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Figure 1. Relationship among various distances.

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 := x ◦ x;
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ V.

Here x◦ y is called the Jordan product of x and y. If a Jordan product only satisfies
the conditions (i) and (ii) in the above definition, the algebra V is said to be a
Jordan algebra. Moreover, if there is an (unique) element e ∈ V such that x ◦ e = x
for all x ∈ V, the element e is called the identity element in V. Note that a Jordan
algebra does not necessarily have an identity element. Throughout this paper, we
assume that V is a Euclidean Jordan algebra with an identity element e.

In a given Euclidean Jordan algebra V, the set of squares K := {x2 |x ∈ V}
is a symmetric cone [10, Theorem III.2.1]. This means that K is a self-dual closed
convex cone and, for any two elements x, y ∈ int(K), there exists an invertible linear
transformation Γ : V → V such that Γ(x) = y and Γ(K) = K. It is well known that
second-order cone is a special symmetric cone, which is defined as follows in Rn:

Kn :=
{
x = (x0, x̄) ∈ R×Rn−1 | x0 ≥ ‖x̄‖

}
,

and the corresponding Jordan product of x and y in Rn with x = (x0, x̄), y =
(y0, ȳ) ∈ R×Rn−1 is given by

x ◦ y :=

[
xT y

x0ȳ + y0x̄

]
.

In particular, in the setting of the second-order cone Kn, the identity element e =
(1, 0) ∈ R×Rn−1, where 0 denotes the zero vector in Rn−1.

For x ∈ V, we denote m(x) the degree of the minimal polynomial of x, that is,

m(x) := min
{
k > 0 | {e, x, . . . , xk} is linearly dependent

}
,

and the rank of V is well-defined by r := max{m(x) |x ∈ V}. In Euclidean Jordan
algebra V, an element ei ∈ V is an idempotent if (ei)2 = ei, and it is a primi-
tive idempotent if it is nonzero and cannot be written as a sum of two nonzero
idempotents. The idempotents ei and ej are said to be orthogonal if ei ◦ ej = 0. In
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addition, we say that a finite set {e1, e2, . . . , er} of primitive idempotents in V is a
Jordan frame if

ei ◦ ej = 0 for i 6= j, and

r∑
i=1

ei = e.

Note that 〈ei, ej〉 = 〈ei ◦ ej , e〉 whenever i 6= j.

With the above, there have the spectral decomposition and Peirce decomposition
of an element x in V.

Theorem 1.1 ((The Spectral Decomposition Theorem) [10, Theorem III.1.2]). Let
V be a Euclidean Jordan algebra. Then, there is a number r such that, for every
x ∈ V, there exists a Jordan frame {e1, . . . , er} and real numbers λ1(x), . . . , λr(x)
with

x = λ1(x)e
1 + · · ·+ λr(x)e

r.

Here, the numbers λi(x) (i = 1, . . . , r) are the eigenvalues of x, the expression
λ1(x)e

1 + · · · + λr(x)e
r is the spectral decomposition of x. Moreover, tr(x) :=∑r

i=1 λi(x) is called the trace of x, and det(x) := λ1(x) . . . λr(x).

We point out that different elements x, y have their own Jordan frames in the
spectral decomposition, which are not easy to handle when we need to do operations
for x and y. Thus, we need another so-called Peirce decomposition to conquer such
difficulty. In other words, in the Peirce decomposition, two different elements x, y
share the same Jordan frame. We elaborate them more as below.

The Peirce decomposition: Fix a Jordan frame {e1, e2, . . . , er} in a Euclidean
Jordan algebra V. For i, j ∈ {1, 2, . . . , r}, we define the following eigen-spaces

Vii := {x ∈ V |x ◦ ei = x} = Rei

and

Vij :=

{
x ∈ V

∣∣x ◦ ei = 1

2
x = x ◦ ej

}
for i 6= j.

Theorem 1.2 ([10, Theorem IV.2.1]). The space V is the orthogonal direct sum of
spaces Vij(i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj ,

Vij ◦ Vjk ⊂ Vik, if i 6= k,

Vij ◦ Vkl = {0}, if {i, j} ∩ {k, l} = ∅.

Hence, given any Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =

r∑
i=1

xie
i +

∑
i<j

xij ,

where xi ∈ R and xij ∈ Vij. The expression
∑r

i=1 xie
i +

∑
i<j xij is called the

Peirce decomposition of x.
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Theorem 1.3 ([22, Theorem 4.6]). Suppose that V is simple and {e1, . . . , er} is
any fixed Jordan frame in V. Let z =

∑r
i=1 zie

i +
∑

i<j zij ∈ K. Then, we have

r∑
i=1

zpi ≤ tr(zp) for p > 1 and
r∑

i=1

zpi ≥ tr(zp) for 0 < p < 1,

where the equalities hold if and only if z =
∑r

i=1 zie
i.

In a Euclidean Jordan algebras V, for any x ∈ V, a linear transformation L(x) :
V → V is called Lyapunov transformation, which is defined as L(x)(y) := x ◦ y
for all y ∈ V. The so-called quadratic representation P (x) is define by P (x) :=
2L2(x)−L(x2). For any x ∈ V, the endomorphisms L(x) and P (x) are self-adjoint.
We say that two elements x and y of a Euclidean Jordan algebra V operator commute
if x◦ (y ◦z) = y ◦ (x◦z) for all z ∈ V, which is equivalent to stating that L(x)L(y) =
L(y)L(x). For the quadratic representation P (x), if x is invertible, then we have

P (x)K = K and P (x)int(K) = int(K).

Below is a useful property regarding the quadratic representation P (x), which is
needed for our subsequent analysis.

Theorem 1.4 ([12, Proposition 2.5]). Suppose that {e1, e2, . . . , er} is Jordan frame
in V and the spectral decomposition of x can be expressed as x = λ1(x)e

1 + · · · +
λr(x)e

r. For any z ∈ V, if the Peirce decomposition of z is z =
∑r

i=1 zie
i+

∑
i<j zij,

we have

P (x)z =

r∑
i=1

λi(x)
2zie

i +
∑
i<j

λi(x)λj(x)zij .

In light of the trace function tr(·), a semi-distance function associated with sym-
metric cone was proposed in [16]:

(1.3) d(x, y) := tr(x+ y)− 2 tr
(
P (x

1
2 )y

) 1
2
, for x, y ∈ K.

When the symmetric cone reduces to the second-order cone Kn, the function d(x, y)
was modified a bit as below distance function (1.4) and is further proved a proximal
distance in [16]. When the symmetric cone reduces to the semi-definite positive
matrix cone, the function d(x, y) corresponds to the matrix distance proposed by
Givens and Shortt [11]:

d(A,B) := tr(A+B)− 2 tr
(
A

1
2BA

1
2

) 1
2
.

Theorem 1.5 ( [16, Theorem 2.3]). Let d(·, ·) be defined as in (1.3). For any
x, y ∈ K, assume that x and y operator commute. Then, the function d(·, ·) is a
semi-distance, i.e.,

(a) d(x, y) ≥ 0;
(b) d(x, y) = 0 if and only if x = y;
(c) d(x, y) = d(y, x).
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As mentioned earlier, the function d(x, y) was modified a bit in the setting of
second-order cone in [16], which could become a proximal distance. In particular,
for any x, y ∈ Rn, there defines d : Rn ×Rn → R+ ∪ {+∞} by

(1.4) d(x, y) :=

 tr(x+ y)− 2 tr
(
P (x

1
2 )y

) 1
2 ∀x ∈ int(Kn), y ∈ Kn,

+∞ otherwise.

This modified function d(x, y) is a proximal distance on int(Kn), see [16, Theorem
3.7].

Theorem 1.6 ( [16, Theorem 3.7]). Let the function d(·, ·) be defined by (1.4).

Then, the function d(·, ·) is a proximal distance with respect to int(Kn), i.e.,

(a) d(·, y) is proper, l.s.c., convex, continuously differentiable on int(Kn);

(b) domd(·, y) ⊂ int(Kn) and dom ∂1d(·, y) = int(Kn), where the symbol ∂1d(·, y)
denotes the classical subgradient map of the function d(·, y) with respect to
the first variable;

(c) d(·, y) is level bounded on Rn i.e., lim∥u∥→∞ d(u, y) = +∞;
(d) d(y, y) = 0.

In this short paper, we improve these two results by showing that without as-
suming operator commute, the function d(·, ·) is a semi-distance, and the function
d(·, ·) is a proximal distance in the setting of symmetric cone. These generaliza-
tions enable them applicable to proximal-like algorithm for nonlinear symmetric
cone programming.

2. Main results

In this section, without assuming operator commute, we show our main results.
Indeed, there exists a difficulty that the same Jordan frame is not available for any
two elements x and y in V, when there is no condition of operator commute. Our
novel idea to tackle with it is using the spectral decomposition of x, whereas employ-
ing the Peirce decomposition of y. These together with the quadratic representation
P (x) paves a way to do the analysis.

Theorem 2.1. Let d(·, ·) be defined as in (1.3). For any x, y ∈ K, the function
d(·, ·) is a semi-distance, i.e., there hold

(a) d(x, y) ≥ 0;
(b) d(x, y) = 0 if and only if x = y;
(c) d(x, y) = d(y, x).

Proof. (a) Suppose that {e1, e2, . . . , er} is a Jordan frame in V. With this, we write
out the spectral decomposition of x and the Peirce decomposition of y, respectively,
as below:

x = λ1(x) e
1 + · · ·+ λr(x) e

r,

y = y1 e
1 + · · ·+ yr e

r +
∑
i<j

yij .
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Based on the spectral decomposition of x, it follows that

x
1
2 =

√
λ1(x) e

1 + · · ·+
√
λr(x) e

r.

Combining with Theorem 1.5, this implies that

P (x
1
2 )y = λ1(x)y1 e

1 + · · ·+ λr(x)yr e
r +

∑
i<j

√
λi(x)λj(x) yij .

Then, applying Theorem 1.3, we have

tr
(
P (x

1
2 )y

) 1
2 ≤

r∑
i=1

√
λi(x)yi.

According to this, for any x, y ∈ K, we achieve

d(x, y) = tr(x+ y)− 2 tr
(
P (x

1
2 )y

) 1
2

≥ tr(x) + tr(y)− 2

r∑
i=1

√
λi(x)yi

≥
r∑

i=1

λi(x) +
r∑

i=1

yi − 2
r∑

i=1

√
λi(x)yi

=
r∑

i=1

(√
λi(x)−

√
yi

)2

≥ 0,

where the second inequality follows from [12, Corollary 4.6]. Hence, we prove that
d(x, y) ≥ 0.

(b) From the proof of part (a), we know that

d(x, y) = tr(x+ y)− 2 tr
(
P (x

1
2 )y

) 1
2 ≥ tr(x) + tr(y)− 2

r∑
i=1

√
λi(x)yi

≥
r∑

i=1

(√
λi(x)−

√
yi

)2
≥ 0.

Hence, it follows from d(x, y) = 0 that

tr(x+ y)− 2 tr
(
P (x

1
2 )y

) 1
2
= tr(x) + tr(y)− 2

r∑
i=1

√
λi(x)yi

and
r∑

i=1

(√
λi(x)−

√
yi

)2
= 0.

These lead that

tr
(
P (x

1
2 )y

) 1
2
=

r∑
i=1

√
λi(x)yi and

√
λi(x) =

√
yi ∀i = 1, . . . , r.
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In addition, applying Theorem 1.3 yields

x =

r∑
i=1

λi(x)e
i =

r∑
i=1

yie
i = y.

Therefore, it is clear to see that d(x, y) = 0 if and only if x = y.

(c) First, from [14, Proposition 3.2], for any x, y ∈ K, we have

λi

(
P (x

1
2 )y

)
= λi

(
P (y

1
2 )x

)
for i = 1, . . . , r. This leads to

λi

(
P (x

1
2 )y

) 1
2
= λi

(
P (y

1
2 )x

) 1
2 ∀i = 1, . . . , r.

Hence, it follows that tr
(
P (x

1
2 )y

) 1
2
= tr

(
P (y

1
2 )x

) 1
2
, which implies that

d(x, y) = tr(x+ y)− 2 tr
(
P (x

1
2 )y

) 1
2

= tr(y + x)− 2 tr
(
P (y

1
2 )x

) 1
2
= d(y, x).

Then, the proof is complete. □
Theorem 2.2. Let d(·, ·) be defined as in (1.3). Then, the function d(x, y) is
convex, for any a fixed x ∈ K or y ∈ K.

Proof. The proof is the similar to [16, Theorem 2.4]. Hence, we omit it. □

From Theorem 2.1 and Theorem 2.2, we have shown that the function d(·, ·)
defined as in (1.3) is a convex semi-distance associated with symmetric cone. How-
ever, as indicated in [16], it can be verified by using the convexity of d(·, ·) that the
triangle inequality fails. To see this, for given any x, y ∈ K, taking z = λx+(1−λ)y
and 0 < λ < 1, there have

d(x, z) = d (x, λx+ (1− λ)y)(2.1)

≤ λd(x, x) + (1− λ)d(x, y) = (1− λ)d(x, y),

d(z, y) = d (λx+ (1− λ)y, y)(2.2)

≤ λd(x, y) + (1− λ)d(y, y) = λd(x, y).

Then, adding (2.1) and (2.2) together yields

d(x, z) + d(z, y) ≤ d(x, y).

In other words, the semi-distance d(·, ·) defined as in (1.3) could not become a
“distance function” (metric function). Thus, we turn our attention to the possibility
of d(·, ·) becoming a proximal distance.

In order to prove d(·, ·) could become a proximal distance, we need to modify it
a bit. For any x, y ∈ Rn, we define d : Rn ×Rn → R+ ∪ {+∞} by

(2.3) d(x, y) :=

 tr(x+ y)− 2 tr
(
P (x

1
2 )y

) 1
2 ∀x ∈ intK, y ∈ K,

+∞ otherwise.
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The above function d(·, ·) is different from the ones given in [1]. To our best knowl-
edge, it may be the only proximal distance which is not induced from Bregman
distance or φ-divergence. This function, as will be shown below, is a proximal
distance on intK.

Theorem 2.3. Let d(·, ·) be defined as in (2.3) in the setting of symmetric cone.
Then, the function d(·, ·) is a proximal distance, i.e., it satisfies

(a) d(·, y) is proper, l.s.c., convex, continuously differentiable on intK;
(b) domd(·, y) ⊂ intK and dom ∂1d(·, y) = intK, where ∂1d(·, y) denotes the

classical subgradient map of the function d(·, y) with respect to the first vari-
able;

(c) d(·, y) is level bounded on Rn i.e., lim∥u∥→∞ d(u, y) = +∞;
(d) d(y, y) = 0.

Proof. (a) The proof is similar to [5, Lemma 3.1], we omit the details.

(b) The arguments are similar to [16, Proposition 3.5], due to only the general cone
structure is used. We also omit them.

(c) Suppose y ∈ intK. For any x ∈ intK, as what we do in Theorem 2.1, we write
out the spectral decomposition of x and the Peirce decomposition of y, respectively,
i.e.,

x = λ1(x) e
1 + · · ·+ λr(x) e

r and y = y1 e
1 + · · ·+ yr e

r +
∑
i<j

yij .

Note that ‖x‖2 = λ1(x)
2‖e1‖2 + · · · + λr(x)

2‖er‖2 ≤ rλ1(x)
2‖e1‖2, where the

inequality holds because ‖ei‖ is a constant on V for any primitive idempotent
ei (i = 1, . . . , r) and λ1(x) ≥ · · · ≥ λr(x) ≥ 0. Hence, it is easy to check that
λ1(x) → ∞ as ‖x‖ → ∞. From this and the proof of part (a) in Theorem 2.1, we
have

d(x, y) ≥
r∑

i=1

(√
λi(x)−

√
µi

)2
≥

(√
λ1(x)−

√
µ1

)2
→ ∞.

It follows that d(x, y) → ∞ as ‖x‖ → ∞ for any x ∈ intK. Moreover, d(x, y) = ∞
when x /∈ intK. Then, we prove that d(x, y) → ∞ as ‖x‖ → ∞ for any x ∈ Rn.
Thus, we conclude that d(·, y) is level bounded on Rn.

(d) This property is trivial.

To sum up, the function d(·, ·) defined as in (2.3) is a proximal distance in the
setting of symmetric cone. □

Remark 2.4. We say a few words about Theorem 2.1 and Theorem 2.3. In fact,
when the symmetric cone K reduces to the second-order cone Kn, the conclusions
of Theorem 2.1 and Theorem 2.3 correspond to the contents of Theorem 2.5 and
theorem 3.7 in [16], respectively. In other words, our results are generalizations of
Theorem 2.5 and theorem 3.7 in [16] in a broader framework.



A SEMI-DISTANCE AND PROXIMAL DISTANCE ASSOCIATED WITH SC 249

3. Concluding remarks

In this paper, we study a semi-distance associated with symmetric cone K. Fur-
thermore, based on it, we construct a proximal distance on intK, which also answers
a question raised in [16]. Again, we would like to point out some possible future
directions as mentioned in [16].

• Can the function d(·, ·) further become a Bregman distance or φ-divergence?
• Can the function d(·, ·) be extended to nonsymmetric cone setting? In
particular, for circular cone Lθ, we have already known one type of spectral
decomposition of x and some differentiabilities of λi(x), see [24]. By using
these facts, we may consider to construct an analogous distance function
d(·, ·) in the setting of circular cone.
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