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ABSTRACT
Recently, a new type of optimization problems, the so-called
interval optimization problems on Hadamard manifolds, is
introduced by the authors in Nguyen et al. [Interval opti-
mization problems on Hadamard manifolds. J Nonlinear Con-
vex Anal. 2023;24(11):2489–2511]. In this follow-up, we fur-
ther offer the algorithmic bricks for these problems. More
specifically, we characterize the optimality and KKT conditions
for the interval valued optimization problems on Hadamard
manifolds. For unconstrained problems, the existence of effi-
cient points and the steepest descent algorithm are investi-
gated. To the contrast, the KKT conditions and exact penalty
approach are explored in the ones involving inequality con-
straints. These results pave the foundations for the solvabil-
ity of interval valued optimization problems on Hadamard
manifolds.
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1. Introduction

It is well known that optimization problems have a lot applications in various
research fields. Roughly, due to the features of objective functions, we catego-
rize them as different types of problems like, deterministic problems, stochastic
problems, or interval problems. The last type of problem mean the value of
objective functions are closed interval in R. In addition, because the variation
bound of the uncertain variables can be obtained only through small amount of
uncertainly information, the interval programming can easily handle some opti-
mization problems.Nowadays, the uncertainty handling optimization techniques
are most powerful to increase the productivity. In general, fuzzy, stochastic and
grey optimization techniques are some approaches to tackle these problems. Each
of these methods has some strengths and limitations. While formulating math-
ematical models from the available data, one may replace those by intervals. It
could be customer’s age, monthly electricity consumption or kiln temperature,
etc., see [2,3] for more information.
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There are plenty of optimization problems, which cannot be described on
Euclidean space and require the Riemannian manifolds structure. For instance,
there exist some real problems in engineering [4] and in control themornuclear
fusion research [2], which reflect this demand. The generalization of optimiza-
tion algorithms from Euclidean space to Riemannian manifold, particularly to
Hadamard manifolds, possesses some important advantages [5–10]. Roughly, a
Riemannian manifold has no linear structure, nonetheless, it is locally identi-
fied with Euclidean space. In this setting, the Euclidean metric is replaced by
Riemannian metric and the line segments are replaced by minimal geodesics.
Then, the Riemannian optimization problem is, at least locally, equivalent to
the smoothly constrained optimization problem on Euclidean space. Conse-
quently, under some circumstance, solving non-convex constrained problem on
Rn may be equivalent to solving a convex unconstrained problem on Rieman-
nianmanifold. All the above provides goodmotivation to investigate Riemannian
optimization problems.

Since the set of all intervals are not linearly ordered, the frequently algorithms
for solving optimization problems cannot be easily applied on handling interval
valued optimization problems (IOPs). For readers’ reference, we do quick litera-
ture review as below. Ishibuchi et al. [11] studied the IOPs with linear objective
by using the multi-objective programming. Bhurjee and Panda [12] had given a
notion of efficient solutions of interval optimization problems, which is similar
to the Pareto optimality concept inmulti-objective optimization problems. Based
on this idea, some authors investigated the optimality condition for IOPs [13,14].
Gosh [15] applied theNewtonmethod and quasi-Newtonmethodwith rank-two
to obtain efficient point of the IOPs, which exploit the parametric representation
technique. However, all of them were studied on the structure of Rn. To our best
knowledge, there is very limited studying on Riemannian interval optimization
problems (RIOPs) in the literature.

In this paper, we will generalize the IOPs onto Hadamard manifolds. In [1],
Nguyen et al. already established some background materials for RIOPs, which
are on the concepts of gH-directional and gH-Gâteaux differentiabilities. Follow-
ing these results, the existence of solutions to the RIOPs will be explored. For
unconstrained case, the steepest descent method for gH-Fréchet diffirentiable
problems will be studied, and the partial convergence was obtained, which using
Amijo’s rule. For the traditional optimization problem, the norm of the gradient
of objective function is often used in a stopping criterion. But, in [1], it is noted
that, the necessary condition for efficient point of gH-Gâteaux diffirentiable
RIOP is

0 ∈ fG(x)(v), ∀ v ∈ TxM.

Then, it is impossible to use the approximative gradient in a stopping criterion.
We will apply the idea coming from [16], which introduced a great function
satisfying the necessary conditions above. On the other hand, in the case of
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constrained RIOPs, the KKT conditions will be studied. These are more gen-
eral concepts than those in [9] since the constraint is defined by the interval
valued functions. The exact penalty approach will be established to convert the
constrained RIOPs to be an unconstrained RIOPs.

This paper is organized as follows. At first, some basic notions and notations
about Riemannian manifolds, together with the interval analysis, the Rieman-
nian interval valued functions (RIVF), and their properties are introduced. In
the next sections main results, including unconstrained and constrained interval
valued optimization in Hadamard manifolds are demonstrated. In Section 3, we
study about the existence of efficient point to RIOPs.We also build up the steepest
descent algorithm for solving unconstrained RIOPs, together with partial con-
vergence. In Section 4, we consider the constrained Riemannian interval valued
optimization problems (CRIOPs) and the Karush–Kuhn–Tucker (KKT) condi-
tions. In addition, we study the exact penalty approach for solving the CRIOPs.
At the end, we provide the summary and conclusions in Section 5.

2. Premilinaries

2.1. Interval analysis and Riemannian interval valued functions

In this section, we recall some background materials including interval analysis
and Riemannian interval value functions (RIVF). Their properties are important,
which will be presented in the subsequent sections.

In light of the traditional notations in most textbooks, see [2] and references
therein, we denote I(R) be the set of all closed bounded intervals in R, i.e.

I(R) = {
[a, a] | a, a ∈ R, a ≤ a

}
.

The well known Hausdorff metric dH on I(R) is defined by

dH(A,B) = max
{
|a − b|, |a − b|

}
, ∀ A = [a, a], B = [b, b] ∈ I(R).

Then, (I(R), dH) is a complete metric space [17]. In addition, the Minkowski
sum and scalar multiplications is described, respectively, by

A + B = [a + b, a + b],

λA =
{
[λa, λa] if λ ≥ 0,
[λa, λa] if λ < 0,

where A = [a, a] and B = [b, b]. Note that A − A = A + (−1)A �= 0, in general.
A crucial concept in achieving a useful working definition of derivative for

interval valued functions is trying to derive a suitable difference between two
intervals.
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Definition 2.1 ([18, Definition 1]): Let A,B ∈ I(R). The gH-difference
between A and B is defined as the interval C such that

C = A −gH B ⇐⇒

⎧⎪⎨
⎪⎩
A = B + C
or
B = A − C.

Proposition 2.1 ([18, Proposition 4]): For any two intervals A = [a, a], B =
[b, b], the gH-difference C = A −gH B always exists and is expressed as

C =
[
min{a − b, a − b}, max{a − b, a − b}

]
.

Notice that, for all A ∈ I(R), we define ||A||H := dH(A, 0). It is clear that
||A||H is a norm on I(R) and dH(A,B) = ||A −gH B||H , (see[19]).
Lemma 2.1 ([20, Lemmas 2.2, 2.3]): For all A,B,C ∈ I(R), the following hold.

(a) ||A||H − ||B||H ≤ ||A −gH B||H.
(b) ||A −gH B||H ≤ ||(A −gH C) + (C −gH B)||H.

Definition 2.2 ([21, Definition 3.5]): For A,An ∈ I(R), n = 1, 2, . . ., if
||An −gH A||H = 0 as n → ∞, then {An} is said to be convergent to A, for which
we denote it as limn→∞ An = A.

Follow above definition, it is easily to see that ifAn = [an, an], n = 1, 2, . . . and
A = [a, a], then

lim
n→∞An = A ⇐⇒

⎧⎨
⎩

lim
n→∞ an = a

lim
n→∞ an = a

.

Lemma 2.2: Let {An}, {Bn} be sequences in I(R). If limn→∞ An and limn→∞ Bn
exist, then, we have

lim
n→∞(An −gH Bn) = 0 =⇒ lim

n→∞An = lim
n→∞Bn.

Proof: Assume that An = [an, an] and Bn = [bn, bn]. If

lim
n→∞(An −gH Bn) = 0,

it indicates that for all ε > 0, there exists N>0 such that

||An −gH Bn||H < ε =⇒ max{|an − bn|, |an − bn|} < ε, for all n ≥ N.

This implies

lim
n→∞(an − bn) = lim

n→∞(an − bn) = 0 or lim
n→∞An = lim

n→∞Bn,

which is the desired result. �
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Remark 2.1: We point out that, for any A,B,C ∈ I(R),

A −gH B = C � A = B + C.

Please see [1] for more details. Consequently, Lemma 2.2 cannot be extended to
the general case, i.e.

lim
n→∞(An −gH Bn) = C � lim

n→∞An = lim
n→∞Bn + C.

There is no natural ordering on I(R), therefore we need to define it. The
following definition is based on the concept in [22].

Definition 2.3: Let A = [a, a] and B = [b, b] be two elements of I(R).

(i) We sayA is dominated byB if a ≤ b and a ≤ b. In this case, wewriteA �LU
B.

(ii) We write A ≺LU B if A �LU B and A �= B. Equivalently, A ≺LU B if and
only if one of the following cases holds:
(1) a < b and a ≤ b.
(2) a ≤ b and a < b.
(3) a < b and a < b.

(iii) We write A ≺LUst B if a < b and a < b.
(iv) LetA and B be two sets of closed intervals. We writeA �LU B if and only

if A �LU B for any A ∈ A and B ∈ B.

Lemma 2.3: For any elements A,B,C,D,Ai,Bi, i = 1, . . . , n of I(R), there hold

(i) A �LU B ⇐⇒ A −gH B �LU 0.
(ii) A ⊀LU B ⇐⇒ A −gH B ⊀LU 0.
(iii) A �LU B =⇒ A −gH C �LU B −gH C,
(iv) A �LU B −gH C =⇒ B ⊀LU A + C.
(v) 0 �LU

∑n
i=1(Ai −gH Bi) =⇒ 0 �LU

∑n
i=1 Ai −gH

∑n
i=1 Bi.

Proof: The proofs of (i), (ii), (iii) and (iv) can be found in [1, Lemma 2.10] and
we only verify part(v). Assume that Ai = [ai, ai],Bi = [bi, bi], we have

0 �LU

n∑
i=1

(Ai −gH Bi) =⇒
n∑

i=1
min{ai − bi, ai − bi} ≥ 0

=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

(ai − bi) ≥ 0

n∑
i=1

(ai − bi) ≥ 0
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=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

ai ≥
n∑
i=1

bi

n∑
i=1

ai ≥
n∑
i=1

bi

⇐⇒
n∑

i=1
Bi �LU

n∑
i=1

Ai

⇐⇒ 0 �LU

n∑
i=1

Ai −gH

n∑
i=1

Bi.

Then, the proof is complete. �

Before proceeding to Riemannian interval valued functions (RIVF), we need
some notations about Riemannian manifold, which can be found in some text-
books about Riemannian geometry, such as [23–25]. Let M be a Riemannian
manifold, we denote by TxM the tangent space ofM at x ∈ M, and the tangent
bundle ofM is denoted by TM = ∪x∈MTxM. For any x, y ∈ M, the Rieman-
nian distance d(x, y) on M is defined by the minimal length over the set of all
piecewise smooth curves joining x to y. Let ∇ be the Levi-Civita connection on
Riemannian manifold M, γ : I ⊆ R −→ M is a smooth curve on M, a vector
field X is called parallel along γ if ∇γ ′X = 0. We say that γ is a geodesic if γ ′ is
parallel along itself, in this case ‖γ ′‖ is constant. When ‖γ ′‖ = 1, γ is said to be
normalized. A geodesic joining x and y inM is calledminimal if its length equals
d(x, y).

For any x ∈ M, letU be a neighbourhood of 0x ∈ TxM, the exponential map-
ping expx : U −→ M is defined by expx(v) = γ (1) where γ is the geodesic at
γ (0) = x such that γ ′(0) = v. It is known that exponential mapping is the spe-
cial case of retraction mapping [5], and the derivative of expx at 0x ∈ TxM is the
identity map; furthermore, by the Inverse Theorem, it is a local diffeomorphism.
The inverse map of expx is denoted by exp−1

x . A Riemannian manifold is com-
plete if for any x ∈ M, the exponential map expx is defined on TxM. A simply
connected, complete Riemannianmanifold of non-positive sectional curvature is
called a Hadamard manifold. IfM is a Hadamard manifold, for all x, y ∈ M, by
the Hopf-Rinow Theorem and Cartan-Hadamard Theorem [24], expx is a diffeo-
morphism and there exists a unique normalized geodesic joining x and y, which
is indeed a minimal geodesic. From now, in this paper, when we mentionM, it
means thatM is a Hadamard manifold.

Lemma 2.4 ([26, Lemma 2.4]): Suppose that x0 ∈ M and {xk} be a sequence in
M with xk → x0 as k → ∞. Then, the following hold.
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(i) For any y ∈ M, exp−1
xk (y) −→ exp−1

x0 (y) and exp−1
y (xk) −→ exp−1

y (x0) as
k → ∞.

(ii) If {vk} is a sequence such that vk ∈ TxkM, k = 1, 2, . . . and vk −→ v0 as
k → ∞, then v0 ∈ Tx0M.

(iii) Given the sequences {uk}, {vk} with uk, vk ∈ TxkM, k = 1, 2, . . ., if uk −→
u0 and vk −→ v0 as k → ∞, then

〈uk, vk〉xk −→ 〈u0, v0〉x0 ,

where 〈·, ·〉xk and 〈·, ·〉x0 are inner products on TxkM and Tx0M, respec-
tively.

Lemma 2.5 ([27, Proposition 2.9]): Suppose that x ∈ M and v ∈ TxM. Define
the function g : M −→ R by

g(y) = 〈v, exp−1
x (y)〉x.

Then, g is affine, in other words, g and −g are geodesically convex functions.

Let D ⊆ M be a non-empty set, a mapping f : D −→ I(R) is called a Rie-
mannian interval valued function (RIVF). We write f (x) = [f (x), f (x)], where
f , f are real valued functions satisfy f (x) ≤ f (x), for all x ∈ D. Since Rn is a
Hadamard manifold, an interval valued function (IVF) f : U ⊆ Rn −→ I(R) is
also a RIVF. Furthermore, since R ⊂ I(R), then a Riemannian real valued func-
tion f : D −→ R is also a RIVF. For gH-continuity and geodesically convexity of
RIVF, see [1].

Definition 2.4 ([20, Definition 4.1]): Let V be a normed linear space. The
IVF (interval valued function) F : V −→ I(R) is said to be generalized linear
(g-linear) if

(i) F(λv) = λF(v), for all v ∈ V , λ ∈ R; and
(ii) for all v,w ∈ V , either F(v) + F(w) = F(v + w) or none of F(v) + F(w)

and F(v + w) dominates the other.

Definition 2.5 ([20, Definition 4.2]): Let (V , || · ||) be a normed linear space.
The g-linear IVF F : V −→ I(R) is said to be a bounded g-linear operator if
there exists K>0 such that

||F(v)||H ≤ K||v||, ∀ v ∈ V .

Lemma2.6 ([20, Lemma4.2]): LetV be a normed linear space. If the g-linear IVF
F : V −→ I(R) is gH-continuous at 0 ∈ V , then F is a bounded g-linear operator.
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In [1], the authors build up the concepts gH-directional and gH-Gâteaux
differentiability of RIVF. They also shown that gH-Gâteaux differentiable does
not imply the gH-continuity of interval valued function. We will introduce a
stronger concept of the differentiability for RIVF, from which, the gH-continuity
is implied.

Definition 2.6 (gH-Fréchet differentiable): Let D ⊆ M be a non-empty open
set and f : D −→ I(R) be a RIVF. For x0 ∈ D, if there exists a gH-continuous
g-linear IVF G : Tx0M −→ I(R) such that

f (expx0(v)) = f (x) + G(v) + R(v),

where R : Tx0M −→ I(R) is an IVF and

lim||v||x0→0

||R(v)||H
||v||x0

= 0,

then f is said gH-Fréchet differentiable at x0, and we write G = fF(x0), the gH-
Fréchet derivative of f at x0. The RIVF f is called gH-Fréchet differentiable onD
if f is gH-Fréchet differentiable at every x ∈ D.

Example 2.1: Let A,B ∈ I(R) and f : R2 −→ I(R) such that f (x) = x21A +
x2B, where x = (x1, x2). Consider x = (0, 0) and for any v = (v1, v2) ∈
T(0,0)R2 = R2, we have

fG(0, 0)(v) = lim
t→0+

1
t
(f ((0, 0) + tv) −gH f (0, 0))

= lim
t→0+

1
t
((tv1)2A + (tv2)B)

= v2B.

It is clear to see that fG(0, 0)(·) is gH-continuous and g-linear IVF. Let G(·) =
fG(0, 0)(·), then

lim
h→0

||f (h) −gH f (0, 0) −gH G(h)||H
||h|| = lim

h→0

||h21A + h2B −gH 0 −gH h2B||H√
h21 + h22

= lim
h→0

||h21A||H√
h21 + h22

= 0.

Hence, f is gH-Fréchet differentiable at (0, 0) and fF(0, 0)(v) = fG(0, 0)(v) = v2B.
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Theorem 2.1: Let D ⊆ M be a non-empty open set and letf : D −→ I(R) be
a RIVF. If f is gH-Fréchet differentiable at some x0 ∈ D, then f is gH-Gâteaux
differentiable at x0 and both the derivatives are coincide.

Proof: Let fF(x0) be the gH-Fréchet derivative of f at x0. Then for all v ∈
Tx0M\{0x0}, we have

f (expx0(tv)) −gH f (x0) −gH fF(x0)(tv) = R(tv),

then

lim
t→0+

||f (expx0(tv)) −gH f (x0) −gH fF(x0)(tv)||H
||tv||x0

= lim
t→0+

||R(tv)||H
||tv||x0

= 0,

which says

lim
t→0+

1
t
(f (expx0(tv)) −gH f (x0) −gH fF(x0)(tv)) = 0. (1)

Since fF(x0) is g-linear, we have fF(x0)(tv) = tfF(x0)(v). Hence, (1) leads to

lim
t→0+

1
t
(f (expx0(tv)) −gH f (x0) −gH tfF(x0)(v)) = 0,

This together with Lemma 2.2 yields

lim
t→0+

1
t
(f (expx0(tv)) −gH f (x0)) = fF(x0)(v),

which indicates f is gH-Gâteaux differentiable at x0 and fF(x0) = fG(x0). �

Theorem 2.2: LetD ⊆ M be a non-empty open set. If the RIVF f : D −→ I(R)

is gH- Fréchet differentiable at x0 ∈ D, then f is gH-continuous at x0.

Proof: Let fF(x0) denote the gH-Fréchet derivative of f at x0. Then, fF(x0) is a
gH-continuous and g-linear IVF. By Lemma 2.6, there exists K>0 such that for
all v ∈ Tx0M, there holds

||fF(x0)(v)||H ≤ K||v||x0 .
Due to the RIVF f being gH-Fréchet differentiable at x0, for ε > 0 and v ∈ Tx0M
such that expx0(v) ∈ B(x0, ε) (B(x0, ε) means the geodesic ball with the centre at
x0 and radius ε in manifoldM), we have

||f (expx0(v)) −gH f (x0) −gH fF(x0)(v)||H ≤ ε||v||x0 .
Thus, together with Lemma 2.1, for all v ∈ Tx0M such that expx0(v) ∈ B(x0, ε),
we see that

||f (expx0(v)) −gH f (x0)||H = ||f (expx0(v)) −gH f (x0)||H − ||fF(x0)(v)||H
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+ ||fF(x0)(v)||H
≤ ||f (expx0(v)) −gH f (x0) −gH fF(x0)(v)||H

+ ||fF(x0)(v)||H
≤ ε||v||x0 + K||v||x0
= (ε + K)||v||x0 .

This implies

lim||v||→0
(f (expx0(v)) −gH f (x0)) = 0,

and hence the RIVF f is gH-continuous at x0. �

There still exist some RIVFs, which are gH-Gâteaux differentiable, but not gH-
Fréchet differentiable. For example, in [1], the authors consider the RIVF

f : M −→ I(R)

(x1, x2) �−→

⎧⎪⎨
⎪⎩

x1x22
x41 + x22

[1, 2] if (x1, x2) �= (0, 0),

0 otherwise,

where M is flat manifold R2. Then, the function f is gH-Gâteaux differentiable
at (0, 0), but f is not gH-continuous at (0, 0). And, by Theorem 2.2, f is not gH-
Fréchet differentiable at (0, 0).

3. Unconstraint interval valued problem on Hadamardmanifolds

3.1. Existence of solution

Consider the Riemannian interval optimization problem (RIOP):

min
x∈M f (x) (2)

where f : M −→ I(R) is a RIVF. Since the objective function f (x) = [f (x), f (x)]
in the RIOP (2) is an interval-valued function, we can consider two correspond-
ing scalar problems for (2) as follows:

min
x∈M f (x) (3)

and

min
x∈M f (x) (4)
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Definition 3.1 ([1,Definition 4.1]): An element x0 ∈ M is said to be an efficient
point to the RIOP (2) if

f (x) ⊀LU f (x0), ∀ x ∈ M.

In this case, f (x0) is called an efficient objective value of the RIOP (2).

In [1], the authors already proved the Characterization I and II of efficient
point to the RIOP (2) in light of the gH-directional differentiability and gH-
Gâteaux differentiability, respectively. Based on these results, we further consider
the concept of critical point of RIOP (2) as below.

Definition3.2: Consider theRIOP (2) and let x0 ∈ M.We call that x0 is a critical
point of the RIOP (2) if

0 ∈ f ′(x0, v), ∀ v ∈ Tx0M. (5)

Remark 3.1: The necessary condition (5) is equivalent to

f ′(x0, v) ≥ 0, ∀ v ∈ Tx0M. (6)

In fact, it is easy to see that (5) implies (6). Conversely, suppose that there exist
v ∈ Tx0M such that f ′(x0, v) > 0, then f ′(x0,−v) = −f ′(x0, v) < 0. This is a
contradiction.

Lemma 3.1 ([27, Lemma 3.1]): Let G : M −→ M be the set valued mapping
such that for each x ∈ M,G(x) is closed. Suppose that

(i) there exists x0 ∈ M such that G(x0) is compact;
(ii) for any x1, x2, . . . , xm ∈ M,

conv({x1, x2, . . . , xm}) ⊂
m⋃
i=1

G(xi).

Then, there holds ⋂
x∈M

G(x) �= ∅.

Theorem 3.1: Suppose that f is strictly geodesically convex RIVF and x0 ∈ M is
an optimal solution to problems (3) and (4), simultaneously. Then, x0 is the unique
efficient point to the RIOP (2).

Proof: By [1, Theorem 4.2], x0 is an efficient point to the RIOP (2). Suppose
that there exists x1 ∈ M\{x0} is another efficient point of the RIOP (2). Since
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f is strictly geodesically convex RIVF, the function f or f is strictly geodesically
convex real function. Without loss of generality, assume that f is strictly geodesi-
cally convex real function, then x0 is the unique optimal solution to problem (4).
Hence, we conclude that

f (x0) < f (x1).

Otherwise, x0 is an optimal solution to (3), which says

f (x0) ≤ f (x1).

Therefore,

f (x0) ≺LU f (x1),

which is a contradiction. �

Theorem 3.2: Suppose that f and f are strictly geodesically convex real functions.
Furthermore, assume that x0, x1 are the optimal solutions of (3) and (4), respec-
tively. Let γ : [0, 1] −→ M be the minimal geodesic joining x0 with x1. Then for
all x = γ (t), t ∈ [0, 1], x is an efficient point to the RIOP (2).

Proof: Since f and f are strictly geodesically convex real functions, f is a strictly
geodesically convex RIVF. For all x = γ (t), t ∈ [0, 1], we have

f (γ (t)) ≺LU (1 − t)f (x0) + tf (x1). (7)

Otherwise, by [1, Theorem 4.2] and strictly convexity of f and f , we obtain x0, x1
are the efficient points to the RIOP (2). For all y ∈ M, we have{
f (y) ⊀LU f (x0)
f (y) ⊀LU f (x1)

=⇒ f (y) = (1 − t)f (y) + tf (y) ⊀LU (1 − t)f (x0) + tf (x1).

(8)
From (7) and (8), we see

f (y) ⊀LU f (γ (t)),

which indicates that x = γ (t) is an efficient point to the RIOP (2). �

Example 3.1: Let M = R with standard metric and consider interval valued
problem as below

min
[
1
4
x2, (x − 1)2 + 1

]
. (9)

It is easy to see that

0 = argmin
1
4
x2 and 1 = argmin[(x − 1)2 + 1].

Then, ∀ x ∈ [0, 1], x is an efficient point of problem (9), see Figure 1.
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Figure 1. Illustration of Example 3.1.

Theorem 3.3: Suppose that f : M −→ I(R) be geodesically convex on M and
f ′(x, ·) is gH-continuous IVF. Assume that, for some y ∈ M, the set{

x ∈ M|f ′(x, exp−1
x (y)) ⊀LU 0

}
is compact. Then, the RIOP (2) reaches an efficient point x∗.

Proof: According to [1, Theorem 4.4], it suffices to prove that the Riemannian
interval valued inequality

f ′(x, exp−1
x (y)) ⊀LU 0, ∀ y ∈ M

has a solution x∗. To verify it, for any given y ∈ M, define

G(y) = {
x ∈ M | f ′(x, exp−1

x (y)) ⊀LU 0
}
.

For any x1, x2, . . . , xm ∈ M and t1, t2, .., tm ≥ 0 such that
∑m

i=1 ti = 1, we will
show that the Assumption (ii) of Lemma 3.1 is held. We suppose, by contradic-
tion, there exist x0 such that

x0 ∈ conv({x1, x2, . . . , xm}) \
m⋃
i=1

G(xi),

which implies that for any i = 1, . . . ,m, f′(x0,exp−1
x0(xi))≺LU0. Hence, we have

xi ∈ P := {y ∈ M | f ′(x0, exp−1
x0 (y)) ≺LU 0} ∀ i = 1, . . . ,m.

To proceed, we check that P is a geodesically convex set. Let y1, y2 ∈ P and
γ : [0, 1] −→ M be the minimal geodesic joining y1 and y2. It follows from
Lemma 2.5 that (f )′(x0, ·), (f )′(x0, ·) are geodesically convex. Then,

f ′(x0, exp−1
x0 (γ (t))) = [min{(f )′(x0, exp−1

x0 (γ (t))), (f )′(x0, exp−1
x0 (γ (t)))},
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max{(f )′(x0, exp−1
x0 (γ (t))), (f )′(x0, exp−1

x0 (γ (t)))}]
�LU [min{t(f )′(x0, exp−1

x0 (y1)) + (1 − t)(f )′(x0, exp−1
x0 (y2)),

t(f )′(x0, exp−1
x0 (y1)) + (1 − t)(f )′(x0, exp−1

x0 (y2))},
max{t(f )′(x0, exp−1

x0 (y1)) + (1 − t)(f )′(x0, exp−1
x0 (y2),

t(f )′(x0, exp−1
x0 (y1)) + (1 − t)(f )′(x0, exp−1

x0 (y2))}], (10)

Since y1, y2 ∈ P, we have

f ′(x0, exp−1
x0 (y1)) ≺LU 0, f ′(x0, exp−1

x0 (y2)) ≺LU 0.

Consequently, for i = 1, 2
{
min{f ′(x0, exp−1

x0 (yi)), f
′
(x0, exp−1

x0 (yi))} < 0
max{f ′(x0, exp−1

x0 (yi)), f
′
(x0, exp−1

x0 (yi))} ≤ 0.
(11)

Combining (10) and (11) yields

f ′(x0, exp−1
x0 (γ (t))) ≺LU 0,

which says P is a geodesically convex set. Therefore, we obtain that

x0 ∈ conv({x1, x2, . . . , xm}) ⊆ P,

and hence

0 = f ′(x0, exp−1
x0 (x0)) ≺LU 0.

This is a contradiction. Thus, G(·) satisfies the Assumption (ii) of Lemma 3.1.
Now, by Lemma 3.1, we only need prove that for any y ∈ M,G(y) is closed.
Consider x ∈ M and {xk} be a sequence of G(y) with xk → x as k → ∞, we
know

lim
k→+∞

|| exp−1
x (xk)||x = 0.

Since f ′(x, ·) is gH-continuous on TxM, it is clear that

lim
k→+∞

f ′(x, exp−1
x (xk)) = f ′(x, 0)

Then, it follows from Lemma 2.4 that

lim
k→+∞

f ′(xk, exp−1
xk (y)) = f ′(x, exp−1

x (y)) =⇒ f ′(x, exp−1
x (y)) ⊀LU 0

=⇒ x ∈ G(y),
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which says G(y) is closed. Next, applying Lemma 3.1 gives⋂
y∈M

G(y) �= ∅.

Let x∗ ∈ ⋂
y∈M G(y), by the definition of G(·), x∗ is a solution of Riemannian

interval valued variational inequality

f ′(x∗, exp−1
x∗ (y)) ⊀LU 0, ∀ y ∈ M,

which means that the RIOP (2) reaches an efficient point x∗. �

Example 3.2: LetM = R++ := {x ∈ R | x > 0} be endowed with the Rieman-
nian metric given by

〈u, v〉x = 1
x2

uv, ∀ u, v ∈ TxM ≡ R.

Then, it is known thatM is a Hadamard manifold. For all x ∈ M, v ∈ TxM, the
geodesic γ : R −→ M such that γ (0) = x, γ ′(0) = v is described by

γ (t) = expx(tv) = xe(v/x)t and exp−1
x y = x ln

y
x
, ∀ y ∈ M.

We consider the RIOP min
x∈M f (x) with f : M −→ I(R) being defined by

f (x) =
[
x, x + 1

x

]
, ∀ x ∈ M.

For all x, y ∈ M and v = exp−1
x y, we compute

f ′(x, v) = lim
t−→0+

1
t
(f (expx(tv)) −gH f (x)))

= lim
t−→0+

1
t

[
min

{
x(e(v/x)t − 1), x(e(v/x)t − 1) + 1

x
(e(v/x)t − 1)

}
,

max
{
x(e(v/x)t − 1), x(e(v/x)t − 1) + 1

x
(e(v/x)t − 1)

}]

=
[
min

{
v, v − 1

x2
v
}
, max

{
v, v − 1

x2
v
}]

= v
[
1 − 1

x2
, 1

]

= ln
y
x

[
x − 1

x
, x

]
,

which says that f is gH-directional differentiable on M. It can be easily verified
that f ′(x, ·) is gH-continuous. In addition, ∀ x, y ∈ M, we have

f ′(x, exp−1
x y) ⊀ 0 ⇐⇒ ln

y
x

[
x − 1

x
, x

]
⊀ 0
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⇐⇒
{
x ∈ (0, y] if y ≥ 1
x ∈ (0, 1) if y < 1

.

Therefore, for any y ∈ M, the set{
x ∈ M | f ′(x, exp−1

x (y)) ⊀LU 0
}

is not compact.
On the other hand, by the Cauchy–Schwarz inequality, for all x>0, we have

x + 1
x

≥ 2, and x + 1
x

= 2 ⇔ x = 1.

Consequently,

[x, x + 1
x
] ⊀ [1, 2], ∀ x > 0,

or x = 1 is an efficient point of this RIOP. It means that the converse of
Theorem 3.3 is not true.

3.2. Steepest descentmethod

Consider the RIOP (2) with f is gH-Fréchet differentiable onM. We shall build
up an algorithm for solving the interval valued problem onHadamardmanifolds.
By Definition 3.2, we know that the gradient of f may be not vanished at the
critical point. Thus, we consider the unconstrained minimized subproblem:

min
v∈TxM

(
hx(v) := f ′(x, v) + 1

2
||v||2x

)
. (12)

For any given point x ∈ M, the functions f ′(x, ·) is convex (as the maximum of
linear functions) and homogeneous. Then, the objective function of problem (12)
is proper, closed and strongly convex, it always has a (unique) solution.

Proposition 3.1: Let v(x) and h(x) be the solution and the optimal value of
problem (12), respectively. Then, the following hold.

(i) If x is a critical point of RIOP (2), then v(x) = 0x and h(x) = 0.
(ii) If x is not a critical point of RIOP (2), then h(x) < 0.
(iii) Consider the mappings

v : M −→ TM

x �−→ v(x) ∈ TxM
where v(x) is the optimal solution of problem (12), and

h : M −→ R
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x �−→ h(x) (13)

where h(x) be the optimal value of problem (12). Then v, h are continuous
mappings.

Proof: It is easy to see part (i).
For part (ii), since x is not a critical point to the RIOP (2), there exist v ∈ TxM

such that f ′(x, v) = a < 0. Let b := ||v||2x, and for all t ∈ R, we have

hx(tv) = ta + t2

2
b.

This implies hx(tv) < 0 for all t ∈ (0, −a
b ). Therefore, h(x) < 0.

For part (iii), please see [28, Lemma 5.1]. �

Assumption 3.1: The function f is bounded from below and the level set

�x0 :=
{
x ∈ M | f (x) �LU f (x0)

}
is a bounded set.

Algorithm3.1 (Interval valuedRiemannian steepest descentmethod (IRSD)):
Require: Initial iterate x0,β ∈ (0, 1) ;

(1) for k = 0, . . . do
(2) If xk is a critical point of the RIOP, stop. Otherwise, define

ηvk = arg min
v∈TxkM

(
f ′(xk, v) + 1

2
||v||2xk

)
;

(3) Compute steplength tk ∈ [0, 1] as the maximum of{
t = 1

2i

∣∣∣∣ i ∈ N, f (expxk(tvk)) �LU f (x) + βtf ′(xk, vk)
}
;

(4) xk+1 = expxk(tkvk);
(5) end for

Lemma 3.2: For any x ∈ M, if there exist v ∈ TxM such that

f ′(x, v) < 0,

then there exist some ε > 0 such that

f (expx(tv)) ≺LUst f (x) + βtf ′(x, v),

for any t ∈ (0, ε]. In other words, the Step 3 is well defined.
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Proof: Because f is gH-Fréchet differentiable, we see that

f (expx(v)) = f (x) + f ′(x0, v) + R(v),

where R : TxM −→ I(R) is an IVF such that

lim||v||→0

||R(v)||H
||v||x = 0.

Observe that v �= 0x and β < 1, there exists ε1 > 0 such that

0 < t ≤ ε1 =⇒ max{|R(tv)|, |R(tv)|}
||tv||x <

(1 − β)|f ′(x, v)|
||v||x .

Thus, for 0 < t ≤ ε1, we have

max
{|R(tv)|, |R(tv)|} < t(1 − β)|f ′(x, v)|.

This together with f ′(x, v) < 0 yields

R(tv) ≺LUst −t(1 − β)f ′(x, v).

Therefore, for 0 < t ≤ ε1, we obtain

f (expx(tv)) = f (x) + tf ′(x, v) + R(tv)

≺LUst f (x) + tf ′(x, v) − t(1 − β)f ′(x, v). (14)

Letting A = [a, a] ∈ I(R) and t,β ∈ (0, 1) give

tA − t(1 − β)A = [ta − ta + tβa, ta − ta + tβa], tβA = [tβa, tβa].

Consequently, {
ta − ta + tβa − tβa = t(a − a)(1 − β) ≤ 0
ta − ta + tβa − tβa = t(a − a)(1 − β) ≥ 0

and

tβA ⊆ tA − t(1 − β)A. (15)

From (14) and (15), we have

f (expx(v)) < f (x) + tβf ′(x, v), ∀ t ∈ (0, ε1]. (16)

On the other hand, f is a differentiable real function, we have

f (expx(tv)) = f (x) + (f )′(x, v) + r(v),

where r : TxM −→ R is a real valued function such that

lim||v||→0

|r(v)|
||v||x = 0.
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Since f ′(x, v) < 0 and β < 1, there exists ε2 such that

0 < t ≤ ε2 =⇒ |r(tv)|
||tv||x <

(1 − β)|f ′(x, v)|
||v||x .

Hence, for 0 < t ≤ ε2, we achieve

r(tv) < −t(1 − β)f ′(x).

Therefore, for 0 < t ≤ ε2, we have

f (expx(tv)) = f (x) + t(f )′(x, v) + r(tv)

< f (x) + tf ′(x, v) − t(1 − β)f ′(x, v)

= f (x) + tβf ′(x, v). (17)

From (16) and (17), we conclude

f (expx(tv)) ≺LUst f (x) + βtf ′(x, v),

for any t ∈ (0, ε] with ε = min{ε1, ε2}. �

Theorem 3.4: Let {xk} be the sequence generated by Algorithm 3.1. Suppose
Assumption 3.1 holds, then the sequence {f (xk)} is decreasing and {xk} has at least
once accumulation point. Furthermore, every accumulation point of the sequence
{xk} is an efficient point to the RIOP (2).

Proof: The decreasing property of {f (xk)} is directly inferred from Lemma 3.2.
By Assumption 3.1, �x0 is bounded and f is a gH-continuous RIVF, the Hopf-
Rinow’s theorem indicates that�x0 is a compact set. Now, by Lemma 3.2, {xk} ⊂
�x0 , which says {xk} is bounded.Hence, {xk}has at least once accumulation point.

Let x∗ be an accumulation point of the sequence {xk} and let v(x∗) and h(x∗)
be the solution and the optimum value of problem (12) at x∗, respectively. In view
of Remark 3.1, we need to show that h(x∗) = 0.

Consider that {xkr} is a subsequence of {xk} such that limr→+∞xkr =x∗ from
the gH-continuity of f, we have

lim
r→+∞ f (xkr) = f (x∗).

Hence, we obtain

lim
r→+∞ ||f (xkr+1) −gH f (xkr)||H = 0.

On the other hand, we know

f (xkr+1) −gH f (xkr) �LU tkrβf
′(xkr , vkr) �LU 0,
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which implies

lim
r→+∞ tkr f

′(xkr , vkr) = 0. (18)

To proceed, we discuss two possibilities: (i) lim supr→+∞ tkr > 0;
(ii) lim supr→+∞ tkr = 0.

Case (i). Let subsequence {xku} of {xkr} satisfies
lim

u→+∞ tku = t0 > 0.

From (18), we have limr→+∞f′(xku ,vku)=0, which gives limu→+∞h(xku)=0. By
Proposition 3.1(iii), the mapping x �−→ h(x) is continuous. This together with
limu→+∞ xku = x∗ concludes that h(x∗) = 0, so x∗ is an efficient point to the
RIOP (2).

Case (ii). Since xk is not an efficient point to the RIOP (2), from Proposi-
tion 3.1(ii), it says h(xk) < 0 and consequently

f ′(xk, vk) + 1
2
||vk||2xk < 0 =⇒ f ′(xk, vk) < −1

2
||vk||2xk < 0.

Thus, the sequence {vk} is bounded, which implies the subsequence {vkr} is also
bounded. Therefore, we can take a subsequence {vkl} of {vkr}, which converges to
some v∗ ∈ Tx∗M. For all l, we have

f ′(xkl , vkl) ≤ h(xkl) < 0,

passing onto the limit l → +∞, we achieve

f ′(x∗, v∗) ≤ h(x∗) ≤ 0. (19)

Take some n ∈ N, for l large enough tkl > 1/2n, which means that Armijo
condition is not satisfied for t = 1/2n, i.e.

f (expxkl (tvkl)) �LU f (xkl) + tβf ′(xkl , vkl), t = 1/2n,

for l large enough. Passing onto limit l → +∞ yields

f (expx∗(tv∗)) ⊀LU f (x∗) + tβf ′(x ∗, v∗), t = 1/2n.

Then, from Lemma 3.2, it follow that

f ′(x∗, v∗) ≥ 0. (20)

Combining (19) and (20) leads to h(x∗) = 0. Thus, x∗ is an efficient point to the
RIOP (2). �

In practice, an algorithm is hoped to terminate in finite time. In viewof this, the
stopping criterion used in Step 2 of Algorithm 3.1, cannot be employed. For the
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traditional optimization problem, the norm of the gradient of objective function
is often used in a stopping criterion. However, it is impossible with interval val-
ued functions, because the gradient of objective functions now is an IVF, which
may be not vanished at a critical point. Nonetheless, since the direction provided
by (12) generalizes the steepest descent direction, the optimal value of prob-
lem (12) can be used as a stopping criterion for Algorithm 3.1. In particular, we
can rewrite the Algorithm 3.1 as below.

Algorithm 3.2: Require: Initial iterate x0, β ∈ (0, 1),α > 0;

(1) for k = 0, . . . do
(2) Define

vxk = arg min
v∈TxkM

hxk(v) := f ′(xk, v) + 1
2
||v||2xk ;

(3) If hxk(vk) > −α, stop. Otherwise, go to Step 4;
(4) Compute steplength tk ∈ [0, 1] as the maximum of{

t = 1
2i

∣∣∣∣ i ∈ N, f (expxk(tvk)) �LU f (x) + βtf ′(xk, vk)
}

(5) xk+1 = expxk(tkvk);
(6) end for

On the other hand, it is interesting for algorithms to deal problem (12) with
inexact solution. Suppose that x is not a critical point of the RIOP (2), we say that
v is an approximative of problem (12) with tolerance δ ∈ (0, 1] if

f ′(x, v) + 1
2
||v||2x ≤ δh(x).

Note that, for δ = 1, v is the exact solution to problem (12). Therefore, we can
consider the steepest descent algorithm to solve the RIOP (2) as below.

Algorithm 3.3: Require: Initial iterate x0, β ∈ (0, 1),α > 0, δ ∈ (0, 1];

(1) for k = 0, . . . do
(2) Compute vk, an approximative solution of problem (12) at x = xk with

tolerance δ;
(3) If hxk(vk) > −α, Stop. Otherwise, go to Step 4;
(4) Compute steplength tk ∈ [0, 1] as the maximum of{

t = 1
2i

∣∣∣∣ i ∈ N, f (expxk(tvk)) �LU f (x) + βtf ′(xk, vk)
}
;

(5) xk+1 = expxk(tkvk);
(6) end for
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4. Inequality constraints interval valued optimization problems on
Hadamardmanifolds

4.1. Sovability

Now, we consider the Riemannian interval optimization problem with con-
straints (CRIOP):

min f (x)
s.t Gi(x) �LU 0, i = 1, . . . , r

x ∈ M
(21)

where f ,Gi : M −→ I(R), i = 1, . . . , r are RIVFs. HereX means the feasible set
of CRIOP (21), i.e.

X := {x ∈ M |Gi(x) �LU 0, i = 1, . . . , r}.
We denote by

objP(f ,X ) := {f (x)|x ∈ X }
the set of all objective value of CRIOP (21); and min(f ,X ) the set of all efficient
objective values of the CRIOP (21).

Proposition 4.1: Consider the CRIOP (21) with f (x) = [f (x), f (x)] and X being
the feasible set. Given any λ1, λ2 > 0, λ1 + λ2 = 1, if x0 ∈ X is an optimal solution
of the following problem

min
x∈X h(x) = λ1f (x) + λ2f (x),

then x0 is an efficient point to the CRIOP (21).

Proof: In [1], the corresponding proposition with λ1, λ2 > 0 was established.
Here, we improve it since

argmin
x∈X h(x) ⇐⇒ argmin

x∈X λh(x), λ > 0,

for all h(·) is real valued function. In other words, we can assume that
λ1 + λ2 = 1. �

Note that the constraintGi(x) = [Gi(x),Gi(x)] �LU 0 is equivalent toGi(x) ≤
Gi(x) ≤ 0. Since the objective function f (x) = [f (x), f (x)], we can further con-
sider two corresponding scalar problems for (21) as follows:

min f (x)
s.t Gi(x) ≤ 0, i = 1, . . . , r

x ∈ M
(22)
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and

min f (x)
s.t Gi(x) ≤ 0, i = 1, . . . , r

x ∈ M
(23)

Proposition 4.2: Consider the CRIOP (21) and the corresponding scalar prob-
lems (22) and (23). The following hold.

(i) If x0 ∈ M is an optimal solution of problems (22) and (23) simultaneously,
then x0 is an efficient point of the CRIOP (21).

(ii) If x0 ∈ X is an unique optimal solution of problems (22) or (23), then x0 is
an efficient point of the CRIOP (21).

Proof: This is immediate consequence of [1, Proposition 4.2]. �

Karush–Kuhn–Tucker (KKT) conditions are important for optimization prob-
lems. The next part of this section is devoted to deriving the KKT conditions for
the CRIOP (21). At first, we provide the KKT condition for the following real
valued optimization on Hadamard manifold (ROP)

min F(x)
s.t gi(x) ≤ 0, i = 1, . . . , r (24)

where F : M −→ R and gi : M −→ R, i = 1, . . . , r. Let X = {x ∈ M|gi(x) ≤
0, i = 1, . . . , r} be the set of feasible point to the ROP (24).

Theorem 4.1 ([9, Theorem 5.1]): Consider the ROP (24) with x0 ∈ X. Suppose
that F, gi, i = 1, . . . , r are geodesically convex onM. Furthermore, for every feasible
point x ∈ X, there exist scalars μi ≥ 0, i = 1, . . . , r such that

⎧⎪⎨
⎪⎩
F′(x0, exp−1

x0 (x)) +
m∑
i=1

μig′
i(x0, exp

−1
x0 (x)) ≥ 0,

μigi(x0) = 0, ∀ i = 1, . . . , r.

Then, x0 is an optimal solution to the ROP (24).

Theorem 4.2: Consider the CRIOP (21) with x0 ∈ X . Suppose that f ,Gi, i =
1, . . . , r are geodesically convex onM. Furthermore, for any feasible point x ∈ X ,
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there exist scalars μi, μi ≥ 0, i = 1, . . . , r such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(Gi)
′(x0, exp−1

x0 (x)) ≥ 0

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(Gi)
′(x0, exp−1

x0 (x)) ≥ 0

μiGi(x0) = μiGi(x0) = 0, ∀ i = 1, . . . , r.

Then, x0 is an efficient point to the CRIOP (21).

Proof: Consider problem (22) and problem (23) with f ,Gi, i = 1, . . . , r being
geodesically convex on M. Following Proposition 2.16 and Lemma 3.9 in [1],
the geodesically convexity and gH-directional differentiability of f and Gi, i =
1, . . . , r are equivalent to the geodesically convex and directional differentiable
properties of f , f andGi,Gi, i = 1, . . . , r, respectively. Then, by Theorem 4.1, x0 is
an optimal solution of problem (22) and problem (23) simultaneously. Therefore,
by Proposition 4.2, x0 is an efficient point of the CRIOP (21). �

Example 4.1: Let M be the manifold, which is defined as in Example 3.2. We
consider the CRIOP as below:

min f (x)
s.t. x ∈ M,G(x) ≤ 0 (25)

where f ,G : M −→ I(R) are respectively defined by

f (x) =
[
x, x + 1

x

]
, and G(x) = [min{0, ln x}, max{0, ln x}], ∀ x ∈ M.

We know ln x ≤ 0 ⇐⇒ x ∈ (0, 1], hence the feasible set of above problem isX =
(0, 1]. Applying the Cauchy–Schwarz inequality, for all x>0, we have

x + 1
x

≥ 2 and x + 1
x

= 2 ⇔ x = 1,

which implies [
x, x + 1

x

]
⊀LU [1, 2], ∀ x > 0.

This together with G(1) = 0 indicates x0 = 1 is an efficient point to the
CRIOP(25).

On the other hand, we compute

(f )′(1, exp−1
1 (x)) = ln x, (f )′(1, exp−1

1 (x)) = 0,

(G)′(1, exp−1
1 (x)) = ln x, (G)′(1, exp−1

1 (x)) = 0,



OPTIMIZATION 25

for all x ∈ X . Therefore, for all x ∈ (0, 1), we obtain

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(G)′i(x0, exp−1
x0 (x)) < 0

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(G)′i(x0, exp−1
x0 (x)) < 0

By Example 3.1, we see that, Theorem 3.2 only provides the sufficient condi-
tion.

Theorem 4.3: Under the same assumption of Theorem 4.2. Suppose that for any
feasible point x ∈ X , there exist scalar λ1, λ2 > 0, λ1 + λ2 = 1 and μi ≥ 0, i =
1, . . . , r such that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1(f )′(x0, exp−1
x0 (x)) + λ2(f )′(x0, exp−1

x0 (x))

+
r∑

i=1
μi(G)′i(x0, exp−1

x0 (x)) ≥ 0

μiGi(x0) = 0, ∀ i = 1, . . . , r.

(26)

Then, x0 is an efficient point to the CRIOP (21).

Proof: Consider the Riemannian real valued problem:

min F(x) = λ1f (x) + λ2f (x)
s.t Gi(x) ≤ 0, i = 1, . . . , r

x ∈ M
Then, by the condition (26) and Theorem 4.1, x0 is an efficient point of the above
problem. SinceGi(x0) ≤ 0, i = 1, . . . , r, we haveGi(x0) �LU 0, i = 1, . . . , r. This
implies that x0 ∈ X . In view of Proposition 4.1, we have x0 is an efficient point to
the CRIOP (21). �

Theorem 4.4: Under the same assumption of Theorem 4.2. Suppose that for any
feasible point x ∈ X , there exist scalar μi ≥ 0, i = 1, . . . , r, such that⎧⎪⎨

⎪⎩
0 �LU f ′(x0, exp−1

x0 (x)) +
r∑

i=1
μiG′

i(x0, exp
−1
x0 (x))

μiGi(x0) = 0, ∀ i = 1, . . . , r.

Then, x0 is an efficient point to the CRIOP (21).
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Proof: By assumption, we have

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(Gi)
′(x0, exp−1

x0 (x))

≥ min{(f )′(x0, exp−1
x0 (x)), (f )′(x0, exp−1

x0 (x))}

+
r∑

i=1
μimin{(Gi)

′(x0, exp−1
x0 (x)), (Gi)

′(x0, exp−1
x0 (x))} ≥ 0, (27)

and

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(Gi)
′(x0, exp−1

x0 (x))

≥ min{(f )′(x0, exp−1
x0 (x)), (f )′(x0, exp−1

x0 (x))}

+
r∑

i=1
μimin{(Gi)

′(x0, exp−1
x0 (x)), (Gi)

′(x0, exp−1
x0 (x))} ≥ 0. (28)

Combining (27), (28) and μiGi(x0) = 0 for all i = 1, . . . , r, we achieve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(Gi)
′(x0, exp−1

x0 (x)) ≥ 0

(f )′(x0, exp−1
x0 (x)) +

r∑
i=1

μi(Gi)
′(x0, exp−1

x0 (x)) ≥ 0

μiGi(x0) = μiGi(x0) = 0, ∀ i = 1, . . . , r.

Hence, by Theorem 4.2, we show that x0 is an efficient point to the CRIOP (21).
�

Example 4.2: Let M = R2 with standard metric. Then, M is a flat Hadamard
manifold. Consider the RIOP as below:

min (f (x) := [min{x1 + 2x2, 2x1 + x2}, max{x1 + 2x2, 2x1 + x2}])
s.t. G1(x) = [min{x1 − x2,−x1}, max{x1 − x2,−x1}] �LU 0,

G2(x) = [min{x2 − x1,−x2}, max{x2 − x1,−x2}] �LU 0,
(29)

where x = (x1, x2). It is easy to see that the feasible point set is X = {(x1, x2) ∈
R2 : 0 ≤ x1 = x2}. At x0 = (0, 0), for all x = (x1, x2) ∈ X , we compute

f ′(x0, exp−1
x0 (x)) = [min{2x1 + x2, x1 + 2x2}, max{2x1 + x2, x1 + 2x2}] ,

G′
1(x0, exp

−1
x0 (x)) = [−x1, 0],

G′
2(x0, exp

−1
x0 (x)) = [−x2, 0].
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Therefore, with μ1 = μ2 = 1, we have⎧⎪⎨
⎪⎩
0 �LU f ′(x0, exp−1

x0 (x)) +
r∑

i=1
μiG′

i(exp
−1
x0 (x))

μiGi(x0) = 0, ∀ i = 1, . . . , r.

This says that x = (0, 0) is an efficient point to the CRIOP (29).

Denoting by min(f ,X ) the set of optimal values of CRIOP (21), we further
define the interval valued Langrangian function for the CRIOP (21) as follow:

L(x,μ) = f (x) +
r∑

i=1
μiGi(x),

for all x ∈ M and μi ≥ 0 for all i = 1, . . . , r.

Definition 4.1: A vector μ∗ = (μ∗
1, . . . ,μ

∗
r ) is said to be a Lagrange multiplier

for the CRIOP (21) if

μi ≥ 0, i = 1, . . . , r,

and

min(f ,X ) = min
x∈M L(x,μ∗).

Proposition 4.3: Let μ∗ be a Lagrange multiplier of the CRIOP (21). Then, x∗ is
an efficient point to the CRIOP (21) if and only if x∗ is a feasible point and

x∗ ∈ arg min
x∈M L(x,μ∗), μ∗

i Gi(x∗) = 0, ∀ i = 1, . . . , r. (30)

Proof: If x∗ is an efficient point to the CRIOP (21), it is clear that x∗ is a feasible
point. To see the remaining, since μ∗

i is a Lagrange multiplier, we know

f (x∗) ∈ min
x∈M L(x,μ∗).

It implies that

L(x∗,μ∗) ⊀LU f (x∗)

⇒ f (x∗) +
r∑

i=1
μ∗
i Gi(x∗) ⊀LU f (x∗).

Consequently,
r∑

i=1
μ∗
i Gi(x∗) ⊀LU 0.

For i = 1, . . . , r, since Gi(x∗) �LU 0, and μ∗
i ≥ 0, we have μ∗

i Gi(x∗) = 0.
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Conversely, if x∗ is a feasible point and (30) holds, then

f (x∗) = f (x∗) +
r∑

i=1
μ∗
i Gi(x∗) = L(x∗,μ∗) ∈ min

x∈M L(x,μ∗) = min(f ,X ),

which says x∗ is an efficient to the CRIOP (21). �

5. Exact penalty approach

Consider the CRIOP (21). Based on the optimization problem with absolute val-
ued penalty or exact l1 penalty function, we propose the following unconstrained
interval valued penalizad optimization problem involving exact l1 penalty func-
tion for the given constrains in (21):

min f (x) + l
∑r

i=1 G
+
i (x)

s.t x ∈ M (31)

where f ,Gi, i = 1, . . . , r are defined as in (21); l>0 is a penalty parameter and
for given constraint Gi(x); and the function G+

i (x) is defined by

G+
i (x) =

⎧⎪⎨
⎪⎩
0 if Gi(x) �LU 0
[0,Gi(x)] if 0 ∈ (Gi(x),Gi(x))
Gi(x) if 0 ≺LU Gi(x).

In [29], the exact l1 penalty method for interval valued optimization problems on
Rn is investigated, for which the constraints functions are real valued functions.
To the contrast, ourwork not only generalizes fromEuclidean space toHadamard
manifolds, but also study with the more general class of constraint functions.

Next, we connect the relationship between the CRIOP (21) and penalized
optimization problem (31).

Theorem 5.1: Let x0 be a feasible point of the CRIOP (21). Assume that there exist
μ∗ = (μ∗

1,μ
∗
2, . . . ,μ

∗
r ) > 0 such that

(i) the KKT optimal conditions of Theorem 4.4 hold;
(ii) f and Gi, i = 1, . . . , r are geodesically convex onM;
(iii) the penalty parameter l is sufficiently large.

Then, x0 is an efficient point to penalized optimization problem (31).
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Proof: Suppose that x0 is not an efficient point to penalized optimization prob-
lem (31), then there exists x1 ∈ M such that

f (x1) + l
r∑

i=1
G+
i (x1) ≺LU f (x0) + l

r∑
i=1

G+
i (x0). (32)

By using the assumption of f and Gi, i = 1, . . . , r being geodesically convex on
M, we have{

f ′(x0, exp−1
x0 (x1)) �LU f (x1) −gH f (x0)

G′
i(x0, exp

−1
x0 (x1)) �LU Gi(x1) −gH Gi(x0), i = 1, . . . , r,

Since μ∗ > 0, it further implies{
f ′(x0, exp−1

x0 (x1)) �LU f (x1) −gH f (x0)
μ∗
i G

′
i(x0, exp

−1
x0 (x1)) �LU μ∗

i
(
Gi(x1) −gH Gi(x0)

)
, i = 1, . . . , r,

Adding the above inequalities yields

f ′(x0, exp−1
x0 (x1)) +

r∑
i=1

μ∗
i G

′
i(x0, exp

−1
x0 (x1)) �LU

(
f (x1) −gH f (x0)

)

+
r∑

i=1
μ∗
i
(
Gi(x1) −gH Gi(x0)

)
.

Since the assumption (i) holds, we have

0 �LU
(
f (x1) −gH f (x0)

) +
r∑

i=1
μ∗
i
(
Gi(x1) −gH Gi(x0)

)
.

Then, applying Lemma 2.3(e) gives

f (x0) +
r∑

i=1
μ∗
i Gi(x0) �LU f (x1) +

r∑
i=1

μ∗
i Gi(x1).

Since x0 satisfies the KKT optimal conditions in Theorem 4.4, we know

μ∗
i Gi(x0) = 0,

and hence,

f (x0) �LU f (x1) +
r∑

i=1
μ∗
i Gi(x1).

In addition, Using the definition of G+
i (·) leads to

f (x0) + l
r∑

i=1
G+
i (x0) �LU f (x1) +

r∑
i=1

μ∗
i G

+
i (x1) �LU f (x1) + l

r∑
i=1

G+
i (x1),

where l > max{μ∗
i , . . . ,μ

r
i }, which contradicts (32). Thus, the proof is complete.

�
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Lemma 5.1: Let x0 be an efficient point of penalized optimization problem (31).
Then, for all x ∈ X , we have

f (x) ⊀LU f (x0).

Proof: Since x0 is an efficient point of penalized optimization problem (31), it is
clear that

f (x) + l
r∑

i=1
G+
i (x) ⊀LU f (x0) + l

r∑
i=1

G+
i (x0) for all x ∈ M.

Note that X ⊆ M, which indicates

f (x) + l
r∑

i=1
G+
i (x) ⊀LU f (x0) + l

r∑
i=1

G+
i (x0), ∀ x ∈ X .

Using definition ofG+
i (·), we haveG+

i (x) = 0 for all x ∈ X and 0 �LU G+
i (x) for

all x ∈ M. Consequently, we conclude

f (x) ⊀LU f (x0), ∀ x ∈ X

which is the desired result. �

Theorem 5.2: Let x0 be an efficient point to penalized optimization problem (31).
Suppose that for all x ∈ X and any l > l, there has

f (x0) + l
r∑

i=1
G+
i (x0) �LU f (x) + l

r∑
i=1

G+
i (x).

Then, x0 is an efficient point to the CRIOP (21).

Proof: Since x0 is an efficient point to penalized optimization problem (31), by
applying Theorem 5.1, we have

f (x) ⊀LU f (x0) for all x ∈ X .

Hence, in order to show the desired result, we only need to verify that x0 is a feasi-
ble point of the CRIOP (21). Suppose x0 is not a feasible point of the CRIOP (21),
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that is,

0 ≺LU

r∑
i=1

G+
i (x0).

Let x ∈ X be any feasible point of the CRIOP (21), and set

l > max

{
f (x) − f (x0)∑r

i=1 G
+
i (x0)

, l

}
.

Then, we have

f (x) = f (x) + l
r∑

i=1
G+
i (x) ≥ f (x0) + l

r∑
i=1

G+
i (x0) > f (x),

which is a contradiction. Thus, x0 is a feasible point of (21) and the proof is
complete. �

6. Conclusions

In this paper, we study the interval valued optimization problems on Hadamard
manifolds, including unconstrained and constrained settings. To achieve the the-
oretical results, we build up new concepts regarding gH-Fréchet differentiability
of interval valued functions and their properties on theHadamardmanifolds. For
unconstrained case, the existence of efficient point and steepest descent algorithm
for solving the RIOPs was studied. The constrained functions employed for
constrained case in this paper are interval valued functions, which is more gen-
eral than those in the literature. We also illustrate some examples to verify the
obtained results. The Lagrange multiplier was considered together with some
KKT conditions. Like dealing with the traditional optimization, the exact penalty
approach was established for solving the CRIOPs. We believe that, our discovery
is a small step, yet in the right direction, towards understanding and realizing the
power of interval valued optimization in nonlinear spaces.

There are many open questions, which are not yet answered. We summarize a
few important ones as below for future directions.

• The convergence of algorithms in Non-Euclidean spaces are more difficult
then the usual one. In this paper, it is only the partial convergence. The
full/local convergence are not done yet.

• The steepest descent algorithm is just appliedwithAmijo’s rule stepsize. The
other case, example for constant stepsize with Lipschitz objective function,
may be studied in the future.

• The second-order algorithms are very important in the case of real valued
objective function. However, in our knowledge, in case of interval valued
objective function, the results are very limited.
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• ForCRIOPs, the duality is one of important approaches.Wu [22] studied the
duality for the case of Euclidean space, which use the Hukuhara difference.
The corresponding case for nonlinear space are not done yet. Especially, for
more general case, which uses the gH-difference.
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