
2019



2 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

see [1, 5, 8, 13,19,20,24,29–31,34,35] and references therein.

There is a spectral decomposition with respect to second-order cone Kn in IRn, which
plays a very important role in the study of second-order cone optimization problems. For
any vector x = (x1, x2) ∈ IR× IRn−1, the spectral decomposition (or spectral factorization)
with respect to Kn is given by

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x , (1.1)

where λ1(x), λ2(x) and u
(1)
x , u

(2)
x are called the spectral values and the spectral vectors of

x, respectively, with their corresponding formulas as bellow:

λi(x) = x1 + (−1)i∥x2∥, i = 1, 2, (1.2)

u(i)
x =


1
2

[
1

(−1)i x2

∥x2∥

]
, if x2 ≠ 0,

1
2

[
1

(−1)iw

]
, if x2 = 0,

(1.3)

for i = 1, 2 with w being any vector in IRn−1 satisfying ∥w∥ = 1. Moreover,
{
u
(1)
x , u

(2)
x

}
is

called a Jordan frame satisfying the following properties:

u(1)
x + u(2)

x = e,
⟨
u(1)
x , u(2)

x

⟩
= 0, u(1)

x ◦ u(2)
x = 0 and u(i)

x ◦ u(i)
x = u(i)

x (i = 1, 2),

where e = (1, 0, · · · , 0)T ∈ IRn is the unit element and Jordan product x ◦ y is defined by
x ◦ y := (⟨x, y⟩, x1y2 + y1x2) ∈ IR × IRn−1 for any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1.
For more details about Jordan product, please refer to [11].

In [5,6], for any real-valued function f : IR → IR and x = (x1, x2) ∈ IR× IRn−1, based on
the spectral factorization of x with respect to Kn, a type of vector-valued function associated
with Kn (also called SOC-function) is introduced. More specifically, if we apply f to the
spectral values of x in (1.1), then we obtain the function f soc : IRn → IRn given by

f soc(x) = f(λ1(x))u
(1)
x + f(λ2(x))u

(2)
x . (1.4)

From the expression (1.4), it is clear that the SOC-function f soc is unambiguous whether
x2 = 0 or x2 ̸= 0. Further properties regarding f soc were discussed in [3–5, 7, 17, 32].
It is also known that such SOC-functions f soc associated with second-order cone play a
crucial role in the theory and numerical algorithm for second-order cone programming,
see [1, 5, 8, 13,19,20,24,29–31,34,35] again.

In this paper, in light of the definition of f soc, we define another type of SOC-function
Φµ (see Section 2 for details). In particular, using the SOC-function Φµ, we will solve the
following system of equalities and inequalities under the order induced by the second-order
cone: {

fI(x) ⪯Km 0,
fE(x) = 0,

(1.5)

where fI(x) = (f1(x), · · · , fm(x))T , fE(x) = (fm+1(x), · · · , fn(x))T , and “x ⪯Km 0” means
“−x ∈ Km”. Likewise, x ⪰Km 0 means x ∈ Km and x ≻Km 0 means x ∈ int(Km) whereas



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 3

int(Km) denotes the interior of Km. Throughout this paper, we assume that fi is continu-
ously differentiable for any i ∈ {1, 2, ..., n}. We also define

f(x) :=

[
fI(x)
fE(x)

]
and hence f is continuously differentiable. When Km = IRm

+ , the system (1.5) reduces to
the standard system of equalities and inequalities over IRm. The corresponding standard
system (1.5) has been studied extensively due to its various applications, and there are many
methods for solving such problems, see [10, 27, 28, 33, 37]. For the setting of second-order
cone, we know that the KKT conditions of the second-order cone constrained optimization
problems can be expressed in form of (1.5), i.e., the system of equalities and inequalities
under the order induced by second-order cones. For example, for the following second-order
cone optimization problem:

min h(x)
s.t. −g(x) ∈ Km,

the KKT conditions of this problem is as follows

∇h(x) +∇g(x)λ = 0,

λT g(x) = 0,

−λ ⪯Km 0,

g(x) ⪯Km 0,

where ∇g(x) denotes the gradient matrix of g. Now, by denoting

fI(x, λ) :=

[
−λ
g(x)

]
and fE(x, λ) :=

[
∇h(x) +∇g(x)λ

λT g(x)

]
,

it is clear to see that the KKT conditions of the second-order cone optimization problem is
in form of (1.5). From this view, the investigation of the system (1.5) provides a theoretical
way for solving second-order cone optimization problems. Hence, the study of the system
(1.5) is important and that is the main motivation for this paper.

So far, there are many kinds of numerical methods for solving the second-order cone
optimization problems. Among which, there is a class of popular numerical method, the
so-called smoothing-type algorithms. This kind of algorithm has also been a powerful tool
for solving many other optimization problems, including symmetric cone complementarity
problems [15,16,20–22], symmetric cone linear programming [23,26], the system of inequal-
ities under the order induced by symmetric cone [18, 25, 38], and so on. From these recent
studies, most of the existing smoothing-type algorithms were designed on the basis of a
monotone line search. In order to achieve better computational results, the nonmonotone
line search technique is sometimes adopted in the numerical implementations of smoothing-
type algorithms [15,36,37]. The main reason is that the nonmonotone line search scheme can
improve the likelihood of finding a global optimal solution and convergence speed in cases
where the function involved is highly nonconvex or has a valley in a small neighborhood of
some point. In view of this, in this paper we also develop a nonmonotone smoothing-type
algorithm for solving the system of equalities and inequalities under the order induced by
second-order cones.



4 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

The remaining parts of this paper are organized as follows. In Section 2, some back-
ground concepts and preliminary results about the second-order cone are given. In Section
3, we reformulate (1.5) as a system of smoothing equations in which Φµ is employed. In
Section 4, we propose a nonmonotone smoothing-type algorithm for solving (1.5), and show
that the algorithm is well defined. Moreover, we also discuss the global convergence and
locally quadratic convergence of the proposed algorithm. The preliminary numerical results
are reported to demonstrate that the proposed algorithm is effective in Section 5. Some
numerical comparison in light of performance profiles is presented which indicates the dif-
ference of numerical performance when various smoothing functions are used.

2 Preliminaries

In this section, we briefly review some basic properties about the second-order cone and the
vector-valued functions with respect to SOC, which will be extensively used in subsequent
analysis. More details about the second-order cone and the vector-valued functions can be
found in [3–5,13,14,17].

First, we review the projection of x ∈ IRn onto the second-order cone Kn ⊂ IRn. For the
second-order cone Kn, let (Kn)∗ denote its dual cone. Then, (Kn)∗ is given by

(Kn)∗ :=
{
y = (y1, y2) ∈ IR× IRn−1 | ⟨x, y⟩ ≥ 0,∀x ∈ Kn

}
.

Moreover, it is well known that the second-order cone Kn is a self-dual cone, i.e., (Kn)∗ = Kn.
Let x+ denote the projection of x ∈ IRn onto the second-order cone Kn, and x− denote the
projection of −x onto the dual cone (Kn)∗. With these notations, for any x ∈ IRn, it is
not hard to verify that x = x+ − x−. In particular, due to the special structure of Kn, the
explicit formula of the projection of x ∈ IRn onto Kn is obtained in [14] as below:

x+ =

 x if x ∈ Kn,
0 if x ∈ −(Kn)∗ = −Kn,
u otherwise,

(2.1)

where

u =

 x1 + ∥x2∥
2(

x1 + ∥x2∥
2

)
x2

∥x2∥

 .

In fact, according to the spectral decomposition of x, the expression of the projection x+

onto Kn can be alternatively expressed as (see [13, Prop. 3.3(b)])

x+ = ((λ1(x))+ u(1)
x + ((λ2(x))+ u(2)

x ,

where (α)+ = max{0, α} for any α ∈ IR.

From the definition (1.4) of the vector-valued function associated with Kn, we know
that the projection x+ onto Kn is a vector-valued function. Moreover, it is known that the
projection x+ and (α)+ for any α ∈ IR have many the same properties, such as the continuity,
the directional differentiability and semismooth and so on. Indeed, these properties are
established for general vector-valued functions associated with SOC. Among which, Chen,
Chen and Tseng [5] have obtained that many properties of f soc are inherited from the
function f , which is presented in the following proposition.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 5

Proposition 2.1. Suppose that x = (x1, x2) ∈ IR × IRn−1 has the spectral decomposition
given as in (1.1)-(1.3). For any the function f : IR → IR and the vector-valued function f soc

defined by (1.4), the following hold.

(a) f soc is continuous at x ∈ IRn with spectral values λ1(x), λ2(x) ⇐⇒ f is continuous at
λ1(x), λ2(x);

(b) f soc is directionally differentiable at x ∈ IRn with spectral values λ1(x), λ2(x) ⇐⇒ f is
directionally differentiable at λ1(x), λ2(x);

(c) f soc is differentiable at x ∈ IRn with spectral values λ1(x), λ2(x) ⇐⇒ f is differentiable
at λ1(x), λ2(x);

(d) f soc is strictly continuous at x ∈ IRn with spectral values λ1(x), λ2(x) ⇐⇒ f is strictly
continuous at λ1(x), λ2(x);

(e) f soc is semismooth at x ∈ IRn with spectral values λ1(x), λ2(x) ⇐⇒ f is semismooth
at λ1(x), λ2(x);

(f) f soc is continuously differentiable at x ∈ IRn with spectral values λ1(x), λ2(x) ⇐⇒ f is
continuously differentiable at λ1(x), λ2(x).

Note that the projection function x+ onto Kn is not a smoothing function on the whole
space IRn. From Proposition 2.1, we can make some smoothing functions for the projection
x+ onto Kn if we smooth the functions f(λi(x)) for i = 1, 2. More specifically, we consider
a family of smoothing functions ϕ(µ, ·) : IR → IR with respect to (α)+ satisfying

lim
µ↓0

ϕ(µ, α) = (α)+ and 0 ≤ ∂ϕ

∂α
(µ, α) ≤ 1. (2.2)

for all α ∈ IR. Are there functions satisfying the above conditions? Yes, there are many.
We illustrate three of them here:

ϕ1(µ, α) =

√
α2 + 4µ2 + α

2
, (µ > 0)

ϕ2(µ, α) = µ ln(e
α
µ + 1), (µ > 0)

ϕ3(µ, α) =


α, if α ≥ µ,

(α+µ)2

4µ , if − µ < α < µ,

0, if α ≤ −µ.

(µ > 0)

In fact, the functions ϕ1 and ϕ2 were considered in [13, 17], while the function ϕ3 was
employed in [18, 37]. In addition, as for the function ϕ3, there is a more general function
ϕp(µ, ·) : IR → IR given by

ϕp(µ, α) =


α if α ≥ µ

p−1 ,
µ

p−1

[
(p−1)(α+µ)

pµ

]p
if −µ < α < µ

p−1 ,

0 if α ≤ −µ,

where µ > 0 and p ≥ 2. This function ϕp is recently studied in [9] and it is not hard to verify
that ϕp also satisfies the above conditions (2.2). All the functions ϕ1, ϕ2 and ϕ3 will play the



6 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

role of smoothing functions as f(λi(x)) in (1.4). In other words, based on these smoothing
functions, we define a type of SOC-functions Φµ(·) on IRn associated with Kn (n ≥ 1) as

Φµ(x) := ϕ(µ, λ1(x))u
(1)
x + ϕ(µ, λ2(x))u

(2)
x ∀x = (x1, x2) ∈ IR× IRn−1, (2.3)

where λ1(x), λ2(x) are given by (1.2) and u
(1)
x , u

(2)
x are given by (1.3). In light of the

properties of ϕ(µ, α), we show as below that the SOC-function Φµ(x) becomes the smoothing
function for the projection function x+ onto Kn.

We depict the graphs of ϕi(µ, α) for i = 1, 2, 3, in Figure 1. From Figure 1, we see that
ϕ3 is the one which best approximates the function (α)+ under the sense that it is closest
to (α)+ among all ϕi(µ, α) for i = 1, 2, 3.

Figure 1: Graphs of max(0, t) and all three ϕi(µ, t) with µ = 0.2.

Proposition 2.2. Suppose that x = (x1, x2) ∈ IR × IRn−1 has the spectral decomposition
given as in (1.1)-(1.3), and that ϕ(µ, ·) with µ > 0 is continuously differentiable function
satisfying (2.2). Then, the following hold.

(a) The function Φµ(x) : IR
n → IRn defined as in (2.3) is continuously differentiable. More-

over, its Jacobian matrix at x is described as

∂Φµ(x)

∂x
=


∂ϕ
∂λ (µ, x1)I if x2 = 0,[

b cx2
T /∥x2∥

cx2/∥x2∥ aI + (b− a)x2x2
T /∥x2∥2

]
if x2 ̸= 0,

(2.4)

where
a = ϕ(µ,λ2(x))−ϕ(µ,λ1(x))

λ2(x)−λ1(x)
,

b = 1
2

(
∂ϕ
∂λ2

(µ, λ2(x)) +
∂ϕ
∂λ1

(µ, λ1(x))
)
,

c = 1
2

(
∂ϕ
∂λ2

(µ, λ2(x))− ∂ϕ
∂λ1

(µ, λ1(x))
)
;

(2.5)

(b) Both
∂Φµ(x)

∂x and I − ∂Φµ(x)
∂x are positive semi-definite matrices;

(c) lim
µ→0

Φµ(x) = x+ = (λ1(x))+u
(1)
x + (λ2(x))+u

(2)
x for i = 1, 2.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 7

Proof. (a) From the expression (2.3) and the assumption of ϕ(µ, ·) being continuously differ-
entiable, it is easy to verify that the function Φµ is continuously differentiable. The Jacobian
matrix (2.4) of Φµ(x) can be obtained by adopting the same arguments as in [13, Proposition
5.2]. Hence, we omit the details here.

(b) First, we prove that the matrix
∂Φµ(x)

∂x is positive semi-definite. For the case of x2 = 0,

we know that
∂Φµ(x)

∂x = ∂ϕ
∂λ (µ, x1)I. Then, from 0 ≤ ∂ϕ

∂α (µ, α) ≤ 1, it is clear to see that

the matrix
∂Φµ(x)

∂x is positive semi-definite. For the case of x2 ̸= 0, from ∂ϕ
∂α (µ, α) ≥ 0 and

(2.5), we have b ≥ 0. In order to prove that the matrix
∂Φµ(x)

∂x is positive semi-definite,

we only need to verify that the Schur Complement of b with respect to
∂Φµ(x)

∂x is positive
semi-definite. Note that the Schur Complement of b has the form of

aI + (b− a)
x2x

T
2

∥x2∥2
− c2

b

x2x
T
2

∥x2∥2
= a

(
I − x2x

T
2

∥x2∥2

)
+

b2 − c2

b

x2x
T
2

∥x2∥2
.

Since ∂ϕ
∂α (µ, α) ≥ 0, we obtain that the function ϕ(µ, α) with respect to α is increasing,

which leads to a ≥ 0. Besides, from (2.5), we observe that

b2 − c2 =
∂ϕ

∂λ2
(µ, λ2(x))

∂ϕ

∂λ1
(µ, λ1(x)) ≥ 0.

With this, it follows that the Schur Complement of b with respect to
∂Φµ(x)

∂x is a linear

non-negative combination of the matrices
x2x

T
2

∥x2∥2 and I − x2x
T
2

∥x2∥2 . Thus, we show that the

Schur Complement of b is positive semi-definite, which says the matrix
∂Φµ(x)

∂x is positive
semi-definite.

Combining with ∂ϕ
∂α (µ, α) ≤ 1 and following similar arguments as above, we can also argue

that the matrix I − ∂Φµ(x)
∂x is also positive semi-definite.

(c) By the definition of the function Φµ(x), it can be verified directly.

We point out that the definition of (2.3) includes the similar way to define smoothing
functions in [13, Section 4] as a special case, and hence [13, Prop. 4.1] is covered by Proposi-
tion 2.2. Indeed, Proposition 2.2 can be also verified by geometric views. More specifically,
from Figures 2, 3 and 4, we see that when µ ↓ 0, ϕi is getting closer to (α)+, which verifies
Proposition 2.2(c).

3 Applying Φµ to solve the system (1.5)

In this section, in light of the smoothing vector-valued function Φµ, we reformulate (1.5) as
a system of smoothing equations. To this end, we need a partial order induced by SOC.
More specifically, for any x ∈ IRn, using the definition of the partial order “⪯Km” and the
projection function x+ in (2.1), we have

fI(x) ⪯Km 0 ⇐⇒ −fI(x) ∈ Km ⇐⇒ fI(x) ∈ −Km ⇐⇒ (fI(x))+ = 0.

Hence, the system (1.5) is equivalent to the following system of equations:{
(fI(x))+ = 0,
fE(x) = 0.

(3.1)



8 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

Figure 2: Graphs of ϕ1(µ, α) with µ = 0.01, 0.1, 0.3, 0.5.

Figure 3: Graphs of ϕ2(µ, α) with µ = 0.01, 0.1, 0.3, 0.5.

Note that the function (fI(·))+ in the above equation (3.1) is nonsmooth. Therefore, the
smoothing-type Newton methods cannot be directly applied to solve the equation (3.1).
To conquer this, we employ the smoothing function Φµ(·) defined in (2.3), and define the
following function:

F (µ, x, y) :=

 fI(x)− y
fE(x)
Φµ(y)

 .

From Proposition 2.2(c), it follows that

F (µ, x, y) = 0 and µ = 0

⇐⇒ y = fI(x), fE(x) = 0, Φµ(y) = 0 and µ = 0

⇐⇒ y = fI(x), fE(x) = 0 and y+ = 0

⇐⇒ (fI(x))+ = 0, fE(x) = 0

⇐⇒ fI(x) ⪯Km 0, fE(x) = 0.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 9

Figure 4: Graphs of ϕ3(µ, α) with µ = 0.01, 0.1, 0.3, 0.5.

In other words, as long as the system F (µ, x, y) = 0 and µ = 0 is solved, the corresponding
x is a solution to the original system (1.5). In view of Proposition 2.2(a), we can obtain
the solution to the system (1.5) by applying smoothing-type Newton method for solving
F (µ, x, y) = 0 and setting µ ↓ 0 at the same time. To do this, for any z = (µ, x, y) ∈ IR++×
IRn × IRm, we further define a continuously differentiable function H : IR++ × IRn × IRm →
IR++ × IRn × IRm as follows:

H(z) :=


µ

fI(x)− y + µxI

fE(x) + µxE

Φµ(y) + µy

 , (3.2)

where xI := (x1, x2, ..., xm)T ∈ IRm, xE := (xm+1, ..., xn)
T ∈ IRn−m, x := (xT

I , x
T
E)

T ∈ IRn

and y ∈ IRm. Then, it is clear to see that when H(z) = 0, we have µ = 0 and x is a solution
to the system (1.5). Now, we let H ′(z) denote the Jacobian matrix of the function H at z,
then for any z ∈ IR++ × IRn × IRm, we obtain that

H ′(z) =


1 0n 0m
xI f ′

I + µU −Im
xE f ′

E + µV 0(n−m)×m
∂Φµ(y)

∂µ + y 0m×n
∂Φµ(y)

∂y + µIm

 , (3.3)

where U :=
[
Im 0m×(n−m)

]
, V :=

[
0(n−m)×m In−m

]
, 0l denotes l dimensional zero

vector, and 0l×q denotes l × q zero matrix for any positive integer l and q. In summary,
we will apply smoothing-type Newton method to solve the smoothed equation H(z) = 0 at
each iteration and make µ > 0 as well as H(z) → 0 to find a solution of the system (1.5).

4 A smoothing-type Newton algorithm

Now, we consider a smoothing-type Newton algorithm with a nonmonotone line search, and
show that the algorithm is well defined. For convenience, we denote the merit function Ψ
as Ψ(z) := ∥H(z)∥2 for any z ∈ IR++ × IRn × IRm.



10 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

Algorithm 4.1. (A smoothing-type Newton Algorithm)

Step 0 Choose γ ∈ (0, 1), ξ ∈ (0, 1
2 ). Take η > 0, σ ∈ (0, 1) such that ση < 1. Let

µ0 = η and (x0, y0) ∈ IRn × IRm be an arbitrary vector. Set z0 = (µ0, x
0, y0), e0 :=

(1, 0, ..., 0) ∈ IR× IRn × IRm, G0 := ∥H(z0)∥2 = Ψ(z0) and S0 := 1. Choose βmin and
βmax such that 0 ≤ βmin ≤ βmax < 1. Set τ(z0) := σmin{1,Ψ(z0)} and k := 0.

Step 1 If ∥H(zk)∥ = 0, stop. Otherwise, go to Step 2.

Step 2 Compute ∆zk := (∆µk,∆xk,∆yk) ∈ IR× IRn × IRm by

H ′(zk)∆zk = −H(zk) + ητ(zk)e0. (4.1)

Step 3 Let αk be the maximum of the values 1, γ, γ2, ... such that

Ψ(zk + αk∆zk) ≤ [1− 2ξ(1− ση)αk]Gk. (4.2)

Step 4 Set zk+1 := zk + αk∆zk. If ∥H(zk+1)∥ = 0, stop. Otherwise, go to Step 5.

Step 5 Choose βk ∈ [βmin, βmax]. Set

Sk+1 := βkSk + 1,
τ(zk+1) := min

{
σ, σΨ(zk+1), τ(zk)

}
,

Gk+1 :=
(
βkSkGk +Ψ(zk+1)

)
/Sk+1,

(4.3)

and set k := k + 1. Go to Step 2.

The nonmonotone line search technique in Algorithm 4.1 was introduced in [36]. From
the first and third equations in (4.3), we know that Gk+1 is a convex combination of Gk

and Ψ(zk+1). In fact, Gk is expressed as a convex combination of Ψ(z0),Ψ(z1), ...,Ψ(zk).
Moreover, the main role of βk is to control the degree of non-monotonicity. If βk = 0 for
every k, then the corresponding line search is the usual monotone Armijo line search.

Proposition 4.2. Suppose that the sequences {zk}, {µk}, {Gk}, {Ψ(zk)} and {τ(zk)} are
generated by Algorithm 4.1. Then, the following hold.

(a) The sequence {Gk} is monotonically decreasing and Ψ(zk) ≤ Gk for all k ∈ N;

(b) The sequence {τ(zk)} is monotonically decreasing;

(c) ητ(zk) ≤ µk for all k ∈ N;

(d) The sequence {µk} is monotonically decreasing and µk > 0 for all k ∈ N.

Proof. The proof is similar to Remark 3.1 in [37], we omit the details.

Next, we show that Algorithm 4.1 is well-defined and establish its local quadratic con-
vergence. For simplicity, we denote the Jacobian matrix of the function f by

f ′(x) :=

[
f ′
I(x)

f ′
E(x)

]
and use the following assumption.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 11

Assumption 4.1. f ′(x) + µIn is invertible for any x ∈ IRn and µ ∈ IR++.

We point our that the Assumption 4.1 is only a mild condition and there are many
functions satisfying the assumption. For example, if f is a monotone function, then f ′(x) is
a positive semi-definite matrix for any x ∈ IRn. Thus, Assumption 4.1 is satisfied.

Theorem 4.3. Suppose that f is a continuously differentiable function and Assumption 4.1
is satisfied. Then, Algorithm 4.1 is well-defined.

Proof. In order to show that Algorithm 4.1 is well-defined, we need to prove that Newton
equation (4.1) is solvable, and the line search (4.2) is well-defined.

First, we prove that Newton equation (4.1) is solvable. By the expression of Jacobian matrix
H ′(z) in (3.3), we see that the determinant det(H ′(z)) of H ′(z) satisfies

det(H ′(z)) = det (f ′(x) + µIn) · det
(
∂Φµ(y)

∂y
+ µIm

)
for any z ∈ IR++ × IRn × IRm. Moreover, from Proposition 2.2(b), we know that

∂Φµ(y)
∂y is

positive semi-definite for µ ∈ IR++. Hence, combing this with Assumption 4.1, we obtain
that H ′(z) is nonsingular for any z ∈ IR++ × IRn × IRm with µ > 0. Applying Proposition
4.2(d), it follows that Newton equation (4.1) is solvable.

Secondly, we prove that the line search (4.2) is well-defined. For notational convenience, we
denote

wk(α) := Ψ
(
zk + α∆zk

)
−Ψ

(
zk

)
− αΨ′ (zk)∆zk.

From Newton equation (4.1) and the definition of Ψ, we have

Ψ
(
zk + α∆zk

)
= wk(α) + Ψ

(
zk

)
+ αΨ′ (zk)∆zk

= wk(α) + Ψ
(
zk

)
+ 2αH

(
zk

)T (
−H(zk) + ητ(zk)e0

)
≤ wk(α) + (1− 2α)Ψ

(
zk

)
+ 2αητ(zk)

∥∥H(zk)
∥∥ .

If Ψ(zk) ≤ 1, then we have ∥H(zk)∥ ≤ 1. Hence, it follows that

τ(zk)∥H(zk)∥ ≤ σΨ(zk)∥H(zk)∥ ≤ σΨ(zk).

If Ψ(zk) > 1, then we see that Ψ(zk) = ∥H(zk)∥2 ≥ ∥H(zk)∥, which yields

τ(zk)∥H(zk)∥ ≤ σ∥H(zk)∥ ≤ σΨ(zk).

Thus, from all the above, we obtain that

Ψ
(
zk + α∆zk

)
≤ wk(α) + (1− 2α)Ψ(zk) + 2αησΨ(zk)

= wk(α) +
[
1− 2(1− ση)α

]
Ψ(zk) (4.4)

≤ wk(α) +
[
1− 2(1− ση)α

]
Gk.

Since the function H is continuous and differentiable for any z ∈ IR++× IRn× IRm, we have
wk(α) = o(α) for all k ∈ N. Combining with (4.4), this indicates that the line search (4.2)
is well-defined.



12 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

Theorem 4.4. Suppose that f is a continuously differentiable function and Assumption
4.1 is satisfied. Then the sequence {zk} generated by Algorithm 4.1 is bounded; and any
accumulation point of the sequence {xk} is a solution of the system (1.5).

Proof. The proof is similar to [37, Theorem 4.1] and we omit it.

In Theorem 4.4, we give the global convergence of Algorithm 4.1. Now, we analyze the
convergence rate for Algorithm 4.1. We start with introducing the following concepts. A
locally Lipschitz function F : IRn → IRm is said to be semismooth (or strongly semismooth)
at x ∈ IRn if F is directionally differentiable at x and

F (x+ h)− F (h)− V h = o(∥h∥) (or = O(∥h∥2))

holds for any V ∈ ∂F (x+h), where ∂F (x) is the generalized Jacobian matrix of the function
F at x ∈ IRn in the sense of Clarke [2]. There are many functions being semismooth, such as
convex functions, smooth functions, piecewise linear functions and so on. In addition, it is
known that the composition of semismooth functions is still a semismooth function, and the
composition of strongly semismooth functions is still a strongly semismooth function [12].
From Proposition 2.2 (a), we know that Φµ(x) defined by (2.3) is smooth on IRn.

With the definition (3.2) of H, mimicking the arguments as in [37, Theorem 5.1], we
have the local quadratic convergence of Algorithm 4.1.

Theorem 4.5. Suppose that the conditions given in Theorem 4.4 are satisfied, and z∗ =
(µ∗, x

∗, y∗) is an accumulation point of sequence {zk} which is generated by Algorithm 4.1.

(a) If all V ∈ ∂H(z∗) are nonsingular, then the sequence {zk} converges to z∗, and

∥zk+1 − zk∥ = o(∥zk − z∗∥), µk+1 = o(µk);

(b) If the functions f and Φµ satisfy that f
′
and Φ

′

µ are Lipschitz continuous on IRn, then

∥zk+1 − zk∥ = O(∥zk − z∗∥)2 and µk+1 = O(µ2
k).

5 Numerical experiments

In this section, we present some numerical examples to demonstrate the efficiency of Algo-
rithm 4.1 for solving the system (1.5). In our tests, all experiments are done on a PC with
CPU of 1.9 GHz and RAM of 8.0 GB, and all the program codes are written in MATLAB
and run in MATLAB environment. We point out that if there are no n numbers in I ∪ E,
we can adopt a similar way to those given in [37], then the system (1.5) can be transformed
as a new problem and we can solve the new problem using Algorithm 4.1. By this approach,
a solution of the original problem can be found.

Throughout the following experiments, we employ three functions ϕ1, ϕ2 and ϕ3 along
with the proposed algorithm to implement each example. Note that, for the function ϕ1, its
corresponding SOC-function Φµ can be alternatively expressed as

Φ̃µ(x) =
x+

√
x2 + 4µ2e

2
with e = (1, 0, · · · , 0)T ∈ Kn.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 13

This form is simpler than the Φµ(x) induced from (2.3). Hence, we adopt it in our imple-
mentation. Moreover, the parameters used in the algorithm are chosen as follows:

γ = 0.3, ξ = 10−4, η = 1.0, β0 = 0.01, µ0 = 1.0, S0 = 1.0,

and the parameters c and σ are chosen according to the ones listed in Table 1 and Table
4. In the implementation, the stopping rule is ∥H(z)∥ ≤ 10−6, the step length ν ≤ 10−6,
or the number of iteration is over 500; and the starting points are randomly generated from
the interval [−1, 1].

Now, we present the test examples. We first consider two examples in which the system
(1.5) only includes inequalities, i.e., m = n. Note that a similar way to construct the two
examples was given in [25].

Example 5.1. Consider the system (1.5) with inequalities only, where f(x) := Mx+q ⪯Kn 0
and Kn := Kn1 × · · · × Knr . Here M is generated by M = BBT with B ∈ IRn×n being a
matrix whose every component is randomly chosen from the interval [0, 1] and q ∈ IRn being
a vector whose every component is 1.

For Example 5.1, the tested problems are generated with sizes n = 500, 1000, ..., 4500
and each ni = 10. The random problems of each size are generated 10 times. Besides using
the three functions along with Algorithm 4.1 for solving Example 5.1, we have also tested it
by using the smoothing-type algorithm with the monotone line search which was introduced
in [25] (for this case, we choose the function ϕ1). Table 1 shows the numerical results where

“fun” denotes the three functions,
“suc” denotes the number that Algorithm 4.1 successfully solves every generated problem,
“iter” denotes the average iteration numbers,
“cpu” denotes the average CPU time in seconds,
“res” denotes the average residual norm ∥H(z)∥ for 9 test problems.

The initial points are also randomly generated. In light of “iter” and “cpu” in Table 1, we
can conclude that

ϕ3(µ, α) > ϕ1(µ, α) > ϕ2(µ, α)

where “>” means “better performance”. In Table 2, we compare Algorithm 4.1 with non-
monotone line search and the smoothing-type algorithm with monotone line search studied
in [25]. Although the number that Algorithm 4.1 successfully solves every generated problem
is less than the one by the smoothing-type algorithm with monotone line search as afore-
mentioned in overall, the performance based on cpu time and iterations of our proposed
algorithm outperforms better than the other. This indicates that Algorithm 4.1 has some
advantages over the one with the monotone line search in [25].

Another way to compare the performance of function ϕi(µ, α), i = 1, 2, 3, is via the so-
called “performance profile”, which is introduced in [39]. In this means, we regard Algorithm
4.1 corresponding to a smoothing function ϕi(µ, α), i = 1, 2, 3 as a solver, and assume that
there are ns solvers and np test problems from the test set P which is generated randomly.
We are interested in using the iteration number as performance measure for Algorithm 4.1
with different ϕi(µ, α). For each problem p and solver s, let

fp,s = iteration number required to solve problem p by solver s.



14 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

n fun suc iter cpu res
500 ϕ1 10 5.000 0.251 8.864e-09
500 ϕ2 10 7.800 1.496 2.600e-07
500 ϕ3 10 3.500 0.707 3.762e-07
1000 ϕ1 10 5.000 0.632 2.165e-08
1000 ϕ2 10 7.200 5.240 8.657e-08
1000 ϕ3 10 3.400 3.093 4.853e-07
1500 ϕ1 9 5.000 1.224 1.537e-07
1500 ϕ2 9 8.111 13.232 3.124e-07
1500 ϕ3 9 4.222 8.781 2.706e-07
2000 ϕ1 10 5.000 2.145 1.599e-07
2000 ϕ2 10 7.700 24.130 2.234e-07
2000 ϕ3 10 4.200 16.925 1.923e-07
2500 ϕ1 9 5.000 3.519 3.897e-08
2500 ϕ2 9 6.889 34.849 2.016e-07
2500 ϕ3 9 4.000 27.870 1.479e-07
3000 ϕ1 10 5.000 5.161 9.769e-08
3000 ϕ2 10 8.300 69.723 1.714e-07
3000 ϕ3 10 4.100 45.891 1.608e-07
3500 ϕ1 7 5.000 7.415 2.226e-07
3500 ϕ2 7 7.857 102.272 4.037e-07
3500 ϕ3 7 4.429 75.068 2.334e-07
4000 ϕ1 9 5.000 9.974 5.795e-08
4000 ϕ2 9 6.444 106.850 3.132e-07
4000 ϕ3 9 4.000 98.983 7.743e-08
4500 ϕ1 8 5.000 13.075 2.374e-07
4500 ϕ2 8 10.250 240.602 3.115e-07
4500 ϕ3 8 4.250 147.863 3.070e-07

Table 1: Average performance of Algorithm4.1 for Example 5.1 (c = 0.01, σ = 10−5)

We employ the performance ratio

rp,s :=
fp,s

min{fp,s : s ∈ S}
,

where S is the four solvers set. We assume that a parameter rp,s ≤ rM for all p, s are chosen,
and rp,s = rM if and only if solver s does not solve problem p. In order to obtain an overall
assessment for each solver, we define

ρs(τ) :=
1

np
size{p ∈ P : rp,s ≤ τ},

which is called the performance profile of the number of iteration for solver s. Then, ρs(τ)
is the probability for solver s ∈ S that a performance ratio fp,s is within a factor τ ∈ R of
the best possible ratio.

We then need to test the three functions for Example 5.1. In particular, the random
problems of each size are generated 50 times. In order to obtain an overall assessment for the



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 15

Non-monotone Monotone
n suc iter cpu res n suc iter cpu res
500 10 5.000 0.251 8.864e-09 500 10 5.500 0.289 4.905e-07
1000 10 5.000 0.632 2.165e-08 1000 10 5.500 0.616 7.184e-08
1500 9 5.000 1.224 1.537e-07 1500 9 6.000 1.466 4.654e-09
2000 10 5.000 2.145 1.599e-07 2000 10 6.500 2.866 3.151e-08
2500 9 5.000 3.519 3.897e-08 2500 10 6.000 4.477 4.320e-08
3000 10 5.000 5.161 9.769e-08 3000 10 6.500 7.348 1.743e-07
3500 7 5.000 7.415 2.226e-07 3500 10 8.000 11.957 5.674e-07
4000 9 5.000 9.974 5.795e-08 4000 10 7.000 14.875 2.166e-08
4500 8 5.000 13.075 2.374e-07 4500 10 7.000 19.204 2.433e-08

Table 2: Comparisons of non-monotone Algorithm 4.1 and monotone Algorithm in [25] for
Example 5.1

three functions, we are interested in using the number of iterations as a performance measure
for Algorithm 4.1 with ϕ1(µ, α), ϕ2(µ, α), and ϕ3(µ, α), respectively. The performance plot
based on iteration number is presented in Figure 5. From this figure, we also see that ϕ3(µ, α)
working with Algorithm 4.1 has the best numerical performance, followed by ϕ4(µ, α). In
other words, in view of “iteration numbers”, there has

ϕ3(µ, α) > ϕ1(µ, α) > ϕ2(µ, α)

where “>” means “better performance”.

We are also interested in using the computing time as performance measure for Algorithm
4.1 with different ϕi(µ, α), i = 1, 2, 3. The performance plot based on computing time is
presented in Figure 6. From this figure, we can also see the function ϕ3(µ, t) has best
performance. In other words, in view of “computing time”, there has

ϕ3(µ, α) > ϕ1(µ, α) > ϕ2(µ, α)

where “>” means “better performance”.

In summary, for the Example 5.1, no matter the number of iterations or the computing
time is taken into account, the function ϕ3(µ, α) is the best choice for the Algorithm 4.1.

Example 5.2. Consider the system (1.5) with inequalities only, where x ∈ IR5, K5 =
K3 ×K2 and

f(x) :=


24(2x1 − x2)

3 + exp(x1 + x3)− 4x4 + x5

−12(2x1 − x2)
3 + 3(3x2 + 5x3)/

√
1 + (3x2 + 5x3)2 − 6x4 − 7x5

−exp(x1 − x3) + 5(3x2 + 5x3)/
√
1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2

 ⪯K5 0.

This problem is taken from [17].



16 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

Figure 5: Performance profile of iteration numbers for Example 5.1.

Figure 6: Performance profile of computing time for Example 5.1.

Example 5.2 is tested 20 times for 20 random starting points. Similar to the case of
Example 5.1, besides using Algorithm 4.1 to test Example 5.2, we have also tested it using
the monotone smoothing-type algorithm in [25]. From Table 3, we see that there is no big
difference regarding performance between these two algorithms for Example 5.2.

Moreover, Figure 7 shows the performance profile of iteration number in Algorithm
4.1 for Example 5.2 on 100 test problems with random starting points. The three solvers
correspond to Algorithm 4.1 with ϕ1(µ, α), ϕ2(µ, α), and ϕ3(µ, α), respectively. From this
figure, we see that ϕ3(µ, α) working with Algorithm 4.1 has the best numerical performance.
followed by ϕ2(µ, t). In summary, from the viewpoint of “iteration numbers”, we conclude
that

ϕ3(µ, α) > ϕ2(µ, α) > ϕ1(µ, α),

where “>” means “better performance”.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 17

Non-monotone Monotone
suc iter cpu res suc iter cpu res
20 13.500 0.002 5.835e-08 20 8.750 0.005 1.2510e-07

Table 3: Comparisons of non-monotone Algorithm 4.1 and monotone Algorithm in [25] for
Example 5.2

Figure 7: Performance profile of iteration number for Example 5.2.

Example 5.3. Consider the system of equalities and inequalities (1.5), where

f(x) :=
(
fI(x)

T , fE(x)
T
)T

x ∈ IR6,

with

fI(x) =


−x4

1

3x3
2 + 2x2 − x3 − 5x2

3

−4x2
2 − 7x3 + 10x3

3

−x3
4 − x5

x5 + x6

 ⪯K5=K3×K2 0,

fE(x) = 2x1 + 5x2
2 − 3x2

3 + 2x4 − x5x6 − 7.

Example 5.4. Consider the system of equalities and inequalities (1.5), where

f(x) :=
(
fI(x)

T , fE(x)
T
)T

x ∈ IR6,

with

fI(x) =


−e5x1 + x2

x2 + x3
3

−3ex4

5x5 − x6

 ⪯K4=K2×K2 0,

fE(x) =

[
3x1 + ex2+x3 − 2x4 − 7x5 + x6 − 3

2x2
1 + x2 + 3x3 − (x4 − x5)

2 + 2x6 − 13

]
= 0.



18 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

Example 5.5. Consider the system of equalities and inequalities (1.5), where

f(x) :=
(
fI(x)

T , fE(x)
T
)T

x ∈ IR7,

with

fI(x) =


3x3

1

x2 − x3

−2(x4 − 1)2

sin(x5 + x6)
2x6 + x7

 ⪯K5=K2×K3 0,

fE(x) =

[
x1 + x2 + 2x3x4 + sinx5 + cosx6 + 2x7

x3
1 + x2 +

√
x2
3 + 3 + 2x4 + x5 + x6 + 6x7

]
= 0.

Exam fun suc c σ iter cpu res
5.2 ϕ1 20 5 0.02 13.500 0.002 5.835e-08
5.2 ϕ2 20 5 0.02 8.450 0.001 5.134e-07
5.2 ϕ3 20 5 0.02 8.600 0.002 2.260e-07
5.3 ϕ1 20 1 0.02 21.083 0.009 8.165e-07
5.3 ϕ2 17 1 0.02 14.647 0.001 2.899e-07??
5.3 ϕ3 17 1 0.02 18.529 0.002 7.167e-07
5.4 ϕ1 20 0.5 0.002 46.750 0.033 1.648e-07
5.4 ϕ2 2 0.5 0.002 420.000 0.499 9.964e-07
5.4 ϕ3 0 0.5 0.002 Fail Fail Fail
5.5 ϕ1 20 0.1 0.002 14.250 0.009 6.251e-07
5.5 ϕ2 20 0.1 0.002 13.250 0.001 6.532e-07
5.5 ϕ3 20 0.1 0.002 12.650 0.001 6.016e-07

Table 4: Average performance of Algorithm4.1 for Examples 5.2-5.5

Table 4 shows the numerical results including three smoothing functions (fun) used to
solve the problems, the number (suc) that Algorithm 4.1 successfully solves every generated
problem, the parameters c and σ, the average iteration numbers (iter), the average CPU
time (cpu) in seconds and the average residual norm ∥H(z)∥ (res) for Examples 5.2-5.5 with
random initializations, respectively. Performance profiles are provided as below.

Figure 8 and Figure 9 are the performance profiles in terms of iteration number for
Example 5.3 and Example 5.5. From the Figure 8, we see that although the best probability
of the function ϕ3 is lower, but the ratio that can be solved in a large number of problems
is higher than that of the other two. In this case, the difference between the three functions
is not obvious. From the Figure 9, we can also see the function ϕ3 has best performance.

In summary, below are our numerical observations and conclusions.

1. The Algorithm 4.1 is effective. In particular, the numerical results show that our
proposed method is better than the algorithm with monotone line search studied in [25]
when solving the system of inequalities under the order induced by second-order cone.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 19

Figure 8: Performance profile of iteration number for Example 5.3.

Figure 9: Performance profile of iteration number for Example 5.5.

2. For Examples 5.1 and 5.2, the function ϕ3 outperforms much better than the others.
For the rest problems, the difference of their numerical performance is very marginal.

3. For future topics, it is interesting to discover more efficient smoothing functions and to
apply the type of SOC-functions to other optimization problems involved second-order
cones.

References

[1] F. Alizadeh, D. Goldfarb, Second-order cone programming, Math. Program. 95 (2003)
3–51.



20 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

[2] F.H. Clark, Optimizaton and Nonsmooth Analysis, Wiley, New York, 1983.

[3] J-S. Chen, The convex and monotone functions associated with second-order cone,
Optimization. 55 (2006) 363–385.

[4] J.-S. Chen, X. Chen, S.-H. Pan and J. Zhang, Some characterizations for SOC-monotone
and SOC-convex functions, J. Global Optim. 45 (2009) 259–279.

[5] J-S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions asso-
ciated with second-order cones, Math. Program. 101 (2004) 95–117.

[6] J.-S. Chen and P. Tseng, An unconstrained smooth minimization reformulation of
second-order cone complementarity problem, Math. Program. 104 (2005) 293–327.

[7] J.-S. Chen, T.-K. Liao and S.-H. Pan, Using Schur Complement Theorem to prove
convexity of some SOC-functions, J. Nonlinear Convex Anal. 13 (2012) 421–431.

[8] J.-S. Chen and S.-H. Pan, A survey on SOC complementarity functions and solution
methods for SOCPs and SOCCPs, Pac. J. Optim. 8 (2012) 33–74.

[9] J-S. Chen, C.-H. Ko, Y.-D. Liu and S.-P. Wang, New smoothing functions for solving
a system of equalities and inequalities, Pac. J. Optim. 12 (2016) 185–206.

[10] J.W. Daniel, Newton’s method for nonlinear inequalities, Numer. Math. 21 (1973) 381–
387.

[11] U. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Mono-
graphs, Oxford University Press, New York, 1994.

[12] A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian
functions, Math. Program. 76 (1997) 513–532.

[13] M. Fukushima, Z.Q. Luo, and P. Tseng, Smoothing functions for second-order cone
complementarity problems, SIAM J. Optim. 12 (2002) 436–460.

[14] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems, Volume-I, Springer, New York, 2003.

[15] Z.-H. Huang, S.-L. Hu, and J. Han, Global convergence of a smoothing algorithm for
symmetric cone complementarity problems with a nonmonotone line search, Sci. China
Ser. A 52 (2009) 833–848.

[16] Z.-H. Huang and T. Ni, Smoothing algorithms for complementarity problems over sym-
metric cones, Comput. Optim. Appl. 45 (2010) 557–579.

[17] S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularization
method for monotone second-order cone complementarity problems, SIAM J. Optim.
15 (2005) 593–615.

[18] Z.H. Huang, Y. Zhang and W. Wu, A smoothing-type algorithm for solving a system
of inequalities, J. Comput. Appl. Math. 220 (2008) 355–363.

[19] C. Kanzow, I. Ferenczi and M. Fukushima, On the local convergence of semismooth
Newton methods for linear and nonlinear second-order cone programs without strict
complementarity, SIAM J. Optim. 20 (2009) 297–320.



APPLYING SOC-FUNCTIONS TO EQUATIONS AND INEQUALITIES 21

[20] L.-C. Kong, J. Sun, and N.-H. Xiu, A regularized smoothing Newton method for sym-
metric cone complementarity problems, SIAM J. Optim. 19 (2008) 1028–1047.

[21] X.-H. Liu and W.-Z. Gu, Smoothing Newton algorithm based on a regularized one-
parametric class of smoothing functions for generalized complementarity problems over
symmetric cones, J. Ind. Manag. Optim. 6 (2010) 363–380.

[22] N. Lu and Z.-H. Huang, Convergence of a non-interior continuation algorithm for the
monotone SCCP, Acta Math. Appl. Sin. Engl. Ser. 26 (2010) 543–556.

[23] X.-H. Liu and Z.-H. Huang, A smoothing Newton algorithm based on a one-parametric
class of smoothing functions for linear programming over symmetric cones, Math. Meth-
ods Oper. Res. 70 (2009) 385–404.

[24] M.S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of second-order cone
programming, Linear Algebra Appl. 284 (1998) 193–228.

[25] N. Lu and Y. Zhang, A smoothing-type algorithm for solving inequalities under the
order induced by a symmetric cone, J. Inequal. Appl. 4 (2011) 2011.

[26] Y.-J. Liu, L.-W. Zhang, and Y.-H. Wang, Analysis of smoothing method for symmetric
conic linear programming, J. Appl. Math. Comput. 22 (2006) 133–148.

[27] M. Macconi, B. Morini and M. Porcelli, Trust-region quadratic methods for nonlinear
systems of mixed equalities and inequalities, Appl. Numer. Math. 59 (2009) 859–876.

[28] D.Q. Mayne, E. Polak and A.J. Heunis, Solving nonlinear inequalities in a finite number
of iterations, J. Optim. Theory Appl. 33 (1981) 207–221.

[29] S.-H. Pan and J.-S. Chen, A class of interior proximal-like algorithms for convex second-
order cone programming, SIAM J. Optim. 19 (2008) 883–910.

[30] S.-H. Pan and J.-S. Chen, Interior proximal methods and central paths for convex
second-order cone programming, Nonlinear Anal. 73 (2010) 3083–3100.

[31] S.-H. Pan and J.-S. Chen, A least-square semismooth Newton method for the second-
order cone complementarity problem, Optim. Methods Softw. 26 (2011) 1–22.

[32] S.-H. Pan, Y. Chiang and J.-S. Chen, SOC-monotone and SOC-convex functions v.s.
matrix-monotone and matrix-convex functions, Linear Algebra Appl. 437 (2012) 1264–
1284.

[33] M. Sahba, On the solution of nonlinear inequalities in a finite number of iterations,
Numer. Math. 46 (1985) 229–236.

[34] J.-H. Sun, J.-S. Chen, and C.-H. Ko, Neural networks for solving second-order cone
constrained variational inequality problem, Comput. Optim. Appl. 51 (2012) 623–648.

[35] J. Wu and J.-S. Chen, A proximal point algorithm for the monotone second-order cone
complementarity problem, Comput. Optim. Appl. 51 (2012) 1037–1063.

[36] H.-C. Zhang and W. Hager, A nonmontone line search technique and its application to
unconstrained optimization, SIAM J. Optim. 14 (2004) 1043–1056.

[37] Y. Zhang and Z.-H. Huang, A nonmonotone smoothing-type algorithm for solving a
system of equalities and inequalities, J. Comput. Appl. Math. 233 (2010) 2312–2321.



22 X.-H. MIAO, N. QI, B. SAHEYA AND J.-S. CHEN

[38] J.G. Zhu, H.W. Liu and X.L. Li, A regularized smoothing-type algorithm for solving
a system of inequalities with a P0-function, J. Comput. Appl. Math. 233 (2010) 2611–
2619.

[39] E. D. Dolan and J. J. More, Benchmarking optimization software with performance
profiles, Math. Program. 91 (2002) 201–213.

Manuscript received 28 August 2016
revised 15 July 2017

accepted for publication 20 July 2017

Xin-He Miao
School of Mathematics, Tianjin University
E-mail address: xinhemiao@tju.edu.cn

Nuo Qi
School of Mathematics, Tianjin University
E-mail address: qinuotju@126.com

B. Saheya
College of Mathematical Science
Inner Mongolia Normal University
E-mail address: saheya@imnu.edu.cn

Jein-Shan Chen
Department of Mathematics
National Taiwan Normal University
E-mail address: jschen@math.ntnu.edu.tw


