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INTERVAL OPTIMIZATION PROBLEMS ON HADAMARD
MANIFOLDS

LE TRAM NGUYEN, YU-LIN CHANG, CHU-CHIN HU, AND JEIN-SHAN CHEN"

ABSTRACT. In this article, we introduce the interval optimization problems
(IOPs) on Hadamard manifolds as well as study the relationship between them
and the interval variational inequalities. To achieve the theoretical results, we
build up some new concepts about gH-directional derivative and gH-Gateaux dif-
ferentiability of interval valued functions and their properties on the Hadamard
manifolds. The obtained results pave a way to further study on Riemannian
interval optimization problems (RIOPs).

1. INTRODUCTION

1.1. Background and Motivation. This paper studies a new problem set, which
is called the interval optimization problems on Hadamard manifolds. First, as below,
we elaborate the motivation about why we focus on this problem. The variational
inequalities have been investigated since the dawn of the sixties [22] and plenty of
results are already established, see [11,14] and references therein. From [32], it is
known that the interval optimization problems (IOPs) and interval variational in-
equalities (IVIs) possess a close relationship under some assumptions. In addition,
the interval programming [2,7,10,16,19,27,30-32] is one of the approaches to tackle
the uncertain optimization problems, in which an interval is used to characterize
the uncertainty of a variable. Because the variation bounds of the uncertain vari-
ables can be obtained only through a small amount of uncertainty information, the
interval programming can easily handle some optimization problems.

Nowadays, many important concepts and methods of optimization problems
have been extended from Kuclidean space to Riemannian manifolds, particularly
to Hadamard manifolds [1,5,6,8-10,18]. In general, a manifold has no linear struc-
ture, nonetheless, it is locally identified with Euclidean space. In this setting, the
Euclidean metric is replaced by Riemannian metric, which is smoothly varying in-
ner product defined on the tangent space of manifold at each point, and the line
segments is replaced by minimal geodesics. This means that the generalization of
optimization problems from Fuclidean spaces to Riemannian manifolds is very im-
portant, for example, some nonconvex problems on Euclidean space can be viewed
as convex problems on Riemannian manifolds.
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1.2. Contribution and Related works. Wu [30,31] studied the duality and op-
timality conditions for IOPs by using Hukuhara derivative. The extension about
optimality conditions were studied by Osuna-Gomez et al. [25], and Gosh et al. [16],
using the generalized Hukuhara derivative. Zhang et al. [32] studied about the rela-
tionship between IOPs and variational inequalities. And, the concepts of generalized
convexity was studied by Jayswal et al. [20]. However, all of them were studied on
R™. To our best knowledge, there is very limited study on Riemannian interval
optimization problems (RIOPs) in the literature. In [10], the authors studied the
KKT conditions for optimization problems with interval valued objective functions
on Hadamard manifolds, which is just a routine extension.

In this paper, we further investigate the interval optimization problems on
Hadamard manifolds, and characterize the relationship between them and the inter-
val variational inequalities. Since R" is a special case of Hadamard manifold, that
will be the extension of previous results to the generalized space. To achieve the
theoretical results, we build up some new concepts about gH-directional derivative
and gH-Gateaux differentiability of interval valued functions and their properties
on the Hadamard manifolds. The analysis differs from the one used in traditional
variational inequalities and nonlinear programming problems. The obtained results
pave a way to further study on Riemannian interval optimization problems (RIOPs).

The paper is organized as follows. In Section 2, we formulate the problem set, in-
troduce the notations and recall notions of Rienmannian manifolds, tangent space,
geodesically convex and exponential mapping. We also recall some background ma-
terials regarding the set of closed, bounded intervals, gH-difference and some prop-
erties of interval valued functions as well as interval valued functions on Hadamard
manifolds. In Section 3, we study the gH-continuity, the gH-directional deriv-
ative and gH-Gateaux differentiability of interval valued functions on Hadamard
manifolds. Then, we characterize the relationship between the gH-directional dif-
ferentiability and geodesically convex of Riemannian interval valued functions. In
Section 4, we introduce the RIOPs and the necessary and sufficient conditions for
efficient points of the RIOPs. Besides, we define the Riemannian interval varia-
tional inequalities problems (RIVIPs) and establish the relationship between them
and RIOPs. Finally, we draw a conclusion in Section 5.

2. PREMILINARIES

In this section, we review some background materials about Riemannian man-
ifolds with a special case, the Hadamard manifolds. In particular, we study the
intervals, interval valued functions, interval valued functions on Hadamard mani-
folds. We first recall some definitions and properties about Riemannian manifolds,
which will be used in subsequent analysis. These materials can be found in text-
books on Riemannian geometry, such as [13,21, 26].

Let M be a Riemannian manifold, we denote by T, M the tangent space of M at
r € M, and the tangent bundle of M is denoted by TM = Uzepm T M. For every
x,y € M, the Riemannian distance d(x,y) on M is defined by the minimal length
over the set of all piecewise smooth curves joining = to y. Let V is the Levi-Civita
connection on Riemannian manifold M, v : I C R — M is a smooth curve on

M, a vector field X is called parallel along v if V., X = 0, where o/ = ag—(tt) We
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say that v is a geodesic if 4/ is parallel along itself, in this cases ||7/|| is a constant.
When ||+'|| = 1,7 is said to be normalized. A geodesic joining x to y in M is called
minimal if its length equals d(x,y).

For any = € M, let V be a neighborhood of 0, € T, M, the exponential mapping
exp, : V. — M is defined by exp,(v) = (1) where 7 is the geodesic such that
7(0) = 2 and 4/(0) = v. It is known that the derivative of exp, at 0, € T, M is the
identity map; furthermore, by the Inverse Theorem, it is a local diffeomorphism.
The inverse map of exp, is denoted by exp,!. A Riemannian manifold is complete
if for any x € M, the exponential map exp, is defined on T, M. A simply con-
nected, complete Riemannian manifold of nonpositive sectional curvature is called
a Hadamard manifold. If M is a Hadamard manifold, for all =,y € M, by the
Hopf-Rinow Theorem and Cartan-Hadamard Theorem (see [21]), exp,, is a diffeo-
morphism and there exists a unique normalized geodesic joining x to y, which is
indeed a minimal geodesic.

Example 2.1. Hyperbolic spaces. We equip R"*! with the Minkowski product
defined by

n
(z,y)1 = —zoyo + Z%yi,
i=1

where x = (29, 21,...,2Zn), ¥y = (Yo, Y1,- - -, Yn); and define
H" := {z € R"™ | (z,2); = —1, 20 > 0}.

Then, (-,-)1 induces a Riemannian metric g on the tangent spaces T,H" C R+,
for all p € H". The section curvature of (H", g) is —1 at every point.

Example 2.2. Manifold of symmetric positive definite matrices (SPD).
The space of n X n symmetric positive definite matrices with real entries, denoted
by S% ., is a Hadamard manifold if it is equipped with the below Riemannian metric:

ga(z,Y) =Tr(A ' XAY) VA€ ST, X,Y € T4S},.

For more examples, please refer to [4]. From now on, through the whole paper,
when we mention M, it means that M is a Hadamard manifold.

Definition 2.3 (Totally convex set [28]). A subset D C M is said totally convex
if D contains every geodesic v,, of M, whose end points z,y are in D.

Definition 2.4 (Geodesically convex set [28]). A subset D C M is said geodesically
convex if D contains the minimal geodesic 7., of M, whose end points z,y are in
D.

It is easy to see that both total convexity and geodesic convexity are the gen-
eralization of convexity in Euclidean space. The total convexity is stronger than
geodesic convexity, but when the geodesic between any two points are unique, they
coincide.

Example 2.5. Consider S7, as in Example 2.2. Given a > 0 and let
D, ={X e S",|detX =a},
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then D, is a nonconvex subset of S ,. In fact, from [29], the minimal geodesic
joining P, Q € S%, is described by

~v(t) = PY2(P7Y2QP~Y2)t P2 i e [0, 1].
If P,Q € D,, then for all t € [0, 1] we have
det(v(t)) det(P'/?(P~1/2QP~1/2) p1/2)
= det(P)?(det(P) /2 det(Q) det(P)~/?) det(P)/?
_ —t

a'~tat

= a.
This means that v(t) € D,, for all ¢t € [0, 1], that is, D, is a geodesically convex
subset of S, .

Following the notations used in [12], let Z(R) be the set of all closed, bounded
interval in R, i.e.,
I(R) = {[a,a]|a,a € R, a < a}.
The Hausdorff metric dg on Z(R) is defined by
dH(A7 B) = maX{’Q - b|> |a - 5|}7 VA = [Qa a]v B = [ba B] € I(R)
Then, (Z(R),dy) is a complete metric space, see [23]. The Minkowski sum and
scalar multiplications is given respectively by

A+ B = [a+ba+b)],

N>
NA = [Aa, Aa] if A >0,
[Aa,\a] if A<O.
where A = [a, @], B = [b,b]. Note that, A — A= A+ (—1)A # 0. A crucial concept
in achieving a useful working definition of derivative for interval-valued functions is
trying to derive a suitable difference between two intervals.

Definition 2.6 (gH-difference of intervals [27]). Let A,B € Z(R). The gH-
difference between A and B is defined as the interval C such that

A=B+C
C=A—-yuB <= or
B=A-C.

Proposition 2.7 ([27]). For any two intervals A = [a,a], B = [b,b], the gH-
difference C' = A —gg B always exists and

C = [min{a — b,a@ — b}, max{a —b,a — b}].

Proposition 2.8 ([23]). Suppose that A, B,C € Z(R). Then, the following proper-
ties hold.

(a) dg(A,B) =0 if and only if A = B.

(b) dp(AA, AB) = [Ndi(A, B), for all A € R.
(C) dH(A+ C,B + C) = dH(A, B)

(d) du(A+ B,C+ D) <duy(A,C) +du(B,D).
(e) du(A,B) =du(A —4u B,0).
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() dy(A—gy B, A—gy C) = d(B —gir A, C —gy A) = dpg (B, C).

Notice that, for all A € Z(R), we define ||A|| := dg(A,0), then ||A|| is a norm on
Z(R) and dy (A, B) = ||A —gm B||. There is no natural ordering on Z(R), therefore
we need to define it.

Definition 2.9 ([31]). Let A = [a,a] and B = [b,b] be two elements of Z(R). We
write A < Bifa < band @ < b. We write A < Bif A < B and A # B. Equivalently,
A < B if and only if one of the following cases holds:

eag<banda< E

eg<banda< l_)

e a<banda<b.
We write, A £ B if none of the above three cases hold. If neither A < B nor B < A,
we say that none of A and B dominates the other.

Lemma 2.10. For two elements A, B,C and D of Z(R), there hold
(a) AXB <= A—y,gB=0.

=B — AngCjB*gHC,

B—-yuC = BAA+C.

(A—=gu B)+ (C —gu D) = 02 (A+C) —gu (B+ D).

Proof. (a) The proofs of part(a) can be found in [16].

(b) Let A = [a,a], B = [b,b], since A £ B then A= B,ora>b,ora>b. Ifa>b,
or @ > b then max{a — b,@ — b} > 0. Thus, there holds A —gu B £ 0. For the
other direction, if A —yy B 4 0 then A = B or max{a — b,a — 5} > (0. This says
that a > b, or @ > b, which implies A £ B.

(c) Let A = [a,a], B = [b,b], and C = [¢,¢], it is clear that

A—gg C = [min{a—c,a—¢c}, max{a —c,a—7c}],

B—yyC = [min{l_) —¢,b—¢}, max{b—c,b— E}] )

If A< B, then a < b and @ < b, which yield

{

(d) Assume B < A+ C, by part(c), we know that
B_gHCj (A+C) _gHC:A,

IS

— A—gHCjB—gHC.

ISIENIS]
ol 10
IA A
ol 10

which indicates A = B —;y C. From the definition of gH-difference, we have
B=A+Cor(C=B-A. If C=B-— A, by the assumption B < A+ C, there has

B<A+B-A — AeceR.
Therefore, B = A + C. In other words, there holds
A<B—yyC = BAA+C,

which is the desired result.
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(e) Let A= [a,a], B = [b,b], C =]c,¢ and D = [d,d].

Case 1: If
A—yu B :[Q_Q’a_g]or A—gu B :[E—E,Q—b]
C—guD :[Q—QZ,E—E] C—4yuD :[E—a,g—d]’
then
a—b+c—d >0 (a —(b+d) >0
—_ _ e —_ —_
a—b+c—d >0 )—(b+d) >0
Case 2: If

together with

a-b >a-b
c—d >c—d
we have
(a+¢)—(+d) >0
{m+c%—b d) >0.
Case 3: If

together with

we have

O

Remark 2.11. The inverse of Lemma 2.10(c)-(d) are not true. To see this, taking
A=1,2], B=[0,5] and C = [—1, 3], then
A_gHC:[_l)Q]v B_gHC:[172]
This means that A —;; C < B —45 C, but we do not have A < B. If taking A = 0,
B =10,3], C =[1,2] then
A+C=11,2], B—4uC=[-1,1],

which says B A A+ C, but we do not have A = B —; C.

Let D C M be a nonempty set, a mapping f : D — T (I@) is called a Riemannian
interval valued function (RIVF). We write f(z) = [f(z), f(x)] where f, f are real

valued functions satisfy f(z) < f(z), for all z € M. Since R is a Hadamard
manifold, an interval valued function (IVF for short) f: U C R” — Z(R) is also a
RIVF.
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Definition 2.12 ([30]). Let U C R” be a convex set. An IVF f:U — Z(R) is
said to be convex on U if

FOz1+ (1= Na2) 2 Af(w1) + (1= A) f(z2),
for all 1,29 € U and X € [0, 1].

Definition 2.13 ([16]). Let U C R™ be a nonempty set. An IVF f: U — Z(R) is
said to be monotonically increasing if for all x,y € U there has

<y = f(z) 2 fy)
The function f is said to be monotonically decreasing if for all x,y € U there has
<y = f(y) = f()

It is clear to see that if an IVF is monotonically increasing (or monotonically
decreasing), if and only if both the real-valued functions f and f are monotonically
increasing (or monotonically decreasing).

Definition 2.14 ([16]). Let D C M be a nonempty set. An RIVF f:D — Z(R)
is said to be bounded below on D if there exists an interval A € Z(R) such that

A=< f(z), VxeD.

The function f is said to be bounded above on D if there exists an interval B € Z(R)
such that
f(x) X B, VzeD.

The function f is said to be bounded if it is both bounded below and above.

It is easy to verify that if an RIVF f is bounded below (or bounded above) if
and only if both the real-valued functions f and f are bounded below (or bounded
above).

Definition 2.15 ([10]). Let D C M be a geodesically convex set and f : D — Z(R)
be a RIVF. f is called geodesically convex on D if

fFOy(@) = (A=) f(x) +tf(y), Yo,y €D and Vi€ 0,1,
where 7 : [0,1] — M is the minimal geodesic joining z and y.

Proposition 2.16 ([10]). Let D be a geodesically convex subset of M and f be
a RIVF on D. Then, f is geodesically convexr on D if and only if f and f are
geodesically convex on D.

Proof. This is a direct consequence from Definition 2.15 and Definition 2.9. U
Example 2.17. Consider the set
D={Ac S}, |det(A) > 1}.
For all X,Y € D, we have the minimal geodesic joining X,Y defined by
v(t) = XV2(X Y2y xV2)EXY2 0 vX)Y € D and Vt € [0, 1].
For any ¢ € [0, 1], we also obtain
det(X2(X 12y X ~1/2) X1/2) = (det(X)) " (det(Y))! > 1,
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which says that D is a geodesically convex subset of S” . Moreover, on set D, we
define a RIVF as below:

f:D—Z(R)
X — [0, In(det(X))]
Then, for any X,Y € D and ¢ € [0, 1], we have

fy) = o, 1ndet(XW(X*1/2YX*1/2)tX1/2)}
= [0, (1 —¢t)In(det(X)) + tIn(det(Y))]
(1 —1)[0, In(det(X))] + ¢ [0, In(det(Y"))]
= (1=-f(X)+tf(Y),
which shows that f is a geodesically convex RIVF on D.

Proposition 2.18. The RIVF f : D — Z(R) is geodesically convezx if and only if
for all z,y € D and 7 : [0,1] — M is the minimal geodesic joining x and y, the
IVF f o is convex on [0,1].

Proof. Assume f is geodesically convex, for all z,y € D if v : [0,1] — M is the
minimal geodesic joining x to y, then the restriction of ~ to [t1,t2],t1,t2 € [0, 1]
joins the points y(¢1) to y(t2). We re-parametrize this restriction

a(s) =y(t1 +u(ta —t1)), s € [0, 1].
Since f is geodesically convex, for all s € [0, 1], we have
fla(s)) =2 (1= s)f(a(0)) + sf(a(1))
= f(y((1 = s)t1 + st2)) 2 (1 —5)f(y(t1)) + sf(v(t2))
= (fo)((L —s)tr+ sta) 2 (L=5)(f o) (t1) + 5(f 0 7)(ta),

which says the IVF f o~ is convex on [0, 1].

Conversely, for all x,y € D and v : [0,1] — M is the minimal geodesic joining x
and y, suppose that f o~ :[0,1] — Z(R) is a convex IVF. In other words, for all
t1,te € [0, 1], there has

(fo)((L=s)t1 + sta)) 2 (L= 5)(f 0y)(t1) + s(f 07)(t2), Vs € [0,1].
Letting t; = 0 and t2 = 1 gives

(foy)(s) 2 (L=5)(fo7)(0) +s(foy)(1), Vs €[0,1],
f(r(s)) 2 (1 =) f(x) + sf(y), Vs €[0,1].
Then, f is a geodesically convex RIVF. g

Lemma 2.19. If f is a geodesically convex RIVF on D and A is an interval, then
the sublevel set

DA ={zeD: f(zx) < A},

is a geodesically convexr subset of D.
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Proof. For all z,y € DA, there has f(z) < A and f(y) < A. Let v:[0,1] — M be
the minimal geodesic joining x and y. For all ¢t € [0, 1], by the convexity of f, we
have

) = (L= f () + tF(y) < (1~ DA+ 1A = A,
Thus, f(y(t)) € D4 for all t € [0, 1], which says that D4 is a geodesically convex
subset of D. O

3. THE gH-CONTINUITY AND gH-DIFFERENTIABILITY OF RIEMANNIAN
INTERVAL VALUED FUNCTIONS

In this section, we generalize the g H-continuous and gH-differentiable property of
interval valued functions to the settings on the Hadamard manifolds. The relation-
ship between gH-differentiability and geodesically convex property of the RIVFs is
also established.

The limits of IFV and the related properties were introduced by Aubin and
Cellina [3]. The generalization concept for RIVF was introduced by Chen [10].

Definition 3.1 ([10, Definition 3.1]). Let f : M — Z(R) be a RIVF, 2y € M, A =
[a, @] € Z(R). We say lim,_,,, f(x) = A if for every € > 0, there exists 6 > 0 such
that, for all x € M and d(z,zo) <, there holds di (f(z), A) < e.

Lemma 3.2 ([10, Lemma 3.1]). Let f : M — Z(R) be a RIVF, A = [a,a] € Z(R).
Then,

le f(x) = a,
1i =4 <= T
P /(@) lim f(z)=a.
T—T0

Proof. If lim,_,4, f(z) = A, then for every € > 0, there exists § > 0 such that, for
all z € M and d(z,zp) < 0, there have

dy(f(z),A) <e

= max{|f(z) —dl, [f(z) —al} <e
f@) —al <
|f(z) —al <e

Consequently, we have
On other hand, if we have

for every € > 0, there exists 6 > 0 such that, for all x € M and d(x, () < 9, there
has

{:%; A = @) <o

which says lim f(z) = A. Thus, the proof is complete. O
T—T0
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Remark 3.3. From Proposition 2.8, we know that dy(f(z),A) = du(f(x) —gu
A, 0), which yields
Jm f(z)=A < lim (f(z) —gn A4) =0.
Definition 3.4 (¢gH-continuity). Let f be a RIVF on a nonempty open subset D
of M, z¢p € D. The function f is said to be gH-continuous at zg if for all v € T, M
with exp,, v € D, there has
lim (f(expy, (v)) —gu f(@0)) = 0.

[[v]|=0

We call f is gH-continuous on D if f is gH-continuous at every z € D.

Remark 3.5. We point out couple remarks regarding gH-continuity.
(1) When M = R", f become an IVF and exp, (v) = zo + v. In other words,
Definition 3.4 generalizes the concept of the gH-continuity of the IVF set-
ting, see [15].
(2) By Lemma 3.1 and Remark 3.1, we can see that f is gH-continuous if and
only if f and f are continuous.

Theorem 3.6. Let D C M be a geodesically convex set with nonempty interior and
f:D — I(R) be a geodesically convex RIVF. Then, f is gH -continuous on int D.

Proof. Let z¢p € int D and B(zp,r) be an open ball center at xy and of sufficient
small radius r. Choose A € Z(R) such that the geodesically convex set DA = {x ¢
D: f(z) 2 A} contains B(wxo,r). Let v : [-1,1] — M be a minimal geodesic in

B(zg,r) such that y(—1) = z1,7(0) = zo,7(1) = x2. For convenience, we denote
7(t) = = where t = M € [0,1]. By the convexity of f, we have

fOr(®) = (1 =1) fzo) + tf(22) = (1= 1) f(zo) + A,
which together with Lemma 2.10 implies

(3.1) f(@) —gn f(20) 2 t(A — f(=0)).
The minimal geodesic joining z1 and z is the restriction y(u),u € [—1,t]. Setting
u=—1+s(t+1),s € [0,1], we obtain the re-parametrization

a(s) =y(—=1+s(t+1)), se€[0,1].

It is clear to see that
1
0) =~(=1) = 1, —
a0) = (-1 =1, a (115

Due to the convexity of f, we have

fla(s) 2 (1 = s)f(z1) +sf(x) = (1 = s)A+sf(x), Vs €[0,1].

Letting s = %th yields

) =20 =, alt) =50 =

t 1
f(zo) = t—i——lA + H—lf(ff),

which together with Lemma 2.10 further implies
(32) f(xo) —gm f(x) 2 (A + f(x) —gu tf (z0)] —gn f(2)).
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From (3.1) and (3.2), plugging in ¢t = M, we obtain lim f(z) = f(z¢). Then,

T—T0

the proof is complete. O

Definition 3.7 ([24]). Let D C M be a nonempty open set and consider a function
f D — R. We say that f has directional derivative at x € D in the direction
v € T, M if the limit

exp,(tv)) — f(x
e — i TEP20) = (@)
t—0+ t
exists, where f'(z,v) is called the directional derivative of f at z in the direction
v € T, M. If f has directional derivative at x in every direction v € T, M, we say
that f is directional differentiable at .

Definition 3.8 (gH-directional differentiability [10]). Let f be a RIVF on a non-
empty open subset D of M. The function f is said to have g H-directional derivative
at x € D in direction v € T, M, if there exists a closed bounded interval f’(z,v)
such that the limits

' 0) =l S(f(exp, (o)) —gm ()

exists, where f’(x,v) is called the g H-directional derivative of f at z in the direction
of v. If f has gH-directional derivative at x in every direction v € T, M, we say
that f is gH-directional differentiable at x.

Lemma 3.9 ([10]). Let D C M be a nonempty open set and consider a RIVF
f:D — Z(R). Then, f has gH-directional derivative at x € D in the direction
v € TyM if and only if f and f have directional derivative at x in the direction v.
Furthermore, we have

f(z,v) = [min{i’(w,v),?(m,v)}, max{f(x,v),fl(m,v)} ,
where f'(xz,v) and ?l(x,v) are the directional derivatives of f and f at x in the
direction v, respectively.

Theorem 3.10. Let D C M be a nonempty open geodesically convex set. If f :
D — I(R) is a geodesically conver RIVF, then at any zo € D, gH-directional
deriwative f'(xq,v) ezists for every direction v € Ty M.

To prove Theorem 3.10, we need two Lemmas.

Lemma 3.11. Let D C M be a nonempty geodesically convex set and consider a
geodesically convex RIVF f: D — Z(R). Then, Yo € D,v € Ty, M, the function
¢ : R™\{0} — Z(R), defined by
1
6(8) = L (F(exp,y (1) —gar F(20).

for all t > 0 such that exp, (tv) € D, is monotonically increasing.

Proof. For all t, s such that 0 < ¢t < s, by the convexity of f, for all A € [0, 1], we
have

fexpy, (A(s0))) < (1= A)f(z0) + Af (expy, (sv)).
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Since £ € [0,1], there holds

PPy (10) < *— (o) + ~ f(exps(50))

or

(expy, (tv) —gH f (o))

f
< [ — (@) + f(expmo(sv)) g1t f(x0)

s—t t s—t— t
S

F(0)+ = £ (03D, (1)~ (20),

s
o {2 f(ao) 2 flexpsy 60) - £ a0
v

— [mln flexp,, (sv)) — f(x0)),

maX{s(f(eXpmo(Sv)) F0)), ~ (F(exy, (50) - ?(xo»}]

:E(f(expxo(sv)) —gn f(20))-

s
Then, the proof is complete. O

Lemma 3.12. Let D C M be an open geodesically convez set. If f: D — Z(R) is
a geodesically convexr RIVF, then for all xo € D and v € T, M, there exists to € R

such that ¢(t) = % (f(expy, (tv)) —gm f(20)) is bounded below for all t € (0, o).

Proof. For all v € T, M, let v be the geodesic such that v(0) = zp and 7/(0) = v.
Since D C M be a nonempty open geodesically convex set, there exists t1,t2 € R
such that 0 € (t1,t2) and the restriction of v on [¢1,%2] is contained in D. Let
A € (0,t2] and fix the point y(A). The restriction of v to [¢1, A] joins y(¢1) and ().
We can re-parametrize this restriction

a(s) =yt +s(A—t1)), s €[0,1].
Using the convexity of f gives

fla(s)) 2 (1= 5)f(a(0) + sf(al) = flals)) = (1 —s)f(v(t1)) + sf(v(A)).
Plugging in s = tlti 5 leads to

fao) % 2 0le) + 5

—t1
—t

fF(r(A).
Then, we have

(A = t)[f (@), F(zo)] = [=t1f(v(N)) + Af(v(t1)), —taF(v(N)) + AF(v(t1))]

or

{ L (f(wo) — fr(1)) <
7

Thus, the proof is complete. Il
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As below, we provide the proof of Theorem 3.10:
Proof. Let any zo € D,v € Ty, M. Define an IVF ¢ : R"\{0} — Z(R) by

8(1) = 7 (Fexpyy () —n f(z0)).

If ¢(t) = [¢(t), ¢(t)], by Lemma 3.11 and Lemma 3.12, we have both real-valued
functions ¢ and ¢ are monotonically increasing and bounded below with ¢ enough

small. Therefore, the limits lim; o+ ¢(t) and lim, ,o+ ¢(¢) exist or the limit
lim;_,o+ ¢(t) exists. Thus, the function f has gH-directional derivative at oy € D
in the direction v. U

Theorem 3.13. Let D C M be a nonempty open geodesically convex set of M,
and f: D — I(R) be a geodesically convex function on D, then

fl(w,expzty) 2 fy) —gm f(z), Y,y €D.
Proof. For all x,y € D and t € (0, 1], by the convexity of f, we have
FO@) 2 tf(y) + A =) f(2),

where ~ : [0,1] — M is the minimal geodesic joining x and y. Applying Lemma
2.10 yields that

FOv(®) =g [(2)
1t

(Lf(y) + (L =) f(@)] —gu f(2)
[min{tf(y) + (1 - 1) f(2) — f(2),tf(y) + (1 = ) f(z) — f(2)},
max {tf(y) + (1 = t)f(z) — f(2),tf(y) + 1 = ) f(z) - f(2)}]
= [min{t(f(y) — f(2)), t(f(y) = F(2)}, max{t(f(y) — f(2)),t(f(y) = f(2))}]

= t[f(y) —gH f(@)].

Then, we achieve

% f(y(t) —gm f(2)] X f(y) —gm f(x), Va,y €D, andt e (0,1].

As a result, when t — 0", we obtain
f(a,expyty) = f(y) —gu f(z), Yo,y €D.
Thus, the proof is complete. O

Corollary 3.14. Let D C M be a nonempty open geodesically convex set of M and
suppose that the RIVF f : D — I(R) is geodesically convex on D, then

fy) A f'(x,expyty) + f(z), Yo,y € D.
Proof. The result follows immediately from Theorem 3.13 and Lemma 2.10. 0

Definition 3.15 ([16]). Let V be a linear subspace of R". The IVF F': V — Z(R)
is said to be generalized linear (g-linear for short) if
(a) F(A\v) = AF(v), for all v € V, A € R; and
(b) for all v,w € V, either F(v) + F(w) = F(v+w) or none of F(v)+ F(w) and
F(v+ w) dominates the other.



2502 L. T. NGUYEN, Y.-L. CHANG, C.-C. HU, AND J.-S. CHEN

Definition 3.16 (gH-Gateaux differentiability). Let f be a RIVF on a nonempty
open subset D of M and xy € D. The function f is called g H-Gateaux differentiable
at xq if f is gH-directional differentiable at xy and there exists a gH-continuous,
g-linear IVF fq(zo) : TpyM — Z(R) such that

fa(zo)(v) = f'(x0,v),Yv € TyyeM
The function f is called gH-Gateaux differentiable on D if f is gH-Gateaux differ-

entiable at every x € D.

Example 3.17. Let M := R? with the standard metric. Then, M is a flat
Hadamard manifold. We consider the RIVF given as below:
f:M—1I(R)
2
T1T5 .
—=1,2 f(x1, 0,0),
(xl,.fCQ) — 1,411 +$%[ ] 1 (xl CCQ) 7é ( )

0 otherwise.

For all v = (v1,v2) € T(g )M = R?, we compute

. 1
f/((oa O),U) = lim — (f((070) + t?)) —gH f((07 0)))
t—0t+ t
1 t3 2
= lim &[1 2]
t—0+ t thof + 203
2
. fUle
= 1 —= 11,2
S 2ty g2
= ull,2].
On the other hand, for all h = (hy, he) €

) €

f ((070)7U+h) ng ( )7U>

= [min{v; + hy — v1,2(v1 + h1) — 201}, max{v; + h1 — v1,2(v1 + hy) — 201 }]
= [min{h,2h1}, max{hi,2h;}]

which says ||h||m (f'((0,0),v+ h) —gu f'((0,0),v) = 0. In other words, f'((0,0),)
is a gH-continuous IVF. Hence, f'((0,0),-) is a g-linear, gH-continuous IVF or f is

gH-Gateaux differentiable at (0,0) and f&((0,0))(v) = v1[1,2] for all v = (v1,v9) €
T(O’O)M.

Example 3.18. We consider a RIVF defined by
f:8", — I(R)
¥ {[ln(det(X)), In(det(X2))] i det(X) > 1,

, we have

[In(det(X?)), In(det(X))] otherwise.

For all v € T1S" | = S™, where S™ is the space of n X n symmetric matrices and I
is the n x n identity matrix, by denoting Y = exp;(v) for all ¢ € (0, 1], we have

In (det(fl/Q(I—l/ 2Y1—1/2)t11/2)) = tIn(det(Y)),
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which implies
f(Dw)
= lim %[f(expl(tv)) —or f(I)]

t—0+

Jim - [min{t£(V), (7)), max{f(V), (V)]

= [min{ln(det(Y")), 21In(det(Y))}, max{In(det(Y")), 2In(det(Y"))}]
) [In(det(Y)),2In(det(Y"))] if det(Y) >1
| [2In(det(Y)), In(det(Y))]  otherwise.

This concludes that f is gH-directional differentiable at I.
On the other hand, for all v € S™, A € R, we know that
expy(\) = IYV2Exp(I7Y2(\w)I7Y2)11/?
= Exp(\v),

where Exp denotes to the matrix exponential. From [17], we also have

det(exp;(Av)) = det(Exp(\v)) = ¢V = (eT’”’)A

= In(det(exp;(Av))) = An(det(exp;(v))).

To sum up, the function f’(z)(.) is a g-linear IVF. Moreover, for all v,h € S™, it
follows from [17] that

expr(v+ h) = Exp(v + h) = Exp(v). Exp(h).
Thus, we obtain

det(exp;(v + h)) = det (Exp(v)) . det(Exp(h))
In(det(exp;(v + h))) = In(det(Exp(v))) + In(det(Exp(h))).

)
M (fa(I)(v +h) =om fa(I)(v)

= H}lli||Ig0[mi1r1{ln(det(Exp(h))), 21In(det(Exp(h)))},

max{In(det(Exp(h))), 2 In(det(Exp(h)))}]
= 0.

=
=

which says that f/(I)(-) is a gH-continuous IVF. Thus, f is gH-Gateaux differen-
tiable at I.

Remark 3.19. We point out that the g H-Gateaux differentiability does not imply
the gH-continuity of RIVF. In fact, in Example 3.17, the function f is gH-Géateaux
differentiable at (0,0), but

lim (f(h, h2) —ort £((0,00)) Ll

= lim 1,2|,
=0 b2

does not exist, which indicates that f is not gH-continuous at (0,0).
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4. INTERVAL OPTIMIZATION PROBLEMS ON HADAMARD MANIFOLDS

This section is devoted to building up some theoretical results on the interval opti-
mization problems on Hadamard manifolds. To proceed, we introduce the so-called
“efficient point” concept, which is parallel to the role of traditional “minimizer”.

Definition 4.1. (Efficient point) Let D C M be a nonempty set and f : D — Z(R)
be a RIVF. A point ¢ € D is said to be an efficient point of the Riemannian interval
optimization problem (RIOP):

(4.1) min f(x)

if f(z) 4 f(xo), for all x € D.

Sice the objective function f(x) = [f(z), f(z)] in RIOP (4.1) is an interval-valued
function, we can consider two corresponding scalar problems for (4.1) as follows:

(4.2) gélzr)li(m)
and
(4.3) min f (x)

Proposition 4.2. Consider problems (4.2) and (4.3).

(a) If xo € D is an optimal solution of problems (4.2) and (4.3) simultaneously
, then xo is an efficient point of the RIOP (4.1).

(b) If o € D is an unique optimal solution of problems (4.2) or (4.3) , then xg
is an efficient point of the RIOP (4.1).

Proof. (a) If xg € D is an optimal solution of problems (4.2) and (4.3) simultane-
ously, then

f(zo) < f(x)
= = ,V:vEDif(ﬂ:)%f(xo),VxeD,
{ﬂm)sf@)
or zo is an efficient point of RIOP (4.1).
(b) If zy € D is an unique optimal solution of problems (4.2) or (4.3), then

[ (o) < f(x)
f(zo) < f(=)

which says f(x) A f(xo) for all x € D, or equivalently xg is an efficient point of the
RIOP (4.1). O

Proposition 4.3. Consider the RIOP (4.1) with f(z) = [f(z), f(z)]. Given any
A1, A2 > 0, if zg € D is an optimal solution of the following problem

(4.4) min h(r) = M [ (@) + Xaf(2),
then xg is an efficient point of the RIOP (4.1).

Vo € D\{xo},

Proof. Assume that xo is not an efficient point of RIOP (4.1), then there exists
x’' € D such that

f(@) < f(xo) = A f(@) + Aef(a) < Aif(0) + Ao f (o).
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This says that z( is not an optimal solution of (4.4), which is a contradiction. Thus,
xo is an efficient point of the RIOP (4.1). O

Theorem 4.4 (Characterization I of efficient point). Let f : D — Z(R) be a
RIVF on a nonempty open subset D of M and xg € D such that f is gH -directional
differentiable at xq.

(a) If xo is an efficient point of RIOP (4.1), then for all x € D
f' (o, expyy ) A 0 or f'(x0,expy, x) = [a,0] for some a < 0.
(b) If D is geodesically convex, f is geodesically conver on D and
f(z0,expyy ) A0 Vz €D,
then xg is an efficient point of the RIOP (4.1).

Proof. For each x € D, let v = exp;o1 x. Since f is gH-directional differentiable at
xg, then

o, expz ) = ', 0) = N $(F(expz () =g S (20).

(a) If z¢ is an efficient point of RIOP (4.1), then

flexpy, (tv)) A f(z0),Vt >0
= f(expy, (tv)) —gu f(z0) A 0,Vt > 0( by Lemma 2.10)

;»l(f(expxo(w)) i Fz0) AOVE> 0

f(xo,v) A
f' (o, ):[a 0], for some a <0
N (x()?expxo ) 74 0
f! (azo,expro x) = [a, 0], for some a <0

(b) For all € D, by the convexity of f and applying Theorem 3.13, we have

(4.5) f' (o, expyy @) 2 f(x) —gu f(x0) = f(2) —gu f(z0) £ 0.
On the other hand, by Lemma 2.10, there has
(4.6) f(@) A f(wo) & f(x) —gu f(x0) A O.

From (4.5) and (4.6), it is clear to see that
f(x) A f(xo),Va € D.
Then, x( is an efficient point of the RIOP(4.1). O
Example 4.5. Consider the RIOP miB f(z) with f and D are defined as in Example
Te
2.4. For all X|Y € D we have
In(det(Y X! if det(Y) > det(X
P expl vy = {10 AL XTI der(Y) 2 den(X),
[In(det(Y X)), 0] otherwise.

Note that, for all X € D, we can find Y € D such that detY < det X, which
indicates that this RIOP does not have efficient point.
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Theorem 4.6 (Characterization II of efficient point). Let f : D — Z(R) be a
RIVF on a nonempty open subset D of M and xg € D such that f is gH-Gateaux
differentiable at xg.

(a) If xo is an efficient point of the RIOP (4.1), then
0e fg(ajo)(expgjo1 x), VxeD.
(b) If D is geodesically convezx, f is a geodesically convexr RIVF on D and
0 € [£(a0)(expy, @), Ta(wo)(expyl a)), Va € D.

where fg(wo)(expzt 2) = [f (o) (expz 2), Fo (o) (expzl )], then o is an
efficient point of the RIOP (4.1).

Proof. For all x € D, letting v = (—:-ngjo1 x and due to f being gH-Géteaux differen-
tiable at xg, the function f has gH-directional derivative at zg in direction v and
by Theorem 4.1 we have

fg(aﬁo)(exp;()l x) = f'(zo,v) A0 or fg(xo)(expgol x) = [a, 0] for some a < 0.

T,,M is a linear space then —v € T, M. Because f is gH-Gateaux differentiable
at o, hence fg(zo)(+) is g-linear. Then, we obtain

fa(xo)(—v) = —fa(xo)(v),
Assume [ (z0)(v) > 0, then we have
— fe(@o)(v) <0
Ja(zo)(
é{mmx

which is a contradiction or f (z)(v) < 0. Thus, we show that 0 € fa(zo)(expy) ).
For the remaining part, let x € D, we have

0 € [f,(w0)(expy, @), fa(x0)(expyy x)) = fa(xo)(expy, x) £ O
= f'(z0,exp,, ) A0,

[—Fe(@o)(v), — £, (x0)(v)] < O

# [a, 0] for some a < 0

)

—v)
—v)

which together with the convexity of f and Theorem 4.4 proves that x( is an efficient
point of the RIOP (4.1). O

Example 4.7. Let M =Ry :={z € R|x > 0} be endowed with the Riemannian
metric given by

1
(u,v); = uv, Yu,v € T,M =R.
T

Then, it is known that M is a Hadamard manifold. For all z € M, v € T, M, the
geodesic v : R — M such that v(0) = x,+/(0) = v is described by

v(t) = exp, (tv) = e/ and exp;'y =zl y, Vy € M.
x
We consider the RIOP HEIIAI}[ f(z) with f: M — Z(R) is defined by

flx) = [x,x—ké] , Vre M.
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For all x € M, v € R, we compute

Flaw) = lim S (flexp, () —ou F(2))

t—0+

= lim ! [min {x(e(”/x)t —1),z(e/?)t —1) 4 l(e(v/“c)t — 1)} ,

t—0+ x

max {m(e(”/z)t — 1), (e —1) + l(e(“/‘”)t - 1)}]

T

1 1
= {min{v,v—7@},max{v,v——2v}]
T x
1 L 1
= v - o> )
72

which says that f is gH-directional differentiable on M. We can also easily verify
that f’(x,-) is gH-continuous and g-linear, and hence f is g H-Gateaux differentiable
on M.

On the other hand, by the Cauchy-Schwarz inequality, for all > 0, we have

1 1
r+—>2,andx+-—=2z=1,
x x
then
1
[x,m—&-—] £ [1,2],Vz > 0,
x

or x = 1 is an efficient point of this RIOP.
Particularly, at g = 1 € M, we have

fo()(exp;tx) = [min{lnz,0}, max{lnz,0}],

nz, 0] ifz<l
0,Inz] ifz>1

Remark 4.8. Note that there are similar results in [16, Theorem 3.2 and Theorem
4.2], which are not correct.

(1) From Example 4.1 and Example 4.2, we see that, at o € D C M, if there
exists x € D such that f’(xo,exp;()l x) = [a,0] for some a < 0, we still do
not have enough conditions to answer the question: is zy an efficient point?

(2) Theorem 4.4 and Theorem 4.6 are the generalization of the Euclidean con-
cepts in [16, Theorem 3.2 and Theorem 4.2]. We think their statements are
not correct as pointed out as above. Hence, we fix their errors and provide
correct versions as in Theorem 4.4 and Theorem 4.6.

The interval variational inequality problems (IVIPs) was introduced by Kinder-
lehrer and Stampacchia [22]. There are some relationships between the IVIPs and
the IOPs. Let D be a nonempty subset of M and T': D — Lyu(TM,Z(R)) be
a mapping such that T'(z) € Ly (T, M, Z(R)), where Lyg (T, M,Z(R)) denotes the
space of g H-continuous, g-linear mapping from 7, M to Z(R) and Ly (T M, Z(R)) =
Uzenm Lga (Tz M, I(R)). Now, we define the Riemannian interval inequality prob-
lems (RIVIPs) as follows:
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(a) The Stampacchia Riemannian interval variational inequality problem
(RSIVIP) is a problem, which to find 2y € D such that

T(xo)(expy, y) A 0, VyeD.

(b) The Minty Riemannian interval variational inequality problem (RMIVIP)
is a problem to find g € D such that

T(y)(exp,.y) A0, Vy e D.

Definition 4.9 (Pseudomonotone). With a mapping 7" defined as above, we call T
is pseudomonotone if for all z,y € D, x # y, there holds

T(z)(exp,'y) A 0 = T(y)(exp,'y) £ O.

Definition 4.10 (Pseudoconvex). Let D C M be a nonempty geodesically convex
set and f : M — Z(R) be a gH-Gateaux differentiable RIVF. Then, f is called
pseudoconvex if for all x,y € D, there holds

fa@)(exp,ly) £#0 = f(y) £ f().

Proposition 4.11. Let D C M be a nonempty set and consider a mapping T :
D — Lgu(TM,I(R)) such that T(x) € Loy (Ty M, I(R)). If T is pseudomonotone,
then every solution of the RSIVIP is a solution of the RMIVIP.

Proof. Suppose that xg is a solution of the RSIVIP. Then, we know that
T(xo)(expz, y) A0, Vy €D,
which together with the pseudomonotonicity of T yields

T(y)(exp,.y) A0, Vy e D.
Then, z( is a solution of the RMIVIP. 0

It is observed that if a RIVF f : D — Z(R) is gH-Gateaux differentiable at
x € D, then fg(z) € Lyg(TpM,Z(R)). It means there are some relationships
between the RIOPs and the RIVIPs.

Theorem 4.12. Let D C M be a nonempty set, xo € D and f : D — Z(R) be a
gH-Gateaux differentiable RIVF at xg. If xo is a solution of the RIOP (4.1) and
fa(zo)(expy) y) # [a,0] for all a < 0, then g is a solution of the RSIVIP with
T(zo) = fa (o).

Proof. Since f is gH-Gateaux differentiable on an open set containing D, the func-
tion f is gH-directional differentiable at xp. In light of Theorem 4.4, it follows
that

fa(xo)(expg, y) A0, VyeD.

Consider T' : D — Lyu(TM,Z(R)) such that T'(zg) = fa(xo) for all z € D, it is
clear that

T(wo)(expy, y) A0, Vy €D,
which says that z is a solution of the RSIVIP with T'(x¢) = fa(xo). O
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Theorem 4.13. Let D C M be a nonempty geodesically convex set, xg € D and
f:D — Z(R) be a pseudoconvez, gH -Gateaux differentiable RIVFE at xo. If xq is
a solution of the RSIVIP with T'(x¢) = fa(xo), then xq is an efficient point of the
RIOP (4.1).

Proof. Let xg is a solution of the RSIVIP with T'(xg) = fa(zo). Suppose that zg
is not an efficient point of RIOP (4.1). Then, exists y € D such that f(y) < f(zo).
From the pseudoconvexity of f, we have

fa(zo)(expg, y) < 0,
which is a contradiction. Thus, x is an efficient point of the RIOP (4.1). O

5. CONCLUSIONS

In this paper, we study the Riemannian Interval Optimization problems (RIOPs)
on Hadamard manifolds, for which we establish the necessary and sufficient condi-
tions of efficient points. Moreover, we introduce a new concept of gH-Gateaux dif-
ferentiability of the Riemannian interval valued functions (RIVFs), which is the gen-
eralization of gH-Gateaux differentiability of the interval valued functions (IVF's).
The Riemannian interval variational inequalities problems (RIVIPs) and their re-
lationship, as well as the relationship between the RIVIPs and the RIOPs are also
investigated in this article. Some examples are presented to illustrate the main
results.

In our opinions, the obtained results are basic bricks towards further investiga-
tions on the Riemannian interval optimization, in particular, when the Riemannian
manifolds acts as Hadamard manifolds. For future research, we may either study
the theory for more general Riemannian manifolds or design suitable algorithms to
solve the RIOPs.
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