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ABSTRACT
In this paper, we analyse a local convergence of augmented
Lagrangianmethod (ALM) for a class of nonlinear circular conic
optimizationproblems. In light of the singular valuedecompo-
sition, the Debreu theorem and the implicit function theorem,
we prove that the sequence generated by ALM converges to a
local minimizer in the linear convergence rate under the con-
straint nondegeneracy condition and the strong second-order
sufficient condition, inwhich the ratio constant is proportional
to 1/τ , where τ is the associated penalty parameter with a
given lower threshold. As a byproduct, we also derive explicit
expressions of critical cone and its affine hull for the given
nonlinear circular conic program.
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1. Introduction

Consider the following nonlinear circular conic program

(PNCCP)
min f (x)
s.t. hi(x) = 0, i ∈ IE := {1, 2, . . . , l}

(Gj
1(x),G

j
2(x)) ∈ Lθj , j ∈ IC := {1, 2, . . . , J},

where f : R
n → R, hi : R

n → R,Gj
1 : R

n → R,Gj
2 : R

n → R
sj−1 are twice con-

tinuously differentiable, andLθj denotes a sj-dimensional circular cone with θj ∈
(0, π

2 ) being its half-aperture angle, i.e. Lθj := {(pj1, pj2) ∈ R × R
sj−1 : ‖pj2‖ ≤

pj1 tan θj}. The index sets IE , IC correspond to the equality constraints and
circular conic constraints, respectively.
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One can easy to see that the above model (PNCCP) is a generalization of
nonlinear second-order cone program

(PNSOCP)

min f (x)
s.t. hi(x) = 0, i ∈ IE := {1, 2, . . . , l}

(Gj
1(x),G

j
2(x)) ∈ Ksj , j ∈ IC := {1, 2, . . . , J},

where Ksj denotes a sj-dimensional second-order cone, i.e. Ksj := {(pj1, pj2) ∈
R × R

sj−1 : ‖pj2‖ ≤ pj1}, which corresponds to the case θ = π
4 in (PNCCP). The

relations between the circular cone Lθj and the second-order cone Ksj follows
from Zhou [1] that

x ∈ Lθj ⇔ Sjx ∈ Ksj , Sj :=
[
tan θj 0
0 Isj−1

]
, (1)

where Isj−1 is a (sj − 1)-dimensional identity matrix. In addition, the circular
coneLθj is not self-dual under the standard inner product [1, Theorem 2.1]. One
may argue that themodel (PNCCP) can be transformed into (PNSOCP) via the rela-
tion (1) and use the state-of-art algorithms forNSOCP to solve the corresponding
transformed problem. However, this approach may not be acceptable from theo-
retical, numerical and modelling viewpoints: (a) The study of the vector-valued
function induced by Lθj can not be transformed into the one induced by Ksj via
the relation (1) directly [2]; (b) The scaling matrix Sj defined as in (1) may cause
undesirable numerical performance due to round-off errors in computation pro-
cess [3,4]; (c) Some circular conic programs (such as the models for solving
support vector machines problems) may have smaller scales than the associated
model using the second-order cone programs [5, Section 3]. Hence, it is neces-
sary to study the above nonlinear circular conic programming (PNCCP) deeply
from theoretical analysis and numerical algorithms.

Recently, many researchers have paid attention to theoretical analysis on opti-
mization problems with circular conic constraints [1,2,6–11]. However, due to
the non-self duality of circular cones under the standard inner product and the
standard Euclidean vector norm, there exist very few algorithms for dealing with
circular conic programs. More specifically, some algorithms including prime-
dual interior-point algorithms and smoothing Newton algorithm have been
proposed for circular conic programming problems, one can refer to [3,4,12] for
more details. As a classical method for solving constrained optimization prob-
lems, augmented Lagrangian method (ALM) was initially analysed by Hestenes
[13] and Powell [14] in equality constrained problem. These results triggered off
a series of contributions on the local convergence rate results for convex pro-
gramming [15–17], nonlinear programming [18], nonlinear second-order cone
programming [19] and nonlinear semidefinite programming [20]. However, to
our best knowledge, no results about the local convergence analysis of ALM
for nonlinear circular conic program (PNCCP) have been reported. Hence, the
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purpose of this article aims to fill this gap and the contributions of our research
can be summarized as follows:

(a) We present explicit expressions of the critical cone and its affine hull for
nonlinear circular conic program (PNCCP).

(b) Under mild conditions, we prove that the sequence generated by the aug-
mented Lagrangian method converges to a local minimizer in the linear
convergence rate and the ratio constant is proportional to 1/τ , where τ is
the associated penalty parameter with a given lower threshold.

The remainder of this paper is organized as follows. In Section 2, we recall some
preliminary results on the geometric properties of circular cone. In Section 3,
we present some analytic properties on the associated Lagrangian function of
the given nonlinear conic program. After these preparations, a local convergence
analysis of augmented Lagrangian method for solving (PNCCP) is established in
Section 4. Finally, we draw some concluding remarks in Section 5.

1.1. Notations

To close this section, we introduce some notations that will be frequently
used in the sequel. The Lagrangian function associated with problem
(PNCCP) is defined as L(x,μ,�) := f (x) + μTh(x) −∑j∈IC (�j)TGj(x), where
μ := (μ1, . . . ,μl)

T ∈ R
l, h(x) := (h1(x), . . . , hl(x))T ∈ R

l, � := (�1, . . . ,�J) ∈∏
j∈IC R

sj , �j := (�
j
1,�

j
2) ∈ R

sj and Gj(x) := (Gj
1(x),G

j
2(x)) ∈ R

sj . Given a fea-
sible point x ∈ R

n, we say it to be a stationary point of (PNCCP) if there exist
μ ∈ R

l and � ∈∏j∈IC R
sj such that

∇xL(x,μ,�) = 0n, hi(x) = 0, i ∈ IE ,

�j ∈ L∗
θj
, Gj(x) ∈ Lθj , (�j)TGj(x) = 0, j ∈ IC ,

(2)

where 0n denotes the zero vector in R
n and L∗

θj
is the dual cone of Lθj , i.e.

L∗
θj
:= {(yj1, yj2) ∈ R × R

sj−1 : xj1y
j
1 + (xj2)

Tyj2 ≥ 0, ∀(xj1, x
j
2) ∈ Lθj}. Any point

(x,μ,�) ∈ R
n × R

l ×∏j∈IC R
sj satisfying the above system (2) is called a

Karush-Kuhn-Tucker (KKT) point of (PNCCP) and the pair (μ,�) is the Lagrange
multiplier associated with x ∈ R

n. In addition, we denote by �(x) the collec-
tion of such multiplier vectors at x. As defined in [21, Section 2], the augmented
Lagrangian function of (PNCCP) is

Lτ (x,μ,�) := f (x) + μTh(x) + τ

2
‖h(x)‖2

+ 1
2τ

∑
j∈IC

(
‖�L∗

θj
(�j − τGj(x))‖2 − ‖�j‖2

)
,
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where τ > 0 is the penalty parameter. For any givenw ∈ R
sj ,�L∗

θj
(·) is themetric

projection mapping onto L∗
θj
, i.e.�L∗

θj
(w) := argminy∈L∗

θj
‖w − y‖2.

2. Preliminaries

This section recalls some topological properties and strongly semismoothness of
Bouligand-subdifferential of projection operator regarding circular cones.

2.1. Topological properties

Let intLθ and bdLθ denote the interior and the boundary of Lθ , respectively.
From [1, Theorem 2.1], we know

intLθ := {(p1, p2) ∈ R × R
s−1 : ‖p2‖ < p1 tan θ},

bdLθ := {(p1, p2) ∈ R × R
s−1 : ‖p2‖ = p1 tan θ}.

Moreover, the corresponding dual cone L∗
θ and its dual have the following

relations
L∗

θ := {(p1, p2) ∈ R × R
s−1 : ‖p2‖ ≤ p1 cot θ},

L∗
θ = Lθ ′ , (L∗

θ )
∗ = Lθ , L◦

θ := −L∗
θ = −Lθ ′ , θ ′ := π

2
− θ ,

(3)

where L◦
θ is the polar cone of Lθ .

Remark 2.1: The interior and the boundary of L∗
θ are respectively given by

intL∗
θ = {(p1, p2) ∈ R × R

s−1 : ‖p2‖ < p1 cot θ},
bdL∗

θ = {(p1, p2) ∈ R × R
s−1 : ‖p2‖ = p1 cot θ}.

As mentioned in [1, Section 3], for any given vector p = (p1, p2) ∈ R × R
s−1,

its spectral decomposition with respect to Lθ is given by

p = λ1(p) · v(1)
p + λ2(p) · v(2)

p , (4)

where λi(p), v
(i)
p are the corresponding spectral values and spectral vectors, i.e.

λ1(p) := p1 − ‖p2‖ cot θ ,

v(1)
p := 1

1 + cot2 θ
·
(

1 0Ts−1
0s−1 cot θ · Is−1

)(
1

−p̄2

)
,

λ2(p) := p1 + ‖p2‖ tan θ ,

v(2)
p := 1

1 + tan2 θ
·
(

1 0Ts−1
0s−1 tan θ · Is−1

)(
1
p̄2

)
(5)

with Is−1 being the (s − 1)-dimensional identity matrix and p̄2 := p2/‖p2‖, if
p2 
= 0s−1; p̄2 is any unit vector defined in R

s−1, otherwise. In light of [1,
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Theorem 3.1] and the spectral decomposition (4), themetric projection of p onto
Lθ takes the form of

�Lθ (p) = [λ1(p)]+ · v(1)
p + [λ2(p)]+ · v(2)

p ,

[λi(p)]+ := max{0, λi(p)}, (i = 1, 2).

It also follows from (5) that

�Lθ (p) =
⎧⎨
⎩
p if p ∈ Lθ ,
0s if p ∈ −L∗

θ ,
u otherwise,

u :=
⎛
⎜⎝

p1 + ‖p2‖ tan θ

1 + tan2 θ(
p1 + ‖p2‖ tan θ

1 + tan2 θ
tan θ

)
· p̄2

⎞
⎟⎠ . (6)

Remark 2.2: These results together with the famous Moreau decomposition
theorem [22] imply that

p = �Lθ (p) + �L◦
θ
(p) = �Lθ (p)

− �L∗
θ
(−p) = �Lθ (p) − �Lθ ′ (−p), θ ′ = π

2
− θ .

The augmented Lagrangian function of (PNCCP) can be recast as

Lτ (x,μ,�) = f (x) + μTh(x) + τ

2
‖h(x)‖2

+ 1
2τ

∑
j∈IC

(
‖�Lθ ′

j
(�j − τGj(x))‖2 − ‖�j‖2

)
(7)

with θ ′
j := π

2 − θj, j ∈ IC .

The next lemma shows an important observation on the following circular
conic complementarity system

p = (p1, p2) ∈ L∗
θ , q = (q1, q2) ∈ Lθ , pTq = 0, (8)

which plays an important role in the analysis of optimality conditions, see [6,
Theorem 2.5] for more details.

Lemma 2.1 (Property of circular conic complementary system): The circular
conic complementarity system (8) has at least one solution if and only if one of the
following holds:

(a) p = 0s, q ∈ Lθ ;
(b) p ∈ intL∗

θ , q = 0s;
(c) p ∈ bdL∗

θ \ {0s}, q = 0s;
(d) p ∈ bdL∗

θ \ {0s}, q ∈ bdLθ \ {0s} and there exist σ > 0 such that p =
σ(Hq), whereH :=

(
tan2 θ 0Ts−1
0s−1 −Is−1

)
.
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2.2. Strongly semismoothness of bouligand-subdifferential of projection
operator

In this subsection, we first recall some concepts on the Bouligand-subdifferential
of a givenmapping, which comes from [20, Definition 1] that adapts fromMifflin
[23] for functionals and Qi and Sun [24] for vector-valued functions. Let U be
an open set and 
 be a locally Lipschitz continuous function on U. From the
Rademacher’s theorem, 
 is almost everywhere Fréchet-differentiable in U. Let
D
 be the set of Fréchet-differentiable points of 
 in U. Then, the Bouligand-
subdifferential of 
 at x ∈ U, denoted by ∂B
(x), is characterized as ∂B
(x) :=
{limk→∞ J
(xk) : xk ∈ D
 , xk → x}, whereJ
(xk) denotes the Jacobian of

at xk.

Definition 2.2 (Semismoothness and strongly semismoothness): Let 
 be a
locally Lipschitz continuous function on a open set U. We say that 
 is semis-
mooth at x ∈ U if 
 is directionally differentiable at x and for any �x ∈ U and
V ∈ ∂
(x + �x)with�x → 0,
(x + �x) − 
(x) − V(�x) = o(‖�x‖). Fur-
thermore, 
 is said to be strongly semismooth at x ∈ U if 
 is semismooth at
x and for any �x ∈ U, V ∈ ∂
(x + �x) with �x → 0, 
(x + �x) − 
(x) −
V(�x) = O(‖�x‖2).

We now present two important lemmas about projection operator onto cir-
cular cone, which are needed in subsequent analysis. The interested readers can
refer to [10, Lemma 3.1 and Theorem 3.3] for their proofs.

Lemma 2.3 (Bouligand-subdifferential of projection operator onto circu-
lar cone): For any given p = (p1, p2) ∈ R × R

s−1 with the spectral decomposi-
tion (4). The Bouligand-subdifferential of projection operator onto circular cone is
given as follows:

(a) If p /∈ Lθ ∪ (−L∗
θ ), then

∂B�Lθ (p) = 1
tan θ + cot θ

×
⎛
⎝cot θ p̄T2

p̄2
p1 + ‖p2‖ tan θ

‖p2‖ · Is−1 − p1
‖p2‖ · p̄2p̄T2

⎞
⎠ ;

(b) If p ∈ intLθ , then

∂B�Lθ (p) = {Is};
(c) If p ∈ bdLθ \ {0s}, then

∂B�Lθ (p) =
{
Is, Is + 1

tan θ + cot θ

(− tan θ p̄T2
p̄2 − cot θ · p̄2p̄T2

)}
;
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(d) If p ∈ int (−L∗
θ ), then

∂B�Lθ (p) = {0s×s};
(e) If p ∈ bd (−L∗

θ ) \ {0s}, then

∂B�Lθ (p) =
{
0s×s,

1
tan θ + cot θ

(
cot θ p̄T2
p̄2 tan θ · p̄2p̄T2

)}
;

(f) If p = 0s, then

∂B�Lθ (x)

=
{
0s×s, Is,

1
tan θ + cot θ

(
cot θ wT

w aθ · (Is−1 − wwT) + tan θ · wwT

)}

with aθ := (tan θ + cot θ)a, a ∈ [0, 1] and w being any unity vector in R
s−1.

Lemma 2.4 (Strongly semismoothness of projection operator onto circular
cone): The projection operator �Lθ (·) defined as in (6) is strongly semismooth
over R

s.

3. Properties of augmented Lagrangian function

In this section, we build up some properties of the augmented Lagrangian func-
tion Lτ defined as in (7). We first present its gradient formula and then derive its
associated Bouligand-subdifferential.

Since f, h,Gj (j ∈ IC) are twice continuously differentiable functions, we know
from the structure ofLτ (x,μ,�) thatLτ (·) is continuously differentiable as well.
For any given (x,μ,�) ∈ R

n × R
l ×∏j∈IC R

sj , we denote

Fjτ (x,μ,�) := �j − τGj(x), j ∈ IC . (9)

It is not hard to see that the Jacobian mapping J Fjτ (x,μ,�) : R
n × R

l ×∏
j∈IC R

sj → R
sj is onto for any given (x,μ,�) ∈ R

n × R
l ×∏j∈IC R

sj . Then,
the gradient of Lτ (x,μ,�) with respect to x ∈ R

n, denoted by ∇xLτ (x,μ,�),
has the following form

∇f (x) + ∇h(x)(μ + τh(x))

−
∑
j∈IC

∇Gj(x)�Lθ ′
j
(Fjτ (x,μ,�)), θ ′

j :=
π

2
− θj, j ∈ IC , (10)

where Fjτ (x,μ,�) is defined as in (9).
Similar to Lemma 2.1, we have two important lemmas for the KKT system (2),

whose proofs are straightforward, we omit them here.
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Lemma 3.1 (Property of the second part of the KKT system (2)): Suppose that
x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈ �(x∗). Then, for all j ∈ IC , one
of the following facts holds:

(a) �
j
∗ = 0sj , Gj(x∗) ∈ Lθj ;

(b) �
j
∗ ∈ intL∗

θj
, Gj(x∗) = 0sj ;

(c) �
j
∗ ∈ bdL∗

θj
\ {0sj}, Gj(x∗) = 0sj ;

(d) �
j
∗ ∈ bdL∗

θj
\ {0sj}, Gj(x∗) ∈ bdLθj \ {0sj} and there exists σj > 0 such that

�
j
∗ = σj(HjGj(x∗)), where

Hj :=
(
tan2 θj 0Tsj−1
0sj−1 −Isj−1

)
. (11)

Lemma 3.2 (Property of the first relation in the KKT system (2)): Sup-
pose that x∗ is a stationary point of (PNCCP). For any (μ,�) ∈ �(x∗), we have
∇xLτ (x∗,μ,�) = 0n.

In light of Lemma 2.4, the projection operator �Lθ ′
j
(·) is semismooth every-

where, we have ∂B(�Lθ ′
j
(Fjτ (x,μ,�))) = ∂B�Lθ ′

j
(Fjτ (x,μ,�))J Fjτ (x,μ,�),

where Fjτ (x,μ,�) is defined as in (9). Setting 

j
τ (x,μ,�) := ∇Gj(x)

(�Lθ ′
j
(Fjτ (x,μ,�))), the corresponding Bouligand-subdifferential ∂B


j
τ (x,μ,�)

(�x,�μ,��) has an explicit expression as

∇2Gj(x)(�x)�Lθ ′
j
(Fjτ (x,μ,�)) + ∇Gj(x)∂B(�Lθ ′

j
(Fjτ (x,μ,�)))(�x,�μ,��).

(12)

Similarly, the following relation holds by direct calculations,

∂B(∇xLτ )(x,μ,�)

= (∇2f (x), 0, 0, . . . , 0)

+
⎛
⎝∑

i∈IE
(μi + τhi(x))∇2hi(x) + τ∇h(x)J h(x),∇h(x), 0, . . . , 0

⎞
⎠

−
∑
j∈IC

∂B

j
τ (x,μ,�),
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where ∂B

j
τ (x,μ,�) is defined as in (12). Let �x∂B(∇xLτ ) be the partial

Bouligand-subdifferential of ∇xLτ with respect to x, we compute that

(�x∂B(∇xLτ ))(x,μ,�)(�x)

= ∇2f (x)(�x) + ∇2h(x)(�x)(μ + τh(x)) + τ∇h(x)J h(x)(�x)

−
∑
j∈IC

(�x∂B

j
τ )(x,μ,�)(�x)

= ∇2
xxL(x,μ + τh(x),�Lθ ′

1
(F1τ (x,μ,�)), . . . ,�Lθ ′

J
(FJτ (x,μ,�)))(�x)

+ τ∇h(x)J h(x)(�x) +
∑
j∈IC

τ∇Gj(x)∂B�Lθ ′
j
(Fjτ (x,μ,�))JGj(x)(�x).

To proceed, for any givenW := (W1, . . . ,WJ) ∈∏j∈IC R
sj×sj , we define

Aτ (μ,�,W) := ∇2
xxL(x,μ,�) + τJ h(x)TJ h(x) +

∑
j∈IC

τJGj(x)TWjJGj(x).

(13)

From all the above discussions, we achieve an explicit expression of the partial
Bouligand-subdifferential of ∇xLτ at a given KKT pair of (PNCCP).

Lemma 3.3 (Partial Bouligand-subdifferential of ∇xLτ ): Suppose that x∗ is a
stationary point of (PNCCP) and (μ∗,�∗) ∈ �(x∗). Then, for any given �x ∈ R

n

and W∗ := (W1∗ , . . . ,W
J∗) ∈∏j∈IC R

sj×sj , we have

(�x∂B(∇xLτ ))(x∗,μ∗,�∗)(�x) = Aτ (μ∗,�∗,W∗)(�x),

where Wj
∗ ∈ ∂B�Lθ ′

j
(Fjτ (x∗,μ∗,�∗)), θ ′

j := π
2 − θj, j ∈ IC and Aτ (μ,�,W) is

defined as in (13).

In order to further characterize the term ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) more pre-

cisely, we employ the following six index sets:

IG(x∗) :=
{
j ∈ IC : Gj(x∗) ∈ intLθj

}
,

I�∗ :=
{
j ∈ IC : �

j
∗ ∈ intL∗

θj

}
,

BG(x∗) :=
{
j ∈ IC : Gj(x∗) ∈ bdLθj \ {0sj}

}
,

B�∗ :=
{
j ∈ IC : �

j
∗ ∈ bdL∗

θj
\ {0sj}

}
,

ZG(x∗) :=
{
j ∈ IC : Gj(x∗) = 0sj

}
,

Z�∗ :=
{
j ∈ IC : �j

∗ = 0sj
}
.

(14)
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After these preparations, we now present the Bouligand-subdifferential of �Lθ ′
j

at Fjτ (x∗,μ∗,�∗).

Theorem 3.4 (Bouligand-subdifferential of�Lθ ′
j
): Suppose that x∗ is a station-

ary point of (PNCCP) and (μ∗,�∗) ∈ �(x∗). Then, the followings hold.

(a) If j ∈ BG(x∗) ∩ B�∗ and −Fjτ (x∗,μ∗,�∗) /∈ (L◦
θj

∪ Lθj), then ∂B�Lθ ′
j

(Fjτ (x∗,μ∗,�∗)) has the following form

1
tan θj + cot θj

×
⎛
⎜⎝tan θj (�

j
∗)2

T

(�
j
∗)2

σj(tan2 θj + 1)
(τ + σj) tan θj

· Isj−1 + τ − σj tan2 θj

(τ + σj) tan θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎠ ,

where (�
j
∗)2 := (�

j
∗)2/‖(�j

∗)2‖, if (�j
∗)2 
= 0sj−1.

(b) If j ∈ ZG(x∗) ∩ I�∗ , then ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) is equal to the sj-

dimensional identity matrix Isj .
(c) If j ∈ ZG(x∗) ∩ B�∗ , then ∂B�Lθ ′

j
(Fjτ (x∗,μ∗,�∗)) has the following two

choices:

Isj ,

⎛
⎜⎜⎝

tan θj

tan θj + cot θj
1

tan θj + cot θj
· (�

j
∗)2

T

1
tan θj + cot θj

· (�
j
∗)2 Isj−1 − tan θj

tan θj + cot θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎟⎠ .

(d) If j ∈ IG(x∗) ∩ Z�∗ , then ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) is equal to the sj-

dimensional zero matrix 0sj×sj .
(e) If j ∈ BG(x∗) ∩ Z�∗ , then ∂B�Lθ ′

j
(Fjτ (x∗,μ∗,�∗)) has the following two

choices:

0sj×sj ,

⎛
⎜⎜⎝

tan θj

tan θj + cot θj
− 1
tan θj + cot θj

· Gj
2(x∗)

T

− 1
tan θj + cot θj

· Gj
2(x∗)

cot θj
tan θj + cot θj

· Gj
2(x∗)G

j
2(x∗)

T

⎞
⎟⎟⎠ ,

where Gj
2(x∗) := Gj

2(x∗)/‖Gj
2(x∗)‖, if Gj

2(x∗) 
= 0sj−1.
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(f) If j ∈ ZG(x∗) ∩ Z�∗ , then ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) has the following three

choices:

0sj×sj , Isj ,
1

tan θj + cot θj

(
tan θj wT

j
wj aθj · (Isj−1 − wjwT

j ) + cot θj · wjwT
j

)

with aθj := (tan θj + cot θj)a, a ∈ [0, 1], wj being any unity vector in R
sj−1.

Proof: First, from Lemma 2.3, setting θ = π
2 − θj = θ ′

j , p = Fjτ (x∗,μ∗,�∗) =:



j
∗ yields

(−

j
∗) = τGj(x∗) + (−�

j
∗), Gj(x∗) ∈ Lθj , −�

j
∗ ∈ L◦

θj
, Gj(x∗)T(−�

j
∗) = 0.

(15)

(a) If 
j
∗ /∈ Lθ ′

j
∪ −L∗

θ ′
j
, from the relations in (3), we have (−


j
∗) /∈ L◦

θj
∪ Lθj . In

addition, using Lemma 2.3(a) implies that ∂B�Lθ ′
j
(


j
∗) has the following form

1
tan θj + cot θj

×

⎛
⎜⎜⎝
tan θj (


j
∗)2

T

(

j
∗)2

(

j
∗)1 + ‖(
j

∗)2‖ cot θj
‖(
j

∗)2‖
· Isj−1 − (


j
∗)1

‖(
j
∗)2‖

· (

j
∗)2 (


j
∗)2

T

⎞
⎟⎟⎠ .

(16)

Applying the Moreau decomposition theorem and (15) indicate that �Lθj
(−


j
∗)

= τGj(x∗) ∈ bdLθj \ {0sj},�L◦
θj
(−


j
∗) = −�

j
∗ ∈ bdL◦

θj
\ {0sj}, which are equiv-

alent to Gj(x∗) ∈ bdLθj \ {0sj},�j
∗ ∈ bdL∗

θj
\ {0sj}, i.e. j ∈ BG(x∗) ∩ B�∗ .

Together with Lemma 2.1(d), there exists σj > 0 such that �
j
∗ = σj(HjGj(x∗)),

whereHj is defined as in (11). Then, it follows from above that

(−

j
∗) = τGj(x∗) − σj(HjGj(x∗)) =

(
(τ − σj tan2 θj) · Gj

1(x∗)
(τ + σj) · Gj

2(x∗)

)
. (17)

Since Gj(x∗) ∈ bdLθj \ {0sj}, we obtain ‖Gj
2(x∗)‖ = Gj

1(x∗) tan θj, G
j
1(x∗) 
= 0

and Gj
2(x∗) 
= 0sj−1. From the relation (17), we have (


j
∗)1 = (σj tan2 θj −

τ)Gj
1(x∗), (


j
∗)2 = −(τ + σj)G

j
2(x∗). Together with the fact �

j
∗ = σj(HjGj(x∗))
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indicate that

(

j
∗)1 = (σj tan2 θj − τ)Gj

1(x∗) = σj tan2 θj − τ

σj tan2 θj
(�

j
∗)1 (18)

(

j
∗)2 = −(τ + σj)G

j
2(x∗) = −(τ + σj)

(�
j
∗)2

−σj
= τ + σj

σj
(�

j
∗)2. (19)

In addition, from �
j
∗ ∈ bdL∗

θj
\ {0sj} and L∗

θj
= Lθ ′

j
, we have (�

j
∗)1 = ‖(�j

∗)2‖
tan θj, (�

j
∗)1 
= 0 and (�

j
∗)2 
= 0sj−1. Therefore, it follows from the relations

(18)-(19) that (
j
∗)1 = σj tan2 θj−τ

σj tan θj
‖(�j

∗)2‖, ‖(
j
∗)2‖ = τ+σj

σj
‖(�j

∗)2‖ and (

j
∗)2 =

(�
j
∗)2. Combining the above relations with (16), we achieve

(

j
∗)1 + ‖(
j

∗)2‖ cot θj
‖(
j

∗)2‖
· Isj−1 − (


j
∗)1

‖(
j
∗)2‖

· (

j
∗)2 (


j
∗)2

T

= σj(tan2 θj + 1)
(τ + σj) tan θj

· Isj−1 + τ − σj tan2 θj

(τ + σj) tan θj
· (�

j
∗)2 (�

j
∗)2

T
,

and ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) has the following form

1
tan θj + cot θj

×
⎛
⎜⎝tan θj (�

j
∗)2

T

(�
j
∗)2

σj(tan2 θj + 1)
(τ + σj) tan θj

· Isj−1 + τ − σj tan2 θj

(τ + σj) tan θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎠ .

(b) If 
j
∗ ∈ intLθ ′

j
, then 


j
∗ ∈ intL∗

θj
. From the relation (3), we obtain (−


j
∗) ∈

intL◦
θj
. Similar to part(a), it follows that �Lθj

(−

j
∗) = τGj(x∗) = 0sj and

�L◦
θj
(−


j
∗) = −


j
∗ = −�

j
∗ ∈ intL◦

θj
, which are equivalent toGj(x∗) = 0sj ,�

j
∗ ∈

intL∗
θj
, i.e. j ∈ ZG(x∗) ∩ I�∗ . Hence, we conclude that ∂B�Lθ ′

j
(Fjτ (x∗,μ∗,�∗)) =

∂B�Lθ ′
j
(


j
∗) = ∂B�L∗

θj
(


j
∗) = ∂B(


j
∗) = Isj .

(c) If 

j
∗ ∈ bdLθ ′

j
\ {0sj}, then 


j
∗ ∈ bdL∗

θj
\ {0sj}. Similarly, we also obtain

(−

j
∗) ∈ bdL◦

θj
\ {0sj}, �Lθj

(−

j
∗) = τGj(x∗) = 0sj , �L◦

θj
(−


j
∗) = −


j
∗ = −

�
j
∗ ∈ bdL◦

θj
\ {0sj}, which are equivalent to Gj(x∗) = 0sj ,�

j
∗ ∈ bdL∗

θj
\ {0sj}, i.e.

j ∈ ZG(x∗) ∩ B�∗ . Then, using Lemma 2.3(c) and the fact (

j
∗)2 = (�

j
∗)2 yields
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that ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) can be set one of the following matrices

Isj ,

⎛
⎜⎜⎝

tan θj

tan θj + cot θj
1

tan θj + cot θj
· (�

j
∗)2

T

1
tan θj + cot θj

· (�
j
∗)2 Isj−1 − tan θj

tan θj + cot θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎟⎠ .

(d) If
j
∗ ∈ int (−L∗

θ ′
j
), then (−


j
∗) ∈ intL∗

π
2 −θj

. In addition, there have (−

j
∗) ∈

intLθj , �Lθj
(−


j
∗) = −


j
∗ = τGj(x∗), �L◦

θj
(−


j
∗) = −�

j
∗ = 0sj , which are

equivalent to Gj(x∗) ∈ intLθj ,�
j
∗ = 0sj , i.e. j ∈ IG(x∗) ∩ Z�∗ . Hence, we obtain

∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) = ∂B�Lθ ′

j
(


j
∗) = ∂B�−L◦

θj
(


j
∗) = ∂B(−�L◦

θj
(−


j
∗)) =

0sj×sj .
(e) If 


j
∗ ∈ bd (−L∗

θ ′
j
) \ {0sj}, then (−


j
∗) ∈ bdLθj . Similar to part(a), we

also achieve �Lθj
(−


j
∗) = −


j
∗ = τGj(x∗), �L◦

θj
(−


j
∗) = −�

j
∗ = 0sj , which

are equivalent to Gj(x∗) ∈ bdLθj \ {0sj},�j
∗ = 0sj , i.e. j ∈ BG(x∗) ∩ Z�∗ . More-

over, Lemma 2.3(e) implies that ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) can be set one of the

following matrices

0sj×sj ,

⎛
⎜⎜⎝

tan θj

tan θj + cot θj
− 1
tan θj + cot θj

· Gj
2(x∗)

T

− 1
tan θj + cot θj

· Gj
2(x∗)

cot θj
tan θj + cot θj

· Gj
2(x∗)G

j
2(x∗)

T

⎞
⎟⎟⎠ ,

where the last equality is due to the below relations:



j
∗ = −τGj(x∗) ∈ bd (−Lθj) \ {0sj} ⇒ (


j
∗)2

= (

j
∗)2

‖(
j
∗)2‖

= − Gj
2(x∗)

‖Gj
2(x∗)‖

= −Gj
2(x∗).

(f) If
j
∗ = 0sj , we haveGj(x∗) = 0sj ,�

j
∗ = 0sj , i.e. j ∈ ZG(x∗) ∩ Z�∗ . In this case,

applying Lemma 2.3(f) yields that ∂B�Lθ ′
j
(Fjτ (x∗,μ∗,�∗)) can be set one of the

following matrices

0sj×sj , Isj ,
1

tan θj + cot θj

(
tan θj wT

j
wj aθj · (Isj−1 − wwT) + cot θj · wwT

)
.

In summary, the conclusion holds as verified in each case. �
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To make the statement of next theorem neat, we further introduce some
notations:

aj := 1√
1 + tan2 θj

(
tan θj

(�
j
∗)2

)
, j ∈ BG(x∗) ∩ B�∗ , (20)

bj := 1√
1 + cot2 θj

(
cot θj

−(�
j
∗)2

)
, j ∈ ZG(x∗) ∩ B�∗ , (21)

cj := 1√
1 + tan2 θj

(
tan θj

−Gj
2(x∗)

)
, j ∈ BG(x∗) ∩ Z�∗ , (22)

Dj := σj

τ + σj

⎛
⎝ 0 0Tsj−1

0sj−1 Isj−1 − (�
j
∗)2 (�

j
∗)2

T

⎞
⎠ , j ∈ BG(x∗) ∩ B�∗ , (23)

Ŵj
∗ :=

{
0sj×sj ifWj

∗ = 0sj×sj ,
Isj otherwise,

j ∈ BG(x∗) ∩ Z�∗ . (24)

In light of Lemma 3.4, the termAτ in (13) possesses an explicit expression.

Theorem 3.5 (Explicit expression ofAτ in (13)): Suppose that x∗ is a stationary
point of (P) and (μ∗,�∗) ∈ �(x∗). Then, we have

Aτ (μ∗,�∗,W∗)

= ∇2
xxL(x∗,μ∗,�∗) + τJ h(x∗)TJ h(x∗)

+
∑

j∈BG(x∗)∩B�∗

τJGj(x∗)T(ajaTj + Dj)JGj(x∗)

+
∑

j∈ZG(x∗)∩I�∗

τJGj(x∗)TJGj(x∗)

+
∑

j∈ZG(x∗)∩B�∗

τJGj(x∗)TW
j
∗JGj(x∗)

+
∑

j∈BG(x∗)∩Z�∗

τJGj(x∗)TcjŴ
j
∗cTj JGj(x∗)

+
∑

j∈ZG(x∗)∩Z�∗

τJGj(x∗)TW
j
∗JGj(x∗), (25)

where W∗ := (W1∗ , . . . ,W
J∗) ∈∏j∈IC R

sj×sj , Wj
∗ ∈ ∂B�Lθ ′

j
(Fjτ (x∗,μ∗,�∗)), θ ′

j

:= π
2 − θj, j ∈ IC and aj, cj,Dj, Ŵ

j
∗ are defined as in (20), (22), (23) and (24),

respectively.
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Proof: From the definition ofAτ (x∗,μ∗,�∗) in (13) and Lemma 3.1, we have

Aτ (μ∗,�∗,W∗)

= ∇2
xxL(x∗,μ∗,�∗) + τJ h(x∗)TJ h(x∗)

+
∑

j∈BG(x∗)∩B�∗

τJGj(x∗)TW
j
∗JGj(x∗)

+
∑

j∈ZG(x∗)∩I�∗

τJGj(x∗)TW
j
∗JGj(x∗)

+
∑

j∈ZG(x∗)∩B�∗

τJGj(x∗)TW
j
∗JGj(x∗)

+
∑

j∈BG(x∗)∩Z�∗

τJGj(x∗)TW
j
∗JGj(x∗)

+
∑

j∈ZG(x∗)∩Z�∗

τJGj(x∗)TW
j
∗JGj(x∗),

+
∑

j∈IG(x∗)∩Z�∗

τJGj(x∗)TW
j
∗JGj(x∗), (26)

whereWj
∗ ∈ ∂B�Lθ ′

j
(Fjτ (x∗,μ∗,�∗)), θ ′

j := π
2 − θj, j ∈ IC . In addition, by using

Theorem 3.4, we discuss the following cases.
(a) If j ∈ BG(x∗) ∩ B�∗ , then

Wj
∗ = 1

tan2 θj + 1

⎛
⎝ tan2 θj tan θj(�

j
∗)2

T

tan θj(�
j
∗)2 (�

j
∗)2 (�

j
∗)2

T

⎞
⎠

+ σj

τ + σj

⎛
⎝ 0 0Tsj−1

0sj−1 Isj−1 − (�
j
∗)2 (�

j
∗)2

T

⎞
⎠

= ajaTj + Dj,

where aj and Dj are defined as in (20) and (23). Hence, we conclude that

∑
j∈BG(x∗)∩B�∗

τJGj(x∗)TW
j
∗JGj(x∗)

=
∑

j∈BG(x∗)∩B�∗

τJGj(x∗)T(ajaTj + Dj)JGj(x∗).
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(b) If j ∈ BG(x∗) ∩ Z�∗ , then

Wj
∗ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0sj×sj ifWj
∗ = 0sj×sj ,

1
tan2 θj + 1

⎛
⎝ tan2 θj − tan θj · Gj

2(x∗)
T

− tan θj · Gj
2(x∗) Gj

2(x∗)G
j
2(x∗)

T

⎞
⎠ otherwise.

= cjŴ
j
∗cTj ,

where cj and Ŵj
∗ are defined as in (22) and (24). Hence, we obtain

∑
j∈BG(x∗)∩Z�∗

τJGj(x∗)TW
j
∗JGj(x∗) =

∑
j∈BG(x∗)∩Z�∗

τJGj(x∗)TcjŴ
j
∗cTj JGj(x∗).

(c) Similar to the above cases, we have∑
j∈ZG(x∗)∩I�∗

τJGj(x∗)TW
j
∗JGj(x∗) =

∑
j∈ZG(x∗)∩I�∗

τJGj(x∗)TJGj(x∗),

∑
j∈IG(x∗)∩Z�∗

τJGj(x∗)TW
j
∗JGj(x∗) = 0n×n.

From these discussions and Equation (26), the desired result (25) is true. �

In order to analyse the convergence of augmented Lagrangian method for
solving nonlinear circular conic programs (PNCCP), we need the following two
assumptions.

(A1) The constraint nondegeneracy condition (CNC) holds at x∗ ∈ R
n:

⎛
⎜⎜⎜⎝

J h(x∗)
JG1(x∗)

...
JGJ(x∗)

⎞
⎟⎟⎟⎠R

n +

⎛
⎜⎜⎜⎝

{0l}
lin{TLθ1

(G1(x∗))}
...

lin{TLθJ
(GJ(x∗))}

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

R
l

R
s1

...
R
sJ

⎞
⎟⎟⎟⎠ ,

where TLθj
(Gj(x∗)) is the tangent cone of Lθj at Gj(x∗) and lin{TLθj

(Gj(x∗))}
denotes the linearity space of TLθj

(Gj(x∗)), which is the largest linear space con-
tained in TLθj

(Gj(x∗)). Applying [6, Theorem 2.3], the tangent cone of Lθ at
p ∈ R

n is

TLθ (p) :=
⎧⎨
⎩

R
s if p ∈ intLθ ,

Lθ if p = 0,
{(h1, h2) ∈ R × R

s−1 : hT2 p2 − h1p1 tan2 θ ≤ 0} if p ∈ bdLθ \ {0s}.
(27)
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In addition, according to [6, Theorem 3.1], the constraint nondegeneracy condi-
tion is equivalent to the vectors

J hi(x∗)T , i ∈ IE ,
JGj(x∗)THjGj(x∗), j ∈ BG(x∗),
JGj(x∗)Teksj , j ∈ ZG(x∗), k = 1, 2, . . . , sj

are linearly independent, where eksj denotes the kth column vectors of Isj . At the
same time, the Lagrange multiplier set �(x∗) is a singleton.

(A2) The strong second-order sufficient condition (SSOSC) holds, i.e. let x∗ be a
stationary point of (PNCCP) and (μ∗,�∗) ∈ �(x∗), there exists a positive scalar
η0 such that

dT
⎛
⎝∇2

xxL(x∗,μ∗,�∗) −
∑
j∈IC

Aj(x∗,μ∗,�
j
∗)

⎞
⎠ d ≥ η0‖d‖2, ∀d ∈ aff(C(x∗)),

where aff(C(x∗)) denotes the affine hull of C(x∗), the critical cone at x∗, whose
definition is given by

C(x∗) :=
{
d ∈ R

n :
J h(x∗)d = 0l, ∇f (x∗)Td = 0,
JGj(x∗)d ∈ TLθj

(Gj(x∗)), j ∈ IC

}
.

The matrix Aj(x∗,μ∗,�
j
∗) ∈ R

n×n is the sigma term of (PNCCP), whose expres-
sion is (see Lemma 3.4 in [6] for details)

Aj(x∗,μ∗,�
j
∗) =

⎧⎪⎨
⎪⎩

(�
j
∗)1

Gj
1(x∗)

cot2 θjJGj(x∗)THjJGj(x∗), if j ∈ BG(x∗),

0n×n, otherwise.
(28)

With Lemma 3.1, the next lemma provides the explicit expressions of C(x∗) and
aff(C(x∗)).

Lemma 3.6 (Explicit expressions of critical cone C(x∗) and its affine hull
aff(C(x∗))): Let x∗ be a stationary point of (PNCCP) and (μ∗,�∗) ∈ �(x∗). Then,
we have

C(x∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ∈ R
n :

(J h(x∗)d)i = 0, i ∈ IE
JGj(x∗)d ∈ R

sj , j ∈ IG(x∗) ∩ Z�∗
JGj(x∗)d ∈ Lθj , j ∈ ZG(x∗) ∩ Z�∗
(−Gj

1(x∗) tan2 θj,G
j
2(x∗)T)

JGj(x∗)d ≤ 0, j ∈ BG(x∗) ∩ Z�∗
JGj(x∗)d = 0sj , j ∈ ZG(x∗) ∩ I�∗
(JGj(x∗)d)Taj = 0, j ∈ BG(x∗) ∩ B�∗
JGj(x∗)d ∈ R+(bj), j ∈ ZG(x∗) ∩ B�∗

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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where aj, bj ∈ R
n are respectively defined as in (20)–(21) andR+(bj) := {σbj | σ ≥

0}. In addition, the associated affine hull aff(C(x∗)) has the following form:

aff(C(x∗)) =

⎧⎪⎪⎨
⎪⎪⎩d ∈ R

n :

(J h(x∗)d)i = 0, i ∈ IE
JGj(x∗)d = 0sj , j ∈ ZG(x∗) ∩ I�∗
(JGj(x∗)d)Taj = 0, j ∈ BG(x∗) ∩ B�∗
BjJGj(x∗)d = 0sj , j ∈ ZG(x∗) ∩ B�∗

⎫⎪⎪⎬
⎪⎪⎭ (29)

with Bj := Isj − bjbTj , j ∈ ZG(x∗) ∩ B�∗ .

Proof: From [6, Theorem 3.3] and (14), the critical cone C(x∗) can be recast as
follows:

C(x∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
d ∈ R

n :

(J h(x∗)d)i = 0, i ∈ IE ,
JGj(x∗)d ∈ TLθj

(Gj(x∗)), j ∈ Z�∗ ,
JGj(x∗)d = 0sj , j ∈ ZG(x∗) ∩ I�∗
(JGj(x∗)d)T�

j
∗ = 0, j ∈ BG(x∗) ∩ B�∗

JGj(x∗)d ∈ R+(H−1
j �

j
∗), j ∈ ZG(x∗) ∩ B�∗ .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (30)

Using the relation (27), there have three possibilities:

(a) If j ∈ IG(x∗), then JGj(x∗)d ∈ R
sj ;

(b) If j ∈ ZG(x∗), then JGj(x∗)d ∈ Lθj ;
(c) If j ∈ BG(x∗), then (−Gj

1(x∗) tan2 θj,G
j
2(x∗)T)JGj(x∗)d ≤ 0.

Hence, the second line in the right-hand side of (30) is equivalent to⎧⎨
⎩
JGj(x∗)d ∈ R

sj , j ∈ IG(x∗) ∩ Z�∗
JGj(x∗)d ∈ Lθj , j ∈ ZG(x∗) ∩ Z�∗
(−Gj

1(x∗) tan2 θj,G
j
2(x∗)T)JGj(x∗)d ≤ 0, j ∈ BG(x∗) ∩ Z�∗

Furthermore, if j ∈ BG(x∗) ∩ B�∗ , we know

�
j
∗ ∈ bdL∗

θj
\ {0sj}

⇐⇒ �
j
∗ =

(
(�

j
∗)1

(�
j
∗)2

)
= ‖(�j

∗)2‖ ·
(
tan θj
(�

j
∗)2

‖(�j
∗)2‖

)
= ‖(�j

∗)2‖ ·
(
tan θj

(�
j
∗)2

)

⇐⇒ �
j
∗ =

√
1 + tan2 θj‖(�j

∗)2‖ · aj,

where aj is defined as in (20). This together with the fact (JGj(x∗)d)T�
j
∗ = 0

show that

(JGj(x∗)d)Taj = 0, j ∈ BG(x∗) ∩ B�∗ .
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On the other hand, if j ∈ ZG(x∗) ∩ B�∗ , we obtain (�
j
∗)2 
= 0sj−1 and

H−1
j �

j
∗ =

(
cot2 θj 0Tsj−1
0sj−1 −Isj−1

)
· ‖(�j

∗)2‖ ·
(
tan θj

(�
j
∗)2

)

=
√
1 + cot2 θj‖(�j

∗)2‖ · bj,
where bj is defined as in (21), which further implies that

JGj(x∗)d ∈ R+(H−1
j �

j
∗) ⇐⇒ JGj(x∗)d ∈ R+(bj). (31)

Focusing on the above relations, its affine version of (31) can be rewritten as

BjJGj(x∗)d = 0sj , Bj := Isj − bjbTj , j ∈ ZG(x∗) ∩ B�∗ . (32)

Then, it follows from the relations (30)–(32) that the conclusion is true. �

The next two lemmas connect some relations on the matrix Aj(x∗,μ∗,�
j
∗) in

the expression of sigma term (28) and the Hessian of the augmented Lagrangian
function.

Lemma 3.7: Suppose that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈
�(x∗). Then, the following relation holds for any given d ∈ aff(C(x∗)), i.e.

∑
j∈BG(x∗)∩B�∗

τ(yj)TDjyj +
∑
j∈IC

dTAj(x∗,μ∗,�
j
∗)d =

∑
j∈BG(x∗)∩B�∗

σ 2
j

τ + σj
(yj)THjyj

(33)

with yj := JGj(x∗)d, j ∈ IC and Dj is defined as in (23).

Proof: From the definition of Aj(x∗,μ∗,�
j
∗) in (28), we have∑

j∈BG(x∗)∩B�∗

τ(yj)TDjyj +
∑
j∈IC

dTAj(x∗,μ∗,�
j
∗)d

=
∑

j∈BG(x∗)∩B�∗

τ(yj)TDjyj +
∑

j∈BG(x∗)∩B�∗

dTAj(x∗,μ∗,�
j
∗)d

+
∑

j∈BG(x∗)∩Z�∗

dTAj(x∗,μ∗,�
j
∗)d

=
∑

j∈BG(x∗)∩B�∗

τσj

τ + σj

(
‖yj2‖2 − ‖(�j

∗)2
T
yj2‖2

)

+
∑

j∈BG(x∗)∩B�∗

(�
j
∗)1

Gj
1(x∗)

cot2 θj(yj)THjyj. (34)
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In addition, if j ∈ BG(x∗) ∩ B�∗ , then �
j
∗ ∈ bdL∗

θj
\ {0sj},Gj(x∗) ∈ bdLθj \ {0sj}

and there exists σj > 0 such that �
j
∗ = σj(HjGj(x∗)), due to Lemma 3.1(d). By

a simple calculation, we obtain (�
j
∗)1/G

j
1(x∗) = σj tan2 θj. Moreover, it follows

from the relation (29) that (yj)Taj equals to 0 for any given d ∈ aff(C(x∗)) and

j ∈ BG(x∗) ∩ B�∗ , which implies that ‖(�j
∗)2

T
yj2‖2 = tan2 θj(y

j
1)

2. Combining
the above two equations with (34), we have

∑
j∈BG(x∗)∩B�∗

τ(yj)TDjyj +
∑
j∈IC

dTAj(x∗,μ∗,�
j
∗)d

=
∑

j∈BG(x∗)∩B�∗

τσj

τ + σj

(
‖yj2‖2 − tan2 θj(y

j
1)

2
)

+
∑

j∈BG(x∗)∩B�∗

σj(yj)THjyj.

=
∑

j∈BG(x∗)∩B�∗

σ 2
j

τ + σj
(yj)THjyj,

where the last equality is due to the definition ofHj in (11). �

Lemma 3.8: Suppose that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈
�(x∗). If Assumptions (A1) and (A2) hold at (x∗,μ∗,�∗), then there exist positive
scalars τ0, η0 such that for any τ ≥ τ0,

dT∇2
xxL(x∗,μ∗,�∗)d +

∑
j∈BG(x∗)∩B�∗

τ(yj)TDjyj ≥ η0

2
‖d‖2, ∀d ∈ aff(C(x∗))

with yj := JGj(x∗)d, j ∈ IC and Dj is defined as in (23).

Proof: From Assumption (A2), there exists a positive scalar η0 such that

dT
⎛
⎝∇2

xxL(x∗,μ∗,�∗) −
∑
j∈IC

Aj(x∗,μ∗,�
j
∗)

⎞
⎠ d ≥ η0‖d‖2, ∀d ∈ aff(C(x∗)).

(35)

In addition, let τ0 > 0 be satisfied that

∑
j∈BG(x∗)∩B�∗

{
σ 2
j

τ + σj
max

j∈BG(x∗)∩B�∗
‖JGj(x∗)‖2 max

j∈BG(x∗)∩B�∗
{tan2 θj, 1}

}
≤ η0

2
.
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From the definition of Hj in (11) and the Equation (33), for any given d ∈
aff(C(x∗)), we have

∑
j∈BG(x∗)∩B�∗

τ(yj)TDjyj +
J∑

j=1
dTAj(x∗,μ∗,�

j
∗)d

≥ −
∑

j∈BG(x∗)∩B�∗

×
{

σ 2
j

τ + σj
max

j∈BG(x∗)∩B�∗
‖JGj(x∗)‖2 max

j∈BG(x∗)∩B�∗
{tan2 θj, 1}

}
· ‖d‖2

≥ −η0

2
‖d‖2. (36)

Hence, the conclusion is satisfied at (x∗,μ∗,�∗) by using the inequali-
ties (35)–(36). �

In light of Lemma 3.8 and the famous Debreu theorem [25], we can further
establish an important inequality which will be used in the sequel.

Lemma 3.9: Suppose that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈
�(x∗). If Assumptions (A1) and (A2) hold at (x∗,μ∗,�∗), then there exist τ1 ≥ τ0
and η1 ∈ (0, η0/2) such that for any τ ≥ τ1 and d ∈ R

n,

dT∇2
xxL(x∗,μ∗,�∗)d +

∑
j∈BG(x∗)∩B�∗

τ(yj)TDjyj + τ1T (x∗, y) ≥ η1‖d‖2,

where Dj is defined as in (23), y := (y1, y2, . . . , yJ), yj := JGj(x∗)d, j ∈ IC ,
T (x∗, y) is given by

T (x∗, y) := ‖J h(x∗)d‖2 +
∑

j∈ZG(x∗)∩I�∗

‖yj‖2 +
∑

j∈BG(x∗)∩B�∗

(
(yj)Taj

)2

+
∑

j∈ZG(x∗)∩B�∗

‖Bjyj‖2 (37)

and aj is defined as in (20), Bj := Isj − bjbTj , j ∈ ZG(x∗) ∩ B�∗ with bj defined as
in (21).
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Remark 3.1: Let us denote

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−J hi(x∗), i ∈ IE
aTj JGj(x∗), j ∈ BB
JGj(x∗), j ∈ ZI
JGj(x∗), j ∈ ZB
cTj JGj(x∗), j ∈ BZ
JGj(x∗), j ∈ ZZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

Ẽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Il
I|BB|

I|ZI|
W|ZB|∗

Ŵ|BZ|∗
W|ZZ|∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (38)

where

BB := BG(x∗) ∩ B�∗ , ZI := ZG(x∗) ∩ I�∗ ,

ZB := ZG(x∗) ∩ B�∗ , BZ := BG(x∗) ∩ Z�∗ ,

ZZ := ZG(x∗) ∩ Z�∗ , W|ZB|∗ = diag(Wj
∗), j ∈ ZB,

Ŵ|BZ|∗ := diag(Ŵj
∗), j ∈ BZ , W|ZZ|∗ = diag(Wj

∗), j ∈ ZZ ,

Wj
∗ ∈ ∂B�Lθ ′

j
(Fjτ (x∗,μ∗,�∗)), θ ′

j :=
π

2
− θj, j ∈ IC

and aj, cj,Dj, Ŵ
j
∗ are defined as in (20), (22), (23) and (24), respectively. Setting

Bτ1,τ (μ∗,�∗,W∗) := ∇2
xxL(x∗,μ∗,�∗) + τ1ÃTẼÃ +

∑
j∈BB

τJGj(x∗)TDjJGj(x∗)

(39)

From the definitions of Aτ (μ∗,�∗,W∗) and Bτ1,τ (μ∗,�∗,W∗) in (25) and (39),
we obtain

dTAτ (μ∗,�∗,W∗)d = dTBτ1,τ (μ∗,�∗,W∗)d + (τ − τ1)dTÃTẼÃd. (40)

Suppose that Assumption (A1) holds at (x∗,μ∗,�∗), we can further obtain the
following property of the operator Ã.

Lemma 3.10: Suppose that Assumption (A1) holds at (x∗,μ∗,�∗), the operator Ã
defined as in (38) is of full row rank.
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Proof: If j ∈ BG(x∗), then ‖Gj
2(x∗)‖ = Gj

1(x∗) tan θj. In this case, we have

HjGj(x∗) =
(
tan2 θjG

j
1(x∗)

−Gj
2(x∗)

)
=
(
tan θj‖Gj

2(x∗)‖
−Gj

2(x∗)

)

= ‖Gj
2(x∗)‖

(
tan θj

−Gj
2(x∗)

)
.

If j ∈ BG(x∗) ∩ Z�∗ , then it follows from the definition of cj in (22) that

cj = 1√
1 + tan2 θj

(
tan θj

−Gj
2(x∗)

)
is parallel to HjGj(x∗).

If j ∈ BG(x∗) ∩ B�∗ , then ‖(�j
∗)2‖ = (�

j
∗)1 cot θj. It follows from the definition

of aj in (20) and Lemma 2.1 that

aj = 1√
1 + tan2 θj

(
tan θj

(�
j
∗)2

)
is parallel to ‖(�j

∗)2‖
(
tan θj

(�
j
∗)2

)

= �
j
∗ = σj(HjGj(x∗)).

In summary, we conclude that

(a) If j ∈ BG(x∗) ∩ B�∗ , then aTj JGj(x∗) is parallel to Gj(x∗)HjJGj(x∗).
(b) If j ∈ BG(x∗) ∩ Z�∗ , then cTj JGj(x∗) is also parallel to Gj(x∗)HjJGj(x∗).

Then, together with the fact that Assumption (A1) holds at (x∗,μ∗,�∗), it follows
from [6, Theorem 3.1] and the structure of the operator Ã defined in (38) that Ã
is of full row rank. �

Remark 3.2: By virtue of Lemma 3.10, we further assume that the operator Ã
has the following singular value decomposition:

Ã = Ũ
(
�̃ 0q×(n−q)

)
ṼT , Ũ ∈ R

q×q, Ṽ ∈ R
n×n, (41)

where q := l + |ZG(x∗)| + |BG(x∗) ∩ B�∗ | + |BG(x∗) ∩ Z�∗ | and �̃ := diag
(σi(Ã))1≤i≤q with σ1(Ã) ≥ σ2(Ã) ≥ · · · ≥ σq(Ã).

Combining Lemmas 3.8 and 3.9, we next establish the second-order growth
condition of Aτ (μ∗,�∗,W∗) in (25) and then discuss some properties on the
corresponding inverse ofAτ (μ∗,�∗,W∗).
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Theorem 3.11 (second-order growth condition of Aτ (μ∗,�∗,W∗)): Suppose
that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈ �(x∗). If Assumptions (A1)
and (A2) hold at (x∗,μ∗,�∗), then there exist τ1 ≥ τ0 and η1 ∈ (0, η0/2) such that
for any τ ≥ τ1 and d ∈ R

n,

dTAτ (μ∗,�∗,W∗)d ≥ dTBτ1,τ (μ∗,�∗,W∗)d ≥ η1‖d‖2, (42)

where Aτ (μ∗,�∗,W∗) and Bτ1,τ (μ∗,�∗,W∗) are defined as in (25) and (39),
respectively. Consequently, every element in �x∂B(∇xLτ )(x∗,μ∗,�∗) is positive
definite.

Proof: It follows from the definition of T (x∗, y) in (37) that

dTÃTẼÃd

= T (x∗, y) +
∑

j∈BG(x∗)∩Z�∗

(yj)TcjŴ
j
∗cTj yj

+
∑

j∈ZG(x∗)∩Z�∗

(yj)TWj
∗yj +

∑
j∈ZG(x∗)∩B�∗

(yj)T(Wj
∗ − BTj Bj)y

j

≥
∑

j∈BG(x∗)∩Z�∗

(yj)TcjŴ
j
∗cTj yj +

∑
j∈ZG(x∗)∩Z�∗

(yj)TWj
∗yj

+
∑

j∈ZG(x∗)∩B�∗

(yj)T(Wj
∗ − BTj Bj)y

j.

≥ 0, (43)

where the last inequality follows from the following discussions.

(a) If j ∈ BG(x∗) ∩ Z�∗ , from the definition of Ŵj
∗ in (24), then we have

∑
j∈BG(x∗)∩Z�∗

τ(yj)TcjŴ
j
∗cTj yj =

∑
j∈BG(x∗)∩Z�∗

τ(cTj y
j)TŴj

∗cTj yj ≥ 0.

(b) If j ∈ ZG(x∗) ∩ Z�∗ , from Lemma 3.4(f), then the matrix Wj
∗ can be set as

one of the following matrices

0sj×sj , Isj ,
1

tan θj + cot θj

×
(
tan θj wT

j
wj aθj · (Isj−1 − wjwT

j ) + cot θj · wjwT
j

)
.
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Notice that the last matrix is also positive semidefinite, due to the Schur’s
complementarity theorem, since for any given v ∈ R

sj−1,

vT
(
aθj · (Isj−1 − wjwT

j ) + cot θj · wjwT
j − cot θj · wjwT

j

)
v

= aθj · vT(Isj−1 − wjwT
j )v ≥ 0,

where the last inequality is due to the fact that w is any given unitary vector
in R

sj−1. Therefore, we obtain
∑

j∈ZG(x∗)∩Z�∗ τ(yj)TWj
∗yj ≥ 0.

(c) If j ∈ ZG(x∗) ∩ B�∗ , from Lemma 3.4(c), then the matrix Wj
∗ can be set as

one of the following matrices:

Isj ,

⎛
⎜⎜⎝

tan θj

tan θj + cot θj
1

tan θj + cot θj
· (�

j
∗)2

T

1
tan θj + cot θj

· (�
j
∗)2 Isj−1 − tan θj

tan θj + cot θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎟⎠ .

From the definition of Bj and bj in (21), we have

BTj Bj = (Isj − bjbTj )(Isj − bjbTj )

= Isj − bjbTj − bjbTj + bjbTj bjb
T
j = Isj − bjbTj = Bj

and the matrixWj
∗ − BTj Bj is equal to either bjb

T
j or 0sj×sj , since

⎛
⎜⎜⎝

tan θj

tan θj + cot θj
1

tan θj + cot θj
· (�

j
∗)2

T

1
tan θj + cot θj

· (�
j
∗)2 Isj−1 − tan θj

tan θj + cot θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎟⎠+ bjbTj − Isj

=

⎛
⎜⎜⎝

tan θj

tan θj + cot θj
1

tan θj + cot θj
· (�

j
∗)2

T

1
tan θj + cot θj

· (�
j
∗)2 Isj−1 − tan θj

tan θj + cot θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

cot θj
tan θj + cot θj

− 1
tan θj + cot θj

· (�
j
∗)2

T

− 1
tan θj + cot θj

· (�
j
∗)2

tan θj

tan θj + cot θj
· (�

j
∗)2 (�

j
∗)2

T

⎞
⎟⎟⎠− Isj

= 0sj×sj .
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Thus,
∑

j∈ZG(x∗)∩B�∗ τ(yj)T(Wj
∗ − BTj Bj)y

j ≥ 0. Consequently, for any τ ≥ τ1,
from (40) and (43), we obtain

dTAτ (μ∗,�∗,W∗)d

≥ dTBτ1,τ (μ∗,�∗,W∗)d

= dT∇2
xxL(x∗,μ∗,�∗)d + τ1dTÃTẼÃd +

∑
j∈BG(x∗)∩B�∗

τ(yj)TDjyj

≥ dT∇2
xxL(x∗,μ∗,�∗)d + τ1T (x∗, y) +

∑
j∈BG(x∗)∩B�∗

τ(yj)TDjyj

≥ η1‖d‖2,
where the above last inequity is due to Lemma 3.9. Combining the above inequal-
ity and Lemma 3.3, we deduce that every element in �x∂B(∇xLτ )(x∗,μ∗,�∗) is
positive definite. �

Remark 3.3: It follows from (23) that for j ∈ BG(x∗) ∩ B�∗ we obtain

Dj = σj

τ + σj

⎛
⎝ 0 0Tsj−1

0sj−1 Isj−1 − (�
j
∗)2 (�

j
∗)2

T

⎞
⎠ , lim

τ→∞
τσj

σj + τ
= σj.

Under the Assumptions (A1) and (A2), there exists a positive scalar η2 such that

dTBτ1,τ (μ∗,�∗,W∗)d ≤ η2‖d‖2, ∀τ ≥ τ1 and d ∈ R
n. (44)

After these preparations, under the singular decomposition (41), the inequal-
ity (44) with the Sherman-Morrison-Woodbury formula [26, Sect. 2.1], we fur-
ther establish some properties on the inverse of the operator Aτ (μ∗,�∗,W∗)
defined as in (25). The proof is similar to [20, Lemma 10], we omit it here.

Lemma 3.12 (Properties on the inverse of Aτ (μ∗,�∗,W∗)): Suppose that x∗
is a stationary point of (PNCCP) and (μ∗,�∗) ∈ �(x∗). If Assumptions (A1) and
(A2) hold at (x∗,μ∗,�∗), then for any τ ≥ τ1 we have

(Aτ (μ∗,�∗,W∗))−1 � Ṽ

×
(

�̃−1ŨT (σ̂1η1Iq + (τ − τ1)Ẽ
)−1 Ũ�̃−1 0q×(n−q)

0(n−q)×q σ̂−1
1 η−1

1 In−q

)
ṼT ,

(Aτ (μ∗,�∗,W∗))−1 � Ṽ

×
(

�̃−1ŨT (σ̂2η2Iq + (τ − τ1)Ẽ
)−1 Ũ�̃−1 0q×(n−q)

0(n−q)×q σ̂−1
2 η−1

2 In−q

)
ṼT
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and

‖Aτ (μ∗,�∗,W∗)−1ÃTẼw‖ ≤ √
2
(
σ̂2 + (σ̂1η2)

−2(σ̂2η2)
−2) (τ − τ1)

−1‖w‖,
where q := l + |ZG(x∗)| + |BG(x∗) ∩ B�∗ | + |BG(x∗) ∩ Z�∗ |, σ̂1 := min
{1, σ−2

1 (Ã)}, σ̂2 := max{1, σ−2
q (Ã)} and η1, η2 are respectively defined as in (42)

and (44).

4. Local convergence analysis

This section is devoted to discussing the local convergence of augmented
Lagrangian method for nonlinear circular cone programs (PNCCP).

From Theorem 3.11 and Clarke’s implicit function theorem [27], there exist
an open neighbourhoodBδ0�

(μ∗,�∗) and a locally Lipschitz continuous function
xτ (·) defined on Bδ0�

(μ∗,�∗) such that for any given (μ,�) ∈ Bδ0�
(μ∗,�∗),

∇xLτ (xτ (μ,�),μ,�) = 0n. (45)

In addition, since �Lθ ′
j
(·), (θ ′

j = π
2 − θj, j ∈ IC) is strongly semismooth every-

where (see Lemma 2.4), xτ (·) is semismooth (strongly semismooth if ∇2f , ∇2h,
∇2G are locally Lipschitz continuous and �Lθ ′

j
(·) is strongly semismooth every-

where) at any point in Bδ0�
(μ∗,�∗) and there exist two positive number ε1, δ1� ∈

(0, δ0�] such that for any x ∈ Bε1(x∗) and (μ,�) ∈ Bδ1�
(μ∗,�∗), it follows from

Lemma 3.3 and Theorem 3.11 that every element in�x∂B(∇xLτ )(x,μ,�) is pos-
itive definite and xτ (μ,�) is the unique minimizer of Lτ (x,μ,�) over Bε1(x∗),
i.e.

xτ (μ,�) = argmin
{
Lτ (x,μ,�) | x ∈ Bε1(x∗)

}
. (46)

Let ϑτ : R
l ×∏J

j=1 R
sj → R be the optimal function of problem (46), i.e.

ϑτ (μ,�) := min
x∈Bε1 (x∗)

Lτ (x,μ,�), (μ,�) ∈ R
l ×

J∏
j=1

R
sj .

Notice that Lτ (x, ·, ·) is a concave function for each fixed x ∈ R
n, from the above

definition of ϑτ , then ϑτ (μ,�) is also a concave function satisfying the following
relation

ϑτ (μ,�) = Lτ (xτ (μ,�),μ,�)

= f (xτ (μ,�)) + μTh(xτ (μ,�)) + τ

2
‖h(xτ (μ,�))‖2

+ 1
2τ

J∑
j=1

(
‖�Lθ ′

j

(
�j − τGj(xτ (μ,�))

) ‖2 − ‖�j‖2
)
, (47)

where θ ′
j = π

2 − θj, j ∈ IC.
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For any given (μ,�) ∈ Bδ1�
(μ∗,�∗), we denote

μτ (μ,�) := μ + τh(xτ (μ,�)),

�τ (μ,�)) := (�1
τ (μ,�), �2

τ (μ,�), . . . ,�J
τ (μ,�)

)
,

�
j
τ (μ,�) := �Lθ ′

j

(
�j − τGj(xτ (μ,�))

)
, j ∈ C.

(48)

From the relations (9)–(10) and (48), we obtain

Fjτ (xτ (μ,�),μ,�) = �j − τGj (xτ (μ,�)) ,

�
j
τ (μ,�) = �Lθ ′

j

(
Fjτ (xτ (μ,�),μ,�)

)
and

∇xL(xτ (μ,�),μτ (μ,�),�τ (μ,�))

= ∇f (xτ (μ,�)) + ∇h(xτ (μ,�))μτ (μ,�) −
∑
j∈IC

∇Gj(xτ (μ,�))�
j
τ (μ,�)

= ∇xLτ (xτ (μ,�),μ,�)

= 0n, (49)

where the last equality follows from (45). In addition, using the definition of
ϑτ (μ,�) in (47), we know

∇μϑτ (μ,�) = ∇μxτ (μ,�)∇xLτ (xτ (μ,�),μ,�)

+ ∇μLτ (xτ (μ,�),μ,�) = h(xτ (μ,�)),

∇�jϑτ (μ,�) = ∇�jxτ (μ,�)∇xLτ (xτ (μ,�),μ,�) + ∇�jLτ (xτ (μ,�),μ,�)

= −τ−1�j + τ−1�
j
τ (μ,�).

Due to the above discussion, the following lemmas characterize the gradient of
ϑτ (μ,�) and its Hessian on D∇ϑτ (the set of all Fréchet differentiable point of
∇ϑτ (·) in Bδ1�

(μ∗,�∗)), respectively.

Lemma 4.1: Suppose that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈
�(x∗). If Assumptions (A1) and (A2) hold at (x∗,μ∗,�∗), then for any τ ≥ τ1,
the concave function ϑτ (·) is continuously differentiable on Bδ1�

(μ∗,�∗) with

∇ϑτ (μ,�) =
(

h(xτ (μ,�))

−τ−1� + τ−1�τ (μ,�)

)
, (μ,�) ∈ Bδ1�

(μ∗,�∗),

where �τ (μ,�)) is defined as in (48). Moreover, ∇ϑτ (μ,�) is semismooth at any
point in Bδ1�

(μ∗,�∗) and it becomes a strongly semismooth function at any point
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in Bδ1�
(μ∗,�∗) if ∇2f , ∇2h, ∇2G are locally Lipschitz continuous and �Lθ ′

j
(·) is

strongly semismooth everywhere, where θ ′
j = π

2 − θj, j ∈ IC.

Lemma 4.2: Suppose that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈
�(x∗). If Assumptions (A1) and (A2) hold at (x∗,μ∗,�∗), then for any τ ≥ τ1,
(μ,�) ∈ D∇ϑτ and (�μ,��) ∈ R

l ×∏J
j=1 R

sj ,

∇2ϑτ (μ,�)(�μ,��)

∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

J h(xτ (μ,�))

−Ŵ1JG1(xτ (μ,�))

−Ŵ2JG2(xτ (μ,�))
...

−ŴJJGJ(xτ (μ,�))

⎞
⎟⎟⎟⎟⎟⎠Aτ (μ,�, Ŵ)−1T ((μ,�); (�μ,��))

+

⎛
⎜⎜⎜⎜⎜⎝

0l
−τ−1��1 + τ−1Ŵ1(��1)

−τ−1��2 + τ−1Ŵ2(��2)
...

−τ−1��J + τ−1ŴJ(��J)

⎞
⎟⎟⎟⎟⎟⎠ : Ŵj ∈ ∂B�

j
τ (μ,�)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

:= Vτ (μ,�)(�μ,��), (50)

where

T ((μ,�); (�μ,��)) := −∇h(xτ (μ,�))(�μ) +
∑
j∈IC

∇Gj(xτ (μ,�))Ŵj(��j).

(51)

Proof: Let (�μ,��) be any given point in R
l ×∏J

j=1 R
sj and (μ,�) ∈ D∇ϑτ ,

then for any τ ≥ τ1, the hessian ∇2ϑτ (μ,�)(�μ,��) has the following expres-
sion as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J h(xτ (μ,�))x′
τ ((μ,�); (�μ,��))

−τ−1��1 + τ−1�′
Lθ ′

1(
�1 − τJG1(xτ (μ,�));��1 − τJG1(xτ (μ,�))x′

τ ((μ,�); (�μ,��))
)

−τ−1��2 + τ−1�′
Lθ ′

2(
�2 − τJG2(xτ (μ,�));��2 − τJG2(xτ (μ,�))x′

τ ((μ,�); (�μ,��))
)

...
−τ−1��J + τ−1�′

Lθ ′
J(

�J − τJGJ(xτ (μ,�));��J − τJGJ(xτ (μ,�))x′
τ ((μ,�); (�μ,��))

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where θ ′
j = π

2 − θj, j ∈ IC. In light of Lemma 2.4, the mapping �Lθ ′
j
(·) is

semismooth everywhere. Hence, there exists an element Ŵj ∈ ∂B�
j
τ (μ,�) =
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∂B�Lθ ′
j
(Fjτ (xτ (μ,�),μ,�)) = ∂B�Lθ ′

j
(�j − τGj(xτ (μ,�))) such that

�′
Lθ ′

j

(
�j − τJGj(xτ (μ,�));��j − τJGj(xτ (μ,�))x′

τ ((μ,�); (�μ,��))
)

= Ŵj (��j − τJGj(xτ (μ,�))x′
τ ((μ,�); (�μ,��))

)
. (52)

Let (μ,�) ∈ Bδ1�
(μ∗,�∗), from the relations (49) and (52), we have

0n×n = ∇2
xxL (xτ (μ,�),μτ (μ,�),�τ (μ,�)) x′

τ ((μ,�); (�μ,��))

+ ∇h(xτ (μ,�))(�μ)

+ τ∇h(xτ (μ,�))J h(xτ (μ,�))x′
τ ((μ,�); (�μ,��))

−
∑
j∈IC

∇Gj(xτ (μ,�))Ŵj

× (��j − τJGj(xτ (μ,�))x′
τ ((μ,�); (�μ,��))

)
= Aτ (μ,�, Ŵ)x′

τ ((μ,�); (�μ,��)) + ∇h(xτ (μ,�))(�μ)

−
∑
j∈IC

∇Gj(xτ (μ,�))Ŵj(��j),

whereAτ (μ,�, Ŵ) is defined as in (13). The above relation yields that

x′
τ ((μ,�); (�μ,��)) = Aτ (μ,�, Ŵ)−1T ((μ,�); (�μ,��)), (53)

where T ((μ,�); (�μ,��)) is defined as in (51). Hence, we have

J h(xτ (μ,�))x′
τ ((μ,�); (�μ,��))

= J h(xτ (μ,�))Aτ (μ,�, Ŵ)−1T ((μ,�); (�μ,��))

and

τ−1�′
Lθ ′

j

(
�j − τJGj(xτ (μ,�));��j − τJGj(xτ (μ,�))x′

τ ((μ,�); (�μ,��))
)

= τ−1Ŵj (��j − τJGj(xτ (μ,�))x′
τ ((μ,�); (�μ,��))

)
= −ŴjJGj(xτ (μ,�))Aτ (μ,�, Ŵ)−1T ((μ,�); (�μ,��)) + τ−1Ŵj(��j),

where the last equality follows from the relation (53). Then, by applying these
relations and the definition of ∇2ϑτ (μ,�)(�μ,��), the inclusion (50) holds.

�

Together with the continuity of xτ (·) and the semismooth property of ∇ϑτ (·)
in Lemma 4.1, we establish the following lemma.
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Lemma 4.3: Suppose that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈
�(x∗). If Assumptions (A1) and (A2) hold at (x∗,μ∗,�∗), then for any τ ≥ τ1
and (�μ,��) ∈ R

l ×∏J
j=1 R

sj , there has

∂B(∇ϑτ )(μ∗,�∗)(�μ,��) ⊆ Vτ (μ∗,�∗)(�μ,��),

where Vτ (μ,�)(�μ,��) is defined as in (50).

Finally, we first build up two important inequalities and then the linear con-
vergence rate of augmented Lagrangian method for nonlinear circular conic
programs can be achieved. Since the details of proof are similar to the procedure
in [19, Proposition 3.1] and [20, Theorem 1], we omit them here.

Theorem 4.4: Suppose that x∗ is a stationary point of (PNCCP) and (μ∗,�∗) ∈
�(x∗). If Assumptions (A1) and (A2) hold at (x∗,μ∗,�∗), then for any τ ≥ τ1
and (�μ,��) ∈ R

l ×∏J
j=1 R

sj , there exist positive scalars ρ and κ such that

‖x′
τ ((μ∗,�∗); (�μ,��)) ‖2 ≤ ρ2τ−2‖(�μ,��)‖2 (54)

and ∣∣− 〈V(�μ,��) + τ−1(�μ,��), (�μ,��)
〉∣∣

≤ κτ−2‖(�μ,��)‖2, ∀V(�μ,��) ∈ Vτ (μ∗,�∗)(�μ,��). (55)

Furthermore, let η1, η2, ρ, κ be respectively defined as in (42), (44), (54), (55) and
τ1 be given in Lemma 3.9. Define ρ1 := 2ρ and ρ2 = 4κ . Then, for any τ ≥ τ1,
there exist two positive scalars ε and δ (both depending on τ ) such that for any
(μ,�) ∈ Bδ(μ∗,�∗), the problem

min Lτ (x,μ,�)

s.t. x ∈ Bε(x∗)

has a unique solution xτ (μ,�). The function xτ (·, ·) is semismooth at any point in
Bδ(μ∗,�∗). Moreover, for any (μ,�) ∈ Bδ(μ∗,�∗), we have

‖xτ (μ,�) − x∗‖ ≤ ρ1τ
−1‖(μ,�) − (μ∗,�∗)‖,

‖(μτ (μ,�),�τ (μ,�)) − (μ∗,�∗)‖ ≤ ρ2τ
−1‖(μ,�) − (μ∗,�∗)‖,

where μτ (μ,�) := μ + τh(xτ (μ,�)) and �τ (μ,�) is defined as

�τ (μ,�)

:=
(

�Lθ ′
1
(�1 − τG1(xτ (μ,�))), . . . ,�Lθ ′

J
(�J − τGJ(xτ (μ,�)))

)
∈
∏
j∈IC

R
sj

with θ ′
j := π

2 − θj, j ∈ IC .
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5. Concluding remarks

In this paper, we consider an augmented Lagrangian method for minimizing a
class of nonlinear circular conic programs. In particular, a linear local conver-
gence rate of generated iterations is established without requiring strict comple-
mentarity condition, whereas it is usually needed in the analysis of interior point
method. On the other hand, due to the non-self duality property of circular cone
under the standard inner product, our results show that ALM can deal with non-
self dual conic programs based on Bouligand-subdifferential of the projection
operator onto the given cone, the explicit expressions of the associated critical
cone and its affine hull under the appropriate constraint qualifications, which
enriches the algorithm design of non-interior-point method framework for han-
dling non-self dual conic programs. In light of these results, it is hopeful to further
discuss some stability issues such as the robust isolated calmness and the Jaco-
bian uniqueness condition of the Karush-Kuhn-Tucker solution mapping of the
given circular conic programs and ALM for solving another types of non-self
dual conic programs (such as p-order conic programs, power conic programs
and exponential conic programs). We leave it for our sequential researches.
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