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Abstract. This paper aims at a predictor-corrector interior-point algorithm

for solving weighted linear complementarity problem with P∗(κ)-matrices, which

is a variant of weighted complementarity problem and has wide applications
in science, engineering, and economics. We first apply the algebraic equiv-

alent transformation technique, and then use the identity function to deter-

mine the new search directions. Under suitable conditions, the feasibility and
convergence of the algorithm are established. Moreover, we show that the

proposed algorithm has polynomial-time complexity. As far as we know, this

is the first predictor-corrector interior-point algorithm for P∗(κ)-weighted lin-
ear complementarity problem based on the above-mentioned search directions.

Preliminary numerical results demonstrate that our algorithm performs well

and efficiently on the test problems.

1. Introduction. In this paper, we consider the weighted complementarity prob-
lem (WCP) which is to find a pair of vectors belonging to the intersection of a
manifold with a cone such that their product in a certain algebra equals a given
weight vector. On one hand, the motivation for introducing WCP is that a wide
range of problems [33, 36] in engineering, science and economics can be formulated
as WCP. For example, the Eisenberg-Gale markets [18] and the perfect price dis-
crimination market model [15] can be phrased as WCPs. Even when an equilibrium
problem can also be modeled as a complementarity problem (CP), it is shown that
WCP model leads to a highly efficient method in some cases [26]. Besides, WCPs
can be used to model equilibrium problems in atmospheric chemistry [20] and multi-
body dynamics [14]. On the other hand, the WCP is a very general complementarity
system which significantly extends the CP [4, 5]. In addition, several interior-point
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algorithms (IPAs) for CP have been generalized as efficient algorithms for WCP.
However, the existence of weight vector makes the theory and algorithms of WCP
more complex than that of CP.

The roots of WCP came from [19], and the P∗(κ)-WLCP was introduced by Illés
et al. [16] in 1997. The results in [16] with detailed proofs were published in Nagy’s
Ph.D. thesis [25]. However, it has received great attention in recent years until Potra
[26] gave the concept of WCP. Potra [26] proved that the Fisher market equilibrium
problem in economics could be a skew-symmetric WLCP and proposed two IPAs
for solving WLCP. Subsequently, Potra [27] introduced the concept of sufficient
WLCP, in which he extended not only the concept of monotone WLCP, but also
the definition of sufficient linear complementarity problem (LCP) given by Cottle et
al. [6]. Potra [27] also presented a corrector-predictor algorithm for sufficient WLCP
and showed that the complexity bound of the algorithm is proportional to 1 + κ
under certain conditions. Chi et al. [7] gave some existence and uniqueness results
for weighted horizontal linear complementarity problem under Euclidean Jordan
algebras. Especially, Asadi et al. [1] extended the full-Newton step IPA initiated
by Roos et al. [29] for linear optimization (LO) to monotone WLCP (MWLCP),
which has the best-known iteration complexity. In [8, 9], a full-Newton step IPA
was designed to solve WLCP.

In recent years, a few Newton methods have been proposed for solving WCPs.
For instance, by using a one-parametric class of smoothing functions involving the
weight vector, Tang and Zhang [31] proposed a smoothing Newton algorithm with
non-monotone line search for WCP. Lately, Tang and Zhou [32] presented a modified
damped Gauss-Newton method for non-monotone WLCP. Compared to Newton
algorithms, IPAs can find an approximate solution in polynomial time. In practice,
predictor-corrector interior-point algorithm (PC IPA) is a class of the most effective
IPAs. The first PC IPA for LO was provided by Mehrotra [22] and Sonnevend et
al. [30]. Nonetheless, the PC IPAs usually perform more corrector steps after each
predictor step in the main iteration. Then, Mizuno, Todd and Ye [21] introduced
the first Mizuno-Todd-Ye (MTY) PC IPA for LO, which uses only one corrector
step in a main iteration. MTY PC IPA was the first method having both O(

√
nL)

iteration complexity and superlinear convergence. Although, Miao [23] extended
MTY IPA to P∗(κ)-LCP, the handicap κ of P∗(κ)-matrix is not sometimes easy to
compute. Miao’s algorithm is not suitable for general P∗(κ)-LCPs. Recently, PC
IPAs have received renewed attention [10, 11], there are few available results on PC
IPAs for P∗(κ)-WLCP.

The determination of search directions is crucial for IPAs, which could be defined
by barrier functions. Peng et al. [28] introduced the concept of a self-regular func-
tion as well as a class of search directions based on self-regular proximity functions.
Darvay [12] proposed the algebraic equivalent transformation (AET) technique to
obtain the search directions for LO. He [12] applied a function φ(t) =

√
t to both

sides of a system of equations that defined the central path. By applying Newton’s
method to the transformed system, a search direction is obtained. Later, Achache
[2] and Wang [34] extended the AET technique to convex quadratic programming
and monotone LCPs over symmetric cones, respectively. Zhang and Xu [37] used
a simple univariate function to formulate the search direction for LO that employs
only one kind of search step.

According to Darvay’s work, the case of the identity map φ(t) = t can be regarded
as a trivial and special case of the AET approach, which implies that IPAs do not
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use any transformation of the central path. Roos et al. [29] and Wang et al. [35]
used φ(t) = t for constructing search directions for LO and P∗(κ)-LCP, respectively.
Using the same function φ(t) = t, Achache and Tabchouche [3] gave a full-Newton
step feasible IPA for monotone horizontal LCP. Later, based on φ(t) = t, Asadi et
al. [1] studied IPA for MWLCP and gave its computational complexity. Darvay et
al. [11] introduced PC IPAs for P∗(κ)-LCP that are based on the AET technique
and they used function φ(t) = t2.

Table 1. Analysis of IPAs with φ(t) = t

Problem Algorithm Variance vector Complexity

LO [29] IPA v =
√

xs
µ O

(√
n log n

ε

)
LCP [3] IPA v =

√
xs
µ O

(√
n log n

ε

)
P∗(κ)-LCP [35] IPA v =

√
xs
µ O

(
(1 + 4κ)

√
n log n

ε

)
MWLCP[1] IPA v =

√
xs
µ O

(
5(∥ω−x0s0∥+min x0s0)

min x0s0 log
min x0s0

2 +∥ω−x0s0∥
ε

)
P∗(κ)-WLCP PC IPA v =

√
xs
ω(t) O

(
(1 + 4κ′)

√
n log

5
4(1+4κ′)

max x0s0+∥x0s0−ω∥
ε

)

The aim of our paper is to propose a PC IPA for P∗(κ)-WLCP by using the
identity function. In summary, we use the AET technique with function φ(t) = t to
determine the search directions for P∗(κ)-WLCP. We compare some existing IPAs
in [1, 3, 29, 35] with our PC IPA in Table 1. The main contributions of this article
are described below.

1. Based on function φ(t) = t, we extend IPA in [1, 3, 29, 35] to P∗(κ)-WLCP.
2. This is the first PC IPA for P∗(κ)-WLCP based on the function φ(t) = t.
3. The analysis of the PC IPA is more complex than that of the algorithms in

[1, 3, 29, 35], due to the existence of non-negative weight vectors.
4. Under some mild assumptions, all the iterates generated by the PC IPA are

feasible and always lie in the local convergence neighborhood.
5. We give an iteration bound for P∗(κ)-WLCP that coincides with the best-

known iteration bound for these types of problems. Moreover, numerical
results indicate the efficiency of the proposed algorithm.

The paper is organized as follows. In Section 2, we describe some concepts
related to the P∗(κ)-WLCP and give a PC IPA for P∗(κ)-WLCP. Section 3 is
dedicated to the complexity analysis of the IPA. Section 4 contains numerical results
to demonstrate the efficiency of this IPA. Finally, concluding remarks are provided
in Section 5. To close this section, we say a few words about the notations used
in this paper. Rn represents the space of all n dimensional vectors. Rn

+ and Rn
++

mean the nonnegative orthant and positive orthant of Rn, respectively. We denote

by φ(x) the vector with components φ(xi), i.e., φ(x) = [φ(x1), φ(x2), . . . , φ(xn)]
T
.

Given x, s ∈ Rn
+, the inner product of vectors x and s is defined as xTs =

n∑
i=1

xisi,

whereas xs = (xisi)1≤i≤n is the componentwise product and the same as for the
vectors x/s = (xi/si)1≤i≤n (si ̸= 0),

√
x = (

√
xi)1≤i≤n. We denote by ∥x∥ the

2-norm of x and by ∥x∥∞ the infinity norm of x. X = diag(x) is a diagonal matrix
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with the elements of the vector x as diagonal entries and e represents the vector of
all ones.

2. PC IPA for P∗(κ)-WLCP. For subsequent needs, we recall basic concepts
regarding P∗(κ)-WLCP and then present a PC IPA (predictor-corrector interior-
point algorithm).

2.1. The central path for P∗(κ)-WLCP. The P∗(κ)-WLCP seeks for a pair of
vectors (x, s) ∈ R2n satisfying

−Mx+ s = q, x ≥ 0,

xs = ω, s ≥ 0,
(1)

where vector q ∈ Rn, weight vector ω ∈ Rn
++ and M ∈ Rn×n. A matrix M is called

a P∗(κ)-matrix [19] if there exists a nonnegative number κ such that

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0, ∀x ∈ Rn,

where I+(x) = {i : xi(Mx)i > 0} and I−(x) = {i : xi(Mx)i < 0}. For the case
κ = 0, we have∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i = xTMx ≥ 0, ∀x ∈ Rn.

Then P∗(0)-matrix reduces to the positive semidefinite matrix. The infimum
value of κ ≥ 0 such that M is P∗(κ)-matrix is called the handicap of matrix M .
For notational convenience, we denote by

F :=
{
(x, s) ∈ Rn

+ × Rn
+ : −Mx+ s = q

}
the feasible region of WLCP, and by

F∗ := {(x, s) ∈ F : xs = ω}

the solution set of WLCP. The relative interior of WLCP is described by

F0 :=
{
(x, s) ∈ Rn

++ × Rn
++ : −Mx+ s = q

}
.

Throughout the paper, we assume F0 ̸= ∅, i.e., there is a strictly feasible initial
point (x0, s0) ∈ F0. Now, define

ω(t) = (1− t)ω + tx0s0, t ∈ (0, t0], t0 = 1. (2)

In order to find an approximate solution of P∗(κ)-WLCP, we consider system

−Mx+ s = q, x ≥ 0,

xs = ω(t), s ≥ 0.
(3)

It is known that if M ∈ Rn×n is a P∗(κ)-matrix and F0 ̸= ∅, then the system of
equations (3) has a unique solution (x(t), s(t)) for any t ∈ (0, t0] [27]. The set of all
points {x(t), s(t) | t ∈ (0, t0]} forms the central path of P∗(κ)-WLCP (1). From the
definition of F∗, we can obtain a solution of system (1) as t → 0.
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2.2. The search directions and proximity for P∗(κ)-WLCP. Motivated by
the way of extending the AET for LO in [12], we describe our search directions for
P∗(κ)-WLCP(1) as below.

First, consider a function

φ ∈ C1, φ : R+ → R+,

and assume that its inverse function φ−1 exists. Then, system (3) that defines the
central path can be equivalently reformulated as

−Mx+ s = q, x ≥ 0,

φ

(
xs

ω(t)

)
= φ(e), s ≥ 0.

(4)

Applying Newton’s method to system (4), we have the following system with the
search directions ∆x and ∆s:

−M (x+∆x) + (s+∆s) = q, x ≥ 0,

φ

(
xs+ x∆s+ s∆x+∆x∆s)

ω(t)

)
= φ(e), s ≥ 0.

For (small) displacements ∆x and ∆s in the x− and s−space, respectively, we
obtain

−M∆x+∆s = 0, x ≥ 0,

s∆x+ x∆s = aφ, s ≥ 0,
(5)

where

aφ = ω(t)

(
φ′

(
xs

ω(t)

))−1 (
φ(e)− φ

(
xs

ω(t)

))
.

By defining

v =

√
xs

ω(t)
, ∆x =

x

v
dx, ∆s =

s

v
ds, d =

√
x

s
, (6)

it yields

ω(t)dxds = ∆x∆s, x∆s+ s∆x = ω(t)v (dx + ds) . (7)

Furthermore, in light of (7), system (5) can be reformulated as

−Mdx + ds = 0,

dx + ds = pv,

where W (t) = diag(ω(t)), D = diag(d), M =
√

W−1(t)DMD
√

W (t) and

pv =
φ(e)− φ

(
v2
)

vφ′ (v2)
.

Note that M and M are the n×n P∗(κ)-matrix and P∗(κ
′)-matrix, respectively.

For sake of computation and analysis, we take φ(t) = t and get

pv = v−1 − v. (8)

The right-hand side v−1 − v of (8) is equal to the steepest descent direction of

function Ψ(v) :=

n∑
i=1

(
v2i − 1

2
− log vi

)
. Consequently, we have dx+ds = −∇Ψ(v),
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where Ψ(v) is the classical logarithmic barrier function. To the best of our knowl-
edge, this is the first time that function φ(t) = t is used to determine the search
directions for P∗(κ)-WLCP. Now, we introduce a proximity measure

δ(v) := δ(x, s;ω(t)) =
1

2
∥dx + ds∥ =

1

2
∥v−1 − v∥. (9)

Note that for (x, s) ∈ F0, we have

δ(v) = 0 ⇐⇒ v = e ⇐⇒ xs = ω(t).

The value of δ(v) is 0 when the given pair (x, s) coincides with the corresponding
t-center (x(t), s(t)), and is positive otherwise. Hence, δ(v) measures the distance
from the iteration point (x, s) to t-center (x(t), s(t)).

2.3. New PC IPA for P∗(κ)-WLCP. In this subsection, we introduce the scaled
systems in PC IPA for P∗(κ)-WLCP. To see this, we give the scaled corrector system

−Mdx + ds = 0,

dx + ds = v−1 − v.
(10)

Using (6), the search direction (∆x,∆s) can be calculated. Then, we update the
corrector iterate as follows

x+ = x+∆x, s+ = s+∆s.

To obtain the scaled predictor system, we decompose aφ in the system (5) into
the form of

aφ = f(x, s, t) + g(x, s), (11)

where f : Rn
++ × Rn

++ × Rn
+ → Rn with f(x, s, 0) = 0 and g : Rn

++ × Rn
++ → Rn.

We would like to make as greedy predictor steps as possible, therefore we set t = 0
in (11). Consequently, we have

aφ = g(x, s) = −xs. (12)

Using (6), (7) and (12) yields

dx + ds =
g(x, s)

ω(t)v
=

vg(x, s)

xs
= −v.

To proceed, we define

v+ =

√
x+s+

ω(t)
, d+ =

√
x+

s+
, D+ = diag(d+),

and
M+ =

√
W−1(t)D+MD+

√
W (t). (13)

Then, the scaled predictor system becomes

−M+d
p
x + dps = 0,

dpx + dps = −v+,
(14)

where dpx and dps are search directions in predictor step. Similarly to ∆x and ∆s,
we can easily calculate the search direction (∆px,∆ps) by

∆px =
x+

v+
dpx, ∆ps =

s+

v+
dps . (15)

Besides, it is noted that

ω(t)dpxd
p
s = ∆px∆ps, x+∆ps+ s+∆px = ω(t)v+ (dpx + dps) . (16)
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Then, the new iterate point after a predictor step is described as

xp = x+ + θt∆px, sp = s+ + θt∆ps,

where the update parameter θ ∈ (0, 1).
Now, based on the AET technique and function φ(t) = t, we propose a predictor-

corrector interior-point algorithm for solving P∗(κ)-WLCP. Given a weight vector
ω > 0, we suppose that there exists an initial point (x0, s0) ∈ F0 such that x0s0 ≥ ω
and δ(x0, s0, ω(t0)) ≤ t0

2(1+4κ′) with t0 = 1. Our algorithm performs a corrector step

and a predictor step in a main iteration. In corrector step, we compute the search
direction (∆x,∆s) for P∗(κ)-WLCP (1) by solving the linear system (10) and using
(6). Then, we take a full-Newton step along this search direction, which is the cor-
rector iterate (x+, s+) = (x+∆x, s+∆s). Next, we calculate the predictor search
direction (∆px,∆ps) by solving the system of equations (14) and using (15). So
we perform the predictor iterate with (xp, sp) = (x+ + θt∆px, s+ + θt∆ps), where
θ ∈ (0, 1) and t ∈ (0, 1]. The next section will show that the new iteration point
is feasible and convergent by appropriately selecting parameters. We repeat the
process until an iteration point satisfying the stopping criterion

∥∥xksk − ω
∥∥ ≤ ε.

In the sequel, the PC IPA for P∗(κ)-WLCP (1) is depicted in Figure 1.

Algorithm 1 The PC IPA for P∗(κ)-WLCP

Input:
An accuracy parameter ε > 0;
A barrier update parameter θ ∈ (0, 1);
Choose (x0, s0) ∈ F0 such that x0s0 ≥ ω and δ(x0, s0;ω(t0)) ≤ t0

2(1+4κ′) with t0 = 1;

begin
k := 0;
while ∥xksk − ω∥ > ε do
begin

(Corrector step)
obtain (∆xk,∆sk) by solving (10) and using (6);

let (x+)
k
:= xk +∆xk, (s+)

k
:= sk +∆sk;

(Predictor step)
obtain (∆pxk,∆psk) by solving (14) and using (15);

let (xp)
k
:= (x+)

k
+ θtk∆

pxk, (sp)
k
:= (s+)

k
+ θtk∆

psk;
(Update of the parameters and iterates)

(ωp(t))
k
:= (1− θtk)ω(tk), (tp)

k
:= (1− θ)tk;

set xk+1 := (xp)
k
, sk+1 := (sp)

k
;

ω(tk+1) := (ωp(t))
k
, tk+1 := (tp)

k
;

k := k + 1;
end

end

Figure 1. Algorithm 1

3. Analysis of the PC IPA. This section provides an analysis of the corrector
and predictor steps respectively. We also derive the polynomial iteration complexity
of the PC IPA. Note that the corrector step performed by the algorithm is a classical
small-update step of IPAs.
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3.1. The corrector step. First, we give an upper bound on the product of the
scaled search directions dx and ds.

Lemma 3.1. Let x0s0 ≥ ω and (dx, ds) be a solution to system (10) with δ :=
δ(x, s;ω(t)). One has

∥dxds∥∞ ≤ (1 + 4κ′) δ2, ∥dxds∥ ≤
√

1 + (1 + 4κ′)
2
δ2,

where the parameters κ and κ′ of P∗(κ)-matrix M and P∗(κ
′)-matrix M satisfy

1 + 4κ′

1 + 4κ
=

maxx0s0

minω
.

Proof. Please refer to Theorem 3.5 in [19], and Lemma 3.2 and Lemma 3.3 in [35]
for detailed arguments.

The following lemma gives a condition for the strict feasibility of the corrector
step.

Lemma 3.2. Let x0s0 ≥ ω. Then, the corrector iterate (x+, s+) = (x+∆x, s+∆s)

is strictly feasible if δ <
1√

1 + 4κ′
.

Proof. Let x(α) = x+ α∆x and s(α) = s+ α∆s, for 0 ≤ α ≤ 1. Using (6) we have

xs = ω(t)v2, x(α) =
x

v
(v + αdx), s(α) =

s

v
(v + αds).

From the second equation of system (10) we obtain

x(α)s(α) =
xs

v2
(v + αdx)(v + αds)

= ω(t)
[
v2 + αv(dx + ds) + α2dxds

]
= ω(t)

[
v2 + αv(v−1 − v) + α2dxds

]
= ω(t)

[
(1− α)v2 + α (e+ αdxds)

]
.

(17)

Using (17) and Lemma 3.1 leads to

x(α)s(α) ≥ ω(t)
[
(1− α)v2 + α (e− ∥dxds∥∞ e)

]
≥ ω(t)

[
(1− α)v2 + α

(
1− (1 + 4κ′) δ2

)
e
]
.

If δ <
1√

1 + 4κ′
, then x(α)s(α) > 0 for 0 ≤ α ≤ 1. This indicates that x(α)

and s(α) do not change the sign when 0 ≤ α ≤ 1. Since x(0) = x0 > 0 and
s(0) = s0 > 0, it follows that s(α) > 0 and x(α) > 0 for any 0 ≤ α ≤ 1. Especially,
for α = 1, x(1) = x+ > 0 and s(1) = s+ > 0. Then, the proof is complete.

The next lemma provides a lower bound for the minimum value of the components

of v+, where v+ =

√
x+s+

ω(t)
.

Lemma 3.3. Let x0s0 ≥ ω and δ <
1√

1 + 4κ′
. Then, we have

min v+ ≥
√

1− (1 + 4κ′)δ2.
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Proof. From (17) with α = 1, we have

(v+)2 = e+ dxds. (18)

Using Lemma 3.1 and (18), we deduce that

min(v+)2 ≥ 1− ∥dxds∥∞ ≥ 1− (1 + 4κ′)δ2.

This completes the proof.

In the next lemma, we estimate the upper bound of the proximity measure
δ (x+, s+;ω(t)) after a full-Newton step.

Lemma 3.4. Let x0s0 ≥ ω and δ <
1√

1 + 4κ′
. Then, we have

δ
(
x+, s+;ω(t)

)
≤

√
1 + (1 + 4κ′)2δ2

2
√
1− (1 + 4κ′)δ2

.

Proof. It follows from (9), (18), Lemma 3.1 and Lemma 3.3 that

δ
(
x+, s+;ω(t)

)
) =

1

2
∥(v+)−1 − v+∥ =

1

2

∥∥∥∥e− (v+)2

v+

∥∥∥∥
≤ ∥dxds∥

2min v+
≤

√
1 + (1 + 4κ′)2δ2

2
√

1− (1 + 4κ′)δ2
.

Corollary 3.5. Let x0s0 ≥ ω. If δ <
1

2
√
1 + 4κ′

, then the corrector step is strictly

feasible and

δ
(
x+, s+;ω(t)

)
≤

√
2

3
(1 + 4κ′) δ2.

Proof. From Lemma 3.4, it follows that

δ
(
x+, s+;ω(t)

)
≤

√
2 (1 + 4κ′) δ2

2
√
1− (1 + 4κ′) 1

4(1+4κ′)

=

√
2

3
(1 + 4κ′) δ2.

3.2. Some technical results. Since M is a P∗(κ)-matrix and −M∆px+∆ps = 0,
we obtain ∑

i∈I+

∆pxi∆
psi +

∑
i∈I−

∆pxi∆
psi ≥ −4κ

∑
i∈I+

∆pxi∆
psi, (19)

where I+ = {i : ∆pxi∆
psi > 0} and I− = {i : ∆pxi∆

psi < 0}. From Theorem 3.5
in [19], (13) and (14), we know∑

i∈I+

dpxi
dpsi +

∑
i∈I−

dpxi
dpsi ≥ −4κ′

∑
i∈I+

dpxi
dpsi . (20)

We point out that the relationship between κ in (19) and κ′ in (20) can be found
in Lemma 3.1.

Lemma 3.6 provides an upper bound on ∥dpxdps∥, which will be used in the sub-
sequent analysis of the predictor step.

Lemma 3.6. Let x0s0 ≥ ω. Then, there holds

∥dpxdps∥ ≤
n(1 + 2κ′)

[
1 + (1 + 4κ′) δ2

]
2

.
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Proof. It follows from (14) that

4
∑
i∈I+

dpxi
dpsi ≤

∑
i∈I+

(
dpxi

+ dpsi
)2 ≤

n∑
i=1

(
dpxi

+ dpsi
)2

= ∥dpx + dps∥
2
=

∥∥v+∥∥2 . (21)

Using (20) and (21) gives

∥∥v+∥∥2 = ∥dpx + dps∥
2
= ∥dpx∥

2
+ ∥dps∥

2
+ 2

∑
i∈I+

dpxi
dpsi +

∑
i∈I−

dpxi
dpsi


≥ ∥dpx∥

2
+ ∥dps∥

2 − 8κ′
∑
i∈I+

dpxi
dpsi

≥ ∥dpx∥
2
+ ∥dps∥

2 − 2κ′ ∥∥v+∥∥2 ,
which says

∥dpx∥
2
+ ∥dps∥

2 ≤ (1 + 2κ′)
∥∥v+∥∥2 . (22)

Now, we derive an upper bound for ∥v+∥2. By applying (18) and Lemma 3.1,
we have ∥∥v+∥∥2 =

n∑
i=1

(
v+

)2
i
=

n∑
i=1

(1 + (dxds)i)

≤ n [1 + ∥dxds∥∞]

≤ n
[
1 + (1 + 4κ′) δ2

]
.

(23)

Therefore it follows from (22) and (23) that

∥dpxdps∥ ≤ ∥dpx∥ ∥dps∥ ≤ 1

2

(
∥dpx∥

2
+ ∥dps∥

2
)
≤ 1

2
(1 + 2κ′)

∥∥v+∥∥2
≤

n(1 + 2κ′)
[
1 + (1 + 4κ′) δ2

]
2

.

3.3. The predictor step. The next lemma shows the feasibility of the predictor
step.

Lemma 3.7. Let x0s0 ≥ ω, (x+, s+) > 0 and θ <
1√

2n (1 + 2κ′)
with n ≥ 2. Let

h(δ, θ, n) = 1− (1 + 4κ′)δ2 − n (1 + 2κ′) θ2t2

2(1− θt)

[
1 + (1 + 4κ′) δ2

]
.

If δ <
1

2
√
1 + 4κ′

, then the predictor iterate (xp, sp) = (x+ + θt∆px, s+ + θt∆ps)

is strictly feasible.

Proof. For 0 ≤ α ≤ 1, denote

xp(α) = x+ + αθt∆px, sp(α) = s+ + αθt∆ps.

From (16) and the second equation of (14), we have

xp(α)sp(α) = x+s+ + αθt
(
x+∆ps+ s+∆px

)
+ α2θ2t2∆px∆ps

= ω(t)
[(
v+

)2
+ αθtv+ (dpx + dps) + α2θ2t2dpxd

p
s

]
= ω(t)

[
(1− αθt)

(
v+

)2
+ α2θ2t2dpxd

p
s

]
.

(24)
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Since f (α) =
α2ν2

1− αν
is monotonically increasing with respect to α ∈ [0, 1], it

follows from Lemma 3.3 and Lemma 3.6 that

min

(
xp(α)sp(α)

ω(t)(1− αθt)

)
= min

((
v+

)2
+

α2θ2t2

1− αθt
dpxd

p
s

)
≥ min(v+)2 − α2θ2t2

1− αθt
∥dpxdps∥∞

≥ min(v+)2 − θ2t2

1− θt
∥dpxdps∥

≥ 1− (1 + 4κ′)δ2 − n (1 + 2κ′) θ2t2

2(1− θt)

[
1 + (1 + 4κ′) δ2

]
= h(δ, θ, n).

(25)

Moreover, let δ <
1

2
√
1 + 4κ′

and θ <
1√

2n (1 + 2κ′)
with n ≥ 2. Then, we see

that

h (δ, θ, n) > 1− 1

4
− n (1 + 2κ′) θ2t2

2(1− θt)

(
1 +

1

4

)
>

3

4
− 5t2

16 (1− θt)

≥ 3

4
− 5

16 (1− θ)

>
3

4
−

5
√
2n (1 + 2κ′)

16
(√

2n (1 + 2κ′)− 1
)

≥ 3

4
− 5

8

=
1

8
> 0.

Therefore, xp(α)sp(α) > 0 for 0 ≤ α ≤ 1. Since xp(α) and sp(α) are linear
functions of α, xp(0) = x+ > 0 and sp(0) = s+ > 0, we conclude that xp(1) = xp > 0
and sp(1) = sp > 0. Then, the proof is complete.

To proceed, we define

vp =

√
xpsp

ω(tp)
, ω(tp) = (1− θt)ω(t), tp = (1− θ)t. (26)

From (24) and (25) with α = 1, it is clear that

(vp)
2
=

(
v+

)2
+

θ2t2

1− θt
dpxd

p
s , (27)

and

min vp ≥
√
h(δ, θ, n). (28)

Next, we investigate the effect on the proximity measure δ(vp) := δ(xp, sp;ω(tp))
after a predictor step and the update of the parameter t.
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Lemma 3.8. Let x0s0 ≥ ω, δ <
1

2
√
1 + 4κ′

and θ <
1√

2n (1 + 2κ′)
with n ≥ 2.

Then, there holds

δ(vp) ≤

√
1 + (1 + 4κ′)

2
δ2 + n(1+2κ′)θ2t2

2(1−θt)

[
1 + (1 + 4κ′) δ2

]
2
√
h(δ, θ, n)

.

Proof. Using (9), we have

δ(vp) =
1

2

∥∥(vp)−1 − vp
∥∥ ≤

∥∥e− (vp)2
∥∥

2min vp
. (29)

Applying (18), (27), Lemma 3.1 and Lemma 3.6, we obtain

∥∥e− (vp)2
∥∥ =

∥∥∥∥e− (
v+

)2 − θ2t2

1− θt
dpxd

p
s

∥∥∥∥
≤

∥∥∥e− (
v+

)2∥∥∥+
θ2t2

1− θt
∥dpxdps∥

≤ ∥dxds∥+
θ2t2

1− θt
∥dpxdps∥

≤
√
1 + (1 + 4κ′)

2
δ2 +

n(1 + 2κ′)θ2t2

2(1− θt)

[
1 + (1 + 4κ′) δ2

]
.

(30)

Then, plugging (28) and (30) into (29) yields

δ(vp) ≤
∥∥e− (vp)2

∥∥
2min vp

≤

√
1 + (1 + 4κ′)

2
δ2 + n(1+2κ′)θ2t2

2(1−θt)

[
1 + (1 + 4κ′) δ2

]
2
√

h(δ, θ, n)

which is the desired result.

Lemma 3.9. Let x0s0 ≥ ω and θ ≤ 1 + t

4 (1 + 4κ′)
√
n

with n ≥ 2. If δ ≤ t

2 (1 + 4κ′)
,

one has δ(vp) ≤ tp
2 (1 + 4κ′)

.

Proof. Note that our goal is to keep

δ(vp) ≤ tp
2 (1 + 4κ′)

. (31)

From Lemma 3.8, it follows that (31) holds if

F : =

√
1 + (1 + 4κ′)

2
δ2 +

n(1 + 2κ′)θ2t2

2 (1− θt)

[
1 + (1 + 4κ′) δ2

]
≤ tp

1 + 4κ′

√
h(δ, θ, n) := G.

(32)
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Since δ ≤ t

2 (1 + 4κ′)
and

√
1 + (1 + 4κ′)

2
< 2 (1 + 2κ′), we have

F 2

t2
− G2

t2
<

(1 + 2κ′)
2
t2

4 (1 + 4κ′)4
+

n2 (1 + 2κ′)
2
θ4t2

4(1− θt)2

[
1 +

t2

4 (1 + 4κ′)

]2

+
n (1 + 2κ′)

2
θ2t2

2 (1 + 4κ′)2 (1− θt)

[
1 +

t2

4 (1 + 4κ′)

]
− (1− θ)2

(1 + 4κ′)2

+
(1− θ)2t2

4 (1 + 4κ′)3
+

n (1 + 2κ′) (1− θ)2θ2t2

2 (1 + 4κ′)2 (1− θt)

[
1 +

t2

4 (1 + 4κ′)

]
:= H.

(33)

In light of (32) and (33), to guarantee the inequality (31) holds, it suffices to
show that

H ≤ 0.

Since H is monotonically increasing for t ∈ (0, 1], we obtain

H <
(1 + 2κ′)

2

4 (1 + 4κ′)4
+

n2 (1 + 2κ′)
2
θ4

4(1− θ)2

[
1 +

1

4 (1 + 4κ′)

]2

+
n (1 + 2κ′)

2
θ2

2 (1 + 4κ′)2 (1− θ)

[
1 +

1

4 (1 + 4κ′)

]
− (1− θ)2

(1 + 4κ′)2

+
(1− θ)2

4 (1 + 4κ′)3
+

n (1 + 2κ′) (1− θ)2θ2

2 (1 + 4κ′)2 (1− θ)

[
1 +

1

4 (1 + 4κ′)

]
.

(34)

Multiplying both sides of (34) by 4 (1 + 4κ′)
4
(1− θ)2 yields

4
(
1 + 4κ′)4 (1− θ)2H

<
(
1 + 2κ′)2 (1− θ)2 − 4

(
1 + 4κ′)2 (1− θ)4 +

(
1 + 4κ′) (1− θ)4

+
(
1 + 4κ′)4 (1 + 2κ′)2 n2θ4 +

(1 + 4κ′)
2
(1 + 2κ′)

2
n2θ4

16

+
(1 + 4κ′)

3
(1 + 2κ′)

2
n2θ4

2
+ 2

(
1 + 4κ′)2 (1 + 2κ′)n(1− θ)3θ2

+
(1 + 2κ′)

2
(1 + 4κ′) (5 + 16κ′)n(1− θ)θ2

2

+
(1 + 4κ′) (1 + 2κ′)n(1− θ)3θ2

2
:= J.

(35)

Moreover, if θ ≤ 1 + t

4 (1 + 4κ′)
√
n
, it follows from (35) that

J <
(
1 + 2κ′)2 + (1− θ)2

[
1 + 4κ′ − 4

(
1 + 4κ′)2]+ (1 + t)4 (1 + 2κ′)

2

256

+
(1 + t)4 (1 + 2κ′)

2

256× 16 (1 + 4κ′)2
+

(1 + t)4 (1 + 2κ′)
2

256× 2 (1 + 4κ′)
+

(1 + t)2 (1 + 2κ′)
2
(5 + 16κ′)

32 (1 + 4κ′)

+
(1 + t)2 (1 + 2κ′)

8
+

(1 + t)2 (1 + 2κ′)

32 (1 + 4κ′)

<
(
−60

(
κ′)2 − 24κ′ − 2

)
+

(1 + 2κ′)
2

16
+

(1 + 2κ′)
2

256 (1 + 4κ′)2
+

(1 + 2κ′)
2

32 (1 + 4κ′)

+
(1 + 2κ′)

2
(5 + 16κ′)

8 (1 + 4κ′)
+

1 + 2κ′

2
+

1 + 2κ′

8 (1 + 4κ′)
.

(36)
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Then, using
1 + 2κ′

1 + 4κ′ < 1 and (36) leads to

256J < −14272(κ′)2 − 4976κ′ − 167. (37)

Now, from (35) and (37), we compute that

4× 256 (1 + 4κ′)
4
(1− θ)2H < 256J

< −14272(κ′)2 − 4976κ′ − 167

< 0,

which indicates that H < 0. Thus, the proof is complete.

3.4. Iteration bound for the PC IPA. In this section, we provide an upper
bound for ∥xpsp − ω∥ after a main iteration, and then derive the complexity of the
algorithm.

Lemma 3.10. Let x0s0 ≥ ω. If δ ≤ t

2 (1 + 4κ′)
and θ ≤ 1 + t

4 (1 + 4κ′)
√
n

with n ≥ 2,

then

∥xpsp − ω∥ ≤
[

5

4 (1 + 4κ′)
γ +

∥∥x0s0 − ω
∥∥] t,

where γ = maxx0s0.

Proof. First, from (2), we see that

ω(t) = (1− t)ω + tx0s0 ≤ max{x0s0, ω}e := γe. (38)

Combining (2) and (26) yields

∥xpsp − ω∥ ≤ ∥xpsp − ω(tp)∥+ ∥ω(tp)− ω(t)∥+ ∥ω(t)− ω∥

≤
∥∥∥e− (vp)

2
∥∥∥ ∥ω(tp)∥∞ + θt∥ω(t)∥+

∥∥x0s0 − ω
∥∥ t. (39)

Next,∥∥∥e− (vp)2
∥∥∥ ∥ω(tp)∥∞ + θt∥ω(t)∥

≤
{√

1 + (1 + 4κ′)2δ2 +
n(1 + 2κ′)θ2t2

2(1− θt)

[
1 +

(
1 + 4κ′) δ2]+√

nθt

}
∥ω(t)∥∞

≤
{

(1 + 2κ′) t

2 (1 + 4κ′)2
+

n(1 + 2κ′)θ2t

2(1− θt)

[
1 +

t2

4 (1 + 4κ′)

]
+

√
nθ

}
γ t

≤
{

(1 + 2κ′)

2 (1 + 4κ′)2
+

n(1 + 2κ′)

4n (1 + 4κ′)2

√
2

2
√
2− 1

[
1 +

1

4 (1 + 4κ′)

]
+

1

2 (1 + 4κ′)

}
γ t

<

[
1

2 (1 + 4κ′)
+

1

4 (1 + 4κ′)
× 4

5
× 5

4
+

1

2 (1 + 4κ′)

]
γ t

=
5

4 (1 + 4κ′)
γ t,

(40)

where the first inequality is due to (26) and (30). Taking into account of the facts

that (38), δ ≤ t

2 (1 + 4κ′)
and

√
1 + (1 + 4κ′)

2
< 2 (1 + 2κ′), we obtain the second

inequality of (40). Since θ ≤ 1 + t

4 (1 + 4κ′)
√
n

with 0 < t ≤ 1, θ gets its maximum

value θmax, i.e.,

θmax =
1

2 (1 + 4κ′)
√
n
≤ 1

2
√
2
.
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Thus, the third inequality of (40) holds.
Then, substituting (40) into (39) gives

∥xpsp − ω∥ <

[
5

4 (1 + 4κ′)
γ +

∥∥x0s0 − ω
∥∥] t

which is the desired result.

Theorem 3.11. Let x0s0 ≥ ω, (x0, s0) ∈ F0 and θ =
1 + t

4 (1 + 4κ′)
√
n

with n ≥ 2.

Then, the algorithm requires at most⌈
(1 + 4κ′)

√
n log

5
4(1+4κ′) maxx0s0 +

∥∥x0s0 − ω
∥∥

ε

⌉
+ 1

iterations to achieve an ε-approximate solution of P∗(κ)-WLCP (1).

Proof. After k iterations, it follows from Lemma 3.10 that∥∥xksk − ω
∥∥ ≤

[
5

4 (1 + 4κ′)
γ +

∥∥x0s0 − ω
∥∥] tk−1

≤
[

5

4 (1 + 4κ′)
γ +

∥∥x0s0 − ω
∥∥] (1− θmin)

k−1,

where θmin is the minimum value of θ. Thus, we see that
∥∥xksk − ω

∥∥ ≤ ε holds, if[
5

4 (1 + 4κ′)
γ +

∥∥x0s0 − ω
∥∥] (1− θmin)

k−1 ≤ ε.

By taking logarithms and using − log(1 − θ) ≥ θ with θ ∈ (0, 1), the above
inequality holds if

k ≥ 1

θmin
log

5
4(1+4κ′)γ +

∥∥x0s0 − ω
∥∥

ε
+ 1.

Since θ ≤ 1 + t

4 (1 + 4κ′)
√
n

with 0 < t ≤ 1 and γ = maxx0s0, the algorithm

requires at most⌈
(1 + 4κ′)

√
n log

5
4(1+4κ′) maxx0s0 +

∥∥x0s0 − ω
∥∥

ε

⌉
+ 1

iterations to find an ε-approximate solution (x, s) satisfying ∥xs− ω∥ ≤ ε.

4. Numerical results. In this section, we conduct some numerical experiments
to demonstrate that Algorithm 1 is efficient. We implement the simulations on
MATLAB R2022a with 12th Gen Intel(R) Core(TM) i5-12500 3.00 GHz processor
and 16.0 GB RAM. The number of iterations (Iter) and the running time (CPU)
in seconds are calculated when the algorithm terminates. Besides, the termination
condition of Algorithm 1 is ∥xs − ω∥ ≤ ε. Note that the duality gap (Gap) and
proximity measure δ(v) are the values of ∥xs− ω∥ and 1

2∥v
−1 − v∥, respectively.

The accuracy parameter is set as ε = 10−5.
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Problem 1. [17] Consider the P∗(κ)-WLCP (1), where

M =



1 −2 −3 −1 1 −1 2
1 1 5 −1 1 −1 −1
3 −3 0 −3 3 −3 3
−1 2 3 1 −1 1 −2
2 −4 −6 −2 2 −2 4
−1 2 3 1 −1 1 −2
−1 −1 −5 1 −1 1 10


,

q = (4 −4 1 −2 7 −2 −3)T, and ω = rand(7, 1). We take x0 = s0 = e as the strictly
feasible initial point and choose the update parameter θ = 0.2 for Problem 1. As
a result, it takes 0.0521432 seconds and 55 iterations to achieve an ε-approximate
solution as below:

x∗ = (0.0400475 0.8990355 0.9055148 0.0819724 0.8008115 0.9564732 0.8776278)
T
,

s∗ = (1.0430535 0.3513950 0.3430169 0.9569464 1.0861070 0.9569464 0.5472554)
T
.

Problem 2. [24] Consider the P∗(κ)-WLCP (1) with the following P∗(κ)-matrix

M =


1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
... · · ·

...
0 0 0 · · · 1

 ∈ Rn×n, ω = rand(n, 1).

The initial points are x0 = s0 = e and let q = s0 − Mx0. Set the update
parameters as θ ∈ {0.1, 0.2}. We perform Algorithm 1 on Problem 2 with the di-
mensions n = 20, 50, 150, 400, 600, 800, 1100. The numerical results are summarized
in Table 2.

Table 2. Numerical results of Problem 2

n
θ = 0.1 θ = 0.2

CPU Gap Iter CPU Gap Iter

20 0.0045 9.4076e-06 119 0.0022 9.2338e-06 57
50 0.0195 9.4954e-06 123 0.0090 8.8642e-06 59
150 0.1873 9.4244e-06 129 0.0899 9.4189e-06 61
400 2.4229 9.4926e-06 133 1.1419 9.5502e-06 63
600 6.2758 9.5998e-06 135 3.0406 9.6510e-06 64
800 12.7843 9.6426e-06 136 6.1306 8.9644e-06 65
1100 27.6153 9.4409e-06 138 13.1285 8.4376e-06 66

Problem 3. [13] Consider the P∗(κ)-WLCP (1), where

M =


1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
... · · ·

...
2 6 10 · · · 4n− 3

 ∈ Rn×n, ω = rand(n, 1) ∈ Rn.
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Choose x0 = s0 = e to be the starting point and q = s0 − Mx0. Moreover,
we set the update parameter as θ = 0.25 and the dimension of the problem as
n ∈ {10, 50, 100, 300, 600, 900, 1300}. We generate 10 problem instances for each size
n. Table 3 lists the average numerical results of Algorithm 1 for solving Problem 3
with different dimension.

Table 3. Numerical results of Problem 3

n CPU Gap δ(v) Iter

10 0.0009 8.7421e-06 7.4332e-11 43
50 0.0063 8.6282e-06 3.1546e-10 46
100 0.0268 8.8371e-06 2.8767e-09 47
300 0.4783 8.8438e-06 1.0170e-07 49
600 2.4864 9.1619e-06 1.7849e-09 50
900 6.3176 8.5291e-06 2.7819e-09 51
1300 16.541 7.7105e-06 1.4474e-09 52
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Figure 2. The dual-
ity gap and proximity
measure for Problem 1
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Figure 3. The dual-
ity gap and proximity
measure for Problem 2

In Figure 2 and Figure 3, the duality gap and proximity measure of Problem 1,
Problem 2 are depicted. For Problem 3, the duality gap and proximity measure
with various n are shown in Figure 4 and Figure 5, respectively.

From all the tables and figures, we summarize our numerical findings as below.

1. From Table 2 and Table 3, the CPU and the Iter of the algorithm depend on
the values of n and θ.

2. When θ gets larger, Algorithm 1 takes less time and fewer iterations to solve
Problem 2 with the same dimension.

3. Given a fixed value of θ, the number of iterations required by the algorithm
does not increase significantly as the size goes up.

4. The duality gap and proximity measure gradually decrease to 0 as t tends to
0.

To sum up, the numerical simulations indicate that the proposed algorithm works
well and is effective and efficient.
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Figure 5. δ(v) for
Problem 3 with various
n

5. Conclusions. In this paper, by using the function φ(t) = t, we propose a
predictor-corrector interior-point algorithm (PC IPA) for solving P∗(κ)-WLCP.
Since there is a nonnegative weight vector in P∗(κ)-WLCP, the theory and al-
gorithms of P∗(κ)-WLCP are more complicated than its counterpart P∗(κ)-LCP.
We analyze its complexity and prove that the iteration complexity of this IPA is
polynomial, namely,⌈

(1 + 4κ′)
√
n log

5
4(1+4κ′) maxx0s0 +

∥∥x0s0 − ω
∥∥

ε

⌉
+ 1.

Moreover, numerical experiments are implemented to verify the practical effi-
ciency of the proposed method. Future research directions include exploring new
PC IPAs for P∗(κ)-WLCP based on other possible functions (like φ(t) = t −

√
t,

φ(t) = t2 − t+
√
t, φ(t) =

√
t

2(1+
√
t)
, etc.), accompanied by numerical and theoretical

comparison.
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[11] Z. Darvay, T. Illés and P. R. Rigó, Predictor-corrector interior-point algorithm for P∗(κ)-
linear complementarity problems based on a new type of algebraic equivalent transformation

technique, Eur. J. Oper. Res., 298 (2022), 25-35.

[12] Z. Darvay, New interior-point algorithm in linear programming, Adv. Model. Optim., 5 (2003),
51-92.

[13] Y. Fathi, Computational complexity of LCPs associated with positive definite symmetric

matrices, Math. Program., 17 (1979), 335-344.
[14] P. Flores, R. Leine and C. Glocker, Modeling and analysis of planar rigid multibody systems

with translational clearance joints based on the non-smooth dynamics approach, Multibody

Syst. Dyn., 23 (2010), 165-190.
[15] G. Goel and V. V. Vazirani, A perfect price discrimination market model with production,

and a rational convex program for it, Math. Oper. Res., 36 (2011), 762-782.

[16] T. Illés, C. Roos and T. Terlaky, General Linear Complementarity Problems, Unpublished
work, 1997.

[17] T. Illés and S. Morapitiye, Generating sufficient matrices, Friedler, F. (ed.) Short Papers of

the 8th VOCAL Optimization Conference: Advanced Algorithms, Pázmány Péter Catholic
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