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1. Introduction

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the second-order cone linear com-
plementarity problem, denoted by SOCLCP(M, q), is to find a vector x ∈ Rn satisfying 
the following conditions:

x ∈ Kn, Mx + q ∈ Kn and 〈x,Mx + q〉 = 0, (1)

where 〈·, ·〉 denotes the Euclidean inner product, and Kn represents a second-order cone 
which is defined as

Kn := {(x1, x2) ∈ R×Rn−1 | ‖x2‖ ≤ x1}.

The SOCLCP(M, q) (1) belongs to the class of symmetric cone complementarity prob-
lems (SCCP for short), and has many applications in various fields, for example, in 
engineering, control, finance, robust optimization, and management science and so on. 
Moreover, the SOCLCP(M, q) also arises from the Karush-Kuhn-Tucker conditions of 
the second-order cone programming; and has been extensively studied from different as-
pects [1,2,4,6,7,11,12,20,30,31,39–41]. Moreover, the SOCLCP(M, q) (1) can be viewed as 
a generalization of the classical linear complementarity problem (LCP(M, q) for short), 
i.e., when Kn represents the nonnegative octant cone Rn

+, the SOCLCP(M, q) reduces 
to the linear complementarity problem.

Roughly, there are two main research directions regarding the complementarity prob-
lem. One is on the theoretical side in which its corresponding solution properties are 
investigated, see [5,12,14–16,35,36,39]. The other one focuses on the algorithm for solv-
ing the complementarity problems, see [1,2,7,8,11,12,17,19,20,22,30,34,40,41]. From the 
theoretical aspect, there are many issues about solutions that have been studied. These 
include the existence and the uniqueness of solutions, the boundedness of solution set, 
and the convexity of solution set, etc. In particular, for asserting the uniqueness of the 
solution to the LCP(M, q), a popular approach is looking into the matrix M such that 
the solution of LCP(M, q) exists and is unique for any q ∈ Rn. In the literature, it is 
well known that the following statements are equivalent ([5,12]):

(a) The LCP(M, q) has a unique solution for any q ∈ Rn.
(b) M is a P -matrix, i.e., all principal minors of M are positive.
(c) zi(Mz)i ≤ 0 for all i =⇒ z = 0.
(d) All real eigenvalues of M and its principal sub-matrices are positive.

Unfortunately, the favorable characterizations stated in (a)-(d) are not true any more 
for the linear complementarity problem over symmetric cones (SCLCP for short), includ-
ing second-order cone linear complementarity problem and positive semidefinite linear 
complementarity problem. In [16], Gowda et al. propose the P -property, the cross com-
mutative property and the GUS property to remedy them. In fact, via the Euclidean 
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Jordan algebra, Gowda et al. have concluded that the linear transformation possesses 
the GUS property for the SCLCP if and only if the linear transformation hold both 
the P -property and the cross commutative property. Nonetheless, there is difficulty to 
check the P -property of the linear transformation. To overcome it, Yang and Yuan [39]
consider the relationship between the GUS property and the related linear algebra of the 
linear transformation in a special symmetric cone linear complementarity problem, i.e., 
the second-order cone linear complementarity problem. There still need four conditions 
to verify the GUS property of the SOCLCP(M, q) by Yang and Yuan’s result. Besides, 
Chua and Yi in [9] claim an equivalent condition to the P -property of linear transfor-
mation in the SOCLCP(M, q). However, the result in [9] does not show the algebraic 
properties of the linear transformation M . Following all these directions, we study the 
relation between the P -property and the related properties of the linear transformation 
M in the SOCLCP(M, q) in this paper. More precisely, we provide matrix characteriza-
tions for checking the P -property, which is a new approach different from those in the 
literature. This is a suitable step, which helps verifications of the P -property and the 
GUS (globally uniquely solvable) property in SOCLCP(M, q). Our results indeed recover 
those conditions in [39]. Furthermore, as an application, we also study the unique so-
lution of the absolute value equations associated with second-order cone (SOCAVE for 
short).

To close this section, we say a few words about notations and the organization of 
this paper. As usual, R+ denotes the nonnegative reals, and Rn denotes the space of 
n-dimensional real column vectors. For any x, y ∈ Rn, the Euclidean inner product are 
denoted 〈x, y〉 := xT y, and the Euclidean norm ‖x‖ are denoted as ‖x‖ :=

√
〈x, x〉. 

The boundary and interior of the set C is denoted by bd(C) and int(C), respectively. 
x � (	) 0 means x ∈ Kn(−Kn). This paper is organized as follows. In Section 2, we 
briefly recall some concepts and properties regarding second-order cone and the projec-
tion of x onto second-order cone. Besides, the Jordan product, the spectral decomposition 
and the Peirce decomposition for elements x and y in Rn associated with second-order 
cone are reviewed. In Section 3, we discuss the sufficient and necessary conditions for 
the linear transformation in SOCLCP(M, q) having the P -property, and give the equiv-
alent conditions for the GUS property of the SOCLCP(M, q). In Section 4, in light of 
the matrix characterizations for P -property of the linear transformation established in 
Section 3, we explore the unique solvability of the SOCAVE via the GUS property of 
the SOCLCP.

2. Preliminaries

The second-order cone (SOC) in Rn (n ≥ 1), also called the Lorentz cone or ice-cream 
cone, is defined as

Kn :=
{
(x1, x2) ∈ R×Rn−1 | ‖x2‖ ≤ x1

}
,
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where ‖ · ‖ denotes the Euclidean norm. If n = 1, then K1 is the set of nonnegative reals 
R+. In general, a general second-order cone K could be the Cartesian product of SOCs, 
i.e.,

K := Kn1 × · · · × Knr .

For simplicity, we focus on the single SOC Kn because all the analysis can be carried 
over to the setting of Cartesian product. For any two vectors x = (x1, x2) ∈ R ×Rn−1

and y = (y1, y2) ∈ R ×Rn−1, the Jordan product of x and y associated with Kn is defined 
as

x ◦ y :=
[

xT y

y1x2 + x1y2

]
.

The Jordan product, unlike scalar or matrix multiplication, is not associative, which is a 
main source of complication in the analysis of optimization problems involved SOC, see 
[7,8,11] and references therein for more details. The identity element under this Jordan 
product is e = (1, 0, · · · , 0)T ∈ Rn. With these definitions, x2 means the Jordan product 
of x with itself, i.e., x2 := x ◦ x; and 

√
x with x ∈ Kn denotes the unique vector in Kn

such that 
√
x ◦ √

x = x. In light of this, the absolute value vector |x| with respect to 
SOC is computed by

|x| :=
√
x ◦ x.

From the definition of |x|, it is not easy to write out the expression of |x| explicitly. Fortu-
nately, there is another way to reach |x| via spectral decomposition and projection onto 
Kn. We elaborate it as below. For x = (x1, x2) ∈ R ×Rn−1, the spectral decomposition
of x with respect to Kn is given by

x = λ1e1 + λ2e2, (2)

where λi = x1 + (−1)i‖x2‖ for i = 1, 2 and

ei =

⎧⎨⎩ 1
2

(
1, (−1)i xT

2
‖x2‖

)T
if ‖x2‖ = 0,

1
2
(
1, (−1)iωT

)T if ‖x2‖ = 0,
(3)

with ω ∈ Rn−1 being any vector satisfying ‖ω‖ = 1. The two scalars λ1 and λ2 are 
called spectral values (or eigenvalues) of x; while the two vectors e1 and e2 are called 
the spectral vectors (or eigenvectors) of x, and the system {e1, e2} is called as a Jordan 
frame associated with Kn. Moreover, it is obvious that the spectral decomposition of 
x ∈ Rn is unique if x2 = 0.

We say that the elements x and y operator commute if Lx and Ly commute, i.e., 
LxLy = LyLx, where Lx denotes the Lyapunov transformation Lx : V → V defined by 
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Lx(z) := x ◦ z. It is known that x and y operator commute if and only if x and y have 
their spectral decompositions with respect to a common Jordan frame. Moreover, in the 
setting of Kn, the vectors x = (x1, x2) ∈ R ×Rn−1 and y = (y1, y2) ∈ R ×Rn−1 operator 
commute if and only if either y2 is a multiple of x2 or x2 is a multiple of y2.

In fact, there is another decomposition in Euclidean Jordan algebra V , which is the 
Peirce decomposition. From [10, Theorem IV.2.1], the space V is the orthogonal direct 
sum of eigenspaces Vij(i ≤ j), i.e., fix a Jordan frame {e1, e2, · · · , er} in a Euclidean 
Jordan algebra V . For any element x ∈ V , we have

x =
r∑

i=1
λiei +

∑
i<j

xij , (4)

where λi ∈ R and xij ∈ Vij , and the eigenspaces are described as follows:

Vii := {x ∈ V |x ◦ ei = x} = Rei

and

Vij :=
{
x ∈ V

∣∣x ◦ ei = 1
2x = x ◦ ej

}
for i = j,

for i, j ∈ {1, 2, · · · , r}. The expression 
∑r

i=1 λiei+
∑

i<j xij is called the Peirce decompo-
sition of x. According to the Peirce decomposition and Jordan frame {e1, e2} associate 
with the second-order cone, we have the Peirce decomposition of any vector y ∈ Rn

associated with SOC as follows:

y = μ1e1 + μ2e2 + μ3v12,

where v12 ∈ V12 is a unit vector.
Next, we consider the orthogonal projection onto the second-order cone. Let x+ be 

the projection of x onto Kn, while x− be the projection of −x onto its dual cone of Kn. 
Since Kn is self-dual, the dual cone of Kn is itself, i.e., (Kn)∗ = Kn. In fact, the explicit 
formula of projection of x = (x1, x2) ∈ R ×Rn−1 onto Kn is characterized in [7,8,10–12]
as below:

x+ =

⎧⎪⎨⎪⎩
x if x ∈ Kn,

0 if x ∈ −Kn,

u otherwise,
where u =

[
x1+‖x2‖

2(
x1+‖x2‖

2

)
x2

‖x2‖

]
.

Similarly, the expression of x− is in the form of

x− =

⎧⎪⎨⎪⎩
0 if x ∈ Kn,

−x if x ∈ −Kn,

w otherwise,
where w =

[
−x1−‖x2‖

2(
x1−‖x2‖

2

)
x2

‖x2‖

]
.
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Together with the spectral decomposition (2) of x, it can be verified that x = x+ − x−

and the expression of x+ and x− have the form:

x+ = (λ1)+e1 + (λ2)+e2,

x− = (−λ1)+e1 + (−λ2)+e2,

where (α)+ = max{0, α} for α ∈ R. Based on the definitions and expressions of x+ and 
x−, we introduce another expression of |x| associated with Kn. The alternative expression 
is obtained by the so-called SOC-function, which can be found in [3,4]. For any x ∈ Rn, 
we define the absolute value |x| of x with respect to SOC as |x| := x+ + x−. In fact, 
in the setting of SOC, the form |x| = x+ + x− is equivalent to the form |x| = √

x ◦ x. 
Combining the above expression of x+ and x−, it is easy to see that the expression of 
the absolute value |x| is in the form of

|x| =
[
(λ1)+ + (−λ1)+

]
e1 +

[
(λ2)+ + (−λ2)+

]
e2 =

∣∣λ1
∣∣e1 +

∣∣λ2
∣∣e2.

For subsequent analysis, we need the generalized Jacobian of the projection x+. They 
are stated as below and can be found in [8,18,21,32].

Theorem 2.1. The generalized Jacobian of the projection function (·)+ onto Kn is given 
as follows:

(a) Suppose that z2 = 0. Then, ∂(z+) =
{
tI
∣∣ t ∈ [0, 1]

}
.

(b) Suppose that z2 = 0.
(1) If z ∈ int(−Kn), i.e., z1 + ‖z2‖ < 0 and z1 − ‖z2‖ < 0, then

∂(z+) = {∇(0)} =
{[

0 0T
0 O

]}
.

(2) If z ∈ int(Kn), i.e., z1 + ‖z2‖ > 0 and z1 − ‖z2‖ > 0, then

∂(z+) = {∇(z)} =
{[

1 0T
0 I

]}
.

(3) If z /∈ Kn ∪ (−Kn), i.e., z1 + ‖z2‖ > 0 and z1 − ‖z2‖ < 0, then

∂(z+) = {∇(z+)} =

⎧⎨⎩1
2

⎡⎣ 1 zT
2

‖z2‖
z2

‖z2‖ I + z1
‖z2‖

(
I − z2z

T
2

‖z2‖2

) ⎤⎦
⎫⎬⎭ .

(4) If z ∈ bd(−Kn), i.e., z1 + ‖z2‖ = 0 and z1 − ‖z2‖ < 0, then

∂(z+) =

⎧⎨⎩ t

2

⎡⎣ 1 zT
2

‖z2‖
z2 z2z

T
2
2

⎤⎦ ∣∣∣∣ t ∈ [0, 1]

⎫⎬⎭ .

‖z2‖ ‖z2‖
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(5) If z ∈ bd(Kn), i.e., z1 + ‖z2‖ > 0 and z1 − ‖z2‖ = 0, then

∂(z+) =

⎧⎨⎩1
2

⎡⎣ 1 + t (1 − t) zT
2

‖z2‖

(1 − t) z2
‖z2‖ 2I − (1 − t) z2z

T
2

‖z2‖2

⎤⎦ ∣∣∣∣ t ∈ [0, 1]

⎫⎬⎭ .

Let

Ω(z) := {x ∈ Rn |x and z have the same Jordan frame}. (5)

For any x ∈ Ω(z), we know that x and z have the same Jordan frame with re-
spect to Kn. Therefore, x has the spectral decomposition x = λ1e1 + λ2e2, where 

ei = 1
2

(
1, (−1)i zT

2
‖z2‖

)T
if ‖z2‖ = 0 and ei = 1

2
(
1, (−1)iωT

)T if ‖z2‖ = 0. Based on 
Theorem 2.1, we obtain the following result by a simple calculation. We omit the de-
tailed proofs here.

Theorem 2.2. For any V ∈ ∂(z+) and any x ∈ Ω(z), the following hold:

(a) When z2 = 0, then V x = tx =
[
e1 e2

] [ t 0
0 t

][
λ1
λ2

]
with t ∈ [0, 1].

(b) When z2 = 0,
(1) If z ∈ int(−Kn), i.e., z1 + ‖z2‖ < 0 and z1 − ‖z2‖ < 0, then

V x = Ox =
[
e1 e2

] [ 0 0
0 0

][
λ1
λ2

]
.

(2) If z ∈ int(Kn), i.e., z1 + ‖z2‖ > 0 and z1 − ‖z2‖ > 0, then

V x = x =
[
e1 e2

] [ 1 0
0 1

][
λ1
λ2

]
.

(3) If z /∈ Kn ∪ (−Kn), i.e., z1 + ‖z2‖ > 0 and z1 − ‖z2‖ < 0, then

V x =
[

λ2
2

λ2
2

z2
‖z2‖

]
=
[
e1 e2

] [ 0 0
0 1

][
λ1
λ2

]
.

(4) If z ∈ bd(−Kn), i.e., z1 + ‖z2‖ = 0 and z1 − ‖z2‖ < 0, then

V x =
[

t
2λ2

tλ2
z2

]
=
[
e1 e2

] [ 0 0
0 t

][
λ1
λ2

]
with t ∈ [0, 1].
2 ‖z2‖
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(5) If z ∈ bd(Kn), i.e., z1 + ‖z2‖ > 0 and z1 − ‖z2‖ = 0, then

V x =
[

λ2+tλ1
2(

λ2−tλ1
2

)
z2

‖z2‖

]
=
[
e1 e2

] [ t 0
0 1

][
λ1
λ2

]
with t ∈ [0, 1].

3. The conditions of equivalence for M having P -property in SOCLCP(M, q)

In this section, we consider the sufficient and necessary conditions for M having the 
P -property in SOCLCP(M, q). Then, we present the conditions of equivalence for M
having the GUS property in SOCLCP(M, q). Before presenting the main results, we 
state the definition of the P -property and the GUS property.

Definition 3.1. Consider a linear transformation M : V → V where V is a Euclidean 
Jordan algebra. We say that

(a) M has the P -property if{
x and M(x) operator commute
x ◦M(x) 	 0

=⇒ x = 0.

(b) M has the GUS property if for all q ∈ V , the SOCLCP(M, q) has a unique solution.
(c) elements x and y operator commutes if Lx and Ly commute, i.e., LxLy = LyLx. In 

the setting of SOC, vectors x and y operator commutes amounts to x and y having 
the same Jordan frame.

(d) M has the cross commutative property if for any q ∈ V and for any two solutions x
and x̄ of SOCLCP(M, q), x operator commutes with ȳ and x̄ operator commutes y
where y := M(x) + q and ȳ := M(x̄) + q.

Choose and fix an arbitrary matrix M . By applying the spectral decomposition (2)-(3)
and the Peirce decomposition (4) to x and Mx, respectively (here x is an arbitrary 
element of Rn), we have

x = λ1e1 + λ2e2 and Mx = μ1e1 + μ2e2 + μ3v,

where v ∈ V12 is a unit vector satisfying vT ei = 0 (i = 1, 2). We compute

(Me1,Me2,Mv)

:= (m11e1 + m21e2 + m31v,m12e1 + m22e2 + m32v,m13e1 + m23e2 + m33v)

= (e1, e2, v)

⎡⎢⎣m11 m12 m13
m21 m22 m23
m m m

⎤⎥⎦ .
31 32 33



JID:LAA AID:15639 /FLA [m1L; v1.297] P.9 (1-24)
X.-H. Miao, J.-S. Chen / Linear Algebra and its Applications ••• (••••) •••–••• 9
Accordingly, it follows that

Mx = μ1e1 + μ2e2 + μ3v = (e1, e2, v)

⎛⎜⎝ μ1
μ2
μ3

⎞⎟⎠

= λ1Me1 + λ2Me2 + 0Mv = (e1, e2, v)

⎡⎢⎣m11 m12 m13
m21 m22 m23
m31 m32 m33

⎤⎥⎦
⎛⎜⎝ λ1

λ2
0

⎞⎟⎠ .

Hence, we obtain ⎛⎜⎝ μ1
μ2
μ3

⎞⎟⎠ =

⎡⎢⎣m11 m12 m13
m21 m22 m23
m31 m32 m33

⎤⎥⎦
⎛⎜⎝ λ1

λ2
0

⎞⎟⎠ .

If x and Mx operator commute, x and Mx have the same Jordan frame. Then, the above 
formulas can be simplified as

Mx = (e1, e2, v)

⎡⎢⎣m11 m12 m13
m21 m22 m23
0 0 m33

⎤⎥⎦
⎛⎜⎝ λ1

λ2
0

⎞⎟⎠ .

In fact, m33 ∈ R can take any value. For the sake of convenience, we let m33 = 1. In 
light of this, if x, Mx and z have the same Jordan frame, then for any V ∈ ∂(z+), it 
follows that

(I − V + VM)x = x− V x + VMx

= (e1, e2, v)(⎡⎢⎣ 1 0 0
0 1 0
0 0 1

⎤⎥⎦−

⎡⎢⎣ t1 0 0
0 t2 0
0 0 1

⎤⎥⎦+

⎡⎢⎣ t1 0 0
0 t2 0
0 0 1

⎤⎥⎦
⎡⎢⎣m11 m12 m13
m21 m22 m23
0 0 1

⎤⎥⎦)
⎛⎜⎝ λ1

λ2
0

⎞⎟⎠

:= (e1, e2, v)N

⎛⎜⎝ λ1
λ2
0

⎞⎟⎠ ,

where N :=

⎡⎢⎣ 1 0 0
0 1 0
0 0 1

⎤⎥⎦ −

⎡⎢⎣ t1 0 0
0 t2 0
0 0 1

⎤⎥⎦ +

⎡⎢⎣ t1 0 0
0 t2 0
0 0 1

⎤⎥⎦
⎡⎢⎣m11 m12 m13
m21 m22 m23
0 0 1

⎤⎥⎦ and the 

sub-matrix 

[
t1 0
0 t2

]
with t1, t2 ∈ [0, 1] are defined as in Theorem 2.2. Moreover, for 
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any z ∈ Rn, if x, Mx and z have the same Jordan frame, by a direct calculation, 
we achieve that (I − V + VM)x = 0 for V ∈ ∂(z+) if and only if the matrix N is 
nonsingular. Accordingly, we may consider an equivalent condition of the P -property of 
M via the nonsingularity of the matrix I −V +VM on Ω(z) as defined in (5). Here, the 
nonsingularity of the matrix I − V + VM on Ω(z) means that (I − V + VM)x = 0 for 
any 0 = x ∈ Ω(z).

Theorem 3.1. For the SOC setting, consider the definition of the P -property given as in 
Definition 3.1. Let Ω(z) be defined as in (5). Then, the matrix M has the P -property if 
and only if the matrix I − V + VM is nonsingular on the set Ω(z) for any V ∈ ∂(z+).

Proof. “⇒” Suppose that M has the P -property. For any x ∈ Ω(z), let x = λ1e1 +λ2e2, 

where ei = 1
2

(
1, (−1)i zT

2
‖z2‖

)T
if ‖z2‖ = 0 and ei = 1

2
(
1, (−1)iωT

)T if ‖z2‖ = 0. To 
proceed, we discuss the following several cases:

Case 1 When z2 = 0, we have V = tI with t ∈ [0, 1]. If t = 0, it follows that (I − V +
VM)x = x. It is clear that (I − V + VM)x = 0 for any x = 0. If t = 1, we have 
(I − V + VM)x = Mx. Since M has the P -property, by [16, Theorem 11], we know 
that the determinant of M is positive and the matrix M is invertible. Hence, there 
holds (I−V +VM)x = 0 for any 0 = x ∈ Ω(z). If t ∈ (0, 1), then (I−V +VM)x = 0
leads to Mx = V −1(V −I)x = t−1

t x. This implies that x and Mx operator commute 
and

x ◦Mx = t− 1
t

x ◦ x 	 0.

Since M has the P -property, it says x = 0. Thus, for this case of z2 = 0, we have 
that I − V + VM is nonsingular on the set Ω(z).

Case 2 When z ∈ int(−Kn), we have V = O. It is obvious that (I −V +VM)x = x = 0
for any 0 = x ∈ Rn. Hence, the matrix I − V + VM is nonsingular on the set Ω(z).

Case 3 When z ∈ int(Kn), we have V = I. For any x ∈ Rn, it follows that (I − V +
VM)x = Mx. Using the P -property of M , we obtain that the matrix M is invertible. 
Hence, we assert that I − V + VM is nonsingular on the set Ω(z).

Case 4 When z /∈ Kn ∪ (−Kn), we have

V = 1
2

⎡⎣ 1 zT
2

‖z2‖
z2

‖z2‖ I + z1
‖z2‖

(
I − z2z

T
2

‖z2‖2

) ⎤⎦ .

If (I − V + VM)x = 0 for any x ∈ Ω(z), it yields that VMx = (V − I)x. Then, 
applying Theorem 2.1 and Theorem 2.2 says that Mx also shares the same Jordan 
frame with x. By this, we let

x = λ1e1 + λ2e2 and Mx = μ1e1 + μ2e2,



JID:LAA AID:15639 /FLA [m1L; v1.297] P.11 (1-24)
X.-H. Miao, J.-S. Chen / Linear Algebra and its Applications ••• (••••) •••–••• 11
where ei = 1
2

(
1, (−1)i zT

2
‖z2‖

)T
if ‖z2‖ = 0 and ei = 1

2
(
1, (−1)iωT

)T if ‖z2‖ = 0. 
Besides, by direct calculation, we conclude that

VMx = μ2

2

(
1
z2

‖z2‖

)
and (V − I)x = λ1

2

(
−1
z2

‖z2‖

)
.

Combining with VMx = (V − I)x, it implies that λ1 = μ2 = 0. From this, we have

x ◦Mx = λ1μ1e1 + λ2μ2e2 = 0.

Again, since M has P -property, it says that x = 0. Therefore, under this case of 
z /∈ Kn ∪ (−Kn), we prove that I − V + VM is nonsingular on the set Ω(z).

Case 5 When z ∈ bd(−Kn), we have

V = t

2

⎡⎣ 1 zT
2

‖z2‖
z2

‖z2‖
z2z

T
2

‖z2‖2

⎤⎦ t ∈ [0, 1].

If t = 0, it is clear that (I − V + VM)x = x = 0 for any 0 = x ∈ Rn. If t ∈ (0, 1], it 
is easy to see

VMx = tμ2

2

(
1
z2

‖z2‖

)
and (V − I)x =

(
t−1
2 λ2 − 1

2λ1
( t−1

2 λ2 + 1
2λ1) z2

‖z2‖

)
.

Then, by VMx = (V − I)x, we obtain that

λ1 = 0 and μ2 = t− 1
t

λ2.

Hence, we have

x ◦Mx = λ1μ1e1 + λ2μ2e2 = t− 1
t

λ2
2e2 	 0.

Again, since M has the P -property, it follows that x = 0. Therefore, under this case 
of z ∈ bd(−Kn), we show that I − V + VM is nonsingular on the set Ω(z).

Case 6 When z ∈ bd(Kn), we have

V = 1
2

⎡⎣ 1 + t (1 − t) zT
2

‖z2‖

(1 − t) z2
‖z2‖ 2I − (1 − t) z2z

T
2

‖z2‖2

⎤⎦ t ∈ [0, 1].

If t = 1, we have V = I. Then, it is easy to verify that (I−V +VM)x = Mx. Using 
the P -property of M , we see that the matrix M is invertible. Thus, we conclude that 
I − V + VM is nonsingular on the set Ω(z). If t ∈ [0, 1), it can be verified that
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VMx = 1
2

(
tμ1 + μ2

(−tμ1 + μ2) z2
‖z2‖

)
and (V − I)x = (t− 1)λ1

2

(
1

− z2
‖z2‖

)
.

Applying VMx = (V − I)x again yields that

μ2 = 0 and μ1 = t− 1
t

λ1.

Hence, it follows that

x ◦Mx = λ1μ1e1 + λ2μ2e2 = t− 1
t

λ2
1e1 	 0.

Again, due to the P -property of M , it leads to (I − V + VM)x = 0 for any 0 = x ∈
Ω(z). Thus, we prove that I − V + VM is nonsingular on the set Ω(z).

All the aforementioned analysis indicate that I−V +VM is nonsingular on the set Ω(z).
“⇐” Support that x and Mx operator commute and x ◦Mx 	 0. Because x and Mx

have the same Jordan frame, we let

x = λ1e1 + λ2e2 and Mx = μ1e1 + μ2e2.

Therefore, x ◦Mx = λ1μ1e1 + λ2μ2e2 	 0, which implies that λ1μ1 ≤ 0 and λ2μ2 ≤ 0. 
Moreover, following the same arguments as above, we know that for any V ∈ ∂(z+) and 
x ∈ Ω(z), (I − V + VM)x = 0 if and only if the matrix N is nonsingular. Applying [13, 
Theorem 4.3], it follows that matrix

M :=

⎡⎢⎣m11 m12 m13
m21 m22 m23
0 0 1

⎤⎥⎦
is a P -matrix. From this, for any 0 = x ∈ Rn, i.e., the vector λ := (λ1, λ2, 0)T = 0, there 
exists λ1 = 0 or λ2 = 0 such that λi(Mλ)i > 0 (i = 1, 2). Since

Mx = μ1e1 + μ2e2 = (e1, e2, v)

⎛⎜⎝ μ1
μ2
0

⎞⎟⎠ = (e1, e2, v)M

⎛⎜⎝ λ1
λ2
0

⎞⎟⎠ = (e1, e2, v)Mλ,

we compute that

x ◦Mx = λ1μ1e1 + λ2μ2e2

= (e1, e2, v)

⎛⎜⎝ λ1μ1
λ2μ2

0

⎞⎟⎠ = (e1, e2, v)

⎛⎜⎝ λ1(Mλ)1
λ2(Mλ)2

0

⎞⎟⎠ .
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Hence, there exists λi(Mλ)i > 0 (i = 1, 2), which contradicts λiμi ≤ 0 (i = 1, 2). Thus, 
we have x = 0. To sum up, M has the P -property in the SOC setting. �
Example 3.1. Let M : R2 → R2 be defined as

M :=
[

1 0
0 0

]

Consider x := (0, x2)T . Then, we see that x and Mx = 0 operator commute and x ◦Mx 	
0. However, x = 0. By the definition of the P -property, it follows that the matrix M does 
not have the P -property. In fact, we can conclude this result by applying Theorem 3.1. 
To see this, for the case of z ∈ int(K2), we have V = I, which yields

I − V + VM = M.

Hence, we have |I − V + VM | = 0, which explains the matrix I − V + VM is singular. 
To sum up, using the above Theorem 3.1, we assert that the matrix M does not have 
the P -property.

Example 3.2. Let M : R2 → R2 be defined as

M :=
[

2 1
1 2

]
.

The matrix M is a symmetric positive definite matrix. Hence, we have xTMx > 0 for 
any x = 0, i.e., the matrix M is strongly monotone. By Theorem 11 in [16], this implies 
that the matrix M has the P -property. Moreover, by a direct calculation, for any case of 
the six cases in Theorem 3.1, we have |I−V +VM | = 0, which explains that the matrix 
I − V + VM is nonsingular. Then, from Theorem 3.1, it also follows that the matrix M
has the P -property.

In fact, the P -property of the linear transformation M : Rn → Rn can also be 
expressed in another equivalent conclusion.

Theorem 3.2. For the SOC setting, consider the definition of the P -property given as in 
Definition 3.1. Let Ω(z) be defined as in (5). Then, the matrix M has the P -property if 
and only if the matrix M +V (I−M) is nonsingular on the set Ω(z) for any V ∈ ∂(z+).

Proof. “⇒” Suppose that M has the P -property and x ∈ Ω(z). Let x = λ1e1 + λ2e2, 

where ei = 1
2

(
1, (−1)i zT

2
‖z2‖

)T
if ‖z2‖ = 0 and ei = 1

2
(
1, (−1)iωT

)T if ‖z2‖ = 0. Again, 
to proceed, we need to discuss several cases:
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Case 1 When z2 = 0, we have V = tI with t ∈ [0, 1]. If t = 1, from [M+V (I−M)]x = x, 
it is obvious that [M + V (I −M)]x = 0 for any x = 0. If t = 0, we have [M + V (I −
M)]x = Mx. It follows from the P -property of M that [M + V (I − M)]x = 0 for 
any 0 = x ∈ Ω(z). If t ∈ (0, 1), [M + V (I −M)]x = 0 can induce V x = (V − I)Mx. 
By Theorem 2.1 and Theorem 2.2, we know that x and Mx operator commute. 
Since V = tI, we obtain that V x = tx and (V − I)Mx = (t − 1)Mx. Based on 
V x = (V − I)Mx, this leads to Mx = t

t−1x and

x ◦Mx = t

t− 1x ◦ x 	 0.

Since M has the P -property, we have x = 0. Hence, for this case of z2 = 0, we prove 
that M + V (I −M) is nonsingular on the set Ω(z).

Case 2 When z ∈ int(−Kn), we have V = O, which yields [M + V (I − M)]x = Mx. 
From the P -property of M , it is easy to check that [M + V (I − M)]x = 0 for any 
0 = x ∈ Ω(z). Hence, we prove that M + V (I −M) is nonsingular on the set Ω(z).

Case 3 When z ∈ int(Kn), we have V = I. This implies that [M +V (I−M)]x = x. It is 
clear that (I−V +VM)x = 0 for any 0 = x ∈ Rn. Hence, we have that M+V (I−M)
is nonsingular on the set Ω(z).

Case 4 When z /∈ Kn ∪ (−Kn), we have

V = 1
2

⎡⎣ 1 zT
2

‖z2‖
z2

‖z2‖ I + z1
‖z2‖

(
I − z2z

T
2

‖z2‖2

) ⎤⎦ .

If [M + V (I −M)]x = 0 for x ∈ Ω(z), it follows from Theorem 2.1 and Theorem 2.2
that Mx has the same Jordan frame as x and z. In view of this, we let

x = λ1e1 + λ2e2 and Mx = μ1e1 + μ2e2,

where ei = 1
2

(
1, (−1)i zT

2
‖z2‖

)T
if ‖z2‖ = 0 and ei = 1

2
(
1, (−1)iωT

)T if ‖z2‖ = 0. By 

[M + V (I −M)]x = 0, we have V x = (V − I)Mx. By a direct calculation gives

V x = λ2

2

(
1
z2

‖z2‖

)
and (V − I)Mx = μ1

2

(
−1
z2

‖z2‖

)
.

Combining with V x = (V − I)Mx, it implies that μ1 = λ2 = 0. From this, we have

x ◦Mx = λ1μ1e1 + λ2μ2e2 = 0.

Since M has P -property, then we obtain x = 0. Therefore, under this case of z /∈
Kn ∪ (−Kn), we show that M + V (I −M) is nonsingular on the set Ω(z).
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Case 5 When z ∈ bd(−Kn), we have

V = t

2

⎡⎣ 1 zT
2

‖z2‖
z2

‖z2‖
z2z

T
2

‖z2‖2

⎤⎦ t ∈ [0, 1].

If t = 0, we have V = O and [M +V (I−M)]x = Mx. If follows from the P -property 
of M that [M + V (I −M)]x = 0 for 0 = x ∈ Ω(z). If t ∈ (0, 1], it follows that

V x = tλ2

2

(
1
z2

‖z2‖

)
and (V − I)Mx =

(
t−1
2 μ2 − 1

2μ1
( t−1

2 μ2 + 1
2μ1) z2

‖z2‖

)
.

Then, by V x = (V − I)Mx, we obtain that

μ1 = 0 and λ2 = t− 1
t

μ2.

Hence, we have

x ◦Mx = λ1μ1e1 + λ2μ2e2 = t− 1
t

μ2
2e2 	 0.

Since M has the P -property, then it follows that x = 0. Therefore, under this case 
of z ∈ bd(−Kn), we prove that M + V (I −M) is nonsingular on the set Ω(z).

Case 6 When z ∈ bd(Kn), we have

V = 1
2

⎡⎣ 1 + t (1 − t) zT
2

‖z2‖

(1 − t) z2
‖z2‖ 2I − (1 − t) z2z

T
2

‖z2‖2

⎤⎦ t ∈ [0, 1].

If t = 1, we have V = I. It is easy to check that [M + V (I −M)]x = x = 0 for any 
0 = x ∈ Rn. If t ∈ [0, 1), it follows that

V x = 1
2

(
tλ1 + λ2

(−tλ1 + λ2) z2
‖z2‖

)
and (V − I)Mx = (t− 1)μ1

2

(
1

− z2
‖z2‖

)
.

Then, by V x = (V − I)Mx, we conclude that

λ2 = 0 and λ1 = t− 1
t

μ1.

Hence, it yields that

x ◦Mx = λ1μ1e1 + λ2μ2e2 = t− 1
t

μ2
1e1 	 0.

From the P -property of M , this leads to [M +V (I−M)]x = 0 for any 0 = x ∈ Ω(z). 
Hence, we prove that M + V (I −M) is nonsingular on the set Ω(z).
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All the aforementioned analysis shows that M+V (I−M) is nonsingular on the set Ω(z).
“⇐” Suppose that x and Mx operator commute and x ◦Mx 	 0. It follows that x

and Mx have the same Jordan frame, which means

x = λ1e1 + λ2e2 and Mx = μ1e1 + μ2e2.

Then, x ◦ Mx = λ1μ1e1 + λ2μ2e2 	 0, which implies that λ1μ1 ≤ 0 and λ2μ2 ≤ 0. 
Moreover, similar to the arguments for Theorem 3.1, we know that for any V ∈ ∂(z+)
and 0 = x ∈ Ω(z), there holds

[M + V (I −M)]x = V x + (I − V )Mx

= (e1, e2, v)
{⎡⎢⎣ t1 0 0

0 t2 0
0 0 1

⎤⎥⎦+

⎡⎢⎣ 1 − t1 0 0
0 1 − t2 0
0 0 0

⎤⎥⎦
⎡⎢⎣m11 m12 m13
m21 m22 m23
0 0 1

⎤⎥⎦}
⎛⎜⎝ λ1

λ2
0

⎞⎟⎠

:= (e1, e2, v)Ñ

⎛⎜⎝ λ1
λ2
0

⎞⎟⎠ ,

where Ñ :=

⎡⎢⎣ t1 0 0
0 t2 0
0 0 1

⎤⎥⎦ +

⎡⎢⎣ 1 − t1 0 0
0 1 − t2 0
0 0 0

⎤⎥⎦
⎡⎢⎣m11 m12 m13
m21 m22 m23
0 0 1

⎤⎥⎦ and the sub-

matrix 

[
t1 0
0 t2

]
with t1, t2 ∈ [0, 1] are defined as in Theorem 2.2. In addition, for 

V ∈ ∂(z+) and any z ∈ Rn, by a direct calculation, we assert that [M +V (I−M)]x = 0
for 0 = x ∈ Ω(z) if and only if the matrix Ñ is nonsingular. By [13, Theorem 4.3] again, 
it follows that the matrix

M :=

⎡⎢⎣m11 m12 m13
m21 m22 m23
0 0 1

⎤⎥⎦
is a P -matrix. The remaining arguments are quite similar to those in Theorem 3.1. Hence, 
the matrix M has the P -property. �
Remark 3.1. When the SOCLCP(M, q) reduces to the classical linear complementarity 
problem (LCP), Theorem 3.1 and Theorem 3.2 are exactly the equivalent conditions of 
P -matrix, see [12].

Based on the equivalent conditions of the linear transformation having the P -property 
for the SOCLCP(M, q), we study the conditions for M has the GUS property for the 
SOCLCP(M, q) as below.
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Theorem 3.3. Consider the SOCLCP(M, q). For the linear transformation M : Rn →
Rn, there holds

GUS-property = P-property + Cross Commutative.

Proof. This is an immediate consequence of [16, Theorem 14]. �
For any two solution x and x̄ of SOCLCP(M, q), we know that x and y = Mx + q

have the same Jordan frame, and x̄ and ȳ = Mx̄ + q have the same Jordan frame, 
respectively. By the definition of the Cross Commutative property again, we have that 
SOCLCP(M, q) has the Cross Commutative property if and only if x, x̄, y and ȳ all have 
the same Jordan frame. Hence, combining with Theorem 3.1 and Theorem 3.2, we state 
the sufficient and necessary condition of the GUS property of M for the SOCLCP(M, q).

Theorem 3.4. Consider the SOCLCP(M, q) and let Ω(z) be defined as in (5). Then, the 
linear transformation M has the GUS property if and only if it satisfies the following 
conditions:

(a) for any V ∈ ∂(z+), we have that the matrix (I − V + VM) (or M + V (I −M)) is 
nonsingular on the set Ω(z).

(b) for any two solutions x and x̄ of SOCLCP(M, q), x, x̄, y = Mx + q and ȳ = Mx̄+ q

all have the same Jordan frame.

Proof. The results are clear by the definition of the Cross Commutative property, The-
orem 3.1, Theorem 3.2, and Theorem 3.3. �

In light of Theorem 21 and Theorem 22 in [16] and our results, we have two other 
equivalent conditions of the GUS property.

Theorem 3.5. Consider the SOCLCP(M, q) and let Ω(z) be defined as in (5). Then, the 
following statements hold:

(a) If the matrix M is symmetric, then M has the GUS property if and only if for any 
V ∈ ∂(z+), the matrix (I −V +VM) ( or M +V (I −M)) is nonsingular on the set 
Ω(z).

(b) If the matrix M is monotone, then M has the GUS property if and only if for any 
V ∈ ∂(z+), the matrix (I −V +VM) ( or M +V (I −M)) is nonsingular on the set 
Ω(z).

Proof. These results are obvious by applying [16, Theorem 21 and Theorem 22]. �
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Example 3.3. Let M : R4 → R4 be defined as

M :=

⎡⎢⎢⎢⎣
4 0.5 0 0

0.5 4 0.5 0
0 0.5 4 0.5
0 0 0.5 4

⎤⎥⎥⎥⎦ .

By a direct calculation, we can verify that for any 0 = x ∈ Ω(z) and V ∈ ∂(z+), there 
holds [I − V + VM ]x = 0 or [M + V (I − M)]x = 0 for any case of those six cases in 
Theorem 3.1. This asserts that the matrix I − V + VM is nonsingular on the set Ω(z). 
Then, by Theorem 3.1 and the symmetry of M , we have that M has the GUS property 
for the SOCLCP(M, q). On the other hand, we find that M is a symmetric positive 
definite matrix. Hence, the matrix M is strongly monotone. By [12, Proposition 2.3.11]
or [16, Theorem 17] again, the SOCLCP(M, q) has a unique solution for any q ∈ Rn.

4. Application

In this section, we apply the matrix characterizations for the P -property of the linear 
transformation established in Section 3 to investigate condition under which the unique 
solution of the below SOCAVE is guaranteed. All the results shown in this section are 
different from those in [28], which also studied the same issue.

The absolute value equation associated with second-order cone, abbreviated as SO-
CAVE, is in the form of

Ax− |x| = b. (6)

Unlike the standard absolute value equation, here |x| means the absolute value of x
coming from the square root of the Jordan product “◦” of x and x associated with Kn, 
that is, |x| := (x ◦ x)1/2. More details about the classic absolute value equation (AVE 
for short) can be found in [23–27,33,37,38], whereas some references for SOCAVE are 
[18,28,29].

First, we claim that under mild conditions, the SOCAVE (6) is indeed equivalent to 
a special SOCLCP(M, q) as below:

z ∈ Kn, w = Mz + q ∈ Kn and 〈z, w〉 = 0,

where M ∈ Rn×n and q ∈ Rn.

Theorem 4.1. Consider the SOCLCP(M, q) (1) and the SOCAVE (6).

(a) Suppose that 1 is not an eigenvalue of A, the SOCAVE (6) can be recast as the below 
SOCLCP(M, q):
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z ∈ Kn, w = Mz + q ∈ Kn and 〈z, w〉 = 0,

where M = (A + I)(A − I)−1, q = 2(A − I)−1b and z = (A − I)x − b.
(b) Conversely, if 1 is not an eigenvalue of M , then the SOCLCP(M, q) (1) can be 

rewritten as the following special SOCAVE:

Ax− |x| = b,

where A = (M − I)−1(M + I), b = (M − I)−1q and x = 1
2 (M − I)−1z + q.

Proof. (a) Suppose that we are given the SOCAVE (6), i.e., Ax −b = |x|, which is further 
equivalent to the following conditions:⎧⎪⎨⎪⎩

x and Ax− b have the same Jordan frame,
|x| 	 Ax− b,

|x| � Ax− b.

(7)

Under the first condition in (7) that x and Ax −b have the same Jordan frame, we obtain

|x| 	 Ax− b ⇐⇒ −Ax + b 	 x 	 Ax + b ⇐⇒
{

Ax− b− x � 0,
Ax− b + x � 0.

Using Ax − b = |x| gives ‖Ax − b‖ = ‖|x|‖ = ‖x‖, which says

〈Ax− b− x,Ax− b + x〉 = 0.

Hence, we have

(A− I)x− b ∈ Kn, (A + I)x− b ∈ Kn and 〈Ax− b− x,Ax− b + x〉 = 0.

Let z := (A − I)x − b. In addition, from the assumption that 1 is not an eigenvalue of A, 
we know that the matrix A −I is nonsingular. Thus, it follows that x = (A −I)−1(z+b). 
This implies that

(A + I)x− b = (A + I)(A− I)−1(z + b) − b

= (A + I)(A− I)−1z + 2(A− I)−1b

:= Mz + q,

where M := (A + I)(A − I)−1 and q = 2(A − I)−1b.
(b) Since 1 is not an eigenvalue of M , we have that the matrix M − I is invertible. 
Consider the SOCLCP(M, q):

z ∈ Kn, w = Mz + q ∈ Kn and 〈z, w〉 = 0,
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with M ∈ Rn×n and q ∈ Rn, let

A := (M − I)−1(M + I), b := (M − I)−1q and x := 1
2 [(M − I)z + q].

Then, we have

z = (A− I)x− b ∈ Kn and Mz + q = (A + I)x− b ∈ Kn.

By the properties of the SOCLCP(M, q), it follows that z = (A − I)x − b � 0 and 
Mz + q = (A + I)x − b � 0 share the same Jordan frame. Moreover,

〈z,Mz + q〉 = 〈Ax− b− x,Ax− b + x〉 = 0.

From the fact that z = (A − I)x − b � 0 and Mz + q = (A + I)x − b � 0 have 
the same Jordan frame, we know that Ax − b and x have the same Jordan frame, and 
−Ax +b 	 x 	 Ax +b, i.e., |x| 	 Ax −b. Therefore, we have ‖|x|‖ ≤ ‖Ax −b‖. In addition, 
it follows from 〈z, Mz + q〉 = 〈Ax − b − x, Ax − b + x〉 = 0 that ‖Ax − b‖ = ‖x‖ = ‖|x|‖. 
Combining with the property of Ax − b and x having the same Jordan frame again, this 
leads to Ax − b = |x|. Thus, the proof is complete. �
Remark 4.1. We make a couple remarks regarding Theorem 4.1 as below.

• Hu, Huang and Zhang [18] have shown an equivalent expression for the SOCAVE 
(6). However, the form is not in the standard SOCLCP(M, q). Here, under the mild 
condition that 1 is not an eigenvalue of A or M , we provide the equivalence of the 
SOCAVE (6) to the standard SOCLCP(M, q).

• Note that the relation

|x| 	 Ax− b ⇐⇒ −Ax + b 	 x 	 Ax + b

does not hold without the condition of x and Ax − b sharing the same Jordan frame. 
Indeed, the direction |x| 	 Ax − b =⇒ −Ax + b 	 x 	 Ax + b is always true, 
whereas the converse is not necessarily true without the condition of x and Ax − b

sharing the same Jordan frame. For instance, let

x :=

⎡⎢⎣ 0
0
1
4

⎤⎥⎦ , A :=

⎡⎢⎣ 0 0 5
0 1 0
0 0 1

⎤⎥⎦ , and b :=

⎡⎢⎣ 0
1
0

⎤⎥⎦ .

It can be verified that x and y := Ax − b = (5
4 , 1, 

1
4)T do not have the same Jordan 

frame. In addition, we compute that |x| = (1
4 , 0, 0)T . Then, it is easy to see that 

−y 	 x 	 y. But, y − |x| /∈ K3 i.e., |x| 	 y is not true.
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Theorem 4.2. Consider the SOCAVE (6) and let Ω(z) be defined as in (5). The SOCAVE 
(6) has a unique solution for any b ∈ Rn if and only if the matrix A satisfies the following 
conditions:

(a) for any z ∈ Rn and V ∈ ∂(z+),

A− I + 2V or A + I − 2V

is nonsingular on the set Ω(z).
(b) for any two solution x and x̄ of SOCAVE (6), (A −I)x +b, (A −I)x̄−b, y = (A +I)x −b

and ȳ = (A + I)x̄− b all share the same Jordan frame.

Proof. According to Theorem 4.1, when 1 is not an eigenvalue of A, the SOCAVE (6)
can be recast as a SOCLCP(M, q):

(A− I)x− b ∈ Kn, (A + I)x− b ∈ Kn and 〈Ax− b− x,Ax− b + x〉 = 0.

Let z := (A − I)x − b. Then, we observe

w := (A + I)x− b = (A + I)(A− I)−1z + 2(A− I)−1b = Mz + q,

where M := (A + I)(A − I)−1 and q := 2(A − I)−1b. This says that, under the condition 
of 1 being not an eigenvalue of A, the unique solution to the SOCAVE (6) is exactly the 
unique solution of the below SOCLCP(M, q):

z ∈ Kn, w = Mz + q ∈ Kn and 〈z, w〉 = 0.

Moreover, we compute that

(I − V + VM) =
[
(I − V )(A− I) + V (A + I)

]
(A− I)−1 = (A− I + 2V )(A− I)−1

and

M +V (I −M) = (A+ I)(A− I)−1 +V
[
I − (A+ I)(A− I)−1] = (A+ I − 2V )(A− I)−1.

Combining these with Theorem 3.4, it follows that the conditions for A are equivalent 
to the conditions (a) and (b). Thus, the proof is complete. �

By applying Theorem 3.5 and Theorem 4.2, we achieve two other equivalent conditions 
for the existence and uniqueness of solutions to the SOCAVE (6).

Theorem 4.3. Consider the SOCAVE (6) and let Ω(z) be defined as in (5). Then, the 
following statements hold:
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(a) If the matrix A satisfies the condition: (AT − I)−1(AT + I) = (A + I)(A − I)−1, then 
the SOCAVE (6) has a unique solution if and only if for any z ∈ Rn and V ∈ ∂(z+),

A− I + 2V or A + I − 2V

is nonsingular on the set Ω(z).
(b) If the matrix A satisfies the condition: ‖Az‖ ≥ ‖z‖ for any z ∈ Rn, then the SO-

CAVE (6) has a unique solution if and only if for any z ∈ Rn and V ∈ ∂(z+),

A− I + 2V or A + I − 2V

is nonsingular on the set Ω(z).

Proof. (a) In view of Theorem 3.5 and Theorem 4.2, in order to prove part (a), it suffices 
to verify that the matrix M is symmetric, i.e., MT = M . Since M = (A + I)(A − I)−1, 
it is clear that MT = (AT − I)−1(AT + I) = (A + I)(A − I)−1 = M . Hence, the desired 
result follows.

(b) By Theorem 4.1, we know that if 1 is not an eigenvalue of A, the SOCAVE 
(6) can be converted to a SOCLCP(M, q). Thus, it says that A − I is invertible. Let 
z = (A − I)−1x, i.e., x = (A − I)z. If follows from M = (A + I)(A − I)−1 that

xTMx = 〈(A− I)z, (A + I)z〉
= 〈Az,Az〉 − 〈z, z〉
= ‖Az‖2 − ‖z‖2.

Combining with the condition ‖Az‖ ≥ ‖z‖, we obtain that xTMx ≥ 0. Besides, from 
the arbitrariness of z ∈ Rn, we see that the element x = (A − I)z is also arbitrary 
in Rn, which implies the monotonicity of M in Rn. Then, applying Theorem 3.5 and 
Theorem 4.2 again yields the desired result. �
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