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Abstract. In this paper, we suggest the Levenberg-Marquardt method with
Armijo line search for solving absolute value equations associated with the

second-order cone (SOCAVE for short), which is a generalization of the stan-

dard absolute value equation frequently discussed in the literature during the
past decade. We analyze the convergence of the proposed algorithm. For nu-

merical reports, we not only show the efficiency of the proposed method, but
also present numerical comparison with smoothing Newton method. It indi-

cates that the proposed algorithm could also be a good choice for solving the

SOCAVE.

1. Introduction. The standard absolute value equation (AVE for short) currently
being studied extensively is the main focus in this paper. For the AVE, there are
two types of them. The first type is in the form of

Ax− |x| = b. (1)

Another one is a more general AVE, which is in the form of

Ax+B|x| = b, (2)

where A ∈ IRn×n, 0 6= B ∈ IRn×n and b ∈ IRn. Here |x| denotes the componentwise
absolute value of vector x ∈ IRn, i.e., |x| = (|x1|, |x2|, · · · , |xn|)T ∈ IRn. In fact,
when B is nonsingular, the AVE (2) reduces to the AVE (1). In particular, the
AVE (2) is just the AVE (1) if B = −I, where I is the identity matrix.

It is known that the AVE (1) was first introduced by Rohn in [30] in 2004 and are
capable to formulate many optimization problems [18, 21, 26, 29]. Due to this, the
AVE has attracted much attention recently. For standard absolute value equation,
there are two main research directions for it. One is on the theoretical side, while the
other one focuses on the algorithm for solving the absolute value equation. For the
theoretical side, Mangasarian and Meyer [24] show that the AVE (1) is equivalent to
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the bilinear program, the generalized LCP (linear complementarity problem), and
the standard LCP provided that 1 is not an eigenvalue of A. In the setting of the
second-order cone, Hu, Huang and Zhang [12] have shown that the absolute value
equation associated with the second-order cone (SOCAVE) (2) is equivalent to the
below problem: find x, y ∈ IRn such that

Mx+ Py = c, and x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0,

where M,P ∈ IRn×n are matrices and c ∈ IRn. Note that the above problem
is not a standard second-order cone linear complementarity problem (SOCLCP)
because there exists one additional equation Mx+ Py = c therein. In light of this,
Miao et.al. [27] have shown that the SOCAVE (2) can be further converted into
a standard SOCLCP. In addition, about the study of the properties of solutions
for the AVE (2), under the condition of solvability, the AVE (2) can have either
unique solution or multiple (e.g., exponentially many) solutions. Moreover, various
sufficient conditions on solvability and non-solvability of the AVE (1) and (2) with
unique and multiple solutions are discussed in [24, 29]. There are many other
theoretical results, see [11, 16, 18, 19, 22, 26, 24, 29, 30]. Towards to solutions of the
AVE, various numerical methods for solving the AVE were proposed, for example,
Mangasarian [20], Zhang and Wei [35] all considered a generalized Newton method
for the AVE. Yamanaka and Fukushima [32] proposed a branch and bound method
for the absolute value programs. There are also other many numerical methods for
solving the standard AVE (2) in the literature, see [2, 14, 15, 20, 21, 23, 31, 35] and
references therein.

In this paper, we focus on the type of absolute value equation associated with
the second-order cone, denoted by the SOCAVE, whose format looks like the AVE
(1):

Ax− |x| = b, (3)

where A ∈ IRn×n and b ∈ IRn are the same as those in (1). However, |x| in
the SOCAVE (3) denotes the square root of the Jordan product ”◦” of x and x

associated with the second-order cone (SOC), that is, |x| :=
√
x2 =

√
x ◦ x. In fact,

by applying the SOC-function, Jordan product [4] and their related properties, there
has explicit expression for |x| ∈ K in the SOCAVE (3), where K denotes the general
second-order cone. More details about the second-order cone, Jordan product and
|x| will be introduced in the next section.

As mentioned above, several mathematical problems including linear program-
ming, bimatrix games can be reduced to the system of absolute value equations.
Accordingly, we see that the SOCAVE (3) play the same role in various optimiza-
tions involving the second-order cones since the SOCAVE is equivalent to the SO-
CLCP under the suitable conditions. The SOCLCP has various applications in
engineering, control, finance, robust optimization and combinatorial optimization.
In this paper, we are interested in Levenberg-Marquardt method for solving the
SOCAVE (3). The Levenberg-Marquardt method [10, 13, 17, 25, 33, 34] was pro-
posed for solving nonlinear problems F (x) = 0. This method can be viewed as
a combination of the steepest descent and Gauss-Newton method. The classical
Levenberg-Marquardt method computes the search direction dk by

dk = −(J(xk)TJ(xk) + µkI)−1J(xk)TF (xk), (4)

where J(xk) = F ′(xk) denotes the Jacobian matrix of the function F at xk, µk > 0
is a parameter and I is the identity matrix. As stated in [13], the direction dk in
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(4) is unique, which is a nice feature of Levenberg-Marquardt method compared to
the Newton method or the Gauss-Newton method. In our setting, F (x) is defined
by

F (x) = Ax− |x| − b.
In this paper, we consider the Levenberg-Marquardt method with Armijo line

search. Besides analyzing the convergence of the proposed method, we also present
some preliminary numerical results to illustrate the efficiency of the proposed method.
On the other hand, we also compare with the smoothing Newton method, which is
a promising way for solving the SOCAVE (3) [27, 28]. The numerical experiments
indicate that the Levenberg-Marquardt method is competitive on some certain prob-
lems. This suggests that not only is the smoothing Newton method good for solving
the SOCAVE (3), but the Levenberg-Marquardt method is also another good choice.

There are a few words about our notations in this paper. All vectors are column
vectors unless transposed to a row vector by a prime T. IRn denotes the space of
n-dimensional real space. xT y denotes the inner product of two vectors x and y in
the n-dimensional real space. IR+ and IR++ denote the nonnegative and positive
reals. For x ∈ IRn, the 2-norm (i.e., Euclidean norm) is denoted by ‖x‖. A matrix
AT will denote the transpose of A, the identity matrix of arbitrary dimension is
denoted by I.

The remaining parts of this paper are organized as follows. In section 2, we
recall some basic concepts and background knowledge about second-order cone, the
projection onto the SOC and the expression of the absolute value function associated
with the SOC. Besides, we also define a vector-valued smoothing function Ψ based
on the SOC. In Section 3, we propose the Levenberg-Marquardt method with Armijo
line search for solving the SOCAVE (3), and discuss the convergence of the proposed
method. In Section 4, simulations, numerical results, and numerical comparison are
presented.

2. Preliminaries. In this section, we review some basic concepts and useful results
regarding second-order cone and Jordan product, which will be extensively used in
the subsequent analysis. For a comprehensive treatment of second-order cone, more
details can be found in [3, 4, 5, 6, 7, 9].

The second-order cone (SOC) in IRn, also called the Lorentz cone or ice-cream
cone, is defined as

Kn := {(x1, x2) ∈ IR× IRn−1∣∣‖x2‖ ≤ x1},
where ‖ ·‖ denotes the Euclidean norm. It is well known that the second-order cone
is a special case of symmetric cones [9]. Besides, we can see that for n = 1, the
second-order cone Kn is the set of nonnegative reals IR+. In general, the general
second-order cone K is the Cartesian product of the SOCs, i.e.,

K := Kn1 × · · · × Knr .

Since all the analysis can be carried out on the setting of Cartesian product, without
loss of generality, we focus on the single second-order cone Kn in this paper.

Next, we will introduce the concept of Jordan product associated with SOC Kn.
For any two vectors x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1, the
Jordan product of x and y associated with Kn is defined by

x ◦ y :=

[
xT y

y1x2 + x1y2

]
.
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Unlike scalar or matrix multiplication, the Jordan product is not associative, which
is a main source of complication in the analysis of optimization problems involved
SOC, see [7, 9] and references therein. Moreover, the identity element under the
Jordan product is e = (1, 0, · · · , 0)T ∈ IRn. Based on these definitions, x2 means
the Jordan product of x and x, i.e., x2 = x ◦ x; and

√
x with x ∈ Kn denotes the

vector satisfying
√
x ◦
√
x = x. On the basis of these concepts, the vector |x| in (3)

is computed by
|x| :=

√
x ◦ x.

In order to write out the expression of |x| easily and explicitly, we first recall the
spectral decomposition of x with respect to SOC. For any x = (x1, x2) ∈ IR×IRn−1,
the spectral decomposition of x with respect to SOC [4, 6, 7] is given by

x = λ1(x)u(1)x + λ2(x)u(2)x ,

where λ1(x) and λ2(x) are the spectral values of x with λi(x) = x1 + (−1)i‖x2‖ for

i = 1, 2, while u
(1)
x and u

(2)
x are the corresponding spectral vectors of x given by

u(i)x =

 1
2

(
1, (−1)i

xT
2

‖x2‖

)T
if ‖x2‖ 6= 0,

1
2

(
1, (−1)iνT

)T
if ‖x2‖ = 0,

with ν ∈ IRn−1 being any vector satisfying ‖ν‖ = 1 for i = 1, 2. It is easy to find
that the spectral decomposition of x ∈ IRn is unique if ‖x2‖ 6= 0.

In the next content of this section, we recall the projection onto Kn. We let x+
be the projection of x onto Kn, and x− denote the projection of −x onto its dual
cone of Kn, where the dual cone is defined as

(Kn)∗ := {y ∈ IRn | 〈x, y〉 ≥ 0, ∀x ∈ Kn}.
In fact, the dual cone of Kn is itself, i.e., (Kn)∗ = Kn. Due to the special structure
of second-order cone, the explicit formula of projection of x = (x1, x2) ∈ IR× IRn−1

onto Kn is obtained in [7, 9] as below:

x+ =

 x if x ∈ Kn,
0 if x ∈ −Kn,
u otherwise,

where u =

[
x1+‖x2‖

2(
x1+‖x2‖

2

)
x2

‖x2‖

]
.

In the same way, x− can be characterized as follows:

x− =

 0 if x ∈ Kn,
−x if x ∈ −Kn,
w otherwise,

where w =

[
−x1−‖x2‖

2(
x1−‖x2‖

2

)
x2

‖x2‖

]
.

By direct calculation, it is easy to show that x = x+−x−. Moreover, together with
the spectral decomposition of x, x+ and x− can be described by the following form,
respectively:

x+ = (λ1(x))+u
(1)
x + (λ2(x))+u

(2)
x ,

and
x− = (−λ1(x))+u

(1)
x + (−λ2(x))+u

(2)
x ,

where (α)+ = max{0, α} for any α ∈ IR.
Now, we talk about the expression of |x| associated with Kn. Indeed, we can

use the so-called SOC-function to achieve the expression of |x|, which can be found
in [3, 4, 5]. More specifically, for any x ∈ IRn, the definition of |x| with respect
to SOC is |x| := x+ + x−. In particular, the form |x| = x+ + x− is equivalent to
|x| =

√
x ◦ x in the setting of SOC. In light of the above expression of projection
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x+ and x−, it is easy to get that the expression of the absolute value |x| associated
with SOC is the following form

|x| =
[
(λ1(x))+ + (−λ1(x))+

]
u(1)x +

[
(λ2(x))+ + (−λ2(x))+

]
u(2)x

=
∣∣λ1(x)

∣∣u(1)x +
∣∣λ2(x)

∣∣u(2)x .

Combining the spectral decomposition of x, there is a more explicit expression of
|x| as below:

|x| =


1

2

[
|x1 − ‖x2‖|+ |x1 + ‖x2‖|

(|x1 + ‖x2‖| − |x1 − ‖x2‖|) x2

‖x2‖

]
if x2 6= 0,[

|x1|
0

]
if x2 = 0.

In order to employ Levenberg-Marquardt method for solving the SOCAVE (3), we
need to adopt a continuously differentiable function. Due to the non-differentiability
of |α| for α ∈ IR, we consider a special smoothing function for the absolute value
function |α|. To this end, we define the function φp(·, ·) : IR2 → IR as

φp(a, b) := p
√
|a|p + |b|p, p > 1. (5)

Noting that b ∈ IR and b → 0 yields φp(a, b) → |a|. Therefore, combining the
spectral decomposition of x and the function φp, it is natural to define a vector-
valued smoothing function Φ : IRn → IRn as

Φ(x(ρ)) = φp(ρ, λ1(x))u(1)x + φp(ρ, λ2(x))u(2)x

= p
√
|ρ|p + |λ1(x)|p u(1)x + p

√
|ρ|p + |λ2(x)|p u(2)x ,

where ρ ∈ IR is a parameter, and λ1(x), λ2(x) are the spectral values of x. From
this, it is easy to check that

lim
ρ→0

Φ(x(ρ)) = |λ1(x)|u(1)x + |λ2(x)|u(2)x = |x|,

which means the function Φ(x(ρ)) is a uniformly smoothing function of |x| associ-
ated with SOC. With this function, for tackling the SOCAVE (3), we further define
a function H(x(ρ)) : IRn → IRn by

H(x(ρ)) = Ax− Φ(x(ρ))− b, ∀ρ ∈ IR, x ∈ IRn.

Then, from a trivial observation

lim
ρ→0

H(x(ρ)) = 0 ⇐⇒ Ax− |x| − b = 0,

it indicates that x is a solution to the SOCAVE (3) if and only if x is the limit of the
solution x(ρ) to the equationH(x(ρ)) = 0 when ρ→ 0. In practical implementation,
we often take ρ ∈ IR++ and set ρ ↓ 0. In addition, it is not difficult to show that the
function H(x(ρ)) with any ρ 6= 0 is continuously differentiable on IRn. By direct
calculation, we can write out the explicit formula of the Jacobian matrix for the
function H as below:

H ′x(x(ρ)) = A− Φ′x(x(ρ)) (6)

for all x ∈ IRn with x = (x1, x2) ∈ IR× IRn−1, where

Φ′x(x(ρ)) =


sgn(x1)|x1|p−1[
p
√
ρp+|x1|p

]p−1 I if x2 = 0, b c
xT
2

‖x2‖

c x2

‖x2‖ aI + (b− a)
x2x

T
2

‖x2‖2

 if x2 6= 0,
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with

a =
φp(ρ, λ2(x))− φp(ρ, λ1(x))

λ2(x)− λ1(x)
,

b =
1

2

(
sgn(λ2(x))|λ2(x)|p−1

[φp(ρ, λ2(x))]p−1
+

sgn(λ1(x))|λ1(x)|p−1

[φp(ρ, λ1(x))]p−1

)
,

c =
1

2

(
sgn(λ2(x))|λ2(x)|p−1

[φp(ρ, λ2(x))]p−1
− sgn(λ1(x))|λ1(x)|p−1

[φp(ρ, λ1(x))]p−1

)
,

and the function sgn(·) is defined by sgn(α) :=

 1 if α > 0,
0 if α = 0,
−1 if α < 0.

It is noteworthy

that the Jacobian matrix is derived from Proposition 4 in [5]. Actually, the Jaco-
bian matrix for the function H is one of the important elements in our considered
algorithm. For simplicity, we denote w := x(ρ), from which we obtain the system
of nonlinear equation

H(w) = 0.

Thus, x is a solution of the SOCAVE (3) if and only if x is the limit of the solution
w to the equation H(w) = 0 when ρ→ 0.

3. Levenberg-Marquardt method. For the SOCAVE (3), Miao et.al.[26] have
obtained that the SOCAVE (3) has a unique solution if all singular values of A
exceed 1. In view of this, we suppose that all singular values of A exceed 1 in this
paper. It follows that the SOCAVE (3) has a unique solution. Now, we consider the
Levenberg-Marquardt method with Armijo line search mentioned in [13] for solving
the SOCAVE (3) and show its convergence properties. The general iterative scheme
is

xk+1 = xk + αkdk, k = 0, 1, 2, 3, · · · ,

where αk ∈ IR+ is a step size, and dk ∈ IRn is the search direction. More specifically,
αk and dk denote the Levenberg-Marquardt direction (4) and the Armijo line search,
respectively. For convenience, we denote the merit function Ψ as the following form:

Ψ(w) =
1

2
‖H(w)‖2.

Algorithm 3.1. [Levenberg-Marquardt Algorithm]

Step 0: Choose an initial point w0 = x0(ρ0) ∈ IRn with any ρ0 ∈ IR++, and
parameters β, % ∈ (0, 1), γ ∈ [1, 2], σ ∈ (0, 12 ). Set k := 0.

Step 1: If ‖H(wk)‖ = 0, then stop. Otherwise go to step 2.
Step 2: Set

µk = ‖H(wk)‖γ , dk = −(J(wk)TJ(wk) + µkI)−1J(wk)TH(wk),

where J(wk) denotes the Jacobian matrix H ′(wk) of H(wk) at wk given by
(6). If dk satisfies

‖H(wk + dk))‖ ≤ %‖H(wk)‖, (7)

then set xk+1(ρk) = wk + dk. Then, set ρk+1 = µk

1+µk
ρk and wk+1 :=

xk+1(ρk+1). Otherwise go to step 3.
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Step 3: Find mk be the smallest nonnegative integer m such that

Ψ(wk + βmdk) ≤ Ψ(wk) + σβm∇Ψ(wk)T dk. (8)

Set αk := βmk and xk+1(ρk) = wk + αkdk. Then, set ρk+1 = αkρk, wk+1 =
xk+1(ρk+1), and go to step 4.

Step 4: Set k := k + 1, go back to step 1.

As indicated in [13], the direction dk in step 2 is unique. Hence, it is clear that
Algorithm 3.1 is well defined. The parameter σ guarantees that the line search (8)
makes sense, while % could simplify the algorithm when Ψ(w) drops too fast.

Theorem 3.1. Suppose that all singular values of A exceed 1 and x∗ be a solution
of the SOCAVE (3). Then, the function H(w) provides a local error bound on the
neighborhood N(x∗, r) for the SOCAVE (3), i.e., there exists a constant c > 0 such
that

‖w − x∗‖ ≤ c‖H(w)‖, ∀w ∈ N(x∗, r).

Proof. Since x∗ is a solution of the SOCAVE (3), we have H(w∗) := H(x∗(0)) = 0.
Then, it follows that

H(w) = H(w)−H(w∗) = H ′(ξ)(w − w∗)
= (A− Φ′x(ξ))(w − x∗),

where the third equation holds due to the smoothness of Φ with any ρ > 0, and
ξ = (1− t)x∗+ tw with 0 < t < 1. Since all singular values of A exceed 1, it follows
from Theorem 4.1 in [27] that H ′(ξ) = A− Φ′x(ξ) is nonsingular. Hence, we have

w − x∗ = (A− Φ′(ξ))−1H(w),

which implies that

‖w − x∗‖ ≤ ‖(A− Φ′x(ξ))−1H(w)‖ ≤ ‖(A− Φ′x(ξ))−1‖‖H(w)‖ = c‖H(w)‖,
where c = ‖(A− Φ′x(ξ))−1‖. Then, the proof is complete.

In order to establish the global convergence results for Levenberg-Marquardt
Algorithm 3.1, we assume that ∇Ψ(wk) 6= 0 for all k, which ensures that the
algorithm can generate an infinite sequence {wk}.

Theorem 3.2. Suppose that the sequence {wk} is generated by the Levenberg-
Marquardt Algorithm 3.1 with Armijo line search. Then, any accumulation point of
the sequence {wk} is a stationary point of Ψ. Moreover, if all singular values of A
exceed 1, the sequence {wk} converges to the solution of the SOCAVE (3).

Proof. Since dk = −(J(wk)TJ(wk) + µkI)−1J(wk)TH(wk) and ∇Ψ(wk) 6= 0 for all
k, we have

(∇Ψ(wk))T dk = −
(
J(wk)TH(wk)

)T (
J(wk)TJ(wk) + µkI

)−1
J(wk)TH(wk) < 0,

where the inequality holds because J(wk)TJ(wk) +µkI is a positive definite matrix
for any µk > 0. Together with the formulae (7) and (8), the sequence {Ψ(wk)}
is monotonically decreasing. By Theorem 3.1, it is easy to get that the sequence
{wk} is bounded. Therefore, there are accumulation points in the sequence {wk}.
Moreover, from the monotone decreasing of {Ψ(wk)}, the sequence {µk} is also
monotonically decreasing, so it has a limit µ∗. To proceed, we discuss two cases for
the sequence {µk} : (i) µ∗ = 0 and (ii) µ∗ 6= 0.
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Case (i): µ∗ = 0, i.e., µk → 0. In this case, we have H(wk)→ 0, which illustrates
that any accumulation point of the sequence {wk} is a stationary point of Ψ.

Case (ii): µ∗ 6= 0, i.e., µ∗ > 0. For convenience, without loss of generality, we
assume that the sequence {wk} itself is convergent. By µ∗ 6= 0, it follows that
limk→∞Ψ(wk) 6= 0 and

(∇Ψ(wk))T dk = −(J(wk)TH(wk))T dk

= −((J(wk)TJ(wk) + µkI)dk)T dk

= −dTk (J(wk)TJ(wk) + µkI)dk (9)

≤ −µk‖dk‖2

≤ −µ∗‖dk‖2.
From (9) and the fact that the gradient ∇Ψ(wk) is bounded on the convergent
sequence {wk}, we have

lim sup
k→∞

‖dk‖ <∞.

On the other hand, using limk→∞ µk = µ∗ > 0 and {µk} being monotonically
decreasing, it follows that for all large k, there exists a constant κ > 0 such that

‖J(wk)TJ(wk) + µkI‖ ≤ κ.
This clearly yields

‖dk‖ ≥
‖∇Ψ(wk)‖

‖J(wk)TJ(wk) + µkI‖
≥ ‖∇Ψ(wk)‖

κ
.

This together with (9) leads to lim supk→∞ ‖dk‖ = 0 or lim supk→∞ |(∇Ψ(wk))T dk|
> 0. If lim supk→∞ ‖dk‖ = 0, it implies that limk→∞ ‖∇Ψ(wk)‖ = 0, i.e., the accu-
mulation point of {wk} is a stationary point of Ψ. If lim supk→∞ |(∇Ψ(wk))T dk| >
0, by lim supk→∞ ‖dk‖ < ∞, then we know that the sequence {dk} is uniformly
gradient related to {wk}. Therefore, by [1, Proposition 1.2.1], we conclude that any
accumulation point of {wk} ia a stationary point of the function Ψ.

If all singular values of A exceed 1, it follows that the Jacobian matrix J(w) =
H ′(w) is nonsingular. By ∇Ψ(w) = J(w)H(w), it is easy to verify that the station-
ary point w∗ of the function Ψ satisfies H(w∗) = 0, which implies that x∗ is the
solution of the SOCAVE (3). Then, the proof is complete.

Remark 1. (a): Like what is discussed in the literature, the Armijo line search
in Algorithm 3.1 could be chosen as Goldstein line search. The corresponding
convergence results can be achieved as well.

(b): Based on the strongly semismoothness of the absolute value function asso-
ciated with SOC, it is easy to get that the Jacobian matrix H ′x(w) is Lipschitz
continuous on some neighborhood of the solution x∗. By this, under all sin-
gular values of A exceed 1, similar to Theorem 3.1 in [33] or Theorem 2.2 in
[10], we get that the sequence {wk} generated by the Levenberg-Marquardt
algorithm converges to the solution of SOCAVE (3) quadratically.

4. Numerical Experiments. This section is devoted to the numerical implemen-
tations. Besides providing some numerical evidence to show the efficiency of Al-
gorithm 3.1, we also do numerical comparison between the Levenberg-Marquardt
algorithm and the smoothing Newton algorithm (a promising approach for solving
SOCAVE recently studied in [27, 28]). In particular, we adapt the performance
profile to describe the influence by perturbing the parameter p.
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In our tests, the parameters are set as below:

ρ0 = 0.001, x0 = rand(n, 1), β = 0.5, σ = 0.2, % = 0.5 and γ = 1.

We stop the iterations when ‖∇Ψ(wk)‖ ≤ 10−5 or the number of iterations exceeds
100. All the experiments are done on a PC with Intel(R) CPU of 2.30GHz and
RAM of 4.00GB, and all the program codes are written in Matlab and run in
Matlab environment.

To present numerical results, we consider the performance profile which is intro-
duced in [8]. In other words, we regard Algorithm 3.1 corresponding to different
p = 1.1, 2, 3, 10, 20, 80 as a solver, and assume that there are ns solvers and nq test
problems from the test set P. We use the computing time as performance measure
for Algorithm 3.1 with different values of p which satisfies the condition p > 1 in
(5). For each problem q and solver s, let

fq,s = computimg time required to solve problem q by solver s.

We employ the performance ratio

rq,s =
fq,s

min{fq,s : s ∈ S}
,

where S is the six solvers set. We assume a parameter rM such that rq,s ≤ rM for
all q, s are chosen, and rq,s = rM if and only if solver s does not solve problem q.
In order to obtain an overall assessment for each solver, we define

ρs(τ) :=
1

nq
size{q ∈ P : rq,s ≤ τ},

which is called the performance profile of the computing time for solver s. Then,
ρs(τ) is the probability for solver s ∈ S that a performance ratio rq,s is within a
factor τ ∈ IR of the best possible ratio, see [8].

Additionally, we provide the performance profile in each problem to compare
Levenberg-Marquardt algorithm and the smoothing Newton algorithm, which was
recently studied in [27, 28] for solving SOCAVE (3) as well. The performance profiles
of problem 4.1-4.3 use 300 test problems and problem 4.4 use 40 test problems, they
are all with fixed value of p = 2 with n = 300.

Problem. Consider the SOCAVE (3) which is generated in the following way: first
choose a random matrix C ∈ IRn×n from a uniformly distribution on [−10, 10] for
every element. We compute the minimal singular value σ∗ of C, and let σ :=
min{1, σ∗}. Next, we divide C by σ multiplied by a random number in the interval
[0, 1], and the resulting matrix is denoted as A. Accordingly, the minimum singular
value of A exceeds 1, which can ensure that the SOCAVE (3) has the unique solution.
We choose randomly b ∈ IRn on [0, 1] for every element. By Algorithm 3.1 in this
paper, the resulting SOCAVE (3) is solvable. The initial point is chosen in the range
[0, 1] entry-wisely. Note that a similar way to construct the problem was given in
[12].

Problem. Consider the SOCAVE (3) which is generated in the following way:
choose two random matrices A ∈ IRn×n from a uniformly distribution on [−10, 10]
for every element. In order to ensure that the SOCAVE (3) is solvable, we update
the matrix A by the following: let [USV ] = svd(A). If min{S(i, i)} = 0 for i =
0, 1, · · · , n, we make A = U(S + 0.01E)V , and then A = 1.01

λmin(ATA)
A. We choose
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Figure 1. Performance profile of computing time of Problem 4.1
with different p.
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Figure 2. Performance profile of computing time of Problem 4.1
with LM and SN methods.

randomly b ∈ IRn on [0, 10] for every element. The initial point is chosen in the
range [0, 1] entry-wisely.

Problem. We consider the SOCAVE (3) which is generated by the same way as
in Problem 4. However, here the K is Cartesian product of single SOCs, given by
K := Kn1 × · · · × Knr , where n1 = · · · = nr = n

r .
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Figure 3. Performance profile of computing time of Problem 4.2
with different p.
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Figure 4. Performance profile of computing time of Problem 4.2
with LM and SN methods.

As seen, the above problems 4–4 are all generated randomly. In the below ex-
ample, we consider the case where the matrix A and the vector b in the SOCAVE
(3) are fixed.
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Figure 5. Performance profile of computing time of Problem 4.3
with different p.

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Levenberg-Marquardt method
Smoothing Newton method

Figure 6. Performance profile of computing time of Problem 4.3
with LM and SN methods.

Problem. Consider the SOCAVE (3) which is generated in the following way: Let

A =


3 2 2 · · · 2
0 3 2 · · · 2
0 0 3 · · · 2
...

...
...

. . .
...

2 2 2 · · · 3

 , b = (−2, 2,−2, . . . ,−2, 2 · · · )T .
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The initial point is chosen in the range [0, 1] entry-wisely. It is obvious that the
minimum singular value of A exceeds 1, so the SOCAVE (3) has the unique solution.
In this example, the dimension of A is 40.
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Figure 7. Performance profile of computing time of Problem 4.4
with different p.
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Figure 8. Performance profile of computing time of Problem 4.4
with LM and SN methods.

In our experiments, every set of the simulations for every problem is random-
ly generated ten times, and both of the success rates with Levenberg-Marquardt
algorithm and smoothing Newton method are 100%.
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We summarize our numerical observations as below:

• From Figures 1,3,5,7, we see that the proposed algorithm is not affected when
p is perturbed.

• The small value of p, which is close to 1, seems not a good choice of being
employed to work with the proposed algorithm.

• In general, the iterations of Levenberg-Marquardt algorithm are more than
those in smoothing Newton method in each problem. Nonetheless, from Fig-
ure 1 to Figure 4, we see that the performance in computing time of the
Levenberg-Marquardt algorithm is evidently better than the smoothing New-
ton algorithm.

• All the above results show the efficiency of the Levenberg-Marquardt algo-
rithm. Like the smoothing Newton method, this study suggests that the
Levenberg-Marquardt algorithm could be another good choice for solving SO-
CAVE.

Acknowledgments. We would like to thank the guest editors for giving us an
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Chin Lai.
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