1)
I (yν)− λ

(2)
I (yν)

(un(y
ν)T )(Ūn−1M̄

T M̄ŪT
n−1)

+
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

2
In

]

In addition, the following relation holds when yν → x and ŪT
n−1y

ν ̸= 0:

lim
yν→x,ŪT

n−1y
ν ̸=0

f ′(λ
(1)
I (yν))− f ′(λ

(2)
I (yν))

λ
(1)
I (yν)− λ

(2)
I (yν)

(Ūn−1Ū
T
n−1)(y

νuTn )

= lim
yν→x,ŪT

n−1y
ν ̸=0

f ′(λ
(1)
I (yν))− f ′(λ

(2)
I (yν))

2
(Ūn−1M̄

−1)
M̄ŪT

n−1y
ν

∥M̄ŪT
n−1y

ν∥
uTn

= 0,

where the last equation follows from the differentiability of f at λ
(i)
I (x), f ′(λ

(i)
I (yν)) →

f ′(λ
(i)
I (x)) (i = 1, 2), λ

(1)
I (yν) − λ

(2)
I (yν) = 2∥M̄ŪT

n−1y
ν∥,

M̄ŪT
n−1y

ν

∥M̄ŪT
n−1y

ν∥
is bounded

and (3.11). For simplicity, we assume that

lim
yν→x,ŪT

n−1y
ν ̸=0

M̄ŪT
n−1y

ν

∥M̄ŪT
n−1y

ν∥
→ ξ ∈ Rn−1 with ∥ξ∥ = 1.
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Similarly, we obtain

lim
yν→x,ŪT

n−1y
ν ̸=0

[
2 ·

f ′(λ
(1)
I (yν)) + f ′(λ

(2)
I (yν))

(λ
(1)
I (yν)− λ

(2)
I (yν))2

· (Ūn−1Ū
T
n−1)(y

ν(yν)T )(Ūn−1M̄
T M̄ŪT

n−1)
]

= f ′(uTnx)Ūn−1M̄
−1ξξT M̄ŪT

n−1,

lim
yν→x,ŪT

n−1y
ν ̸=0

[
f(λ

(1)
I (yν))− f(λ

(2)
I (yν))

λ
(1)
I (yν)− λ

(2)
I (yν)

· (Ūn−1Ū
T
n−1)

(
In − 4 ·

(yν(yν)T )(Ūn−1M̄
T M̄ŪT

n−1)

(λ
(1)
I (yν)− λ

(2)
I (yν))2

)]
= f ′(uTnx)Ūn−1Ū

T
n−1 − f ′(uTnx)Ūn−1M̄

−1ξξT M̄ŪT
n−1,

lim
yν→x,ŪT

n−1y
ν ̸=0

(unu
T
n )

[
f ′(λ

(1)
I (yν))− f ′(λ

(2)
I (yν))

λ
(1)
I (yν)− λ

(2)
I (yν)

(un(y
ν)T )(Ūn−1M̄

T M̄ŪT
n−1)

+
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

2
In

]

= lim
yν→x,ŪT

n−1y
ν ̸=0

(unu
T
n )

f ′(λ
(1)
I (yν))− f ′(λ

(2)
I (yν))

2
un

(
M̄ŪT

n−1y
ν

∥M̄ŪT
n−1y

ν∥

)T

M̄ŪT
n−1

+
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

2
In

]
= f ′(uTnx)unu

T
n .

Summing up these equations, we obtain

lim
yν→x,ŪT

n−1y
ν ̸=0

DfEC
I (yν) = f ′(uTnx)(unu

T
n + Ūn−1Ū

T
n−1) = f ′(uTnx)In = DfEC

I (x).

This together with (3.12) imply that DfEC
I is continuous at every x ∈ Rn with

ŪT
n−1x = 0.

(b) ⇒ (a) Suppose fEC
I is continuously differentiable at x ∈ Rn with spectral values

λ
(i)
I (x) (i = 1, 2). From Theorem 3.3, f is differentiable at the neighborhoods around

λ
(i)
I (x) (i = 1, 2). If ŪT

n−1x = 0, then

(3.13) λ
(1)
I (x) = λ

(2)
I (x) = uTnx, DfEC

I (x) = f ′(uTnx)In.

For any h ∈ Rn−1 and ŪT
n−1h = 0, then ŪT

n−1(x+ h) = 0 and hence DfEC
I (x+ h) =

f ′(uTn (x + h))In. Since DfEC
I (x) is continuous at x, then limh→0DfEC

I (x + h) =
DfEC

I (x), which implies limh→0 f
′(uTn (x+h)) = f ′(uTnx). This together with (3.13)

show that f ′(x) is continuous at λ
(i)
I (x) (i = 1, 2). On the other hand, similar to

the one for [5, Proposition 5], through adapting its proof, the same result is also
fulfilled under this case. □
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4. Examples

According to Theorem 1.1, in this section we investigate on some properties of
three special cases for ellipsoidal cone in the following examples.

Example 4.1. Consider the second-order cone

Kn :=
{
(x̄n−1, xn) ∈ Rn−1 × R | ∥x̄∥ ≤ xn

}
.

In this case, we know

Q =

[
In−1 0
0 −1

]
, Ūn−1 = Ēn−1, un = en, M̄ = In−1, λn = −1,

where Ēn−1 := [e1, e2, . . . , en−1] ∈ Rn×(n−1). With respect to the second-order cone
Kn, we can decompose x ∈ Rn as

x = λ
(1)
I (x) · u(1)I (x) + λ

(2)
I (x) · u(2)I (x)

with λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) given by

(4.1)

λ
(i)
I (x) = xn + (−1)i+1∥x̄n−1∥,

u
(i)
I (x) =


1
2

 (−1)i+1 x̄n−1

∥x̄n−1∥
1

 if x̄n−1 ̸= 0,

1
2

[
(−1)i+1 w

∥w∥
1

]
if x̄n−1 = 0,

where w is any given nonzero vector in Rn−1. It is easy to see that the above
decomposition reduces to the classical decomposition expression associated with the
second-order cone [5, 11]. Let f : R → R be a scalar function, the corresponding
second-order cone function is given by

fsoc(x) := f(λ
(1)
I (x)) · u(1)I (x) + f(λ

(2)
I (x)) · u(2)I (x),

where λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are defined as in (4.1). Similar to the above theorems,

we can obtain the following relations between f and fsoc, which is also found in [5,
Section 5].

Theorem 4.2 (Second-order Cone Case). For any given function f : R → R and

x ∈ Rn, let λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) be defined as in (4.1). The following statements

hold:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if fsoc is continuous at x ∈ Rn

with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fsoc is direc-

tionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fsoc is differentiable at

x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f soc is con-

tinuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).
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Example 4.3. Consider the circular cone

Lθ :=
{
(x̄n−1, xn) ∈ Rn−1 × R | ∥x̄n−1∥ ≤ xn tan θ

}
In this case, we know

Q =

[
In−1 0
0 − tan2 θ

]
, Ūn−1 = Ēn−1, un = en, M̄ = In−1, λn = − tan2 θ.

With respect to the circular cone Lθ, we can decompose x ∈ Rn as

x = λ
(1)
I (x) · u(1)I (x) + λ

(2)
I (x) · u(2)I (x)

with λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) given by

(4.2)

λ
(i)
I (x) = xn + (−1)i+1 cot θ∥x̄n−1∥,

u
(i)
I (x) =


1
2

 (−1)i+1 x̄n−1

cot θ∥x̄n−1∥
1

 if x̄n−1 ̸= 0,

1
2

[
(−1)i+1 w

cot θ∥w∥
1

]
if x̄n−1 = 0,

where w is any given nonzero vector in Rn−1. Notice that the above decomposition
is different with the existing decomposition expression associated with the circular
cone, see [24, Theorem 3.1] for more details. Let f : R → R be a scalar function,
the corresponding circular cone function is given by

f circ(x) := f(λ
(1)
I (x)) · u(1)I (x) + f(λ

(2)
I (x)) · u(2)I (x),

where λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are defined as in (4.2). Consequently, we can also

obtain the similar relations between f and f cir in the following theorem.

Theorem 4.4 (Circular Cone Case). For any given function f : R → R and x ∈ Rn,

let λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) be defined as in (4.2). The following statements hold:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ is continuous at x ∈ Rn

with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ is di-

rectionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ is differentiable at

x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ is con-

tinuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

Example 4.5. Consider the elliptic cone

Kn
M :=

{
(x̄n−1, xn) ∈ Rn−1 × R | ∥Mx̄n−1∥ ≤ xn

}
.
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In this case, we know

Q =

[
MTM 0

0 −1

]
, Ūn−1 =

[
Ūn−1,n−1

0

]
, un = en,

M̄ = (ŪT
n−1,n−1M

TMŪn−1,n−1)
1/2, λn = −1,

where M is any nonsingular matrix of order n − 1 and Ūn−1,n−1 ∈ R(n−1)×(n−1)

is an orthogonal matrix satisfying the condition Ūn−1,n−1M̄
T M̄ŪT

n−1,n−1 = MTM .
Therefore, we obtain

(M̄ŪT
n−1x)

T M̄ŪT
n−1x = xT Ūn−1Ū

T
n−1,n−1M

TMŪn−1,n−1Ū
T
n−1x

= x̄Tn−1M
TMx̄n−1,

(M̄−1ŪT
n−1x)

T M̄−1ŪT
n−1x = xT Ūn−1Ū

T
n−1,n−1M

TMŪn−1,n−1Ū
T
n−1x

= x̄Tn−1M
TMx̄n−1,

which show that ∥M̄ŪT
n−1x∥ = ∥Mx̄n−1∥ and ∥M̄−1ŪT

n−1x∥ = ∥(M−1)T x̄n−1∥. If

we set w := ŪT
n−1,n−1η, then η ̸= 0 and Ūn−1w = (η, 0) ∈ Rn−1 × R, since w ̸= 0

and the orthogonal property of Ūn−1.n−1. Moreover, by simple calculation, we also
obtain

(M̄w)T M̄w = wT ŪT
n−1,n−1M

TMŪn−1,n−1w

= ηTMTMη,

(M̄−1w)T M̄−1w = wT ŪT
n−1,n−1M

−1(MT )−1Ūn−1,n−1w

= ηT ((M−1)T )T (M−1)T η,

therefore we have ∥M̄w∥ = ∥Mη∥ and ∥M̄−1w∥ = ∥(M−1)T η∥. With respect to the
elliptic cone Kn

M , we can decompose x ∈ Rn as

x = λ
(1)
I (x) · u(1)I (x) + λ

(2)
I (x) · u(2)I (x)

with λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) given by

(4.3)

λ
(i)
I (x) = xn + (−1)i+1∥Mx̄n−1∥,

u
(i)
I (x) =


1
2

 (−1)i+1 x̄n−1

∥Mx̄n−1∥
1

 if x̄n−1 ̸= 0,

1
2

[
(−1)i+1 η

∥Mη∥
1

]
if x̄n−1 = 0,

where η is any given nonzero vector in Rn−1. Again, let f : R → R be a scalar
function, the corresponding elliptic cone function is given by

fell(x) := f(λ
(1)
I (x)) · u(1)I (x) + f(λ

(2)
I (x)) · u(2)I (x),

where λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are defined as in (4.3). At the same time, the

relations between f and fell are fulfilled in the following theorem.
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Theorem 4.6 (Elliptic Cone Case). For any given function f : R → R and x ∈ Rn,

let λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) be defined as in (4.3). The following statements hold:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is continuous at x ∈ Rn

with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is direc-

tionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is differentiable at

x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is con-

tinuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

5. Concluding remarks

In this paper, we introduce a symmetric type of ellipsoidal cone function and
have proved the underline results of this vector-valued function as follows:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if fEC

I is continuous at x ∈ Rn

with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fEC

I is direc-

tionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fEC

I is differentiable at

x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fEC

I is con-

tinuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

We believe these results are useful for designing smooth numerical algorithms for
solving ellipsoidal cone programming problems. A potential application is to analyze
the following ellipsoidal cone complementarity problems

x ∈ KE , y ∈ (KE)
∗
⟨·,·⟩, ⟨x, y⟩ = 0, F (x, y, ζ) = 0,

where F : Rn×Rn×Rl is a continuously differentiable mapping, which is similar to
its special case under the second-order cone setting [11]. We leave further discussion
on this topic as our future work.
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[20] D.F. Sun and J. Sun, Löwner’s operator and spectral functions in Euclidean Jordan algebras,
Math. Oper. Res. 33 (2008), 421–445.
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