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A Neural Network Based on the Metric Projector
for Solving SOCCVI Problem

Juhe Sun , Weichen Fu , Jan Harold Alcantara , and Jein-Shan Chen

Abstract— We propose an efficient neural network for
solving the second-order cone constrained variational inequality
(SOCCVI). The network is constructed using the Karush–Kuhn–
Tucker (KKT) conditions of the variational inequality (VI), which
is used to recast the SOCCVI as a system of equations by
using a smoothing function for the metric projection mapping to
deal with the complementarity condition. Aside from standard
stability results, we explore second-order sufficient conditions
to obtain exponential stability. Especially, we prove the non-
singularity of the Jacobian of the KKT system based on the
second-order sufficient condition and constraint nondegeneracy.
Finally, we present some numerical experiments, illustrating the
efficiency of the neural network in solving SOCCVI problems.
Our numerical simulations reveal that, in general, the new neural
network is more dominant than all other neural networks in the
SOCCVI literature in terms of stability and convergence rates
of trajectories to SOCCVI solution.

Index Terms— Metric projector, neural network, second-order
cone (SOC), second-order sufficient condition, stability, varia-
tional inequality (VI).

I. INTRODUCTION

MANY problems in mathematical sciences, such as
engineering, optimization, operations research, and

economics, among others, can be cast as variational inequali-
ties (VIs). For instance, complementarity problems and some
fixed point problems correspond to specific instances of VIs.
A detailed discussion of solution methods for VIs can be found
in [16] and [19].

In this article, we solve the second-order cone constrained
VI (SOCCVI) problem: given a mapping F : IRn → IRn and
a subset C ⊆ IRn given as

C = �
x ∈ IRn | h(x) = 0,−g(x) ∈ K�

where h : IRn → IRl (l ≥ 0) and g : IRn → IRm (m ≥ 1),
the SOCCVI problem is to obtain a point x ∈ C with the
property that for all y ∈ C

�F(x), y-x� ≥ 0. (1)
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Here, �·, ·� is the usual inner product, and K is given by

K = Km1 × · · · × Km p (2)

where mi ≥ 1, m1 + · · · + m p = m, and each Kmi is a
second-order cone (SOC)

Kmi := {(xi1, xi2, . . . , ximi )
T ∈ IRmi | �(xi2, . . . , ximi )� ≤ xi1}

where �·� is the usual Euclidean norm and K1 is defined to
be the set of nonnegative real numbers. Note that a special
case of (2) is when p = n and m1 = · · · = m p = 1, which
corresponds to the nonnegative orthant K = IRn+. Throughout
this article, we assume continuous differentiability of F , and
twice continuous differentiability of h and g. We also denote
g(x) = (gm1(x), . . . , gm p(x))T and gmi = (gi

0, ḡi ) : IRn →
IRmi for i ∈ {1, . . . , p}.

A convex SOC program (CSOCP), which is given by

min f (x)

s.t. Ax = b − g(x) ∈ K (3)

is a special case of the SOCCVI (1). In (3), we assume that
f : IRn → IR is a twice continuously differentiable convex
function, g : IRn → IRm is differentiable, A is an l × n matrix
with full row rank, and b ∈ IRl . Indeed, by looking into the
Karush–Kuhn–Tucker (KKT) conditions, the CSOCP (3) is
equivalent to the SOCCVI problem (1) with F(x) = ∇ f (x)
and h(x) = Ax − b. This special case has wide applications
in management science and engineering [1], [24], [27].

Because of various applications, there have been significant
research efforts on computational approaches to VIs and
complementarity problems (see [5], [7], [9], [12], [16], [19],
[37] and references therein). One main issue, however, is that
these methods usually do not provide real-time solutions,
which is necessary especially in scientific and engineering
applications. Fortunately, we can obtain real-time solutions
by utilizing neural networks applied to optimization. This
approach was first introduced by Hopfield and Tank [20], [36]
in the field of optimization and, since then, has been applied to
several optimization problems (see [4], [8], [13]–[15], [18],
[21]–[23], [26], [38], [39], [42], [43] and references therein).
In this approach, the key is to set up an energy function, which
is then used to formulate a system of first-order differential
equations, which is a representation of an artificial neural net-
work. Under stability conditions, the neural network converges
to a stationary solution of the differential equation, which,
in turn, is a possible solution to the mathematical programming
problem.
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Neural networks have already been used to solve the
CSOCP (3), which is a special case of (1), as mentioned
earlier. In [24], two kinds of neural networks for CSOCP (3),
where g(x) = −x using the smoothed Fischer–Burmeister
(FB) function and the projection mapping, were proposed.
More general neural models to efficiently solve (3) were
proposed in [29] and [30]. Meanwhile, there has also been
a plethora of research works making use of neural models
to solve more general VIs (see [21], [22], [38] and references
therein). However, in the case of SOCCVI (1), only four neural
networks exist in the literature. The first two of which were
designed in [33]. One of them is constructed using the FB
function to obtain a merit function for corresponding KKT
conditions, while the other one is constructed by using a
projection map to obtain a reformulation of the SOCCVI as a
system of equations. In both models, the equilibrium solutions
of the network are candidate solutions of (1). The other two
neural networks that were used in [34] are inspired by the
construction of the first neural network in [33]. Instead of
the FB function, two newly discovered SOC-complementarity
functions of discrete-type were used to construct the merit
functions. Recently, a neural network that is supposed to solve
SOCCVI (1) was proposed in [31]. However, we wish to point
out that the presented model in [31] is in fact equipped to solve
only the CSOCP (3).

In summary, the current literature on the SOCCVI problem
is very limited, and the analysis of existing models that have
been studied so far is based on the first-order necessary
conditions. To the best of our knowledge, there is no existing
literature on second-order sufficient conditions for the SOC-
CVI problem. Apart from limitations of theoretical analysis to
first-order conditions, the above-mentioned neural networks
considered in [34] and [35] have some disadvantages, such
as sensitivity to initial conditions, oscillating solutions, and
long convergence time. One other major shortcoming of these
neural models is their complete failure to solve some SOCCVI.
Motivated by these, we present another neural network for
solving the SOCCVI problem based on the smoothing metric
projector. One main theoretical contribution of this article
arising from formulating this new neural network is the
exploration of second-order conditions to achieve exponential
stability, which has not been done in the past, as mentioned
earlier. On the other hand, from a numerical point of view,
the major merit of the proposed neural network is that it
addresses the inadequacies and shortcomings of the current
models in [34] and [35].

This article is organized as follows. In Section II,
we present some mathematical preliminaries pertaining to the
second-order cone. In Section III, we present our new neural
network and provide conditions to achieve different kinds of
stability. We shall note that the stability analysis of the network
is analogous to the analyses presented in our earlier works
[33], [34]. However, we also present in Section IV a rigorous
analysis on how to achieve the conditions that are required to
obtain a special type of stability, namely, exponential stability.
In particular, it is well-known in the neural network literature
that nonsingularity is significant to guarantee exponential
stability. Hence, we look at the Jacobian of the KKT system

corresponding to (1) and provide a sufficient requirement for
its nonsingularity. Finally, in Section V, we provide numerical
reports on the performance of the neural network in solving
the SOCCVI.

II. PRELIMINARIES

In this section, we review important concepts associated
with SOCs (2). Most of these materials can be found in [3].

For any two vectors x = (x0, x̄) and y = (y0, ȳ) in
IR × IRm−1, the Jordan product of x and y is denoted by
x ◦ y := (xTy, y0 x̄ + x0 ȳ). With this Jordan product, the pair
(IR × IRm−1, ◦) is a Jordan algebra with e = (1, 0, . . . , 0)T ∈
IR × IRm−1. We shall denote x ◦ x by x2, which is known
to belong to Km for any x ∈ IRm . The square root of a
vector in Km is also well-defined since there always exists
a unique point in Km (which we denote by x1/2 or

√
x) such

that x = (x1/2)1/2. We also denote |x | := (x2)1/2.
Any x = (x0, x̄) ∈ IR × IRm−1 has the following spectral

decomposition:
x = λ1(x)c1(x) + λ2(x)c2(x) (4)

where λ1 and λ2 are the spectral values of x with formulas

λi (x) = x0 + (−1)i�x̄� (i = 1, 2) (5)

while c1, c2 are the spectral vectors associated with x given
by

ci (x) =

⎧⎪⎨
⎪⎩

1

2

�
1, (−1)i x̄

�x̄�
	

if x̄ 
= 0,

1

2
(1, (−1)iw), if x̄ = 0

(i = 1, 2) (6)

where w is an arbitrary unit vector in IRm−1.
Given the spectral decomposition of x as in (4), the projec-

tion �Km (x) of x onto Km is

�Km (x) = max{0, λ1(x)} c1(x) + max{0, λ2(x)} c2(x). (7)

Indeed, plugging in λi (x) and ci (x) given in (5) and (6),
respectively, yields

�Km (x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2

�
1 + x0

�x̄�
	

(�x̄�, x̄), if |x0| < �x̄�
(x0, x̄), if �x̄� � x0

0, if �x̄� � −x0.

The following proposition gives a formula for the directional
derivative of the mapping given by (7). In what follows,
we denote by intK , bdK , and clK as the interior, boundary,
and closure of a set K ⊂ IRn , respectively.

Lemma 1: [44, Lemma 2] �Km (·) is directionally differen-
tiable at x for any d ∈ IRm . Moreover, the directional derivative
is described by

��Km (x; d)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

J�Km (x)d, if x ∈ IRm\(Km ∪ −Km)

d, if x ∈ intKm

d−2


c1(x)Td

�
− c1(x), if x ∈ bdKm\{0}

0, if x ∈ −intKm

2


c2(x)Td

�
+ c2(x), if x ∈ −bdKm\{0

�Km (d), if x = 0
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where

J�Km (x) = 1

2

⎛
⎜⎜⎝

1
x̄T

�x̄�
x̄

�x̄� I + x0

�x̄� I − x0
�x̄� · x̄ x̄T

�x̄�2

⎞
⎟⎟⎠



c1(x)dT�

− := min
�
0, c1(x)Td

�


c2(x)dT

�
+ := max

�
0, c2(x)Td

�
.

For convenience in subsequent discussion, we state the
definitions of the tangent, regular, and normal cones of a closed
set at a point. These concepts can be found in [32]. For a closed
set K ⊆ IRn and a point x̄ ∈ K , we define the following sets:

1) the tangent (Bouligand) cone

TK (x̄) := lim sup
t↓0

K − x̄

t

2) the regular (Fréchet) normal cone

N̂K (x̄) := {v ∈ R
n
���v, y − x̄� � o(�y − x̄�) ∀y ∈ K }

3) the limiting (in the sense of Mordukhovich) normal cone
NK (x̄) : and T 2

Km (x, d), as shown at the bottom of the
page.

When K is a closed convex set, it is known that
TK (x̄) = cl(K + IRx̄) and N̂K (x̄) = NK (x̄) = TK (x̄)◦ =
{v ∈ K ◦|�v, x� � 0}, where K ◦ denotes the polar of K .

The tangent and second-order tangent cones are explicitly
known as stated in the following result.

Lemma 2: [2, Lemma 2.5] The tangent and second-order
tangent cones of Km at x ∈ Km are described, respectively, by

TKm (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IRm, if x ∈ intKm

Km, if x = 0

{d = (d0, d̄) ∈ IR × IRm−1

|�d̄, x̄� − x0d0 �0}, if x ∈bdKm\{0}
and

We close this section by introducing some notations that will
be used throughout this article. Given a sequence {tn} ∈ R,
we write tn ↓ 0 to mean that {tn} is monotone decreasing
and converges to zero. The distance from a point x to a set
K ⊂ IRn , denoted by dist(x, K ), is given by

dist(x̄, K ) := inf{�x̄ − ȳ� : ∀ȳ ∈ K }.
By linK , we mean the linear subspace generated by K . Given
x, y ∈ IRn , we write x ⊥ y if and only if �x, y� = 0. For a
function f : IRn → IR, we denote by ∇ f (x) and ∇2 f (x)
the gradient and Hessian of f , respectively. Finally, given a
function F : IRn → IRm , we denote by J F(x) the Jacobian
of F , and we let ∇F(x) = J F(x)T. To emphasize that the
derivative is taken with respect to x , we write Jx F(x) and
∇x F(x), respectively.

III. MODEL AND STABILITY ANALYSIS

Similar to the neural networks in [34] and [35], we use
the KKT conditions of the SOCCVI (1) to construct a neural
network. Recall that the VI Lagrangian function is given by

L(x, μ, λ) = F(x) + ∇h(x)μ + ∇g(x)λ (8)

with μ ∈ IRl and λ ∈ IRm . Then, the KKT system of (1) is
described by⎧⎪⎨

⎪⎩
L(x, μ, λ) = 0

�g(x), λ� = 0, −g(x) ∈ K, λ ∈ K
h(x) = 0.

(9)

We formulate a neural network that can solve the system (9),
which are the candidate solutions of the SOCCVI (1). First,
to achieve the complementarity requirement in system (9),
we may use an SOC-complementarity function φ : IRm ×
IRm → IRm , i.e., a function such that φ(x, y) = 0 if and only
if x ∈ Km, y ∈ Km and �x, y� = 0. Two popular examples
are the FB function

φFB(x, y) := (x2 + y2)1/2 − (x + y)

and the natural residual (NR) function [17]

φNR(x, y) := x − �Km (x − y) (10)

where �Km is the metric projector given by (7). Both these
functions are nonsmooth. In [33], a smoothed FB function
given by

φε
FB

(x, y) = (x2 + y2 + ε2e)1/2 − (x + y) (11)

was employed to construct a merit function for (9), which
was the basis to design the neural network involving a
smoothing parameter ε. We do note that φε

FB
is not an

SOC-complementarity function.
On the other hand, “discrete” generalizations of the FB and

NR function were used in [34] to design neural networks,
which are given, respectively, by

φ p
D−FB

(x, y) =
��

x2 + y2
�p − (x + y)p (12)

and

φ p
NR

(x, y) = x p − [(x − y)+]p (13)

where p > 1 is an odd integer in both cases. These dis-
crete generalizations are continuously differentiable functions,
which makes them suitable for neural network approaches.

In this article, we use a smoothed natural residual function
to design a neural model. We begin with a smoothing metric
projector function � : IR+ × IRm → IRm given by

�(ε, u) := 1

2

�
u +

�
ε2e + u2

�
∀(ε, u) ∈ IR+ × IRm . (14)

NK (x̄) : = lim sup
x→x̄ K

N̂K (x).

T 2
Km (x, d) =

⎧⎪⎨
⎪⎩

IRm, if x ∈ intTKm (x)

TKm (d), if x = 0

{w = (w0, w̄) ∈ IR × IRm−1|�w̄, s̄� − w0x0 � d2
0 − �d̄�2}, otherwise.
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Observe that �(0, u) = �Km (u). Moreover, � is continuously
differentiable on any neighborhood of (ε, u) ∈ IR × IRm

provided that (ε2e + u2)0 
= ��ε2e + u2
��. From [22], it is

known that � is globally Lipschitz continuous and is strongly
semismooth for all (0, u) ∈ IR × IRm . Furthermore, applying
the concept of SOC-functions in [6], [10], and [11], it can be
verified that the function �(ε, u) given in (14) can alterna-
tively be expressed as

�(ε, u) = φ(ε, λ1)c1 + φ(ε, λ2)c2 (15)

where φ(ε, t) := (1/2)(t + (ε2 + t2)1/2), where λi and ci are
given in (5) and (6), respectively. Hence, we can write out the
function � as

�(ε, u)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
u + 1

4

⎛
⎜⎝

�
ε2 + λ2

1 +
�

ε2 + λ2
2��

ε2 + λ2
1 +

�
ε2 − λ2

2

	
ū

�ū�

⎞
⎟⎠, if ū 
=0

1

2

�
u0 +

�
ε2 + u2

0

0

�
, if ū = 0.

(16)

For (ε2e + u2)0 
= ��ε2e + u2
��, we calculate the derivative of

� with respect to ε as follows:
∇ε�(ε, u) = 1

2

�
∂

∂ε
φ(ε, λ1)c

T
1 + ∂

∂ε
φ(ε, λ2)c

T
2

	

= 1

2

⎛
⎝ εcT

1�
ε2 + λ2

1

+ εcT
2�

ε2 + λ2
2

⎞
⎠.

As for the differential with respect to u, we have two cases.
1) For u 
= 0

∇u�(ε, u) = 1

2

⎛
⎜⎜⎝1 + 1

2

⎛
⎝ λ1�

ε2+λ2
1

+ λ2�
ε2+λ2

2

⎞
⎠ Y T

Y Z

⎞
⎟⎟⎠
(17)

where

Y = 1

2

⎡
⎣ λ2�

ε2 + λ2
2

− λ1�
ε2 + λ2

1

⎤
⎦ ū

�ū�
and

Z =
⎡
⎣1 +

�
ε2 + λ2

2 −
�

ε2 + λ2
1

λ2 − λ1

⎤
⎦Im−1

+
⎡
⎣1

2

⎛
⎝ λ1�

ε2 + λ2
1

+ λ2�
ε2 + λ2

2

⎞
⎠

−
�

ε2 + λ2
2 −

�
ε2 + λ2

1

λ2 − λ1

⎤
⎦ ūūT

�ū�2 .

2) For ū = 0

∇u�(ε, u) = 1

2

⎡
⎣1 + u0�

ε2 + u2
0

⎤
⎦Im .

Fig. 1. Block diagram of the proposed neural network with φε
NR

.

For (ε2e + u2)0 = ��ε2e + u2
��, � is nonsmooth at (ε, u), but

its B-subdifferential can nevertheless be computed.
According to the above-mentioned �(ε, u) given in (14),

(15), or (16), we introduce the smoothing NR function given
as

φε
NR

(x, y) = x − �(ε, x − y) (18)

which is the basis of our neural network. Now, define S :
IR × IRn × IRl × IRm → IR × IRn × IRl × IRm by

S(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε
L(x, μ, λ)

h(x)
φε

NR

�−gm1(x), λm1

 
...

φε
NR

�−gm p(x), λm p

 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where z = (ε, x, μ, λ) ∈ IR × IRn × IRl × IRm

Then, it is clear to see that solving (9) is equivalent to solving
the problem

min �(z) := 1

2
�S(z)�2. (19)

Hence, � is a merit function for (9), and in turn, we consider
the dynamical system given by⎧⎨

⎩
dz(t)

dt
= −ρ ∇�(z(t)) = −ρ∇S(z(t))S(z(t))

z(t0) = z0

(20)

where ρ > 0 is a scaling factor, for solving the SOCCVI.
We refer to the above as “the smoothed NR neural network.”
The block diagram of the above-mentioned neural network is
shown in Fig. 1. The circuit for (20) requires n + l + m + 1
integrators, n processors for F(x), m processors for g(x), mn
processors for ∇g(x), l processors for h(x), ln processors for
∇h(x), (1 + m + l)n2 processors for ∇x L(x, μ, λ), 2m +
2
"p

i=1 m2
i processors for � and its derivatives, and some

analog multipliers and summers.
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Let umi = −gmi (x) − λmi . For subsequent use in the
numerical simulations, we shall note that, ∇S(z), as shown
at the bottom of the page. It is clear that � is a nonnegative
function that attains the value 0 at z = (ε, x, μ, λ) if and
only if (x, μ, λ) is a KKT point. Moreover, KKT points are
equilibrium points of (20), and the converse holds if we have
the nonsingularity of ∇S(z).

The stability analysis of the above-mentioned system (20) is
fairly standard and is analogous to the analysis of the smoothed
FB neural network in [33]. However, we point out that our
main contributions are as follows: 1) in Section IV, we look
into second-order sufficient conditions for nonsingularity and
2) in Section V, we demonstrate that our neural model has
better numerical properties among all neural networks for
SOCCVI problems. For the sake of completeness, we present
here a fundamental stability result, whose proof is similar to
earlier works (for instance, [33]) and is, therefore, omitted.

Theorem 1: Isolated equilibrium points of (20) are asymp-
totically stable. Moreover, we obtain exponentially stability if
∇S(z) is nonsingular.

From Theorem 1, we see the importance of the nonsingular-
ity of the transposed Jacobian of S, namely, ∇S(z). We explore
sufficient conditions to guarantee this property in Section IV.

IV. SECOND-ORDER SUFFICIENT CONDITION AND

NONSINGULARITY THEOREM

This section is devoted to deriving the second-order suf-
ficient condition for (1) and building up some conditions
to achieve the nonsingularity of ∇S(0, x∗, μ∗, λ∗). To this
end, we write out the first-order optimality conditions for the
SOCCVI problem (1). Let L(x, μ, λ) be given by (8) and
let (μ, λ) = (μ, λm1 , . . . , λm p ) ∈ IRl × IRm1 × · · · × IRm p =
IRl × IRm . Suppose that x∗ is a solution of (1), and Robinson’s
constraint qualification� ∇h(x∗)T

−∇g(x∗)T

	
IRn + T{0l }×K(h(x∗),−g(x∗)) = IRl × IRm

holds at x∗. The first-order optimality condition is#
F(x∗), d

$ ≥ 0∀d ∈ TC(x∗) (21)

where

TC(x∗) = �
d | ∇h(x∗)Td = 0 − ∇g(x∗)Td ∈ TK(−g(x∗))

�
.

It is known that TC(x∗) is convex and

NC (x∗) = ∇h(x∗)IRl + �∇g(x∗)λ | − λ ∈ NK(−g(x∗))
�

where NK(y) := NKm1 (ym1) × NKm2 (ym2) × · · · × NKm p (ym p)
for y = (ym1 , . . . , ym p ) ∈ IRm , and

NKmi (ymi ) := {umi ∈ IRmi |�umi , v − ymi � ≤ 0∀v ∈ Kmi

is the normal cone of Kmi at ymi . Note that (21) holds if and
only if 0 ∈ F(x∗)+ NC (x∗), which is equivalent to: ∃ μ ∈ IRl ,
λ ∈ IRm such that

L(x∗, μ, λ) = 0, −λ ∈ NK(−g(x∗))

and the set of multipliers (μ, λ) denoted by 
(x∗) is nonempty
compact. Therefore, x∗ satisfies the following KKT condition:⎧⎪⎨

⎪⎩
L(x∗, μ, λ) =0

h(x∗) =0

−λ ∈ NK(−g(x∗)).

Using the metric projector and the definition of the normal
cone, the KKT condition can be expressed as

S(x, μ, λ) =
⎛
⎝ L(x, μ, λ)

h(x)
−g(x) − �K(−g(x) − λ)

⎞
⎠ = 0

where

�K(−g(x)−λ)

: = �
�Km1 (−gm1(x)−λm1)

T, . . . ,�Km p (−gm p(x) − λm p )
T T

.

It is particularly emphasized that

��K(−g(x) − λ; d) := diag{��Km1 (−gmi (x) − λmi ; dmi )}p
i=1

for d ∈ R
m .

Before presenting our main results, we recall the following
concept needed in the proof.

Definition 1: [2] The critical cone at x∗ is defined by

C(x∗) = �
d | d ∈ TC(x∗), d⊥F(x∗)

�
.

Theorem 2: Suppose that x∗ is a feasible point of the
SOCCVI (1) such that 
(x∗) = {(μ, λ)} is nonempty and
compact. If J F(x∗) is positive semidefinite and Robinson’s
CQ holds at x∗, then

sup
(μ,λ)∈
(x∗)

�#
Jx L(x∗, μ, λ)d, d

$ − δ∗(λ | T 2
K(−g(x∗)

−∇g(x∗)Td))
�

> 0 ∀d ∈ C(x∗)\{0} (22)

is the second-order sufficient condition of (1), where

δ∗(λ | T 2
K(−g(x∗),−∇g(x∗)Td))

=
%

0, if λ ∈ NK(−g(x∗)) and �λ,−∇g(x∗)Td� = 0

+∞, otherwise.

∇S(z) =

⎛
⎜⎜⎝

1
0
0
0

0
∇x L(x, μ, λ)T

∇h(x)T

∇g(x)T

0
∇h(x)

0
0

{−∇ε�(ε, umi )}p
i=1

−∇g(x)
�
I − diag{∇umi

�(ε, umi )}p
i=1

 
0

diag{∇umi
�(ε, umi )}p

i=1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1
0
0
0

0
∇x L(x, μ, λ)T

∇h(x)T

∇g(x)T

0
∇h(x)

0
0

{−∇ε�(ε,−gmi (x) − λmi )}p
i=1

−∇g(x)
�
I + diag{∇gmi

�(ε,−gmi (x) − λmi )}p
i=1

 
0

−diag{∇λmi
�(ε,−gmi (x) − λmi )}p

i=1

⎞
⎟⎟⎠.
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Proof: Let x∗ be a solution of (1). Since J F(x∗) is
positive semidefinite, we see that for some small ε > 0#

F(x∗), x − x∗$ � 0 ∀x ∈ Bε(x∗) ∩ C

where Bε(x∗) denotes the ε-neighborhood of x∗. Equivalently

x∗ ∈ arg min{#F(x∗), x − x∗$ | x ∈ Bε(x∗) ∩ C}. (23)

Again, due to J F(x∗) being positive semidefinite, it is clear
that (23) holds if and only if

x∗ ∈ arg min
�#

F(x∗), x − x∗$ + #
J F(x∗)(x − x∗), x − x∗$|

x ∈ Bε(x∗) ∩ C
�
. (24)

Therefore, we turn to deduce the second-order sufficient
condition of (24). To this end, we consider the optimization
problem

min
#
F(x∗), x − x∗$ + 1

2

#
J F(x∗)(x − x∗), x − x∗$

s.t. x ∈ Bε(x∗) ∩ C. (25)

First, it is known that x∗ is the stationary point of problem (25)
if and only if

0 ∈ F(x∗) + J F(x∗)(x − x∗) + NBε (x∗)∩C(x∗) (26)

where

NBε (x∗)∩C(x∗) = NBε (x∗)(x∗) + NC (x∗) = NC (x∗). (27)

On the other hand, (26) and (27) imply that 0 ∈ F(x∗) +
NC (x∗). Hence, if x∗ is a solution of (1), we conclude that x∗
is the stationary point of problem (25).

Now, we prove that the critical cones Cp(x∗) and C(x∗)
of (25) and (1), respectively, are equal. Indeed

Cp(x∗) =
⎧⎨
⎩d ∈ R

n

������
⎛
⎝ ∇h(x∗)Td

−∇g(x∗)Td
d

⎞
⎠

∈ T{0}×K×Bε(x∗)(h(x∗),−g(x∗), x∗), and

#
d, F(x∗) + J F(x∗)(x − x∗)

$ = 0

⎫⎬
⎭.

Notice that

T{0}×K×Bε(x∗)(h(x∗),−g(x∗), x∗)
= T{0}×K(h(x∗),−g(x∗)) × TBε(x∗)(x∗)
= T{0}×K(h(x∗),−g(x∗)) × R

n.

This yields that

Cp(x∗) =
)

d ∈ R
n

����
� ∇h(x∗)Td

−∇g(x∗)Td

	
∈ T{0}×K(h(x∗)

−g(x∗)),
#
d, F(x∗)

$ = 0

*
= C(x∗).

Next, the Lagrange function of problem (25) is

L(x∗, λ, μ, ν) = #
F(x∗), (x − x∗)

$
+1

2

#
J F(x∗)(x − x∗), x − x∗$

+�h(x), μ� + �g(x), λ� + �x, ν�

which gives

∇xL(x∗, λ, μ, ν) = F(x∗) + J F(x∗)(x − x∗) + ∇h(x)μ + ν

+∇g(x)λ

∇2
xxL(x∗, λ, μ, ν) = J F(x∗) + 
l

i=1μi∇2 hi (x∗)
+
m

i=1λi∇2 gi(x∗).

Here, we note that ∇2
xxL(x∗, λ, μ, ν) = Jx L(x∗, λ, μ).

On the other hand, in light of [3, Proposition 3.269],
we can check that {0} × K is second-order regular at
(h(x∗),−g(x∗)) along the direction (∇h(x∗)Td,−∇g(x∗)Td)

with respect to the mapping

� ∇h(x∗)T

−∇g(x∗)T

	
for all d ∈

C(x∗). Then, using the definition of the second-order regularity
(see [3, Definition 3.85]) yields

yn =
�

h(x∗)
−g(x∗)

	
+ tn

� ∇h(x∗)Td
−∇g(x∗)Td

	

+1

2
tn

2rn ∀yn ∈ {0} × K

where tn ↓ 0, rn =
� ∇h(x∗)Twn

−∇g(x∗)Twn

	
+ an with an being a

convergent sequence and tnwn → 0, (n → +∞) such that

lim
n→∞ dist(rn, T 2{0} ×K((h(x∗),−g(x∗)), (∇h(x∗)Td

−∇g(x∗)Td))) = 0.

According to the above-mentioned result, for all Pn ∈ {0} ×
K × Bε(x∗), we have

Pn =
⎛
⎝ h(x∗)

−g(x∗)
x∗

⎞
⎠ + tn

⎛
⎝ ∇h(x∗)Td

−∇g(x∗)Td
d

⎞
⎠ + 1

2
tn

2

�
rn

qn

	

where tn ↓ 0

�
rn

qn

	
=

⎛
⎝ ∇h(x∗)Twn

−∇g(x∗)Twn

wn

⎞
⎠ +

�
an

bn

	

with

�
an

bn

	
being a convergent sequence and tnwn → 0,

(n → +∞). Therefore, we obtain

lim
n→∞ dist(rn, T 2{0} ×K((h(x∗),−g(x∗)), (∇h(x∗)Td

−∇g(x∗)Td))) = 0

and

lim
n→∞ dist

��
rn

qn

	
, T 2{0} ×K×Bε(x∗)

×((h(x∗),−g(x∗), x∗)(∇h(x∗)Td,−∇g(x∗)Td, d))
 

= lim
n→∞ dist

��
rn

qn

	
, T 2{0} ×K((h(x∗),−g(x∗)), (∇h(x∗)T

−∇g(x∗)Td)) × T 2
Bε(x∗)(x∗, d)

 
= lim

n→∞ dist(rn, T 2{0} ×K((h(x∗),−g(x∗)), (∇h(x∗)Td

−∇g(x∗)Td))) = 0

and, thus, {0} × K × Bε(x∗) is second-order regular at the
point (h(x∗),−g(x∗), x∗) along (∇h(x∗)Td,−∇g(x∗)Td, d)

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on July 07,2021 at 06:02:35 UTC from IEEE Xplore.  Restrictions apply. 



2892 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 7, JULY 2021

with respect to the mapping

⎛
⎝ ∇h(x∗)T

−∇g(x∗)T

I

⎞
⎠ for all d ∈ C(x∗),

with I as the identity map.
This together with [3, Th. 3.86] indicates that for (25), the

second-order sufficient condition is

sup
(λ,μ,ν)∈
̄(x∗)

×
+
∇2

xxL(x∗, λ, μ, ν) − δ∗

× ((μ, λ, ν), T 2{0}×K×Bε(x∗)

× ((h(x∗),−g(x∗), x∗), (∇h(x∗)Td

−∇g(x∗)Td, d)))
,

> 0 ∀d ∈ Cp(x∗)\{0}.
We can further simplify it as

sup
(λ,μ,ν)∈
̄(x∗)

+
∇2

xxL(x∗, λ, μ, ν)(d, d) − δ∗

× ((μ, λ, ν), T 2{0}×K×Bε(x∗)

× ((h(x∗),−g(x∗), x∗)

(∇h(x∗)T,−∇g(x∗)Td, d)))
,

= sup
(λ,μ,ν)∈
̄(x∗)

×
+
∇2

xxL(x∗, λ, μ, ν)(d, d) − δ∗

× ((μ, λ, ν), T 2{0}(h(x∗),∇h(x∗)Td)

×T 2K(−g(x∗),−∇g(x∗)Td) × T 2
Bε(x∗)(x∗, d))

,
= sup

(λ,μ,ν)∈
̄(x∗)

×
+
∇2

xxL(x∗, λ, μ, ν)(d, d) − δ∗

× ((μ, λ, ν), {0} × T 2K(−g(x∗),−∇g(x∗)Td × IRn)
,

= sup
(μ,λ)∈
(x∗)

+
Jx L(x∗, λ, μ)(d, d) − δ∗

(λ|T 2K(−g(x∗) − ∇g(x∗)Td))
,
.

To sum up, the second-order sufficient condition of the SOC-
CVI (1) is described by

sup
(μ,λ)∈
(x∗)

�#
Jx L(x∗, λ, μ)d, d

$ − δ∗

× (λ|T 2K(−g(x∗),−∇g(x∗)Td))
�

> 0

∀d ∈ C(x∗)\{0}
as desired.

As we saw in Theorem 1, ∇S(0, x∗, μ∗, λ∗) being nonsin-
gular is crucial to guarantee that the equilibrium point of our
network becomes a solution of the SOCCVI (1) and that it
is exponential stable. Now, we present some conditions to
achieve the nonsingularity of ∇S(0, x∗, μ∗, λ∗).

Theorem 3: Suppose that (x∗, μ∗, λ∗) is a KKT point of (1).
Then, ∇S(0, x∗, μ∗, λ∗) is nonsingular if the following holds.

1) 
(x∗) 
= ∅.
2) The second-order sufficient condition (22) holds.
3) −λ∗ ∈ intNK(−g(x∗)) holds.
4) The following constraint nondegeneracy holds� ∇h(x∗)T

−∇g(x∗)T

	
IRn + linT{0l }×K(h(x∗),−g(x∗))

= IRl × IRm .

Proof: It is enough to verify that M given as shown at the
bottom of the page is nonsingular, where u∗

mi
= −gmi (x∗) −

λ∗
mi

. From Lemma 1 and (17), we can deduce that

lim
ε→0

[∇u�(ε, u)]Td = ��
Km (u; d)

for d ∈ R
m and u ∈ IRm\(Km ∪ −Km) or u ∈ intKm . Then,

for ε → 0 and (dx, dμ, dλ) ∈ IRn × IRl × IRm , we have

M

⎛
⎝dx

dμ
dλ

⎞
⎠=

⎛
⎝Jx L(x∗, μ∗, λ∗)dx + ∇h(x∗)dμ + ∇g(x∗)dλ

∇h(x∗)Tdx
H

⎞
⎠

where

H =
�

I − diag

)
lim
ε→0

∇u∗
mi

�
�
ε, u∗

mi

 *p

i=1

	T

(−∇g(x∗))Tdx

+
�

diag

)
lim
ε→0

∇u∗
mi

�
�
ε, u∗

mi

 *p

i=1

	T

dλ

= −∇g(x∗)Tdx −
�

diag

)
lim
ε→0

∇u∗
mi

�
�
ε, u∗

mi

 *p

i=1

	T

× [−∇g(x∗)Tdx − dλ]
= −∇g(x∗)Tdx − ��

K(−g(x∗) − λ∗; −∇g(x∗)Tdx − dλ).

Therefore, we have

M

⎛
⎝ dx

dμ
dλ

⎞
⎠

=
⎛
⎝ Jx L(x∗, μ∗, λ∗)dx +∇h(x∗)dμ+∇g(x∗)dλ

∇h(x∗)Tdx
−∇g(x∗)Tdx − ��K

�−g(x∗)−λ∗;−∇g(x∗)Tdx −dλ
 
⎞
⎠.

(28)

Suppose that M

⎛
⎝ dx

dμ
dλ

⎞
⎠ = 0. We need to show that dx =

0, dμ = 0, and dλ = 0. First, from the second and thirs
expressions of (28), we obtain%

∇h(x∗)Tdx =0

−∇g(x∗)Tdx =��K
�−g(x∗) − λ∗;−∇g(x∗)Tdx −dλ

 (29)

which implies that dx ∈ C(x∗). In addition, from the first
expression of (28), we obtain#

Jx L(x∗, μ∗, λ∗)dx, dx
$ + #∇g(x∗)Tdx, dλ

$ = 0. (30)

M =

⎛
⎜⎜⎝

∇x L(x∗, μ∗, λ∗)T

∇h(x∗)T

∇g(x∗)T

∇h(x∗)
0
0

−∇g(x∗)
�

I − diag
+

limε→0∇u∗
mi

�
�
ε, u∗

mi

 ,p

i=1

�
0

diag
+

limε→0 ∇u∗
mi

�
�
ε, u∗

mi

 ,p

i=1

⎞
⎟⎟⎠

T
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To proceed, we consider the following sets:
I ∗ = �

i | −gmi (x∗) ∈ intKmi , i = 1, . . . , p
�

B∗ = �
i | −gmi (x∗) ∈ bdKmi , gmi (x∗) 
= 0

�
Z∗ = �

i | gmi (x∗) = 0
�
.

Note that

CK(−g(x∗)) = �
d ∈ IRn | − ∇g(x∗)Td ∈ TK(−g(x∗))

�
and

TK(−g(x∗))=
⎧⎨
⎩d

������
−∇gi

0(x∗)Td − ∇ ḡi(x∗)Td

gi
0(x∗)

� 0, i ∈ B∗

−∇gi
0(x∗)d + ∇ ḡi(x∗)Td � 0, i ∈ Z∗

⎫⎬
⎭.

Since −λ⊥ − g(x)

λ =
⎧⎨
⎩

λ
��λmi = 0, i ∈ I ∗

λmi = σ(−gi
0(x∗), ḡi(x∗)), σ > 0, i ∈ B∗

λmi ∈ intKmi , i ∈ Z∗

⎫⎬
⎭

which further yields that
−g(x∗) − λ∗�
mi

=

⎧⎪⎨
⎪⎩

−gmi (x∗) ∈ intKmi , i ∈ I ∗.
((1 − σ)(−gi

0(x∗)), (1 + σ)(−ḡi(x∗))), i ∈ B∗.
λmi ∈ int Kmi , i ∈ Z∗.

On the other hand, Condition III implies that C(x∗) is as
shown at the bottom of the page, and C(x∗) is a linear space.
Therefore, we have

δ∗�λ��T 2
K (−g(x∗),−∇g(x∗)Td)

 
=

-
i∈B∗

λi
0

−gi
0(x∗)

.���∇gi
0(x∗)Tdx

���2 − ��∇ ḡi(x∗)Tdx
��2

/

with λmi = (λi
0, λ̄

i ).
Case I: If i ∈ B∗, we have λ∗

mi = (−σ gi
0(x∗), σ ḡi (x∗)).

Then, by Lemma 1 and (29), we obtain

��
Kmi (−gmi (x∗) − λ∗

mi
; −J gmi (x∗)dx − dλmi )

= 1

2

⎛
⎝ 1 wT

i

wi
2

1 + σ
I − 1 − σ

1 + σ
wiw

T
i

⎞
⎠

× �−∇gmi (x∗)Tdx − dλmi

 
= Ai(−∇gmi (x∗)Tdx − dλmi ) = −∇gmi (x∗)Tdx (31)

where

Ai = 1

2

⎛
⎝ 1 wT

i

wi
2

1 + σ
I − 1 − σ

1 + σ
wiw

T
i

⎞
⎠

and wi = (−ḡi (x∗))/(
��ḡi(x∗)

��). Now, we need to prove that
dx ∈ TC(x∗) and

−∇gi
0(x∗)Tdx � ḡi(x∗)T∇ ḡi(x∗)Tdx��ḡi(x∗)

�� . (32)

From −gi
0(x∗) = ��ḡi(x∗)

��, we know

λ∗
mi

=
�−σgi

0(x∗)
+σ ḡi(x∗)

	
= −σgi

0(x∗)
�

1
−wi

	

where �wi� = 1 and wi = (ḡi(x∗))/(gi
0(x∗)) =

(−ḡi (x∗))/(
��ḡi(x∗)

��) for i ∈ B∗. Hence, we achieve

λ∗
mi

Ai =
�

1 − �wi�2, wi
T − 2

1 + σ
wi

T + 1 − σ

1 + σ
wi

T�wi�2

	
= (0, 0). (33)

Combining (31) and (33) yields#
λ∗

mi
,−∇gmi (x∗)Tdx

$ = 0

which means that dx ∈ C(x∗). Then, it follows from (31) that:
Ai(−∇gmi (x∗)Tdx − dλmi )

= −∇gmi (x∗)Tdx

⇔ (Ai − I )(−∇gmi (x∗)T)dx = Ai dλmi

⇔ (1,−wi
T)

⎛
⎜⎝ −1

2

1

2
wi

T

1

2
wi

−σ

1 + σ
I − 1

2

1 − σ

1 + σ
wiwi

T

⎞
⎟⎠

×
�−∇gi

0(x∗)Tdx
−∇ ḡi(x∗)dx

	

= (1,−wi
T)

⎛
⎜⎝

1

2

1

2
wi

T

1

2
wi

1

1 + σ
I − 1

2

1 − σ

1 + σ
wiwi

T

⎞
⎟⎠�

dλi
0

dλ̄i

	
.

(34)

In summary, we deduce that�
−1,

1

2
wi

T + σ

1 + σ
wi

T + 1

2

1 − σ

1 + σ
wi

T

	

×
�−∇gi

0(x∗)Tdx
−∇ ḡi(x∗)Tdx

	
= 0

which is equivalent to

(−1, wi
T)

�−∇gi
0(x∗)Tdx

−∇ ḡi(x∗)Tdx

	
= 0.

This indicates that

−∇gi
0(x∗)Tdx = ḡi(x∗)T∇ ḡi(x∗)Tdx��ḡi(x∗)

�� (35)

and hence, (32) holds.
Case II: Let i ∈ Z∗. From the second equation of (29),

we have

��
Kmi

(0 − λmi ; −∇gmi (x∗)Tdx − dλmi ) = −∇gmi (x∗)Tdx .

Hence, −∇gmi (x∗)Tdx = 0.

C(x∗) =
%

d
��∇h(x∗)Td = 0,−∇gmi (x∗)Td = 0, i ∈ Z∗

−∇gmi (x∗)Td ∈ TK(−gmi (x∗)),
#
λmi ,−∇gmi (x∗)Td

$ = 0, i ∈ B∗

0
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Case III: Let i ∈ I ∗. Again, from the second equation of
(29), we have

��Kmi
(−gmi (x∗),−∇gmi (x∗)Tdx − dλmi )

= −∇gmi (x∗)Tdx − dλmi

= −∇gmi (x∗)Tdx

which says dλmi = 0.
From all the above, we conclude that dx ∈ C(x∗) implies

%
∇gmi (x∗)Tdx = 0, i ∈ Z∗

gi
0(x∗)∇gi

0(x∗)Tdx = ḡi(x∗)T∇ ḡi(x∗)Tdx, i ∈ B∗.

Applying (28) and (29), we have that

Jx L(x∗, μ∗, λ∗)dx + ∇h(x∗)dμ + ∇g(x∗)dλ = 0 (36)

∇h(x∗)Tdx = 0 (37)

−∇g(x∗)Tdx − ��K(−g(x∗) − λ∗;−∇g(x∗)Tdx − dλ)=0.

(38)

Using (36) and (37) gives

0 = #
dx, Jx L(x∗, μ∗, λ∗)dx + ∇h(x∗)dμ + ∇g(x∗)dλ

$
= #

dx, Jx L(x∗, μ∗, λ∗)dx
$ − -

i∈B∗

#−∇gmi (x∗)dx, dλmi

$
.

Thus, for i ∈ B∗

1
−∇gmi (x∗)Tdx, dλmi

2
= −∇gi

0(x∗)dxdλi
0 + #−∇ ḡi(x∗)dx, dλ̄i

$
= ∇gi

0(x∗)Tdx · ḡi(x∗)��ḡi(x∗)
��dλ̄i − #∇ ḡi(x∗)dx, dλ̄i

$

= ḡi(x∗)T∇ ḡi(x∗)dx��ḡi(x∗)
��2 ḡi(x∗)Tdλ̄i − #∇ ḡi (x∗)dx, dλ̄i

$

=
3
(−∇ ḡi(x∗)Tdx)

T

4
I − ḡi(x∗)ḡi(x∗)T��ḡi (x∗)

��2

5
, dλ̄i

6
. (39)

On the other hand, from (34), we have (40), as shown at the
bottom of the page. From (35), we can deduce that

1

2
wi

�
−∇gi

0(x∗)Tdx − wi
T∇ ḡi(x∗)Tdx · 1 − σ

1 + σ

	

+ σ

1 + σ
∇ ḡi(x∗)Tdx

= 1

2
wi(−∇gi

0(x∗)Tdx − 1 − σ

1 + σ
wi

T∇ ḡi(x∗)Tdx)

+ σ

1 + σ
∇ ḡi(x∗)Tdx

= 1

2
wi(−∇gi

0(x∗)Tdx + 1 − σ

1 + σ
∇gi

0(x∗)Tdx)

+ σ

1 + σ
∇ ḡi(x∗)Tdx

= σ

1 + σ

�
wi (−∇gi

0(x∗)T)dx + ∇ ḡi(x∗)Tdx
�

(41)

and
1

2
wi

�
dλi

0 − 1 − σ

1 + σ
wi

Tdλ̄i

	
+ 1

1 + σ
dλ̄i

= 1

2
wi

�
dλi

0 + 1 − σ

1 + σ
dλi

0

	
+ 1

1 + σ
dλ̄i

= 1

1 + σ
wi dλi

0 + 1

1 + σ
dλ̄i

= 1

1 + σ
(wi dλi

0 + dλ̄i). (42)

Therefore, applying (40)–(42) implies that
1

1 + σ
(wi dλi

0 + dλ̄i)

= σ

1 + σ
(wi(−∇gi

0(x∗)T)dx + ∇ ḡi(x∗)Tdx)

which means that

wi dλi
0 + dλ̄i = −σ(wi∇gi

0(x∗)Tdx − ∇ ḡi(x∗)Tdx). (43)

Note that

wi dλi
0 + dλ̄i =(I − wiwi

T)dλ̄i =
�

I − ḡi(x∗)ḡi(x∗)T��ḡi(x∗)
��2

�
dλ̄i .

(44)

Then, it follows from (39), (43), and (44) that:#−∇gmi (x∗)dx, dλmi

$
=

3
−∇ ḡi(x∗)Tdx,

�
I − ḡi(x∗)ḡi(x∗)T��ḡi (x∗)

��2

�
dλ̄i

6

= σ
�1
−∇gi(x∗)Tdx, wi (−∇gi

0(x∗)T)dx
2
− ��∇ ḡi(x∗)Tdx

��2
�

=
-
i∈B∗

λi
0

−gi
0(x∗)

����∇gi
0(x∗)Tdx

���2 − ��∇ ḡi(x∗)Tdx
��2

	

= δ∗�λ��TK2(−g(x∗); −∇g(x∗)Tdx)
 
.

⎛
⎜⎜⎝

1

2
∇gi

0(x∗)Tdx + 1

2

ḡi(x∗)T��ḡi(x∗)
�� J ḡi(x∗)dx

1

2
wi

�
−∇gi

0(x∗)Tdx − wi
T∇ ḡi(x∗)Tdx · 1−σ

1+σ

	
− σ

1 + σ
(−∇ ḡi(x∗)T)dx

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1

2
dλi

0 + 1

2
wi

Tdλ̄i

1

2
wi (dλi

0 − 1 − σ

1 + σ
wi

Tdλ̄i)+ 1

1 + σ
dλ̄i

⎞
⎟⎟⎠
(40)
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Fig. 2. Convergence of x(t) to the SOCCVI solution in Example 1 using
five random initial points, where ρ = 103.

Fig. 3. Convergence of x(t) to the SOCCVI solution in Example 2 using
five random initial points, where ρ = 103.

This together with (30) yields#
Jx L(x∗, μ∗, λ∗)dx, dx

$ − δ∗

× �
λ
��TK2(−g(x∗); −∇g(x∗)Tdx)

 = 0.

Now, using the second-order sufficient condition (Condi-
tion II), we reach dx = 0. Plugging this into (36) leads to

∇h(x∗)dμ + ∇g(x∗)dλ = 0.

Applying (38) and Condition IV guarantees dμ = 0 and dλ =
0. Thus, M is nonsingular, and the proof is complete.

V. NUMERICAL EXPERIMENTS

We illustrate the efficiency of the smoothed NR neural
network to solve some illustrative SOCCVI problems. We also
present a thorough numerical comparison of (20) with other
neural networks in the SOCCVI literature.

Fig. 4. Convergence of x(t) to the SOCCVI solution in Example 3 using
five random initial points, where ρ = 103.

Fig. 5. Convergence of x(t) to the SOCCVI solution in Example 4 using
five random initial points, where ρ = 103.

A. Test Problems and Simulations

We consider six standard test problems for SOCCVI (1).
In our simulations, the solver adopted is ode23 s, and the
stopping criterion is set at �∇�(z(t)� ≤ 1×10−6. We simulate
the neural network (20) for each of the following examples
using five random initial points z0. The trajectories of (20)
for the above-mentioned problems are shown in Figs. 2–7.
Observe that all the trajectories were successfully able to
converge to the SOCCVI solution, which we shall denote
by x∗.

Example 1: [33, Example 4.1] Let F(x) be as shown at
the bottom of the next page. Here, x∗ = (0.3820, 0.1148,
−0.3644, 0.0000, 0.0000, 0.0000, 0.5000,−0.2500) is the
SOCCVI solution.

Example 2: [35, Example 5.1] Let7
1

2
Dx, y-x

8
≥ 0 ∀y ∈ C

where

C = {x ∈ IRn | Ax − a = 0, Bx-b � 0}.
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Fig. 6. Convergence of x(t) to the SOCCVI solution in Example 5 using
five random initial points, where ρ = 103.

A ∈ IRl×n , B ∈ IRm×n , D ∈ IRn×n is symmetric, d ∈ IRn , and
a ∈ IRl and b ∈ IRm , with l + m ≤ n.

As in [35, Example 5.1], we let

D = (Di j )n×n, where Di j =

⎧⎪⎨
⎪⎩

2, i = j

1, |i − j | = 1

0, otherwise.

A =
9

Il×l 0l×(n−l)

:
l×n

, B =
9
0m×(n−m) Im×m

:
m×n

, a =
0l×1, and b = (em1 , . . . , em p ), where emi = (1, 0, . . . , 0)T ∈
IRmi . We set l = m = 3 and n = 6 for the simulations, and
the SOCCVI has x∗ = (0, 0, 0, 0, 0, 0) as its solution.

Example 3: [33, Example 5.3] Let

F(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3exp(x1x3) + 6(x1 + x2)

6(x1 + x2) + 2(2x2 − x3)�
1 + (2x2 − x3)2

x1exp(x1x3) − 2x2 − x3�
1 + (2x2 − x3)2

x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

C = {x ∈ R
5 | h(x) = 0,−g(x) ∈ K3 × K2}

Fig. 7. Convergence of x(t) to the SOCCVI solution in Example 6 using
five random initial points, where ρ = 103.

with

h(x) = −62x3
1 + 58x2 + 167x3

3 − 29x3 − x4 − 3x5 + 11

g(x) =

⎛
⎜⎜⎜⎜⎝

−3x3
1 − 2x2 + x3 − 5x3

3
5x3

1 − 4x2 + 2x3 − 10x3
3

−x3

−x4

−3x5

⎞
⎟⎟⎟⎟⎠.

Here, x∗ = (0.6287, 0.0039,−0.2717, 0.1761, 0.0587).
Example 4: Let

F(x) = 

2x1 − 4, ex2 − 1, 3x3 − 4,− sin(x4), x5

�T

and

C = �
x ∈ IR5 | − g(x) = x ∈ K5

�
.

Here, x∗ = �
2, 0, 1.3333, 0, 0

 
.

Example 5: [33, Example 5.5] Consider the VI

F(x) =

⎛
⎜⎜⎝

4x1 − sin x1 cos x2+1
− cos x1 sin x2 + 6x2 + 9

5 x3 + 2
9
5 x2 + 8x3+3

2x4 + 1

⎞
⎟⎟⎠

and

C = �
x ∈ IR4 | h(x) = 0,−g(x) ∈ K2

�

F(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2x1 + x2 + 1
x1 + 6x2 − x3 − 2

−x2 + 3x3 − 6

5
x4 + 3

−6

5
x3 + 2x4 + 1

2
sin x4 cos x5 sin x6 + 6

1

2
cos x4 sin x5 sin x6 + 2x5 − 5

2
−1

2
cos x4 cos x5 cos x6 + 2x6 + 1

4
cos x6 sin x7 cos x8 + 1

1

4
sin x6 cos x7 cos x8 + 4x7 − 2

−1

4
sin x6 sin x7 sin x8 + 2x8 + 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C = {x ∈ IR4 | − g(x) = x ∈ K3 × K3 × K2}.
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with

h(x) =
�

x2
1 − 1

10
x2x3 + x3

x2
3 + x4

�
and g(x) =

�−x1

−x2

	
.

Here, x∗ = (0.2391,−0.2391,−0.0558,−0.0031).
Example 6: Consider the CSOCP [25]

min exp(x1 − x3) + 3(2x1 − x2)
4 +

�
1 + (3x2 + 5x3)2

s.t. − g(x) =

⎛
⎜⎜⎜⎜⎝

4x1 + 6x2 + 3x3−1
−x1 + 7x2 − 5x3 + 2

x1

x2

x3

⎞
⎟⎟⎟⎟⎠ ∈ K2 × K3.

For this CSOCP, x∗ = (0.2324,−0.07309, 0.2206) is the
approximate solution. This problem can be recast as an SOC-
CVI problem, as discussed in Section I.

Next, we consider a practical example.
Example 7: We consider the grasping-force optimization

problem for multifingered robotic hands [27], [41], which
involves determining the minimum force that each finger
must exert on an object so as to maintain the finger’s grasp.
In particular, we consider the problem in [41] involving a
three-fingered robotic hand with fingers positioned at (0, 1, 0),
(1, 0.5, 0), and (0,−1, 0). The optimization problem is given
by

min
1

2
yT y

s.t. Gy = − fext

�
y2

i1 + y2
i2 ≤ μi yi3, (i = 1, . . . , m)

where y = (y11, y12, y13, . . . , ym3) ∈ IR3m , G ∈ IR6×3m is
the grasping transformation matrix, fext is the (time-varying)
external wrench, and μi is the friction coefficient at finger i .
As in [41], we let μi = μ = 0.6 for all i

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 − 1 1 0 0
0 0 − 1 0 − 1 0 0 0 1

−1 0 0 − 1 0 0 0 − 1 0
−1 0 0 − 0.5 0 0 0 1 0

0 0 0 1 0 0 0 0 0
0 − 1 0 0 − 1 0.5 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and fext = (0, fc sin θ(t),−Mg + fc cos θ(t), 0, 0, 0)T, where
g = 9.8 m/s2, M is the mass of the object (assumed to be
0.1 kg), fc = Mv2/r , and θ(t) = vt/r . The hand moves
along a circular path of radius r = 0.5 m and constant velocity
v = 0.4π m/s.

In order to use our neural network, we recast the above
problem as an SOCCVI. First, we let (xi1, xi2, xi3) =
(μ fi3, fi1, fi2). By this transformation, it can be shown that
the problem corresponds to the SOCCVI with F , g, and h
given as follows:

F(x) = diag(1/μ2, 1, 1, 1/μ2, 1, 1, 1/μ2, 1, 1) x

−g(x) = x ∈ K3 × K3 × K3

h(x) = Ḡx + fext

Fig. 8. Time-varying optimal grasping force for the three-fingered robotic
hand.

where

Ḡ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 − 1/μ 0 0 0 1 0
−1/μ 0 0 0 0 − 1 1/μ 0 0

0 −1 0 0 − 1 0 0 0 − 1
0 −1 0 0 − 0.5 0 0 0 − 1
0 0 0 0 1 0 0 0 0
0 0 − 1 0.5/μ 0 − 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We note that external wrench fext applied varies over time.
In Fig. 8, we show the optimal force required as time varies
from 0 to 1 s.

B. Comparisons With Some Neural Networks

We now make some comparisons between the four existing
neural networks in the SOCCVI literature and our neural
network given by (20). Two neural networks for SOCCVI were
proposed in [33]. The first of which used the smoothed FB
function φε

FB
given by (11), where ε is a smoothing parameter

that ultimately decreases to zero. The other neural network
in [33] is based on a projection formulation of the SOCCVI
after an equivalent transformation of the KKT conditions.
Recently, two more neural networks are proposed in [34] based
on the discrete generalizations of the FB and NR functions
given by (12) and (13), respectively. These two neural net-
works will be denoted by “DFB-NN” and “DNR-NN.”

First, we summarize here our findings according to several
experiments on the performance of the four aforementioned
neural networks that were already studied in [33] and [34].
Among all these four neural networks, we found from our
experiments that the smoothed FB-neural network may be
considered as the one with the best numerical performance in
the sense that it is more capable of solving SOCCVI problems
compared with the other three. We have also verified through
our numerical experiments that this neural network is also
less sensitive to changes in the initial condition. Meanwhile,
the projection-based neural network also has good numerical
properties. Whenever both smoothed FB and projection-based
neural networks converge to the SOCCVI solution, our numer-
ical simulations reveal that a faster convergence time is usually
obtained for the latter neural network. However, the projection-
based neural network more often cannot solve some problems
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TABLE I

SUMMARY OF SUCCESSFUL AND UNSUCCESSFUL SIMULATION
RESULTS FOR THE FIVE NEURAL NETWORKS

Fig. 9. Comparison of decay rates of �x(t)−x∗� for the five neural networks
for Example 1.

compared with the smoothed FB-neural network. Finally,
the other two neural networks DFB-NN and DNR-NN are very
sensitive to initial conditions.

Now, we compare our neural network with the four neural
networks mentioned earlier. We have found that, in general,
our proposed smoothed NR neural network (20) has better
stability and convergence behavior. We shall illustrate this
using the test problems given in Section V-A. In Table I,
we summarize the results of simulating our neural network
and the aforementioned four neural networks in the literature.
The mark “✓” indicates that the neural network can solve
the SOCCVI, while “✗” indicates otherwise. To compare the
rates of convergence of the neural networks, we simulate
the trajectories z(t) = (x(t), μ(t), λ(t)) and evaluate the
error term �x(t) − x∗�, where x∗ is the SOCCVI solution
(see Figs. 9–14). We summarize our findings as follows.

1) From Table I, observe that only our proposed neural
network and the smoothed FB neural network were able
to solve all the SOCCVI problems. The projection-based
neural network was able to solve half of the problems,
while the other two discrete-based neural networks have
the worst success rate.

2) Projection-based neural network has a very fast conver-
gence rate whenever it approaches the SOCCVI solu-
tion, as can be seen in Example 1 and Example 6
(see Figs. 9 and 14, respectively). However, its trajec-
tories oscillate for some examples (namely, Examples 3
and 5) and, therefore, fails to converge to the SOCCVI
solution.

3) Despite the fast convergence rate of the projection-based
neural network, our smoothed NR neural network can
still outperform this projection network, as shown
in Fig. 10. Note as well that while DFB-NN and

Fig. 10. Comparison of decay rates of �x(t)−x∗� for the five neural networks
for Example 2.

Fig. 11. Comparison of decay rates of �x(t)−x∗� for the five neural networks
for Example 3.

DNR-NN can both solve Example 2, the convergence
is extremely slow.

4) The error plots shown in Figs. 9–14 reveal that the
smoothed NR and smoothed FB neural networks have
almost the same convergence rates. Both these neural
networks are insensitive to changes in the initial condi-
tion. Hence, this suggests that these two neural networks
are more applicable to be used in designing neural
networks for SOCCVI.

5) Our numerical experiments suggest that the smoothed
NR neural network that we proposed is less sensitive to
initial conditions compared with smoothed FB network.
For instance, from Example 1, it can be easily verified
that the latter neural network cannot converge when the
initial condition is z0 = (0, . . . , 0)T or z0 = (1, . . . , 1)T.

From the above-mentioned observations, we conclude that
our proposed neural network and the smoothed FB neural
network have the best performance in solving the SOC-
CVI problems. However, as noted earlier, the smoothed FB
neural network is more sensitive to initial conditions, that
is, we may obtain divergence for some initial conditions for
smoothed FB network more often than we may encounter in
our smoothed NR neural network. In addition, we note that
another advantage of our neural network over the smoothed
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Fig. 12. Comparison of decay rates of �x(t)−x∗� for the five neural networks
for Example 4.

Fig. 13. Comparison of decay rates of �x(t)−x∗� for the five neural networks
for Example 5.

Fig. 14. Comparison of decay rates of �x(t)−x∗� for the five neural networks
for Example 6.

FB neural network is that the latter costs more expensive
numerical computations. This is primarily due to the expen-
sive calculations involve in computing derivatives for the
smoothed FB function given by (11). To see this, recall
from [33, Lemma 3.1] that for any ε 
= 0

∇εφ
ε
FB

(a, b) = eTL−1
z Lεe, ∇aφ

ε
FB

(a, b) = L−1
z La − I

∇bφ
ε
FB

(a, b) = L−1
z Lb − I

where z = (a2 + b2 + ε2 e)1/2 and La =
.

a1 aT
2

a2 a1 In−1

/
for a = (a1, a2)

T ∈ IR × IRn−1. Notice that all the above-
mentioned formulas require the calculation of inverse matrices.
It can also be verified that there are more calculations required
when implementing the smoothed-FB neural network. Finally,
we say a few words regarding the complexities of the above-
mentioned five neural networks. It is easy to see that the
architecture of the smoothed-FB neural network is similar to
our neural network (see [33]), but our neural network has
better convergence properties. On the other hand, DFB-NN
and DNR-NN have slightly lower complexity (see [34]),
while the projection-based network has the least complexity,
but, as mentioned earlier, these neural models have several
shortcomings.

VI. CONCLUSION

In this article, we target the SOCCVI by using the neural
network based on the smoothing metric projector. Unlike
previous studies on neural networks for SOCCVI, we herein
provide second-order sufficient conditions for the invertibility
of the Jacobian of the smoothed KKT system constructed
via the smoothed NR function under constraint degeneracy.
Some numerical simulations are conducted, which show the
efficiency of the smoothed NR neural network. We also discov-
ered that our neural network is more preferable to be employed
in solving SOCCVI problems compared with other neural
models in the literature. In particular, our neural network has
an edge in terms of success rate, average convergence time,
and sensitivity to initial conditions.
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