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Abstract. Absolute value equations (AVEs) have attracted much attention in recent studies. However, the
problem data may be contaminated by noises that yield a meaningless solution, even if these coefficients
are uncertain within a certain range. To address this issue, we import the idea of robust optimization and
present their robust counterpart models with data uncertainty in the l1 and l∞ norm balls. In particular,
we prove that these models are equivalent to the linear programming problems. Numerical experiments
demonstrate that the true solution of these AVEs can be recovered by solving the equivalent linear pro-
gramming models with open-resource packages JuMP and HiGHS in Julia language.
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1. INTRODUCTION

The target problem of this article is the absolute value equation (AVE) with uncertain data,
which is different from the traditional one. To explain the motivation, we first recall that the
standard absolute value equations (AVE), which is

Ax+B|x|= b, (1.1)

where A ∈ Rn×n, B ∈ Rn×n, b ∈ Rn, and |x| denotes the absolute value vector of x ∈ Rn in the
component sense, i.e., |x| := (|x1|, |x2| . . . |xn|)T . If B =−I, where I is the identity matrix, then
problem (1.1) can be cast into the following special form

Ax−|x|= b. (1.2)

During the past two decades, these AVE models have attracted considerable attention in many
different fields, such as finance, control, and operations research. Since they were introduced
by Rohn for the first time in [1], many literatures have studied theories and numerical algo-
rithms of these AVEs from different perspectives [2, 3, 4, 5, 6]. One of the important results
in AVEs is the existence and uniqueness of their solutions. Mangasarian and Meyer [2] proved
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the equivalence relation between problem (1.2) and the linear complementarity problem (LCP).
They proved that problem (1.2) has a unique solution for any b ∈ Rn if the singular values
of A exceed 1; has exactly 2n distinct solutions if b < 0 and ‖A‖∞ < mini |bi|/maxi |bi|

2 ; and has
no solution if 0 6= b ≥ 0 and ‖A‖2 < 1. After that, based on these observations, a number of
numerical methods for solving AVEs were investigated, which can be divided into the follow-
ing cases: (a) If the given AVE has a unique solution, the goal of numerical methods aims
to obtain the associated solution more efficiently. For example, Mangasarian [4] proposed a
generalized Newton method, and demonstrated the sufficient conditions for its linear conver-
gence. In addition, a hybrid linear equations-linear programming formulation for solving the
given AVE was proposed in [5]. Rohn and Hooshyarbakhsh [7] presented an iterative method
and discussed sufficient conditions for unique solvability. (b) If the given AVE has more than
one solution, the key concern turns to find the minimum norm solution. For example, Ketabchi
and Moosaei [8] presented an algorithm to compute the minimum norm solution of problem
(1.2), in which they proved that the given problem can be reduced as an unconstrained mini-
mization problem with a differentiable convex objective function by using the exterior penalty
method and proposed a quasi-Newton method for solving the corresponding unconstrained op-
timization problem. Moosaei and Ketabchi [9] found the minimum norm solution of the given
AVE by solving a quadratic programming problem with the quadratic and linear constraints,
and a Simulated Annealing algorithm was designed to solve the associated subproblem. (c) If
the given AVE has no solution, the best choice is to consider the optimal correction problem
associated with infeasible AVEs. For example, Hossein [10] studied the optimum correction
of AVEs through making minimal changes, and translated the corrected problem into a non-
differentiable, non-convex, and unconstrained fractional quadratic programming problem, and
proposed a bisection algorithm. Ketabchi [11] discussed the optimum correction of linear in-
equality systems and AVEs, and presented a feasible direction method for solving the given
problem. Ketabchi [12] demonstrated that the optimum correction problem can be transformed
into a nonconvex and fractional quadratic problem, and proposed a genetic algorithm. Hos-
sein Moosaei [13] used the Tikhonov regularization to investigate the optimum correction of
AVEs, and poroved that the corresponding global optimal solution can be found by using a sub-
gradient method. With the further extension of AVEs, numerous scholars also discussed other
variants. For the problem (1.2) associated with convex cones, one can refer to [14, 15, 16, 17]
and references therein.

Notice that all the literatures aforementioned discuss these AVEs with deterministic data.
Similar as the recent studies in the linear equations and optimization problems, it might be dif-
ficult to determine the exact problem data for AVEs. In the extreme case, the slight perturbation
of these data may change the associated solutions greatly even if the data are uncertain within
a certain range. However, there are few results about AVEs with uncertainty data, especially
for problem (1.1), which motives us to fill this gap. There are two main approaches to tackle
mathematical problems with uncertainty data. One is robust optimization for the worst-case
situation, and the other is stochastic optimization in the average viewpoint. In this paper, we
import the idea from robust optimization theory [18, 19] and study their robust counterpart
models to protect these AVEs against data uncertainty in the l1 and l∞ norm balls, in which the
associated models can be cast into LP problems and solved by open-resource solvers JuMP [20]
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and HiGHS [21]. Numerical experiments indicate that the true solution of these AVEs can also
be recovered.

The outline of this paper is as follows. In Section 2, we recall some basic concepts and
background materials regarding the norm consistency of matrix norms with the l1 and l∞ vector
norms. In Section 3 and Section 4, we present the equivalent descriptions of robust optimization
counterparts for the AVEs with data uncertainty in the l1 and l∞ norm balls, respectively. Nu-
merical results are provided in Section 5. Lastly, we do a summary in the final section, Section
6.

2. PRELIMINARIES

In this section, we recall some basic concepts and background materials used in the sub-
sequent analysis, in which the norm consistency between the l1 and l∞ matrix norm and the
associated vector version will be considered.

We first recall the norm consistency between the l1 matrix norm and the l1 vector version,
whose definitions are given by

‖A‖1 := max
1≤ j≤n

m

∑
i=1
|ai j|, ‖x‖1 :=

n

∑
j=1
|x j|,

where x ∈ Rn, A ∈ Rm×n and ai j is the (i, j)-th entry of A. The arguments are quite routine,
which can be found in textbooks of matrix analysis [22]. We present them just for completeness.

Lemma 2.1. Let A be a matrix in Rm×n and x be a vector in Rn. Then

‖Ax‖1 ≤ ‖A‖1‖x‖1.

Proof. From the above definitions of the l1 vector norm and the l1 matrix norm, we have

‖Ax‖1 =

∣∣∣∣∣ n

∑
j=1

a1 jx j

∣∣∣∣∣+
∣∣∣∣∣ n

∑
j=1

a2 jx j

∣∣∣∣∣+ · · ·+
∣∣∣∣∣ n

∑
j=1

am jx j

∣∣∣∣∣
≤

n

∑
j=1

∣∣a1 jx j
∣∣+ n

∑
j=1

∣∣a2 jx j
∣∣+ · · ·+ n

∑
j=1

∣∣am jx j
∣∣

=
n

∑
j=1
|a1 j||x j|+

n

∑
j=1
|a2 j||x j|+ · · ·+

n

∑
j=1
|am j||x j|

=

(
m

∑
i=1
|ai1|

)
|x1|+

(
m

∑
i=1
|ai2|

)
|x2|+ · · ·+

(
m

∑
i=1
|ain|

)
|xn|

≤

(
max

1≤ j≤n

m

∑
i=1
|ai j|

)
·

(
n

∑
j=1
|x j|

)
= ‖A‖1‖x‖1.

Hence, the proof is complete. �

Remark 2.1. Let D ∈ Rn×n denote a diagonal matrix such that |x|= Dx, whose each diagonal
element is ±1. For notional simplicity, we call such D the sign pattern of x. Now, we choose
matrix A ∈ Rm×n satisfying the following two conditions: (a) Each column of AT ∈ Rn×m only
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have two types of sign pattern D or −D, in which D is the sign pattern of x ∈ Rn; (b) Each
column of matrix |A| ∈ Rm×n (the absolute value of A in the component sense) have the same
value of l1 norm. It is easy to see that Item (a) and Item (b) make the relations (3.10) and
(3.11) become equalities. In this case, it follows from Lemma 2.1 that ‖Ax‖1 = ‖A‖1‖x‖1. For
example, we choose

A =

[
1 −3 2
−3 1 −2

]
, x =

 1
−2
1

 .
Then, ‖Ax‖1 = 16, ‖A‖1 = 4 and ‖x‖1 = 4. In this case, ‖Ax‖1 = ‖A‖1‖x‖1.

Remark 2.2. It is clear that the l1 matrix norm is consistent with the l1 vector norm from
Lemma 2.1 and Remark 2.1.

To end this section, we also review the norm consistency between the l∞ matrix norm and the
l∞ vector version, whose definitions are given by

‖A‖∞ := max
1≤i≤m

n

∑
j=1
|ai j|, ‖x‖∞ := max

1≤ j≤n
|x j|,

where x ∈ Rn, A ∈ Rm×n and ai j is the (i, j)-th entry of A.

Lemma 2.2. Let A be a matrix in Rm×n and x be a vector in Rn. Then

‖Ax‖∞ ≤ ‖A‖∞‖x‖∞.

Proof. From the above definitions of the l∞ vector norm and the l∞ matrix norm, we have

‖Ax‖∞ = max
1≤i≤m

|ai1x1 +ai2x2 + · · ·+ainxn|

≤ max
1≤i≤m

(|ai1x1|+ |ai2x2|+ · · ·+ |ainxn|) (2.1)

≤ max
1≤i≤m

(|ai1|+ |ai2|+ · · ·+ |ain|) max
1≤ j≤n

|x j| (2.2)

=

(
max

1≤i≤m

n

∑
j=1
|ai j|

)(
max

1≤ j≤n
|x j|
)

= ‖A‖∞‖x‖∞.

Hence, the proof is complete. �

Remark 2.3. Let D ∈ Rn×n be the sign pattern of x as defined in Remark 2.1. For notional
simplicity, we divide D into two parts, i.e.,

D =

(
D1

D2

)
,

where D1 denotes the sign pattern of subvector of x whose component is equal to ‖x‖∞ and D2
corresponds to the other part of D. Now, we choose matrix A ∈ Rm×n satisfying the following
two conditions: (a) Each column of AT ∈ Rn×m have only two types of D1-part sign pattern D1
or −D1; (b) The D2-part columns of A ∈Rm×n are all zero vector. It is easy to see that Item (a)
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and Item (b) make the relations (2.1) and (2.2) become equalities. In this case, it follows from
Lemma 2.2 that ‖Ax‖∞ = ‖A‖∞‖x‖∞. For example, we choose

A =


1 0 −5
−2 0 6
3 0 −7
−4 0 8

 , x =

 1
−0.5
−1

 .
Then ‖Ax‖∞ = 12, ‖A‖∞ = 12 and ‖x‖∞ = 1. In this case, ‖Ax‖∞ = ‖A‖∞‖x‖∞.

Remark 2.4. It is clear that the l∞ matrix norm is consistent with the l∞ vector norm from
Lemma 2.2 and Remark 2.3.

3. AVE WITH DATA UNCERTAINTY IN THE l1 NORM BALL

Now, we focus on our target problem, that is, the problem (1.1) with uncertain data, where
A,B and b are contaminated by a certain noise level in terms of the l1 norm ball. Our main
idea is proposing a robust counterpart model for this problem to against data uncertainty. To
the contrast, two types of robust counterpart models for problem (1.2) with uncertain data are
presented.

3.1. Robust counterpart model of problem (1.1). Assume that the data A, B and b are con-
taminated in a certain level, in which the uncertainty set is defined as

‖ [∆A ∆B ∆b]‖1 ≤ ρ,

where ρ is a given contamination level, ∆A ∈ Rn×n,∆B ∈ Rn×n, ∆b ∈ Rn denote noises in
matrices A,B and vector b, respectively. For a given x ∈ Rn, the associated worst-case residual
of problem (1.1) has the following form

r(A,B,b,ρ) := max
‖[∆A ∆B ∆b]‖1≤ρ

{‖(A+∆A)x+(B+∆B)|x|− (b+∆b)‖1} . (3.1)

Then, robust counterpart model of problem (1.1) is given by

φ(A,B,b,ρ,x) := min
x∈Rn
{r(A,B,b,ρ)} . (3.2)

The following theorem presents an equivalent form of robust counterpart model (3.2).

Theorem 3.1. Robust counterpart model (3.2) is equivalent to the following LP problem:

min
t,s∈R,x,ω,y∈Rn

t +ρs

s.t. Ax+Bω−b = y,
x≤ ω, x≥−ω, ω ≥ 0,
‖y‖1 ≤ t, t ≥ 0,
1+2‖x‖1 ≤ s, s≥ 0.

(3.3)

Proof. From the definition of the l1 vector norm, we have

‖(A+∆A)x+(B+∆B)|x|− (b+∆b)‖1

=
∥∥Ax+B|x|−b+[∆A ∆B ∆b][xT |x|T −1]T

∥∥
1

≤ ‖Ax+B|x|−b‖1 +
∥∥[∆A ∆B ∆b][xT |x|T −1]T

∥∥
1 (3.4)

≤ ‖Ax+B|x|−b‖1 +ρ (1+2‖x‖1) , (3.5)
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where relation (3.4) follows from the triangular inequality and (3.5) comes from Lemma 2.1.
Let D be a sign pattern of x ∈ Rn as defined in Remark 2.1. Then, the sign pattern of vector
[xT |x|T −1]T is given by

H :=

 D
I
−1

 ∈ R(2n+1)×(2n+1).

Choosing [∆A ∆B ∆b] = ρuvT ∈ Rn×(2n+1), where u ∈ Rn is defined as

u :=


Ax+B|x|−b
‖Ax+B|x|−b‖1

, if Ax+B|x|−b 6= 0,

any unit l1 norm vector, otherwise

and v := diag(H) is the diagonal vector of H, one has ‖[∆A ∆B ∆b]‖1 = ρ and relations (3.4)
and (3.5) become equalities. Then, worst-case residual (3.1) has the following explicit form

r(A,B,b,ρ) = ‖Ax+B|x|−b‖1 +ρ (1+2‖x‖1) .

Consequently, robust counterpart model (3.2) can be reduced to

φ(A,B,b,ρ,x) = min
x∈Rn
{‖Ax+B|x|−b‖1 +ρ (1+2‖x‖1)} .

By introducing some auxiliary variables, the above model is equivalent to LP problem (3.3). �

3.2. Robust counterpart model of problem (1.2). In this subsection, we consider the follow-
ing two types of uncertainty sets for problem (1.2), the l1 norm uncertainty ball in vector b, and
the version in matrix A and vector b.

3.2.1. The l1 uncertainty ball in vector b. Assume that only the data b is contaminated in a
certain level, in which the uncertainty set is defined as

‖∆b‖1 ≤ ρ,

where ρ is a given contamination level. For a certain x ∈Rn, the associated worst-case residual
of problem (1.2) has the following form

r(b,ρ) := max
‖∆b‖1≤ρ

{‖Ax−|x|− (b+∆b)‖1}.

In order to against the data uncertainty, we also consider the corresponding robust counterpart
model

φ(b,ρ,x) := min
x∈Rn

r(b,ρ). (3.6)

Theorem 3.2. Robust counterpart problem (3.6) is equivalent to the following LP problem:

min
t∈R,x,ω,y∈Rn

t +ρ

s.t. Ax−ω−b = y,
x≤ ω, x≥−ω, ω ≥ 0,
‖y‖1 ≤ t, t ≥ 0.

(3.7)
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Proof. Using the triangle inequality of the l1 vector norm yields

max
‖∆b‖1≤ρ

‖Ax−|x|− (b+∆b)‖1 ≤ ‖Ax−|x|−b‖1 +ρ.

If we choose ∆b = ρu ∈ Rn, where

u :=


Ax−|x|−b
‖Ax−|x|−b‖1

, if Ax−|x|−b 6= 0,

any unit l1 norm vector, otherwise,

then it is clear that ‖∆b‖1 = ρ . Consequently, r(b,ρ) = ‖Ax− |x| − b‖1 +ρ and φ(b,ρ,x) =
min
x∈Rn
‖Ax− |x| − b‖1 + ρ , which is equivalent to LP problem (3.7) by introducing necessary

auxiliary variables. �

3.2.2. The l1 norm uncertainty ball in matrix A and vector b. Assume that the matrix A and
vector b are contaminated in a certain level, in which the uncertainty set is defined as

‖[∆A ∆b]‖1 ≤ ρ,

where ρ is a given contamination level. For a certain x ∈Rn, the worst-case residual of problem
(1.2) has the following form

r(A,b,ρ) := max
‖[∆A ∆b]‖1≤ρ

{‖(A+∆A)x−|x|− (b+∆b)‖1}.

Consequently, the corresponding robust counterpart model is given by

φ(A,b,ρ,x) := min
x∈Rn

r(A,b,ρ). (3.8)

Similar to Theorem 3.1, the following result can be deduced under the l1 norm uncertainty
set in matrix A and vector b.

Theorem 3.3. The robust counterpart problem (3.8) is equivalent to the following LP problem:

min
t,s∈R,x,ω,y∈Rn

t +ρs

s.t. Ax−ω−b = y,
x≤ ω, x≥−ω, ω ≥ 0,
‖y‖1 ≤ t, t ≥ 0
1+‖x‖1 ≤ s, s≥ 0.

(3.9)

Proof. From the definition of the l1 vector norm, we have

‖(A+∆A)x+ |x|− (b+∆b)‖1

=
∥∥Ax+ |x|−b+[∆A ∆b][xT −1]T

∥∥
1

≤ ‖Ax+ |x|−b‖1 +
∥∥[∆A ∆b][xT −1]T

∥∥
1 (3.10)

≤ ‖Ax+ |x|−b‖1 +ρ (1+‖x‖1) , (3.11)

where the relation (3.10) follows from the triangular inequality and (3.11) comes from Lemma
2.1. Let D be a sign pattern of x ∈Rn as defined in Remark 2.1. Then, the sign pattern of vector
[xT −1]T is given by

H :=
[

D
−1

]
∈ R(n+1)×(n+1).
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Choosing [∆A ∆b] = ρuvT ∈ Rn×(n+1), where u ∈ Rn is defined as

u :=


Ax+ |x|−b
‖Ax+ |x|−b‖1

, if Ax+ |x|−b 6= 0,

any unit l1 norm vector, otherwise

and v := diag(H) is the diagonal vector of H, one sees that ‖[∆A ∆b]‖1 = ρ and the relations
(3.10) and (3.11) become equalities. Then,

r(A,b,ρ) = ‖Ax+ |x|−b‖1 +ρ (1+‖x‖1) .

Consequently, the robust counterpart model (3.8) can be reduced to

φ(A,B,b,ρ,x) = min
x∈Rn
{‖Ax+ |x|−b‖1 +ρ (1+‖x‖1)} .

By introducing some auxiliary variables, the above model is equivalent to LP problem (3.9). �

4. AVE WITH DATA UNCERTAINTY IN THE l∞ NORM BALL

In this section, we replace the l1 norm uncertainty ball with the l∞ norm uncertainty ball. We
discuss three types of data contamination and demonstrate their corresponding robust counter-
part models under these cases.

We first assume that the data A,B, and b are contaminated in a certain level, in which the
uncertainty set is defined as

‖ [∆A ∆B ∆b]‖∞ ≤ σ ,

where σ is a given contamination level. In this case, the robust counterpart model of problem
(1.1) is given by

ψ(A,B,b,σ ,x) := min
x∈Rn

r(A,B,b,σ), (4.1)

where r(A,B,b,σ) is the worst-case residual, i.e.,

r(A,B,b,σ) := max
‖[∆A ∆B ∆b]‖∞≤σ

{‖(A+∆A)x+(B+∆B)|x|− (b+∆b)‖∞}. (4.2)

The following theorem presents an equivalent form of robust counterpart model (4.1).

Theorem 4.1. The robust counterpart model (4.1) is equivalent to the following LP problem:

min
t,s∈R,x,ω,y∈Rn

t +σs

s.t. Ax+Bω−b = y
x≤ ω, x≥−ω, ω ≥ 0,
‖y‖∞ ≤ t, t ≥ 0,
max{1,‖x‖∞} ≤ s, s≥ 0.

(4.3)

Proof. From the definition of the l∞ vector norm, we have

‖(A+∆A)x+(B+∆B)|x|− (b+∆b)‖∞

=
∥∥Ax+B|x|−b+[∆A ∆B ∆b][xT |x|T −1]T

∥∥
∞

≤ ‖Ax+B|x|−b‖∞ +
∥∥[∆A ∆B ∆b][xT |x|T −1]T

∥∥
∞

(4.4)

≤ ‖Ax+B|x|−b‖∞ +σ max{1,‖x‖∞} . (4.5)
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Then, we choose [∆A ∆B ∆b] = σuvT ∈ Rn×(2n+1), where u ∈ Rn is defined as

u :=


Ax+B|x|−b
‖Ax+B|x|−b‖∞

, if Ax+B|x|−b 6= 0,

any unit l∞ norm vector, otherwise.

At the same time, the choice of v ∈ R2n+1 needs to consider the following three cases.
(a) If ‖x‖∞ < 1, then

vi :=
{

1 if i = 2n+1,
0 otherwise.

(b) If ‖x‖∞ = 1, then

vi :=


1
|Ĩ|+1

if i ∈ Ĩ,

0 otherwise.

where Ĩ denotes the index set of D1-part sign patten of vector [xT |x|T 1] ∈ R2n+1 and |Ĩ| is the
carnality of Ĩ. It is easy to see that Ĩ = I ∪ (I +n), where I := {i ∈ {1,2, · · · ,n} : |xi| = 1} and
I +n := { j ∈ {n+1,n+2, · · · ,2n} : j = i+n, i ∈ I}.
(c) If ‖x‖∞ > 1, then

vi :=


1
|Ĩ|

if i ∈ Ĩ,

0 otherwise,

where Ĩ is defined as case (b) above.
It follows from the above discussion that ‖[∆A ∆B ∆b]‖∞ = σ and the relations (4.4) and (4.5)

become equalities. Then, the worst-case residual (4.2) has the following explicit form

r(A,B,b,σ) = ‖Ax+B|x|−b‖∞ +σ max{1,‖x‖∞} .

Consequently, robust counterpart model (4.1) can be reduced to

ψ(A,B,b,ρ,x) = min
x∈Rn
{‖Ax+B|x|−b‖∞ +σ max{1,‖x‖∞}} .

Hence, the above model is equivalent to LP problem (4.3). �

To end this section, without demonstrate the proof, we present robust counterpart models of
problem (1.2) under the following two types of l∞ norm uncertainty balls:

(i) The l∞ uncertainty ball in vector b: ‖∆b‖∞ ≤ σ ;
(ii) The l∞ uncertainty ball in matrix A and vector b: ‖[∆A ∆b]‖∞ ≤ σ .

Theorem 4.2. The robust counterpart model of problem (1.2) under the l∞ uncertainty ball in
vector b is equivalent to

min
t∈R,x,ω,y∈Rn

t +σ

s.t. Ax−ω−b = y
x≤ ω, x≥−ω, ω ≥ 0,
‖y‖∞ ≤ t, t ≥ 0.

(4.6)
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While the robust counterpart model of problem (1.2) under the l∞ uncertainty ball in matrix A
and vector b is equivalent to

min
t,s∈R,x,ω,y∈Rn

t +σs

s.t. Ax−ω−b = y,
x≤ ω, x≥−ω, ω ≥ 0,
‖y‖∞ ≤ t, t ≥ 0,
max{1,‖x‖∞} ≤ s, s≥ 0.

(4.7)

5. NUMERICAL EXPERIMENTS

In this section, we report some implementation issues and numerical experiments conducted
for testing efficiency of equivalent robust counterpart models in Section 3 and Section 4. All
experiments are run in Julia with packages JuMP and HiGHS on a 64-bit PC with an Intel
(R) Core(TM) i7-6500U of 2.50 GHz CPU and 8.00GB of RAM equipped with CentOS Linux
operating system.

The preparation of test data follows the below steps: (1) Choose random matrices A, B
with entries generated independently using the uniform distribution on [−10,10]; (2) Choose
a random vector x from the uniform distribution on [−10,10]; (3) Compute b = Ax+B|x| or
b = Ax−|x|.

In Table 1-Table 3, we consider feasible AVE systems under the l1 norm uncertainty ball. The
first column demonstrates the dimension of matrix A and the second to fifth columns record the
residual of AVEs caused by the contamination level ρ = 0.001,0.01,0.1,1, respectively. Similar
results under the l∞ norm uncertainty ball can be found in Table 4-Table 6. From these results,
we obtain the following observations:

(a) All these models have better results under ρ = 0.001, while the robust solutions also
provide a protection against the given two types of uncertainty balls especially when ρ

is large.
(b) Compared with models (3.3), (3.7), and (3.9), models (4.3), (4.6), and (4.7) have better

residuals, which demonstrate that standard AVE (1.1) and its special form (1.2) have
better performances against data uncertainty in the l∞ norm ball than the one in the l1
norm ball.

6. CONCLUSIONS

In this paper, we studied two types of AVEs with data uncertainty in the l1 and l∞ norm balls.
In order to minimize the worst-case residual, we construct the associated robust counterpart
problems and prove that these models are equivalent to LP problems. Numerical experiments
verify that robust solutions can be provided in a better performance. Recently, a method of
alternating projections for these AVEs are proposed by Alcantara, Chen, and Tam in [23], in
which the fixed points set of the corresponding alternating projections map is characterized
under nondegeneracy conditions on data A, B and local linear convergence is proved. Unlike
most of the existing approaches in the literature, their algorithm is capable of handling problems
with m 6= n. By carefully checking the techniques used in the above proofs, our conclusions can
be easily adapted for the case m 6= n. How to combine these robust counterpart models with
alternating projection methods? We leave further discussion on this topic as our future work.
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TABLE 1. Residual of model (3.3)

n ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

10 3.6245e-14 1.0664e-13 5.4108e-13 6.2759e-13
20 5.7412e-13 1.5275e-12 1.6766e-12 2.9488e-12
30 1.4897e-12 1.8861e-12 2.6972e-12 3.7305e-12
40 2.6534e-12 2.8545e-12 3.6980e-12 5.4033e-12
50 1.8149e-11 2.5115e-11 3.2652e-11 4.8780e-11
60 1.9908e-11 2.0601e-11 5.7967e-11 6.6753e-11
70 2.7936e-11 3.4370e-11 6.4196e-11 7.8612e-11
80 6.4359e-11 7.3593e-11 8.4211e-11 9.8119e-11
90 6.7940e-11 8.1884e-11 2.2108e-10 3.0328e-10

100 1.1549e-10 3.4082e-10 5.5172e-10 6.7342e-10

TABLE 2. Residual of model (3.7)

n ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

10 1.6629e-15 2.5580e-15 5.8422e-15 7.9488e-15
20 1.6117e-14 2.2434e-14 2.6550e-14 4.0214e-14
30 4.1117e-14 5.8602e-14 7.1124e-14 8.6224e-14
40 3.4328e-13 3.9028e-13 4.9626e-13 5.8950e-13
50 3.8228e-13 4.7965e-13 5.4476e-13 6.7778e-13
60 4.7884e-13 4.8633e-13 6.1701e-13 7.8647e-13
70 6.7515e-13 7.3153e-13 7.8259e-13 8.2609e-13
80 9.4155e-13 1.5047e-12 2.1566e-12 4.5299e-12
90 1.2716e-12 2.0595e-12 3.8830e-12 5.2116e-12

100 2.4141e-12 3.5826e-12 4.5804e-12 6.0030e-12

TABLE 3. Residual of model (3.9)

n ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

10 3.7410e-15 7.5318e-15 2.4656e-14 3.8634e-14
20 2.0579e-14 2.4563e-14 2.8493e-14 4.5491e-14
30 6.8655e-14 7.9159e-14 8.5876e-14 9.0410e-14
40 3.5706e-13 4.0507e-13 5.6972e-13 6.4107e-13
50 4.5040e-13 5.0408e-13 6.9162e-13 7.2935e-13
60 5.3780e-13 5.4321e-13 7.7480e-13 8.3949e-13
70 1.3462e-12 1.4472e-12 1.6115e-12 2.1526e-12
80 2.8366e-12 3.5871e-12 4.4512e-12 5.4616e-12
90 3.7293e-12 4.3581e-12 4.9202e-12 5.7918e-12

100 4.6416e-12 5.4755e-12 5.5614e-12 6.7961e-12
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TABLE 4. Residual of model (4.3)

n ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

10 3.0202e-14 5.9686e-14 6.4304e-14 1.0427e-13
20 1.6875e-13 2.7627e-13 3.1974e-13 4.2844e-13
30 8.5834e-13 9.3922e-13 1.4343e-12 2.1115e-12
40 1.1225e-12 2.4062e-12 3.0196e-12 3.7707e-12
50 4.0180e-12 5.6670e-12 6.0397e-12 8.0632e-12
60 7.6328e-12 8.1400e-12 9.2265e-12 1.0045e-11
70 8.7681e-12 9.8226e-11 1.9182e-11 2.4490e-11
80 1.1347e-11 2.0915e-11 3.4350e-11 4.8628e-11
90 4.6181e-11 5.6181e-11 6.6485e-11 7.2154e-11

100 8.4399e-11 9.5695e-11 1.7657e-10 5.0376e-10

TABLE 5. Residual of model (4.6)

n ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

10 1.3234e-15 2.4833e-15 3.2560e-15 6.5794e-15
20 5.1514e-15 7.7809e-15 8.8963e-15 9.7550e-15
30 1.4193e-14 3.9968e-14 5.0183e-14 6.8711e-14
40 4.0407e-14 5.6113e-14 7.2922e-14 1.7320e-13
50 1.1852e-13 2.9706e-13 3.5136e-13 4.0719e-13
60 2.3997e-13 4.5725e-13 5.5189e-13 6.3663e-13
70 4.7742e-13 5.0313e-13 6.8589e-13 7.0787e-13
80 8.9747e-13 1.1475e-12 2.0826e-12 3.3226e-12
90 9.5274e-13 1.2465e-12 3.4454e-12 4.6380e-12

100 1.3115e-12 2.4559e-12 4.3615e-12 5.6725e-12

TABLE 6. Residual of model (4.7)

n ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

10 2.6557e-15 7.0166e-15 1.2612e-14 2.1902e-14
20 1.1084e-14 1.2763e-14 2.4439e-14 3.7522e-14
30 4.7310e-14 5.6319e-14 6.4823e-14 8.5270e-14
40 1.0349e-13 2.4655e-13 3.5540e-13 5.0725e-13
50 2.5319e-13 3.5287e-13 4.3611e-13 5.3450e-13
60 4.0211e-13 4.8674e-13 5.5164e-13 6.2759e-13
70 1.0762e-12 1.1540e-12 1.4690e-12 1.7974e-12
80 2.0722e-12 2.8195e-12 3.5560e-12 4.0429e-12
90 2.8966e-12 3.4051e-12 4.6663e-12 5.6619e-12

100 3.5798e-12 3.9890e-12 5.1663e-12 5.8232e-12
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