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1. Introduction

A nonlinear complementarity problem (NCP) consists of nonlinear inequalities with nonnegativity and orthogonality
conditions on multiple variables and given multivariate functions. Such problems arise in constrained optimization and
equilibrium problems [1]. Moreover, applications of NCPs in operations research, engineering, and economics motivated
significant research efforts in the past decades [1-3], which resulted in various numerical techniques including the
merit function approach [4-6], nonsmooth Newton method [7-9], and regularization approach [10,11]. We refer the
interested reader to the monograph [1] and the paper [12] for a survey and thorough discussion of solution methods
for complementarity problems.

Smoothing methods belong to another class of solution methods that have been extensively used in solving comple-
mentarity problems [10,13-17]. A natural smoothing technique for the NCP is to construct a differentiable approximation
of

(s, t) :=minfs, t} =s — (s — t)4 (1.1)

using a smoothing function for the plus function. Meanwhile, Haddou and Maheux [18] recently introduced a novel
smoothing approach to handle NCPs. In their approach, they utilized smooth perturbations of ¢, that do not necessarily
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correspond to smoothing functions for ¢,,. These perturbations can be viewed as smooth approximations of the level
curve ¢, (s, t) = 0, which are then used to obtain approximate solutions of the NCP. Unfortunately, there have been no
further studies on algorithmic procedure for NCPs following this smoothing framework. Moreover, the choice of smooth
perturbations as well as a procedure for controlling the perturbation parameter are some numerical issues that were left
for future studies in [18].

Meanwhile, neural network (NN) approaches for complementarity problems have also been explored in [19-21] mainly
because it is desirable to have a real-time solution of the NCP, which may not be attainable with the usual approaches
mentioned above. Neural networks are hardware-implementable, i.e. via integrated circuits, and therefore exhibit real-
time processing. Hopfield and Tank originally introduced neural networks for optimization [22,23], and since then have
been used in solving linear and nonlinear programming problems and variational inequalities [24-30]. Notice, however,
that the NCP is not an optimization problem. Nevertheless, the NCP can be reformulated as a smooth minimization
problem by constructing a merit function usually through the use of NCP-functions [4-6,19-21]. A nonnegative merit
function usually serves as an energy function, which is then used to formulate a steepest-descent dynamical system
whose equilibrium solutions correspond to NCP solutions under some suitable conditions.

A neural network based on the Fischer-Burmeister (FB) function was designed to handle Pp-NCPs in [21]. In [20], these
results were extended to the generalized Fischer-Burmeister (GFB) function, an NCP function that involves a parameter
p € (1, 0o). It was shown that for the latter NN, better numerical performance of the network can be achieved by choosing
a larger value of p. These neural networks have good stability and convergence properties and are not very sensitive to
initial conditions. Aside from FB and GFB neural networks, three classes of NNs based on the discrete generalization of
¢\ given in (1.1) were recently formulated in [19]. This neural network has relatively better convergence speed than FB
and GFB neural networks, but its stability requires stricter assumptions and the NN is usually more sensitive to initial
conditions as compared to FB and GFB networks.

In this paper, we build a new class of neural networks based on the smoothing method for NCP introduced by Haddou
and Maheux [18] using some family .# of smoothing functions. We introduce two subclasses of .# and propose a simple
method to generate functions from these subclasses. Interestingly, the aforementioned issues on how to choose the
smooth perturbations of ¢, and how to control the decrease of the smoothing parameter can be best addressed by
considering these two subclasses. Sufficient conditions to guarantee stability of the neural network are provided and are
illustrated through several numerical experiments. Finally, we compare the present neural networks with the well-known
FB and GFB neural networks in solving Py- and non-Py-NCPs.

This paper is organized as follows: In Section 2, we recall the smoothing method proposed in [18] and introduce the
family .#. In Section 3, we discuss a simple idea on how to generate smoothing functions. We also prove a characterization
result for the two subfamilies of .# introduced. In Section 4, two neural networks for NCPs are presented. We provide
several sufficient conditions for Lyapunov and exponential stability of the neural networks. Several numerical simulations
are presented in Section 5 to understand how to choose a smoothing function for the NCP. A comparative analysis with
FB and GFB neural networks is also shown. Conclusions and some recommendations for future studies are presented in
Section 6.

The notations used for this study are as follows. R" denotes the n-dimensional Euclidean space endowed with the usual
inner product, and R™*" denotes the space of m x n real matrices. We let R, and R, denote the nonnegative and positive
orthant of R", respectively. MT denotes the transpose of a matrix M. M;; and M, will be used to denote the (i, j)-entry of
M and jth column of M, respectively. For M € R™" and A C {1, ..., n}, we denote by M, the principal submatrix of M
indexed by A (i.e. the submatrix of M corresponding to rows and columns indexed by A). A® denotes the complement
of A. For any differentiable function f : R? — R, V,f(s, t) and V,f(s, t) means the partial derivative of f w.r.t. s and t,
respectively. Given a differentiable mapping F = (Fy, ..., Fn)' : R" = R™, VF(x) = [VFi(X) --- VFu(x)] € R™™ denotes
the transposed Jacobian of F at x, where VF;(x) denotes the gradient of F; at x. Given a family of real-valued functions on
R": {¢r : r > 0}, we denote by ¢, the pointwise limit lim,\ o ¢r, whenever it exists.

2. Smoothing approach for NCP

In this section, we present the smoothing approach for NCP proposed by Haddou and Maheux [18] and introduce two
important classes of smoothing functions. We also recall some concepts related to nonlinear mappings.

Let F : R" — R" be given. The nonlinear complementarity problem, which we denote by NCP(F), is to find a point
x € R" such that

x>0, F(x)>0 and (x, F(x)) = 0. (2.1)

The set of all solutions of NCP(F) is denoted by SOL(F), which we assume to be nonempty. We can also show the
equivalence of NCP(F) and the equation x = Px(x — F(x)), where K = R, and P denotes the projection onto K. In light
of this equivalence, we see that x solves (2.1) if and only if @, (x, F(x)) = 0 where @ : R" x R" — R" is a nonsmooth
mapping given by
d)NR (Xl B J’l)
Py (x,¥) = :
Pyr(Xns Yn)
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In this paper, we will consider nonlinear monotone and Py-functions. We recall some basic types of nonlinear
mappings.

Definition 2.1. Let F = (Fy, ..., F,)T : R* — R". Then, the mapping F is said to be

(i) monotone if (x —y, F(x) — F(y)) > 0 for all x, y € R".

(i) strictly monotone if (x — y, F(x) — F(y)) > 0 for all x, y € R" and x # y.

(iii) strongly monotone with modulus & > 0 if (x — y, F(x) — F(y)) > u|lx — y||? for all x, y € R™.

(iv) a Po-function if Ilnax(xi — ¥i)(Fi(x) — Fi(y)) > 0 for all x,y € R" and x # y.
e

(v) a P-function if 1m;1x()q — ¥i)(Fi(x) — Fi(y)) > O for all x,y € R" and x # y.
<i<n

(vi) a uniform P-function with modulus « > 0 if ]max(xi — i) (Fi(x) — F(y)) > k|lx — y||? for all x, y € R".

<i<n

A matrix is called a Py-matrix (resp. P-matrix) if all its principals minors are nonnegative (resp. positive). Note that F is
a Py-function if and only if VF(x) is a Po-matrix for all x € R". If VF(x) is a P-matrix for all x € R", then F is a P-function.
However, the converse is not necessarily true.

We now recall the smoothing approach described in [18]. First, we consider a continuously differentiable strictly
increasing function 6 such that

lim 6(t) = —o0, 6(0)=0 and lim 6(t)=1 (2.2)

t——00 t—+00

We also impose a condition that 6(t) should approach 1 fast enough but with some uniformity for large values of t. This
condition is precisely defined as follows.

Definition 2.2. Leta € (0, 1) and suppose 6(t) is a strictly increasing C! function such that #(0) = 0 and lim,_, o, 8(t) = 1.
We say that 6 satisfies condition (H,) if there exists t, > 0 such that

1 1
—+ —0(at) <6(t) Vt=>t,.
5 T o) =6(t) V=i
We say that 0 belongs to class .# if it satisfies condition (H,) for some a € (0, 1).

For instance, the following functions were considered in [18]:

L ift>0
0“)(t)={r‘+1 ;ftZO and 6¥(t)=1—e¢"". (2.3)

60 satisfies (H,) for all a € (0, 1/2) while 6 satisfies (H,) for all a € (0, 1).
For each r > 0, we define the function ¢, : R> — R by

br(s, t) = 1o~ (9 (;) +6 (;) - 1) . (2.4)

Note that strict monotonicity of § was imposed to guarantee its invertibility as required in (2.4). We summarize here
some important facts proved in [18].

Lemma 2.1. Let 6 be a strictly increasing C' function satisfying conditions (2.2). Then, the following holds.
(i) ¢:(s,t) < min{s, t} foralls,t e Randr > 0.
(ii) If 6 € Z, then

11\1‘13 ¢r(s,t) = 0 <= min{s, t} =0 Vs, t € R.

(iii) If 6 satisfies condition (H,) for all a € (0, 1), then

lim ¢,(s, t) = min{s, t} Vs, t € Ry
r™\0

Let G, : R" x R" — R" be given by
or(x1,¥1)
Gi(x.y) = : . (2.5)
&r(Xn, Yn)
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By Lemma 2.1(iii), G, is a smoothing function for &, over R} x R if 6 satisfies (H,) for all a € (0, 1). In contrast,
we may not obtain a smoothing function for @, if there exists a € (0, 1) for which (H,) does not hold. For instance,
when 6 = 60, one can verify that lim\ o G/ (X, y) < @ (x,y) (see also [18]). In view of these contrasting properties, we
introduce two subclasses of .#.

Definition 2.3. Let 6 € .. We say that 6 belongs to class .# if it satisfies condition (H,) for all a € (0, 1). Otherwise, we
say that 6 belongs to %,.

In Section 3, we will prove that the result of Lemma 2.1(iii) holds only for functions in .#;. Despite not obtaining a
smoothing function for @, when 6 € %,, Lemma 2.1(ii) is a very useful result to apply Haddou and Maheux’s smoothing
strategy. To see this, define the functions

D, (x) := Gp(x, F(x)) and Do(x) = li\r‘r(l) D (x),

provided that the limit exists. Then by Lemma 2.1(ii), (2.1) is equivalent to solving the system of equations @y(x) = O.
Moreover, it is shown in [18] that whenever F is a Py-function, &, is a P-function for any r > 0 while &g is a Py-function
whenever it exists. Consequently, one may use Gowda and Tawhid’s theory for Py-equations given in [31] by viewing &,
as a continuous perturbation of @,. Indeed, Lemma 2.3 which was given in [18] is an easy consequence of Theorem 4
of [31]. Before stating the convergence result, we make some assumptions.

Assumption 1. SOL(F) is nonempty and bounded, 6 € .# and @, exists.
Some conditions which will guarantee the existence of @q are given in the following result, whose proofs can be found
in [18].

Lemma 2.2. Lets,t > 0. Then,

do(s, t) == li\r‘rtl) ¢r(s, t) exists and ¢o(s, t) < min{s, t}

if any of the following condition holds:
(i) There exists € > 0 such that %q)r(s, t)<O0forallre(0,c¢)
(ii) V = (—=¢' o ¥~ 1) x ¥~ is locally subadditive at 0%; i.e. there exists n > 0 such that for all 0 < o, B, + 8 < 1, we
have
V(e + ) < V(a)+ V(B).
where ¥ :=1—6.

Lemma 2.3. Suppose Assumption 1 holds and that F is a Py-function.

(i) There exists an # > 0 such that for any r € (0, %), ®.(x) = 0 has a unique solution x™ and the mapping r +— x) is
continuous on (0, T).

(i) lim inf [x —x*|| =0.
r\0 x*€SOL(F)

Lemma 2.3(i) implies the well-posedness of the equation @,(x) = 0, while Lemma 2.3(ii) suggests the following typical
algorithm employed in smoothing techniques, which is the one presented in [18].

Algorithm 1.
Let ¢ > 0,and x° € R" . Set r” = max({1, ,/maxy<i<n [x?Fi(x°)|} and k = 0.
For k=0, 1,... until max;<j<, [XFi(x*)] < ¢, do
1. Solve @ k(x) = G, (x, F(x)) = 0, where G, (-, -) is defined in (2.5), to get a solution xk,

2. Set r**1 = min{0.1rk, (%)%, \/max <i<n [XFFi(x¥)]}.
We remark that if x") solves &,(x) = 0, then x") and F(x") are both in R" | .
3. Designing smoothing functions

In Section 2, we introduced two subclasses of .# based on whether or not condition (H,) is satisfied for all a € (0, 1).
In this section, we discuss some important remarks and results related to condition (H,). Moreover, we present a simple
and intuitive way to generate functions 6 from .#. Under some suitable assumptions, the construction way also provides
information on the classification of 0, i.e. whether 6 belongs to .#; or .%.

4
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We consider first a function 0 satisfying (2.2) restricted to R,. Observe that there is a one-to-one correspondence
between these functions and probability density functions. Indeed, if p(t) := 6'(t), then p(t) > 0 and

e8] t
/'punn:nm 6'(t) dr = lim (8(t) — 6(0)) = 1.
0 t—00

t—00 0

Hence, the function 6 corresponds to a probability density function on R . Conversely, one natural way to generate 6 is
to consider a probability density function p : R, — R, and taking

o(t) =/ p(t) dt
0

for all t € [0, co). This construction way was also mentioned in [32].
Another natural and intuitive way to generate 6 with the desired asymptotic behavior at infinity is to consider a
differential equation with an equilibrium solution at 1. Consider for instance the separable autonomous differential
equation given by
de
E*=fWL 6(0) = 0. (3.1)
t

Throughout the paper, the following are our assumptions on f:

Assumption 2.

(i) f is C! on an open interval containing [0, 1].
(ii) f > 0on [0, 1)and f(1) = 0.

Assumption 2(i) is important in ensuring that the initial-value problem (3.1) has a unique solution. On the other hand,
Assumption 2(ii) is required to obtain an increasing function 6(t) which approaches 1 as t — oo.

Proposition 3.1. Let f be any function satisfying Assumption 2. Then the initial-value problem (3.1) has a unique solution
which is defined for all t > 0 and lim;_, o, 6(t) = 1.

Proof. The existence and uniqueness of solution follows from Assumption 2(i) (see [33]). Let [0, T) be the maximal interval
of existence of the solution 6(t) of (3.1).

Since f(6) > 0 for all 6 € (0, 1), 6(t) is an increasing function. Thus, we may let L = lim,_,, 6(t). Note also that the
constant function 1 is a solution of the differential equation ‘;—f = f(0). Since solution through a point is unique, 6(t) < 1
for all t € [0, T). Consequently, L < 1 and {6(t) : t € [0,T)} C [0, 1]. Hence, O(t) is defined for all t > 0 (see [33]).
Finally, note that from (3.1), we have

o(t) = / Fo(e)) dr.
0

Since 6(t) — L, we conclude that fooof(e(r)) dr is convergent. It follows that
f(L) = lim f(6(t)) = 0.
t—o00
By Assumption 2(ii), we conclude that L = 1, as desired. O

It was mentioned in the preceding section that satisfying condition (H,) is very important to guarantee the applicability
of the smoothing approach. The benefit of constructing 6 using (3.1) is that condition (H,) can be easily deduced if f has
a specific form. We describe this in the following theorem.

Theorem 3.1. Letf be a continuously differentiable function on an open interval containing [0, 1] such that f > 0 on [0, 1].
Suppose that f takes the form f(8) = f(8)(1 — 6)%, where k > 1. If 6(t) denotes the unique solution of (3.1), then 8 € .Z. In
particular,

(i) If k=1, then 6 € 1.

(ii) If k > 1, then 6 € #,. Moreover, condition (H,) is satisfied when a € (0, zk%l) and is not satisfied when a € (zk%l 1).

Before we prove Theorem 3.1, we need the following lemma. This lemma will also be useful later in Theorems 4.3 and
4.4,

Lemma 3.1. Under the hypothesis of Theorem 3.1, we have

1—06(t) 0 ifk=1
m-———=41 1 Va € (0, 1).
t—o0 1 —6(at) akT ifk>1
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Proof. Let a € (0, 1) and define y/(t) := 1 — 6(t). Note that

d do - _

aw) == —fO(E)(1 = 0(£) = —F(O(E) (W (D). (32)
Suppose first that k = 1. Since 6(0) = 0, then v/(0) = 1. Moreover, we have from (3.2) that

t
1 - 8(t) = Y(t) = exp (— / Fore)) dr) .
0

Consequently, we have for any a € (0, 1) that

_ exp (— [, f(0(x)) dr t
1 G(t) _ ( fo h T ) = exp (_/ f(@(l')) d‘L') (33)
1—6(at) exp (_ fo‘"f(g(r)) dt) at

Since f(#) > 0 in [0, 1], there exists m > 0 such that f(6) > m for all 6 € [0, 1]. Continuing from (3.3),
1-—06(t)
1—6(at)

Letting t — oo gives the desired limit for the first case.
Now, suppose that k > 1. From (3.2), we have

< exp (—m(1 —a)t) vVt > 0.

(1—=0(tN'" ™ =) =1+ (k- 1)/ f(6(x)) dr.
0
Note that due to f(1) # 0, we have fooof(e(r)) dt = oc. Then, this leads to

( 1—6(t) )k] 1+ k=1 [ fex)dr  af(6(at))
[ = lim = = lim —=
1 6(at) t=oo 14 (k—1) [ f(O(x)) dr = f(O(t))

where the last equality follows from the fact that f(1) # 0 and 6(t) — 1 by Proposition 3.1. O

lim

t—o00

— 4%

Proof of Theorem 3.1. Fix a € (0, 1) and define hy(t) = % + %G(at) — 6(t) for all ¢ > 0. Differentiating h,, we obtain
4 a ! a
hy(t) = 59 (at) = 0'(t) = Ef(G(at)) —f(o(t)). (3.4)
Since f(1) # 0 and 6(t) — 1, we have from Lemma 3.1 that

fo@) - fewr—ew))k  |o ifk=1
im = lim = =1 &
t—oo f(O(at)) t—oo f(O(at))(1 — O(at))k a1 ifk> 1.

Suppose now that k = 1. By (3.5), we can find t, > 0 such that f(6(t)) < gf(&(at)) for all t > t,. From (3.4), we see that
hy(t) > 0 for all t > t, and therefore h(t) is strictly increasing on (t,, co). But clearly, hq(t) approaches 0 as t — oo. Thus,
hq(t) < O for all t > t,. That is, 6(t) satisfies condition (H,) for all a € (0, 1).

On the other hand, suppose k > 1.If 0 < a < 2,(%1 then

a Tk 1 1
- —akT =a| - —ak1)>0.

Then, by (3.5), we can find t; > 0 such that ff((f(g[)))) < % for all t > t,. As in the preceding case, 6(t) satisfies condition (H,)
k
for all a € (0, zk%l)lfzk%l <a<1,thenagrt — ¢

follows that hy(t) > 0 over (t,, o0). This completes the proof. O

(3.5)

> 0 and so there exists t, > 0 for which ff((f(gt)))) > S forall t > to. It

Remark 3.1. Given a function f satisfying Assumption 2, we may apply Theorem 3.1 provided that there exists k >
such that L := limg_,1 f(9)(1 — 0)~% = 0. In this case, we define f(0) = f(0)(1 — 0)~* for 6 € [0, 1) and define f(1) :=
We then obtain the desired factorization f(6) = f(6)(1 — 6)k.

In general, this factorization is not always achievable. To see this, consider the function

1
L.

1
gt)=1¢3 <1 + sin ;) + t(1 — cost).

It is easy to verify that g is continuously differentiable on R. Moreover, since the first term of g is nonnegative on (0, 1]
while the second term is greater than 0 on (0, 1], then g is strictly positive on (0, 1]. In addition,

i g(t)
m

+tT:0 Vk € [1, 3),
t—0
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and the above limit does not exist for k > 3. Defining f(0) := g(1 — 0), we see that f satisfies Assumption 2. But, there is
no k > 1 such that lim,_, ;- f(8)(1 — 8)~* exists and is nonzero.

The following is an easy consequence of Theorem 3.1 and the above remark.
Corollary 3.1. Iff'(1) < O, then 6 € #;.

Example 3.1. We generate five functions from (3.1), two of which are the ones used in [18] given by Eq. (2.3). It can be
easily verified that V given in Lemma 2.2 is locally subadditive at 0" for each of the functions below.

The parameter k has a significant role in numerical simulations. Notice that (1 — )¢ decreases in value as k increases
when 0 € (0, 1). In view of (3.1) and the form of f given in Theorem 3.1, k controls the rate of growth of the function 6(t).
In Section 5, it is shown that functions with faster growth rate yield faster convergence time for the neural networks.
However, the rate of increase of & should not be very fast so as to avoid ill-conditioning. Hence, the parameter k is useful
when we take into account the conditioning of the problem. That is, a higher value of k may be adapted when the problem
is ill-conditioned.

We now give an example of a function 6 that does not belong to .%.
2 ['sin’t
Example 3.2. Define 6(t) = — 5
b4 T

that 6(0)=0and 0 — 1ast — go. The function h, defined in the proof of Theorem 3.1 oscillates between positive and
negative values of t, and therefore does not satisfy condition (H,) for any a € (0, 1).

dr. Indeed, 6 is a strictly increasing continuously differentiable function such

Remark 3.2. One can observe that class .#; functions can be viewed, in some sense, as the limit case of class 91?2 functions.
First, notice that in Lemma 3.1, the zero limit obtained for class .#; function can be viewed as the limit of a®T as k \ 1,

where aﬁ is the calculated limit for class .%, function. In Theorem 3.1, we see that for 0 € .%,, condition (H,) is satisfied
only for a € Iy = (0,2'7%). Note that I, ~ (0,1) as k \, 1 and that condition (H,) holds for all a € (0, 1) for class .#
functions.

Remark 3.3. We mention some remarks regarding the definition of & over (—oo, 0). In order for G, given by (2.5) to be
smooth over R" x R" for any r > 0, we must use a differentiable extension of 6 for t < 0. In this paper, we let 6(t) = tf(0)
for t < 0 in this paper, similar to the construction of ") in (2.3).

We conclude this section with the following proposition which implies that the limit in Lemma 2.1(iii) is in fact a
characterization of functions in .#;. That is, a smoothing function of ¢, over the positive orthant is obtained if and only
ifo e .

Proposition 3.2. Suppose 6 € %, and let a € infS, where
S ={ae€(0,1)] condition (H,) does not hold}.
Let P; = {(s,t) e R%, : as <t < £}. Then, we have

lim ¢, (s, t) < min{s, t} V(s, t) € P;,
™\0
whenever the limit exists.

Proof. We note first that (a, 1) C S. Indeed, the set S is nonempty and a € (0, 1) since 0 € .%,.If a € S, for any u > 0,
O(v) < % + %9(&1}) for some v > u. Since 0 is increasing, we see that condition (H,) also does not hold for any a € (a, 1).

Now, fix (s, t) € Pz and suppose s = min{s, t}. Given any a € (a, 1), then by the above note, there exists a sequence
{rn} such that r, N\ 0 and

0 t 1+19 at
— ) <z+Z01—).
n 2 2 T

Since # and 6~ are increasing and s < t, the above inequality yields

Gr(s,t) =1,07" (9 (i> +0 (i) - 1) <r,07! (29 <i> - 1) <at
Tn Tn Tn

Letting n — oo, we obtain lim,_,» ¢r,(s, t) < at for any a € (a, 1). Since (s, t) € P;, then s > at and by letting a \, a, we
obtain

lim ¢, (s, t) < at < s = minf{s, t}
n—oo

which is the desired result. O

It is interesting to note that as in Remark 3.2, class .#; can again be viewed as the limit case of class .#, when a N\ 0.

More precisely, the limit in Lemma 2.1(iii) holds on U&e(o,l) P; = R?H when 6 € 7.

7



J.H. Alcantara and J.-S. Chen Journal of Computational and Applied Mathematics 407 (2022) 114092
4. Smoothed neural networks

In this section, we present two gradient dynamical systems to solve the NCP (2.1) using the smoothing approach
presented in Section 2. Similar to the approach used in [19,21], the stability analysis of our neural networks relies on the
use of Lyapunov functions. For more details, we refer the reader to [33,34].

4.1. The first neural network

We consider first a neural network which can be used to obtain approximate solutions of NCP(F). From Lemma 2.3,
solutions of (2.1) can be obtained by successively solving for decreasing values of r the equation &,(x) = 0, which is
exactly the motivation of Algorithm 1. Note that solving the aforementioned equation, if a solution exists, is equivalent
to solving the smooth minimization problem

. 1
min ¥, (x) := = ||®.(x)]|%. (4.1)
XeRM 2
This motivates the steepest descent-based neural network
dx
= PVER, X0)=x, (NN1)

where p > 0 is a time-scaling parameter and r > O is a sufficiently small fixed number. Consequently, neural network
(NN1) can be used to deal with Step 1 of Algorithm 1.

Observe that a solution of (4.1) is an equilibrium point of (NN1). However, the converse is not necessarily true. We are
interested on conditions that can be imposed on F so that an equilibrium point of the neural network (NN1) is also an
optimal solution of (4.1), and consequently an approximated solution of (2.1). To this end, we establish first an important
property of V@,.

Theorem 4.1. Let F be a Py-function, r > 0 and suppose that 6'(u) # 0 for all u € R. Then V&, (x) is a nonsingular for any
xeR"andr > 0.

Proof. First, we note that

V(5,0 = —-y(5,0)= (0 (9 (2) +0 (;) _ 1) o (2)
_ 0'(3) )
T+ -1

>0,

where we used the fact that 8’(6~(u)) - (0~ ') (u) = 1. By symmetry, we also have V,¢,(s, t) :== %d)r(s, t) > 0.
Let x € R" and r > 0, and denote by A;(x) and B.(x) the n x n diagonal matrices such that

(Ar(x))ii = Vaor(xi, Fi(x))  and  (By(X))i = Vper(x;, Fi(x)).

Note that A,(x) and B,(x) are invertible since V,¢.(x;, Fi(x)) and V,¢,(x;, Fi(x)) are both strictly positive for all i, as noted
above. Furthermore, we have by Chain Rule that

V&, (x) = Ar(x) + VF(x) - Br(x) = (Dr(x) + VF(x)) - Br(x), (4.3)
where D,(x) = A;(x)B,(x)~!. Since D,(x) is a diagonal matrix,
det(D,(x) + VF(x)) = Z det(D ) det(VF(x)sc) (4.4)
AC{1,...,n}

where D, denotes the principal submatrix of D,(x) (see, for instance, Chapter 2 of [35]). Each term in the above summation
is nonnegative since F is a Py-function and the diagonal entries of D,(x) are positive. In particular, the term corresponding
to o = {1,...,n} is precisely det(D,(x)) > 0. Thus, D.(x) + VF(x) is nonsingular. Since B.(x) is also nonsingular, we
conclude from (4.3) that V&, (x) is nonsingular. 0O

Observe that the hypothesis on 6 of the above theorem holds if it is generated from (3.1) using Assumption 2 and
Remark 3.3. We now state some important consequences of the above result.
Corollary 4.1. Under the hypotheses of Theorem 4.1, the following holds:
(i) Every equilibrium point of (NN1) is an optimal solution of (4.1).
(ii) An isolated equilibrium point of (NN1) is exponentially stable.

8
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(iii) Suppose in addition that Assumption 1 holds. Then there exists I > 0 such that for any r € (0, 1), the neural network
(NN1) has a unique equilibrium point X" which is exponentially stable.

Proof. Suppose that x* is an equilibrium point of (NN1), i.e. V¥,(x*) = 0. Since V¥, (x*) = V&, (x*)D,(x*) and VO, (x*)
is nonsingular by the preceding theorem, then @,(x*) = 0. Hence, x* is an optimal solution of (4.1). This proves part (i).
If x* is an isolated equilibrium point, then it is a strict local minimizer of ¥, by (i) and Theorem 4.1. Consequently, x* is
asymptotically stable (see also [19,34]). Exponential stability follows from noting the nonsingularity of V&, and from the
same arguments used in [19]. This establishes (ii). Finally, part (iii) directly follows from Lemma 2.3, Theorem 4.1, and
part (ii). O

Remark 4.1. Corollary 4.1(i) implies the equivalence of the systems &.(x) = 0 and V¥, (x) = 0. This justifies the use of
the neural network (NN1) as a means to proceed with Step 1 of Algorithm 1 whenever F is a Py-function. Meanwhile, the
exponential stability proved in Corollary 4.1(ii) and (iii) asserts the efficiency of using the neural network (NN1) in solving
the subproblems. Motivated by these, we may consider a sequence of neural network implementations as follows: Starting
with an arbitrary initial point x(0) = x° € R’ | and smoothing parameter r0 as in the initialization of Algorithm 1, we
use the neural network (NN1) with r = r° to obtain an equilibrium point x!. We then reduce the smoothing parameter
0 as in Step 2 of Algorithm 1. Then, we use the neural network (NN1) with r = r! < r® and x(0) = x' to obtain a
better approximated solution of (2.1) . Proceeding in this manner, we obtain a sequence {x*} of approximated solutions
for NCP(F) which converges to an NCP solution by Corollary 4.1(i) and Lemma 2.3(ii). Due to the exponential stability of
the neural network and the tendency of the solutions x* to approach an NCP solution, the latter simulations of the neural
network are expected to converge faster.

We now tackle the existence of equilibrium points of (NN1). When F is a Po-function, this is equivalent to existence of
solutions of &,(x) = 0 for r > 0. Recall that if F is a Po-function, then &, is a P-function by Lemma 2.3. If in addition, &,
is coercive, then it is known that &,(x) = 0 has a unique solution [31], say x*. Meanwhile, the Lyapunov function ¥, for
(NNT1) is also coercive whenever @, is. Invoking the Barbashin-Krasovskii Theorem [34], we conclude that x* is a globally
asymptotically stable equilibrium point of (NN1). This establishes the following lemma.

Lemma 4.1. Suppose that F is a Py-function and @, is coercive for some r > 0. Then, the neural network (NN1) has a unique
equilibrium point which is globally asymptotically stable.

It is therefore worthwhile to determine conditions under which the function @, is coercive.

Remark 4.2. For any r > 0, coerciveness of @, in fact holds if F is a uniform P-function. To see this, the same arguments
as those in [1] show that if {x*}?2, with x| — oo, then there exists an index j such that |xj’.‘| — o0 and |Fj(x¥)] — oo.
Meanwhile, observe from (2.4) that for any sequence {(s*, t*)}*°, € R? such that |s| — oo and [t¥| — oo, we have
|¢r(s*, t4)] — oo. It follows that |¢(x}, F(x"))] — oo. Hence, ®(x) is coercive. Apparently, we can also consider a class
of functions larger than the class of uniform P-functions, which is described in the following definition.

Definition 4.1. The mapping F : R" — R" is called an Ry-function if for any sequence {x"}fi] such that ||x¥|| — oo and

ming <j<p X¢ miny<j<p Fi(x¥)

lim inf >0, liminf >0,
k=00 [1X]| k=00 [IX]
there exists an index j such that x* — oo and F(x*) — oo.
The concept of Ry-function was introduced in [13] as a generalization of an affine function F(x) = Ax + b where A is
an Ro-matrix [35]. It was proved in [13] that a uniform P-function is an Ry-function. Hence, the following result is more
general than the one given in Remark 4.2.

Theorem 4.2. Suppose that F is both a Po-function and an Ro-function. Then for any r > 0, the neural network (NN1) has a
unique equilibrium point which is globally asymptotically stable.

Proof. By Lemma 4.1, it is enough to show that &, is coercive for any r > 0. To this end, let {x"}fj‘;1 be such that

[[Xk]| — oo. If {x¥}2° | and {F;(x*)}?°, are both bounded below for all i = 1, ..., n, then there exists ¢ € R such that ¢ < x¥
and c < F(x*) foralli=1,...,n and k > 1. Consequently,
min<j<n X*
= lim — < liminf ——==—""1
k—oo [[XK[| T k—oo [lxK]|

.. .. inq<jen Fi(xK . . . . . .
and similarly, lim infy_ ms“;;k””l(x) > 0. Since F is an Rg-function, there exists an index j such that |xj’-‘| — oo and

|Fj(x*)] — oo. As in Remark 4.2, we conclude that @, is coercive as desired.

9



J.H. Alcantara and J.-S. Chen Journal of Computational and Applied Mathematics 407 (2022) 114092

Table 1
6 functions generated from (3.1).
f k 0
(1) foy=1 1 Ot)=1—e"
@ fory=1+6 1 0,(t) = tanht
z t
(3)f(O)=1 2 05(t) = 1
_ t? + 4t
(4) f(0)=1 3/2 04(t) = T
(5) F(0) = (1+ 62 3/2 05(t) = —
t2+1

On the other hand, suppose there exists an index i such that {x:.‘},‘jozl is not bounded below, i.e. xi‘ — —o0. However,
due to

ér(Xf, Fi(x)) < min{x{, Fi(x)}

and Lemma 2.1(i), we have ¢r(x§‘, Fi(x*)) — —oo. Therefore, @, is coercive. The case when Fj(x*) — —oo for some i can
be dealt with similarly. O

For monotone complementarity problems, we can actually approximate how far the approximated solution x(" is from
the optimal solution. We recall the following result from [18].

Lemma 4.2. Suppose that & > 65, where 65 is given in Table 1. Let {x'"} be a sequence of solutions of ®,(x) = 0, where
r € (0, 1) for some r > 0. Then, the following holds.

(i) X"Fxy < foralli=1,...,n

(ii) Suppose there exists h : [0, co) — [0, co) such that h(0) = 0, h(t) > 0 when t > 0, and there exists £, n > 0 such that
h:(0,e) — (0, n) is an increasing bijection and

h(lix = yl) = (x =y, F(x) = F(y)).
Then, the NCP(F) has a unique solution x* and there exists ro > 0 such that for all r € (0, rp),
Il = x| < h~'(nr?).
Observe that the above result applies for all functions 6 generated in Table 1 since 8; > 65 for alli € {1,...,5}.

Moreover, this lemma is a useful error estimate when dealing with monotone functions F. In fact, as the next result
claims, it can also be extended to deal with uniform P-functions (in which case, the NCP solution is unique [1]).

Proposition 4.1. Suppose that & > 63, F is a uniform P-function with modulus « > 0, and let x* be the unique solution of
the NCP(F). For any & > 0, the globally asymptotically stable equilibrium point ™) of (NN1) satisfies ||x") — x*|| < & provided

. R . “
that 0 < r < +/ke. In particular, if F is strongly monotone with modulus u > 0, we can take 0 < r < a\/;.

Proof. If F is a uniform P-function with modulus « > 0, then

0 <kl —xI < max(x” — X NF(") — F(x"))
<i=<n

= max X"E(x") — (XF((x*) + xF(x"))
1=i=n i i i
<r
where we have used Lemma 4.2(i) and the fact that x™) and F(x(") both lie on R’ . This establishes the result for the case

when F is a uniform P-function. On the other hand, note that a strongly monotone function with modulus y is a uniform
P-function with modulus w/n. This completes the proof. O

4.2. The second neural network

The first neural network (NN1) allows us to obtain approximate solutions of the NCP (2.1), with error bounds as given
in Proposition 4.1. In practice, we may use (NN1) to proceed with Step 1 of Algorithm 1. A numerical implementation is

10
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also described in Remark 4.1. In this section, we consider a neural network where the smoothing parameter r is considered
as a function of time which decreases to zero. To this end, define the function @ : R" x R — R" x R by

@(w):( Q)r(x)>, a>0

or

where w = (x, 1) € R" x R, and let £2 be the set of all points in R"*! where @ is differentiable. Define ¥ : 2 — R, by

W(w) = %nab(w)n2 =¥ (x)+ %azr%

We consider the neural network

d

dif — —oVU(w), w0)=u’e Q. (NN2)
Applying the Chain Rule, we have

(4.5)

V&, (x) 0
V¥ (w) =Vo(w)P(w), where VO(w)= ( [ ) .

T
2o.(x)] «

As the next proposition claims, neural network (NN2) has exponentially stable equilibrium point if V@u(x*) is
nonsingular, and thus r = r(t) ultimately decreases to zero while x = x(t) converges to a solution of (2.1).

Proposition 4.2. Let w* = (x*,0) € £2 be an isolated equilibrium point of (NN2). Then, w* is stable. Moreover, if V®q(x*)
is nonsingular, w* is exponentially stable and x* € SOL(F).

Proof. Stability of w* follows by using ¥ as a Lyapunov function [33]. On the other hand, it is clear from (4.5) that
V@ (w*) is nonsingular whenever V@q(x*) is. Since V¥ (w*) = Vo (w*)®(w™*) = 0, we know that @(w™*) = 0. It follows
from Lemma 2.1(ii) that x* solves (2.1). The same arguments as those used in Corollary 4.1(ii) can be used to prove that
w* is exponentially stable. O

Theorem 4.3. Let w* = (x*,0) € £2 be an isolated equtllbrlum point of (NN2) with x* in the feasible region of NCP(F).
Suppose 6 is generated from (3.1) with f(6) = f(8)(1 — 0) where k > 1 and f is as described in Theorem 3.1. Suppose further
that @ is continuously differentiable on a neighborhood of w*. Then w* is exponentially stable and x* € SOL(F).

Proof. It is enough to show, by Proposition 4.2, that V@y(x*) is nonsingular. We have from Eqs. (3.1) and (4.2) that for
any s, t > 0,

Va(f)r(sv t) =

Thus, we have

Va(pr(sv t) =

(1=0(2) +(1-6(
AR N I0)
‘(”1—90)) HACEICES)

If s =t, then it is clear that

FOG) .
Feol) -1~

If s < t, then s = at for some a € (0, 1). By Lemma 3.1,

. T —k
11\2% Var(s, t) = ll\r‘%z

—k
—k
lim Vg (s. £) = (1 +aF 1 ( )
'
Similarly, when s > t, there exists a € (0, 1) such that t = as. Applying again Lemma 3.1, we obtain
—k
—k
lim Vaghy (s, £) = (1 tare k ( ) .
™\0

11
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By symmetry, similar formulas can be obtained for Vy¢:(s, t). Note that all of the above limits are positive. By following
the same arguments as in Theorem 4.1, taking the limit in (4.3) as r — 0, and noting the continuous differentiability of
@ around w*, we obtain the desired result. O

Observe that the preceding two results do not have any particular assumption on F. On the other hand, for the case
when k = 1 and s > t, we have lim,\ o Va¢,(s, t) = 0, whence, the matrix B,(x*) in Eq. (4.3) may be singular when
we let r — 0. Consequently, we cannot proceed as in the preceding theorem to prove the nonsingularity of V&g(x*).
Nevertheless, we obtain a similar result when F is a P-function.

Theorem 4.4. Let F be a P-function and let w* = (x*, 0) € £2 be an isolated equilibrium point of (NN2) with x* in the feasible
region of NCP(F). Suppose 6 is generated from (3.1) with f(0) = f(6)(1 — ) where f is as described in Theorem 3.1. Suppose

further that @ is continuously differentiable on a neighborhood of w*. Then, w* is exponentially stable and x* € SOL(F).

Proof. Following the same arguments from the proof of Theorem 4.3, we obtain that for any s, t > 0,

1 ifs<t 0 ifs<t
lm V(s t) = {1 ifs=t and  limVpgy (s, t) = {1 ifs=t (4.6)
™0 . ™0 .

0 ifs>t 1 ifs>t.

We define three index sets that correspond to the three cases described in the above formulas:
L={:x<Fx), L={i:x=Fx}, and L={i : x > F(x")}.

Let A.(x*) and B,(x*) be as defined in the proof of Theorem 4.1. Denote by Ag(x*) and By(x*) the corresponding limits
of A,(x*) and B.(x*) as r decreases to zero, which are both diagonal matrices. Using (4.6), a straightforward calculation
implies that the jth column of Ag(x*) + VF(x*)Bo(x*) is given by

ej ifjel
(Ao(x*) + VF(x*)Bo(x*)); = { 1ej + 3(VF(x")); ifjeh
(VF(x")); ifj s,

where e; is the standard unit vector in R". From the above formula, it is then clear that
det(Ag(x*) + VF(x*)Bo(x*)) = 272! det(D + E), (4.7)
where D = diag(v),

o 1 ifiEI]UIz
"7 lo ifiel

0 lf] el

d E;j=
ne {(VF(X*))ij ifjeLUI.

Using the same formula as (4.4), we have

det(D+E)= »_  det(D,)det(Exc)

AC{1,...,n}

= det(Dj,y, ) det(E,) + Y det(Dy)det(Eac)
A#[UL

= det(E,)+ Y det(Dy)det(Ec). (4.8)
A#L Ul

Since F is a P-function, any principal submatrix of VF(x*) has a strictly positive determinant. Thus, det(E;,) > 0 and
det(Eoc) > 0 for any A C {1,...,n}. Finally, since det(D,) > 0 for any A C {1, ..., n}, then we get from (4.8) that
det(D + E) > 0. Consequently, we have from (4.7) that det(V®y(x*)) > 0, i.e. V&o(x*) is nonsingular. This completes the
proof. O

We now make some comparisons between the artificial neural networks (NN1) and (NN2). First, we note that the
first neural network implemented via the procedure described in Remark 4.1 may be more robust than the second one,
in the sense that convergence to solution is attained in the first neural network despite starting the algorithm with an
initial condition x° far from an NCP solution. We illustrate this phenomenon in the next section (see Example 5.4). The
drawback of the first neural network, however, is on designing a procedure to decrease the values of r when the sequence
of neural networks is implemented. On the other hand, this is not required in the second neural network. The value of
the smoothing parameter r ultimately decreases to zero because of the asymptotic stability of the solutions. Furthermore,
convergence to equilibrium is often faster for the second neural network.

12
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Table 2
Average convergence time of neural network (NN2) for linear complementarity problems.
Problem Dimension o Average convergence time (x1072 s)
(n) 01 0, [ 04 65
LCP1 10 0.75 2.90 2.64 4.42 3.48 2.81
25 0.75 2.96 2.67 483 3.65 2.87
50 0.75 2.92 2.64 5.16 3.72 2.87
75 0.75 3.00 2.90 5.50 4.00 3.00
100 0.75 3.00 2.95 5.60 4.00 3.00
LCP2 10 0.75 2.44 1.79 5.24 3.73 2.58
25 0.75 4.07 273 8.90 6.19 3.70
50 0.75 6.82 433 14.98 10.27 5.60
75 0.75 9.80 6.02 21.28 14.50 7.62
100 0.75 12.53 7.65 27.38 18.58 9.52
LCP3 4 0.20 13.45 11.33 25.95 20.55 17.33

5. Numerical experiments

As mentioned in the introduction, the advantage of the neural network approach is that it provides real-time solutions
via hardware implementation. On the other hand, to illustrate the applicability and efficiency of the neural network using
the proposed 6 functions, we provide in this section results of software implementations of the neural networks.

The main purpose of this section is to provide numerical simulations using the neural networks (NN1) and (NN2)
to solve some standard test problems, involving linear and nonlinear complementarity problems. We also compare the
performance of the different 6 functions in Table 1 by means of performance profiles (see [36]) based on the convergence
times of the neural networks.

We used Matlab’s ordinary differential equation solver ode23s to perform the simulations. Since the parameter p is a
time-scaling parameter, increasing its value gives better convergence rate. For the simulations, we used p = 1000. The
initial value of the smoothing parameter r is set to r® = 10 when simulating both the neural networks. The simulation is
stopped when at least one among the following conditions is attained: ||V (x¥)|| < 1076 or ||®(x*)|| < 10~°.

Example 5.1 (Linear Complementarity Problems). We consider three standard linear complementarity problems (LCP), that
is, F : R" — R" takes the form F(x) = Ax + b where A € R™*" and b € R". The LCP is denoted by LCP(A, b)

1 2 ... 2
01 --- 2
(LCP1, [37]) A= . . is a upper triangular P-matrix and b = (—1, ..., —1)'. This has a unique solution
0 0 1
x*=(0,...,0,1).
4 1 0 0
-2 4 1 0
0 -2 4 ... 0
(LCP2, [38]) A= . . L. is a tridiagonal P-matrix and b = (-1, ..., —1)T.
0 0 0 1
0 0 0 4
0 0 1 -1
0 0 -1 2 . . T . e
(LCP3, [24]) A= 1 1 2 _o |isa Po-matrix and b = (1, —1, 1, —1)". The corresponding LCP has infinitely
1 -2 =2 2

many solutions x* = (0, 0, k, k + 0.5)T, where k > 0.

Each of the above LCPs is solved by neural network (NN2) with varying dimensions and using 20 random initial points
to illustrate the networks’ local stability. The entries of each initial point are generated from the uniform distribution on
[0, 20]. For all the LCPs considered, the neural network consistently converged to an NCP solution regardless of the initial
condition used. We have verified that the convergence point is indeed a solution by checking that xﬁ‘ > 0, Fi(x*) > 0 and
[x¥Fi(x*)| < 107® for all i = 1, ..., n. We report the average convergence time of the neural network in Table 2.

To compare the performance of 64, ..., 65 in terms of their convergence time, we present in Fig. 1 the performance
profile for Example 5.1. From Fig. 1, we can see that 6,, which belongs to .#;, has the best performance among all the
smoothing functions. Surprisingly, the function 05 from %, was able to slightly outperform the function 6, from %,
which is one of the functions used in [18]. Among all five 6’s, the function 65 from %, has the worst performance. These
observations suggest that the newly obtained functions, specifically #, and 65, may have better convergence properties
when dealing with Py-LCPs by means of neural networks.
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Fig. 1. Performance profile of convergence time for linear complementarity problems.

Example 5.2 (Nonlinear Complementarity Problems). We consider monotone, Py and non-Py nonlinear functions F : R" —
R", F =(Fy, ..., Fp).
(NCP1, [17]) Let F : R?> — R3 the strictly monotone function
X1 — 2
FX)=| x—x+x+3
X2 + X3+ 2X§ -3
The unique solution of NCP(F) is x* = (2, 0, 1)T.
(NCP2, [24]) Let Fi(x) = —xj_1 + 2x; — Xj+1 + bi(x) + ¢; fori = 1, ..., n, where xg = x,1 = 0, and let b;(x) = arctan(x;)
and ¢, =1i— % Here, F is a strongly monotone function.
(NCP3, [39]) Consider F as in NCP2 with b;(x) = %x? and ¢; = (—1)*!. This is another strongly monotone NCP.

(NCP4, [15]) Let F(x) = p © arctan(x) + (AAT + B)x + g, where ® denotes the Hadamard product and p, M, and q are
generated as follows: The entries of A € R™", the skew-symmetric matrix B € R™", and the vector p € R" are
uniformly generated from (—4, 4). The vector g € R" is uniformly generated from (0, 4).

(NCP5, [40]) We follow the construction of F used in [40]. Let f : R" — R" be a continuously differentiable function, and
let x* =(0,1,0,1,...) € R" Define F : R" — R" by

fix) = fix*)+1 ifiis odd

filx) — fi(x*) otherwise.

It is clear that x* is a nondegenerate solution of NCP(F). For this example, we take f from [41] given by

Fi(x) =

Il
_

n
ij—i—xi—(n—f—l) for i ..,n—1
j=1

filx) =

n
nxj -1 fori=n.
=1

(NCP6, [42]) Let F : R* — R* be given by

3x3 + 2X1%2 + 2x5 + X3+ 3x4 — 6
2x3 + X1 + X5 + 10x3 + 2x4 — 2
3x3 + X1Xp + 2X3 + 2x3 + x4 — 9
X2+ 3x3 + 2X3 4+ 3x4 — 3

F(x) =

NCP(F) has two solutions: a degenerate solution x* = (+/6/2,0,0,1/2)T and a non-degenerate solution x* =
(1,0,3,0)".
14



J.H. Alcantara and J.-S. Chen Journal of Computational and Applied Mathematics 407 (2022) 114092

Table 3
Average convergence time of neural network (NN2).

Problem Dimension o Average convergence time (x1072 s)
(n) 01 0, [ 04 65

NCP1 3 0.50 3.83 3.45 7.10 5.23 433

NCP2 5 0.50 9.08 6.92 17.73 12.48 7.87
10 0.30 48.35 34.53 103.82 70.15 39.93
20 0.05 2174 1493 6956 3773 1871

NCP3 5 0.80 4.94 4.30 8.09 6.05 4.60
10 0.80 8.52 6.50 17.27 11.79 7.20
20 0.80 14.95 10.50 3250 21.50 11.50

NCP4 5 0.50 537 5.21 7.49 6.13 5.30
10 0.40 7.86 7.52 10.63 8.88 7.90
20 0.30 11.30 11.00 17.95 13.85 12.00

NCP5 5 0.70 4.20 4.00 5.10 4.60 4.14
10 0.65 4.01 3.71 5.21 4.50 4.01
20 0.65 4.84 432 6.77 5.73 4.60

NCP6 4 0.20 20.32 21.28 20.14 19.05 19.65

NCP7 4 0.20 16.97 15.06 35.61 27.02 24.07

NCP8 5 1.00 0.60 0.50 1.38 1.00 0.90
10 0.95 1.28 1.27 1.61 1.30 1.28

(NCP7, [42]) Let F : R* — R* be given by

3x2 + 2x1% +2%3 + X3+ 3x4 — 6
2x3 + X1 + X5 + 3X3 + 2x4 — 2
3x2 + X1%) + 2X5 4 2x3 + 3x4 — 1
X2+ 3x5 + 2x3 4 3x4 — 3

F(x) =

The solution is x* = (+/6/2, 0, 0, 1/2)7, which is non-degenerate.

(NCPS8, [43]) We consider the problem of finding the Nash-Cournot equilibrium of N-firm noncooperative games, as
discussed in [43]. This involves solving NCP(F) with

1 1
Fi(x) = ¢; + (Lix, )% 5000 }* + Xi 5000 }* i=1 n
i(X) =¢ iXi)' — ’ =Ll
Z;:l Xj 14 Z}l:l Xj Z;:1 Xj

We consider the case when n = 5 and n = 10. For n = 5, the parameters used are ¢ = (10, 8,6, 4,2)T,
L = (55,55,57, 8 = (1.2,1.1,1,0.9,0.8)" and y = 1.1. The approximate solution to this NCP is x* =
(15.4293, 12.4986, 9.6635, 7.1651, 5.1326)". For n = 10, the parameters used are ¢ = (5, 3,8,5,1,3,7,4,6, 3)T,
L=(10,...,10), B =(1.2,1,0.9,0.6,1.5,1,0.7,1.1, 0.95,0.75)" and y = 1.2. The approximate solution to this NCP is
x* =(7.4415,4.0978,2.5906, 0.9354,17.9490,4.0978,1.3047,5.5901,3.2222, 1.6771)".

Similarly, we solved the NCPs using neural network (NN2) through 20 random initial conditions and summarize the
average convergence time of successful simulations in Table 3. Similar to Example 5.1, the neural network trajectories from
all of the random starting points converged to a point in SOL(F). The performance profile for these NCP test problems is
shown in Fig. 2, from which we can infer that functions from .#; dominate in terms of convergence time.

However, observe that 6; and 65 have almost the same performance in solving the NCPs. The same observations can
be obtained from Fig. 3, which depicts the performance profile of all the test problems considered in Examples 5.1 and
5.2.

The above simulations show that functions from .#; have good convergence properties. Despite the better convergence
time, however, one must carefully choose the parameter « if a class .#; function is used in order to avoid ill-conditioning.
The parameter « plays a significant role in achieving successful simulations for (NN2) since this parameter controls the
rate of decrease of the value of r. Theoretically, & can be set to any positive real number and we can still obtain stability as
discussed in Section 3. However, from a practical point of view, a very large decrease in r may result in failed simulations
as the trajectories get closer to the solution due to ill-conditioning effects when r approaches zero. In the numerical
experiments, we found that a higher value of o can be used for 8’s that belong to .#,, since these functions approach
1 at a rate less than that of a function with exponential growth rate. For those that belong to .#1, a lower value of « is
often required to achieve successful simulations. As a result, we found that it is easier to control the parameter @ when
functions from .%, are used. Consequently, the convergence time can be improved and in fact, can be at par with (or better
than) functions from .#; where a lower value of « is used. We illustrate this in the following example.
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Fig. 3. Performance profile of convergence time for complementarity problems.

Example 5.3. Consider the trajectories w(t) = (x(t), r(t)) of neural network (NN2) for NCP7. Fig. 4 shows the convergence
to zero of the error term ||x(t) — x*|| with o = 1 for class .%#; functions and « = 0.5 for class .#; functions. This example
shows that the convergence time of .#,-functions can be improved by using a higher value of «. In particular, we see from
this example that 65, 6, and 65 all have better convergence rates than the functions 6; and 6;.

Our numerical experiments involving the above NCPs also suggest the insensitivity of the neural network (NN2) to
initial conditions, especially when Py-functions are involved. However, if F is not a Py-function, the neural network may fail
to converge to an NCP solution for some initial points and for some « > 0. In such cases, we can implement neural network
(NN1) via Remark 4.1, where the parameter r is reduced according to the simple rule r*t' = gr* where 8 € (0, 1).

Example 5.4. We revisit NCP7 and use (NN2) equipped with %, functions to solve the problem with initial condition
x® = (300, 600, 300, 150)7. From Figs. 5(i)-(iii), the trajectories of (NN2) converged to a stationary point which is not
an optimal solution. Putting together the trajectories when a sequence of (NN1) is implemented, we obtain Figs. 5(iv)-
(vi) which illustrate the convergence of (NN1) to the NCP solution. Observe that among the three functions, 65 has the
fastest convergence time. Meanwhile, we show in Fig. 6 that the neural networks based on FB function [21] and the first
symmetrization of the NR function [19] both fail to converge to the solution.

In the following example, we compare the neural network (NN2) with the neural networks in [20,21] based on the
(generalized) Fischer-Burmeister functions.
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[Ix(B)-x*|

0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

Fig. 4. Comparison of convergence rates of ||x(t) — x*|| for NCP7 using « = 0.5 for functions from %; (6, 6,) and « = 1 for functions from %,
(03, 04, 65), where x° = (15, 15, 15, 15)" and r° = 10.

Example 5.5 (Comparison with Other Neural Networks). The performance profile shown in Fig. 7 depicts the comparison of
convergence times of (NN2), FB-based NN and generalized FB-based NN when used to solve the LCPs and NCPs given in
Examples 5.1 and 5.2. We solved all the problems using the neural networks starting from five random initial conditions,
then obtain the average convergence time. For functions in class .%#,, we used a higher value of « to maximize the inherent
properties of these functions in solving complementarity problems. The parameter values used in the simulations are
specified in Table 4. From the performance profile, it can be observed that 65 has the best convergence time among all
the functions, followed by 6, and 65. The FB and generalized FB neural networks have almost the same performance in
solving the complementarity problems. Class .%#; functions, on the other hand, have the worst performance.

As our last example, we illustrate a simple application of our neural network in solving an obstacle problem.
Example 5.6 (Obstacle Problem [32]). In this problem, we find a curve joining the boundary of a domain with an obstacle
g and minimal curvature f. Mathematically, this can be formulated as finding a function u such that

u(t)—g(t)>0, u(t)—f(e)>0 and  (u(t)— g(t), u(t) —f(t)) =0

where i denotes the second-order derivative of u. Using the second-order centered finite difference to approximate the
second-order derivative of u, we get a discrete version on an equispaced grid t; = ih,i = 1, ..., n, which can be formulated
as an NCP: Find @ € R" such that

i—§>0, Di—f>0~ and (1—gDi—f)=0
where f, & € R, fi = f(t;), & = g(t;), and

2 _ 1

h2 h2

_1 :

D= h?

_1
2
1 P
n2 n2

Letting x = &1 — g, then the above problem is equivalent to NCP(F) with F(x) = Dx + Dg —f. As in [32], we consider the
obstacle function given by g(t) = max(0.8 — 20(t — 0.2)?, max(1 — 20(t — 0.75)?, 1.2 — 30(t — 0.41)?)) and the minimum
curvature required of the curve is f(t) = 1, and we use discretization with n = 50. In Fig. 8, we present the approximate
curve obtained by (NN2) using the smoothing function 8;. We note that exactly the same solution can be obtained using
other theta functions 6,, ..., 05, or using the FB-based or GFB-based neural networks.

To close this section, we summarize our observations from the above numerical experiments. We also mention some
comparison of the present neural network with other networks used to deal with NCPs.

e For the same value of «, functions from class .#; have the fastest convergence time to solve complementarity
problems. In particular, 6, performs best among all the five functions considered, while 63 has the worst performance.
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Fig. 5. Trajectories starting at xX° = (300, 600, 300, 150)" of the neural network using (NN1) and (NN2) with functions from .%,: 63, 6, and 6s
were used for Figs. (i) & (iv), (ii) & (v) and (iii) & (vi), respectively. Figs. (i)-(iii) show the trajectories of (NN2) with &« = 1 which all converged
to an equilibrium point which is not the NCP solution, while Figs. (iv)-(vi) show the trajectories of (NN1) with g = 0.7, which all converge to
x* =(+/6/2,0,0,1/2)".

e The performance of the neural networks can be improved by choosing a larger value of «, the parameter that controls
the decrease of the perturbation parameter r. While this is theoretically acceptable, numerical experiments indicate
some ill-conditioning problems when a very high value of « is used. Specifically, functions from .#; are more sensitive
to larger values of «, while class .#;, functions allow more flexibility. In fact, by choosing a higher value of «, functions
from %, can potentially outperform functions from class 7.

e The neural network (NN2) is not very sensitive to initial conditions, particularly when F is a Py-function. However,
Example 5.4 demonstrates that (NN2) may not converge to an NCP solution for some initial conditions when F is not
a Py-function. In this case, (NN1) is a good alternative but may take longer convergence time due to the sequence
of neural networks that needed to be simulated.

e We see from Example 5.5 that functions from class .%, have great potential to outperform the well-known FB-based
and generalized FB-based NNs.
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Fig. 6. Trajectories starting at x° = (300, 600, 300, 150)" of the neural network based on FB function [21] and the first symmetrization of the natural
residual function [19].
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Fig. 7. Performance profile of convergence time of (NN2) and the neural networks based on FB and generalized FB function for solving
complementarity problems.
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Fig. 8. Numerical solution of the obstacle problem using neural networks based on 6; and the Fischer-Burmeister function in [21].
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Table 4
Average convergence time of neural network (NN2).
Problem Dim (M, o2 Average convergence time (x1072 s)
(n) 01 0> 65 64 05 FB GFB1? GFB2"
LCP1 10 (0.75, 1.00) 2.94 2.66 3.60 2.94 2.54 2.88 3.18 2.72
25 (0.75, 1.00) 2.88 2.64 3.72 2.94 2.52 2.96 3.28 2.74
50 (0.75, 1.00) 2.98 2.68 4.04 3.08 2.62 2.86 3.08 2.70
75 (0.75, 1.00) 3.00 3.00 4.50 3.30 2.60 3.00 3.30 3.00
100 (0.75, 1.00) 3.00 2.90 4.50 3.40 2.70 3.00 3.40 3.00
LCP2 10 (0.75,2.00) 2.38 1.74 1.30 0.84 0.72 0.86 1.02 0.80
25 (0.75,2.00) 4.08 2.74 1.82 1.20 0.72 0.90 1.04 0.82
50 (0.75, 2.00) 6.90 4.42 2.72 1.80 1.00 0.88 1.02 0.80
75 (0.75, 2.00) 9.90 6.30 4.00 2.50 1.50 1.10 1.50 1.00
100 (0.75, 2.00) 12.50 7.50 4.60 3.10 1.50 1.10 1.50 1.10
LCP3 4 (0.40, 1.00) 6.40 5.60 5.60 4.30 4.00 4.30 4.80 4.10
NCP1 3 (0.50, 1.00) 3.90 3.40 3.40 2.90 2.50 2.80 2.90 2.70
NCP2 5 (0.50, 1.00) 9.20 6.90 7.70 5.40 3.80 4.20 4.80 3.90
10 (0.30, 1.00) 47.60 34.10 21.90 19.60 17.90 18.40 19.40 17.90
20 (0.05,0.20) 2366 1582 728.7 649.0 576.0 467.0 476.0 467.0
NCP3 5 (0.80, 1.00) 4.90 4.30 6.80 5.26 4.20 4.50 5.02 4.28
10 (0.80, 1.00) 8.50 6.50 13.40 9.20 6.02 6.38 7.30 5.90
20 (0.80, 1.00) 14.60 10.10 23.40 15.52 8.90 7.64 8.74 7.10
NCP4 5 (0.50, 0.70) 5.88 5.66 5.00 494 484 472 492 4.82
10 (0.40,0.70) 11.90 11.50 8.60 9.74 8.04 8.50 8.66 8.48
20 (0.30,0.70) 14.00 13.00 9.80 10.20 10.40 9.40 20.00 17.40
NCP5 5 (0.70, 1.00) 4.40 4.20 7.24 5.84 6.62 7.62 8.18 7.54
10 (0.65, 1.00) 4.10 3.60 4.34 3.92 3.68 3.58 3.72 3.56
20 (0.65,0.90) 4.83 4.35 5.20 4.48 4.08 4.00 4.14 3.92
NCP6 4 (0.20, 0.40) 20.34 21.32 7.68 7.64 8.52 38.95 38.90 39.00
NCP7 4 (0.20, 1.00) 16.74 14.86 3.72 4.80 4.48 4.52 4.66 4.42
NCP8 5 (1.00, 3.00) 0.526 0.478 0.448 0.420 0.416 0.426 0.434 0.422
10 (0.95, 2.00) 1.214 1.212 1.120 1.148 1.126 1.0820 1.080 1.086
2Using p = 1.75.
bUsing p = 2.25.

e Consider NCP(F) with F : R® — R3 given by F(x) = (X1, —X», —x3)". The neural network used in [28] does not
approach the unique NCP solution x* = (0, 0, 0)” as mentioned in [20]. This problem can be easily solved by our
neural networks.

6. Conclusions

In this paper, we introduced two families of smoothing functions that can be used to solve nonlinear complementarity
problems. Sufficient conditions on classifying the smoothing functions were also provided, thus extending and refining
the results presented in [18]. Moreover, we presented a simple way to generate functions from these families. Such
construction framework provides further insights on the relationship between the two families #; and .%,. Loosely
speaking, we may view .#; as the limit case of the family .%,. The construction method had also been useful in establishing
some convergence results for the neural networks formulated based on the smoothing approach.

Two neural networks were constructed using the smooth perturbations of the natural residual function. The second
neural network (NN2) was shown to be very efficient in solving several test problems. When class .7, functions are used
in designing (NN2), we proved a strong result on the exponential stability of equilibrium points which corresponds to NCP
solutions, where the only assumption on F is differentiability. For class .#; functions, a similar result also holds but under
the hypothesis that F is a P-function. From a theoretical point of view, the neural network (NN2) has better convergence
properties compared to some neural networks [24,28,29], which requires monotonicity to achieve Lyapunov stability.
As was shown in our numerical experiments, (NN2) is efficient even in solving non-Py-NCPs. Moreover, (NN2) is not
sensitive to varying initial conditions, which can be encountered in some neural networks (for instance, [19,28]). On the
other hand, (NN1) is even more robust compared to (NN2). We have established several sufficient conditions to achieve
local and global asymptotic stability of (NN1), as well as exponential stability of the neural network. The implementation
of (NN1) takes longer convergence time when compared to (NN2). However, this neural network is less sensitive to initial
conditions and can achieve convergence to NCP solutions in cases where (NN2), FB-based, and GFB-based neural networks
fail.

The neural network approach presented in this paper suggests how to choose an appropriate smoothing function. Class
7 functions, in general, provide faster convergence time for the neural networks. Intuitively, such is expected since class
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71 functions yield smoothing functions for the natural residual function. However, the disadvantage of these smoothing
functions is their tendency to increase the propensity to encounter ill-conditioning effects. In such cases, the tuning
parameter « can be set to a lower value to achieve successful simulations. On the other hand, class .#, functions have
slower convergence time but are less susceptible to numerical difficulties involving ill-conditioning. Thus, the parameter
« can be tuned to a higher value which results in faster convergence time. In effect, class .%, functions seem to be more
preferable to be used in solving NCPs because of the flexibility of w-value for this class. In fact, the improved convergence
time of class .%#, functions when larger «-value is used often leads to better convergence time when compared to .%#;
functions. For other problems where ill-conditioning is encountered, we recommend to choose a smoothing function
with higher value of k as defined in Theorem 3.1 in designing a neural network.

Because of the significance of «, further studies are required to obtain an adaptive form of this parameter, that is, a
non-constant form of o can be considered. For instance, the numerical experiments suggest that o should be dependent
on the current iterate x¥, the dimension n, and also on the smoothing function € that is used. We leave this for our future
research directions.
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