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Abstract. For a locally optimal solution to the nonlinear semidefinite programming,
under Robinson’s constraint qualification, we show that the nonsingularity of Clarke’s
Jacobian of the Fischer-Burmeister (FB) nonsmooth system is equivalent to the strong
regularity of the Karush-Kuhn-Tucker point. Consequently, from Sun’s paper (Mathe-
matics of Operations Research, vol. 31, pp. 761-776, 2006), the semismooth Newton
method applied to the FB system may attain the locally quadratic convergence under
the strong second order sufficient condition and constraint nondegeneracy.
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1 Introduction

Let X be a finite dimensional real vector space endowed with an inner product (-, -) and
its induced norm || - ||. Consider the nonlinear semidefinite programming (NLSDP)

min  f(z)

s.t. h(z)=0, (1)
g(x) € S,
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where f: X — IR,A: X — IR™ and ¢g: X — S" are twice continuously differentiable
functions, S™ is the linear space of all n X n real symmetric matrices, and S} is the cone
of all n x n positive semidefinite matrices. By introducing a slack variable X € S} for
the conic constraint g(x) € S, we can rewrite the NLSDP (1) as follows:

(:E,XI?El?IilX Sn f <I>

s.t. h(z)=0, (2)
g(x) — X =0,
X eSh.
In this paper, we will concentrate on this equivalent formulation of the NLSDP (1).

The Karush-Kuhn-Tucker (KKT) condition for the NLSDP (2) takes the form
TexL(z, X, 1, 8,Y) =0, h(z) =0, g(z) — X =0, =Y € Ns: (X), (3)
where the Lagrangian function L: X x S x IR™ x S§" x S — IR is defined by
L(w, X,1,8,Y) = f(z) + (b)) + (S, g(x) —X) — (X,Y),
JexL(x, X, 1, S,Y) is the derivative of L at (z, X, 41, S,Y’) with respect to (z, X), and

Nsr (X) denotes the normal cone of S% at X in the sense of convex analysis [16]:

zZeS": (Z - X) < St} if X € S
ng(X)z{{ € (Z,W ) <0 VIV eS'} if X €St

0 if X ¢8".
Recall that ®: S™ x S"— S" is a semidefinite cone (SDC) complementarity function if
P(X,)Y)=0 <= X eS8}, YeS, (X,V)=0 <= Y € Ns (X).

Then, with an SDC complementarity function @, the KKT optimality conditions in (3)
can be reformulated as the following nonsmooth system:

TexL(x, X, 1, S,Y)
h(x)
g(xz) - X
O(X,Y)

E(.Z',X,[L,S,Y) = = 0. (4)

The most popular SDC complementarity functions include the matrix-valued natural
residual (NR) function and Fischer-Burmeister (FB) function, which are defined as

O (X)Y) = X —Tg(X-Y) VX, Yes

and
o (X)Y) = (X+Y)-VvX2+Y2 VXY eS" (5)
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respectively, where Ilgn (-) denotes the projection operator onto S}. It turns out that
®_. has almost all favorable properties of ® . (see [21]). Also, the squared norm of ®__
induces a continuously differentiable merit function whose derivative is globally Lipschitz
continuous [18, 24]. This greatly facilitates the globalization of the semismooth Newton
method [14, 15] for solving the FB system of (2). The FB system and the NR system
mean F (x, X, 1, S,Y) =0and E, (2, X,pu,S,Y) = 0, respectively, with the mappings
E, ., and E, defined as in F except that ® is specified as ¢, and ®

- respectively.

FB NR?

The strong regularity is one of the important concepts in sensitivity and perturbation
analysis introduced by Robinson in his seminal paper [17]. For the NLSDP (1), Sun [22]
offered a characterization for the strong regularity via the study of the nonsingularity of
Clarke’s Jacobian of the NR system under the strong second order sufficient condition
and constraint nondegeneracy, and established its equivalence to other characterizations
discussed in a wide range of literatures. Later, for the linear SDP, Chan and Sun [3]
gained more insightful characterizations for the strong regularity via the study of the
nonsingularity of Clarke’s Jacobian of the NR system, too. Then, it is natural for us
to ask: is it possible to give a characterization for the strong regularity of NLSDPs by
studying the nonsingularity of Clarke’s Jacobian of the FB system? Note that up to
now one even does not know whether the B-subdifferential of FB system is nonsingular
or not without strict complementarity of locally optimal solutions.

In this work, for a locally optimal solution to the NLSDP (2), we prove that under
Robinson’s constraint qualification, the nonsingularity of Clarke’s Jacobian of the FB
system is equivalent to the strong regularity of the KKT point, which by [22, Theorem
4.1] is further equivalent to the strong second order sufficient condition and constraint
nondegeneracy. This result is of interest since, on one hand, it relates the nonsingularity
of Clarke’s Jacobian of the FB system to Robinson’s strong regularity condition and,
on the other hand, it allows us to obtain the quadratic convergence of the semismooth
Newton method [15, 14] for the FB system without strict complementarity assumption.
In addition, it also extends the result of [9, Corollary 3.7] for the variational inequality
with the polyhedral cone constraints to the setting of semidefinite cones. It is worthwhile
to point out that [22, Theorem 4.1] plays a key role in achieving this objective.

Throughout this paper, J,f(z) and J2 f(z) denote the derivative and the second
order derivative, respectively, of a twice differentiable function f with respect to z, and
7 denotes an identity operator. For any n x m real matrices A and B, (A, B) means
their Frobenius inner product, and ||A|| denotes the norm of A induced by the Frobenius
inner product. For X € S", we write X = 0 (respectively, X > 0) to mean X € S}
(respectively, X € S ). For a linear operator A, we denote by .A* the adjoint of A, and
by [|A||2 the operator norm of A. For a linear operator A : S — S™, we write A > 0
(respectively, A > 0) if (W, A(W)) > 0 for any W € S" (respectively, (W, A(W)) > 0
for any nonzero W € S"). For any given sets of indices o and /3, we designate by A,z
the submatrix of A whose row indices belong to a and column indices belong to 3, and



use |a| to denote the number of elements in the set a.

2 Preliminary results

Let X and Y be two arbitrary finite dimensional real vector spaces each equipped with a
scalar product (-, -) and its induced norm ||-||. Let O be an open set in XandZ: O — Y
be a locally Lipschitz continuous function on the set O. By Rademacher’s theorem, =
is almost everywhere F(réchet)-differentiable in O. We denote by D= the set of points
in O where E is F-differentiable. Then Clarke’s Jacobian of = at z is well defined [6]:

0=(x) := conv{dp=(z)},
where “conv” means the convex hull, and dpZ(x) is the B-subdifferential of = at :

Op=(x) == {V V= lim J,E(z%), 2 —» 2, 2 € DE}.

k—o0

For the concepts of (strong) semismoothness, please refer to the literature [15, 14, 20].

The following matrix inequalities are used in the proof of Lemma 3.3; see Appendix.

Lemma 2.1 For any n x m real matrices A, B and any Z € S, it holds that

2(ATZA + BTZDB), (6)
2(ATZA+ BT ZB). (7)

(A+B)Y'Z(A+ B)

=
(A-B)'Z(A-B) =

Proof. Fix any Z € S’,. Then, for any n x m real matrices A and B, we have that
< (A-B)"Z(A-B)=(A"ZA+ B"ZB) — (A"ZB + B"ZA),
= (A+B)"Z(A+B) = (ATZA+ B"ZB) + (ATZB + B' Z A).

The first equation means that (AT’ ZB + BT ZA) < (ATZA + BT ZB), which along with
the second equality yields (6). The second equation implies that —(ATZB + BTZA) <
(ATZA + BTZB), which along with the first equality yields (7). O

Lemma 2.2 Let X,Y € S"® with X?>+Y? =0. Then for any n x m real matrices A, B,
ATA+ BB — (ATX + BTY)(X?*+Y*) Y XA+YB) = 0.

Proof. Note that ATA+ BB — (ATX + BTY)(X? + Y?)"1(XA + Y B) is the Schur
complement of X2 + Y? in the following block symmetric matrix

X2 +Y? XA+YB

X = (XA+YB)T ATA+ BTB |’



We only need to prove 3 = 0 (see [10, Theorem 7.7.6]). For any ¢ = ((3,(2) € R" xIR™,

('S¢ = T (XP+Y)G+ 2] (XA+YB)G+ G (A"A+ B"B)(,
= || XG4+ AGIP+||Y¢G + Bé|)* >0,

which shows that ¥ > 0. The proof is then complete. O

For any given X € S”, let Lx: S" —S" be the Lyapunov operator associated with X:
Lx(YV)=XY+YX VY € S".

We next study several properties of the Lyapunov operators associated with X, Y € S
and Z € S} with Z 2>~ X2 4+Y?2 To this end, we need to establish two trace inequalities.

Lemma 2.3 Let X,Y € S” with X = |Y|. Then, for any W € S™, it holds that
Trace(WXW X) > Trace(WYWY).
Proof. Fix any W € S”. By the trace property of symmetric matrices, we have that

Trace(WXWX) — Trace(WYWY)
= Trace WXW (X —Y)] + Trace [W(X — Y)WY]
= Trace [W(X —Y)WX] + Trace [W(X —Y)WY]
= Trace [ W(X - Y)W (X +Y)].

Since X > |Y|, we have W(X — Y)W = 0 and X +Y > 0. From [10, Theorem 7.6.3],
it then follows that Trace [W(X — Y)W (X +Y')] > 0. The result is thus proved. O

Lemma 2.4 For any given X,Y € S" and Z € S% satisfying Z = v X% + Y2, we have
Trace(WZW Z) > Trace(W|X|W|X|) + Trace(W|Y|W1Y]) VW € S".

Proof. Fix any W € S". Applying Lemma 2.3, we readily obtain that

Trace(WZW Z) > Trace (W\/X2 YWV Y2> . (8)

In addition, from [1, Theorem IX.6.1], we know that (A, B) := Trace(WvAW+/B) is
a jointly concave function on S? x S7, which means that for any A;, Ay, By, By € S%,

(A1+A2 BI+BQ> 1

D > 5[90(141,31) + ¢(Ag, By)] .

Using this inequality with A; = B; = X? and A, = B, = Y2, we obtain that
(X 21Y? X24Y7?
2¢

SR )zTrace<W|X\W|X\>+Trace<errW\Y\>.
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This, together with the definition of ¢ and inequality (8), implies the result. O

The following proposition, extending the result of [8, Proposition 3.4] associated with
second-order cones to SDCs, is used to prove Proposition 2.2. Among others, Proposition
2.2 is the key to characterize the properties of Clarke’s Jacobian of @ ; see Section 4.

Proposition 2.1 For any given X,Y € S" and Z € S}, the following implication holds:
2= X2+ Y? = L% - L3+ LE
Proof. Since Z? = X? +Y? and Z € S, from [1, Proposition V.1.8] it follows that
Z=VX2+Y?

Now choose a matrix W € S™ arbitrarily. Then, a simple computation yields that

(W, (L, — L% — LY)W) = 2 [Trace(WZW Z) + Trace(W?Z?) — Trace(W XW X)
—Trace(W?X?) — Trace(W?Y?) — Trace(WYWY)]
= 2 [Trace (W?(Z? — X? = Y?)) + Trace(WZW Z)
—Trace(WXWX) — Trace(WYWY)]
> 2 [Trace(WZW Z) — Trace(W XW X)) — Trace(WYWY)]
>0

)

where the first inequality is due to Z2? = X? + Y2, and the second one is using Z >
VX?+Y? and Lemmas 2.4 and 2.3. Since W is arbitrary in S”, the result follows. O

Proposition 2.2 For any given X,Y € S" and Z € S}, define A: S" x S — S" by
ANU, AV = L Lx(AU) + L, Ly (AV)  YAU, AV € S™

If 22 = X%+ Y?, then the linear operator A satisfies ||All, < 1, and consequently

£ Lx(AU) + L' Ly (AV)]| < VIAU|Z+ [[AV]Z VAU, AV €S™. (9)
Proof. Assume that Z2 = X2+Y?2. By the definition of A and Proposition 2.1, we have
AA* = LML + L)L, = £, 050, =T

This means that the largest eigenvalue of AA* is less than 1, and consequently,

||~A||2 = \/HA*AH2 = \/AmaX(A*A) = \//\rnaX<~A-’4*) <L
This completes the proof of the first part. By the definition of operator norm, we have

I£7' Lx(AU) + L7 Ly (AV)]| = [AAU, AV)|| < AL, (AU, AV)I.
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Together with the first part, we prove that the inequality (9) holds. O

Let o, § and ~ be disjoint index sets with a U U~y = {1,2,...,n}. Define
D(X,Y) = (X35 + Y35+ Xp, Xop + YaaYap)'? VXY €S (10)
The following property of the function I' will be used in the subsequent sections.

Proposition 2.3 Let X, Y € S" be such that I'(X,Y) = 0. Then for any G, H € S",

1£5(x ) (X, Gt G Xop)ll < 2/ 1B Gl
||£F(Xy)(y,3aHaﬁ+ HBa aﬁ < 2\/ |ﬁ||0& ”Haﬂ”

Proof. Let I'(X,Y) = Qgdiag(\y, .. ., Aww)% be the spectral decomposition of I'(X,Y"),
where A\; > 0 for each i. Let ), and @), be arbitrary but fixed |y| x |y| and || x ||
orthogonal matrix, respectively. Define Xg, := Q% X5,Q+ and Yo = Q5Y3aQq- Then,
from the expression of I'(X,Y") and its spectral decomposition, it is easy to get that

[l |e]

2 ZZ)?fkjLZ}Z? forall i=1,...,|8].

k=1 =1

This means that for 1 <k < |y|,1<I<|a|, 1 <i<|fland 1 < j < |,

| Xik| <1, | Xj] <1, Yl <1 1Yy,
T W W D W W D Y

<1 (11)

For any G, H € S", with 557 = QgGmQ7 and ]Tlﬁa = QgHﬁaQa, we calculate that

l ()? G+ G X )
n = ikYTk ik<\k
QE'CFSX,Y) (Xﬁ’yG'y,B + Gﬁ’yX’y,B)Qﬂ = k=1 ‘ J ' j ’
Ai A |
1<i,j<|B]
2 (YVaHy; + HaYi)
. il it
Q%WEF(IX,Y) (YoaHop + HpoaYop)Qp = J j
Ai + A
1<i,5<|8]

Using the inequalities in (11) and noting that Frobenius norm is orthogonally invariant,
from the last two equalities we obtain the desired result. |

In the subsequent sections, we always use C': S™ x " — S" to denote the function
C(X,Y):=VX24+Y2 VXY eS (12)
and for any given X,Y € S" assume that C'(X,Y’) has the spectral decomposition
C(X,Y) = Pdiag(\,...,\,)PT = PDPT, (13)
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where P is an n X n orthogonal matrix, and D = diag(Aq, ..., \,) with A; > 0 for all 4.
Define the index sets k and ( associated with the eigenvalues of C'(X,Y’) by

= {i: >0} and B := {i: \;=0}.

Then, by permuting the rows and columns of C'(X,Y") if necessary, we may assume that
D. 0 D, 0
D = g = : :
KRRk
3 Directional derivative and B-subdifferential

The function @, is directionally differentiable everywhere in S™ x S”; see [21, Corollary
2.3]. But, to our best knowledge, the expression of its directional derivative is not given
in the literature. Next we derive it and use it to show that the B-subdifferential of @,
at a general point coincides with that of its directional derivative function at the origin.?

Proposition 3.1 For any given X,Y € S*, let C(X,Y') have the spectral decomposition
as in (13). Then, the directional derivative ® ((X,Y); (G, H)) of ®,, at (X,Y) with
the direction (G, H) € S* x S" has the following expression

DK (;C KK + £ (f‘[ﬁf{)> D,Zl()?ﬁnén,@—i_?nnﬁﬁﬁ)

(G + H) — s
(Gax m—l—Hﬁ,iY,m)D 1 O(G, H)

PT  (14)

where X := PTXP,Y = PTYP, G := PTGP, H := PTHP, and © is defined by
~ ~ - - 1/2
(UsuXer + Vi Yeur ) D2 (XowUss + Y Vies) VYU,V € S". (15)
Proof. Fix any G, H € S™. Assume that (X,Y") # (0,0). Then, for any ¢ > 0, we have
O, (X +1G,Y +tH) — ®, (X,Y) = t(G + H) — A(t) (16)
with

1/2

A(t) = [CHX,Y) +H(Lx(G) + Ly (H)) + 2(G* + H?)] "= C(X,Y).
Let )Z', 57, G and H be defined as in the proposition. It is easy to see that

A(t) == PTA()P = (D> + W)Y? - D, (17)

2When we are preparing this manuscript, we learn that these results are obtained by Zhang, Zhang
and Pang (see [26]) via the singular value decomposition. To the contrast, we achieve them indepen-
dently by the eigenvalue decomposition in order to obtain Proposition 3.2.
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where

W:t()?é+§)~(+l7ﬁ+?n7)+t2 (§2+E2>.

Since X2+ Y2 = D% and Dy = 0, we have X = diag(X,,0) and Y = diag(Y,,0). So,

W=t | £x(Con) + Ly, (Hew) XiwGrp + YirHis
Gﬁmee + H,BHYHH 0
[ O(t) o(t)
RKONG (éfw + Hig + GuGls + Hﬁmﬁnﬁ> '

By equation (17) and [24, Lemma 6.2], we know that

A) s = L5 (Wir) + o(||IW]),

A(Bus = Dy W + o[ W), (18)
Wi = A(t) A () g + A ()35

From the second equality of (18) and the expression of Wﬁg, it follows that

Aty = D (KnGins + Vinllys ) + (1), (19)

and consequently,

DT3B E)ws = 1 (ConKine + HanVis) D (RsGing + Vewlas) + o(t?).
This, together with the third equation of (18) and the expression of Wgﬁ, implies that
Aty = ¢ (GanGug + HanHla + G35+ H3)
6 (G B ) D22 (B + VaBlos) (2
Since Dg = 0, the expression of A(t) in (17) implies that A(t)glg = 0. Therefore,

X A H2 11/2 o
lim % — lim M ‘
tl0 t tl0 t

In addition, from the first equation in (18) and the expression of W,m, we have
AO)ws = L5} (L, (Cor) + L, (Her) ) + 0(t).

Combining the last two equations with (19), we immediately obtain that

lim & — £Bi (E)?,m <Gm€) + E)N/,m (]?[HH)> D,;l(jzmiénﬁ + ?ﬁﬁf]ﬁﬂ)
Ho (G puXoon + HpYr) D! o(G, i) '
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This, along with (16), shows that ®/ _((X,Y); (G, H)) has the expression given by (14).
When (X,Y) = (0,0), by the positive homogeneity of @, we immediately have
(X)) (G, H)=(G+H)-VG*+H*=23,,(G, H).

Note that this is a special case of (14) with k = (). The result then follows. O

Note that the function © in (15) is always well defined since, by Lemma 2.2,
UﬁHUﬂﬁ + Vﬁnvnﬁ - (UB){)’ZHH + VBH?HH>D;2(*S€RHUK6 + ?HHVHB) i 0

for all U,V € S™. As a consequence of Proposition 3.1, we readily obtain the following
necessary and sufficient characterization for the differentiable points of the function @ .

Corollary 3.1 The function @, is F-differentiable at (X,Y) if and only if C(X,Y) > 0.
Furthermore, when C(X,Y) > 0, we have for any (G, H) € S x S",

T, (X Y)(G H) = (G+ H) = Loy y (Lx(G) + Ly (H)). (20)

Proof. The “if” part is direct by [1, Theorem V.3.3] or [5, Proposition 4.3]. We next
prove the “only if” part by contradiction. Suppose that @ is F-differentiable at (X, Y),
but C(X,Y) > 0 does not hold. Then |3] # 0. Since ®_, is F-differentiable at (X,Y),
' ((X,Y);(-,-)) is a linear operator. But, letting (G, Hy), (G2, Hy) € S* x S" be such
that G, = G, = 0, Hy = diag(0, [|3) and Hy = —H,, we obtain that

0 = & _((X,Y); (G, Hy) + (G, H))
= O ((X,Y);(G1, H)) + P _((X,Y); (Ga, Hp))

0 0
= —2P pT
< 0 I )

which is a contradiction. This contradiction shows that the “only if” part holds. The
formula in (20) follows by [4, Lemma 2] or [11, Theorem 3.4]. O

Next we derive the expression of the directional derivative of © at (U, V') with the
direction (G, H) € S™ x S™, which is used to characterize the F-differentiable points of
© in Lemma 3.2 below. Define ; : S" x §* — RIF*IK and Q, : S* x §* — RIBI* I~ by

(U, V) = Usp — (UsuXpn + VirYur) D2 X VU,V € S"

and
WU, V) = Vi — (UsuXpn + VirYur) D2V VU,V € ST,
respectively. Noting that X2 + Y2 = D2, we can rewrite the function © in (15) as

1/2

OU,V) = [Uss+ Vi + (U, V)U(U, V)" + Qu(U, V(U V)] '~ VU,V €S™. (21)
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For any given U,V € S™, assume that (U, V') has the following spectral decomposition
O(U,V) = RAR" = Rdiag(?,,...,95)R",

where A = diag(y,...,7)5) is the diagonal matrix of eigenvalues of ©(U,V) and R is
a corresponding matrix of orthonormal eigenvectors. Define the index sets I and J
associated with the eigenvalues of (U, V') by

I:={i:9¥; >0} and J := {i:¥; =0}.
Then, by permuting the rows and columns of (U, V') if necessary, we may assume that
A~ Ap 0] _ [ A O ‘
0 Ay 0 0
From (21) and the spectral decomposition of ©(U, V), it is easy to obtain that
[R"Usslas = 0, [R'Viglyp =0, [RTQ(U,V)]gs =0, [RTQ(U, V)]s =0.  (22)

Lemma 3.1 For any given (U,V) € S" x S", assume that O(U, V') has the spectral de-
composition as above. Then, the directional derivative ©'((U,V); (G, H)) of © at (U, V)
with the direction (G, H) € S™ x S™ has the following expression

—1747 —17117
R %T[WE] Y {\JTVV—L;N 1/2 R, (23)

WHATY (O — WHAT* W)Y
where © := RTO2(G, H)R, and W= RTW (G, H)R with W (G, H) given by

W(G, H) = (U V)u(G H)" + (G H)u(U. V)" + Lu,,(Gps)
+Lv,5(Hag) + QU V) (G, H)' + Qa(G, H)2(U, V)T

Proof. Assume that ©(U, V') # 0. For any t > 0, we calculate that

A(t) = OU +1G,V +tH) — O(U,V)
= [0*U,V)+tW(G, H) + t*6*(G, H)]l/2 - O(U,V).

From the spectral decomposition of ©(U, V), it then follows that

- N N\ 1/2

A)) = RTAR = (A2 +1V +126) = A, (24)
where © and W are defined as in the lemma. From (24) and [24, Lemma 6.2], we have

A(t)n = L3, Wa] + oft),

A/\(/t)U = t~A;1WI;], + 0(@, N (25)
tWay + 120 = A)A() 1y + A1)
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By equation (22) and the definition of W, we have Wy = 0. Then, from the last two
equalities of (25), it follows that

A%, =126, — AOTA®)y = 2 (éJJ - W{,A;?”WU) +o(t?).

Since A; = 0, the expression of A(t) in (24) implies that A(t); = 0. Therefore,

. Z(t)l] T £<t)?]J (3 ST A —27x7 1/2
11}&1)1 —t == llgél —t == (@JJ - WIJAI W]J>
This, together with the first two equalities of (25), yields that
RA(t)RT W W
O'(U,V); (G, H)) = i BAOI_ g EAIT[W_I{] ~ élTWf;Av e | B
to t WA (O = WA W)

If O(U, V) = 0, then Uss = 0, Vis = 0, (U, V) = 0 and Qu(U, V) = 0. By this, it
is easy to compute that ©'((U,V); (G, H)) = ©(G, H). Note that O(G, H) is a special
case of (23) with I = (). The result then follows. O

Remark 3.1 Lemma 3.1 shows that the function © defined by (15) is directionally dif-
ferentiable everywhere in S™ x S"™. In fact, © is also globally Lipschitz continuous and
strongly semismooth in S™ x S*. Let W(U,V) = [Usg Vag (U, V) Quo(U, V)] for
U,V €S", and G™(A) := VAAT for A € RIF*". Comparing with (21), we have that
(U, V)= G™ (W (U,V)). By [21, Theorem 2.2], G™ is globally Lipschitz continuous
and strongly semismooth everywhere in IRIP*2" " Since W is a linear function, the compo-
sition of G™* and U, i.e. the function ©, is globally Lipschitz continuous, and strongly
semismooth everywhere in S™ x S™ by [7, Theorem 19].

By the expression of the directional derivative of ©, we may present the necessary
and sufficient characterization for the differentiable points of ©.

Lemma 3.2 The function © is F-differentiable at (U, V) if and only if (U, V) = 0.
Furthermore, when ©(U, V) > 0, we have for any (G, H) € S* x S",

TOWU,V)(G, H) = Lg},, [(Uﬁﬁaw + GpnUss) + (VawHyp + HsiVieg)
- <Gﬂ/i‘§<:/€li + H,Bn?nn> D,.;_Q <)A(:HHUHﬁ + ?HHVH,B>
- <Uﬁn)?me + Vﬁni\}nn> D;Q (jzmiGn,B + ?KHHKH>

+Lu,,(Gpp) + CVaa(Hﬁﬁ)} :
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Proof. We only need to prove the “only if” part. If © is F-differentiable at (U, V'), then
©'((U,V); (G, H)) is a linear function of (G, H) which, by equation (23) implies that

(047 — WEA2W)Y/2 is a linear function of (G, H). We next argue that this holds true

only if J = (. Indeed, if J # 0, by taking G = 00 and H = 00 with
0 Gpp 0 Hgg

Gps = 0 and Hgg > 0, we have (G, H) = 0 and Qy(G, H) = 0 which, together with
[RTUgg 5 = 0 and [RTVjg] 55 = 0, implies that W,;; = [RTW (G, H)R] ;; = 0. Note that
©%(G, H) = G%3 + Hs. Then, (0, — WHA W) = \/ [RT(G%,; + H33)R] 7, which

is clearly nonlinear. The Jacobian formula of © is direct by a simple computation. O

Remark 3.2 Combining Proposition 3.1 with Lemma 3.2, we immediately obtain that
o ((X,Y);(-,-)) is F-differentiable at (G, H) if and only if ©(PT"GP, P"HP) > 0.

By the definition of © and Lemma 3.2, we can prove the following result (see the
Appendix for the proof) which corresponds to the property of ® . in [13, Lemma 11].

R

Lemma 3.3 For any given X,Y € S", let ¥ . (-,-) = _((X,Y);(:,-)). Then,
0P, (X,Y) =0pY,,(0,0).
Now Lemma 3.3 and Proposition 3.1 allow us to obtain the main result of this section.

Proposition 3.2 For any given X,Y € S*, let C(X,Y) have the spectral decomposition
asin (13). Then, a (U, V) € 0gP, ., (X,Y) (respectively, 0P, (X,Y)) if and only if there
exists a (G, H) € 05O(0,0) (respectively, 09(0,0)) such that for any G, H € S",
(Z-U)(G)+ (T -V)(H)

551 (f’f(m(ém) + ﬁf/,m (F[mf)> Df:l <5€méﬁﬁ + ?ﬁﬁﬁﬁﬂ>

N - - - N PT. (26)
(G Hie¥or) Dy G(G) + H(H)

where X := PTXP,Y = PTYP, G := PTGP, and H := PTHP.
Proof. For any G, H € S", let V(G, H) := (PTGP, P'HP). Define Z: S* x S* — S" by

pT.

2(S.T) = P Lot (L, (Sww)+ ggﬁﬁ(@;ﬁ)) DX eSg+ YirTes)

(Sﬁ,{X,m—l— Tgﬂyﬁﬂ) @(S, T)

By Proposition 3.1, clearly, ¥ . (G,H) = (G + H) — Z(V(G, H)) for any G, H € S".
Note that = is globally Lipschitz continuous in S" x S™ by the remarks after (21), and
JVY(G, H) for any G, H € S™ is onto. Applying [3, Lemma 2.1] to the composite mapping
Eo W at (0,0), we have that dg(E 0 ¥)(0,0) = dp=(¥(0,0))T¥(0,0) = dg=(0,0)¥. So,

05%,,(0,0) = (Z,T) — 95=(0,0)T.

This, together with Lemma 3.3 and the expression of =, completes the proof. O
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4 Nonsingularity conditions

This section will show that the Clarke’s Jacobian of £, at a KKT point is nonsingular
if and only if the KKT point is a strongly regular solution to the generalized equation

jx,XL<x7X7:U’7 S,Y) NXXS”(QJ?X)
h(z) Nge (1)
X N (Y)

Let (7, X,71,5,Y) € X x ST x R™ x S™ x S7 be a KKT point of the NLSDP (2), i.e., a
point satisfying the KKT condition (3). Let C' = C(X,Y). Noting that

Xest, YeSt and (X,Y) =0, (28)
we may assume that C has the spectral decomposition as in (13) with K = a U,
D, 00 0 0 O
X=P| 0 00 |P", and Y=P| 0 D, 0 |P". (29)
0 00 0 0 O

By this, we write P = [P, P, Pg] with P, € R™I P € RN and P; € R™*IAl.

By the spectral decomposition of X and Y, we can simplify the function © involved
in ®_((X,Y);(-,-)) as the function I': S" x S" — SI?I defined by (10) with the above
a,v and . In view of this, we first characterize a property of Clarke’s Jacobian of I' at
a general point, which will be used to prove Proposition 4.1 below. Particularly, it also
implies the property of Clarke’s Jacobian of ® . at a general point; see Remark 4.1.

Lemma 4.1 For any given (U, V) € S" x S", let (G,H) € OI'(U, V). Then, we have
1G(G) + H(H)|| < [[(Gpg, Hps) | + 2V 18IV 1 Gyl + 2/ [Blle] [[Hagll VG, H € S™

Proof. Let (G,H) € OI'(U,V). By Carathéodory’s theorem, there exist a positive
integer | and (G',H*) € dpI'(U, V) for i = 1,...,1 such that (G, H) = S_\_, vi(G', 1Y),
where Zﬁ:l vi =1land v; > 0, ¢ = 1,...,l. From Lemma 3.2, we know that I" is
F-differentiable at (U, V') if and only if I'(U, V) > 0. Also, when I'(U, V') > 0, we have

jF(U> V) (Gv H) = ‘CI:(IU,V) [‘CUﬁﬁ (Gﬂﬁ) + [’Vﬁﬁ (Hﬁﬁ) + U57G73

+GpyUsp + VisaHap + HpaVag]

for any G, H € S™. Hence, for each i € {1,...,l}, by the definition of the elements in
dpl'(U, V), there exists a sequence {(U%,V*)} in S” x S" converging to (U, V) with
LU, Vi) = 0 such that (G, H') = limy_,oo JU (U™, V). Thus, for any G, H € S,

G(G) +H(H) = lim Z Vil p i vy | Lot (Gas) + Ly (Has) + Ug Gog

+Gp, Uy + Vit Hog + Haa V5]
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Together with the continuity and convexity of || - ||, it follows that

1G(G) + H(H)|| < lggozvz

F(U% Vik) [

Ly, (Ggp) + Ly (Hpp)

UL Gog + Gy Uty + Vit Hog + HﬁachZ}

l
i 3wl By G g
=1

e (U;;’;Gw + Gy Uy + Vil o + Hao V)

it

Uik, Vik)

For each 7 and k, from Proposition 2.2 and Proposition 2.3, we have that

(U ViE) [5 5 (Gap) + Ly (Hep) ]H < [[(Gap, Hpp) |l

and
|y (U G + G Uty + Vi Hag + HaaV25)|
< 2VBIV I Gasll + 2v/1Blle] [ Hagl-

From the last three inequalities, we immediately obtain that for any G, H € S",

1G(G) + H(H)|| < [[(Ggp, Hp) | + 2V Bl [ Grsll + 2V Blle [ Hag -

Thus, we complete the proof. O

Remark 4.1 When a U~y = 0, the function T'(-,-) reduces to C(-,-) defined in (12).
Then, Lemma 4.1 characterizes the following property of Clarke’s Jacobian of ®., at a
general point: for any given X, Y € S”, letting (U,V) € 09,,(X,Y), it holds that

UG) +V(H) =0 = (G, H) <0

We achieve the main result of this section by two steps: (1) to show that the strong
second order sufficient condition and constraint nondegeneracy of (7, X ) implies the non-
singularity of OE,, (T, X, T, S, Y); (2) to establish the relationship between the Clarke’s
Jacobians OF,,(Z, X, 71, S,Y) and O (T, X, 71, S,Y). The first step needs the following
two propositions which provide the properties of the elements in 9®_,(X,Y).

Proposition 4.1 Let X,Y € S" satisfy (28), and assume that they have the spectral
decomposition as in (29). Then, for any U, V) € 0®,,(X,Y), it holds that

PYGP, =0, P'GP, =0, PTHP, =0,
UG)+V(H)=0 = { PTHP;=0,P'GP,D,+ D,PTHP, =0,  (30)
(PYGPs, PTHP;) < 0.

15



Proof. Fix any (U,V) € 0®,,(X,Y) and G, H € S" with U(G)+ V(H) = 0. Applying
Proposition 3.2, there exists a (G, ) € 0I'(0, 0) such that

5! (L5, (Cu) + L5, (He)) DN XnCos + V)

(GpuXoon + HoYer) D! G(G) + H(H)

G+H=

where Kk = a Uy, X = PTXP, Y = PTY P, G = PTGP and H = PTHP. By equation
(29), an elementary calculation shows that the last equality can be rewritten as

 Lp(Gaat Hao)  Da(Gay+ Hay) + (Gay + Hay) Dy G + Hag
(Gva + Hva)NDoc + Q’Y(GVOC + Hva) EDL(GW tHw) Qw + ];Ivﬁ
Gpa + Haa Ggy + Hp, Gps + Hgp

Lp.(Gao)  DuoGay + Ho D, Gaop

= é”/aDa + Dvﬁw EDw(fIw> ﬁvﬂ
Ga Hyg, G(G) +H(H)

From this, we readily obtain the equalities in (30), as well as the following equality
555 + ﬁgﬁ = g(é) + H(ﬁ)
Using Lemma 4.1 and noting that éwg =0, ﬁag = 0, we get the inequality in (30). O

Proposition 4.2 Let X,Y € S" satisfy (28), and assume that they have the spectral
decomposition as in (29). Then, for any U, V) € 0®,.,(X,Y), it holds that

UG+ V(H)=0 = (G, H) <T%(-Y,Qq),
where for any given B € S*, T : S® x S — R is the linear-quadratic function
Ta(A,A) == 2(A,ABTA) V(A /A) €S" xS" (31)
introduced in [22] with BY denoting the Moore-Penrose pseudo-inverse of B.

Proof. The proof is direct by Prop. 4.1, the definition of Y&(—Y,G), and (29). O

We also need to recall from [22] that the strong second order sufficient condition and
constraint nondegeneracy for the NLSDP (2). Let z = (z, X) € X x S". Let

f(z) = f(x), E(z) = ( g(f)<x—>X ) and g(z) = X.

By equation (29) and [22, Eq.(17)], the tangent cone Tsn (X) of ST at X takes the form
Ton(X) = {B€S": [Ps PJTB[Ps P, =0}, (32)
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Let A=X —Y and A, = Ilgn (A). The critical cone of S} at A is defined as

C(A;ST) = Top (A) N (Ay — A)F = Ty (X) N Y (33)

By the spectral decomposition of Y and the expression of 7é1 (X), we may verify that
C(A;St)={B€eS": P;BP; =0, P{BP, =0, P/BP, =0} . (34)
From [2, 22], the critical cone C(Z) of the NLSDP (2) at 7 = (%, X) has the form of

C(z) = {5 € X x S": Lh(z)E =0, T.G(2)¢ € C(A; Si)} .

Since it is hard to give an explicit formula to the affine hull of C(Z), denoted by aff(C(Z)),
Sun [22] defined the following outer approximation to aff(C(z)) with respect to (z, S, Y):
app(7, 5,Y) := {5 € X x §": Lh(Z)E =0, TG(2)€ € aff(C(A; Sz))} . (35)

For a locally optimal solution Z = (Z, X) of (2), we denote by M(Z) the set of Lagrange
multipliers satisfying (3) that is nonempty under certain constraint qualifications (CQs)
such as Robinson’s CQ. By the definition of f, h and g, the strong second-order sufficient
condition and constraint nondegeneracy [22] for the NLSDP (2) can be stated as follows.

Definition 4.1 Let 7 = (7, X) be a stationary point of the NLSDP (2). We say that

~

the strong second order sufficient condition holds at Z if for any & € C(Z)\{0},

sup { <£7 ._722ZL(§, 77 y S> Y)£> - Tﬁ(?) (_K jz:(ﬂz)g) } >0 (36)
(1,8, Y)EM(Z)

~

where C(Z) := m(p,S,Y)GM(E) app(u, S, Y).

Definition 4.2 We say that a feasible point Z = (T, X) of the NLSDP (2) is constraint
nondegenerate if

(2 (2)- ( " @jg@) ) (MY e

where lin(Tsn (1)) denotes the largest linear space in the tangent cone Tsn (-).

Now Propositions 4.1 and 4.2 allow us to prove the following result by using a similar
argument to that of [22, Proposition 3.2]. We include the proof for completeness.

Proposition 4.3 Let (T, X,11, S,Y) be an arbitrary KK T point of the NLSDP (2). Sup-
pose the strong second order sufficient condition (36) holds at Z = (T, X) and Z is con-
straint nondegenerate. Then any element in O, (%, X, T, S,Y) is nonsingular.
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Proof. Since the nondegeneracy condition (37) is assumed to hold at Z and, by (32)-
(34), lin(7sr (9(2)) € Tsz (9(z)) N YL, we have from [22, Proposition 3.1] that

M(Z) ={(7,5,Y)} and aff(C(%)) = app(#, 3, Y).
Then, the strong second order sufficient condition (36) takes the following form
(d, T5A@ 7, S)d) = Tx(=Y,A) >0 ¥(d,A) €alCZ)N(0.0}  (38)

where [(z, 1, S) = f(z) + (i, h(x)) + (9(z),S). Let W be an arbitrary element in
OFE.,,(z,X,11,S,Y). To prove that W is nonsingular, we let (Az, AX, Au, AS,A\Y) €
X x §" x R™ x §" x §" be such that W(Ax, AX, A, AS;AY) = 0. Then, by the
there exists a (U, V) € 0®,,(X,Y) such that

expression of the mapping F,,,

Tl (@, 10, S) AN+ Th(T) Ap + To9(T)*AS
—AS - AY

\73: (@) Az =0,
UAX) 4 V(AY)

which can be simplified as
J2UT, T, )Ax+Jx (@) Dp— Teg () AY
J:h(T)Ax = 0. (39)
U(T.g(@)Dx) + V(AY)
From the second and the third equations of (39) and Proposition 4.1, it follows that
Th(T)Ax =0, P (T9(@)Az)Py =0, Pl(J.9(T)Az)P, =0.
Comparing with the definition of app(, S,Y) in (35), we have that
(Ax, T,9(T)Ax) € app(fi, S,Y) = aff(C(%)). (40)
By the first and the second equations of (39), we can obtain that
(Aw, T 1, S) Aw) = (Tag(7) Dz, AY) =
whereas the third equality of (39) and Proposition 4.2 imply that
(Teg(@)ANx, NY) < V(=Y Tog(T)Az).
From the last two equations, we immediately obtain

(Az, Tol(@ 1, §) Ax) — Tx(=Y, Tog(7) Ax) < 0.
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Putting this with (40) and equation (38), we get Az = 0. Thus, (39) reduces to

Toh(@)* A — Tog(T)* AY
V(AY)

= 0. (41)
Applying Proposition 4.1 with G =0 and H = AY, we obtain that
PIAYP,=0, P'AYP;=0, and PTAYP, = 0. (42)
In addition, by (37), there exist a (¢,U) € X x §" and a V' € lin(7sr (¢(%)) such that
Th(E)C = Dy, Tug(@)C — U = —AY, U+V = —AY.
This, together with the first equation of (41), yields that

(D, D) +2(AY,AY) = (Th(@)C, Ap) — (Tog(@)C — U, AY) = (U +V, AY)
= (V,AY) =(P"VP,PTAYP) =0,

where the last equality is using equation (42) and V' € lin(7sr (¢(%)). Thus, Ay = 0 and
AY = 0. Together with Ax = 0, we show that ¥V is nonsingular. O

Next we turn to the work of the second step, which needs the following key lemma.
Lemma 4.2 Let X and Y satisfy (28). Then, we have 0p®, (X,Y) C 0P, (X,Y).

Proof. By the eigenvalue decomposition of X and Y, it is easy to verify that

X=-[[X-V[+(X-V)] and V== [[X-7| - (X-7)]. (43)

1
2

DN | —

From the definition of ® ., it follows that ¢ . (X,Y) = (X +Y) —E(X,Y), where

NR?

E(X,Y) = [(X+Y)+|X Y]] VX,Yes"

| —

Then, comparing with the definition of ® ., it suffices to prove that

IpE(X,Y) C 050 (X,Y). (44)

Let (U,V) € 0=(X,Y). From the definition of the elements in d5=(X,Y) and [13,

Corollary 10], there exists a sequence {(X* Y*)} € S* x S" converging to (X,Y) with

7% = Xk —Y* nonsingular such that (4, V) = klim JE(X*,Y*). Also, for any G, H € S™,
—00

, 1 _ 1 _
UG)+V(H) = lim [5(1 + L L) () + (T - .c|Z1k|.cZk)(H)}
= klglolo [ﬁleklﬁ‘zkhLZk (G) + Elek‘ﬁ‘zk‘,zk (H)i| . (45)
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For each k, let X* = M and Y* = w Then, by Z¥ = X* — Y* and equation
(43), it is easy to sce that X¥ — X and Y* — Y as k — oo. Also, we have that

()?k)Q + (}’}k)2 _ (Zk)Q _ (Xk B Yk>2 “ 0.
This means that the function C(-, ) is continuously differentiable at (X*,Y*) with

JOX* Y*)(G, H) = Lozl (G) + Loz o Lon(H)

Xk ¥Fk) C(Xk,TH)
= ‘Cl_ZlerleH'Zk (G) +£‘_Z1k‘£\Zk\—Zk (H)
2 2

Together with (45), we have U(G) + V(H) = limy_., JC(X*, Y*)(G, H). This, by the
arbitrariness of G and H, shows that (U, V) € dpC(X,Y). Then, (44) follows. O

Lemma 4.2 states the relation between the Clarke’s Jacobian of ® . and that of ¢,
at a complementarity point pair, which by the expression of E,, and £, implies

OF..(7,X,1,S,Y) COE,, (7, X,0,5,Y). (46)
Along with Proposition 4.3 and [22, Theorem 4.1], we get the main result of this paper.

Theorem 4.1 Let (7,X) € X x S" be a locally optimal solution to the NLSDP (2).
Suppose that Robinson’s CQ holds at this point. Let (1, S,Y) € R™ x S" x S* be such
that (Z,X,11,5,Y) is a KKT point of (2). Then the following statements are equivalent:

a e strong second order sufficient condition in Definition 4.1 holds at (Z,X) an
The st d order sufficient condition in Definition 4.1 holds at (Z,X) and
(T, X) is constraint nondegenerate.

(b) Any element in OE_, (%, X, T, S,Y) is nonsingular.
(c) Any element in OB (T, X, 11, S,Y) is nonsingular.
(d) (z,X,1,S,Y) is a strongly reqular solution to the generalized equation (27).

Proof. By Proposition 4.3 and the inclusion in (46), we have that (a) = (b) = (c).
Since the NLSDP (2) is obtained from (1) by introducing a slack variable, we know from
[22, Theorem 4.1] that (a) < (¢) < (d). Thus, we complete the proof. O

To close this section, we take a look at the relationship between the nonsingularity
of Clarke’s Jacobian of FB nonsmooth mapping associated to the KKT system of (1)
and the strong regularity of the KKT point. Let F}, : X x R x §" = X x IR™ x S" be
the FB nonsmooth mapping associated to the KKT system of (1), that is,

Tl(x, 1, Y)
Fo(x, 1Y) = h(x) V(z,pY) e Xx R™ x S",
Oy (9(2),Y)
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where [ : X x IR™ x S” — IR is the Lagrangian function of (1). It is easy to verify
that if (Z,7,Y) is a KKT point of (1), then (%, g(Z), i, —Y,Y) is a KKT point of (2);
and conversely, if (Z, X, 71, S,Y) is a KKT point of (2), then (Z,7,Y) is a KKT point of
(1). Moreover, from Kummer inverse function theorem [12] and the Thibault directional
derivative of composite functions [25], it follows that the following result holds.

Lemma 4.3 If the mapping E., is a locally Lipschitz homeomorphism near a KKT point
(T, X,71,5,Y) of (2), then F., is a locally Lipschitz homeomorphism near (T,1i,Y ).

In fact, by Lemma 2.3 of [23], it is not hard to prove that the converse conclusion of
Lemma 4.3 also holds if J,g(Z): IR™ — S" is surjective. Thus, combining Lemma 4.3
and Theorem 4.1 above with [22, Theorem 4.1], we obtain the following result.

Theorem 4.2 Let T € X be a locally optimal solution to the NLSDP (1). Suppose that

Robinson’s CQ holds at this point. Let (fi,Y) € IR™ x S be such that (Z,[i,Y) is a
KKT point of (1). If (T,71,Y) is a strongly regular solution to the generalized equation:

j"ﬂl(l}/%Y) NX(‘I)
0e h(l‘) + | Ngrm (,u) , (47)
g9(z) Ns: (V)

then any element of OF,, (T, 11, Y) is nonsingular. Conversely, if J.g9(T) is surjective and

any element of OF,, (T, [, Y) is nonsingular, then (T,[1,Y") is a strongly regular solution
to the generalized equation (47).

5 Conclusions

In this paper, for a locally optimal solution to the nonlinear SDP (2), we established
the equivalence between the nonsingularity of Clarke’s Jacobian of the FB system and
the strong regularity of the KK'T point. This provides a new characterization for the
strong regularity of the nonlinear SDPs, as well as extends the result of [9, Corollary
3.7] for the FB system of variational inequalities with the polyhedral cone constraints
to the setting of SDCs. In addition, this result also implies that the semismooth New-
ton method [14, 15] applied to the FB system converges quadratically to a KKT point,
if the strong second-order sufficient condition and constraint nondegeneracy are satisfied.
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Appendix

The proof of Lemma 3.3. When (X,Y) = (0,0), the result is clear since U __(-,-) =
®_.(+,-). Therefore, in the following arguments, we assume that (X,Y) # (0,0).

Stepl: to prove that 0P . (X,Y) C 05V,..(0,0). Let (U,V) € 0pP,,(X,Y). By
Corollary 3.1 and the definition of the elements in dp®_, (X, Y), there exists a sequence
{(X* Y*)} in S" x S" converging to (X,Y) with C* = C(X*,Y*) = 0 such that (U, V) =
limy, 0o TP, (X*, Y¥). Fix any G, H € S". From formula (20), it follows that
(Z-U)G)+(T=V)(H) = lim Lo, [Lxe(G) + Lyw(H)]. (48)
Let C* = PEDF(PF)T be the spectral decomposition of C*, where D* is the diagonal
matrix of eigenvalues of C¥ and P* is a corresponding matrix of orthonormal eigen-
DF 0
0 Dj
limy,_,oo D¥ = D, which implies that D* is a nonsingular matrix for sufficiently large k
and limy_, Dg = 0. Without loss of generality, taking subsequences if necessary, we
assume that {P*} is a convergent sequence with limy_,., P¥ = P, which means that

vectors. Writing each D* in the same form as D, i.e., D¥ = [ } , we have

C(X,Y) = lim C* = lim P*D*(P*)T = P~D(P>)".

k—o0 k—o0

Hence, P> can be identified with P in (13). In the sequel, we use P instead of P>. Let
Zk = Eg,ﬁ [Lxx(G) + Lyx(H)]. (49)

With Z% = (P¥)TZFPF, X* = (PF)TX PF, YF = (PHTYEPF Gk = (PY)TGP* and
H* = (P*)THP*, we can rewrite equality (49) as the following block form

k 7k 7k Tk k 7k Z7k Dk =k =k
D/{%I{I’u + %NNDH Dﬂgﬁﬁ _'_ %ﬁﬁDﬁ == |i ,_‘,_];KKT :Z/B ‘| 9 (50)
DEZh+ 25, DiZs+ 2,05 | T L BT 2y
where
Ein = ﬁf{,’in (éﬁn) + )?Sﬁégn + éiﬁ)?gn + E?,fn <ﬁ[/§n) + ?nkﬁﬁgﬁ + ﬁfl‘:ﬁ?ﬁk’{’

—k _ vk Ak ~k vk vk ~k ~k vk
—kB XH,HGHB + GmiXmﬁ + XHBG,Bﬁ + GﬁﬁXﬁﬁ
vk 17k 7k vk vk 1Tk 7k vk
+YI§I€Hﬁﬁ + Hﬁmyﬁﬁ + Yf@ﬁHﬁﬁ + Hﬁﬁyﬁﬁ’
—k vk Ak, Sk vk Ak Sk 7k | 7Tk Ok Tk
Zps = XguGep+GpXp+ ﬁxgﬁ(Gﬁﬁ) + Y5 Hp + Hp Y + EY;B(HBB)'

Since X* — X and Y* = Y as k — oo, and X2+ Y2 = D2, it is not hard to see that

lim X* = X,.., li
k—o0 k—oo k—ro0
: vk _ v ; vk _ : vk _
0 Vo= Yo 20 Vo= 0, g V5= 0 oy
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Using these equalities and equation (50), we immediately obtain that

s ok p=1lp (O - (H

khj?o Z/«m - ‘CDK [LXKJ{(GK/H) + LYNI{ <H“”)] ’ (52)
o ok -1({yv vV H

kh—>I£lo Z,Qﬁ = D,i (XHKJGR,B + YnnHmﬁ> ) (53)

with G = PTGP and H = PTHP. Since (X*)2 + (Y*)2 = (D*)2, we have that

XgﬁX,’jB + (Xgﬁ)2 + Y;HYH’% + (Y;ﬁf = (Dg)2. (55)

By (55), Proposition 2.2 and Proposition 2.3, the sequences {LB%L;(%}’ {ﬁ;%gf/gﬁ}j
{EB% <X§néﬁﬁ +ék,.ﬁ—)z,’:5)} and {EB%(?ﬁkﬁﬁfjﬁJrljlgﬁYfﬁ)} are bounded. So is {Zf;} with

K,

~k -1 | vk ~k ~k vk vk orTk Tk vk ~k 7k

By taking a subsequence if necessary, we may assume that {Z’gﬁ} is convergent. Then,
together with equations (48)-(50) and (52)-(53), we obtain that

Z-U)(G)+(Z-V)(H)
) [cDi L (Gon) + Ls, (o] D2 (RusGis + Von o)

(GpnXyer + H V) D! lim Z%;

k—o0

PT. (57)

Now with X* and Y* we define a sequence {(U*, V¥)} in S” x S" by

Yk vk
U* ::P[ NOk )fgﬁ P" and V*:=P NOk Xﬁ,f P,
Xonw Xpp Yoo Yas

Clearly, (U*,V*) — (0,0) as k — oo. Let U* = PTU*P and V¥ = PTV*P. We next
argue that © is well defined at (U*, V*) for large enough k. Indeed, from (54), we have

X XEy + YY) = ()?555(',’:6 + ?ﬁ’;?jﬁ) - (f([jﬁ)? ko + ﬁ%?&) (58)
where X ko= X — X k and ?,fn = Y. — ?ﬁkﬁ. Then, applying Lemma 2.1 yields that
(XunXEs 4+ VoY) T DI ( X XE5 + YY)
= [(REXE, + TAYE) - (RR5, + 1578)]
D;? [()A(Em)?fﬁ + ?Hkn?/ﬁkﬁ) - ()?,’iﬁ)?é”ﬁ + ?nkﬁ?ﬁkﬁ)}
= 4<XSHX:3)TD;2<XEEX:5> + 4(?:/{?:[3)TD;2(}/}Hkni}/@kﬁ)

HA(XE XENTDA(XE X)) + 4V EYE)T DA (Y EYE). (59)

K,
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This implies that for sufficiently large k,
(?ﬁkﬁ)2+()~(§ﬁ)2+)z§m)~(fﬁ + ?Bkn?nkﬂ - ()zm)z]:ﬂ + ?nn?nkﬁ)TDEQ(Xmeﬁ+5~/mi}nkﬁ)
~ ~ ~ ~ ~ -~ ~\ 1
>~ Xgn <[ - 4XI]':HDI:2XI]§H> X:,B + Y,élfn (I - 4YHkI€DI:2YHkH> Yf@kﬁ + 5(
L=y Sk -2k vk, Lok Sk -2k \ vk o L k2
5 Xy (1= 8XE.D2XE, ) Kby + 5V, (1 - 8VADAYS ) Vi = 5(DE)? -0,

Dj)?

where the second inequality is using Xk ks }75,“ Xk YE 5 0ask — oo. By the definition

KK? KK

of ©, this shows that for k large enough, © is well defined at (Uk V’“) and O(U*, VF) - 0.
By Lemma 3.2, © is F-differentiable at (U, V*) with JO(U*, VF)(G, H) equal to

Lot | XiuGos + G Xy + Vi Hop + HanVly + Liu (Gag) + Ly (Hgo)
(BT o) D (BB + ToaT8)
~ (B8 K+ T4Tr) D2 (Realas + ViFlos) ] )
Using equations (55) and (51), and X*_ Yk — 0 as k — oo, we have from (59) that
O(U*, V*) = [(DE)? + o(1)(D})?] (61)
In addition, from equations (58) and (51), it is not hard to obtain that

1/2

(GBI{XHH + HBHYRH> D;Q (X.%KX,Ijﬁ + YRHYnkB)
+ <X§H‘§€HH + ?ﬁknfyvvm£> D_2 <)}nménﬁ + ?ﬁﬁlﬁﬁﬂ>
_ vk k vk ck _ k _ (qk
= REX) + XboRis + 55Xl + Y558 + Lxs (Rby) + Lyy (S5s)
with Rf, , Rl 5, S5, Sz — 0 as k — oo. Then, by (55) and Propositions 2.2-2.3, we have

Tim £, [(Gﬁnxm v HBHYM> D:? (X,mX,’jﬁ + YMYH’;)
(R R T4 Ton) D1 (Ranos + Vo) | =0
Together with equations (61) and (60), it is not hard to obtain that

lim JO(T*, V*)(@, ) = lim £} [XEKG,.;B + Ga Xty + VE M,y

k—o0 k—o0
+HYl + Lz (Gag) + E%(Hﬁﬁ)} :
Comparing it with (56), we have that limy_,. JO(U*, VF)(G, H) = limy_,e0 256 Also,
by Remark 3.2, the above arguments show that U, is F-differentiable at (U*, V*) with
(G + H) — i TU,, (U4, V¥)(G. 1)
—00
551 <‘C)?,m<é’iﬂ) + ‘C?,m (ﬁlﬁfi)> Dlzl()}:nnénﬁ + ?nm-ﬁnﬁ)
(Gﬂnch + HBRYHR)Dgl lim Zﬂﬁ

k—o0

pPT.
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Comparing it with (57) yields that U(G) + V(H) = limy_,o TV, (U*, VF¥)(G, H). Since
(G, H) is arbitrary in S” x S", this shows that (U, V) € 05V, (0,0). The result follows.
Step2: to prove that 0p¥,.,(0,0) C 0P, (X,Y). Let (U,V) € 05V,,(0,0). By
the definition of the elements in dpWV,,(0,0) and Remark 3.2, there exists a sequence
of matrices {(M*, N*)} in S x S™ converging to (0,0) with O(M*, N*) » 0 such that
(U, V) = limy oo T, (M*, N*), where MF = PTM*P and N* = PTN*P. Fix any

G,H € S" with G := PTGP and H := PTHP. From the definition of ¥__, we have
(Z-U)(G)+ (T -V)(H)
] ER G+ £y ()] DRl Tl | o
- (GpuXun + HpYer) Dt Jim JO(MF N™)(G, H)
—00

where, by Lemma 3.2, J @(M kN k)(é H ) has the following expression

Ak ~ sk Nk oTT 7 NZ ~
L g e i) [MﬂHGHﬂ + GpuMyig + N Hyp + Hpu Ny + Lip (Gisp)

+‘Cﬁ§ﬂ (ﬁﬁﬁ) o (Mgn)?/m + Ngﬁi}li”) D;2 <)?H/’vé/’v5 + ?Hﬁﬁliﬁ>
- (éﬁn)znn + ﬁﬂn?nn> D;2 (jznnﬁgﬁ + i}nnﬁg@)] .

With M* and N* we define a sequence {(X*, Y*)} in S" x S" by
%. 3, V. T
(Sg)" Mgy

Xk.=p PT and YF:=P| < oy pT 63
" @) N, o

where
Qk ._ gk e -2/v sk YN Tk ._ ark v -2/v sk YN
Sip = Mg — Xuw D" (XuuMs + YieNJg), Tog = Nig — Y DS (X Mg + Y NJ5).
Clearly, X* — X and Y* — Y as k — oco. Let C* = C(X*,Y*) and Ck = PT(C*)?2P
We next show that Ck > 0 for large enough k. A simple computation yields that
Ak 2 k k k 2 k ATk
Since C"’ > 0 and Cgﬁ > 0 for each k, by [10, Theorem 7.7.6] we only need to argue
that Fgﬁ C”gﬂ CEH(C'“ ) 16’;5 = 0 for large enough k. By computation, Fgﬁ equals
27k ATk Qk sk 2, Qk Tk
O (M*, N*) — (S, Mhy + Ty Ni)™ (D2+ 5,55, + BTM) (5%, M, + T, NE,)
27k ATk Tk qk
= O (M", N¥) — (S BM56+T6NBB) (S 5M55+T6N55)
207k ATk -2 k
Lo~ 2 NLIRY A7k Ak Ne 1~ -2 k
1=y Tk =27k \ Nk Tk v Nk v —2(% Ak v Nk
+§Nﬁﬁ(_[ - 4T5K‘DI{ T/‘Cﬁ)NIBB - (MBHXRK/ + NBHYRK/)DH (XHKMHB + YKHNHB)

[(Mm) (Ngﬂ)QHMBKM ﬂ+N[3,{N/jﬁ—(Mgﬁ)?m%—NEK?KK)D;Q()?MME/B+}7m]vfﬁ)

l\.')lH
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where the second inequality is due to Lemma 2.1, and the third inequality is using
SBK — 0 and T/BH — 0. Now applying Lemma 2.2 with A = ﬁ and B = N,’jﬁ, we know
that the second term on the right hand side of last equation is positive semidefinite,
which implies that for sufficiently large k, Fgﬁ >~ %@Z(Mk,Nk) > 0. Thus, we show
that C*F = 0, and consequently C* = 0 for sufficiently large k. By Corollary 3.1, &, is
F-differentiable at (X%, Y*) for sufficiently large k, and for any G, H € S",

(G + H) = lim T, (X*Y"(G, H) = Jim Loy (Lxe(G)+ Lyx(H)).  (64)

Let
Z8 = Loy (Lxr(G) + Lyr(H)).

Then, with Xk = PTXkP, Yk = PTYkP Ck = PTCkP and ZF = PTZkP we have

CFZF + ZFCF = X*G + GXF +YFH + HY*. (65)
Note that
Ck 0 A\
5]6 — ak /2 _ KK S + Wk ’
() 0 ©2(MF, N
where S
k

Wk = [ S 0 o 7 ShaMfs + Tis Ny

Applying [24, Lemma 6.2] and noting that C”’C =D? + S"”BSk BTﬁm we have

k_

(CEOY2 + o(|[WH])) Dvm+mW%]
WA.D "+ o(|[WF])) ©(M*, N*) + o||[WH]))

By this expression of C* and equation (65), we may calculate that

Lignyp(ZE) = (XkG 4 Gron XE 4+ XE, G + Gop X5,

+ Rk

+ (yman”“ + HHHYR]{; + YRkBHBH’ + H’ﬂﬂyﬁ

\/\_/V\/v

~Wh.D, 2 = 25D Wi + o [WF)

v
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where R¥_— 0 and éﬁﬁ — 0 as k — oo. From the first two equalities in (66), we have
lim Z%, = L5} (L, (Guw) + Ly, (Huw)), lim Zi = D (XewGlg + YauHeg).  (67)
In addition, applying Lemma 2.2 with A = M ,’jﬁ and B = N/jﬁ, we know that
MM+ N NSy = (M Xt N Y, D (Ko My + Y NJy) 2 0,
which, by the definition of ©, means that ©(M*, N*) = [(Mgﬁ)z + (Ngﬁ)z]l/z. Note that

1o 1
”‘C@(Mk Nk)(Mﬁﬂ)H H‘C le,Nk)‘CMgB(]W)H < §||£®(Mk,ﬁk)£ﬁgﬁ||2||I‘ﬂ||| < 5 |B|7

where [jg| is a |3| x | 3| unit matrix, and the last inequality is by Proposition 2.2. Hence,

{Egzﬁkﬁk)(ﬂgﬁ)} is bounded. Similarly, {Lézﬁkﬁk)(ﬁgﬁ)} is bounded. Thus,
Y L0 (TAD2 28, + Z5,DWE) = 0 and im £000 < (o([74])) =0

From the third equality of (66), the definition of X* Y*, and (63), it then follows that
klgg@ Zﬁﬁ = khjEO Eele ) ()?gﬁé,{g + éﬁ,{)?,’:/j + )?gﬁégg + éﬁg)?gﬁ
Vb Hup + Han¥s + Vi Ho + Hyp Vi)
= lim JO(M* N*)(G, H).
Combining this equality with equations (64)-(65) and (67), we obtain that
(G +H) = lim TP, (X* Y@, H)

Lot Ly, (Guw) + Ly (He))  Di'(XuwGrg + Yoo Hyp)

T
(GonXon + HsuVer) DL limy o JO(MF, N¥) (@, H) '

P

Comparing it with (62) yields that U(G) + V(H) = lim 00 J Py, (X, Y*)(G, H). Since
(G, H) is arbitrary in S™ x S™, this shows that (U, V) € 0P, (X,Y). The result follows.

Combining Step2 with Stepl, we complete the proof of Lemma 3.3. O
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