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transformations of these NCP functions. Finally, we propose some interesting research directions that
can be explored in the NCP research.
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1. Motivation

Nonlinear complementarity problems (NCPs) are an impor-
tant class of variational inequalities often encountered when
dealing with Karush–Kuhn–Tucker conditions of optimization
problems [7]. Apart from these, NCP provides an important frame-
work for the study of equilibrium problems which usually arises
from different areas such as operations research, engineering and
economics [7,9,10].

Given a function F : Rn
→ Rn, the problem of finding a point

x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, and ⟨x, F (x)⟩ = 0, (1)

is precisely the nonlinear complementarity problem. Various ap-
proaches to solving this problem have been proposed in the past
years. One class of methods utilizes a so-called NCP function, that
is, a function φ : R2

→ R such that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, and ab = 0.

An NCP function is useful in solving NCP (1) as it naturally exploits
the structure of the problem. In particular, defining ΦF : Rn

→ Rn

as

ΦF (x) =

⎛⎜⎝ φ(x1, F1(x))
...

φ(xn, Fn(x))

⎞⎟⎠ , (2)

it is clear to see that NCP (1) is equivalent to solving the system of
equations ΦF (x) = 0. Moreover, the NCP-function also gives rise
to a merit function, namely ΨF (x) :=

1
2∥ΦF (x)∥

2. That is, the global
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minimizers of ΨF and the solutions of (1) coincide. Consequently,
designing solution methods for solving (1) usually involves these
NCP functions.

Due to their usefulness, numerous NCP functions have been
proposed and extensively studied in the literature [11]. Among
them, the Fischer–Burmeister (FB) function given by

φFB (a, b) =

√
a2 + b2 − (a + b) (3)

had gained significant attention and had been widely used in
several studies because of its desirable numerical properties. In
addition, as noted in [11], it is remarkable that several NCP
functions are akin to the FB function. For instance, the generalized
FB function

φp
FB
(a, b) = ∥(a, b)∥p − (a + b), p > 1 (4)

is an interesting generalization of φFB which can be efficiently
used in solving NCPs. Here, ∥ · ∥p denotes the lp-norm, and
the tunable parameter p has been shown to possibly improve
numerical performance of some algorithms [4,6].

A general way to construct NCP functions was first given by
Mangasarian in [16], and another method was formulated by
Luo and Tseng [15] and Kanzow, Yamashita, and Fukushima [13].
More recently, a rigorous discussion on how to construct NCP
functions was presented by Galantai in [11]. On the other hand,
the purpose of this paper is to present another general method to
construct NCP functions which is new to the literature. The very
useful generalized FB function φp

FB
is one among the functions that

our method can generate. We also discuss some analytic proper-
ties and geometric views of the proposed functions. We present
some variants and generalizations of these NCP functions, and
we also suggest some possibly important extensions. Finally, we
report some possible research directions that are worth exploring
in the future.
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2. New NCP functions

In this section, we present a new method to construct contin-
uous NCP functions. Let θ : R → R be continuous and define
φ

p
θ : R2

→ R as

φ
p
θ (a, b) = ∥(a, b)∥p − (θ (b)a + θ (a)b), p ≥ 1. (5)

Note that φ
p
θ is a continuous symmetric function; that is, φp

θ (a, b)
= φ

p
θ (b, a). For some suitable choice of θ , the above function

yields an NCP function. We divide our discussion into two cases,
depending on the value of p.

2.1. The case p = 1

We first consider the case of p = 1, that is,

φ1
θ (a, b) = |a| + |b| − (θ (b)a + θ (a)b). (6)

Proposition 2.1. Let θ : R → R such that θ (0) = 1, θ (t) > 1 for
all t > 0, and −1 < θ (t) < 1 for all t < 0. Then, φ1

θ defined by (6)
is an NCP function. Moreover, φ1

θ (a, b) ≤ 0 if and only if (a, b) ∈ R2
+
.

Proof. Observe that we may rewrite φ1
θ as

φ1
θ (a, b) = a

(
sgn(a) − θ (b)

)
+ b

(
sgn(b) − θ (a)

)
,

where

sgn(t) :=

⎧⎨⎩
1 if t > 0,
0 if t = 0,

−1 if t < 0.

Then, it is easy to verify that

φ1
θ (a, b)

=

⎧⎪⎪⎨⎪⎪⎩
0 if a, b ≥ 0 & ab = 0,

a(1 − θ (b)) + b(1 − θ (a)) if a > 0 & b > 0,
−a(1 + θ (b)) + b(1 − θ (a)) if a < 0 & b ≥ 0,
−a(1 + θ (b)) − b(1 + θ (a)) if a < 0 & b < 0.

(7)

By our hypotheses on θ , we see that φ1
θ (a, b) < 0 for the second

case, and φ1
θ (a, b) > 0 for the third and last cases. Finally, by

symmetry of φ1
θ , we have φ1

θ (a, b) > 0 when a > 0 and b < 0
as in the third case. In other words, φ1

θ (a, b) = 0 if and only if
a, b ≥ 0 and ab = 0. This says that φ1

θ is an NCP function. □

An important consequence of Proposition 2.1 is given by the
following result, which describes the growth behavior of the NCP
function φ1

θ . This corollary plays an important role in establishing
coerciveness of ΦF given by (2) (see [8]), which in turn is helpful
in convergence analysis of algorithms. We omit the proof of the
following corollary since it easily follows from the formula of φ1

θ

given in (7). We do note that the strict inequality assumptions
on the limits of θ at ±∞ are important to avoid indeterminate
products.

Corollary 2.1. Let θ satisfy the hypothesis of Proposition 2.1 such
that limt→∞ θ (t) > 1 and −1 < limt→−∞ θ (t) < 1. Then,
|φ1

θ (a
k, bk)| → ∞ as k → ∞ for any sequence {(ak, bk)} ⊆ R2

with |ak| → ∞ and |bk| → ∞.

In the remaining parts of the paper, we assume that θ satisfies
the conditions in Proposition 2.1 whenever p = 1. Note that
a simple choice of θ is any monotonically increasing function
whose range is contained in (−1, ∞), passes through (0, 1), and
is strictly monotonic in some neighborhood of 0.

Example 2.1. The functions θ1(t) = et , θ2(t) =

√
t2+4+t
2 , and

θ3(t) =
2

1+e−t clearly satisfy the conditions of Proposition 2.1 and
Corollary 2.1. The graphs of φ1

θi
(a, b) for i = 1, 2, 3 are shown

in Figs. 1(a), 2(a), and 3(a). For each i, it is evident that the
function φ1

θi
is non-positive on R2

+
and has the growth behavior

as described in Corollary 2.1. In addition, φ1
θi

is a nonsmooth
nonconvex function for all i. In particular, the function has sharp
trace curves corresponding to a = 0 and b = 0, which are the
points of non-differentiability of φ1

θ .

2.2. The case p > 1

Now, we consider φ
p
θ with p > 1 and provide conditions on θ

which will make φ
p
θ an NCP function. The conditions are almost

similar to those given in Proposition 2.1. However, we do not
require strict inequality at t = 1, but we need a higher lower
bound for θ (t) on (−∞, 0).

Proposition 2.2. Let p > 1. Suppose θ : R → R such that
θ (0) = 1, θ (t) ≥ 1 for all t > 0, and −2

1−p
p ≤ θ (t) ≤ 1 for

all t < 0. Then, φ
p
θ defined by (5) is an NCP function. Moreover,

φ
p
θ (a, b) ≤ 0 if and only if (a, b) ∈ R2

+
.

Proof. Since φ
p
θ is symmetric w.r.t. the line a = b, it suffices to

check the values of φ
p
θ on the region a ≤ b. We carefully consider

four cases.

(i) If a = 0 and b > 0, then φ
p
θ (a, b) = |b| − θ (0)b = 0 since

θ (0) = 1.

(ii) Suppose a > 0 and b > 0. Due to p > 1, we have ∥(a, b)∥p =

(ap + bp)
1
p < a + b which in turn yields

φ
p
θ (a, b) < a + b − (θ (b)a + θ (a)b) = a(1 − θ (b)) + b(1 − θ (a)).

Because θ (t) ≥ 1 for any t > 0 it follows that φ
p
θ (a, b) < 0.

(iii) Suppose a < 0 and b ≥ 0. In this case, we have that
∥(a, b)∥p > a + b. Thus,

φ
p
θ (a, b) > a + b − (θ (b)a + θ (a)b) = a(1 − θ (b)) + b(1 − θ (a)).

Since b ≥ 0, we have 1 − θ (b) ≤ 0 and so the term a(1 − θ (b)) is
nonnegative. On the other hand, 1 − θ (a) > 0 since a < 0 which
means that the term b(1 − θ (a)) is likewise nonnegative. Hence,
φ

p
θ (a, b) > 0.

(iv) Finally, suppose that a < 0 and b < 0. The function t ↦→ tp
is strictly convex on [0, ∞) since p > 1. Thus,

∥(a, b)∥p
p = |a|p + |b|p > 21−p(|a| + |b|)p,

which implies that ∥(a, b)∥p > 2
1−p
p (|a| + |b|) = −2

1−p
p (a + b).

Consequently,

φ
p
θ (a, b) > −2

1−p
p (a + b) − (θ (b)a + θ (a)b)

= −a(2
1−p
p + θ (b)) − b(2

1−p
p + θ (a))

≥ 0

where the last inequality follows from the assumption that θ (t) ≥

−2
1−p
p for all t ≤ 0.

From the above four cases, it is clear that φ
p
θ (a, b) ≤ 0 only on

R2
+
. This completes the proof. □

We now state a consequence of (5), similar to Corollary 2.1.

Corollary 2.2. Let θ satisfy the hypothesis of Proposition 2.2 such
that limt→∞ θ (t) > 1 and −2

1−p
p < limt→−∞ θ (t) < 1. Then,

|φ
p
θ (a

k, bk)| → ∞ as k → ∞ for any sequence {(ak, bk)} ⊆ R2

with |ak| → ∞ and |bk| → ∞.
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Fig. 1. Graphs of φ
p
θ1

for different values of p where θ1(t) = et .

Proof. The result follows from the inequalities obtained from
cases (ii), (iii) and (iv) in the proof of Proposition 2.2. □

Whenever p > 1, we always assume that θ satisfies the
conditions of Proposition 2.2 for the remaining parts of the paper.
We now show some examples.

Example 2.2. Observe that by taking θ (t) ≡ 1, we obtain the
generalized FB function (4). Hence, the family of NCP functions
given by (5) subsumes the class of generalized FB functions.

Example 2.3. As in Example 2.1, consider θi for i = 1, 2, 3.
Then, for any p > 1, the function φ

p
θi

is an NCP function by
Proposition 2.2. Notice from Figs. 1–3 (subfigures (b)–(d)) that
the graphs of φ

p
θi

(p > 1) look ‘‘smoother’’ than that of φ1
θi
. In

particular, φp
θ is not differentiable only at the origin. Finally, φp

θi
is

also nonconvex similar to φ1
θi
in Example 2.1.

It is known that the differentiability and convexity of any
complementarity function cannot be held simultaneously [12,18].
Nonetheless, it could be neither differentiable nor convex. The
below two propositions indicate that this is the case for φ

p
θ . First,

as we have observed from Examples 2.1 and 2.3, φp
θ is not convex.

We claim that this is indeed the case in general.

Proposition 2.3. Suppose that θ is strictly increasing on some
interval I = [0, t0). Then, φ

p
θ is not convex.

Proof. Suppose that φ
p
θ is convex, due to φ

p
θ (0, 0) = 0, it must

be the case that φ
p
θ (λa, λb) ≤ λφ

p
θ (a, b) for any λ ∈ [0, 1] and any

u, v ∈ R. Taking any a, b ∈ I yields

φ
p
θ (λa, λb) − λφ

p
θ (a, b)

= ∥(λa, λb)∥p − (λθ (λb)a + λθ (λa)b) − λ(∥(a, b)∥p

− (θ (b)a + θ (a)b))
= λa(θ (b) − θ (λb)) + λb(θ (a) − θ (λa)).

Since λ ∈ [0, 1], we have that λa, λb ∈ I . By the strict monotonic-
ity assumption on θ in I , there has φ

p
θ (λa, λb) − λφ

p
θ (a, b) > 0.

Hence, φp
θ is not convex. □

We close this section by showing the semismoothness of φ
p
θ .

The concept of semismoothness was introduced by Mifflin [17]
for functionals, and was later extended by Qi and Sun [19] for
vector-valued functions.

Proposition 2.4. Suppose that θ is continuously differentiable and
satisfies the conditions of Proposition 2.1 if p = 1 or Proposition 2.2
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Fig. 2. Graphs of φ
p
θ2

for different values of p where θ2(t) =

√
t2+4+t
2 .

if p > 1. Then, φp
θ is semismooth. Moreover, the generalized gradient

of φ1
θ is described by

∂φ1
θ (a, b) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ [sgn(a) − θ ′(a)b − θ (b), sgn(b) − θ ′(b)a − θ (a)]T } if a ̸= 0 & b ̸= 0

{ [0, 2λ − 1 − aθ ′(0) − θ (a)]T : λ ∈ [0, 1] } if a > 0 & b = 0

{ [2λ − 1 − bθ ′(0) − θ (b), 0]T : λ ∈ [0, 1] } if a = 0 & b > 0

{ [−2, 2λ − 1 − aθ ′(0) − θ (a)]T : λ ∈ [0, 1] } if a < 0 & b = 0

{ [−2, 2λ − 1 − bθ ′(0) − θ (b)]T : λ ∈ [0, 1] } if a = 0 & b < 0

{ [ξ, ζ ]
T

: ξ, ζ ∈ [−2, 0] } if a = b = 0

and for p > 1, we have

∂φ
p
θ (a, b) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{ [ sgn(a)|a|p−1

∥(a,b)∥1−p
p

− θ (b) − bθ ′(a), sgn(b)|b|p−1

∥(a,b)∥1−p
p

− θ (a) − aθ ′(b)
]T }

if (a, b) ̸= (0, 0){
[ξ − 1, ζ − 1]T : |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
if a = b = 0.

Proof. Note that the mapping f : (a, b) ↦→ ∥(a, b)∥p is a convex
map and is therefore semismooth. Because g : (a, b) ↦→ −(θ (b)a+

θ (a)b) is smooth (and hence semismooth), their sum f + g = φ
p
θ

is semismooth. Now, we compute the generalized gradient of φ1
θ .

It is clear that φ1
θ is differentiable only on D := {(a, b) : a ̸=

0 and b ̸= 0}. Then, its gradient

∇φ1
θ (a, b) =

[
sgn(a) − θ ′(a)b − θ (b)
sgn(b) − θ ′(b)a − θ (a)

]
∀(a, b) ∈ D,

coincides with the generalized gradient on D. Suppose then that
(a, b) /∈ D. First, we consider the case when a > 0 and b =

0. By definition of Clarke’s generalized gradient ∂φ1
θ (a, b) =

conv
(
∂Bφ

1
θ (a, b)

)
, i.e., the convex hull of the B-subdifferential

∂Bφ
1
θ (a, b) =

{
g ∈ R2

| ∃{(ak, bk)}∞k=1 ⊆ D s.t.
(ak, bk) → (a, b) and ∇φ1

θ (ak, bk) → g
}
.

Let {(ak, bk)}∞k=1 ⊆ D such that (ak, bk) → (a, 0). For all sufficiently
large k, we have ak > 0. If bk > 0 for all k sufficiently large, then

lim
k→∞

∇φ1
θ (ak, bk) = lim

k→∞

[
sgn(ak) − θ ′(ak)bk − θ (bk)
sgn(bk) − θ ′(bk)ak − θ (ak)

]
=

[
1 − θ ′(a) · 0 − θ (0)
1 − θ ′(0) · a − θ (a)

]
=

[
0

1 − aθ ′(0) − θ (a)

]
,
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Fig. 3. Graphs of φ
p
θ3

for different values of p where θ3(t) =
2

1+e−t .

where we used the fact that θ is continuously differentiable and
that θ (0) = 1. If bk < 0 for all k sufficiently large, then

lim
k→∞

∇φ1
θ (ak, bk) =

[
1 − θ ′(a) · 0 − θ (0)

−1 − θ ′(0) · a − θ (a)

]
=

[
0

−1 − aθ ′(0) − θ (a)

]
.

In other cases, ∇φ1
θ (ak, bk) has no limit. Hence,

∂Bφ
1
θ (a, 0) =

{
[0, 1 − aθ ′(0) − θ (a)]T , [0, −1 − aθ ′(0) − θ (a)]T

}
and the result for the case a > 0 and b = 0 follows by taking
the convex hull. We omit the proof of the other cases as the
arguments are similar. Finally, note that φ

p
θ is differentiable on

R2 except at (0, 0). The computation of the generalized gradient
φ

p
θ (0, 0) is similar to the computation of ∂φp

FB
(0, 0) shown as

in [3]. This completes the proof. □

3. Some extensions

In this section, we discuss some variants and generalizations of
φ

p
θ . We also suggest some specific functions which can be used to

derive new NCP functions from old ones. To proceed, we denote

by t+ the projection onto [0, ∞), i.e.,

t+ :=

{
t if t ≥ 0
0 if t < 0.

For convenience, we define φ̂
p,i
θ for i = 1, 2, 3 as follows:

φ̂
p,1
θ (a, b) = φ

p
θ (a, b) − αa+b+

φ̂
p,2
θ (a, b) = φ

p
θ (a, b) − α(a+b+)2

φ̂
p,3
θ (a, b) = φ

p
θ (a, b) − α(a+)2(b+)2

where α > 0. For any p ≥ 1 and (a, b) ∈ R2
++

, we know from
Propositions 2.1 and 2.2 that φ̂

p,i
θ (a, b) < 0. Moreover, φ̂p,i

θ (a, b) =

φ
p
θ (a, b) > 0 for all (a, b) /∈ R2

+
. Consequently, these three variants

are easily to be seen as NCP functions as well.

Proposition 3.1. The functions φ̂
p,i
θ are all NCP functions for any

α > 0 and i = 1, 2, 3.

Recently, ‘‘continuous’’ and ‘‘discrete’’ generalizations of NCP
functions have gained some attention, see [2,3,5]. These general-
izations involve a tunable parameter q, which have been shown to
play important role in achieving better numerical performance of
some NCP functions-based algorithms [1,4,6]. Moreover, the ex-
tension results to an NCP function with possibly different analytic
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properties [2,5]. For instance, the generalized FB function (4) is
considered a continuous generalization of the FB function (3) in
the sense that p takes on values from the interval (1, ∞), and
the FB function can be obtained by taking p = 2. On the other
hand, discrete generalizations have also been studied recently.
For instance, the natural residual (NR) function

φNR (a, b) = min{a, b} = a − (a − b)+

is another popular NCP function apart from the FB function. A
discrete generalization of this function proposed in [5] is given
by

φq
NR
(a, b) = aq − [(a − b)+]

q (8)

where q is a positive odd integer. For q = 1, the above function re-
duces to the original NR function. The generalization is ‘‘discrete’’
in the sense that q can only take on positive odd integral values.
An interesting property of the generalized NR function (8) is that
it possesses twice differentiability for q > 3, which is not the
case for the NR function. This makes φq

NR
suitable for algorithms

needing differentiability.
We wish to point out that the technique employed in the

second type of generalization discussed above can always be
adopted for NCP functions of the form

φ(a, b) = φ̄1(a, b) − φ̄2(a, b). (9)

In other words, the function

φq(a, b) := [φ̄1(a, b)]q − [φ̄2(a, b)]q

is always a discrete generalization of φ given in (9), where q is a
positive odd integer. As a matter of fact, we can further extend
such technique by considering any family of injective functions
{fq}. More precisely, the function

φfq (a, b) := fq(φ̄1(a, b)) − fq(φ̄2(a, b)) (10)

is easily seen to be an NCP function whenever fq is injective
and φ is an NCP function as in (9). The transformation (10) has
also been noted in [11]. For instance, the discrete generalized NR
function (8) can be realized by transforming the NR function as
in (10) using the map fq(t) = tq, where q > 0 is an odd integer.
Applying the same map to our NCP function φ

p
θ , we obtain a

discrete generalization as

(φp
θ )

q
:= ∥(a, b)∥q

p − (θ (b)a + θ (a)b)q, (11)

where q is a positive odd integer. As mentioned above, a gener-
alization can possibly yield NCP functions with different analytic
properties. In the case of (11), it is easy to verify that (φp

θ )
q is

continuously differentiable on R2 whenever q ≥ p > 1, whereas
the original function φ

p
θ is not differentiable at the origin.

Another discrete generalization of φ
p
θ can be obtained by ap-

plying the same map fq(t) = tq to the equivalent form of φ
p
θ given

by

φ
p
θ (a, b) = φp

FB
(a, b) −

[
a(θ (b) − 1) + b(θ (a) − 1)

]
. (12)

This yields another symmetric generalization

(φp
θ )

q
FB
(a, b) = [φp

FB
(a, b)]q −

[
(a(θ (b) − 1) + b(θ (a) − 1))

]q
.

For q = 1, note that Proposition 2.4 guarantees the semismooth-
ness of φ

p
θ . Interestingly, the above generalization yields smooth

NCP functions for any p > 1 and odd integers q ≥ 3. This
can be easily verified and we omit proof. We summarize these
results in Proposition 3.2. Note that the above generalizations
are all symmetric. In general, the transformation given in (10)
yields symmetric NCP functions when applied to our proposed
NCP function φ

p
θ and its alternative form (12).

Proposition 3.2. Suppose θ is continuously differentiable and
satisfies the conditions of Proposition 2.1 if p = 1, or Proposition 2.2
if p > 1. Let q ≥ 1 be an odd integer. Then,

(φp
θ )

q(a, b) := ∥(a, b)∥q
p −

(
θ (b)a + θ (a)b

)q
is a discrete generalization of φ

p
θ , which is smooth if q ≥ p > 1.

Additionally,

(φp
θ )

q
FB
(a, b) := [φp

FB
(a, b)]q − [(a(θ (b) − 1) + b(θ (a) − 1))]q

is also a discrete generalizations of φp
θ , which is smooth if q ≥ 3 and

p > 1

It is interesting to note that fq(t) = tq with q ≥ 1 an odd
integer is one of the functions usually employed in order to
improve numerical performance of algorithms. This is referred
to as an ‘‘activation function’’ in the literature on neural net-
work approach for optimization. Such a function is often utilized
to improve convergence rate, and other examples are given as
follows:

1. Bipolar Sigmoid Function [20,21]

fq(t) =
1 − e−qt

1 + e−qt , q > 0.

2. Power-Sigmoid Function [20,21]

fq(t) =

{
1+e−q1

1−e−q1 ·
1−e−q1t

1+e−q1t if |t| < 1

tq2 if |t| ≥ 1

where q = (q1, q2), q1 > 2 and q2 ≥ 3 is an odd integer.
3. Smooth Power-Sigmoid Function [20,21]

fq(t) =
1
2

·
1 + e−q1

1 − e−q1
·
1 − e−q1t

1 + e−q1t
+

1
2
tq2

where q = (q1, q2), q1 > 2 and q2 ≥ 3.
4. Sign-Bi-Power Function [14]

fq(t) =

⎧⎪⎨⎪⎩
|t|q + |t|

1
q if t > 0
0 if t = 0

−|t|q − |t|
1
q if t < 0

, q > 0.

These functions are all injective maps which can be employed
to transform an NCP function of the form (9). However, none of
these transformations lead to a generalization in the sense illus-
trated above. Indeed, a generalized version can only be obtained
if there exists q̄ such that fq̄(t) ≡ t . We do note, however, that fq

2
yields a continuous generalization via the transformation (10) if fq
is the sign-bi-power function. In any case, an interesting research
direction is to explore the applicability of the above injective
functions in improving numerical efficiency of NCP functions-
based solution methods, just as how these functions improve
numerical performance in neural network approaches. In the case
of the power function fq(t) = tq and the generalized NR function,
some numerical results are reported in [1]. Finally, we note that
it is also worth considering in numerical implementations the
composite map fq ◦φ

p
θ . This is also an NCP function provided that

fq is injective with fq(0) = 0 such as the above four activation
functions.

4. Concluding remarks

In this short paper, we proposed a new way to construct NCP
functions. The family of generalized FB functions, in particular,
can be generated from the proposed approach. We proved herein
some basic properties of the newly discovered NCP function,
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which includes the growth behavior, nonconvexity and semis-
moothness of φ

p
θ . These are prerequisite to designing solution

methods based on the new NCP function.
Observe that for a fixed θ , the NCP function φ

p
θ is parame-

trized by p ≥ 1. Future research directions can explore the effects
of tuning the parameter p in the performance of algorithms. This
is worth exploring as it has been shown that for the case of
the generalized FB and NR functions, better convergence rates
of solution methods can be attained by controlling the values of
p [1,4,6]. Numerical comparisons of these new NCP functions with
popular NCP functions such as the FB and NR function are recom-
mended. How to best choose the parameter p and the function θ

are some topics that are worth venturing, as this could suggest
alternative NCP functions that can work well with algorithms.
Finally, it seems worthwhile to explore the effects of choosing
different activation functions fq such as the bipolar sigmoid func-
tion, power-sigmoid function, smooth power-sigmoid function,
and the sign-bi-power function, in forming new NCP functions
from old ones such as (φp

θ )fq and fq ◦ φ
p
θ . We leave it for future

research to study whether or not these transformations can be
used to improve numerical performance of an NCP function-based
algorithm. If these functions indeed improve some algorithms, it
is recommended to determine which one of these will work best
for the complementarity problem.
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