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Abstract It is well known that complementarity functions play an important role in dealing
with complementarity problems. In this paper, we propose a few new classes of com-
plementarity functions for nonlinear complementarity problems and second-order cone
complementarity problems. The constructions of such new complementarity functions are
based on discrete generalization which is a novel idea in contrast to the continuous general-
ization of Fischer–Burmeister function. Surprisingly, these new families of complementarity
functions possess continuous differentiability even though they are discrete-oriented exten-
sions. This feature enables that somemethods like derivative-free algorithm can be employed
directly for solving nonlinear complementarity problems and second-order cone comple-
mentarity problems. This is a new discovery to the literature and we believe that such new
complementarity functions can also be used in many other contexts.
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1 Introduction

In general, the complementarity problem comes from the Karush–Kuhn–Tucker (KKT) con-
ditions of linear and nonlinear programming problems. For different types of optimization
problems, there arise various complementarity problems, for example, linear complemen-
tarity problem, nonlinear complementarity problem (NCP), semidefinite complementarity
problem, second-order cone complementarity problem (SOCCP), and symmetric cone
complementarity problem. To deal with complementarity problems, the so-called comple-
mentarity functions play an important role therein. In this paper, we focus on two classes of
complementarity functions, which are used for the NCP and SOCCP, respectively.

The first class is the NCP that has attracted much attention since 1970s because of its wide
applications in the fields of economics, engineering, and operations research, see (Cottle
et al. 1992; Facchinei and Pang 2003; Harker and Pang 1990) and references therein. In
mathematical format, the NCP is to find a point x ∈ Rn such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0,

where 〈·, ·〉 is the Euclidean inner product and F = (F1, . . . , Fn)T is a map fromRn toRn .
For solving NCP, the so-called NCP function φ : R2 → R defined as below

φ(a, b) = 0 ⇐⇒ a, b ≥ 0, ab = 0

plays a crucial role. Generally speaking, with such NCP functions, the NCP can be refor-
mulated as nonsmooth equations (Mangasarian 1976; Pang 1990; Yamashita and Fukushima
1997) or unconstrained minimization (Facchinei and Soares 1997; Fischer 1992; Geiger and
Kanzow 1996; Jiang 1996; Kanzow 1996; Pang and Chan 1982; Yamashita and Fukushima
1995). Then, different kinds of approaches and algorithms are designed based on the afore-
mentioned reformulations and various NCP functions. During the past four decades, around
thirty NCP functions are proposed, see (Galántai 2012) for a survey.

The second class is the SOCCP, which can be viewed as a natural extension of NCP and
is to seek a ζ ∈ Rn such that

ζ ∈ K, F(ζ ) ∈ K, 〈ζ, F(ζ )〉 = 0,

where F : Rn → Rn is a map and K is the Cartesian product of second-order cones (SOC),
also called Lorentz cones (Faraut and Korányi 1994). In other words, K is expressed as:

K = Kn1 × · · · × Knm ,

where m, n1, . . . , nm ≥ 1, n1 + · · · + nm = n, and

Kni := {(x1, x2) ∈ R × Rni−1 | ‖x2‖ ≤ x1},
with ‖·‖ denoting the Euclidean norm. The SOCCP has important applications in engineering
problems (Kanno et al. 2006) and robust Nash equilibria (Hayashi et al. 2005). Another
important special case of SOCCP corresponds to the KKT optimality conditions for the
second-order cone program (see Chen and Tseng 2005 for details):
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minimize cT x
subject to Ax = b, x ∈ K,

where A ∈ Rm×n has full row rank, b ∈ Rm and c ∈ Rn . Many solution methods have
been proposed for solving SOCCP, see (Chen and Pan 2012) for a survey. For example,
merit function approach based on reformulating the SOCCP as an unconstrained smooth
minimization problem is studied in Chen and Tseng (2005), Chen (2006b), Pan et al. (2014).
In such approach, it is to find a smooth function ψ : Rn × Rn → R+ such that

ψ(x, y) = 0 ⇐⇒ 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn . (1)

Then, the SOCCP can be expressed as an unconstrained smooth (global) minimization prob-
lem:

min
ζ∈Rn

ψ(ζ, F(ζ )). (2)

In fact, a function ψ satisfying the condition in (1) (not necessarily smooth) is called a
complementarity function for SOCCP (or complementarity function associated with Kn).
Various gradient methods such as conjugate gradient methods and quasi-Newton methods
(Bertsekas 1999; Fletcher 1987) can be applied for solving (2). In general, for this approach
to be effective, the choice of complementarity function ψ is also crucial.

Back to the complementarity functions for NCP, two popular choices of NCP functions
are the well-known Fischer–Burmeister function (FB function, in short) φFB : R2 → R

defined by see (Fischer 1992, 1997)

φFB(a, b) =
√
a2 + b2 − (a + b),

and the squared norm of Fischer–Burmeister function given by

ψFB(a, b) = 1

2

∣∣φFB(a, b)
∣∣2.

In addition, the generalized Fischer–Burmeister function φp : R2 → R, which includes the
Fischer–Burmeister as a special case, is considered inChen (2006a, 2007), Chen et al. (2009),
Chen and Pan (2008), Hu et al. (2009), Tsai and Chen (2014). In particular, the function φp

is a natural “continuous extension” of φFB , in which the 2-norm in φFB(a, b) is replaced by
general p-norm. In other words, φp : R2 → R is defined as:

φp(a, b) = ‖(a, b)‖p − (a + b), p > 1 (3)

and its geometric view is depicted in Tsai and Chen (2014). The effect of perturbing p for dif-
ferent kinds of algorithms is investigated inChen et al. (2010, 2011), andChen andPan (2008)
.Wepoint it out that the generalizedFischer–Burmeisterφp given as in (3) is not differentiable,
whereas the squared norm of generalized Fischer–Burmeister function is smooth so that it is
usually adapted as a differentiable NCP function Pan et al. (2014). Moreover, all the afore-
mentioned functions includingFischer–Burmeister function, generalizedFischer–Burmeister
function and their squared norm can be extended to the setting of SOCCP via Jordan algebra.

A different type of popular NCP function is the natural residual function φNR : R2 → R

given by

φNR (a, b) = a − (a − b)+ = min{a, b}.
Recently, Chen et al. propose a family of generalized natural residual functions φ p

NR
defined

by
φ p
NR

(a, b) = a p − (a − b)p+,
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where p > 1 is a positive odd integer, (a−b)p+ = [(a−b)+]p , and (a−b)+ = max{a−b, 0}.
When p = 1, φ p

NR
reduces to the natural residual function φNR , i.e.,

φ1
NR

(a, b) = a − (a − b)+ = min{a, b} = φNR (a, b).

As remarked in Chen et al. (2016), this extension is “discrete generalization”, not “continu-
ous generalization”. Nonetheless, it possesses twice differentiability surprisingly so that the
squared norm of φ p

NR
is not needed. Based on this discrete generalization, two families of

NCP functions are further proposed in Chang et al. (2015) which have the feature of sym-
metric surfaces. To the contrast, it is very natural to ask whether there is a similar “discrete
extension” for Fischer–Burmeister function. We answer this question affirmatively.

In this paper, we apply the idea of “discrete generalization” to the Fischer–Burmeister
function which gives the following function (denoted by φ p

D−FB
):

φ p
D−FB

(a, b) =
(√

a2 + b2
)p − (a + b)p, (4)

where p > 1 is a positive odd integer and (a, b) ∈ R2. Notice that when p = 1, φ p
D−FB

reduces to the Fischer–Burmeister function. In Sect. 3, we will see that φ p
D−FB

is an NCP
function and is twice differentiable directly without taking its squared norm. Note that if p
is even, it is no longer an NCP function. Even though we have the feature of differentiability,
we point out that the Newton method may not be applied directly because the Jacobian at a
degenerate solution to NCP is singular see (Kanzow 1996; Kanzow and Kleinmichel 1995).
Nonetheless, this feature may enable that manymethods like derivative-free algorithm can be
employed directly for solving NCP. In addition, we investigate the differentiable properties
of φ p

D−FB
, the computable formulas for their gradients and Jacobians. In order to have more

insight for this new family of NCP function, we also depict the surfaces of φ p
D−FB

(a, b) with
various values of p.

In Sect. 4, we show that the new function φ p
D−FB

can be further employed to the SOCCP
setting as complementarity functions and merit functions. In other words, in the terms of
Jordan algebra, we define φ p

D−FB
: Rn × Rn → Rn by

φ p
D−FB

(x, y) =
(√

x2 + y2
)p

− (x + y)p, (5)

where p > 1 is a positive odd integer, x ∈ Rn , y ∈ Rn , x2 = x ◦ x is the Jordan
product of x with itself and

√
x with x ∈ Kn being the unique vector such that

√
x ◦√

x = x . We prove that each φ p
D−FB

(x, y) is a complementarity function associated with
Kn and establish formulas for its gradient and Jacobian. These properties and formulas can
be used to design and analyze non-interior continuation methods for solving second-order
cone programs and complementarity problems. In addition, several variants of φ p

D−FB
are also

shown to be complementarity functions for SOCCP.
Throughout the paper, we assumeK = Kn for simplicity and all the analysis can be carried

over to the case whereK is a product of SOC without difficulty. The following notations will
be used. The identity matrix is denoted by I and Rn denotes the space of n-dimensional
real column vectors. For any given x ∈ Rn with n > 1, we write x = (x1, x2) where
x1 is the first entry of x and x2 is the subvector that consists of the remaining entries. For
every differentiable function f : Rn → R, ∇ f (x) denotes the gradient of f at x . For
every differentiable mapping F : Rn → Rm , ∇F(x) is an n × m matrix which denotes the
transposed Jacobian of F at x . For nonnegative scalar functions α and β, we write α = o(β)

to mean limβ→0
α

β
= 0.
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2 Preliminaries

In this section, we review some background materials about the Jordan algebra in Faraut and
Korányi (1994), Fukushima et al. (2002). Then, we present some technical lemmas which
are needed in subsequent analysis.

For any x = (x1, x2), y = (y1, y2) ∈ R×Rn−1, we define the Jordan product associated
with Kn as:

x ◦ y := (〈x, y〉, y1x2 + x1y2).

The identity element under this product is e := (1, 0, . . . , 0)T ∈ Rn . For any given x =
(x1, x2) ∈ R × Rn−1, we define symmetric matrix

Lx :=
[
x1 xT2
x2 x1 I

]

which can be viewed as a linear mapping fromRn to Rn . It is easy to verify that

Lx y = x ◦ y, ∀x ∈ Rn .

Moreover, we have Lx is invertible for x �Kn 0 and

L−1
x = 1

det(x)

⎡

⎣
x1 −xT2

−x2
det(x)

x1
I + 1

x1
x2x

T
2

⎤

⎦ ,

where det(x) = x21 − ‖x2‖2. We next recall from Chen and Pan (2012); Fukushima et al.
(2002) that each x = (x1, x2) ∈ R × Rn−1 admits a spectral factorization, associated with
Kn , of the form

x = λ1u
(1) + λ2u

(2), (6)

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vectors of x
given by

λi = x1 + (−1)i‖x2‖,

u(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
1, (−1)i

x2
‖x2‖

)
if x2 �= 0;

1
2

(
1, (−1)iw2

)
if x2 = 0,

for i = 1, 2, with w2 being any vector in Rn−1 satisfying ‖w2‖ = 1. If x2 �= 0, the
factorization is unique.

Given a real-valued function g : R → R, we can define a vector-valued SOC function
gsoc : Rn → Rn by

gsoc(x) := g(λ1)u
(1) + g(λ2)u

(2).

If g is defined on a subset ofR, then gsoc is defined on the corresponding subset ofRn . The
definition of gsoc is unambiguous whether x2 �= 0 or x2 = 0. In this paper, we will often use
the vector-valued functions corresponding to t p (t ∈ R) and

√
t (t ≥ 0), respectively, which

are expressed as:

x p := (λ1(x))pu(1) + (λ2(x))pu(2), ∀x ∈ Rn√
x := √

λ1(x)u(1) + √
λ2(x)u(2), ∀x ∈ Kn .

123



P.-F. Ma et al.

We will see that the above two vector-valued functions play a role, showing that φ p
D−FB

given
as in (5) is well defined in the SOC setting for any x, y ∈ Rn . Note that the other way to
define x p and

√
x is through Jordan product. In other words, x p represents x ◦ x ◦ · · · ◦ x for

p-times and
√
x ∈ Kn satisfies

√
x ◦ √

x = x .

Lemma 2.1 Suppose that p = 2k + 1 where k = 1, 2, 3, · · · . Then, for any u, v ∈ R, we
have u p = v p if and only if u = v.

Proof The proof is straightforward and can be found in (Baggett et al. 2012, Theorem 1.12).
Here, we provide an alternative proof.
“⇐” It is trivial.
“⇒” For v = 0, since u p = v p , we have u = v = 0. For v �= 0, from f (t) = t p − 1 being

a strictly monotone increasing function for any t ∈ R, we have
(u

v

)p − 1 = 0 if and only if
u

v
= 1, which implies u = v. Thus, the proof is complete. ��

Lemma 2.2 For p = 2m + 1 with m = 1, 2, 3, · · · and x = (x1, x2), y = (y1, y2) ∈
R×Rn−1, suppose that x p and y p represent x ◦ x ◦ · · · ◦ x and y ◦ y ◦ · · · ◦ y for p-times,
respectively. Then, x p = y p if and only if x = y.

Proof “⇐” This direction is trivial.
“⇒” Suppose that x p = y p . By the spectral decomposition (6), we write

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

y = λ1(y)u
(1)
y + λ2(y)u

(2)
y .

Then, x p = (λ1(x))pu
(1)
x +(λ2(x))pu

(2)
x and y p = (λ1(y))pu

(1)
y +(λ2(y))pu

(2)
y . Since x p =

y p and eigenvalues are unique, we obtain (λ1(x))p = (λ1(y))p and (λ2(x))p = (λ2(y))p .
By Lemma 2.1, this implies λ1(x) = λ1(y) and λ2(x) = λ2(y). Moreover, {u(1)

x , u(2)
x } and

{u(1)
y , u(2)

y } are Jordan frames, we have u(1)
x + u(2)

x = u(1)
y + u(2)

y = e, where e is the identity

element. From x p = y p and u(1)
x + u(2)

x = u(1)
y + u(2)

y , we get
[
(λ1(x))

p − (λ2(x))
p] (u(1)

x − u(1)
y ) = 0.

If (λ1(x))p = (λ2(x))p , we haveλ1(x) = λ2(x) andλ1(y) = λ2(y), that is, x = λ1(x)e = y.
Otherwise, if (λ1(x))p �= (λ2(x))p , we must have u(1)

x = u(1)
y , which implies u(2)

x = u(2)
y .

��

3 New generalized Fischer–Burmeister function for NCP

In this section, we show that the function φ p
D−FB

defined as in (4) is an NCP function and
present its twice differentiability. At the same time, we also depict the surfaces of φ p

D−FB
with

various values of p to have more insight for this new family of NCP functions.

Proposition 3.1 Let φ p
D−FB

be defined as in (4) where p is a positive odd integer. Then, φ p
D−FB

is an NCP function.

Proof Suppose φ p
D−FB

(a, b) = 0 , which says
(√

a2 + b2
)p = (a + b)p . Using p being a

positive odd integer and applying Lemma 2.1, we have
(√

a2 + b2
)p = (a + b)p ⇐⇒

√
a2 + b2 = a + b.
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It is well known that
√
a2 + b2 = a + b is equivalent to a, b ≥ 0, ab = 0 because φFB is

an NCP function. This shows that φ p
D−FB

(a, b) = 0 implies a, b ≥ 0, ab = 0. The converse
direction is trivial. Thus, we prove that φ p

D−FB
is an NCP function. ��

Remark 3.1 We elaborate more about the new NCP function φ p
D−FB

.

(a) For p being an even integer, φ p
D−FB

is not an NCP function. A counterexample is given
as below.

φ p
D−FB

(−5, 0) = (−5)2 − (−5)2 = 0.

(b) The surface of φ p
D−FB

is symmetric, i.e., φ p
D−FB

(a, b) = φ p
D−FB

(b, a).
(c) The function φ p

D−FB
(a, b) is positive homogenous of degree p, i.e., φ p

D−FB
(α(a, b)) =

α pφ p
D−FB

(a, b) for α ≥ 0.
(d) The function φ p

D−FB
is neither convex nor concave function. To see this, taking p = 3 and

using the following argument verify the assertion.

53 − 73 = φ3
D−FB

(3, 4) >
1

2
φ3
D−FB

(0, 0) + 1

2
φ3
D−FB

(6, 8)

= 1

2
× 0 + 1

2

(
103 − 143

) = 4
(
53 − 73

)

and

0 = φ3
D−FB

(0, 0) <
1

2
φ3
D−FB

(−2, 0) + 1

2
φ3
D−FB

(2, 0) = 1

2
× 16 + 1

2
× 0 = 8.

Proposition 3.2 Let φ p
D−FB

be defined as in (4) where p is a positive odd integer. Then, the
following hold.

(a) For p > 1, φ p
D−FB

is continuously differentiable with

∇φ p
D−FB

(a, b) = p

[
a(

√
a2 + b2)p−2 − (a + b)p−1

b(
√
a2 + b2)p−2 − (a + b)p−1

]
.

(b) For p > 3, φ p
D−FB

is twice continuously differentiable with

∇2φ p
D−FB

(a, b) =

⎡

⎢⎢
⎣

∂2φ p
D−FB

∂a2
∂2φ p

D−FB

∂a∂b
∂2φ p

D−FB

∂b∂a

∂2φ p
D−FB

∂b2

⎤

⎥⎥
⎦ ,

where

∂2φ p
D−FB

∂a2
= p

{[
(p − 1)a2 + b2

]
(
√
a2 + b2)p−4 − (p − 1)(a + b)p−2

}
,

∂2φ p
D−FB

∂a∂b
= p

[
(p − 2)ab(

√
a2 + b2)p−4 − (p − 1)(a + b)p−2

]
= ∂2φ p

D−FB

∂b∂a
,

∂2φ p
D−FB

∂b2
= p

{[
a2 + (p − 1)b2

]
(
√
a2 + b2)p−4 − (p − 1)(a + b)p−2

}
.

Proof The verifications of differentiability and computations of first and second derivatives
are straightforward, we omit them. ��
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Next, we present some variants of φ p
D−FB

. Indeed, analogous to those functions in Sun and
Qi (1999), the variants of φ p

D−FB
as below can be verified being NCP functions.

φ1(a, b) = φ p
D−FB

(a, b) − α(a)+(b)+, α > 0.

φ2(a, b) = φ p
D−FB

(a, b) − α ((a)+(b)+)2 , α > 0.

φ3(a, b) = [φ p
D−FB

(a, b)]2 + α ((ab)+)4 , α > 0.

φ4(a, b) = [φ p
D−FB

(a, b)]2 + α ((ab)+)2 , α > 0.

In the above expressions, for any t ∈ R, we define t+ as max{0, t}.
Lemma 3.1 Let φ p

D−FB
be defined as in (4) where p is a positive odd integer. Then, the value

of φ p
D−FB

(a, b) is negative only in the first quadrant, i.e., φ p
D−FB

(a, b) < 0 if and only if a > 0,
b > 0.

Proof We know that f (t) = t p is a strictly increasing function when p is odd. Using this
fact yields

a > 0, b > 0

⇐⇒ a + b > 0 and ab > 0

⇐⇒
√
a2 + b2 < a + b

⇐⇒
(√

a2 + b2
)p

< (a + b)p

⇐⇒ φ p
D−FB

(a, b) < 0,

which proves the desired result. ��
Proposition 3.3 All the above functions φi for i ∈ {1, 2, 3, 4} are NCP functions.

Proof Applying Lemma 3.1, the arguments are similar to those in [Chen et al. (2016), Propo-
sition 2.4], which are omitted here. ��

In fact, in light of Lemma 2.1, we can construct more variants of φ p
D−FB

, which are also new
NCP function.More specifically, consider that k andm are positive integers, f : R×R → R,
and g : R × R → R with g(a, b) �= 0 for all a, b ∈ R, the following functions are new
variants of φ p

D−FB
.

φ5(a, b) =
[
g(a, b)

(√
a2 + b2 + f (a, b)

)] 2k+1
2m+1 − [

g(a, b)
(
a + b + f (a, b)

)] 2k+1
2m+1 .

φ6(a, b) =
[
g(a, b)(

√
a2 + b2 − a − b)

] k
m

.

φ7(a, b) =
[
g(a, b)(

√
a2 + b2 − a + f (a, b))

] 2k+1
2m+1 − [g(a, b)(b + f (a, b))]

2k+1
2m+1 .

φ8(a, b) =
[
g(a, b)(

√
a2 + b2 − a + f (a, b))

] 2k+1
2m+1 − [g(a, b)(b + f (a, b))]

2k+1
2m+1 .

φ9(a, b) = eφi (a,b) − 1 where i = 5, 6, 7, 8.

φ10(a, b) = ln(|φi (a, b)| + 1) where i = 5, 6, 7, 8.
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Proposition 3.4 All the above functions φi for i ∈ {5, 6, 7, 8, 9, 10} are NCP functions.

Proof This is an immediate consequence of Propositions 3.1, 3.1, 3.3. By Lemma 2.1 and
g(a, b) �= 0 for a, b ∈ R, we have

φ5(a, b) = 0

⇐⇒
[
g(a, b)

(√
a2 + b2 + f (a, b)

)] 2k+1
2m+1 = [

g(a, b)
(
a + b + f (a, b)

)] 2k+1
2m+1

⇐⇒
{ [

g(a, b)
(√

a2 + b2 + f (a, b)
)] 2k+1

2m+1
}2m+1

=
{ [

g(a, b)
(
a + b + f (a, b)

)] 2k+1
2m+1

}2m+1

⇐⇒
[
g(a, b)

(√
a2 + b2 + f (a, b)

)]2k+1 = [
g(a, b)

(
a + b + f (a, b)

)]2k+1

⇐⇒ g(a, b)
(√

a2 + b2 + f (a, b)
) = g(a, b)

(
a + b + f (a, b)

)

⇐⇒ (√
a2 + b2 + f (a, b)

) = (
a + b + f (a, b)

)

⇐⇒
√
a2 + b2 = a + b.

The other functions φi for i ∈ {6, 7, 8, 9, 10} are similar to φ5. ��
According to the above results, we immediately obtain the following theorem.

Theorem 3.1 Suppose that φ(a, b) = ϕ1(a, b) − ϕ2(a, b) is an NCP function on R × R

and k and m are positive integers. Then,
[
φ(a, b)

] k
m and

[
ϕ1(a, b)

] 2k+1
2m+1 − [ϕ2(a, b)] 2k+1

2m+1

are NCP functions.

Proof Using k and m being positive integers and applying Lemma 2.1, we have

[
φ(a, b)

] k
m = 0

⇐⇒
{[

φ(a, b)
] k
m
}m = 0

⇐⇒ [
φ(a, b)

]k = 0

⇐⇒ φ(a, b) = 0.

Similarly, we have

[
ϕ1(a, b)

] 2k+1
2m+1 − [ϕ2(a, b)] 2k+1

2m+1 = 0

⇐⇒ [
ϕ1(a, b)

] 2k+1
2m+1 = [ϕ2(a, b)] 2k+1

2m+1

⇐⇒
{[

ϕ1(a, b)
] 2k+1
2m+1

}2m+1 =
{
[ϕ2(a, b)] 2k+1

2m+1

}2m+1

⇐⇒ [
ϕ1(a, b)]2k+1 = [

ϕ2(a, b)]2k+1

⇐⇒ ϕ1(a, b) = ϕ2(a, b)

⇐⇒ φ(a, b) = 0.

The above arguments together with the assumption of φ(a, b) being an NCP function yield
the desired result. ��
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Fig. 1 The surface of z = φD−FB (a, b) and (a, b) ∈ [−10, 10] × [−10, 10]

Remark 3.2 We elaborate more about Theorem 3.1.

(a) Based on the existing well-known NCP functions, we can construct new NCP functions
in light of Theorem 3.1. This is a novel way to construct new NCP functions.

(b) When k is a positive integer,
[
φ(a, b)

]k is an NCP function. This means that perturbing
the parameter k gives new NCP functions. In addition, if φ(a, b) is an NCP function,

for any positive integer m,
[
φ(a, b)

] k
m is also an NCP function. Thus, we can determine

suitable and nice NCP functions among these functions according to their numerical
performance.

To close this section, we depict the surfaces of φ p
D−FB

with different values of p so that we
may have deeper insight for this new family of NCP functions. Figure 1 shows the surface if
φD−FB(a, b) from which we see that it is convex. Figure 2 presents the surface of φ3

D−FB
(a, b)

in which we see that it is neither convex nor concave as mentioned in Remark 3.1(c). In
addition, the value of φ p

D−FB
(a, b) is negative only when a > 0 and b > 0 as mentioned in

Lemma 3.1. The surfaces of φ p
D−FB

with various values of p are shown in Fig. 3.

4 Extending φ
p
D−FB and φ

p
NR to SOCCP

In this section, we extend the new function φ p
D−FB

and φ p
NR

to SOC setting. More specifically,
we show that the function φ p

D−FB
and φ p

NR
are complementarity functions associated withKn .

In addition, we present the computing formulas for its Jacobian.

Proposition 4.1 Let φ p
D−FB

be defined by (5). Then, φ p
D−FB

is a complementarity function
associated with Kn, i.e., it satisfies

φ p
D−FB

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.
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Fig. 2 The surface of z = φ3
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(a, b) and (a, b) ∈ [−10, 10] × [−10, 10]
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Fig. 3 The surface of z = φ
p
D−FB (a, b) with different values of p.

123



P.-F. Ma et al.

Proof Since φ p
D−FB

(x, y) = 0 , we have
(√

x2 + y2
)p = (x + y)p . Using p being a positive

odd integer and applying Lemma 2.2 yield
(√

x2 + y2
)p

= (x + y)p ⇐⇒
√
x2 + y2 = x + y.

It is known that φFB(x, y) := √
x2 + y2 − (x + y) is a complementarity function associated

with Kn . This indicates that φ p
D−FB

is a complementarity function associated with Kn . ��
With similar technique, we can prove that φ p

NR
can be extended as a complementarity

function for SOCCP.

Proposition 4.2 The function φ p
NR

: Rn × Rn → Rn defined by

φ p
NR

(x, y) = x p − [(x − y)+]p (7)

is a complementarity function associated withKn, where p > 1 is a positive odd integer and
(·)+ means the projection onto Kn.

Proof From Lemma 2.2, we see that φ p
NR

(x, y) = 0 if and only if x = (x − y)+. On the
other hand, it is known that φNR (x, y) = x − (x − y)+ is a complementarity function for
SOCCP, which implies x − (x − y)+ = 0 if and only if x ∈ Kn , y ∈ Kn , and 〈x, y〉 = 0.
Hence, φ p

NR
is a complementarity function associated with Kn . ��

To compute the Jacobian of φ p
D−FB

, we need to introduce some notations for convenience.

For any x = (x1, x2) ∈ R × Rn−1 and y = (y1, y2) ∈ R × Rn−1, we define

w(x, y) := x2 + y2 = (w1(x, y), w2(x, y)) ∈ R × Rn−1 and v(x, y) := x + y.

Then, it is clear that w(x, y) ∈ Kn and λi (w) ≥ 0, i = 1, 2.

Proposition 4.3 Let φ p
D−FB

be defined as in (5) and gsoc(x) = (
√|x |)p, hsoc(x) = x p are the

vector-valued functions corresponding to g(t) = |t | p
2 and h(t) = t p for t ∈ R, respectively.

Then, φ p
D−FB

is continuously differentiable at any (x, y) ∈ Rn × Rn. Moreover, we have

∇xφ
p
D−FB

(x, y) = 2Lx∇gsoc(w) − ∇hsoc(v),

∇yφ
p
D−FB

(x, y) = 2Ly∇gsoc(w) − ∇hsoc(v),

where w := w(x, y) = x2 + y2, v := v(x, y) = x + y, t �→ sign(t) is the sign function,
and

∇gsoc(w) =

⎧
⎪⎨

⎪⎩

p

2
|w1|

p
2 −1 · sign(w1)I if w2 = 0;

[
b1(w) c1(w)w̄T

2
c1(w)w̄2 a1(w)I + (b1(w) − a1(w)) w̄2w̄

T
2

]
if w2 �= 0;

w̄2 = w2

‖w2‖ ,

a1(w) = |λ2(w)| p
2 − |λ1(w)| p

2

λ2(w) − λ1(w)
,

b1(w) = p

4

[
|λ2(w)| p

2 −1 + |λ1(w)| p
2 −1

]
,

c1(w) = p

4

[
|λ2(w)| p

2 −1 − |λ1(w)| p
2 −1

]
,
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and

∇hsoc(v) =
⎧
⎨

⎩

pv p−1
1 I if v2 = 0;[
b2(v) c2(v)v̄T2
c2(v)v̄2 a2(v)I + (b2(v) − a2(v)) v̄2v̄

T
2

]
if v2 �= 0; (8)

v̄2 = v2

‖v2‖ , (9)

a2(v) = (λ2(v))p − (λ1(v))p

λ2(v) − λ1(v)
, (10)

b2(v) = p

2

[
(λ2(v))p−1 + (λ1(v))p−1] , (11)

c2(v) = p

2

[
(λ2(v))p−1 − (λ1(v))p−1] , (12)

Proof From the definition of φ p
D−FB

, it is clear to see that for any (x, y) ∈ Rn × Rn ,

φ p
D−FB

(x, y) =
(√

x2 + y2
)p

− (x + y)p

=
(√

|x2 + y2|
)p

− (x + y)p

=
[
|λ1(w)| p

2 u(1)(w) + |λ2(w)| p
2 u(2)(w)

]

−
[
(λ1(v))pu(1)(v) + (λ2(v))pu(2)(v)

]

= gsoc(w) − hsoc(v). (13)

For p ≥ 3, since both |t | p
2 and t p are continuously differentiable onR, by [Chen et al. (2004),

Proposition 5] and [Fukushima et al. (2002), Proposition 5.2], we know that the function gsoc

and hsoc are continuously differentiable onRn . Moreover, it is clear thatw(x, y) = x2+ y2 is
continuously differentiable onRn ×Rn , then we conclude that φ p

D−FB
is continuously differ-

entiable. Moreover, from the formula in [Chen et al. (2004), Proposition 4] and [Fukushima
et al. (2002), Proposition 5.2], we have

∇gsoc(w) =

⎧
⎪⎪⎨

⎪⎪⎩

p

2
|w1|

p
2 −1 · sign(w1)I if w2 = 0;

[
b1(w) c1(w)w̄T

2
c1(w)w̄2 a1(w)I + (b1(w) − a1(w)) w̄2w̄

T
2

]
if w2 �= 0;

∇hsoc(v) =

⎧
⎪⎨

⎪⎩

pv p−1
1 I if v2 = 0;

[
b2(v) c2(v)v̄T2
c2(v)v̄2 a2(v)I + (b2(v) − a2(v)) v̄2v̄

T
2

]
if v2 �= 0;

where

w̄2 = w2‖w2‖ , v̄2 = v2‖v2‖

a1(w) = |λ2(w)| p2 −|λ1(w)| p2
λ2(w)−λ1(w)

, a2(v) = (λ2(v))p−(λ1(v))p

λ2(v)−λ1(v)
,

b1(w) = p
4

[
|λ2(w)| p

2 −1 + |λ1(w)| p
2 −1

]
, b2(v) = p

2

[
(λ2(v))p−1 + (λ1(v))p−1

]
,

c1(w) = p
4

[
|λ2(w)| p

2 −1 − |λ1(w)| p
2 −1

]
, c2(v) = p

2

[
(λ2(v))p−1 − (λ1(v))p−1

]
.
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By taking differentiation on both sides about x and y for (13), respectively, and applying the
chain rule for differentiation, it follows that

∇xφ
p
D−FB

(x, y) = 2Lx∇gsoc(w) − ∇hsoc(v),

∇yφ
p
D−FB

(x, y) = 2Ly∇gsoc(w) − ∇hsoc(v).

Hence, we complete the proof. ��
With Lemma 2.2 and Proposition 4.1, we can construct more complementarity functions

for SOCCP which are variants of φ p
D−FB

(x, y). More specifically, consider that k and m
are positive integers and f soc(x, y) : Rn × Rn → Rn is the vector-valued function cor-
responding to a given real-valued function f , the following functions are new variants of
φ p
D−FB

(x, y).

φ̃1(x, y) =
[√

x2 + y2 + f soc(x, y)

] 2k+1
2m+1 − [

x + y + f soc(x, y)
] 2k+1
2m+1 .

φ̃2(x, y) =
[√

x2 + y2 − x − y

] k
m

.

φ̃3(x, y) =
[√

x2 + y2 − x + f soc(x, y)

] 2k+1
2m+1 − [

y + f soc(x, y)
] 2k+1
2m+1 .

φ̃4(x, y) =
[√

x2 + y2 − y + f soc(x, y)

] 2k+1
2m+1 − [

x + f soc(x, y)
] 2k+1
2m+1 .

Proposition 4.4 All the above functions φ̃i for i ∈ {1, 2, 3, 4} are complementarity functions
associated with Kn.

Proof The results follow from applying Lemma 2.2 and Proposition 4.1. ��
In general, for complementarity functions associated with Kn , we have the following

parallel result to Theorem 3.1.

Theorem 4.1 Suppose that φ(x, y) = ϕ1(x, y) − ϕ2(x, y) is a complementarity function

associated with Kn on Rn × Rn, and k,m are positive integers. Then,
[
φ(x, y)

] k
m and

[
ϕ1(x, y)

] 2k+1
2m+1 − [ϕ2(x, y)] 2k+1

2m+1 are complementarity functions associated with Kn.

Proof According to k and m are positive integers and using Lemma 2.2, we have

[
φ(x, y)

] k
m = 0

⇐⇒
{[

φ(x, y)
] k
m
}m = 0

⇐⇒ [
φ(x, y)

]k = 0

⇐⇒ φ(x, y) = 0.

Similarly, we have

[
ϕ1(x, y)

] 2k+1
2m+1 − [ϕ2(x, y)] 2k+1

2m+1 = 0

⇐⇒ [
ϕ1(x, y)

] 2k+1
2m+1 = [ϕ2(x, y)] 2k+1

2m+1
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⇐⇒
{[

ϕ1(x, y)
] 2k+1
2m+1

}2m+1 =
{
[ϕ2(x, y)] 2k+1

2m+1

}2m+1

⇐⇒ [
ϕ1(x, y)]2k+1 = [

ϕ2(x, y)]2k+1

⇐⇒ ϕ1(x, y) = ϕ2(x, y)

⇐⇒ φ(x, y) = 0.

From the above arguments and the assumption, the proof is complete. ��
Remark 4.1 We elaborate more about Theorem 4.1.

(a) Basedon the existing complementarity functions,we can construct newcomplementarity
functions associated with Kn in light of Theorem 4.1.

(b) When k is a positive odd integer, φ(x, y)k is a complementarity function associated
with Kn . This means that perturbing the odd integer parameter k, we obtain the new
complementarity functions associated with Kn . In addition, if φ(x, y) is a complemen-

tarity function, then for any positive integer m,
[
φ(x, y)

] k
m is also a complementarity

function. We can determine nice complementarity functions associated with Kn among
these functions by their numerical performance.

Finally, we establish formula for Jacobian of φ p
NR

and the smoothness of φ p
NR
. To this aim,

we need the following technical lemma.

Lemma 4.1 Let p > 1. Then, the real-valued function f (t) = (t+)p is continuously differ-
entiable with f ′(t) = p(t+)p−1 where t+ = max{0, t}.
Proof By the definition of t+, we have

f (t) = (t+)p =
{
t p if t ≥ 0,
0 if t < 0,

which implies

f ′(t) =
{
pt p−1 if t ≥ 0,
0 if t < 0.

Then, it is easy to see that f ′(t) = p(t+)p−1 is continuous for p > 1. ��
Proposition 4.5 Let φ p

NR
be defined as in (7) and hsoc(x) = x p, lsoc(x) = (x+)p be the

vector-valued functions corresponding to the real-valued functions h(t) = t p and l(t) =
(t+)p, respectively. Then, φ p

NR
is continuously differentiable at any (x, y) ∈ Rn × Rn, and

its Jacobian is given by

∇xφ
p
NR

(x, y) = ∇hsoc(x) − ∇lsoc(x − y),

∇yφ
p
NR

(x, y) = ∇lsoc(x − y),

where ∇hsoc satisfies (8)–(12) and

∇lsoc(u) =
⎧
⎨

⎩

p((u1)+)p−1 I if u2 = 0;[
b3(u) c3(u)ūT2
c3(u)ū2 a3(u)I + (b3(u) − a3(u)) ū2ūT2

]
if u2 �= 0;

ū2 = u2
‖u2‖ ,
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a3(u) = (λ2(u)+)p − (λ1(u)+)p

λ2(u) − λ1(u)
,

b3(u) = p

2

[
(λ2(u)+)p−1 + (λ1(u)+)p−1] ,

c3(u) = p

2

[
(λ2(u)+)p−1 − (λ1(u)+)p−1] ,

Proof In light of [Chen et al. 2004, Proposition 5] and [Fukushima et al. 2002, Propo-
sition 5.2], the results follow from applying Lemma 4.1 and using the chain rule for
differentiation. ��

5 Numerical experiments

As mentioned, the Newton method may not be appropriate for numerical implementation,
due to possible singularity of Jacobian at a degenerate solution. In view of this, in this
section, we employ the derivative-free descent method studied in Pan and Chen (2010) to
test the numerical performance based on various value of p. The target of the derivative-free
descent method studied in Pan and Chen (2010) is mainly on SOCCP. Hence, we consider
the following SOCCP:

z ∈ K, Mz + b ∈ K, zT (Mz + b) = 0,

K = K1 × · · · × Kr .

According to our results, the above SOCCP can be recast as an unconstrained minimization
problem:

min
ζ∈Rn


p(ζ ) = 1

2
‖φ p

D−FB
(ζ, F(ζ ))‖2,

where F(ζ ) = Mζ + b.
All tests are done on a PC using Inter core i7-5600Uwith 2.6 GHz and 8GBRAM, and the

codes are written in Matlab 2010b. The test instances are generated randomly. In particular,
we first generate random sparse square matrices Ni (i = 1, 2 . . . r) with density 0.01, in
which non-zero elements are chosen randomly from a normal distribution with mean−1 and
variance 4. Then, we create the positive semidefinite matrix Mi for (i = 1, 2 . . . r) by setting
Mi := Ni NT

i and let M := diag(M1, . . . , Mr ). In addition, we take vector b := −Mw

with w = (w1, . . . , wr ) and wi ∈ Ki . With these M and b, it is not hard to verify that the
corresponding SOCCP has at least a feasible solution. To construct SOCs of various types,
we set n1 = n2 = · · · = nr .

We implement a test problem generated as above with n = 1000 and r = 100. The
parameters in the algorithm are set as:

β = 0.9, γ = 0.8, σ = 10−4, and ε = 10−8.

We start with the initial point

ζ0 = (ζn1 , · · · , ζnr ) where ζni =
(
10,

wi

‖wi‖
)

with wi ∈ Rni−1 being generated randomly. The stopping criteria, i.e., 
p(ζ
k) ≤ ε, are

either the number of iteration is over 105 or a step-length is less than 10−12. Figure 4 depicts
the detailed iteration process of the algorithm corresponding to different value of p.
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(a) p = 1
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(b) p = 1.4
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(c) p = 2.6
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(d) p = 3
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(e) p = 3.4
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(f) p = 5

Fig. 4 Convergence behavior of �p(ζ
k ) with different value of p

The algorithm fails for the problem when p ≥ 5. The main reason is that the step-
length is too small eventually. We also suspect that larger p leads to tedious computation
of the complementarity function in Jordan algebra. Anyway, this phenomenon indicates that
the discrete-type of complementarity functions only work well for small value of p. The
convergence in Fig. 4 shows the method with a bigger p has a faster reduction of 
p at
the beginning, and the method with a smaller p has a faster reduction of 
p eventually.
Moreover, the bigger p applies, the total number of iterations of the algorithm is less.
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In order to check numerical performance of the algorithm corresponding to different
value of p, we solve the test problems with different dimension. The numerical results are
summarized in Tables 1, 2. “
p(ζ

∗)” and “Gap” denote the merit function value and the
value of

∣∣ζ T F(ζ )
∣∣ at the final iteration, respectively. “NF”, “Iter”, and “Time” indicate the

number of function evaluations of 
p , the number of iteration required in order to satisfy the
termination condition, and the CPU time in second for solving each problem, respectively.

We also use the performance profiles introduced by Dolan and Morè (2002) to compare
the performance of algorithm with different p. The performance profiles are generated by
executing solvers S on the test set P . Let n p,s be the number of iteration (or the computing
time) required to solve problem p ∈ P by solver s ∈ S, and define the performance ratio as:

rp,s = n p,s

min{n p,s : 1 ≤ s ≤ ns} ,

where ns is the number of solvers. Whenever the solver s does not solve problem p success-
fully, set rp,s = rM . Here, rM is a very large preset positive constant. Then, performance
profile for each solver s is defined by

ρs(χ) = 1

n p
size{p ∈ P : log2(rp,s) ≤ χ}.

where size{p ∈ P : log2(rp,s) ≤ χ} is the number of elements in the set {p ∈ P :
log2(rp,s) ≤ χ}. ρs(χ) represents the probability that the performance ratio rp,s is within
the factor 2χ . It is easy to see that ρs(0) is the probability that the solver s wins over the rest
of solvers. See Dolan and Morè (2002) for more details about the performance profile.

From Fig. 5a, it shows that the algorithm with p = 1 and p = 1.4 performs better than
p = 2.6 and p = 3 on function evaluations. Similarly, from Fig. 5b, c, we observe that
the algorithm with p = 3 performs best on the number of iterations, while the algorithm
with p = 1.4 is the best one on CPU time. This provides evidence that the discrete type of
complementarity function may be better than the well-known function φFB in some cases.

6 Conclusion

In this paper, we propose a few families of new NCP functions and investigate their differ-
entiability. Then, these new families of NCP functions have also shown that they can serve
as complementarity functions associated with second-order cone in light of Jordan algebra.
We also construct several variants of such complementarity functions for NCP and SOCCP.
The behind idea for constructing all such new complementarity functions is based on “dis-
crete generalization” which is a novel thinking. In contrast to the traditional “continuous
generalization”, this opens a new direction for future research.

As below, we explain why we adopt “discrete-type” for our new NCP functions. First,
for the generalized Natural-Residual function φ p

NR
(a, b) = a p − (a − b)p+, as remarked in

Chen et al. (2016), the parameter p must be odd integer to ensure that the generalization is
also an NCP function. This means that the main idea to create the new functions relies on
“discrete generalization”, it is totally different from the concept of generalization of Fischer–
Burmeister function φ p

FB
(a, b) = p

√|a|p + |b|p − (a + b), as remarked in Chen (2007), the
parameter p may be any real number which is great or equal to one. That is why we call our
generalization “discrete-type”.
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Fig. 5 Performance profiles with different value of p

In fact, there is another way to achieve φ p
D−FB

and φ p
NR

which was proposed in Galántai
(2012). More specifically, it is a construction based on monotone transformations to create
new NCP functions from the existing ones. The construction is stated as below.

Remark 6.1 (Galántai 2012, Lemma 15) Assume that φ is continuous and φ(a, b) =
f1(a, b) − f2(a, b). Let θ : R → R be a strictly monotone increasing and continuous
function. Then, φ is an NCP function if and only if ψθ(a, b) = θ( f1(a, b)) − θ( f2(a, b)) is
an NCP function.

In light of this, we let the function θ = θp be θp(t) = sign(t)|t |p , where “sign(t)”
is the sign function and p ≥ 1. For Fischer–Burmeister function, we choose f1(a, b) =√
a2 + b2, f2(a, b) = a + b, and for Natural-Residual function, we choose f1(a, b) = a,

f2(a, b) = (a − b)+, then it can be verified that both φ p
D−FB

and φ p
NR

(only with odd integer
p) can be obtained from the function ψθp . In other words, the function ψθp includes both of
them as special cases, from which we may view it as a “continuous generalization”. Yes, the
Galantai’s method Galántai (2012) is more general than ours. Nonetheless, we emphasize
that theNCP functions generated by our approach are shown to be complementarity functions
in the SOCCP setting. This can be used to generate new SOCCP functions, which is one of
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the main contributions of this paper. It will be a future direction to check whether Galantai’s
NCP functions can be extended to SOCCP setting as well and describe the relation therein.

In general, the Newton method may not be applicable even though we have the differ-
entiability for some new complementarity functions because the Jacobian at a degenerate
solution is singular see (Kanzow 1996; Kanzow and Kleinmichel 1995). Nonetheless, some
derivative-free algorithm may be employed due to the differentiability. On the other hand,
we can reformulate NCP and SOCCP as nonsmooth equations or unconstrained minimiza-
tion, for which merit function approach, nonsmooth function approach, smoothing function
approach, and regularization approach can be studied. All the new complementarity functions
can be employed in these approaches. How these new families of complementarity functions
perform in contrast to the existing ones? This is the first question that we are eager to know.
Some other questions, like are there any benefits for “discrete generalization” compared to
“continuous generalization”, can these proposed complementarity functions be employed for
other types of problems including semi-definite complementarity problems and symmetric
cone complementarity problems, etc.? We leave them as future research topics.
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