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The natural residual (NR) function is a mapping often used to solve nonlinear complementarity problems
(NCPs). Recently, three discrete-type families of complementarity functions with parameter p P 3
(where p is odd) based on the NR function were proposed. Using a neural network approach based on
these families, it was observed from some preliminary numerical experiments that lower values of p pro-
vide better convergence rates. Moreover, higher values of p require larger computational time for the test
problems considered. Hence, the value p ¼ 3 is recommended for numerical simulations, which is rather
unfortunate since we cannot exploit the wide range of values for the parameter p of the family of NCP
functions. This paper is a follow-up study on the aforementioned results. Motivated by previously
reported numerical results, we formulate a continuous-type generalization of the NR function and two
corresponding symmetrizations. The new families admit a continuous parameter p > 0, giving us a wider
range of choices for p and smooth NCP functions when p > 1. Moreover, the generalization subsumes the
discrete-type generalization initially proposed. The numerical simulations show that in general,
increased stability and better numerical performance can be achieved by taking values of p in the interval
1;3ð Þ. This is indeed a significant improvement of preceding studies.

� 2020 Elsevier B.V. All rights reserved.
1. Motivation

The nonlinear complementarity problem (NCP) is very impor-
tant in engineering and economic applications [11], as well as in
operations research [8]. In particular, given a mapping
F : Rn ! Rn, the problem consists of finding a vector x 2 Rn satis-
fying the conditions

x P 0; F xð Þ P 0 and x; F xð Þh i ¼ 0:

This problem will be denoted by NCP(F). The solution set of this
problem is denoted by SOL Fð Þ and the feasible region is denoted by
XF :¼ x 2 Rnjx P 0; F xð Þ P 0f g. Some solution methods for NCP(F)
can be found in [1,6,9,10,13,14,21,17,18,25,27]. A natural reformu-
lation of NCP(F) is to consider the fixed-point problem

x ¼ PK x� F xð Þð Þ;
where PK denotes the projection onto K with K ¼ Rn
þ. Consequently,

NCP(F) is equivalent to solving the equation

/NR x1; F1 xð Þð Þ
..
.

/NR xn; Fn xð Þð Þ

0
BB@

1
CCA ¼ 0;

where

/NR a; bð Þ ¼ a� a� bð Þþ; ð1Þ
and tþ :¼ max t;0f g. The function /NR is called the natural residual
(NR) function. In fact, /NR can be replaced by any other function
/ : R2 ! R with the property that

/ a; bð Þ ¼ 0 () a P 0; b P 0; ab ¼ 0; ð2Þ
that is, NCP(F) and the system

UF xð Þ :¼
/ x1; F1 xð Þð Þ

..

.

/ xn; Fn xð Þð Þ

0
BB@

1
CCA ¼ 0 ð3Þ
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are equivalent. A function satisfying (2) is known in the literature as
an NCP-function. Other than the NR function, the generalized
Fischer-Burmeister (GFB) function

/p
FB a; bð Þ ¼ k a; bð Þkp � aþ bð Þ; p > 1 ð4Þ

is another popular NCP function used in dealing with the comple-
mentarity problem. The GFB function is known as a ‘‘continuous”
extension of the famous Fischer-Burmeister (FB) function given by

/FB a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
� aþ bð Þ;

which can be obtained by taking p ¼ 2 in expression (4). The gener-
alization is considered continuous since p can take on any value in
the interval 1;1ð Þ. Motivated by this extension, a generalization of
the NR function (1) was formulated in [5] which is given by

/p
NR a; bð Þ ¼ ap � a� bð Þþ

� �p
; ð5Þ

where p is an odd integer. Indeed, taking p ¼ 1 yields the NR func-
tion (1). This generalization is considered to be of ‘‘discrete’” type
since p can only take odd integral values. Note that /p

NR is a twice
continuously differentiable function for p P 3 but its surface is
not symmetric. To resolve this, two symmetrizations were proposed
in [3], which are given by

/p
S�NR a; bð Þ ¼ ap � a� bð Þp if a P b;

bp � b� að Þp if a < b;

(
ð6Þ

and

wp
S�NR a; bð Þ ¼ apbp � a� bð Þpbp if a P b;

apbp � b� að Þpap if a < b;

(
ð7Þ

where p P 3 is an odd integer. Properties of these three discrete-
type families are elaborated in [2,15].

The first attempt to use the above three discrete-type functions
in designing solution methods for NCP was a neural network
approach, which was presented in our previous work [2]. To con-
struct the neural network, note that by taking UF as defined in
(3), the unconstrained minimization problem minx2RnWF xð Þ, where

WF xð Þ ¼ 1
2
kUF xð Þk2 ¼ 1

2

Xn
j¼1

/ xj; Fj xð Þ� �2
; ð8Þ

is equivalent to NCP(F). Then the gradient dynamical system

dx
dt

¼ �qrWF x tð Þð Þ; x 0ð Þ ¼ x0 ð9Þ

is a natural neural network to be considered to deal with NCP(F).
In [2], the discrete-type functions (5), (6), and (7) were used to
form the merit function WF. Preliminary numerical experiments
conducted in [2] showed that lower values of the parameter p
result to faster convergence, although theoretical evidence for
this phenomenon is yet to be verified. Moreover, longer compu-
tation time is usually required when a higher value of p is used.
There are also test instances when larger values of p lead to ill-
conditioning problems. In turn, the choice p ¼ 3 may seem opti-
mal in practice. In other words, the results suggest that choosing
higher values of p need not be done. Consequently, this seems to
suggest that the discrete-type generalization appears to be not
very useful in the sense that only one member of each of the fam-
ilies is useful for numerical purposes. This motivates us to
explore if there exists a continuous generalization of the NR
function, i.e. a generalization parametrized by p which assumes
values on some interval. This will provide us more values to con-
sider for the tunable parameter, instead of just the odd integers
with value at least 3.
We provide an affirmative answer to this problem. More pre-
cisely, the main contributions of this paper are as follows:

(i) We propose a continuous-type generalization of the NR
function. The proposed function does not have a symmetric
surface, but we provide two symmetrizations which also
admit a continuous parameter p. This generalizes the
results in [3,5].
(ii) We establish several properties of these newly formulated
NCP functions which are prerequisite to designing solution
methods for the complementarity problem, which are not lim-
ited to the neural network approach. These properties extend
the results in [15].
(iii) Stability properties of the neural network (9) will be estab-
lished as important extensions of the results in [2].

More importantly,

(iv) We illustrate that the proposed continuous generalization is
meaningful. In particular, it provides a wider range of values of
p which offer better convergence rates than the ones based on
the discrete-type generalization and their symmetrizations
illustrated in [2].
(v) We provide theoretical evidence for the performance
dependence on p of the gradient dynamical systems based
on the three new families of NCP functions. This was not
accomplished in [2].
(vi) This work is a significant improvement of the numerical
results that were initially presented in [2], since the pro-
posed families not only provide faster convergence rates
but also higher stability. That is, the proposed generaliza-
tions yield neural networks which are less sensitive to initial
conditions, which is one of the main issues encountered in
[2].

In summary, this paper can be viewed as an important exten-
sion of the works presented in [2,3,5,15] where the discrete-type
generalization and two discrete-type symmetrizations of the NR
function were studied.

This paper is organized as follows: In Section 2, we present
our proposed continuous generalization of the NR function.
We also prove important properties of the obtained general-
ization, which are extensions of the results given in
[2,3,5,15]. The theoretical properties proved in this section
will later be used in the analysis of the neural network, which
will be presented in Section 3. Results of several numerical
experiments are presented in Section 4 and elaborately dis-
cussed in Section 5. Concluding remarks are presented in
Section 6.

2. Continuous generalization

Our proposed generalization of the NR function is defined as

/
�
p
NR a; bð Þ ¼ sgn að Þjajp � a� bð Þþ

� �p
: ð10Þ

Here, we assume that p is any number in 0;1ð Þ and

sgn tð Þ :¼
1 if t > 0
0 if t ¼ 0

�1 if t < 0

8><
>: :

Observe that /
�
p
NR is an NCP function. Indeed, note that

/
�
p
NR a; bð Þ ¼ f að Þ � f a� bð Þþ

� �
, where f tð Þ ¼ sgn tð Þjtjp which is a

bijective function. It follows that
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/
�
p
NR a; bð Þ ¼ 0 () f að Þ ¼ f a� bð Þþ

� �
() a ¼ a� bð Þþ () /NR a; bð Þ ¼ 0:

Note that if p is odd, then /
�
p
NR ¼ /p

NR and so the above general-
ization subsumes the discrete-type extension given by (5). We
note herein that the transformation employed on /NR via the
monotonic function f can always be applied to any NCP func-
tion of the form / ¼ /1 � /2. This fact has also been noted in
[12].

It is easy to see that the function (10) does not have a symmet-
ric surface. Employing the same strategy as in [3], we propose two

symmetrizations of /
�
p
NR as
/
�
p
S�NR a; bð Þ ¼ sgn að Þjajp � a� bð Þp if a P b;

sgn bð Þjbjp � b� að Þp if a < b;

(
ð11Þ

and
w
�
p
S�NR a; bð Þ ¼ sgn að Þsgn bð Þjajpjbjp � sgn bð Þ a� bð Þpjbjp if a P b;

sgn að Þsgn bð Þjajpjbjp � sgn að Þ b� að Þpjajp if a < b;

(

ð12Þ

where p > 0. Notice that /
�
p
S�NR ¼ /p

S�NR and w
�
p
S�NR ¼ wp

S�NR whenever
p is odd.

Proposition 1. For any p > 0, the functions /
�p
NR;/

�p
S�NR, and w

�p
S�NR

are NCP functions. Moreover, /
�
p
NR a; bð Þ > 0 (/

�
p
S�NR a; bð Þ > 0) if and

only if a > 0 and b > 0, while w
�
p
S�NR a; bð Þ P 0 for all a; bð Þ 2 R2.
Proof. That /
�
p
NR is an NCP function follows from the above discus-

sion. Moreover, note that a > 0 and b > 0 if and only if a > a� bð Þþ.
Since f tð Þ ¼ sgn tð Þjtjp is strictly increasing, we see that a > 0 and
b > 0 if and only if sgn að Þjajp > sgn a� bð Þþ

� �j a� bð Þþjp, i.e.

/
�
p
NR a; bð Þ > 0. On the other hand, observe that
/
�
p
S�NR a; bð Þ ¼ /

�
p
NR a; bð Þ if a P b;

/
�
p
NR b; að Þ if a < b;

8<
: ð13Þ

and
w
�
p
S�NR a; bð Þ ¼ sgn bð Þjbjp/

�
p
NR a; bð Þ if a P b;

sgn að Þjajp/
�
p
NR b; að Þ if a < b:

8<
: ð14Þ

Using above identities and the fact that /
�
p
NR is an NCP function,

then /
�
p
S�NR and w

�
p
S�NR are also NCP functions with algebraic signs as

specified in the proposition. h
In view of the above proposition, we may then view the func-

tions /
�
p
NR, /

�
p
S�NR and w

�
p
S�NR as continuous generalizations of the

functions /p
NR;/

p
S�NR and wp

S�NR. Now, we establish some proper-
ties of the above functions which will later be used in the neu-
ral network approach. We begin with smoothness properties.
By C1 Xð Þ and C2 Xð Þ, we mean the class of continuously differen-
tiable and twice continuously differentiable functions defined
on X � Rn, respectively.

Proposition 2. The following result holds:

(a) If p > 1, the function /
�
p
NR 2 C1 R2� �

whose gradient is given
by
r/
�
p
NR a; bð Þ ¼ p

jajp�1 � a� bð Þp�1sgn a� bð Þþ
� �

a� bð Þp�1sgn a� bð Þþ
� �

" #
:

If p > 2, then /
�
p
NR 2 C2 R2� �

whose Hessian is given by
r2/
�
p
NR a;bð ¼p p�1ð Þ

sgn að Þjajp�2� a�bð Þp�2sgn a�bð Þþ
� �

a�bð Þp�2sgn a�bð Þþ
� �

a�bð Þp�2sgn a�bð Þþ
� �� a�bð Þp�2sgn a�bð Þþ

� �
" #

:

(b) If p > 1, the function /
�
p
S�NR 2 C1 Xð Þ where

X :¼ a; bð Þ ja – bf g. In this case, the gradient of /
�
p
S�NR is given by

r/
�
p
S�NR a;bð Þ¼

p jajp�1� a�bð Þp�1
; a�bð Þp�1

h iT
if a>b;

p b�að Þp�1
; jbjp�1� b�að Þp�1

h iT
if a<b:

8><
>:

Further, /
�
p
S�NR is differentiable at 0;0ð Þ with r/

�
p
S�NR 0; 0ð Þ ¼ 0; 0½ �T . If

p > 2, then /
�
p
S�NR 2 C2 Xð Þ with Hessian given by
r2/
�
p
S�NR a;bð Þ¼

p p�1ð Þ sgn að Þjajp�2� a�bð Þp�2 a�bð Þp�2

a�bð Þp�2 � a�bð Þp�2

" #
if a>b;

p p�1ð Þ � b�að Þp�2 b�að Þp�2

b�að Þp�2 sgn bð Þjbjp�2� b�að Þp�2

" #
if a<b:

8>>>>><
>>>>>:

(c) If p > 1, then w
�
p
S�NR 2 C1 R2� �

whose gradient is given by

rw
�
p
S�NR a;bð Þ

¼

p
sgn bð Þjbjp jajp�1� a�bð Þp�1

� �
sgn að Þjajpjbjp�1� a�bð Þpjbjp�1þsgn bð Þ a�bð Þp�1jbjp

2
4

3
5 if a>b;

pjaj2p�1 1
1

	 

if a¼b;

p
sgn bð Þjajp�1jbjp� b�að Þpjajp�1þsgn að Þ b�að Þp�1jajp

sgn að Þjajp jbjp�1� b�að Þp�1
� �

2
4

3
5 if a<b;

8>>>>>>>>>>><
>>>>>>>>>>>:

If p > 2, then w
�
p
S�NR 2 C2 R2� �

whose Hessian is given by



jbjp

jbjp
p� 1ð Þ a� bð Þ sgn bð Þjbjp

þp jajp�1 � a� bð Þp�1
h i

jbjp�1

bjp
jp�1

p� 1ð Þ sgn að Þsgn bð Þjajpjbjp�2
h i

� p� 1ð Þ a� bð Þpsgn bð Þjbjp�2

þ2p a� bð Þp�1jbjp�1

� p� 1ð Þ a� bð Þp�2sgn bð Þjbjp

7777777775
ifa > b;

ajp�2jbjp pjajp�1jbjp�1

p� 1ð Þsgn að Þsgn bð Þjajpjbjp�2



ifa ¼ b;

jbjp
i

jp�2

jajp

p� 1ð Þ b� að Þp�2sgn að Þjajp
þp jbjp�1 � b� að Þp�1
h i

jajp�1

ajp
jp�1

p� 1ð Þ sgn að Þsgn bð Þjajpjbjp�2
h i

� p� 1ð Þ b� að Þp�2sgn að Þjajp

3
7777777775

ifa < b:
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r2w
�
p
S�NR a; bð Þ ¼

p

p� 1ð Þ sgn að Þsgn bð Þjajp�2
h

� p� 1ð Þ a� bð Þp�2sgn bð Þ

p� 1ð Þ a� bð Þp�2sgn bð Þj
þp jajp�1 � a� bð Þp�1
h i

jb

2
6666666664

p p� 1ð Þsgn að Þsgn bð Þj
pjajp�1jbjp�1

	

p

p� 1ð Þ sgn að Þsgn bð Þjajp�2
h

� p� 1ð Þ b� að Þpsgn að Þja
þ2p b� að Þp�1jajp�1

� p� 1ð Þ b� að Þp�2sgn að Þ
p� 1ð Þ b� að Þp�2sgn að Þj

þp jbjp�1 � b� að Þp�1
h i

ja

2
6666666664

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
i
p�2 3
Proof. Note that f tð Þ ¼ sgn tð Þjtjp is continuously differentiable

when p > 1 with f 0 tð Þ ¼ pjtjp�1. Moreover, f is twice continuously

differentiable when p > 2 with f tð Þ ¼ p p� 1ð Þsgn tð Þjtjp�2. Using
these and the alternative formulas given in (13) and (14), the gra-
dients and Hessians can be easily obtained. The calculations are
omitted. h

The above proposition is a generalization of [5, Proposition 2.2],
and [15, Proposition 4.3]. On the other hand, the following result is
an extension of [15, Proposition 3.4, Proposition 4.5, and
Proposition 5.4].

Proposition 3. Let p > 1. Then, the following hold:
(a) ra/
�
p
NR a; bð Þ � rb/

�
p
NR

a; bð Þ
> 0 on a; bð Þja > b > 0 or a > b > 2af g;
¼ 0 on a; bð Þja 6 b or a > b ¼ 2a or a > b ¼ 0f g;
< 0 otherwise:

8<
:

(b) ra/
�
p
S�NR a;bð Þ �rb/

�
p
S�NR

ða;bÞ
>0 on a;bð Þja> b>0 or a> b>2af g

andon a;bð Þjb> a>0 or b> a>2bf g;
¼0 on a;bð Þj/

�
p
S�NR a;bð Þ¼0 or a> b¼2a or b> a¼2b

n o
;

<0 otherwise:

8>>><
>>>:

(c) raw
�
p
S�NR a; bð Þ � rbw

�
p
S�NR a; bð Þ > 0 on the first quadrant R2

þþ,

and w
�
p
S�NR a; bð Þ ¼ 0 () rw

�
p
S�NR a; bð Þ ¼ 0.
Proof. Using Proposition 2(a),

ra/
�
p
NR a; bð Þ � rb/

�
p
NR a; bð Þ

¼ p2 jajp�1 � a� bð Þp�1sgn a� bð Þþ
� �� a� bð Þp�1sgn a� bð Þþ

� �h
p2 jajp�1 � a� bð Þp�1
h i

a� bð Þp�1 ifa > b
(

:

0 ifa 6 b

Suppose now that a > b. Since g tð Þ :¼ tp�1 is a strictly increasing

function on 0;1½ Þ; jajp�1 � a� bð Þp�1
> 0 if and only if jaj > a� b,

which happens if and only if b > 0 or b > 2a. This establishes
Proposition 3(a). Statement (b) easily follows from (a), while (c)
can be easily verified using the result of Proposition 2(c). h

We now establish the growth behavior of the proposed families
of functions. We first establish the following simple lemma.

Lemma 1. For any x 2 0;1½ � and any p > 0, we have

1� xð Þp 6 1
1þ px

:

Proof. Define f : 0;1½ � ! R by f xð Þ ¼ 1� xð Þp 1þ pxð Þ. A simple cal-

culation yields f 0 xð Þ ¼ �p pþ 1ð Þx 1� xð Þp�1. Then, f monotonically
decreases on 0;1½ � from f 0ð Þ ¼ 1 to f 1ð Þ ¼ 0. Consequently,
0 6 f xð Þ 6 1. This completes the proof. h
Proposition 4. Let / 2 /
�
p
NR;/

�
p
S�NR;w

�
p
S�NR

n o
. Then j/ ak; bk

� �
j ! 1

for any sequence ak; bk
� �n o1

k¼1
in R2 such that jakj ! 1 and

jbkj ! 1.
Proof. The proposition follows from the preceding lemma and
analogous arguments in the proof of [2, Lemma 5.1]. h
3. Stability analysis

In this section, we consider the neural network given by (9)

using the functions /
�
p
NR;/

�
p
S�NR and w

�
p
S�NR. The corresponding merit

functions defined by (8) will be denoted, respectively, by

W
�

p
NR;W

�
p
S1�NR and W

�
p
S2�NR. The case when p is an odd integer greater

than 1 is the neural network studied in [2].
We note that since the results presented in Section 2 generalize

the results for the discrete families originally formulated in
[3,5,15], then the discussion presented in [2] can be extended to
establish the properties of the induced merit functions

W
�

p
NR;W

�
p
S1�NR and W

�
p
S2�NR corresponding to the continuous general-

ization. In the following proposition, we summarize the properties
of these merit functions. For conciseness and clarity, we present a
shortened proof of the following result pointing out the arguments
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that needed to be modified in the proofs of the results in [2]. We
refer the reader to the monograph [8] for definitions and properties
of nonlinear mappings (P0-functions, monotone functions, etc.) and
the book [22] for standard results in the theory of ordinary differ-
ential equations.

Proposition 5. Let p > 1. Then the following hold:

(a) If rF � Ið Þ is a P-matrix, then every stationary point ofW
�

p
NR is

a global minimizer.
(b) If F x�ð Þ P 0; rF x�ð Þ � Ið Þ is a P0-matrix and x� is a stationary

point of W
�

p
NR, then x� is a global minimizer of W

�
p
NR.

(c) Suppose that x� 2 XF and rF x�ð Þ is a P0-matrix. If x�is a sta-

tionary point of W
�

p
S1�NR or W

�
p
S2�NR, then x� is a global minimizer.
Proof. To prove (a) and (b), we define two diagonal matrices A x�ð Þ
and B x�ð Þ where

Aii x�ð Þ ¼ jx�i jp�1 and Bii x�ð Þ ¼ x�i � Fi x�ð Þ� �
sgn x�i � Fi x�ð Þ� �

þ;

where x� is an equilibrium point of (9) with WF ¼ W
�

p
NR. Then, analo-

gous arguments as in the proof of [2, Proposition 4.4 and Remark
4.1] lead to the desired conclusion. To prove (c), we proceed as in
the proof of [2, Proposition 4.5]. That is, we verify the following
properties:

(P1) 8 a; bð Þ 2 R2
þ, we have raw a; bð Þ � rbw a; bð Þ P 0; and

(P2) 8 a; bð Þ 2 R2
þ, we have

raw a; bð Þ ¼ 0 () rbw a; bð Þ ¼ 0 () / a; bð Þ ¼ 0,

where w :¼ 1
2/

2 and / 2 /
�
p
S�NR;w

�
p
S�NR

n o
. Property (P1) can be easily

verified. To show (P2), we only need to show that given a; b P 0,
the following holds:

(i) ra/
�
p
S�NR a; bð Þ ¼ 0 implies /

�
p
S�NR a; bð Þ ¼ 0; and

(ii) raw
�
p
S�NR a; bð Þ ¼ 0 implies w

�
p
S�NR a; bð Þ ¼ 0.

We first prove (i). If ra/
�
p
S�NR a; bð Þ ¼ 0, then we see from Propo-

sition 2 (b) that we must have a > b or a ¼ b ¼ 0. Otherwise,

ra/
�
p
S�NR a; bð Þ ¼ p b� að Þp�1 would be positive. If a ¼ b ¼ 0, then

/
�
p
S�NR a; bð Þ ¼ 0 as desired. If a > b, then

0 ¼ 1
pra/

�
p
S�NR a; bð Þ ¼ ap�1 � a� bð Þp�1. Since t # tp�1 is strictly

increasing on 0;1½ Þ, then a ¼ a� b, i.e. b ¼ 0. Then

/
�
p
S�NR a; bð Þ ¼ 0 since a > b ¼ 0 and /

�
p
S�NR is an NCP function. To

prove (ii), assume that raw
�
p
S�NR a; bð Þ ¼ 0. From Proposition 2(c),

we must have

0¼1
p
raw

�
p
S�NR a;bð Þ¼ ap�1bp� a�bð Þp�1bp if aPb;

ap�1bp� b�að Þpap�1þ b�að Þp�1ap if a<b:

(

If a P b, then we can proceed as in [2, Prop 4.5]. If a < b, then

0 ¼ ap�1bp � b� að Þpap�1 þ b� að Þp�1ap

¼ ap�1 bp � b� að Þp þ b� að Þp�1a
� �

: ð15Þ
From here, we conclude that a ¼ 0. Otherwise, we must have

bp
> b� að Þp and so bp � b� að Þp þ b� að Þp�1a > b� að Þp�1a > 0.

This contradicts (15). Hence, a ¼ 0 and since b > a ¼ 0, we obtain

that w
�
p
S�NR a; bð Þ ¼ 0 by definition of an NCP function.

In view of the above proposition and the stability analysis pre-
sented in [2], we present herein analogous stability results. The
proofs are similar to corresponding propositions for the discrete
generalization established in [2], and are thus omitted. In particu-
lar, Proposition 3.2 (a) follows from [2, Theorem 5.1], Proposition
3.2 (b) and (c) follow from [2, Theorem 5.2], and Proposition 3.2
(d) is a consequence of [2, Theorem 5.2].

Proposition 6. Let x� be an equilibrium point of (9).
(a) If WF 2 W
�

p
NR;W

�
p
S1�NR;W

�
p
S2�NR

� �
and F is a uniformly P-

function, then the solution to (9) through any x0 2 Rn converges
to x�.

(b) If WF ¼ W
�

p
NR, then x� 2 SOL Fð Þ provided that rF � Ið Þ is a P-

matrix. If x� is isolated, then it is asymptotically stable.

(c) If x� 2 XF and WF ¼ W
�

p
S1�NR or WF ¼ W

�
p
S2�NR, then x� 2 SOL Fð Þ

provided that F is a P0-function. If x� is isolated, then it is
asymptotically stable.

(d) If rUF x�ð Þ is nonsingular, where / 2 /
�
p
NR;/

�
p
S�NR;w

�
p
S�NR

n o
,

and x� is isolated, then x� 2 SOL Fð Þ and x� is exponentially
stable.

The parameter p has a very significant influence in the rate of
convergence of the neural network. For the discrete type families,
a few set of test problems was considered in [2], where the numer-
ical experiments revealed that a lower value of p 2 3;5;7; . . .f g
often provides faster convergence. However, there is no theoretical
evidence yet for this phenomenon.

In fact, as we shall see in Section 4, different convergence
behaviors can be observed when we vary the values of p. In partic-
ular, a lower value of p does not always lead to faster convergence.
There are test instances when a higher value of p offers faster con-
vergence rate. The numerical experiments presented in the next
section suggest that there is no simple relation that can be
obtained regarding the performance dependence on p of the neural

network (9) withWF 2 W
�

p
NR;W

�
p
S1�NR;W

�
p
S2�NR

� �
. Moreover, the simu-

lations suggest that initial conditions have a significant influ-
ence on the performance of the neural network and its
dependence on p. To make sense of these phenomenon, we
establish the following theorem. The first part of the proof is a
derivation of an error bound for the NCP(F) (see equation (18))
where F is a locally Lipschitz uniformly P-function. The tech-
nique employed in the derivation is similar to the idea used in
[8, Proposition 6.3.1].

Theorem 1. Consider the neural network (9) with WF ¼ W
�

p
S1�NR for a

given p > 1. Suppose that x� 2 SOL Fð Þ is exponentially stable and F is a
uniformly P function that is locally Lipschitz continuous. Then there
exist positive constants K;x and d such that for all t P 0, we have
kx tð Þ � x�k 6 K
pþ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W

�
p
S1�NR x0ð Þ

q �1
p

e�xt 8x0 2 XF \ Nd x�ð Þ;

where Nd x�ð Þ ¼ y : ky� x�k < df g.
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Fig. 1. Graph of upper bound for the error term kx tð Þ � x�k for some values of a and
b with a; b P 0 and a > b.
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Proof. Suppose F is uniformly Pwith modulus j > 0. Given x 2 Rn,
let j 2 1; . . . ;nf g such that

xj � x�j
� �

Fj xð Þ � Fj x�ð Þ� �
P xi � x�i
� �

Fi xð Þ � Fi x�ð Þð Þ 8i ¼ 1; . . . ;n:

Then

jkx� x�k2 6 xj � x�j
� �

Fj xð Þ � Fj x�ð Þ� �
¼ �xjFj x�ð Þ � x�j � xj

� �
Fj xð Þ: ð16Þ

Meanwhile, note that s� tþð Þ tþ � tð Þ P 0 for any s P 0 and
t 2 R. Since min xj; Fj xð Þ� � ¼ xj � xj � Fj xð Þ� �

þ, then taking
s ¼ x�j P 0 and t ¼ xj � Fj xð Þ, we have

x�j � xj þmin xj; Fj xð Þ� �� �
Fj xð Þ �min xj; Fj xð Þ� �� �

P 0

which implies that
x�j � xj
� �

Fj xð Þ P x�j � xj
� �

min xj; Fj xð Þ� �� Fj xð Þ
� min xj; Fj xð Þ� �

: ð17Þ
Since xj P min xj; Fj xð Þ� �

and Fj x�ð Þ P 0, we have from inequal-
ities (16) and (17) that

jkx� x�k2 6 Fj xð Þ � Fj x�ð Þ� �� x�j � xj
� �h i

min xj; Fj xð Þ� �
6 kF xð Þ � F x�ð Þk þ kx� x�kð Þjmin xj; Fj xð Þ� �j

Since F is locally Lipschitz, we conclude that given any x 2 Rn in
some neighborhood of x�, there exists an index j ¼ j xð Þ and L > 0
such that

jkx� x�k2 6 1þ Lð Þ � jmin xj; Fj xð Þ� �j � kx� x�k: ð18Þ
Now, let x0 2 XF. We have from part (a) of the proof of [2,

Lemma 5.1] and using Lemma 1 that /
�
p
S�NR a; bð Þ P

p
pþ1 min a; bf gð Þp for any a; b P 0. By (18), there exists

j ¼ j x0
� � 2 1; . . . ;nf g such that

jkx0 � x�k 6 1þ Lð Þ � pþ 1
p

/
�
p
S�NR x0j ; Fj x0

� �� �	 
1
p

: ð19Þ

Since x� is exponentially stable, there exist positive constants
d; c and x such that for any t P 0, kx tð Þ � x�k 6 ce�xtkx0 � x�k for
all x0 2 Nd x�ð Þ. This, together with inequality (19), gives the desired
result with K :¼ c

j 1þ Lð Þ. h

Similarly, we get the following error bound result for the other

two merit functions W
�

p
NR and W

�
p
S2�NR.

Theorem 2. Consider the neural network (9) for a given p > 1, and
let x� 2 SOL Fð Þ be exponentially stable. Suppose that F is a uniformly
P-function and locally Lipschitz continuous. Then
(a) If WF ¼ W
�

p
NR , there exist positive constants K, x and d such that

for all t P 0, we have

kx tð Þ � x�k 6 K
pþ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W

�
p
NR x0ð Þ

q �1
p

e�xt

8x0 2 XF \ Nd x�ð Þ:

(b) If WF ¼ W
�

p
S2�NR , there exist positive constants K, x and d such

that for all t P 0, we have

kx tð Þ � x�k 6 K
pþ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W

�
p
S2�NR x0ð Þ

q � 1
2p

e�xt

8x0 2 XF \ Nd x�ð Þ:
Proof. For a P b P 0, then /
�
p
NR a; bð Þ ¼ /

�
p
S�NR a; bð Þ P p

pþ1 b
p as in

part (a) of the proof of [2, Lemma 5.1]. When 0 6 a < b, we have

/
�
p
NR a; bð Þ ¼ ap P p

pþ1 a
p. It follows that /

�
p
NR a; bð Þ P p

pþ1 min a; bf gð Þp.
On the other hand, using the identity (14) and the fact that

/
�
p
S�NR a; bð Þ P p

pþ1 min a; bf gð Þp for any a; b P 0, we derive that

w
�
p
S�NR a; bð Þ P p

pþ1 min a; bf gð Þ2p. Using these identities and the same

arguments as in Theorem 1, we get the desired inequalities. h



Table 1
Numerical results for NCP1 and NCP2 using the neural networks based on /

�
p
NR ;/

�
p
S�NR and w

�
p
S�NR for different values of p.

p NCP1 NCP2

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.0 3.0E+0 1.4E�7 3.0E+0 7.6E�8 1.4E+3 6.1E�3 1.9E+1 6.7E�7 1.7E+1 3.4E�7 6.7E+3 3.1E�2
1.1 3.2E+0 1.5E�7 2.7E+0 9.5E�8 1.8E+3 8.4E�3 5.1E+1 1.6E�5 2.0E+1 3.1E�7 7.9E+3 3.7E�2
1.5 5.1E+0 1.9E�7 3.1E+0 1.8E�7 3.9E+3 2.5E�2 1.1E+3 2.4E�3 4.5E+1 6.0E�7 1.4E+4 7.5E�2
1.9 1.0E+1 4.1E�7 6.5E+0 3.6E�7 6.9E+3 5.4E�2 4.7E+3 1.9E�2 1.2E+2 1.9E�6 2.0E+4 1.3E�1
2.0 1.2E+1 4.2E�7 8.0E+0 4.3E�7 7.8E+3 6.4E�2 6.0E+3 2.7E�2 1.6E+2 2.6E�6 2.1E+4 1.5E�1
2.1 1.5E+1 6.1E�7 1.0E+1 5.4E�7 8.7E+3 7.5E�2 7.3E+3 3.6E�2 2.1E+2 3.7E�6 2.2E+4 1.7E�1
2.5 3.5E+1 1.5E�6 2.5E+1 1.5E�6 1.3E+4 1.3E�1 1.3E+4 9.1E�2 6.1E+2 1.5E�5 2.6E+4 2.5E�1
2.9 8.9E+1 4.0E�6 6.7E+1 4.0E�6 1.7E+4 2.0E�1 1.9E+4 1.7E�1 1.6E+3 6.2E�5 2.9E+4 3.4E�1
3.0 1.1E+2 5.2E�6 8.6E+1 5.2E�6 1.7E+4 2.2E�1 2.0E+4 1.9E�1 1.9E+3 8.8E�5 3.0E+4 3.7E�1
3.5 3.9E+2 2.0E�5 3.1E+2 2.0E�5 2.1E+4 3.4E�1 2.7E+4 3.3E�1 4.2E+3 4.2E�4 3.3E+4 5.0E�1
4.0 1.4E+3 8.0E�5 1.1E+3 8.0E�5 2.3E+4 4.8E�1 3.2E+4 4.8E�1 6.1E+3 1.3E�3 3.4E+4 6.3E�1
4.5 5.1E+3 3.4E�4 4.2E+3 3.4E�4 2.3E+4 6.3E�1 3.5E+4 6.5E�1 7.4E+3 2.9E�3 3.5E+4 7.7E�1
5.0 1.8E+4 1.7E�3 1.5E+4 1.7E�3 2.4E+4 7.8E�1 3.8E+4 8.3E�1 8.3E+3 5.1E�3 3.6E+4 9.1E�1
5.5 2.8E+4 2.8E�2 1.7E+4 2.8E�2 2.4E+4 9.2E�1 4.0E+4 1.0E+0 9.0E+3 7.9E�3 3.6E+4 1.0E+0
6.0 2.8E+4 6.6E�2 4.6E+3 5.5E�2 2.3E+4 1.1E+0 4.1E+4 1.2E+0 9.4E+3 1.1E�2 3.6E+4 1.2E+0
6.5 2.8E+4 1.1E�1 1.2E+4 5.7E�2 2.3E+4 1.2E+0 4.2E+4 1.4E+0 9.8E+3 1.5E�2 3.5E+4 1.3E+0
7.0 2.9E+4 1.6E�1 2.9E+4 6.1E�2 2.2E+4 1.3E+0 4.3E+4 1.5E+0 1.0E+4 1.9E�2 3.5E+4 1.4E+0
20.0 3.7E+4 3.3E+0 1.5E+4 1.4E+0 1.2E+4 3.1E+0 3.1E+4 4.4E+0 * * 1.5E+4 2.9E+0
50.0 1.9E+4 6.9E+0 5.6E+3 2.2E+0 5.5E+3 4.1E+0 1.9E+4 6.3E+0 * * 6.3E+3 3.5E+0

Table 2
Numerical results for NCP3 and NCP4 using the neural networks based on /

�
p
NR ;/

�
p
S�NR and w

�
p
S�NR for different values of p.

p NCP3 NCP4

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 1.5E+1 5.2E�6 1.4E+1 1.2E�6 5.1E+3 4.5E�2 1.6E+1 2.3E�6 1.4E+1 3.3E�7 5.1E+3 1.9E�3
1.1 4.3E+1 3.8E�5 2.7E+1 1.9E�10 5.8E+3 4.9E�2 4.3E+1 1.8E�5 1.1E+1 5.2E�8 5.6E+3 2.5E�3
1.5 9.7E+2 3.7E�3 2.4E+2 3.3E�7 8.7E+3 7.6E�2 8.3E+2 1.6E�3 3.5E+0 2.0E�7 7.6E+3 7.1E�3
1.9 4.0E+3 2.7E�2 7.2E+2 9.1E�6 1.1E+4 1.1E�1 3.2E+3 1.2E�2 1.4E+0 1.2E�7 9.3E+3 1.4E�2
2 5.0E+3 3.7E�2 8.6E+2 1.6E�5 1.1E+4 1.2E�1 4.0E+3 1.6E�2 1.1E+0 9.5E�8 9.7E+3 1.7E�2
2.1 6.1E+3 5.0E�2 1.3E+1 6.0E�1 1.1E+4 1.3E�1 4.9E+3 2.1E�2 9.0E�1 7.0E�8 1.0E+4 1.9E�2
2.5 1.1E+4 1.1E�1 8.2E+0 6.9E�1 1.2E+4 1.7E�1 8.5E+3 5.1E�2 4.0E�1 2.5E�8 1.1E+4 1.8E�2
2.9 1.6E+4 1.9E�1 6.9E+0 7.4E�1 1.3E+4 2.1E�1 1.2E+4 9.3E�2 1.9E�1 6.2E�9 1.2E+4 1.7E�2
3 1.7E+4 2.1E�1 6.8E+0 7.5E�1 1.3E+4 2.2E�1 1.3E+4 1.0E�1 1.6E�1 3.6E�9 1.3E+4 2.4E�2
3.5 2.2E+4 3.1E�1 6.6E+0 8.0E�1 1.3E+4 2.7E�1 1.6E+4 1.7E�1 7.0E�2 1.6E�10 1.4E+4 5.3E�2
4 2.6E+4 3.8E�1 7.4E+0 8.2E�1 1.3E+4 3.2E�1 1.9E+4 2.4E�1 4.0E�2 1.1E�10 1.4E+4 8.0E�2
4.5 2.8E+4 4.3E�1 8.9E+0 8.4E�1 1.3E+4 3.6E�1 2.1E+4 3.2E�1 3.0E�2 3.7E�10 1.5E+4 1.1E�1
5 3.0E+4 4.6E�1 1.1E+1 8.6E�1 1.3E+4 4.1E�1 2.3E+4 4.0E�1 3.0E�2 2.5E�13 1.5E+4 1.3E�1
5.5 3.1E+4 4.8E�1 1.4E+1 8.7E�1 1.3E+4 4.5E�1 2.4E+4 4.8E�1 2.0E�2 5.3E�10 1.5E+4 1.6E�1
6 3.1E+4 4.8E�1 1.8E+1 8.8E�1 1.2E+4 4.9E�1 2.5E+4 5.6E�1 2.0E�2 4.5E�13 1.5E+4 1.9E�1
6.5 2.9E+4 4.7E�1 2.4E+1 8.9E�1 1.0E+4 5.4E�1 2.5E+4 6.3E�1 2.0E�2 1.3E�15 1.5E+4 2.1E�1
7 2.6E+4 4.8E�1 3.1E+1 9.0E�1 8.2E+3 6.0E�1 2.5E+4 7.1E�1 2.0E�2 1.5E�15 1.5E+4 2.4E�1
20 * * * * * * 4.6E+4 1.9E+0 9.1E+4 4.5E�16 1.1E+4 6.8E�1
50 * * * * * * * * * * 5.2E+3 9.7E�1

Table 3
Numerical results for NCP5 and NCP6 using the neural networks based on /

�
p
NR ;/

�
p
S�NR and w

�
p
S�NR for different values of p.

p NCP5 NCP6

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 2.4E+2 7.9E�6 2.4E+2 7.9E�6 3.6E+4 1.6E�2 2.8E+1 4.0E�6 2.4E+1 3.0E�6 6.3E+3 5.9E�2
1.1 1.6E+2 5.6E�6 1.6E+2 5.6E�6 3.7E+4 1.6E�2 7.6E+1 2.6E�5 1.4E+1 1.5E�6 6.5E+3 6.9E�2
1.5 3.7E+1 1.1E�6 3.7E+1 1.1E�6 4.1E+4 1.9E�2 1.1E+3 5.6E�3 5.9E+0 4.6E�8 7.5E+3 8.5E�2
1.9 1.1E+1 1.3E�7 1.1E+1 1.3E�7 4.3E+4 3.8E�2 4.4E+3 4.3E�2 4.6E+0 1.6E�7 9.7E+3 7.1E�2
2 8.7E+0 4.7E�8 8.7E+0 4.7E�8 4.4E+4 5.3E�2 5.6E+3 6.0E�2 4.7E+0 1.7E�7 1.0E+4 6.2E�2
2.1 7.0E+0 1.7E�9 7.0E+0 1.7E�9 4.4E+4 6.7E�2 6.8E+3 8.0E�2 * * 1.1E+4 5.4E�2
2.5 3.4E+0 7.6E�8 3.4E+0 7.6E�8 4.7E+4 1.1E�1 1.2E+4 1.9E�1 * * 1.2E+4 2.8E�2
2.9 2.1E+0 1.1E�7 2.1E+0 1.1E�7 4.9E+4 1.4E�1 1.8E+4 3.5E�1 * * 1.4E+4 2.1E�2
3 2.0E+0 5.5E�8 2.0E+0 5.5E�8 4.9E+4 1.5E�1 1.9E+4 4.0E�1 * * 1.4E+4 2.2E�2
3.5 1.4E+0 3.7E�8 1.4E+0 3.7E�8 5.1E+4 2.0E�1 2.5E+4 6.5E�1 * * 1.6E+4 3.7E�2
4 1.0E+0 6.0E�8 1.0E+0 6.0E�8 5.2E+4 2.4E�1 3.0E+4 9.2E�1 * * 1.7E+4 6.2E�2
4.5 8.0E�1 3.1E�8 8.0E�1 3.1E�8 5.2E+4 2.9E�1 3.4E+4 1.2E+0 * * 1.8E+4 8.8E�2
5 9.0E�1 4.1E�11 9.0E�1 4.1E�11 5.2E+4 3.3E�1 3.8E+4 1.5E+0 * * 1.8E+4 1.1E�1
5.5 7.0E�1 1.2E�10 7.0E�1 1.2E�10 5.2E+4 3.7E�1 4.0E+4 1.7E+0 * * 1.9E+4 1.3E�1
6 5.0E+2 8.9E�16 1.0E+3 8.9E�16 5.1E+4 4.0E�1 3.9E+4 2.0E+0 * * 1.9E+4 1.4E�1
6.5 5.0E�1 8.5E�11 5.0E�1 8.5E�11 5.1E+4 4.3E�1 3.3E+4 2.2E+0 * * 1.9E+4 1.6E�1
7 4.0E�1 3.3E�10 4.0E�1 3.3E�10 5.0E+4 4.7E�1 4.6E+4 2.4E+0 * * 1.9E+4 1.7E�1
20 1.0E�1 1.5E�12 1.0E�1 1.5E�12 3.1E+4 8.4E�1 3.6E+4 6.8E+0 * * 1.4E+4 7.6E�1
50 * * * * * * 1.7E+4 1.5E+1 * * 7.2E+3 1.5E+0
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Table 4
Numerical results for NCP7 and NCP8 using the neural networks based on /

�
p
NR ;/

�
p
S�NR and w

�
p
S�NR for different values of p.

p NCP7 NCP8

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 5.0E+2 5.4E�5 4.4E+2 3.7E�5 5.8E+4 2.7E�1 1.6E+1 8.0E�8 1.6E+1 3.3E�7 6.8E+3 9.3E�3
1.1 1.2E+3 3.7E�4 3.1E+2 1.2E�5 6.0E+4 2.6E�1 4.6E+1 2.9E�6 4.4E+1 9.5E�11 8.6E+3 8.9E�3
1.5 1.4E+4 2.9E�2 4.6E+4 1.4E�1 6.7E+4 2.5E�1 1.1E+3 3.1E�4 9.7E+2 9.4E�7 1.8E+4 5.0E�3
1.9 4.2E+4 1.9E�1 5.4E+2 1.9E�6 1.3E+4 2.8E�2 4.5E+3 2.4E�3 4.0E+3 5.1E�5 2.6E+4 6.6E�3
2 5.0E+4 2.5E�1 6.9E+2 4.1E�6 1.4E+4 2.8E�2 5.7E+3 3.4E�3 5.0E+3 1.0E�4 2.7E+4 1.1E�2
2.1 5.9E+4 3.3E�1 8.6E+2 7.9E�6 1.5E+4 2.8E�2 7.0E+3 4.7E�3 6.1E+3 1.8E�4 2.9E+4 1.6E�2
2.5 9.1E+4 7.4E�1 1.5E+1 3.1E�2 2.1E+4 1.8E�2 1.3E+4 1.2E�2 1.1E+4 1.1E�3 3.3E+4 4.3E�2
2.9 9.1E+4 1.3E+0 6.4E+1 6.7E�2 2.8E+4 3.2E�2 1.8E+4 2.5E�2 1.6E+4 3.5E�3 3.6E+4 7.9E�2
3 9.1E+4 1.4E+0 8.1E+1 6.7E�2 3.0E+4 4.7E�2 2.0E+4 2.9E�2 1.7E+4 4.5E�3 3.7E+4 9.0E�2
3.5 9.1E+4 2.1E+0 9.1E+3 1.4E�1 4.1E+4 1.5E�1 2.6E+4 5.4E�2 2.2E+4 1.2E�2 3.8E+4 1.5E�1
4 9.1E+4 2.6E+0 9.1E+3 1.4E�1 3.9E+4 3.1E�1 3.0E+4 8.6E�2 2.6E+4 2.4E�2 3.9E+4 2.1E�1
4.5 9.1E+4 2.9E+0 9.1E+3 1.4E�1 3.4E+4 2.3E�1 4.6E+4 1.2E�1 2.9E+4 4.0E�2 3.9E+4 2.7E�1
5 9.1E+4 3.0E+0 3.6E+3 8.2E�2 1.7E+4 2.3E�1 4.6E+4 1.6E�1 3.1E+4 6.0E�2 3.8E+4 3.4E�1
5.5 9.1E+4 3.0E+0 5.4E+3 8.9E�2 1.9E+4 2.9E�1 4.6E+4 2.2E�1 1.0E�1 2.0E+1 3.7E+4 4.0E�1
6 6.5E+4 2.9E+0 9.1E+3 1.4E�1 1.9E+4 3.6E�1 4.6E+4 2.7E�1 1.0E�1 2.1E+1 3.6E+4 4.7E�1
6.5 9.1E+4 2.4E+0 9.1E+3 1.4E�1 1.8E+4 4.3E�1 4.5E+4 3.3E�1 1.0E�1 2.2E+1 3.5E+4 5.3E�1
7 9.1E+4 1.2E+0 9.1E+3 1.4E�1 1.8E+4 4.9E�1 4.6E+4 3.9E�1 1.0E�1 2.2E+1 3.4E+4 5.8E�1
20 3.6E+4 7.1E+0 9.1E+3 6.6E�1 9.9E+3 1.3E+0 * * * * 1.8E+4 1.4E+0
50 1.7E+4 1.8E+1 4.3E+3 9.3E�1 4.7E+3 1.8E+0 * * * * 8.1E+3 1.8E+0

Table 5
Numerical results for NCP9 and NCP10 using the neural networks based on /

�
p
NR ;/

�
p
S�NR and w

�
p
S�NR for different values of p.

p NCP9 NCP10
CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 3.5E+2 4.1E�5 3.0E+2 3.1E�5 4.6E+4 9.7E�2 1.6E+1 2.2E�6 1.4E+1 1.6E�6 6.0E+3 1.9E�2
1.1 9.0E+2 2.3E�4 1.2E+2 2.7E�6 4.8E+4 1.1E�1 4.6E+1 1.7E�5 1.2E+1 1.4E�6 6.8E+3 2.3E�2
1.5 1.2E+4 1.3E�2 6.0E+0 5.4E�7 1.0E+4 9.8E�2 1.1E+3 1.9E�3 9.2E+0 3.7E�7 1.1E+4 5.0E�2
1.9 3.6E+4 7.3E�2 2.9E+0 2.6E�7 1.3E+4 1.5E�1 4.5E+3 1.4E�2 9.0E+0 2.4E�7 1.6E+4 8.6E�2
2 4.2E+4 9.7E�2 2.7E+0 1.6E�7 1.4E+4 1.6E�1 5.7E+3 2.0E�2 9.5E+0 2.1E�7 1.7E+4 9.7E�2
2.1 4.9E+4 1.2E�1 2.8E+0 7.9E�8 1.5E+4 1.8E�1 7.0E+3 2.6E�2 1.0E+1 1.7E�7 1.8E+4 1.1E�1
2.5 7.1E+4 2.6E�1 * * 1.9E+4 2.4E�1 1.3E+4 6.4E�2 5.2E+1 3.3E�1 2.3E+4 1.5E�1
2.9 8.6E+4 4.2E�1 * * 2.3E+4 3.0E�1 1.8E+4 1.2E�1 2.2E+1 3.7E�1 2.8E+4 1.6E�1
3 8.9E+4 4.6E�1 * * 2.4E+4 3.1E�1 2.0E+4 1.3E�1 2.1E+1 3.7E�1 2.9E+4 1.6E�1
3.5 9.1E+4 6.6E�1 * * 3.0E+4 3.9E�1 2.6E+4 2.1E�1 2.1E+1 3.9E�1 3.6E+4 1.7E�1
4 9.1E+4 8.5E�1 * * 3.6E+4 4.6E�1 3.1E+4 2.9E�1 4.6E+4 1.8E�1 4.4E+4 2.0E�1
4.5 9.1E+4 1.0E+0 * * 4.2E+4 5.3E�1 3.4E+4 3.7E�1 4.6E+4 1.8E�1 4.6E+4 2.4E�1
5 9.1E+4 1.2E+0 * * 4.6E+4 5.9E�1 3.7E+4 4.6E�1 4.8E+2 2.3E�1 4.6E+4 2.8E�1
5.5 9.1E+4 1.3E+0 * * 5.0E+4 6.4E�1 3.9E+4 5.4E�1 3.9E+2 2.4E�1 4.6E+4 3.3E�1
6 9.1E+4 1.4E+0 * * 5.2E+4 6.9E�1 4.1E+4 6.2E�1 5.6E+2 2.4E�1 4.6E+4 3.8E�1
6.5 8.2E+4 1.5E+0 * * 5.3E+4 7.4E�1 4.2E+4 6.9E�1 9.2E+2 2.4E�1 4.6E+4 4.1E�1
7 6.4E+4 1.6E+0 * * 5.3E+4 7.7E�1 4.3E+4 7.7E�1 1.4E+3 2.4E�1 3.6E+4 4.4E�1
20 2.5E+1 1.6E+0 * * 2.5E+4 1.2E+0 2.6E+4 2.4E+0 4.3E+4 3.9E�1 1.1E+4 1.8E+0
50 2.5E+4 1.5E+0 * * 5.1E+3 1.3E+0 1.9E+4 5.5E+0 2.1E+4 6.5E�1 4.6E+3 2.8E+0
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As mentioned in the discussion before Theorem 1, there is no
simple relation describing the influence of p. To see this clearly,

consider the function /
�
p
S�NR. From the proof of Theorem 1, there

exists an index j ¼ j x0
� �

given any x0 2 XF close enough to x� such
that

kx tð Þ � x�k 6 c 1þ Lð Þ
j

pþ 1
p

/
�
p
S�NR x0j ; Fj x0

� �� �	 
1
p

e�xt; 8t
P 0: ð20Þ

For a fixed x0 2 XF \ Nd x�ð Þ, we define the function

ga;b pð Þ :¼ pþ 1
p

/
�
p
S�NR a; bð Þ

	 
1
p

;

where a ¼ x0j and b ¼ Fj x0
� �

and p > 1. Without loss of generality,

by taking into account the symmetry of /
�
p
S�NR, we may suppose that

a P b. Then
ga;b pð Þ ¼ pþ 1
p

ap � a� bð Þp� �	 
1
p

:

Note that M :¼ limp!1ga;b pð Þ ¼ a. As we shall see in the follow-
ing example, the function ga;b is not necessarily monotonic, and the
values of a and b have a significant effect on the behavior of ga;b.

Example 1. In Fig. 1, we see that ga;b pð Þ increases for increasing
values of p for a; bð Þ ¼ 4;0:5ð Þ on the interval 1;25ð �. In view of the
error bound (20), this indicates that lower values of p 2 1;25ð � will
provide faster convergence rate. We shall note that g4;0:5 does not
continue to increase on 25;1½ Þ. In particular, it is increasing from
p ¼ 1 to p 	 34:4458, then decreases afterwards (see Fig. 2). On the
other hand, Fig. 1 suggests that for a; bð Þ ¼ 4;3ð Þ, higher values of p
result to faster convergence rate. Finally, the nonmonotonic graph
depicted in Fig. 1 for a; bð Þ ¼ 4;2ð Þ indicates different convergence
behaviors for values of p on different intervals. However, observe
too that the values of g4;2 pð Þ are close to the limit value M ¼ 4
when p belongs to some interval 1;1þ eð Þ, for some small e > 0.



Fig. 3. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to the approximate solution

x� ¼ 0:1837;0:2652;0:3068;0:3030;0:4015ð ÞT for NCP1.

Fig. 4. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to the approximate solution

x� ¼ 0:6555;0:3913;0;0;0ð ÞT for NCP2.

Fig. 5. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to the solution x� ¼ 0;0;1;2;3ð ÞT

for NCP3.
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Remark 1.

(a) From the preceding example, it is evident that the influence
on the upper bound of varying the values of p is heavily depen-
dent on the chosen initial condition for the neural network (9).
Despite this, we wish to point out that there is minimal change
in the value of ga;b pð Þ for large values of p, and thus, we expect
that there will be no significant change in the convergence
behavior for large values of p.
(b) We remark that these observed behaviors hold under the
hypotheses of Theorem 1 and Theorem 2, which include very
strong assumptions on F and on the equilibrium point x�. Hence,
we expect more varying convergence behaviors for other
classes of functions F.
(c) Finally, note that for the generalized FB function /p

FB

we may define a similar upper bound function ha;b (see
[4]) as



Fig. 6. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to the solution x� ¼ 2;0;1ð ÞT for

NCP4.

Fig. 7. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to the solution x� ¼ 1;1;8;4ð ÞT for

NCP5.

Fig. 8. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to the solution

x� ¼
ffiffiffi
6

p
=2;0;0;0:5

� �T
for NCP6.
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ha;b pð Þ ¼ j/p
FB a; bð Þj

2� 21=p ; p > 1:
In comparison with the function ga;b, the function ha;b defined
above can be verified to be always monotonically decreasing.
In line with this, it was found in [4] that the neural network
approach using /p

FB achieves faster convergence rate when higher
values of p are used.
From the above example and remarks, we see the complex
dynamics of the role of p, which we will demonstrate via
numerical examples in the next section. Hence, it still remains
an open question to determine precisely how p affects the con-
vergence behavior of the trajectories of the ODE. Nevertheless, we
have provided a theoretical evidence as to why a non-monotonic
type of relationship between p and convergence rates are observed
in general when using the dynamical systems approach based on

/
�
p
NR;/

�
p
S�NR and w

�
p
S�NR.



Fig. 9. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR to the degenerate solution

x� ¼
ffiffiffi
6

p
=2;0;0;0:5

� �T
and non-degenerate solution x� ¼ 1;0;3;0ð ÞT (using p ¼ 1:01 and p ¼ 2, respectively) for NCP7.

Fig. 10. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to the solution x� ¼ 0;3;1;0;0ð ÞT

for NCP8.

Fig. 11. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR (p ¼ 1:01) to a solution x� ¼ k;0;0;0ð ÞT

(where k 2 0;3½ �) for NCP9.
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4. Numerical experiments

In this section, we present the results of numerical simulations
of the neural networks (9) using the continuous generalization of
the NR function and its two symmetrizations proposed in Sec-
tion 2. We consider several test problems to illustrate the applica-
bility and some advantages of the proposed continuous
generalizations. We also present the varying convergence behav-
iors of trajectories using different values of p for different classes
of functions F. Moreover, comparisons of the performance of the
three neural networks and the traditional FB and GFB networks
will be discussed.

We used the solver ode23s in Matlab to simulate the neural net-
work. The simulation is stopped at time tf if krWF x tf

� �� �k 6 10�6,
i.e. when the trajectory is ‘‘close” to an equilibrium point. The value
of q is set to 103 for all of the simulations.



Fig. 12. Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on /
�
p
S�NR to the solution x� ¼ 0;1;0;1;0ð ÞT for NCP10.
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The test problems we considered are described in the Appendix,
consisting of P0-functions (NCP1–NCP5) and non-P0-functions
(NCP6–NCP10). We simulate the three neural networks based on

/
�
p
NR;/

�
p
S�NR and w

�
p
S�NR for different values of p, and the results when

x0 ¼ 1;1; . . .1ð ÞT is used as the initial condition are summarized in

the Appendix. Using the functions /
�
p
NR;/

�
p
S�NR and w

�
p
S�NR, respec-

tively, to construct the network, CT1, CT2 and CT3 denote the con-
vergence time of the trajectories, while Gap1, Gap2 and Gap3
denote the value of j x tf

� �
; F x tf

� �� �� �j.
We now summarize the findings from the numerical experiments.

4.1. Influence of p on convergence time

Using the functions /
�
p
NR and w

�
p
S�NR, most of the simulations

revealed that lower p value provides faster convergence (see Tables

1–5). For the /
�
p
NR-neural network, this phenomenon can be

observed for all NCP test problems except NCP5, while the same

conclusion can be made for the w
�
p
S�NR-neural network when solving

all test problems except NCP7. The influence of p when /
�
p
S�NR is

used for the neural network approach is quite indeterminate. For
NCP1-NCP3, higher values of p results to slow convergence of the
neural network. In contrast, higher values of p seem desirable for
NCP4, NCP5, NCP6 and NCP9 in providing faster convergence rate.
For the remaining test problems which involve non-P0-functions,
the pattern is indiscernible.

In summary, we observe that the convergence of the three neu-
ral networks has no monotonic type of dependence on the values
of p. That is, there is no guarantee whether lower values of p will
provide faster convergence or not, even for strongly monotone
functions (NCP1-NCP4). For functions F which are not of P0-type,
the observed convergence behaviors are even more varied.

4.2. Influence of p on the error term

As mentioned above, the simulations were stopped provided
that krWF x tf

� �� �k 6 10�6. Under this stopping criterion, we have
observed that for larger values of p, the Gap values are not suffi-
ciently close to zero for most of the simulations (see Tables 1–5).
In turn, a large error kx tf

� �� x�k is usually obtained for large values
of p, and thus, the problem was not successfully solved using the

said stopping criterion. For the /
�
p
NR–neural network, this can be

observed in all the test problems except for NCP5. For the w
�
p
S�NR-

network, the same phenomenon can be inferred from all test prob-
lems except NCP6. Meanwhile, for the neural network based on

/
�
p
S�NR, this also holds true for all test problems except NCP4,
NCP5, NCP6 and NCP9 (i.e., the test problems where higher values
of p provide faster convergence rate). Nevertheless, the error term
for the latter test problems is sufficiently small even when lower
values of p is used.

4.3. Ill-conditioning

In the numerical experiments, the large values of p we used are
20 and 50. One problem that we usually encountered in simulating
the neural networks with large values of p is the ill-conditioning
effect which results to failed simulations, which is indicated by
‘‘�” in Tables 1–5. This problem has been encountered for NCP3,

NCP4, NCP5 and NCP8 for neural network based on /
�
p
NR, and

NCP3 and NCP5 for the network based on w
�
p
S�NR. On the other hand,

the problem is more prominent when we used /
�
p
S�NR which is evi-

dent in the test problems NCP2-NCP6, NCP8 and NCP9. For NCP6
and NCP9, the simulations failed when p > 2.

4.4. Numerical comparison of the neural networks

Among the three neural networks, we have observed that in all

simulations, the one based on /
�
p
S�NR has the best numerical perfor-

mance followed by /
�
p
NR-neural network (see Figs. 3–12). The simu-

lations reveal that a very slow convergence rate is obtained when

using w
�
p
S�NR compared with the other two NCP functions.

We now compare the /
�
p
S�NR-neural network with the FB and

GFB (with p ¼ 4) neural networks (see Figs. 3–12). In general, we
have observed that there is no significant difference in the perfor-

mance of FB and GFB neural network and the /
�
p
S�NR-neural network

when p ¼ 1:01 is used, except for NCP8 where the latter has better
performance than FB and GFB neural networks. Faster convergence
rate, on the other hand, was achieved when p ¼ 1:1 was used for

the /
�
p
S�NR-neural network, specifically for NCP1, NCP4-NCP7 and

NCP10. Finally, note that the FB and GFB networks were signifi-

cantly outperformed by /
�
p
S�NR-neural network for NCP4, NCP5,

NCP6, NCP9 and NCP10 when p ¼ 7; p ¼ 7 (or 20), p ¼ 1:5 (or 2),
p ¼ 1:1 (or 2) and p ¼ 2 were used, respectively, for the latter neu-
ral network.

4.5. Neural network based on /
�
p
S�NR

With /
�
p
S�NR as the best NCP function among the functions, we

simulate the trajectories of the corresponding neural network
using six random initial conditions. From Figs. 3–12, we see that
the neural network was able to successfully converge to a point
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in SOL Fð Þ. In particular, note that NCP7 has two solutions, one of
which is degenerate. Despite the degeneracy of the solution,

/
�
p
S�NR–neural network was able to converge to this point. Similarly,

for the the Matthiesen problem NCP9 which has infinitely many

solutions of the form k;0;0;0ð ÞT where k 2 0;3½ �, the neural net-

work based on /
�
p
S�NR was able to converge to a solution.
5. Discussion of numerical results

Using the proposed continuous generalization and their sym-
metrizations, we solved herein several test problems which
include P0- and non-P0-functions. From the preceding section, we
see that the influence of p on the convergence rate of the trajecto-
ries is difficult to characterize for all the three neural networks

considered. For the neural networks based on /
�
p
NR and w

�
p
S�NR, most

experiments suggest that lower values of p is desirable to obtain
faster convergence. However, this cannot be concluded in the gen-
eral case because there are test instances which involve non-P0-
functions where smaller values of p offer slower convergence rate.
The influence of p is even harder to characterize when we use the

neural network based on /
�
p
S�NR, where several distinct convergence

behaviors are observed when we vary the values of p. Theoretically,
we have shown that these varying behaviors are expected because
of the non-monotonicity (w.r.t. p) of the error bounds obtained for
kx tð Þ � x�k (see Theorem 1, Theorem 2, Remark 1).

In spite of the non-monotonic dependence on p of the conver-
gence rates of the neural network, we wish to point out that in
practical applications, our numerical results suggest that taking
p 2 1;3ð Þ is a better choice in general. In most simulations, we have
observed that choosing higher values of p result to ill-conditioning
problems in the implementations. Moreover, it can be inferred
from the numerical experiments that for higher values of p, large
values of the error term kx tf

� �� x�k are obtained using the stop-

ping criterion krW x tf
� �� �k 6 e ¼ 10�6. Hence, it is necessary to

choose a smaller value of e in order to obtain more accurate solu-
tions when higher values of p are used. However, the latter might
constitute more numerical problems due to higher propensity to
encounter ill-conditioning, especially when p becomes larger. In
addition, we have also found from numerical experiments that
the neural network is often more sensitive to initial conditions
when larger values of p are used. We suspect that for larger values
of p, an isolated asymptotically stable NCP solution has a smaller
region of attraction (i.e. a set S such that the limit x tð Þ ! x� (as
t ! 1) holds for any initial condition x 0ð Þ ¼ x0 2 S).

Finally, the experiments reveal that it is not preferable to use

the neural network based on w
�
p
S�NR because of its unfavorable con-

vergence rate. On the other hand, the neural network based on /
�
p
NR

is efficient in solving the test problems, specifically when using
values of p close to 1. In particular, its rate of convergence (for
small values of p) is almost at par with the neural network based

on /
�
p
S�NR, which has the best convergence rate among the three

families of neural networks considered. Surprisingly, the /
�
p
S�NR-

neural network can significantly outperform the FB and GFB neural
networks for some choices of p.
6. Concluding remarks

We have successfully constructed a meaningful continuous
generalization of the natural residual function, which subsumes
the discrete generalization originally proposed in [5]. We also pro-
posed continuous generalization of their symmetrizations, which
also subsumes the discrete symmetrization proposed in [3]. The
extensions are motivated by the results in our earlier work [2]
where preliminary numerical experiments show that lower values
of p seem favorable in simulations, which was not theoretically
established in [2].

In this paper, we have demonstrated via several test problems
that the influence of p on the convergence rate of the neural net-
work is difficult to characterize, even for P0 or monotone functions.
Theoretical evidence for this phenomenon was also provided in
this paper by proving some error bound estimates. In any case,
as mentioned in the preceding section, lower values of p are more
desirable in practical applications due to issues related to ill-
conditioning, accuracy of the obtained solution, and sensitivity to
initial conditions.

From the numerical experiments, we conclude that the neural

network based on /
�
p
NR can be efficiently utilized by choosing values

of p close to 1. Its second symmetrization wp
S�NR, on the other hand,

is not recommended to be used for the neural network approach
because of its (extremely) slow convergence. Meanwhile, the first

symmetrization /
�
p
S�NR offers promising convergence rates despite

its complexity. The neural network based on this function is cap-
able of significantly outperforming the well-known FB and GFB
neural networks by some suitable choice of p. Hence, it might be
worthwhile to revisit some NCP functions-based algorithms to
see whether or not this function can be adopted as well, instead
of the traditionally used FB or NR functions, to improve numerical
performance of the algorithm.
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Appendix A. Test problems and summary of results

We collect herein some standard test problems for NCP.

A.1. Category I: NCP(F) where F is a P0-function

(NCP1,[1]) Let F xð Þ ¼ Axþ b where A ¼

4 1 0 � � � 0
�2 4 1 � � � 0
0 �2 4 � � � 0
..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 1
0 0 0 � � � 4

0
BBBBBB@

1
CCCCCCA

is a tridiagonal P-matrix and b ¼ �1; � � � ;�1ð ÞT . For the simula-
tions, we take n ¼ 5.
(NCP2,[7]) Let Fi xð Þ ¼ �xi�1 þ 2xi � xiþ1 þ bi xð Þ þ ci for
i ¼ 1; . . . ;n, where x0 ¼ xnþ1 ¼ 0, and let bi xð Þ ¼ arctan xið Þ and
ci ¼ i� n

2. For the simulations, we take n ¼ 5.
(NCP3,[25]) Let F be given by
F xð Þ ¼ 2 exp
X5
i¼1

xi � iþ 2ð Þ2
 ! x1 þ 1

x2
x3 � 1
x4 � 2
x5 � 3

0
BBBBBB@

1
CCCCCCA
:
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(NCP4,[27]) Let F : R3 ! R3 the strictly monotone function

F xð Þ ¼
x1 � 2

x2 � x3 þ x32 þ 3
x2 þ x3 þ 2x33 � 3

0
B@

1
CA:

The unique solution of NCP(F) is x� ¼ 2; 0;1ð ÞT .
(NCP5,[20]) We consider the linear complementarity problem

with F xð Þ ¼ Axþ b, where A ¼
1 �4 1 0
0 1 0 1

�1 0 0 0
0 �1 0 0

0
BB@

1
CCA and

b ¼ �5;�5;1;1ð ÞT . This problem arises from quadratic pro-

gramming [20] which has a unique solution x� ¼ 1;1;8;4ð ÞT .

A.2. Category II: NCP(F) where F is a non-P0-function

(NCP6,[19]) Consider the Kojima-Shindo problem where F is
defined as
F xð Þ ¼

3x21 þ 2x1x2 þ 2x22 þ x3 þ 3x4 � 6
2x21 þ x1 þ x22 þ 3x3 þ 2x4 � 2

3x21 þ x1x2 þ 2x22 þ 2x3 þ 3x4 � 1
x21 þ 3x22 þ 2x3 þ 3x4 � 3

0
BBB@

1
CCCA:
The unique (non-degenerate) solution of NCP(F) is

x� ¼
ffiffiffi
6

p
=2;0;0;1=2

� �T
.

(NCP7,[19]) We consider a modification of the Kojima-Shindo
problem
F xð Þ ¼

3x21 þ 2x1x2 þ 2x22 þ x3 þ 3x4 � 6
2x21 þ x1 þ x22 þ 10x3 þ 2x4 � 2
3x21 þ x1x2 þ 2x22 þ 2x3 þ 9x4 � 9

x21 þ 3x22 þ 2x3 þ 3x4 � 3

0
BBB@

1
CCCA:
NCP(F) has two solutions: x� ¼
ffiffiffi
6

p
=2; 0;0;1=2

� �T
and

x� ¼ 1;0;3; 0T
�

, which are degenerate and non-degenerate,

respectively.
(NCP8,[26]) Let F : R5 ! R5 be given by
F xð Þ ¼

x1 þ x2x3x4x5=50
x2 þ x1x3x4x5=50� 3
x3 þ x1x2x4x5=50� 1

x4 þ x1x2x3x5=50þ 1=2
x5 þ x1x2x3x4=50

0
BBBBBB@

1
CCCCCCA
:

The solution of NCP(F) is x� ¼ 0;3;1;0;0ð ÞT .
(NCP9,[16]) We consider the modified Matthiesen problem,
where F is given by
F xð Þ ¼

�x2 þ x3 þ x4
x1 � 4:5x3 þ 2:7x4ð Þ= x2 þ 1ð Þ

5� x1 � 0:5x3 þ 0:3x4ð Þ= x3 þ 1ð Þ
3� x1

0
BBB@

1
CCCA;
which has infinitely many solutions x� ¼ k;0;0;0ð ÞT , where
k 2 0;3½ �.

(NCP10,[23,24]) We follow the construction of F used in [23].
Let f : Rn ! Rn be a continuously differentiable function, and
let x� ¼ 0;1;0;1; . . .ð ÞT 2 Rn. Define F : Rn ! Rn by
Fi xð Þ ¼ f i xð Þ � f i x
�ð Þ þ 1 if i isodd

f i xð Þ � f i x
�ð Þ otherwise

�
:

It is clear that x� is a nondegenerate solution of NCP(F). For this
example, we take f from [24] given by
f i xð Þ ¼ n� i
Xn
j¼1

cos xj
� �þ i 1� cos xið Þð Þ � sin xið Þ:
For the simulations, we take n ¼ 5.
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