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The expression of g′(y) on page 545 is wrong, there is a squared-term missing in the

denominator of the first term. Accordingly, here is the revised proof of φ8(µ, x) ≤ φ4(µ, x)

in the Part(6) on page 545.

Part (6): φ8(µ, x) ≤ φ4(µ, x). Consider
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Since 0 ≤ y ≤ 1, ey
2 ≤ ey. Then
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which yields g′(y) > 0 for all y ∈ [0, 1]. Therefore, g(y) ≥ g(0) = 1 implies that f ′(y) ≤ 0

for all y ∈ [0, 1].

Case 2. y ≥ 1. We have
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Hence, k(y) < 0 for all y ≥ 2. If 1 ≤ y ≤ 2, we consider
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all 1 ≤ y ≤ 2. Thus, h′(y) ≤ 0 for all y ≥ 1 which leads to h(y) is decreasing on

[1,∞). Moreover, since h(1) > 0 and h(3/2) < 0, h(y) = 0 has a solution on [1,∞).

This indicates that g′(y) = 0 has a solution on [1,∞). Assume that y = α (α > 1) is a

solution of g′(y) = 0, it follows that g′(y) ≥ 0 on [1, α] and g′(y) ≤ 0 on [α,∞]. Then{
g(y) ≥ g(1)

g(y) ≥ limk→∞ g(y)
=⇒ g(y) ≥ 1.

From the above two cases, we obtain that f ′(y) ≤ 0 for all y ≥ 0. On the other hand, we

know that
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Thus, f(y) ≥ limy→∞ f(y) = 0 which shows that φ8(µ, x) ≤ φ4(µ, x).
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