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ABSTRACT

In this paper, we analyse a local convergence of augmented
Lagrangian method (ALM) for a class of nonlinear circular conic
optimization problems. In light of the singular value decompo-
sition, the Debreu theorem and the implicit function theorem,
we prove that the sequence generated by ALM converges to a
local minimizer in the linear convergence rate under the con-
straint nondegeneracy condition and the strong second-order
sufficient condition, in which the ratio constant is proportional
to 1/z, where 7 is the associated penalty parameter with a
given lower threshold. As a byproduct, we also derive explicit
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expressions of critical cone and its affine hull for the given
nonlinear circular conic program.

1. Introduction

Consider the following nonlinear circular conic program

min f(x)
(Pxcep) st hilx) =0,ie€Ig:={1,2,...,]}
(G, (%), Gy()) € Ly, j € Te = {1,2,....]},

wheref : R" - R, h; : R" = R, G]1 R -5 R, G]2 : R" — R%~! are twice con-
tinuously differentiable, and Ly, denotes a s;-dimensional circular cone with 6; €
(0, %) being its half-aperture angle, i.e. Ly, := {(p’l,p'z) eR xR ||p72|| <
P71 tan@;}. The index sets Zg, Z¢ correspond to the equality constraints and
circular conic constraints, respectively.
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One can easy to see that the above model (Pnccp) is a generalization of
nonlinear second-order cone program

min  f(x)
(PNSOCP) s.t. hl(X) = 03 ie Ig = {1,2, ey l}
(G, (%), Gy(x) e K9, j e Tc :={1,2,...,]},

where K% denotes a sj-dimensional second-order cone, i.e. KV := {(p’l, plz) €
R x R9~!: | p’2|| < p’l}, which corresponds to the case & = % in (Pxccp). The
relations between the circular cone Egj and the second-order cone K9 follows
from Zhou [1] that

(1)

xeﬁgj = ijE]Csj, Sj = [tangj 0 ],

0 ISj—l

where I;;_; is a (sj — 1)-dimensional identity matrix. In addition, the circular
cone Ly, is not self-dual under the standard inner product [1, Theorem 2.1]. One
may argue that the model (Pnccp) can be transformed into (Pnsocp) via the rela-
tion (1) and use the state-of-art algorithms for NSOCP to solve the corresponding
transformed problem. However, this approach may not be acceptable from theo-
retical, numerical and modelling viewpoints: (a) The study of the vector-valued
function induced by Ly, can not be transformed into the one induced by K% via
the relation (1) directly [2]; (b) The scaling matrix S; defined as in (1) may cause
undesirable numerical performance due to round-off errors in computation pro-
cess [3,4]; (c) Some circular conic programs (such as the models for solving
support vector machines problems) may have smaller scales than the associated
model using the second-order cone programs [5, Section 3]. Hence, it is neces-
sary to study the above nonlinear circular conic programming (Pxccp) deeply
from theoretical analysis and numerical algorithms.

Recently, many researchers have paid attention to theoretical analysis on opti-
mization problems with circular conic constraints [1,2,6-11]. However, due to
the non-self duality of circular cones under the standard inner product and the
standard Euclidean vector norm, there exist very few algorithms for dealing with
circular conic programs. More specifically, some algorithms including prime-
dual interior-point algorithms and smoothing Newton algorithm have been
proposed for circular conic programming problems, one can refer to [3,4,12] for
more details. As a classical method for solving constrained optimization prob-
lems, augmented Lagrangian method (ALM) was initially analysed by Hestenes
[13] and Powell [14] in equality constrained problem. These results triggered oft
a series of contributions on the local convergence rate results for convex pro-
gramming [15-17], nonlinear programming [18], nonlinear second-order cone
programming [19] and nonlinear semidefinite programming [20]. However, to
our best knowledge, no results about the local convergence analysis of ALM
for nonlinear circular conic program (Pxccp) have been reported. Hence, the
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purpose of this article aims to fill this gap and the contributions of our research
can be summarized as follows:

(a) We present explicit expressions of the critical cone and its affine hull for
nonlinear circular conic program (Pxccp).

(b) Under mild conditions, we prove that the sequence generated by the aug-
mented Lagrangian method converges to a local minimizer in the linear
convergence rate and the ratio constant is proportional to 1/7, where 7 is
the associated penalty parameter with a given lower threshold.

The remainder of this paper is organized as follows. In Section 2, we recall some
preliminary results on the geometric properties of circular cone. In Section 3,
we present some analytic properties on the associated Lagrangian function of
the given nonlinear conic program. After these preparations, a local convergence
analysis of augmented Lagrangian method for solving (Pnccp) is established in
Section 4. Finally, we draw some concluding remarks in Section 5.

1.1. Notations

To close this section, we introduce some notations that will be frequently
used in the sequel. The Lagrangian function associated with problem
(Pncep) is defined as £(x, i, T) == f(x) + uTh(x) — 2jete (T TG/ (x), where
wo= (e u)’ e RUB(x) = (h(x), ... . )T e RLT .= (T,...,T) e
HjeIC R, [V := (I, T)) € RY and G/(x) := (G (x), G,(x)) € RY. Given a fea-
sible point x € R", we say it to be a stationary point of (Pnxccp) if there exist
peRandT e [1jez. RY such that

VoL, u,T) =0, hi(x)=0,iecZg,

) ) ) . 2
Uel; G eLy, MG x) =0, je I, 2

where 0,, denotes the zero vector in R” and E;j is the dual cone of Egj, ie.
L'Z;j = {(y’l,y’z) e R x R~! xllyll + (x’z)Ty’2 > 0, ‘v’(x’l,xlz) € Lg;}. Any point
(x, 11, T) € R" x R! x HJEI - RY satisfying the above system (2) is called a
Karush-Kuhn-Tucker (KKT) point of (Pnccp) and the pair (u, I') is the Lagrange
multiplier associated with x € R”. In addition, we denote by A(x) the collec-

tion of such multiplier vectors at x. As defined in [21, Section 2], the augmented
Lagrangian function of (Pxccp) is

Lo, T) = () + 1 The) + I

+ % > (HH[;;],(FJ' — G ) - ||rf||2) ,

j€Ze
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where 7 > 0is the penalty parameter. For any given w € R¥, I 2+ (-) is the metric
)

. . . . '_ . 2
projection mapping onto E;j , eIl c; (w) := argmin, z, lw—yll*.

2. Preliminaries

This section recalls some topological properties and strongly semismoothness of
Bouligand-subdifferential of projection operator regarding circular cones.

2.1. Topological properties

Let int £y and bd Ly denote the interior and the boundary of Ly, respectively.
From [1, Theorem 2.1], we know

int Lo := {(p1,p2) € R x RS2 ||ps|| < py tanb)},
bd Ly := {(p1,p2) € R x R ¢ ||ps|| = py tan ).

Moreover, the corresponding dual cone £; and its dual have the following
relations

L= 1{(pr,p2) € Rx R 1 |Ipal < picotd),
(3)
Ly =Ly, (L) =Ly L5:=—Lb=—Ly, 0 := % —9,
where L is the polar cone of Ly.

Remark 2.1: The interior and the boundary of £} are respectively given by
int £ = {(p1,p2) € R x R [Ipa] < pu cot0),
bd £j = {(p1,p2) € R x RV [Ipa]| = p1 cot ).

As mentioned in [1, Section 3], for any given vector p = (p1,p2) € R x RS~
its spectral decomposition with respect to Ly is given by

p="1() vy + ) v, (4)
where 4;(p), Vf,i) are the corresponding spectral values and spectral vectors, i.e.

21(p) == p1 — |Ip2l cot 0,

S N 1 0, 1
P 14 cot2d \0s—y cotd I ) \—=p2)°

Z2(p) := p1 + lIp2|l tan 6,

O 1 1 ol , 1
P 1 4 tan26 \0s—; tan6-I,_1) \p>

with I,_; being the (s — 1)-dimensional identity matrix and p; := pa2/||p2|l, if
p2 # 0s_1; p2 is any unit vector defined in R~ otherwise. In light of [1,

(5)
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Theorem 3.1] and the spectral decomposition (4), the metric projection of p onto
Ly takes the form of

Mg, (p) = (@)1 - vp + D)y - v},
[4i(P)]+ == max{0, 1;(p)}, (i =1,2).
It also follows from (5) that

pifpely pit lpz tan®

: x 1 + tan? 6
ey (p) =105 ifpe—Ly,  ui= 1+ 1Ip2 |I+ta?1n€ ] ©
u  otherwise, (W tan 9) P2

Remark 2.2: These results together with the famous Moreau decomposition
theorem [22] imply that

p =T, (p) + Iy (p) = Tz, (p)
T
Ty (=p) = T, () = Tz, (—p). 0/ =2 —0.
The augmented Lagrangian function of (Pnccp) can be recast as

Lo, T) = £ + u"h() + S 1hC) |

1 o
+ Z}; (||Hcﬁj/(l“1 — G x)|? = I ) 7)

R
with 0/ := 5 —0j,j € Zc.

The next lemma shows an important observation on the following circular
conic complementarity system

P = (P1>P2) € E;’ q= (QI>CI2) € »Cé), qu = 0) (8)

which plays an important role in the analysis of optimality conditions, see [6,
Theorem 2.5] for more details.

Lemma 2.1 (Property of circular conic complementary system): The circular
conic complementarity system (8) has at least one solution if and only if one of the
following holds:

(a) P - 05: q € [:9;

(b) peintLly, q =0

() pe bd ﬁ; \ {05}, q= Os;

(d) pebdLy\ {0}, g€bdLy\ {05} and there exist ¢ > 0 such that p =

o (Hq), where H := (tanZH 0y ) .

05—1 _Is—l
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2.2. Strongly semismoothness of bouligand-subdifferential of projection
operator

In this subsection, we first recall some concepts on the Bouligand-subdifferential
of a given mapping, which comes from [20, Definition 1] that adapts from Miftlin
[23] for functionals and Qi and Sun [24] for vector-valued functions. Let U be
an open set and ¥ be a locally Lipschitz continuous function on U. From the
Rademacher’s theorem, ¥ is almost everywhere Fréchet-differentiable in U. Let
Dy be the set of Fréchet-differentiable points of ¥ in U. Then, the Bouligand-
subdifferential of ¥ at x € U, denoted by dg'¥ (x), is characterized as dp'¥' (x) :=
(limg_s 0o TP (xF) : xF € Dy, x* — x}, where 7 ¥ (x¥) denotes the Jacobian of ¥
at x*.

Definition 2.2 (Semismoothness and strongly semismoothness): Let ¥ be a
locally Lipschitz continuous function on a open set U. We say that ¥ is semis-
mooth at x € U if ¥ is directionally differentiable at x and for any Ax € U and
Ve o¥(x+ Ax)with Ax = 0, ¥ (x + Ax) — P (x) — V(Ax) = o(]| Ax]|). Fur-
thermore, ¥ is said to be strongly semismooth at x € U if ¥ is semismooth at
x and for any Ax € U, V € 0¥ (x + Ax) with Ax = 0, Y(x + Ax) — ¥ (x) —
V(Ax) = O(| Ax[}?).

We now present two important lemmas about projection operator onto cir-
cular cone, which are needed in subsequent analysis. The interested readers can
refer to [10, Lemma 3.1 and Theorem 3.3] for their proofs.

Lemma 2.3 (Bouligand-subdifferential of projection operator onto circu-
lar cone): For any given p = (p1,p2) € R x RS with the spectral decomposi-
tion (4). The Bouligand-subdifferential of projection operator onto circular cone is
given as follows:

(@) Ifp & Lo U (—L}), then

0Tl -
5Tz, (p) tan@ + cotd
cotd pl
X _ p1 + lIp2]l tan 6 )2 L I
A BREE £1 Beinh N SN £
P2l 1 oy P2

(b) Ifp € int Ly, then

opllz, (p) = {L}
(c) Ifp e bd Ly \ {05}, then

1 —tand 1_7T
onTl =L+ — Ik
sl () [S S+tan9+cot9( p2 _COte'PZPZT)}
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(d) Ifp €int(=Lp), then
6BH£9 (P) = {Osxs};

() Ifp e bd (—L)) \ {05}, then

1 cotf 1_7T
oIl =1 Osxe ———— | > ppl) |
BIlc, (p) [ SX© 4an 6 + cot ( p2»  tand 'PZPg)}

(f) Ifp =0, then

OB Hﬁg (X)

_ o ; 1 cotd wl
= sxs>ds> tan® + cotd w ag - ([_1 — WWT) + tané - WWT

with ag := (tan @ + cotf)a, a € [0, 1] and w being any unity vector in R*~1,

Lemma 2.4 (Strongly semismoothness of projection operator onto circular
cone): The projection operator Iz, (-) defined as in (6) is strongly semismooth
over R®.

3. Properties of augmented Lagrangian function

In this section, we build up some properties of the augmented Lagrangian func-
tion £, defined as in (7). We first present its gradient formula and then derive its
associated Bouligand-subdifferential.

Since f, h, G (j € Z¢) are twice continuously differentiable functions, we know
from the structure of £, (x, u, I') that £, (-) is continuously differentiable as well.
For any given (x, 4, ') € R" x R! x jeZe R%, we denote
By, u, ) =0 —1G(x), jelc. 9)

It is not hard to see that the Jacobian mapping J F’, (o u, T): R x R! x
[ljez. RY — RY is onto for any given (x, u,I') € R” x R x [1jez. RY. Then,
the gradient of £;(x, 1, ') with respect to x € R", denoted by V£, (x, u,I'),
has the following form

V() + Vh(o) (i + th(x))

. . , T .
- > VAW, (Fr(xu,T)), 0] = S —Opji€Ze,  (10)
j€Ze !

where F’, (x, 1, T) is defined as in (9).
Similar to Lemma 2.1, we have two important lemmas for the KKT system (2),
whose proofs are straightforward, we omit them here.
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Lemma 3.1 (Property of the second part of the KKT system (2)): Suppose that
X« is a stationary point of (Pnccp) and (s, I's) € A(xy). Then, forallj € Z¢, one
of the following facts holds:

(@) Tk =0y G(x.) € Ly

b) I e int L5, G (x,) = O

() T, e bd £5 \ {0y}, Gl (x,) = 0g;

(d) T, ebd £Zj \ {0}, G/(x,) € bd Lo, \ {05} and there exists oj > 0 such that
l"i = crj(HjGj(x*)), where

2 T
. tan” 0; OS],_1 (1)
/ OSj—l _Is]'—l

Lemma 3.2 (Property of the first relation in the KKT system (2)): Sup-
pose that x, is a stationary point of (Pnccp). For any (u,T') € A(xy), we have
Vil (ki 11, T) = 0y

In light of Lemma 2.4, the projection operator I, (-) is semismooth every-
. J . .
where, we have 0p(Ilg, (F, (x, 1, 1)) = oslle,, (F; (%, 11, D) TP (%, 1, T),
J J

where F’, (x, 4, T) is defined as in (9). Setting ‘P], (6 u,T) = VG (x)
(Ig,, (F, (x, 1, T))), the corresponding Bouligand-subdifferential oW (x, 11, T)

J
(Ax, A, AT) has an explicit expression as

VZG"(xxAx)H%j, (F (x, 41, T)) + VGf(x)aB(Hcgj, (F, (x, 1. T)))(Ax, A, AT).
(12)

Similarly, the following relation holds by direct calculations,

aB(vxgl')(x’ M r)
= (V3f(x),0,0,...,0)

+ [ D i + thix) Vi) +  Vh() Th(x), Vh(x),0,. ..., 0

ieZg

- Z oY, (x, 1, 1),

j€Ze
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where 83‘1’4(96,/1,1“) is defined as in (12). Let I1,0p(V<£;) be the partial
Bouligand-subdifferential of V£, with respect to x, we compute that
(ILx0B (Vi L:)) (x, 1, I') (Ax)
= V2f(x)(Ax) + V2h(x)(Ax)(u + th(x)) + 7 Vh(x) Th(x)(Ax)

— > (L3P} (x, 1, ) (A%)
JjeZe

= VL0 o+ Th(), Tz, (Fy (61, D) T, (B (o i, 7)) (A9)
+ 7 V@ ThG)(Ax) + 3 TVG 0Tz, (Fr (o 1, 1))T G (@) (Ax).
jelc ’

To proceed, for any given W := (W', ..., W) e HjeIc R%*%, we define

Ac(u, T, W) = V2,806 1, 1) + 2 Th(x) " Th(x) + D 1 TG (@)W I G (x).
j€le
(13)

From all the above discussions, we achieve an explicit expression of the partial
Bouligand-subdifterential of V£, at a given KKT pair of (Pnccp).

Lemma 3.3 (Partial Bouligand-subdifferential of V. £.): Suppose that x, is a
stationary point of (Pnccp) and (i« T'x) € A(xy). Then, for any given Ax € R"
and W, == (W}, ..., Wi) IS HjeIC RS*%, we have
(T, 0B (VL)) (X 4, Ti) (AX) = Ar (s, Ty Wi) (Ax),
where Wi € 631'[59/ (Fi (X5 s T)), ij = % —0;, jeIc and A (u,I', W) is
J
defined as in (13).
In order to further characterize the term ogll, " (lj; (X4 4, T'x)) more pre-
J
cisely, we employ the following six index sets:
o) ={jelc: Gx)e int Lg;} ,
Ir, = {j elo: Tl e intﬁzj},
Bg(x.) = {j € Ic : G(x.) € bd Ly \ {0g}},
. (14)
Br, = {j €Zc: T ebd L)\ {osj}} :
Z6(xy) == {] €lc: G’(x*) = 05]} >

Zr, = {jezc:ri :05].}.
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After these preparations, we now present the Bouligand-subdifferential of Il
J

atF]%(x*, Mo F*)

Theorem 3.4 (Bouligand-subdifferential of I1 2 ,): Suppose that x, is a station-
J
ary point of (Pnccp) and (s, I'x) € A(xs). Then, the followings hold.

@) If jeBg(x,) NBr, and —F.(xy, usTs) ¢ (L5, U Lg), then opTl,,
. J
(F, (x4, 4, T'x)) has the following form

1
tan 0; + cot 6);
T
tan 6 ()2
X ‘ oi(tan® 6; + 1) T — o tan® 6; ‘ —T
(), +—>7— L (), (),

(7 + gj) tan 6, 1t (z + 0j) tan 6;

where (T)); i= (Ph)2/ I (TL)z l, if (T))s # 0g-1.

() If je Zg(x.) NIr,, then agﬂgaf(F’T(x*,u*,F*)) is equal to the sj-
dimensional identity matrix ;.

(c) If j € Zg(x«) N Br,, then GBHE(%(F; (X, s> T'x)) has the following two

choices:
tan 6; 1 —T
— — - (T'\)
I tan 9] + cot 9]' tan 9] + cot (9]'
52 1 tan 0; T

(), Iy (D)2 (T2

tan 6; + cot 6; ' h tan 0; + cot ;

(d) If jeZe(xs)N Zr,, then opllg, (Fj;(x*,,u*,l“*)) is equal to the sj-
]
dimensional zero matrix Os;xs;-
(e) If j € Bg(xs) N Zr,, then 8BH£0{(F]T(x*,,u*,F*)) has the following two
J

choices:
tan 6; 1 . T
LU SRS ST
0 tan 0; + cot 6); tan 0; + cot 6);
o L e —20 GG |
- . X . A Xy Xse
tan Hj + coth 2 tan Qj + cotHj 2 2

where Gh(x.) 1= G} () /1Gh (eI, if G (x) # Og—1.



OPTIMIZATION 1

(f) Ifj € Zg(x«) N Zr,, then GBHLO( (Fi (X4, t4> ') has the following three
J

choices:

. ; 1 tan @ W%'T
sixsj> Lsj> tan 9] + COtHj wj aﬁj . (ISj—l — W]W] ) + cot 01 . W]W]T
with ag; == (tand; + cot))a, a € [0, 1], wj being any unity vector in RS—1.

Proof: First, from Lemma 2.3, setting 0 = 5 — 0, = 9]./, p= F];(x*, Ui Ti) =:
£/, yields

(-2l = tFd@) + (-I), Fx) e Ly, —The £5, Gx)T(=T) =o.
(15)

(a) If EJ; ¢ Eg_/ U —LZ,, from the relations in (3), we have (— EJ,;) ¢ 52_ U Eg.. In

9/)

addition, using Lemma 2.3(a) implies that ogI1 . /( ) has the following form

1
tané?j + cotﬁj
T
tanej (-—'* 2
x (E)1 + (B2l cot 6 (B T
(2L, — g1 = ———(E 12 (L),
1(Z5)2l I(Z5)2]
(16)

Applying the Moreau decomposition theorem and (15) indicate that IT cy, (- E],;)

= 1Gi(x,) € bd Lo \ {04}, Tz (—E)) = T € bd £, \ {0}, which are equiv-
] .

alent to G/(x,) € bd Ly \ {0}, T% € bd L5\ {0g), ie. jeBg(x.)NBr,.

Together with Lemma 2.1(d), there exists g; > 0 such that I" ]* = aj(HjGi (%)),
where H; is defined as in (11). Then, it follows from above that

S N s _ (r—ajtanzﬁj)'- Gjl(x*)
=) = 1G(x) aj(HJGf(x*))—( e 1o G ) (17)

Since Gj(x*) € bd Ly, \ {0;}, we obtain ||Gj (x)] = Gj (x4) tan@;, G. (x4) #0
and G. 5 (x4) 7é 0s—1- From the relation (17), we have (_*)1 = (oj tan29 —
r)GJ (x4), (_* 2=—(t+ O'J)GJ (x+). Together with the fact F] = JJ(H]GJ(x*))
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indicate that

aJ tan? 0

(ZL)1 = (ojtan? ) — )G (x.) = Sy (18)

J . .
(u*)z =—(t+ UJ)GJ (xs) = —(t + ) (F )2 _° :0J (),.
O] ]

(19)

In addition, from F] e bd £* \ {05} and E* = Ee/ we have (Fj)l = ||(F] )|l
tand;, (I ] )1 # 0 and (FJ )2 7& Os;—1- Therefore it follows from the relations

o 9 T 740
(18)-(19) that (), = fff?ang AR TICAT +f||(rf)2||and(a*z_

(F]*)z. Combining the above relations with (16), we achieve

(Z)1 + 1(EL2l cot 6 EA T
—_J - Isj_1 ! ( ]*)2 (-—'* 2
(22l I(EDa
oi(tan® 6; + 1) T — ojtan? 0; T
:%.SJ} Y Rt N (*)2(1“)2’

(t + o)) tan 6; + (t + o)) tan 6;

and 0Op ngg (FJ; (%4> t4> I'x)) has the following form
J

1
tan 0; + cot 6);
—T
tan 6; (F] )2
X ' oi(tan? 0; + 1) — oj tan? 6) T
F{k J J T J 1'*] 1'*]
(): (z + o)) tan 6; T (r + 0j) tan 0); F()2 ()2

(b) If =, € int Eg/ then =, € int E* From the relation (3), we obtain (—E ;) €
int [,9}_. Similar to part(a), it follows that ngj _.*) =1G(x,) = 05, and
Hl:;j —EJ*) = -2 =-T eint Egj,which are equivalent to Gj(x*) = Os;, I e
int sz’ ie.j e Zg(x.) NZr,. Hence, we conclude that GBH[;HJ{ (F]T (4> s, Tw)) =
opllg, : EJ*) = 0pllz; (5 =) = op(2l) = I,
(c) If . € bd Eg/ \ {0}, then EJ* € bd Ee \ {05;}. Similarly, we also obtain
~E1) € bd L5\ {0y}, Tz, (=) = 1Gi(x) = 0y, Ty (~E)) = ~E\ = —
I, e bd Lg, \ {05}, which are equivalent to G(xy) = 0s;, I, e bd C;j \ {0}, Le.
j € Z6(x«) N Br,. Then, using Lemma 2.3(c) and the fact (_j = (Fi)z yields
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that ogIl . » (Iﬂ; (%4> t4> I'x)) can be set one of the following matrices
J

tan «9]
tan 6?]- + cot Gj tan Qj + cot 9]

1 : tan 0;
—— ([N Lo ————
tan 9]' + cot9j J tan 0]- + cotHj

B
(T2

Is;, T

(M), (1)),

(d)If =, € int (—E*_,),then (—E.) € int £5 - Inaddition, there have (— =) e
int Lg;, Hgg (- EJ;)]: = 1G(x,), Hgo (—_* = —F] = 0y, which are
equivalent to G (x4) € int [,9 s F = 05 ,leje Ig(x*) N Zr,. Hence, we obtain
aBnﬁof (F; (s 1, T)) = aBHL,)/(-—*) = opll_r; (2l) = on(~ e (-2 =

OSJ XSJ

(e) If =, ebd (—L, /) \ {05} then (—E ;) € bd L. Similar to part(a), we
also achieve Hg{,_ *) = -2, =1G(x,), HEH (—:*) = —F] = 0y;, which

are equivalent to G/(x,) € bd ﬁgj \ {0}, F =0y, 1e.j€ Bg(x+) N Zr,. More-
over, Lemma 2.3(e) implies that 631'[59/ (FIT (x4, tt4, ') can be set one of the
J

following matrices

tan Hj 1
tan Gj + cot (9] tan (9j + cot 0]

G —20 G ) Gy
- . Xy) ———— X X
tan9j+cot0j 2 tan9j+cot0j 2 2

Gy
z(x*)

OS]'XSj)

T >

where the last equality is due to the below relations:

= —7G(x,) € bd (- L)\ {05} = Ay

_ (—4*2 _ _ GJz(x*)
T IED I1G) (x)

= —G(x.).

(f) If_* = 0s;, we have G(x,) = Os;5 F = Oy, 1e.j € Zg(x,) N Zr,. In this case,
applying Lemma 2.3(f) yields that ogIl.,, (F’ (%4, 1+, I'x)) can be set one of the
J

following matrices

0 ! 1 tand WjT
VP tan; 4 cotf; \ w ag, - (Is—1 — wwl) + cot; - wwT |’

In summary, the conclusion holds as verified in each case. [
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To make the statement of next theorem neat, we further introduce some

notations:
! (tanej) i € Bo(x,) N B (20)
aj ;= ———=\-7-) Jje€Bslx)NBr,,
/1 + tan? 0; ()2
b ! (coté’j) € Zg(xs) NB (21)
j = ——— — ), je Z6(x)NBr,,
/1 +cot?6; —(T)2
! (tan@j ) i€ Bg(x:) N Z (22)
G 1= —— : » ] € DG( X« )
\/1+ tan?6; —sz(x*)
O'j 0 Osf—l .
Dj = . —T |, JE€ BG(X*) N Br*, (23)
T+ O-j OS]'—I ISj—l - (F{k)Z (F{k)Z
A 1 1 j =
W= Oxs W =0sxs 5 oy n 2y, (24)
I, otherwise,

In light of Lemma 3.4, the term A, in (13) possesses an explicit expression.

Theorem 3.5 (Explicit expression of A, in (13)): Suppose that x. is a stationary
point of (P) and (u«, I's) € A(x.). Then, we have

A (14> T, W)
= V2 L(%u, s T) + 1. Th(x) T Th(x,)
+ > 1IFE) (@] + DTG (x)

jeBg(x)NBr,

+ D> I TG

jEZG(x*)mIF*

+ > tIPE) WIG ()

j€Z6(x)NBr,

+ > rjd(x*)chW{;chjGi(x*)

jeBa(x:)N2r,

+ > I WIG), (25)
jeZg(x:)N 2T,

]

=% —0;, j € Ic and aj, c;, D;, Wi are defined as in (20), (22), (23) and (24),

respectively.

where W, = (Wi,. . Wi) IS H.€IC RS>, W{,; = aBHE(% (F]; (%a> s T0)), 6}’
j
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Proof: From the definition of A; (x, t«, ['+) in (13) and Lemma 3.1, we have

Az(ﬂ*’r*aw*)

= V2L 110, T) + T Th(x,) Thix,)
+ > )T WIG k)
je€Ba(x)NBr,

+ > TG WLITG ()
jeZa(xs)NIr,

+ > I TWIE k)
j€Z6(x)NBr,

+ > TP WG (k)
jeBg(x+)NZr,

+ Z TjGj(x*)TWijGi(x*)»
jeZG(x:)N 2T,

+ > I WIG (), (26)

j€Zg(x)NZr,,

where Wi IS GBHLH( (Fi (45 s>, T'0)), Gj’ = % —0;,jelc. In addition, by using

J
Theorem 3.4, we discuss the following cases.
(a) Ifj € Bg(xx) N Br,, then

—T
i 1 tan? 0; tan@(ri)zT
=0, - ~ -
@G \ngrh, (s (),
T
Uj 0 03]'—1

T

T \0go1 Igo1 = (T2 (Th)2

= ajajT + D,
where a; and Dj are defined as in (20) and (23). Hence, we conclude that

> TG WLIG ()
jeBag(x:)NBr,

= > tJGE) @a + DTG ().

jeBa(x«)NBr,
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(b) If j € Bg(x«) N Zr,, then
OSjXSj lf W',’k = Oijsj,

T

W, = | :
1 tan? 0; —tand; - GJ2 (x*%

m _ _ : otherwise.
k an~ j —tanf; - Gy(x.)  Gh(x:) Gy(xi)

= Cj W‘ZLCJT,
where ¢j and Wi are defined as in (22) and (24). Hence, we obtain

Z eri(x*)TWijGi(x*) = z TjGj(x*)chWicJTjGj(x*).

jeBg(x:)NZr, jeBg(x:)N2r,

(c) Similar to the above cases, we have

> I WIGE) = Y tIGx) TG ),

jEZG(x*)ﬁIr* jeZg(x)NIr,
Z erj(x*)TW£jGj(x*) = Opxn.
jezg(x*)ﬂZr*
From these discussions and Equation (26), the desired result (25) is true. |

In order to analyse the convergence of augmented Lagrangian method for
solving nonlinear circular conic programs (Pxccp), we need the following two
assumptions.

(A1) The constraint nondegeneracy condition (CNC) holds at x,. € R™:

Th(x.) {07} R!
le (x4) lin{Tcgl (Gl ()} RS

. R" + : = . >
TG (x.) lin{7¢,, (G (x:))} RY

where Tl;(,j_ (G/(x,)) is the tangent cone of Ly, at G/(x,) and 1in{’]};9]_ (G(x4))}
denotes the linearity space of Tﬁoj (G (x+)), which is the largest linear space con-
tained in Tﬁej (G (x4)). Applying [6, Theorem 2.3], the tangent cone of Ly at
peR"is

RS if p € int Ly,

Tz, (p) == 1 Lo ifp=0,
{(h1,hy) € R x RS™1: hlpy — hypy tan® @ < 0} if p € bd L \ {05}
(27)
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In addition, according to [6, Theorem 3.1], the constraint nondegeneracy condi-
tion is equivalent to the vectors

Thi(x)T, i€,
TG THG (), je Bolx),
jGj(x*)Tefj, j€ Z6(x), k=12,...,5
k denotes the kth column vectors of 5;- At the
same time, the Lagrange multiplier set A (x,) is a singleton.

(A2) The strong second-order sufficient condition (SSOSC) holds, i.e. let x, be a
stationary point of (Pnccp) and (14, I's) € A(xy), there exists a positive scalar
7o such that

are linearly independent, where e

d’ Vﬁxg(x*;,u*) Iy — Z Aj(x*>/1*’ Fi) d> ’70“d”2’ vd € aff(C(x.)),
jelc

where aff(C(x,)) denotes the affine hull of C(x,), the critical cone at x,, whose
definition is given by

C TG (x)d e Try (G (x.)), j € Ie

The matrix A/ (%4> s Fi) e R™ " is the sigma term of (Pnccp), whose expres-
sion is (see Lemma 3.4 in [6] for details)
; cot™ 0 (24) j (x+), if j € Bo(xs),
p (s
Onxns otherwise.

A%, 104, TL) = (28)

With Lemma 3.1, the next lemma provides the explicit expressions of C(x.) and

aff(C(x4)).

Lemma 3.6 (Explicit expressions of critical cone C(x,) and its affine hull
aff(C(x4))): Let x, be a stationary point of (Pnccp) and (i, I's) € A(xy). Then,
we have

(Th(x)d)i =0, ieZs

TG (x,)d € RY, jeZg(x) N 2L,
JG (x.)d € Lo, j€ Za(x) N Zr,

" (—GJ (x4) tan? 6;, G (x4 T
Clx,) = 1deR": jl(}f(x)*)dgé,z ) jeBoennzr [

J G (x.)d = 0, je€ Zg(xe) NI,
(jGi(x*)d)Taj =0, j € Bg(x.) N Br,
jGj(x*)d € R+(bj), j€ Z6(x) NBr, |
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whereaj, bj € R" are respectively defined as in (20)-(21) and Ry (b)) := {c bj| 0 >

0}. In addition, the associated affine hull aff(C(x.)) has the following form:

(JTh(x.)d); = 0, iels
. n. jGJ(x*)d = 0s,, jE Z6(x4) NZr,
aff(C(x,)) = {d e R": (JGj(x*)d)Taj]= 0, }eBute)n Br
B]le(x*)d = 05j> ] € ZG(X*) N BF*

with Bj := I, — bjb, j € Zg(x.) N Br,.

(29)

Proof: From [6, Theorem 3.3] and (14), the critical cone C(x.) can be recast as

follows:
(JTh(x.)d)i =0, ielg,
TG (x,)d € Tz, (G(x.), je Zr,,
Clxy) = 1d e R": TG (x4)d =0y, je Ze(x) NIy, L.
(TG (x)d) T, =0, j e Bg(x.) N Br,
JG(x)d € Ry(H;'TL), je Zg(x.) N Br,.]

Using the relation (27), there have three possibilities:

(a) Ifj € Zg(xs), then TG/ (x.)d € RY;
(b) Ifj € Zg(x.), then JG/ (x,)d € Lo

(c) Ifj € Bg(x.), then (=G, (x,) tan? 6;, G (x,) ) T G/ (x,)d < 0.

Hence, the second line in the right-hand side of (30) is equivalent to

TG (x,)d € RY, jeZglxs) N Zr,
JG (x)d € Loy je Zg(x) N Zr,
(=G} (x) tan? 0;, Gy (x) ) TG (x,)d < 0, j e Bg(x) N Zr,

Furthermore, if j € Bg(x.) N Br,, we know

I, ebd £5\ 104}

. j _ tan &; . tan 6;
= ((F]*)z) Il (ug—; A,

— T =/14@n26|[T)sl-a

(30)

where g; is defined as in (20). This together with the fact (J Gx)d)TT, =0

show that

(JG)d) a; =0, je Bs(x) N Br,.
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On the other hand, if j € Z5(x,) N Br,, we obtain (F{;)z # O5—1 and
i cot?d; 0 ; tan 6;
M7 = O A RN TCSARH e
OSj—l _ISj—l (r*)Z

= 1+ o4t - by,

where bj is defined as in (21), which further implies that

JG (x.)d € Ry(H;'T)) &= JG(x.)d € Ry (b). (31)

Focusing on the above relations, its affine version of (31) can be rewritten as
BiJG (x.)d =0y, Bj:=1I;—bb/, je Zs(x.)NBr,. (32)
Then, it follows from the relations (30)-(32) that the conclusion is true. |

The next two lemmas connect some relations on the matrix A/ (%45 M F]*) in
the expression of sigma term (28) and the Hessian of the augmented Lagrangian
function.

Lemma 3.7: Suppose that x. is a stationary point of (Pnccp) and (us« I'x) €
A(x.). Then, the following relation holds for any given d € aff (C(x.)), i.e.

S ) DY+ S AN Thd= S )Ty

jeBg(x:)NBr, j€Zc j€Bac(x:)NBr,

with y .= JG(x.)d, j € Ic and D;j is defined as in (23).

Proof: From the definition of A/(x,, fi+, F{k) in (28), we have

Z T(}”)TD])’] + Z dTAj(x*a Moo F{k)d

jeBg(x+)NBr, je€Ie

= > oV py+ D> d" A, u,Thd

je€Bs(x«)NBr, jeBag(x«)NBr,

Jj€BG(x:)NZT,

= > (n)énz—u@z/gnz)

T (o
jeBg(x:)NBr, + 0]

r . .
+ > (]. o ) . (34)
jeBa(x.)NBr, G} (X«
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In addition, ifj € Bg(x,) N Br,, then ', e bd L5\ {05}, GI(x.) € bd L4 \ {05)
and there exists oj >0 such that 1“],; = aj(HjGj (%)), due to Lemma 3.1(d). By

a simple calculation, we obtain (I" i)l / Gj1 (xs) = 0} tan? 6;. Moreover, it follows
from the relation (29) that (y¥)”a; equals to 0 for any given d € aff(C(x,)) and

— .
j € Bg(xs) N Br,, which implies that [|(I})2 y}]|* = tan? 6;(y})?. Combining
the above two equations with (34), we have

> ) DY + D d A (x pa, TN

jeBa(x+)NBr, j€le
10; ; ; . .
= Z - +Ja~ (||y’2||2 — tan? Gj(yll)z) + Z aj(y’)Tij’.
jeBg(x)NBr, J jeBg(x)NBr,
2
0!
J iNT j
= 2 o0y
jeBg(x)NBr, ]
where the last equality is due to the definition of H; in (11). |

Lemma 3.8: Suppose that x. is a stationary point of (Pnccp) and (us« I'x) €
A(xy). If Assumptions (A1) and (A2) hold at (x., ., I'), then there exist positive
scalars to, no such that for any © > 1,

ATV L0 pnT)d+ > tG)TDY > %nduz, vd € aff(C(x.))
jeBa(eBr,

withyj = jGj(x*)d, jeZcand D; is defined as in (23).

Proof: From Assumption (A2), there exists a positive scalar 79 such that

A [ V2LGow i Ta) = D Al s Th) | d 2 molldIl®, Vd € aff(C(x.),
Jjele
(35)

In addition, let 7o > 0 be satisfied that

o? )
Z [ / max ||jG7(x*)||2‘ I(nax {tan20j,1}]§%.
)

T + 0 jeBg(x)NBr, Bg(x)NBr,
jeBotemnBr, + 0} jeBg(x)NBr €Bg(x+)NBr
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From the definition of #; in (11) and the Equation (33), for any given d €
aff(C(x,)), we have

/ .
> o) DY + D d A, T

jeBag(x:)NBr, j=1

>

jeBag(x:)NBr,

a? , , , ,
x max TG (x| max  {tan“6;,1} ¢ - [|d]|
T + 0j jeBg(x)NBr, jeBg(x.)NBr,

\

1o 2
——||d]*. 36
2 4l (36)

Hence, the conclusion is satisfied at (x.,us I'x) by using the inequali-
ties (35)-(36). |

In light of Lemma 3.8 and the famous Debreu theorem [25], we can further
establish an important inequality which will be used in the sequel.

Lemma 3.9: Suppose that x. is a stationary point of (Pnccp) and (us«I'x) €
A(xy). If Assumptions (A1) and (A2) hold at (., p«, I'x), then there exist 11 > ¢
and 1, € (0,19/2) such that for any t > 7, and d € R",

d'VEL( uoTd+ D 10N DY + 1T (xy) = mlldl?,
jEBG(x*)ﬁBr*

where Dj is defined as in (23), y == (y',)%,....)), ¥ = TG (x)d, je Ic,
T (x4, y) is given by

Ty = ITh)dP+ > P+ Y (6)')

jeZg(x)NIr, jeBg(x+)NBr,

+ > Byl (37)

je€Za(xx)NBr,

and aj is defined as in (20), Bj := I; — bjbjT,j € Z¢(x«) N Br, with b defined as
in (21).
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Remark 3.1: Let us denote

—Thi(x,), iele

a]-TjGj(x*), je BB
i jQ(x*), je ZT
JG(x), jeZB|’
chij(x*), jeBZ
TG (x4), je ZZ
I
Iigp
F Iiz1
= WiZB , (38)
Wis2l
Wiz2!

where
BB = Bg(x,) N Br,, 2T := Zg(xy)NIr.,
ZB = ZG(x*) N BF*a BZ .= BG(X*) N ZF*,
22 = Zg(x) N 2r,, WEB = diag(Wh),j e 28,
WIPZl = diag(Wl),j e BZ, WP = diag(Wl),j e 22,

‘ . . '
W, e onllc, (Fr (a0, T)), 6] 1= S =il

and aj, ¢j, Dj, Wi are defined as in (20), (22), (23) and (24), respectively. Setting

Beye(tas Tus Wo) 1= Vo LKy 1 T) + ATEA 4+ D 1 7G (x) DTG ()
jeBB
(39)

From the definitions of A; (14, T'x, Wy) and By, (4, I's, Wy) in (25) and (39),
we obtain

AT A; (s Ty Wo)d = dT By (e Ty Wi)d 4 (t — 71)dTATEAd.  (40)

Suppose that Assumption (A1) holds at (x., u«, ['«), we can further obtain the
following property of the operator A.

Lemma 3.10: Suppose that Assumption (A1) holds at (x., t«, I's), the opemtor;&
defined as in (38) is of full row rank.
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Proof: 1fj € Bg(x4), then || Gé (x| = Gj1 (x+) tan §;. In this case, we have

el el
Hi(x0) = (tan_2 2((2(;0) _ (tan_ej g}_@(i(a;*)n)
2\ ok 2\

= ||Gé(x*)||( e )
_Gz(x*)

Ifj € Bg(x«) N Zr,, then it follows from the definition of ¢; in (22) that

1 tan 6 _ .
(= ———= is parallel to  H;G (x.).

/1 +tan?6; —sz(x*)

If j € Bg(x«) N Br,, then ||(Fi)2|| = (Fi)l cot 6. It follows from the definition
of aj in (20) and Lemma 2.1 that

1 (tan@-) ) el ||(Fj) | (tanHj)
4 = ———— : is parallel to )2 -
1+ tan? 6; (Ch): (Th)>

=T = 6;(H;G/(x.)).

In summary, we conclude that

(a) Ifj € Bg(x.) N Br,, then ajTjGj(x*) is parallel to Gj(x*)Hiji(x*).
(b) Ifj € Bs(x.) N Zr,, then chJGf(x*) is also parallel to G/ (x,)H;J G (x.).

Then, together with the fact that Assumption (A1) holds at (x., t, I'x), it follows
from [6, Theorem 3.1] and the structure of the operator A defined in (38) that A
is of full row rank. |

Remark 3.2: By virtue of Lemma 3.10, we further assume that the operator A
has the following singular value decomposition:

A=U(% Ogxng) VT, U BRI, Ve R™Y, (41)

whe{e q:=1+ |ZG(9£*)| + |B§(x*) N Br, | +JBg(x*) N Zr,| and Y= diag
(0i(A))1<i<q With 01(A) > 02(A) > -+ > 04(A).

Combining Lemmas 3.8 and 3.9, we next establish the second-order growth
condition of A;(u«, s, W) in (25) and then discuss some properties on the
corresponding inverse of Az (14, I's, Wy).
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Theorem 3.11 (second-order growth condition of A; (f«, I's, Wy)): Suppose
that x, is a stationary point of (Pnccp) and (1, ') € A(xy). If Assumptions (A1)
and (A2) hold at (x., t«, T'y), then there exist Ty > 1o and n, € (0, no/2) such that
foranyt > 11 and d € R”",

AT Ay (e, Ty Wo)d > dT By 2 (s, To, Wa)d > mu||d]1% (42)

where A (i, U, Wy) and By (s, U, W) are defined as in (25) and (39),
respectively. Consequently, every element in I1,0p(VxL:)(Xs, s, ['x) is positive
definite.

Proof: It follows from the definition of 7 (x., y) in (37) that

dTATEAd
=T+ D, O)gWigly
jeBg(x«)N2Zr,
+ > W+ DT o)W - BBy
jeZg(x)N2Z2r, jeZc(x+)NBr,
> > OigWidy+ DL o)Twly
jeBg(x:)NZr, j€26(x:)NZr,
+ > )T (WL - BBy
jE€Z5(x+)NBr,
>0, (43)

where the last inequality follows from the following discussions.

(a) Ifj € Bg(xy) N Zr,, from the definition of Wi in (24), then we have

Z r()’j)TCjWiCjTJ’j = Z T(CJ'TJJ)TW{;CJ'Tyj =0

jeBg(x:)NZr, jeBg(x:)NZr,

(b) If j € Z5(x4) N Zr,, from Lemma 3.4(f), then the matrix Wi can be set as
one of the following matrices

1
tan 91 + cot ¢9j

tan 6; ij
X .
wj  ag - (Isj_l — ijjT) + cot6; - ijjT

OS]'XSJ') ISJ')
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Notice that the last matrix is also positive semidefinite, due to the Schur’s
complementarity theorem, since for any given v € R%™1,

vl (agj . (Isj_l — ijjT) + cot6; - ijjT — cotd); - ijjT) v

T T
=ag, v (Iy—1 — WiwW; v >0,

where the last inequality is due to the fact that w is any given unitary vector
in RY~1, Therefore, we obtain Yiczatnzr, © OHTWoy > 0.

(c) Ifj e Z5(xs) N Br,, from Lemma 3.4(c), then the matrix Wi can be set as
one of the following matrices:

tan 6 1 T
—_— — ()2
I tan Hj + cotHj tan 6]- + cotej
tan 6; 4 cot 6 »2 fyl tan ; 4 cot 6 #2802

From the definition of Bj and b; in (21), we have

BB = (I, — bjb} ) (I; — bjb])

T T T T T
= Isj — b]bj — b]bj + b]bj b]b] = Isj — b]b

' = B;
and the matrix Wi — BjTBj is equal to either bjbjT or Og;xs;» since
. —T
=0 (1),
tan0j+cot0j tan(9j+cot0j +b'bT—I
(F] I tanﬁj (F] (F] T 17 Sj
tan 6; 4 cot 6, ()2 Ly tan 6; 4 cot 6, ()2 (1%):
tan 0; 1 (Fj) T
_ tan 6; + cot 6 tand; + cotl;
[ P W0 s
tan 0; + cot 6; +2 gl tan 6; + cot ; »J2 it
) —T
cotd); B 1 ' (Fi)z
tanHj + cot Qj tan Hj + coth _
+ tan Hj T 5j

“ani oo ™2 gt eorg T2
tan¢9j+cot0j ( )2 tan0j+c0t0j ( )2( )2

- OSjXSj'
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Thus, ZjeZG(x*)ﬂBr r(y/')T(W{k - BJ.TBj)yf > 0. Consequently, for any 7 > 1y,

from (40) and (43), we obtain

d" Ay (s, T, W)
> dTBrl,r (,u*a r., W*)d

=d"V2 LG o T)d+ nid"ATEAd+ D () Dy
jeBg(x:)NBr,
> d' V2L Gt T+ 01T (x0y)+ D () Dy
jeBG(x:)NBr,
> mldl?,
where the above last inequity is due to Lemma 3.9. Combining the above inequal-

ity and Lemma 3.3, we deduce that every element in I1,0p(Vy L7 ) (X, tt4, ['s) is
positive definite. |

Remark 3.3: It follows from (23) that for j € Bg(x,) N Br, we obtain

) 0 of ‘

o i—1 T0

D= —! 1), lim —2
T +0j O5—1 I5—1— (T%)2 (T2 oot

= O'j.

Under the Assumptions (A1) and (A2), there exists a positive scalar 7, such that

d"Bey e (6 T W)d < molld]|®, V7 > 71andd € R (44)

After these preparations, under the singular decomposition (41), the inequal-
ity (44) with the Sherman-Morrison-Woodbury formula [26, Sect. 2.1], we fur-
ther establish some properties on the inverse of the operator A; (u«, [, W)
defined as in (25). The proof is similar to [20, Lemma 10], we omit it here.

Lemma 3.12 (Properties on the inverse of A (f«, I's, Wy)): Suppose that x.
is a stationary point of (Pnccp) and (i« I's) € A(xy). If Assumptions (A1) and
(A2) hold at (x., s, I'y), then for any t > 71 we have

(Az (s, T W*))_l = %

~ 1~ R oy —1 ~ =
N gt (0'11111q + (r — T1)E) Ux-! A g?x(_nl_q) VT,
0(n—q)xq oy My In—g
(A‘[ (ﬂ*) F*, W*))_l > \7

~ 1 R =1 ~ =
% 1T (0'27721q +(r — TI)E) Uz-! qu(n—q) VT
0(n—g)xq 0y 1y In—g



OPTIMIZATION 27

and
A (s, T, W) TATEw| < V2 (62 4+ (G172) "2 (62m2) %) (z — 71) HIwll,
where  q:=14|Z6(xs)| + |Bc(x.) N Br,| + |Be(xs) N 2r,|, 61 := min

{1, 01_2(;1)}, 0, := max{l, aq_z (A)} and n1, > are respectively defined as in (42)
and (44).

4. Local convergence analysis

This section is devoted to discussing the local convergence of augmented
Lagrangian method for nonlinear circular cone programs (Pxccp).

From Theorem 3.11 and Clarke’s implicit function theorem [27], there exist
an open neighbourhood B 2 (ux> I's) and alocally Lipschitz continuous function
x; (+) defined on IB%59\ (us> ') such that for any given (x,I') € IB%59\ (1 Ty),

VLo (e (1, 1), 1, T) = 0y (45)

In addition, since I, o O (01-’ = % — 0, j € Ic) is strongly semismooth every-

where (see Lemma 2.4), x; (-) is semismooth (strongly semismooth if V2f, V2h,

V2G are locally Lipschitz continuous and I, ,, (©) s strongly semismooth every-
i

where) at any point in B 5 (i ') and there exist two positive number €l 5/1\ €

(0,6% ] such that for any x € B,1(x,) and (u,T') € Bé}\ (us> Iy, it follows from
Lemma 3.3 and Theorem 3.11 that every element in I1,0p(V,£.)(x, u, I') is pos-
itive definite and x; (u, I') is the unique minimizer of £; (x, 1, I') over B 1 (x,),
i.e.

x7(u, ') = argmin {2, (xu,T)|xe IBel(x*)} . (46)

Let 9, : Rf x H}:l R% — R be the optimal function of problem (46), i.e.

J
O (1, T) = min)S,(x,,u,F), (u,T) e R x [ RY.

XEBel X

j=1

Notice that £, (x, -, -) is a concave function for each fixed x € R”, from the above
definition of ¥/;, then ¥, (1, I') is also a concave function satisfying the following
relation

191(/“’1—‘) = ST(XT(/I, F)’ H> F)

= F e (1)) + uThiee (u,T)) + gnh(x, (u, T

J
+ % 2 (”H[:oj’ (M = 2@l (w, D) 17 = ||rf||2) . @)

j=1

where 9].’ =% —0,jelc



28 (&) Y.LUETAL

For any given (u,I') € IB%(;}\ (t+, IT'+), we denote

pe(u,T) = g+ th(xe (1, 1)),
Te(u,1) = (T, 1), T2, T, T (1)), (48)
(i, T) = Mg, (=G (w 1), jeC

From the relations (9)-(10) and (48), we obtain
Fy (e (1, 1), p,T) = T = 26 (3 (u, 7)),

CH, 1) = Mg, (Petee (0,1, ,T)
and

VLo (i, 1)y e (1, T), T (1, T))

— Vf (e (1 T) + Vhiee (T (1 T) = D VG G (DT (. T)
j€lc

=V, & (x: (1, ), 1, 1)
= 0y, (49)
where the last equality follows from (45). In addition, using the definition of
P (u, ') in (47), we know
VuO: (1, T) = Vo (0, T) Vi Le Cer (1, 1), 1, T)
+ V,uffr (xr (ﬂ’ F)) M F) = h(xr (/u’ F))>
V]‘jﬁr (,u’ F) = V]‘jxr (,u, F)ngr (x‘r (/u: F)’ M F) + V]‘igr (xr (,u’ F)) Hs F)
=74+ ‘L'_IFJ; (u,T).
Due to the above discussion, the following lemmas characterize the gradient of

¥ (u,T') and its Hessian on Dyy, (the set of all Fréchet differentiable point of
Vi, (-) in 15%5/1\ (144, T4)), respectively.

Lemma 4.1: Suppose that x, is a stationary point of (Pnccp) and (u«, I'x) €
A(xy). If Assumptions (A1) and (A2) hold at (x., pts, I'x), then for any © > 1y,
the concave function ¥, (-) is continuously differentiable on Bé}\ (s I'y) with

_ h(xr (1, 1))
Vi (u, ') = (_T—lr 4 r‘ll“,(,u,l“)) , (w,T)e Ba}\(ﬂ*,r*),

where Iy (u, 1)) is defined as in (48). Moreover, VU, (u, ') is semismooth at any
point in 1535[1\ (ux> I'y) and it becomes a strongly semismooth function at any point
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in Bé/l\ (4> Ty) lszf, V2h, V2G are locally Lipschitz continuous and Hg()j, () is
strongly semismooth everywhere, where 0]-’ =% —0,jelc
Lemma 4.2: Suppose that x, is a stationary point of (Pnccp) and (u«, I'x) €
A(xy). If Assumptions (A1) and (A2) hold at (x«, x, I'x), then for any © > 14,
(u,T) € Dyy, and (Au, AT) € R! x H,Ll RS,

V29 (1, T)(Ap, AT)

Th(x. (u, 1))
~ W' TG (xe (1,T)
e || -WAITG e (1) | Ay (u, T, W)~ T (1, T); (A, AT))

W TG (x; (1, T))

0;
— AT + I_IWI(AFI)
+ —t A2 4 e IW2(AT?) | . Wi e osT% (1, 1) ¢

—t AT 4+ 7 TW/(ATY)

= Ve (w, I)(Aw, AT), (50)
where
T((,T)s (A, AT)) = = Vh(xe (s, D) (Ap) + D VG (e (1, ) W(AT).
JjeTe
(51)

Proof: Let (Au, AT') be any given point in R x ]_[]].:1 R% and (u,I') € Dyy,,
then for any ¢ > 71, the hessian V29, (u,T)(Au, AT) has the following expres-
sion as

Th(xz (1, D))z (1 1); (Ap, AT))
—t AT + 0TI

(T' = 2 JG (%, (1, 1)); AT — TJGl(xr(ﬂ,Fl))x; ((u, T); (A, AT)))
—tIAT? 4+ 77T,

(2 = 2T G2 e (1, T))s AT? — 27 G2 (x, (1, T))¥, (1, T); (A, ATY)

N SV
o
(I7 = e TG (e (u, T))s AT = 2 TG (e (1, D)), (1, T); (A, AT)))

where (9]-’ =7 —0;, jeIc. In light of Lemma 2.4, the mapping Ilg,,(-) is
J

semismooth everywhere. Hence, there exists an element W/ e apl} (u,T) =
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88Tz, (F (e (4, 1), 1, T)) = gl (I = 1G)(x, (1, 7)) such that
j) j)

M, (T = TG e (1, T))s AT = 1 TG (e (1, TN, (1, T); (A, AT)))

J

= W/ (AT = e TG (e (1, D)X, (1, T)s (A, AT))). (52)

Let (u,T) € BélA (1% T'+), from the relations (49) and (52), we have

Onxn = VoL (er (1, T)s e (4, T), T (1, T)) o, (1, T); (A, AT))
+ Vh(x (1, T))(Ap)
T VG (5 D) ThGee (0 DY, (T (A, AT))

= 2 VG (i, TYW

j€lc
X (AT = 1 TG (x; (1, 1)), (1, T)s (Ap, AT)))
= Ac (u, T, W)X, (1, T)s (A, AT)) + Vh(x (1, T))(Ap)
= 2 V& (u, 1) W(AD),

j€lc
where A; (u, I, W) is defined as in (13). The above relation yields that
X (D) (A, AT)) = Ag (u, T, W) 7T (1 T); (A, AT)), - (53)
where 7 ((u, T); (A, AT)) is defined as in (51). Hence, we have
T (1, )X, (1, T)s (Ap, AT))
= Jh(xe (1, D) A (1, T, W) 71T (1, T); (A, AT))

and
r_IH/CHj, (T — 2 TG (e (1, 1))s AT — 1 TG (x (u, D)X, (1, T); (A, AT)))

=17 W/ (ATY — e TG (x; (1, T))x, (> T)s (Ap, AT)))

= =W I G (xe (1, 1) Ac (1, T, W) T (1, T3 (A, AT)) + 77 W/(ATY),

where the last equality follows from the relation (53). Then, by applying these
relations and the definition of V24, (1, I')(Ap, AT), the inclusion (50) holds.
[ |

Together with the continuity of x; (-) and the semismooth property of Vi, (-)
in Lemma 4.1, we establish the following lemma.
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Lemma 4.3: Suppose that x. is a stationary point of (Pnccp) and (us«I'x) €
A(xy). If Assumptions (A1) and (A2) hold at (x., tt«, I'x), then for any © > 1,
and (Au, AT) € R! x H]'=1 RY, there has

(V) (s, ') (A, AT) © Ve (s, i) (A g, AT),

where V; (i, I') (A u, AT) is defined as in (50).

Finally, we first build up two important inequalities and then the linear con-
vergence rate of augmented Lagrangian method for nonlinear circular conic
programs can be achieved. Since the details of proof are similar to the procedure
in [19, Proposition 3.1] and [20, Theorem 1], we omit them here.

Theorem 4.4: Suppose that x. is a stationary point of (Pnccp) and (us,I'x) €

A(xy). If Assumptions (A1) and (A2) hold at (x., tt«, 'x), then for any © > 1,

and (Ap, AT) € R! x H]]':1 RY, there exist positive scalars p and k such that
I, (o Tu)s (Mg, AD) |1 < p*r 2 [(Ape, AD) I (54)

and

|—(V(Au, AT) + 77 (Ap, AT), (A, AT))|
<kt ?[[(Ap, AT)|1?, YV (Ap, AT) € Ve (ua, To) (A, AT). (55)
Furthermore, let 1, n2, p, k be respectively defined as in (42), (44), (54), (55) and
71 be given in Lemma 3.9. Define py := 2p and p, = 4x. Then, for any t > 11,
there exist two positive scalars € and 6 (both depending on t) such that for any
(1, T) € Bs(ux, I'x), the problem
min 21’ (x) /,t, r)
s.t. x € Be(xy)

has a unique solution x, (1, I'). The function x. (-, -) is semismooth at any point in
Bs(pts, I'x). Moreover, for any (1, ') € Bs(ux, I's), we have

e (1, T) = x* 1l < pre Hi(u, T) — (w5, T,
1 Ceee (s Ty T (5, T)) = (s T < pat ™M (> T) = (1, T,

where p. (1, 1) := p + th(x;(u, ")) and ' (u, I') is defined as
I'; (ﬂ» r)

= (H%; (! =76 Gee (1, D)), g, (1 = rcfm(ﬂ,r)))) e [Ir

JjeZe

with 0] .= % —0;,j € I.
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5. Concluding remarks

In this paper, we consider an augmented Lagrangian method for minimizing a
class of nonlinear circular conic programs. In particular, a linear local conver-
gence rate of generated iterations is established without requiring strict comple-
mentarity condition, whereas it is usually needed in the analysis of interior point
method. On the other hand, due to the non-self duality property of circular cone
under the standard inner product, our results show that ALM can deal with non-
self dual conic programs based on Bouligand-subdifferential of the projection
operator onto the given cone, the explicit expressions of the associated critical
cone and its affine hull under the appropriate constraint qualifications, which
enriches the algorithm design of non-interior-point method framework for han-
dling non-self dual conic programs. In light of these results, it is hopeful to further
discuss some stability issues such as the robust isolated calmness and the Jaco-
bian uniqueness condition of the Karush-Kuhn-Tucker solution mapping of the
given circular conic programs and ALM for solving another types of non-self
dual conic programs (such as p-order conic programs, power conic programs
and exponential conic programs). We leave it for our sequential researches.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The first author’s work is supported by National Natural Science Foundation of China
(Grant Number: 11601389). The second author’s work is supported by Postgraduate Research
Innovation Project of Tianjin Normal University (Grant No. 2023KYCX054Y). The third
author’s work is supported by Natural Science Foundation of Tianjin (Grant Number:
19JCQNJC03700). The fourth author’s work is supported by National Science and Technology
Council, Taiwan.

References

[1] Zhou JC, Chen JS. Properties of circular cone and spectral factorization associated with
circular cone. ] Nonlinear Convex Anal. 2013;14(4):807-816.

[2] Zhou ], Chen JS. Monotonicity and circular cone monotonicity associated with circular
cones. Set-Valued Var Anal. 2017;25(2):211-232. doi: 10.1007/s11228-016-0374-7

[3] BaiY, Gao X, Wang G. Primal-dual interior-point algorithms for convex quadratic cir-
cular cone optimization. Numer Algebra Optim. 2015;5(2):211-231. doi: 10.3934/naco.
2015.5.211

[4] Bai Y, Ma P, Zhang J. A polynomial-time interior-point method for circular cone pro-
gramming based on kernel functions. J Ind Manag Optim. 2016;12(2):739-756. doi:
10.3934/jimo

[5] Mu X, Dong G. A projection and contraction method for circular cone program-
ming support vector machines. Int ] Mach Learn Cyber. 2021;12(9):2733-2746. doi:
10.1007/s13042-021-01360-2


https://doi.org/10.1007/s11228-016-0374-7
https://doi.org/10.3934/naco.2015.5.211
https://doi.org/10.3934/jimo
https://doi.org/10.1007/s13042-021-01360-2

(6]

OPTIMIZATION (&) 33

Lu Y, Chen ]S, Zhang N. No gap second-order optimality conditions for cir-
cular conic programs. Numer Func Anal Optim. 2019;40(10):1113-1135. doi:
10.1080/01630563.2018.1552965

Zhou J, Chen JS, Hung HEF. Circular cone convexity and some inequalities associated
with circular cones. ] Inequal Appl. 2013;2013(1):1-17. doi: 10.1186/1029-242X-2013-1
Zhou J, Chen JS. The vector-valued functions associated with circular cones. Abstr Appl
Anal. 2014;2014(1):603542.

Zhou J, Chang YL, Chen JS. The H-differentiability and calmness of circular cone
functions. ] Global Optim. 2015;63(4):811-833. doi: 10.1007/s10898-015-0312-5

Zhou J, Chen ]S, Mordukhovich BS. Variational analysis of circular cone programs.
Optimization. 2015;64(1):113-147. doi: 10.1080/02331934.2014.951043

Zhou J, Tang ], Chen JS. Parabolic second-order directional differentiability in the
Hadamard sense of the vector-valued functions associated with circular cones. ] Optim
Theory Appl. 2017;172(3):802-823. doi: 10.1007/510957-016-0935-9

Chi X, Wan Z, Zhu Z, et al. A nonmonotone smoothing Newton method for circular cone
programming. Optimization. 2016;65(12):2227-2250. doi: 10.1080/02331934.2016.
1217861

Hestenes MR. Multiplier and gradient methods. ] Optim Theory Appl. 1969;4(5):
303-320. doi: 10.1007/BF00927673

Powell MJD. A method for nonlinear constraints in minimization problems. In: Fletcher
E editor. Optimization. London: Academic Press; 1969. p. 283-298.

Rockafellar RT. The multiplier method of Hestenes and Powell applied to convex
programming. ] Optim Theory Appl. 1973;12(6):555-562. doi: 10.1007/BF00934777
Rockafellar RT. A dual approach to solving nonlinear programming problems by uncon-
strained optimization. Math Program. 1973;5(1):354-373. doi: 10.1007/BF01580138
Tretyakov NV. A method of penalty estimates for convex programming problems. Ekon
Mat Meto. 1973;9:525-540.

Bertsekas DP. On penalty and multiplier methods for constrained minimization. SIAM
] Control Optim. 1976;14(2):216-235. doi: 10.1137/0314017

Liu YJ, Zhang LW. Convergence of the augmented Lagrangian method for non-
linear optimization problems over second-order cones. ] Optim Theory Appl.
2008;139(3):557-575. doi: 10.1007/s10957-008-9390-6

Sun D, Sun J, Zhang L. The rate of convergence of the augmented Lagrangian method
for nonlinear semidefinite programming. Math Program. 2008;114(2):349-391. doi:
10.1007/s10107-007-0105-9

Shapiro A, Sun J. Some properties of the augmented Lagrangian in cone constrained
optimization. Math Oper Res. 2004;29(3):479-491. doi: 10.1287/moor.1040.0103
Moreau JJ. Décomposition orthogonale d’'un espace hilbertien selon deux cones
mutuellement polaires. C RTI’Acad Sci. 1962;255:238-240.

Mifflin R. Semismooth and semiconvex functions in constrained optimization. SIAM |
Control Optim. 1977;15(6):959-972. doi: 10.1137/0315061

Qi L, Sun J. A nonsmooth version of Newton’s method. Math Program. 1993;58(1):
353-367. doi: 10.1007/BF01581275

Debreu G. Definite and semidefinite quadratic forms. Econometrica ] Econom Soc.
1952;20(2):295-300.

Golub G, Van Loan CF. Matrix computations. Baltimore: The Johns Hopkins University
Press; 1996.

Clarke FH. Optimization and nonsmooth analysis. Philadelphia: Society for Industrial
and Applied Mathematics; 1990.


https://doi.org/10.1080/01630563.2018.1552965
https://doi.org/10.1186/1029-242X-2013-1
https://doi.org/10.1007/s10898-015-0312-5
https://doi.org/10.1080/02331934.2014.951043
https://doi.org/10.1007/s10957-016-0935-9
https://doi.org/10.1080/02331934.2016.1217861
https://doi.org/10.1007/BF00927673
https://doi.org/10.1007/BF00934777
https://doi.org/10.1007/BF01580138
https://doi.org/10.1137/0314017
https://doi.org/10.1007/s10957-008-9390-6
https://doi.org/10.1007/s10107-007-0105-9
https://doi.org/10.1287/moor.1040.0103
https://doi.org/10.1137/0315061
https://doi.org/10.1007/BF01581275

	1. Introduction
	1.1. Notations

	2. Preliminaries
	2.1. Topological properties
	2.2. Strongly semismoothness of bouligand-subdifferential of projection operator

	3. Properties of augmented Lagrangian function
	4. Local convergence analysis
	5. Concluding remarks
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
    /ENN ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


