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Abstract

Strongly motivated from in various fields including machine learning,
the methodology of sparse optimization has been developed intensively
so far. Especially, the of algorithms for solving problems with nonsmooth
regularizers remarkable. However, those algorithms suppose that weight
parameters of regularizers, called hyperparameters hereafter, are pre-
fixed, but it is a crucial matter how the best hyperparameter should be
selected. In this paper, we focus on the hyperparameter selection of reg-
ularizers related to the ℓp function with 0 < p ≤ 1 and apply a bilevel

1



Springer Nature 2021 LATEX template
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programming strategy, wherein we need to solve a bilevel problem, whose
lower-level problem is nonsmooth, possibly nonconvex and non-Lipschitz.
Recently, for solving a bilevel problem for hyperparameter selection of the
pure ℓp (0 < p ≤ 1) regularizer Okuno et al. discovered new necessary
optimality conditions, called SB(scaled bilevel)-KKT conditions, and fur-
ther proposed a smoothing-type algorithm using a specific smoothing
function. However, this optimality measure is loose in the sense that
there could be many points that satisfy the SB-KKT conditions. In this
work, we propose new bilevel KKT conditions, which are new neces-
sary optimality conditions tighter than the ones proposed by Okuno et
al. Moreover, we propose a unified smoothing approach using smooth-
ing functions that belong to the Chen-Mangasarian class, and then
prove that generated iteration points accumulate at bilevel KKT points
under milder constraint qualifications. Another contribution is that our
approach and analysis are applicable to a wider class of regularizers.
Numerical comparisons demonstrate which smoothing functions work
well for hyperparameter optimization via bilevel optimization approach.

Keywords: hyperparameter learning, smoothing functions, bilevel
optimization

1 Introduction

A learning algorithm in machine learning usually involves solving the uncon-
strained optimization problem

min
ω∈ℜn

g(ω) +

r∑
i=1

λiRi(ω), (1)

where λ = (λ1, . . . , λr) is called a hyperparameter, whose value is decided prior
to implementation of the algorithm. Here, Ri, g : ℜn → ℜ, i = 2, . . . , r are
twice continuously differentiable functions, and

R1(ω) :=

n∑
i=1

ψ(|ωi|p) (0 < p ≤ 1), (2)

with ψ satisfying the following assumption:

Assumption (A). ψ : [0,∞) → ℜ is twice continuously differentiable on
[0,∞) and there exist two positive constants α, β such that 0 < ψ′(t) ≤ α and
−β ≤ ψ′′(t) ≤ 0 for all t ∈ [0,∞).

In this manuscript, we make Assumption (A) our blanket assumption on
ψ.

For notation purposes, we denote

G(ω, λ̄) := g(ω) + λ̄T R̄(w),
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with λ̄ := (λ2, . . . , λr)
T ∈ ℜr−1 and R̄ : ℜn → ℜr−1 given by R̄(w) :=

(R2(w), . . . , Rr(w))
T . Then problem (1) can be rewritten as

min
ω∈ℜn

G(ω, λ̄) + λ1R1(ω). (3)

The problem of finding the optimal values of the hyperparameters for (3)
can be accomplished using grid search and Bayesian optimization [2, 27]. This
paper, on the other hand, is devoted to a bilevel optimization strategy to find
the best hyperparameter. In particular, we focus on the bilevel nonsmooth
programming problem

min
ω∗

λ,λ
f(ω∗

λ)

s.t ω∗
λ ∈ argmin

ω∈ℜn

G(ω, λ̄) + λ1R1(ω)

(λ1, λ̄) ∈ Ωϵ ⊂ ℜr,

(4)

where f : ℜn → ℜ is continuously differentiable and

Ωϵ := {(λ1, λ̄) ∈ ℜ × ℜr−1 : λ1 ≥ ϵ, λ̄ ≥ 0}, (5)

for some small parameter ϵ > 0. Problem (3) that appears in the constraint
set of (4) is called the lower-level problem, and the minimization of f is called
the upper-level problem. Note that in the interest of obtaining sparse mod-
els, we impose a strict positive lower bound condition for the parameter λ1
corresponding to the sparsity-promoting regularizer R1.

Bilevel optimization problems were introduced by Bracken and McGill [5].
The reader is referred to [10, 11, 24] for a survey of methods for solving the
bilevel optimization problem their applications. Significant efforts have been
put forth by many researchers in the past few decades to use bilevel optimiza-
tion strategy to the problem of finding the best hyperparameter values. In
particular, [3, 4] focused on a bilevel support-vector regression (SVR) problem
where the lower-level optimization problem is cast as a convex quadratic pro-
gram. The authors in [17, 18] proposed a bilevel cross-validation program for
support-vector machine (SVM), where the upper-level problem is convex and
nonsmooth, while the lower-level problem is differentiable. [20] used gradient-
based methods for the bilevel optimization problem with nonsmooth convex
lower-level problem (for example, sparse models based on the ℓ1-norm). How-
ever, [3, 17, 20] only provided algorithms to solve the bilevel optimization, and
theoretical guarantees are not established. [26] formulated the hyperparameter
optimization problem through K-fold cross-validation as a bilevel optimiza-
tion problem with LASSO regression and an ℓ1-norm support-vector machine
(SVM) in the lower-level problem. They used parametric programming theory
to reformulate the bilevel optimization problem as a single level problem, which
is called the bilevel and parametric optimization approach to hyperparameter
optimization (HY-POP). , the authors only provided the numerical experi-
ments to show the efficiency of HY-POP without any theoretical analysis. [16]
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considered bilevel optimization problems for variational image denoising mod-
els, where the upper-level problem is smooth while the lower-level problem is
the ℓp regularizer with p = 1

2 , 1, 2. They proposed semismooth Newton method
for solving the bilevel optimization problem including the ℓ2-norm and the ℓ1-
norm. Especially, they only provided numerical experiments for the ℓ 1

2
-norm

and leave the theoretical analysis for nonconvex ℓ 1
2
-norm to future work. Nev-

ertheless, they showed that the ℓ 1
2
-norm has better denoising performance than

the ℓ1-norm. Recently, [21] considered the bilevel program (4) with the func-
tion R1(ω) := ∥ω∥pp =

∑n
i=1|ωi|p (0 < p ≤ 1) (i.e. the ℓp-regularizer) and ϵ = 0

by employing a smoothing method via the twice continuously differentiable
function

φµ(ω) =

n∑
i=1

(ω2
i + µ2)

p
2 (6)

as a smooth approximation of R1. Using such a smoothing function, problem
(4) can be approximated by a smooth bilevel program, which then allows for
use of several optimization techniques that normally require differentiability.
The authors established the convergence analysis of their smoothing algorithm
when ℓp-norm is used with p ∈ (0, 1].

The following are the main theoretical contributions of our present work:
(I) First, we propose bilevel KKT conditions (BKKT conditions for short) for

problem (4), which are new necessary optimality conditions for the relax-
ation of (4) obtained by replacing its lower-level optimization problem by
the corresponding first order necessary conditions in terms of generalized
subdifferentials (see Section 2.1), that is,

min
ω,λ

f(ω)

s.t 0 ∈ ∂ω(G(ω, λ̄) + λ1R1(ω))
(λ1, λ̄) ∈ Ωϵ.

(7)

Our proposed BKKT conditions are notably tighter than the scaled bilevel
KKT conditions (SB-KKT conditions for short) discovered in [21]. As a
special case, when p = 1 and the functions f , g and Ri (i = 1, . . . , r)
are all convex functions, the proposed BKKT conditions are necessary
optimality conditions for the original bilevel problem (4).

(II) Second, we consider a general framework for constructing smoothing func-
tions for R1 given by (2), where the associated ψ is any function that
satisfies Assumption (A) and the absolute value mapping is smoothly
approximated by a function generated via density functions, as inspired
by the smoothing technique for plus functions by Chen and Mangasar-
ian [7]. Based on this approach, we propose a smoothing algorithm and
prove its convergence to BKKT points by utilizing only some information
on the generating density function. That is, we do not rely on a specific
formula of a smoothing function, and therefore our framework provides a
unified theory for a class of smoothing algorithms for (4). Indeed, one nov-
elty of this work is our unified convergence analysis that solely depends
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on density functions. Along with these, we only suppose weaker algorith-
mic assumptions and constraint qualifications, as opposed to the specific
model and algorithm considered in [21]. Finally, in connection with con-
tribution (I) described above, we obtain stronger results since we establish
convergence to BKKT points, which are tighter necessary conditions than
SB-KKT conditions.

The SB-KKT conditions proposed in [21] for problem (7) with ϵ = 0 are
more loose than our proposed BKKT conditions as mentioned in (I). Conse-
quently, we provide a better optimality measure for the relaxation (7) of the
bilevel program (4). In fact, when p = 1, the SB-KKT conditions proposed
in [21] are not even necessary conditions for the relaxed problem (7), but
for another relaxation which has a larger feasible region (see model (12) and
Proposition 3.1). Hence, our proposed BKKT conditions provide a significant
improvement over the prior work.

Moreover, under an appropriate assumption on the algorithm iterates (see
Remark 2), our convergence analysis significantly generalizes the existing tech-
nique of [21] that only holds for the case when ϵ = 0, ψ(t) ≡ t, and the
function φµ in (6) is used to smoothly approximate the ℓp norm in (4). In the
said work, the formula of the smoothing function (6) fully exploited to derive
important inequalities specific to (6). to obtain fundamental lemmas for
establishing global subsequential convergence (see, for instance, [21, Lemma
7, Proposition 8, and the proof of Theorem 5]). Indeed, the lines of arguments
used to establish the aforementioned results are only applicable to the chosen
smoothing function (6). It should be noted that extension to a wider class of
regularizers R1 given by (2) with an arbitrary smooth approximation of the
absolute value function is not trivial and requires more subtle arguments. To
this end, the present work provides a unified analysis that derives alternative
fundamental lemmas and properties. using arguments that do not rely on the
specific formula of a smoothing function analytic properties of a density func-
tion generating the smoothing function. In turn, other important contributions
of our work involve the flexibility of our algorithm the smoothing functions
used and its applicability to a considerably wider class of regularizers for the
hyperparameter optimization problem.

From a practical point of view, the choice of smoothing functions is criti-
cal in achieving successful simulations with fast convergence. We compare the
numerical performance of six smoothing functions generated via Chen and
Mangasarian’s method [7] to determine which function is more suitable for our
smoothing approach. Our proposed algorithm involves the use of a semismooth
Newton method to solve a sequence of bilevel KKT systems, thereby signif-
icantly improving upon the methodology proposed in [21]. As a result, one
significant finding from our numerical experience indicates that some smooth-
ing functions result to a faster algorithm that achieves sparse models with
lower validation and test errors. Consequently, this gives insights on which
smoothing function can work well with the proposed strategy.
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This paper is organized as follows: In Section 2, we review some fundamen-
tal concepts in analysis and This will serve as our basis to construct smoothing
functions for R1(ω), and our theoretical analysis will all be dependent on the
density function. In Section 3, we recall the SB-KKT conditions in [21], and
then propose our BKKT conditions. In Section 4, we present our smooth-
ing algorithm along with its convergence analysis. In Section 5, we compare
the numerical performance of different smoothing functions generated from
different density functions in solving (4).

Throughout this paper, we denote the vector ω ∈ ℜn by ω = (ω1, . . . , ωn)
T .

We let |ω| := (|ω1|, . . . , |ωn|)T , and |ω|p := (|ω1|p, . . . , |ωn|p)T . We define
I(ω) := {j ∈ {1, 2, . . . , n} | ωj = 0} for any ω ∈ ℜn. The Hadamard product
of two vectors ω ∈ ℜn and ω̆ ∈ ℜn is denoted by ω ⊙ ω̆ := (ω1ω̆1, . . . , ωnω̆n)

T .
We define the sgn function as . For a differentiable function f : ℜn → ℜ, we
denote the gradient of f by ∇f with ∇f(ω) := (∂f(ω)

∂ω1
, . . . , ∂f(ω)

∂ωn
)T ∈ ℜn. If

f is twice differentiable, we denote the Hessian of f by ∇2f with ∇2f(ω) :=(
∂2f(ω)
∂ωi∂ωj

)
1≤i,j≤n

∈ ℜn×n.

2 Preliminaries

We review some important concepts in nonsmooth analysis. We also recall the
method of Chen and Mangasarian to construct smoothing functions for the
plus function, and discuss how to use this to obtain a smoothing function for
the absolute value function.

2.1 Some concepts in analysis

Definition 2.1 [22, Definition 8.3] Let f : ℜn → ℜ∪{∞} be a proper function. For
vectors v ∈ ℜn and x̄ ∈ ℜn, one say that

1. v is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + vT (x− x̄) + o(∥x− x̄∥).

2. v is a general subgradient of f at x̄, written v ∈ ∂f(x̄), if there are sequences
{xν} ⊆ ℜn and {vν} ⊆ ℜn such that

lim
ν→∞

xν = x̄ and vν ∈ ∂̂f(xν) with lim
ν→∞

vν = v.

Note that a regular subgradient of f at x̄ is also called a Fréchet subgradient
of f at x̄ (see in [15]). Moreover, if f is a proper and convex function, the
regular subgradient of f coincides with the subgradient of f in the sense of
convex analysis (see in [22, Proposition 8.12]).

Proposition 2.1 [22, Theorem 8.6] For a function f : ℜn → ℜ∪{∞} and a point x̄
where f is finite, the subgradient sets ∂̂f(x̄) and ∂f(x̄) are closed, with ∂̂f(x̄) convex
and ∂̂f(x̄) ⊂ ∂f(x̄).
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Proposition 2.2 [22, Theorem 10.1] If a proper function f : ℜn → ℜ∪ {∞} has a
local minimum at x̄, then 0 ∈ ∂̂f(x̄) ⊂ ∂f(x̄).

2.2 Smoothing functions of |x| via density functions

We recall the general definition of a smoothing function.

Definition 2.2 [6, Definition 1] Let h : ℜn → ℜ be a continuous function. We say
that ϕ : ℜ++ ×ℜn → ℜ is a smoothing function of h if it satisfies the following:

(i) ϕ(µ, ·) is continuously differentiable for any µ > 0;

(ii) lim
w→z,µ↓0

ϕ(µ,w) = h(z) for any z ∈ ℜn.

To construct a smoothing function for the absolute value function, we
briefly recall from [6, 7] that the plus function (x)+ = max{x, 0} for x ∈ ℜ
can be smoothly approximated by

ϕ̂(µ, x) =

∫ +∞

−∞
(x− t)+t̂(µ, t)dt =

∫ x

−∞
(x− t)t̂(µ, t)dt, (8)

where t̂(µ, t) := 1
µρ

(
t
µ

)
, and ρ : ℜ → ℜ+ is continuous density function1 that

satisfies

ρ(x) = ρ(−x) and κ :=

∫ +∞

−∞
|x|ρ(x)dx < +∞. (9)

Using the fact that |x| = (x)+ + (−x)+, we obtain a smoothing function
for the absolute value function as follows:

ϕ(µ, x) := ϕ̂(µ, x) + ϕ̂(µ,−x) =
∫ +∞

−∞
|x− t|t̂(µ, t)dt. (10)

to [7, Proposition 2.2], we have the following properties of ϕ(µ, x).

Proposition 2.3 Suppose that ϕ(µ, x) is defined as in (10). Then, for a fixed µ > 0,
we have

(a) ϕ(µ, ·) is continuously differentiable.

(b) 0 ≤ ϕ(µ, x) − |x| ≤ κµ for all x ∈ ℜ and µ > 0, where the constant κ > 0 is
defined in (9).

(c) ϕ′(µ, x) is bounded satisfying −1 ≤ ϕ′(µ, x) ≤ 1 for all x ∈ ℜ, µ > 0.

1That is, ρ is a nonnegative function whose integral over ℜ is 1. Consequently, it is easy to see
that t̂(µ, x) → δ(x) as µ → 0 for all x ∈ ℜ, where δ is the Dirac delta function provided that
ρ(0) > 0.
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From Proposition 2.3, given any sequence {} ⊂ ℜ such that xk → x ∈ ℜ
and µk ↓ 0, we have

and
(11)

We also have from Proposition 2.3(c) that and belong to [−1, 1].

3 Necessary conditions

Using Proposition 2.2, the first-order optimality condition for the lower-level
problem (3) is given by

0 ∈ ∂ω(G(ω
∗, λ̄) + λ1R1(ω

∗)),

where ∂ω(G(ω
∗, λ̄) + λ1R1(ω

∗)) is the general subgradient with respect to ω
of G(ω, λ̄) + λ1R1(ω) at ω∗. Then problem (4) can be transformed into the
one-level problem given in (7).

3.1 Scaled Bilevel KKT Conditions

In [21], a smooth version , by Chen, Xu and Ye [8] for non-Lipschitz continuous
functions. Since the functionG(ω, λ̄)+λ1∥ω∥pp may be non-Lipschitz, the scaled
first-order necessary condition for the lower-level problem (3) proposed in [21],
as adapted from [8], can be extended to our setting with R1 given by (2), as
in Definition 3.1. In particular, when ψ(t) ≡ t, the following definition reduces
to the scaled first-order necessary condition given in [21].

Definition 3.1 We say that ω∗ satisfies the scaled first-order necessary condition of
(3) if

W∗∇ωG(ω∗, λ̄) + pλ1|W∗|pψ′(|ω∗|p) = 0,

where W∗ := diag(ω∗), |W∗|p := diag(|ω∗|p), and

ψ′(|ω∗|p) := (ψ′(|ω∗
1 |p), ψ′(|ω∗

2 |p), . . . , ψ′(|ω∗
n|p))T .

Using this scaled first-order necessary condition, one can obtain the
following one-level problem

min
ω,λ

f(ω)

s.t W∇ωG(ω, λ̄) + pλ1|W |pψ′(|ω|p) = 0
λ ∈ Ωϵ,

(12)

where W := diag(ω), |W |p := diag(|ω|p), and

ψ′(|ω|p) := (ψ′(|ω1|p), ψ′(|ω2|p), . . . , ψ′(|ωn|p))T .



Springer Nature 2021 LATEX template

Unified Smoothing Bilevel Approach for Hyperparameter Selection 9

Though this problem looks different from (7), the following proposition2 indi-
cates that the problems are indeed identical when p ∈ (0, 1). However, when
p = 1, the feasible region of problem (7) is contained in that of (12).

Proposition 3.1 For ω ∈ ℜn and λ ∈ ℜr
+, if 0 ∈ ∂ω(G(ω, λ̄) + λ1R1(ω)), then

W∇ωG(ω, λ̄)+ pλ1|W |pψ′(|ω|p) = 0. In particular, when p < 1, the converse is also
true.

Based on this scaling, one can extend the scaled bilevel KKT (SB-KKT)
conditions proposed in [21] to our general setting of (4) as in the following
definition.

Definition 3.2 We say that (ω∗, λ∗) ∈ ℜn × ℜr is a scaled bilevel Karush-Kuhn-
Tucker (SB-KKT) point for problem (4) if there exists a pair of vectors (ζ∗, η∗) ∈
ℜn ×ℜr such that

W 2
∗∇f(ω∗) +H(ω∗, λ∗)ζ∗ = 0, (13)

W∗∇ωG(ω∗, λ̄∗) + pλ∗1|W∗|pψ′(|ω∗|p) = 0, (14)

p
∑

j /∈I(ω∗) sgn(ω
∗
j )|ω

∗
j |

p−1ψ′(|ω∗
j |

p)ζ∗j = η∗1 , (15)

ζ∗j = 0 (j ∈ I(ω∗)), (16)

∇Rj(ω
∗)T ζ∗ − η∗j = 0 (j = 2, 3, . . . , r), (17)

λ∗ − ϵe1 ≥ 0, η∗ ≥ 0, (λ∗ − ϵe1)
T η∗ = 0, (18)

where W∗ := diag(ω∗), and e1 = (1, 0, . . . , 0)T ∈ ℜr. Here, we write

H(ω, λ) =W 2∇2
ωωG(ω, λ̄)+λ1p(p−1)diag(|W |pψ′(|ω|p))+λ1p2diag(|W |2pψ′′(|ω|p))

with W := diag(ω), |W |p := diag(|ω|p), and |W |2p := diag(|ω|2p) for ω ∈ ℜn and
λ ∈ ℜr.

The SB-KKT conditions are necessary optimality conditions for problem
(12) as asserted in the following result, whose proof is essentially similar to
[21, Theorem 2].

Proposition 3.2 Let (ω∗, λ∗) ∈ ℜn×ℜr be a local optimum of (12). Then, (ω∗, λ∗)
together with some pair of vectors (ζ∗, η∗) ∈ ℜn×ℜr satisfies the SB-KKT conditions
(13)-(18) under an appropriate constraint qualification concerning the constraints
∂G(ω,λ̄)

∂ωj
+ psgn(ωj)λ1|ωj |p−1ψ′(|ωj |p) = 0 (j /∈ I(ω∗)), ωj = 0 (j ∈ I(ω∗)), and

λ ∈ Ωϵ.

3.2 Bilevel KKT Conditions

An immediate consequence of Propositions 3.1 and 3.2 is that when p ∈ (0, 1),
a local optimum of the one-level problem (7) satisfies the SB-KKT conditions

2The proof is analogous to [21, Lemma 3].
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under appropriate constraint qualifications. However, one main drawback of
the SB-KKT conditions presented in the preceding section is that the process of
“scaling” enlarges the feasible region of the relaxed one-level problem (7) when
p = 1. In the following definition, we propose an alternative necessary condition
which avoids the multiplication by W and W 2 as defined in Definition 3.2.

Definition 3.3 We say that (ω∗, λ∗) ∈ ℜn × ℜr is a bilevel Karush-Kuhn-Tucker
point (BKKT point) for problem (4) if there exists (ζ∗, η∗) ∈ ℜn ×ℜr such that

∇ω̃f(ω
∗) + H̃(ω∗, λ∗)ζ̃∗ = 0, (19)

∇ω̃G(ω∗, λ̄∗) + pλ∗1ψ
′(|ω̃∗|p)⊙ |ω̃∗|p−1 ⊙ sgn(ω̃∗) = 0, (20)

ζ̆∗ = 0 , (21)

, (22)

∇ω̃R̄(ω
∗)T ζ̃∗ − η̄∗ = 0, (23)

λ∗ − ϵe1 ≥ 0, η∗ ≥ 0, (λ∗ − ϵe1)
T η∗ = 0, (24)

where ,

H̃(ω, λ) := ∇2
ω̃ω̃G(ω, λ̄) + λ1p(p− 1)|W̃ |p−2ψ′(|ω̃|p) + p2λ1|W̃ |2p−2ψ′′(|ω̃|p),

|W̃ | := diag(|ω̃|), ω̃∗ := (ω∗
i )i/∈I(ω∗),

ω̆∗ := (ω∗
i )i∈I(ω∗), ζ̃

∗ := (ζ∗i )i/∈I(ω∗), ζ̆
∗ := (ζ∗i )i∈I(ω∗).

We show in the following propositions that the proposed bilevel KKT con-
ditions in Definition 3.3 are necessary conditions for the one-level relaxation
(7) of the original bilevel problem (4). In other words, the scaling used in the
preceding section, as extended from the prior work [21], is not needed.

Proposition 3.3 Let and (ω∗, λ∗) ∈ ℜn × ℜr be a local optimum of (7). Then,
(ω∗, λ∗) is a BKKT point under an appropriate constraint qualification concerning

the constraints
∂G(ω,λ̄)

∂ωj
+ psgn(ωj)λ1|ωj |p−1ψ′(|ωj |p) = 0 (j /∈ I(ω∗)), ωj = 0 (j ∈

I(ω∗)), and λ ∈ Ωϵ.

Proof Let (ω∗, λ∗) ∈ ℜn ×ℜr be a local minimum of (7), and consider the problem

min
ω,λ

f(ω)

s.t ∇ω̃G(ω, λ̄) + pλ1ψ
′(|ω̃|p)⊙ |ω̃|p−1 ⊙ sgn(ω̃) = 0,
ω̆ = 0,
λ ∈ Ωϵ,

(25)

where ω̃ = (ωi)i/∈I(ω∗) and ω̆ = (ωi)i∈I(ω∗). We claim that (ω∗, λ∗) is a local mini-
mum of (25). It is clear that (ω∗, λ∗) is feasible to (25). Then with the first equality

constraint in (25) together with the fact that ∂ω̆
(
G(ω, λ̄) + λ1R1(ω)

)
= ℜ|I(ω∗)|, it

immediately follows that 0 ∈ ∂ω(G(ω, λ̄) + λ1R1(ω)), and therefore (ω, λ) belongs
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to the feasible region of (7). Hence, there exist Lagrange multipliers (ζ̂(1), ζ̂(2), η̂) ∈
ℜn−|I(ω∗)| ×ℜ|I(ω∗)| ×ℜr such that

∇ω̃f(ω
∗)

∇ω̆f(ω
∗)

0
0

+


H̃(ω∗, λ̄∗) 0

∇2
ω̆ω̃G(ω∗, λ̄∗) I

pψ′(|ω̃∗|p)⊙ |ω̃∗|p−1 ⊙ sgn(ω̃∗) 0

∇ω̃R̄(ω
∗)T 0


[
ζ̂(1)

ζ̂(2)

]
−


0
0
η̂1
¯̂η

 = 0,

∇ω̃G(ω∗, λ̄)∗ + pλ∗1ψ
′(|ω̃∗|p)⊙ |ω̃∗|p−1 ⊙ sgn(ω̃∗) = 0,

λ∗ − ϵe1 ≥ 0, η∗ ≥ 0, (λ∗ − ϵe1)
T η∗ = 0,

where ¯̂η = (η̂2, η̂3, . . . , η̂r)
T . Taking η∗ = η̂ and setting ζ∗ ∈ ℜn such that ζ∗i = ζ̂

(1)
i

for i /∈ I(ω∗) and ζ∗i = 0 for i ∈ I(ω∗), one can easily check that all the conditions
(19)-(24) are satisfied.

□

For the case p = 1, we obtain a similar result provided that the feasibility
condition

∥∇ω̆G(ω
∗, λ̄∗)∥∞ < λ∗1ψ

′(0) (26)

holds, where ω̆ = (ωi)i∈I(ω∗). We note that this is equivalent to saying that

− 1
λ∗
1

∂G
∂ωi

(ω∗, λ̄∗) belongs to the interior of the subdifferential set ∂ψ(|t|)|t=0

for all i ∈ I(ω∗). This condition is used in the convergence analysis of the
smoothing algorithm in [21], but its connection with the necessary conditions
for solutions of (7) was not explored. This precise connection is revealed in the
following proposition.

Proposition 3.4 Let p = 1 and (ω∗, λ∗) ∈ ℜn ×ℜr be a local optimum of (7) that
satisfies (26). Then, (ω∗, λ∗) is a BKKT point under an appropriate constraint qual-

ification concerning the constraints
∂G(ω,λ̄)

∂ωj
+ psgn(ωj)λ1|ωj |p−1ψ′(|ωj |p) = 0 (j /∈

I(ω∗)), ωj = 0 (j ∈ I(ω∗)), and λ ∈ Ωϵ.

Proof We consider a problem similar to (25) but with (26) as an added inequality
constraint, that is,

min
ω,λ

f(ω)

s.t ∇ω̃G(ω, λ̄) + λ1ψ
′(|ω̃|)⊙ sgn(ω̃) = 0,

ω̆ = 0,
λ ∈ Ωϵ

∥∇ω̆G(ω, λ̄)∥∞ < λ1ψ
′(0),

(27)

where ω̃ = (ωi)i/∈I(ω∗) and ω̆ = (ωi)i∈I(ω∗). Note that ∥∇ω̆G(ω, λ̄)∥∞ < λ1ψ
′(0) is

a non-binding inequality constraint of (27). Hence, following the proof of Proposi-
tion 3.3, it suffices to show that (ω∗, λ∗) is feasible to (27) and that the feasible region
of (27) is contained in that of (7). The former is clear due to our hypothesis. To show
the inclusion of the feasible regions, let (ω, λ) be a feasible point of (27). If i ∈ I(ω∗),
then ωi = 0, which together with (26) implies that 0 ∈ ∂ωi(G(ω, λ̄) + λ1R1(ω)). If
i /∈ I(ω∗) and ωi ̸= 0, it is clear that 0 ∈ ∂ωi(G(ω, λ̄)+λ1R1(ω)) from the first equal-
ity constraint in (27). On the other hand, if i /∈ I(ω∗) but ωi = 0, we also have from



Springer Nature 2021 LATEX template

12 Unified Smoothing Bilevel Approach for Hyperparameter Selection

the first equality constraint in (27) that ∂G(w, λ̄)/∂ωi = 0. Since 0 ∈ ∂ψ(|t|)|t=0, we
again have 0 ∈ ∂ωi(G(ω, λ̄) + λ1R1(ω)). This completes the proof. □

Remark 1 We make some comments about the case p = 1.

(a) For this case, we always need to assume that a candidate bilevel KKT point
(ω∗, λ∗) satisfies inequality (26). This will also be the standing assumption for
our subsequent analysis when dealing with the case of p = 1, as we shall see in
the next section.

(b) Note that if g andRj , j = 2, . . . , r are convex functions, then we obtain a stronger
result that the bilevel KKT conditions are necessary conditions for the original
bilevel problem (4) under appropriate constraint qualifications, rather than just
necessary conditions for the relaxed problem (7), which is the situation when
p ∈ (0, 1) (even if the functions g and Rj are all convex). Hence, in this case,
bilevel KKT points are indeed candidate solutions to the bilevel problem (4).

4 Proposed algorithm and its convergence

In this section, we describe our smoothing algorithm for (4) and present our
convergence results.

4.1 Smoothing approach and the algorithm

One main source of difficulty in solving the bilevel program (4) is the
nonsmooth, nonconvex and possibly non-Lipschitz component R1(ω) =∑n

i=1 ψ(|ωi|p), where p ∈ (0, 1]. , we apply the smoothing technique to R1

with the smoothing function ϕ defined in the previous section, yielding the
following smooth

φµ(ω) :=

n∑
j=1

ψ ([ϕ(µ, ωj)]
p) . (28)

Then, as in [21], we consider problem (4) with φµ in place of R1, and fur-
ther replace the obtained smoothed lower-level problem with its first-order
condition. Hence, the following problem is obtained:

min
ω,λ

f(ω)

s.t ∇ωG(ω, λ̄) + λ1∇φµ(ω) = 0
λ ∈ Ωϵ.

(29)

Next, we suppose that φµ is twice continuously differentiable from this
moment, and we also recall Assumption (A) together with our differentiability
assumptions on Ri (i = 2, . . . , r) and g. These properties enable us to consider
the KKT conditions.3 By virtue of this fact, we can find candidate solutions
to (29) by looking at its KKT points.

3Without the C2 property of φµ, the KKT conditions cannot be because the constraint function
∇ωG(ω, λ̄) + λ1∇φµ(ω)
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In fact, it is sufficient to obtain approximate KKT points: Given a param-
eter ε̂ > 0, we define an ε̂-approximate KKT point for problem (29) as follows:
We say that {(ω, λ, ζ, η)} ⊆ ℜn×ℜr×ℜn×ℜr is an ε̂-approximate KKT point
for (29) if there exists a vector ε̂ = (ε1, ε2, ε3, ε4, ε5) ∈ ℜn×ℜ×ℜr−1×ℜn×ℜ
such that

∇f(ω) + (∇2
ωωG(ω, λ̄) + λ1∇2φµ(ω))ζ = ε1, (30)

∇φµ(ω)
T ζ − η1 = ε2, (31)

∇Rj(ω)
T ζ − ηj = (ε3)j−1 (j = 2, 3, . . . , r), (32)

∇ωG(ω, λ̄) + λ1∇φµ(ω) = ε4, (33)

λ− ϵe1 ≥ 0, η ≥ 0, (λ− ϵe1)
T η = ε5, (34)

and
∥(εT1 , εT2 , εT3 , εT4 , εT5 )T ∥ ≤ ε̂,

where ∇2
ωωG(ω, λ̄) is the Hessian of G with respect to ω. Note that when ε̂ = 0,

an ε̂-approximate KKT point is identical to a KKT point.

Now, by iteratively computing an ε̂-approximate KKT point while decreas-
ing ε̂ and the smoothing parameter µ, we obtain the smoothing algorithm
presented in Algorithm 1.

Algorithm 1 (A Smoothing Method for Nonsmooth Bilevel Optimization)

Step 0 Choose µ0 > 0, β1, β2 ∈ (0, 1) and ε̂0 ≥ 0. Set k := 0.
Step 1 Find an ε̂k-approximate KKT point {(ωk+1, λk+1, ζk+1, ηk+1)} for

problem (29) with µ = µk.
Step 2 Set µk+1 = β1µk, ε̂k+1 = β2ε̂k and k := k + 1.

Algorithm1 is quite similar to the one proposed by Okuno et al [21]. How-
ever, whereas Okuno et al supposed to employ only

∑n
i=1(ω

2
i + µ2)

p
2 as the

smoothing function φµ, Algorithm1 enjoys much more freedom in .
In our convergence analysis, we assume that at every iteration, an ε̂k-

approximate KKT point can always be computed. In order to establish the
global convergence of Algorithm1, we will require some more properties of the
density function ρ used for constructing the smoothing function ϕ,

4.2 Convergence analysis

4.2.1 Assumptions on density function

We have mentioned in the Introduction that the setting of all our analysis is
based on density functions. That is, we wish to prove all our convergence results
by solely looking at density functions used to induce the smoothing functions.
To this end, we must be able to identify necessary properties of a given density
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function so that Algorithm 1 converges to a candidate solution of the main
problem (4). Indeed, one novelty of our work is precisely the identification of
these required properties and its application to the convergence analysis.

We summarize necessary assumptions on the density function ρ that we
will use in the next subsection.

Assumption (B). Let ρ : ℜ → ℜ+ be a density function. Then, the following
properties hold:
(B1) ρ is symmetric, i.e. ρ(x) = ρ(−x) for all x ∈ ℜ.
(B2) ρ is continuous and nonincreasing on [0,∞).
(B3) There exist positive constants c, r > 0 such that

2

S∫
0

ρ(x) dx ≥ 1− c

Sr + c
for all S ≥ 0.

(B4) If p = 1, we have ρ(x) > 0 for all x ∈ ℜ.
Some remarks are in order: First, although Assumption (B1) was already

supposed in Section 2.2, we have restated it for later use. Under this assump-
tion, note that the smoothing function ϕ(µ, x) is strictly positive for all µ > 0
and x ∈ ℜ. Indeed, we already have from Proposition 2.3(b) that ϕ(µ, x) > 0
for x ̸= 0. On the other hand, since ρ is a symmetric density function by
Assumption (B1), then ρ is not identical to the zero function on the interval

[0,∞). Consequently,
∫ +∞
0

tρ(t)dt > 0, which together with (8) and (10) yields
ϕ(µ, 0) > 0. Moreover, we can easily calculate the first and second derivatives
of the induced ϕ(µ, x) as

ϕ′(µ, x) = 2sgn(x)

∫ |x|

0

1

µ
ρ

(
t

µ

)
dt = 2sgn(x)

∫ |x|
µ

0

ρ(t) dt, (35)

and

ϕ′′(µ, x) =
2

µ
ρ

(
x

µ

)
, (36)

respectively. From equation (36) and strict positivity of ϕ(µ, x), we see
that ϕ(µ, ·) is twice continuously differentiable approximation of |x| by the
continuity assumption in (B2).

Assumptions (B1) and (B2) will also have other important roles in the
proofs of our main result. Among them are formulas for the limits of
{(∇φµk−1

(ωk))j} and {(∇2φµk−1
(ωk))jj} when j /∈ I(ω∗), where φµ is the

smooth function given by (28).
First, with , the components of ∇φµ(ω) ∈ ℜn are given by

(∇φµ(ω))j = pψ′ ([ϕ(µ, ωj)]
p)ϕ′(µ, ωj)[ϕ(µ, ωj)]

p−1, (37)
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while ∇2φµ(ω) ∈ ℜn×n is a diagonal matrix whose diagonal entries are given
by

(∇2φµ(ω))jj = p2ψ′′ ([ϕ(µ, ωj)]
p) [ϕ′(µ, ωj)[ϕ(µ, ωj)]

p−1]2

+ p(p− 1)ψ′ ([ϕ(µ, ωj)]
p) [ϕ′(µ, ωj)]

2[ϕ(µ, ωj)]
p−2

+ pψ′ ([ϕ(µ, ωj)]
p) [ϕ(µ, ωj)]

p−1ϕ′′(µ, ωj), (38)

for j = 1, . . . , n. Since ϕ(µ, x) is strictly positive under Assumption (B1), the
factor [ϕ(µ, ωj)]

p−1 that appears in (37) and (38) is real-valued . In addition,
it is clear from (38) that the components of the Hessian of φµ are continuous
by Assumption (A), equation (36), and Assumptions (B1)-(B2).

We now list some important formulas will be useful in our subsequent
analysis.

Lemma 4.1 Suppose that Assumptions (B1)-(B2) hold. Let {(ωk, µk−1)} ⊆ ℜn ×
ℜ++ be an arbitrary sequence converging to (ω∗, 0). Then for j /∈ I(ω∗),

lim
k→∞

(∇φµk−1(ω
k))j = psgn(ω∗

j )|ω
∗
j |

p−1ψ′ (|ω∗
j |

p) , (39)

lim
k→∞

(∇2φµk−1(ω
k))jj = p2ψ′′ (|ω∗

j |
p) |ω∗

j |
2p−2 + p(p− 1)ψ′ (|ω∗

j |
p) |ω∗

j |
p−2. (40)

Proof Let j /∈ I(ω∗). We have from (11) that

lim
k→∞

ϕ′(µk−1, ω
k
j ) = sgn(ω∗

j ).

Since ϕ(µ, x) is a smoothing function of |x| that is strictly positive by Assump-
tion (B1), we have [ϕ(µk−1, ω

k
j )]

p−1 → |ω∗
j |

p−1 as k → ∞. Moreover, since ψ is C2
by Assumption (A), then we easily obtain (39) by letting k → ∞ in equation (37)
with ω = ωk and µ = µk−1.

For equation (40), we first show that limk→∞ ϕ′′(µk−1, ω
k
j ) = 0, which by (36)

is equivalent to showing that

lim
k→∞

1

µk−1
ρ

(
ωk
j

µk−1

)
= lim

k→∞

1

µk−1
ρ

(
|ωk

j |
µk−1

)
= 0. (41)

Since j /∈ I(ω∗), then |ω∗
j |/2 < |ωk

j | for all k sufficiently large. Thus,

0 ≤ 1

µk−1
ρ

(
ωk
j

µk−1

)
≤ 1

µk−1
ρ

(
ω∗
j

2µk−1

)
→ δ(ω∗

j /2) = 0 as k → ∞,

by invoking Assumptions (B1)-(B2) and the definition of the Dirac delta function.
This proves (41). Finally, taking the limit in (38) when k → ∞, we obtain

lim
k→∞

(∇2φµk−1(ω
k))jj

= p2ψ′′ (|ω∗
j |

p) [sgn(ω∗
j )|ω

∗
j |

p−1]2 + p(p− 1)ψ′ (|ω∗
j |

p) [sgn(ω∗
j )]

2|ω∗
j |

p−2

= p2ψ′′ (|ω∗
j |

p) |ω∗
j |

2p−2 + p(p− 1)ψ′ (|ω∗
j |

p) |ω∗
j |

p−2.

This completes the proof of the lemma. □
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On the other hand, the other technical assumption on ρ, namely (B3),
is important in our subsequent analysis. Without knowing definitively the
formula for ϕ(µ, x), the analysis becomes extremely difficult. In particular,
Nonetheless, this problem can be thanks to the simple assumption (B3).
Finally, Assumption (B4) will later be important in proving the unbounded-
ness of the sequence

{
|∇2φµk−1

(ωk))jj |
}
when p = 1 and ωk

j → 0 as k → ∞.
Interestingly, we shall see shortly that (B4) is not needed for the case p ∈ (0, 1).

In the forthcoming discussions, we will see in great detail how these assump-
tions on ρ will play a central role in establishing the main convergence result. In
Appendix B, we provide some specific examples of density functions satisfying
Assumption (B).

4.2.2 Subsequential convergence

We now prove our main result that accumulation points of the sequence gen-
erated by Algorithm 1 are in fact bilevel KKT points (see Definition 3.3),
which in turn are candidate solutions for (7) when p < 1, and candidate solu-
tions for the original bilevel problem (4). As mentioned in Remark 1, we will
assume that for any given accumulation point of such sequence generated by
Algorithm 1, the inequality (26) holds when p = 1.

Theorem 4.1 Let p ∈ (0, 1] and assume that (ω∗, λ∗, ζ∗, η∗) is an accumulation
point of a sequence {(ωk, λk, ζk, ηk)} generated by Algorithm 1. Then (ω∗, λ∗) is a
bilevel KKT point for the original problem (4) provided that Assumptions (A) and
(B) hold.

To prove Theorem 4.1, we show that (ω∗, λ∗, ζ∗, η∗) satisfies equations (19)-
(24). To this end, we prove a series of lemmas, and in particular, we do the
following:
(i) Prove that {Sk

j }k∈K is bounded, where Sk
j is given by (??), j ∈ I(ω∗),

K ⊂ {1, 2, . . . , } such that (ωk, λk) → (ω∗, λ∗) as k ∈ K → ∞ and
{(ωk, λk)} is generated by Algorithm 1;

(ii) Using the boundedness of {Sk
j }k∈K , we compute the limit of the sequence{

(∇2φµk−1
(ωk))jj

}
k∈K

, where j ∈ I(ω∗) and the index set K is as

described in (i);

(iii) Using (ii) and Lemma 4.1, we show that ζ̆∗ = 0 and equation (22) holds.
The above objectives are formally stated and proved, respectively, in

Lemma 4.2 to Lemma 4.4. We will prove these results without knowledge of
the exact formula for the smoothing function ϕ(µ, x) used to construct φµ

given by (28), that is, only using Assumption (B) on the density function.

To facilitate our subsequent analysis, we note here that a sequence
{(ωk, λk, ζk, ηk)} generated by Algorithm 1 satisfies

∇f(ωk) + (∇2
ωωG(ω

k, λ̄k) + λk1∇2φµk−1
(ωk))ζk = εk−1

1 , (42)
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∇φµk−1
(ωk)T ζk − ηk1 = εk−1

2 , (43)

∇Rj(ω
k)T ζk − ηkj = (εk−1

3 )j−1 (j = 2, 3, . . . , r), (44)

∇ωG(ω
k, λ̄k) + λk1∇φµk−1

(ωk) = εk−1
4 , (45)

λk − ϵe1 ≥ 0, ηk ≥ 0, (λk − ϵe1)
T ηk = εk−1

5 , (46)

for all k.

In [21], the authors proved that when ψ(t) = t and ϕ(µ, x) =
√
x2 + µ2

and under Assumptions (B1)-(B3), there exists some γ > 0 such that

µ2
k−1 ≥ γ|ωk

j |
2

2−p (j ∈ I(ω∗)) (47)

for all sufficiently large k ∈ K, where K is the subsequence described in (i).
This result is especially important in proving results related to (ii)-(iii) above.
However, in order to derive inequality (47), [21] takes advantage of the specific
function ϕ(µ, x) chosen, which is not the case in the present work. Nevertheless,
we have found out that such a strong result is not necessarily required to prove
(ii)-(iii). In particular, it suffices to establish (i), which is indeed a weaker
property. To this end, Assumption (B3) will play a very significant role without
which the analysis becomes extremely difficult.

We now prove our first lemma which establishes property (i).

Lemma 4.2 Suppose that Assumptions (B1)-(B3) hold. Let (ω∗, λ∗) be an arbitrary
accumulation point of the sequence {(ωk, λk)} generated by Algorithm 1, and let
{(ωk, λk)}k∈K be an arbitrary subsequence converging to (ω∗, λ∗). For any j ∈
I(ω∗), {Sk

j }k∈K is bounded. Moreover, Sk
j → 0 as k ∈ K → ∞ if p ∈ (0, 1).

Proof Denote

Fj(ω
k, λ̄k) :=

∂G(ωk, λ̄k)

∂ωj
. (48)

From equations (45) and (37), we have

Fj(ω
k, λ̄k)+pλk1ψ

′
(
[ϕ(µk−1, ω

k
j )]

p
)
ϕ′(µk−1, ω

k
j )[ϕ(µk−1, ω

k
j )]

p−1 = (εk−1
4 )j . (49)

Case 1. Suppose that p = 1. Then

Fj(ω
k, λ̄k) + λk1ψ

′(ϕ(µk−1, ω
k
j ))ϕ

′(µk−1, ω
k
j ) = (εk−1

4 )j . (50)

Rearranging the terms and using Assumptions (A) and (B3), there are constants
c, r > 0 such that for sufficiently large k,

|(εk−1
4 )j − Fj(ω

k, λ̄k)|
λk1ψ

′(ϕ(µk−1, ω
k
j ))

= |ϕ′(µk−1, ω
k
j )| = 2

∫ Sk
j

0
ρ(s) ds ≥ 1− c

(Sk
j )

r + c
,
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where the second equality holds by (35), and λk1 > 0 for sufficiently large k since
λ∗1 ≥ ϵ > 0. Consequently, we get

c

(Sk
j )

r + c
≥ 1−

|(εk−1
4 )j − Fj(ω

k, λ̄k)|
λk1ψ

′(ϕ(µk−1, ω
k
j ))

=
λk1ψ

′(ϕ(µk−1, ω
k
j ))− |(εk−1

4 )j − Fj(ω
k, λ̄k)|

λk1ψ
′(ϕ(µk−1, ω

k
j ))

Note that λk1ψ
′(ϕ(µk−1, ω

k
j )) − |(εk−1

4 )j − Fj(ω
k, λ̄k)| > 0 for all large k by using

the fact that (26) holds at (ω∗, λ∗) when p = 1 and by invoking Proposition 2.3(c)
and (50). Then

0 ≤
(Sk

j )
r

c
≤

(Sk
j )

r + c

c
≤

λk1ψ
′(ϕ(µk−1, ω

k
j ))

λk1ψ
′(ϕ(µk−1, ω

k
j ))− |(εk−1

4 )j − Fj(ωk, λ̄k)|

→ λ∗1ψ
′(0)

λ∗1ψ
′(0)− |Fj(ω∗, λ̄∗)|

as k ∈ K → ∞

where the finiteness of the limit is guaranteed by (26). Hence, it easily follows that
{Sk

j }k∈K is bounded.

Case 2. Now, suppose p ∈ (0, 1). From equation (49), we have

|(εk−1
4 )j − Fj(ω

k, λ̄k)|
pλk1ψ

′(ϕ(µk−1, ω
k
j ))

= |ϕ′(µk−1, ω
k
j )| · [ϕ(µk−1, ω

k
j )]

p−1.

Using Assumptions (B1) and (B3) and by (35), we get

[ϕ(µk−1, ω
k
j )]

1−p ·
|(εk−1

4 )j − Fj(ω
k, λ̄k)|

pλk1ψ
′(ϕ(µk−1, ω

k
j ))

= |ϕ′(µk−1, ω
k
j )| ≥ 1− c

(Sk
j )

r + c
≥ 0.

Meanwhile, note that since 1− p > 0 and ωk
j → 0 as k ∈ K → ∞, we have

lim
k∈K→∞

[ϕ(µk−1, ω
k
j )]

1−p = 0.

Since λ∗1 > 0 and ψ′(0) > 0 by Assumption (A), then

lim
k∈K→∞

|(εk−1
4 )j − Fj(ω

k, λ̄k)|
pλk1ψ

′(ϕ(µk−1, ω
k
j ))

=
|Fj(ω

∗, λ̄∗)|
pλ∗1ψ

′(0)
.

Thus,

lim
k∈K→∞

c

(Sk
j )

r + c
= 1.

It follows that limk∈K→∞ Sk
j = 0, as desired. This completes the proof. □

We now focus on the sequence
{
∇2φµk−1

(ωk)
}
k∈K

. Using Lemma 4.2, we
prove the following important result.

Lemma 4.3 Suppose that Assumptions (B1)-(B4) hold. Let (ω∗, λ∗) be an arbitrary
accumulation point of the sequence {(ωk, λk)} generated by Algorithm 1 and let
{(ωk, λk)}k∈K be an arbitrary subsequence converging to (ω∗, λ∗). Then

lim
k∈K→∞

|(∇2φµk−1(ω
k))jj | = ∞ for j ∈ I(ω∗).
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Proof We first consider the case when p = 1. In this instance, we have from equation
(38) that

(∇2φµk−1(ω
k))jj = ψ′′

(
ϕ(µk−1, ω

k
j )
)
ϕ′(µk−1, ω

k
j )

2+ψ′
(
ϕ(µk−1, ω

k
j )
)
ϕ′′(µk−1, ω

k
j ).

It follows from Assumption (A) and Proposition 2.3(c) that

ψ′′
(
ϕ(µk−1, ω

k
j )
)
ϕ′(µk−1, ω

k
j )

2 ≥ −β

and there exists γ > 0 such that for sufficient large k,

ψ′
(
ϕ(µk−1, ω

k
j )
)
≥ γ > 0.

Hence, for sufficiently large k, we obtain

(∇2φµk−1(ω
k))jj ≥ −β + γϕ′′(µk−1, ω

k
j ) = −β + γ

2

µk−1
ρ

(
ωk
j

µk−1

)
,

where ϕ′′(µk−1, ω
k
j ) is defined (36).

By Lemma 4.2, there exists M > 0 such that
|ωk

j |
µk−1

≤M for all k ∈ K. Since ρ is

nonincreasing on [0,∞) by Assumption (B2), we have

lim
k∈K→∞

(∇2φµk−1(ω
k))jj ≥ −β + lim

k∈K→∞

2γ

µk−1
ρ

(
ωk
j

µk−1

)

≥ −β + lim
k∈K→∞

2γ

µk−1
ρ(M) = ∞,

where the rightmost equality holds since ρ(t) > 0 on ℜ by Assumption (B4). This
proves the claim for p = 1.

We now consider the case when 0 < p < 1. We look at two disjoint subsets of K:

Uj
1 := {k ∈ K | ωk

j = 0}, and Uj
2 := {k ∈ K | ωk

j ̸= 0},

and the corresponding subsequences. For k ∈ Uj
1 , we get from (35) that ϕ′(µk−1, 0) =

0. From (38), we have

(∇2φµk−1(ω
k))jj = pψ′

(
[ϕ(µk−1, ω

k
j )]

p
)
[ϕ(µk−1, ω

k
j )]

p−1ϕ′′(µk−1, ω
k
j ). (51)

Meanwhile, from (36),

lim
k∈Uj

1→∞
ϕ′′(µk−1, ω

k
j ) = lim

k∈Uj
1→∞

2

µk−1
ρ

(
ωk
j

µk−1

)
= lim

k∈Uj
1→∞

2

µk−1
ρ(0) = ∞,

(52)
where we note that ρ(0) > 0 by Assumption (B1) and the definition of density
function. Moreover, it is clear that

lim
k∈Uj

1→∞
[ϕ(µk−1, ω

k
j )]

p−1 = ∞. (53)

It follows from (51), (52), (53) and Assumption (A) that

lim
k∈Uj

1→∞
|(∇2φµk−1(ω

k))jj | = ∞.

For k ∈ Uj
2 , we obtain

lim
k∈Uj

2→∞
ϕ′′(µk−1, ω

k
j ) = lim

k∈Uj
2→∞

2

µk−1
ρ

(
ωk
j

µk−1

)
= ∞ (54)
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by using equation (36) and the facts that lim
k∈Uj

2→∞
|ωk

j |
µk−1

= 0 from Lemma 4.2

and ρ is continuous by Assumption (B2).
Meanwhile, we obtain ϕ′′(µk−1, ω

k
j ) ̸= 0 for sufficiently large k using Lemma 4.2,

equation (36) and Assumption (B1). Thus, invoking Assumption (A), we have for

large k ∈ Uj
2 that

ψ′′
(
[ϕ(µk−1, ω

k
j )]

p
) [ϕ′(µk−1, ω

k
j )]

2[ϕ(µk−1, ω
k
j )]

p−1

ϕ′′(µk−1, ω
k
j )

= ψ′′
(
[ϕ(µk−1, ω

k
j )]

p
) [ϕ′(µk−1, ω

k
j )]

2[ϕ(µk−1, ω
k
j )]

p

ϕ′′(µk−1, ω
k
j )ϕ(µk−1, ω

k
j )

≥ −β
[ϕ′(µk−1, ω

k
j )]

2[ϕ(µk−1, ω
k
j )]

p

ϕ′′(µk−1, ω
k
j )ϕ(µk−1, ω

k
j )

. (55)

Using (36) again, the symmetry of ρ, and Proposition 2.3(b), we have

ϕ′′(µk−1, ω
k
j )ϕ(µk−1, ω

k
j ) ≥

2

µk−1
ρ

(
ωk
j

µk−1

)
|ωk

j | = 2Sk
j ρ(S

k
j ).

Using this fact together with (55) and equation (35), we obtain

ψ′′
(
[ϕ(µk−1, ω

k
j )]

p
) [ϕ′(µk−1, ω

k
j )]

2[ϕ(µk−1, ω
k
j )]

p−1

ϕ′′(µk−1, ω
k
j )

≥ −β
2

[∫ Sk
j

0 ρ(t)dt

]2
[ϕ(µk−1, ω

k
j )]

p

Sk
j ρ(S

k
j )

≥ −β
2Sk

j (ρ(0))
2[ϕ(µk−1, ω

k
j )]

p

ρ(Sk
j )

→ 0 as k ∈ Uj
2 → ∞, (56)

where the last inequality holds since

[∫ Sk
j

0 ρ(t)dt

]2
≤ (Sk

j )
2(ρ(0))2. Similarly, we also

have

(p− 1)
[ϕ′(µk−1, ω

k
j )]

2

ϕ′′(µk−1, ω
k
j )ϕ(µk−1, ω

k
j )

≥ (p− 1)

2

[∫ Sk
j

0 ρ(t)dt

]2
Sk
j ρ(S

k
j )

≥ (p− 1)
2Sk

j (ρ(0))
2

ρ(Sk
j )

→ 0 as k ∈ Uj
2 → ∞. (57)

For brevity, denote ϕk := ϕ(µk−1, ω
k
j ), ϕ

′
k := ϕ′(µk−1, ω

k
j ), ϕ

′′
k := ϕ′′(µk−1, ω

k
j ).

Then (38) can be written as

(∇2φµk−1(ω
k))jj = pϕ′′kϕ

p−1
k

[
pψ′′ (ϕpk) [ϕ′k]2ϕp−1

k

ϕ′′k
+ (p− 1)ψ′ (ϕpk) [ϕ′k]

2

ϕ′′kϕk
+ ψ′ (ϕpk)

]
.

(58)
Since 0 < ψ′(t) ≤ α by Assumption (A), we have

lim
k∈Uj

2→∞

[
pψ′′ (ϕpk) [ϕ′k]2ϕp−1

k

ϕ′′k
+ (p− 1)ψ′ (ϕpk) [ϕ′k]

2

ϕ′′kϕk
+ ψ′ (ϕpk)

]
> 0
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by using the obtained limits (56) and (57). On the other hand, it is clear from (54)

that ϕ′′kϕ
p−1
k → ∞ as k ∈ Uj

2 → ∞. Hence, taking the limit in (58),

lim
k∈Uj

2→∞
(∇2φµk−1(ω

k))jj = ∞.

This completes the proof. □

Lemma 4.4 Suppose that Assumptions (B1)-(B4) hold, and (ω∗, λ∗, ζ∗, η∗) is an
accumulation point of the sequence {(ωk, λk, ζk, ηk)} generated by Algorithm 1.
Then

(i) ζ∗j = 0 for all j ∈ I(ω∗), that is, ζ̆∗ = 0; and

(ii)

Proof Let {(ωk, λk, ζk, ηk)}k∈K be a subsequence converging to (ω∗, λ∗, ζ∗, η∗).
From (42), we have for all k ∈ K that

(∇f(ωk))j+
(
∇2

ωωG(ωk, λ̄k)ζk
)
j
+λk1(∇2φµk−1(ω

k))jjζ
k
j = (εk−1

1 )j , (j = 1, 2, . . . , n).

Since G is twice continuously differentiable and f is continuously differentiable, then
{λk1(∇2φµk−1(ω

k))jjζ
k
j }k∈K is a bounded sequence for each j. Consequently, ζ∗j = 0

for all j ∈ I(ω∗), since λ∗1 > 0 and limk∈K→∞(∇2φµk−1(ω
k))jj = +∞ for each

j ∈ I(ω∗) by Lemma 4.3. This proves part (i).
To prove part (ii), we note from (45) that for all k ∈ K,

Fj(ω
k, λ̄k) + λk1(∇φµk−1(ω

k))j = (εk−1
4 )j , (j = 1, 2, . . . , n),

so that {(∇φµk−1(ω
k))j}k∈K is convergent since Fj given by (48) is continuous

and λ∗1 > 0. Hence, we obtain from item (i) that limk∈K→∞(∇φµk−1(ω
k))jζ

k
j = 0,

(j ∈ I(ω∗)) and therefore,

lim
k∈K→∞

∑
j∈I(ω∗)

(∇φµk−1(ω
k))jζ

k
j = 0.

Together with (39) and (43), it follows that

η∗1 = lim
k∈K→∞

ηk1 = lim
k∈K→∞

∇φµk−1(ω
k)T ζk

= lim
k∈K→∞

∑
j /∈I(ω∗)

(∇φµk−1(ω
k))jζ

k
j

=
∑

j /∈I(ω∗)

psgn(ω∗
j )|ω

∗
j |

p−1ψ′(|ω∗
j |

p)ζ∗j ,

proving part (ii). □

Remark 2 Crucial in the proofs of Lemmas 4.2-4.4 is the strict positivity of the
regularization parameter λ∗1 that corresponds to an accumulation point of {λk1}. This
is automatically guaranteed by the constraint set (5), as opposed to the work of
[21] where the parameter ϵ is set to 0. In turn, [21] requires the assumption that
lim infk→∞ λk1 > 0 to ensure that λ∗1 > 0, but such an assumption is difficult to
guarantee for the iterates generated by Algorithm 1.
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Having derived all the necessary lemmas, we can now prove our main result.

Proof of Theorem 4.1 Let {(ωk, λk, ζk, ηk)}k∈K be a subsequence converging to an
accumulation point (ω∗, λ∗, ζ∗, η∗). It is clear from (44) and (46) that equations (23)
and (24) hold. Meanwhile, we obtain from (42) and (45), respectively, that

∇ω̃f(ω
k) + (∇2

ω̃ω̃G(ωk, λ̄k)ζ̃k + (∇2
ω̃ω̆G(ωk, λ̄k)ζ̆k + λk1∇2

ω̃φµk−1(ω
k))ζ̃k = ε̃k−1

1 ,(59)

∇ω̃G(ωk, λ̄k) + λk1∇ω̃φµk−1(ω
k) = ε̃k−1

4 , (60)

where ε̃k−1
1 = {(εk−1

1 )j}j /∈I(ω∗) and ε̃
k−1
4 = {(εk−1

4 )j}j /∈I(ω∗). Using Lemma 4.1 and
Lemma 4.4(i), and letting k ∈ K → ∞ in (59) and (60), we obtain the bilevel KKT
conditions (19) and (20). Finally, (21) and (22) hold by Lemma 4.4. This completes
the proof of Theorem 4.1.

□

4.3 Boundedness

In the preceding discussion, we have shown that accumulation points of
{(ωk, λk, ζk, ηk)} correspond to bilevel KKT points. The existence of these
accumulation points is guaranteed by boundedness of the full sequence
{(ωk, λk, ζk, ηk)}. In this section,

4.3.1 Weaker constraint qualification

In [21], linearly independent constraint qualification (LICQ) was one of the
assumptions used to obtain the boundedness of the sequence {(ωk, λk, ζk, ηk)}.
In this present work, we only assume that the Mangasarian-Fromovitz con-
straint qualification holds at accumulation points of a sequence generated by
the smoothing algorithm.

Assumption (C). Let (ω∗, λ∗) ∈ ℜn × ℜr be an accumulation point of
{(ωk, λk)} generated by Algorithm 1. Denote

I(λ∗) := {i ∈ {1, 2, . . . , r} | λ∗i = ϵ(e1)i, }

where e1 = (1, 0, . . . , 0) ∈ ℜr, and

Φj(ω, λ) :=
∂G(ω, λ̄)

∂ωj
+ psgn(ωj)λ1|ωj |p−1ψ′(|ωj |p) (j /∈ I(ω∗)).

Then, the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at
(ω, λ) = (ω∗, λ∗) for the constraints Ψj(ω, λ) = 0 for all j = 1, . . . , n and
λ ≥ 0, where

Ψj(ω, λ) :=

{
Φj(ω, λ) if j /∈ I(ω∗),
ωj if j ∈ I(ω∗).

That is, {∇(ω,λ)Ψj(ω
∗, λ∗)}nj=1 is linearly independent and there exists d̄ ∈

ℜn+r such that

∇(ω,λ)Ψj(ω
∗, λ∗)T d̄ = 0 ∀j = 1, . . . , n, (61)
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(∇(ω,λ)λi|(ω,λ)=(ω∗,λ∗))
T d̄ > 0 ∀i ∈ I(λ∗). (62)

The following lemma is needed for subsequent analysis.

Lemma 4.5 Suppose that (ω∗, λ∗) is an arbitrary accumulation point
of the sequence {(ωk, λk)} such that Assumption (C) holds. Then,
{∇(ω̃,λ)Φj(ω

∗, λ∗)}j /∈I(ω∗) is linearly independent and there exists a vector

d ∈ ℜn−|I(ω∗)|+r such that

∇(ω̃,λ)Φj(ω
∗, λ∗)T d = 0 ∀j /∈ I(ω∗), (63)

(∇(ω̃,λ)λi|(ω,λ)=(ω∗,λ∗))
T d > 0 ∀i ∈ I(λ∗), (64)

where ω̃ := (ωj)j /∈I(ω∗).

Proof See AppendixC. □

4.3.2 Boundedness of algorithm iterates

We will now show the boundedness of the sequence of Lagrange multiplier
vectors {(ζk, ηk)} in the following lemma.

Proposition 4.2 Suppose that Assumptions (B) and (C) hold. Let {(ζk, ηk)} ⊆
ℜn ×ℜr be a sequence of the accompanying Lagrange multiplier vectors generated by
Algorithm 1. If {(ωk, λk)} is bounded, then {(ζk, ηk)} is bounded.

Proof For convenience, denote

ξk := ((ζk)T , (ηk)T )T , ζ̂k :=
ζk

∥ξk∥
, η̂k :=

ηk

∥ξk∥

for each k. We prove by contradiction that the sequence {(ζk, ηk)} is bounded.
Without loss of generality, we may assume that

∥ξk∥ → ∞, lim
k→∞

ξk

∥ξk∥
= ξ̂∗,

where ξ̂∗ := ((ζ̂∗)T , (η̂∗)T )T with ζ̂∗ and η̂∗ are accumulation points of
{ζ̂k} and {η̂k}, respectively. We may suppose without loss of generality that
limk→∞(ωk, λk) = (ω∗, λ∗). Dividing by ∥ξk∥ both sides of (30),(31),(32)
and (34) evaluated at (ω, λ, ζ, η) = (ωk, λk, ζk, ηk) and (ε1, ε2, ε3, ε4, ε5) =

(εk−1
1 , εk−1

2 , εk−1
3 , εk−1

4 , εk−1
5 ), we have for each k the following equations:

(∇f(ωk))j

∥ξk∥
+
(
∇2

ωωG(ωk, λ̄k)ζ̂k
)
j
+ λk1(∇2φµk−1(ω

k))jj ζ̂
k
j =

(εk−1
1 )j

∥ξk∥
(j = 1, 2, . . . , n),

(65)

∇φµk−1(ω
k)T ζ̂k − η̂k1 =

εk−1
2

∥ξk∥
, (66)
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∇Rj(ω
k)T ζ̂k − η̂kj =

(εk−1
3 )j−1

∥ξk∥
(j = 2, 3, . . . , r), (67)

λkj − ϵ(e1)j ≥ 0, η̂kj ≥ 0, (λkj − ϵ(e1)j)η̂
k
j ≤

r∑
j=1

(λkj − ϵ(e1)j)η̂
k
j =

εk−1
5

∥ξk∥
(j = 1, . . . , r).

(68)

Since limk→∞
εk−1
l

∥ξk∥ = 0, l = 1, 2, 3, 5, letting k → ∞ in inequality (68) gives

η̂∗j = 0 (j /∈ I(λ∗)) and η̂∗j ≥ 0 (j ∈ I(λ∗)). (69)

Since ∥ξ̂∗∥ = 1, we get from (69) that

1 = ∥ζ̂∗∥2 + ∥η̂∗∥2 = ∥ζ̂∗∥2 +
∑

j∈I(λ∗)

|η̂∗j |
2. (70)

Meanwhile, since G is twice continuously differentiable and f is continuously differ-

entiable, then both {∇2
ωωG(ωk, λ̄k)ζ̂k} and

{
∇f(ωk)
∥ξk∥

}
are bounded. This implies the

boundedness of {λk1(∇2φµk−1(ω
k))jj ζ̂

k
j } for each j by (65). Consequently, we obtain

limk→∞ ζ̂kj = 0 for j ∈ I(ω∗) by Lemma 4.3 and noting that λ∗1 > 0. That is,

ζ̂∗j = 0 (j ∈ I(ω∗)). (71)

Letting k → ∞ in (33), it is clear that

lim
k→∞

|∇(φµk−1(ω
k))j | =

|Fj(ω
∗, λ̄∗)|
λ∗1

,

where Fj(ω
∗, λ̄∗) is given by (48). This together with (71) gives us

lim
k→∞

∑
j∈I(ω∗)

(∇φµk−1(ω
k))j ζ̂

k
j = 0. (72)

Thus,

η̂∗1
(66)
= lim

k→∞
∇φµk−1(ω

k)T ζ̂k

= lim
k→∞

 ∑
j∈I(ω∗)

(∇φµk−1(ω
k))j ζ̂

k
j +

∑
j /∈I(ω∗)

(∇φµk−1(ω
k))j ζ̂

k
j


(72)
= lim

k→∞

∑
j /∈I(ω∗)

(∇φµk−1(ω
k))j ζ̂

k
j

(39)
=

∑
j /∈I(ω∗)

psgn(ω∗
j )|ω

∗
j |

p−1ψ′(|ω∗
j |

p)ζ̂∗j . (73)

On the other hand, we have from (67) and (71) that

η̂∗j =
∑

i/∈I(ω∗)

∂Rj(ω
∗)

∂ωi
ζ̂∗i , (j = 2, . . . , r). (74)

Meanwhile, letting k → ∞ in (65) and using equations (71) and (40), we have(
∇2

ω̃ω̃G(ω∗, λ̄∗) + λ∗1p
2ψ′′ (|ω̃∗

j |
p) |ω̃∗

j |
2p−2 + λ∗1p(p− 1)ψ′ (|ω̃∗

j |
p) |ω̃∗

j |
p−2

)
˜̂
ζ∗ = 0,

(75)
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where
˜̂
ζ∗ = (ζ̂∗i )i/∈I(ω∗). Combining equations (73), (74) and (75), we obtain∑

j /∈I(ω∗)

ζ̂∗j∇(ω̃,λ)Φj(ω
∗, λ∗)−

∑
j∈I(λ∗)

η̂∗j∇(ω̃,λ)λj(ω
∗, λ∗) = 0, (76)

where ω̃ := (ωj)j /∈I(ω∗) and Φj(ω, λ) (j /∈ I(ω∗)) are as defined in Assumption (C).

On the other hand, by Lemma 4.5, we can find a vector d ∈ ℜn−|I(ω∗)|+r such that
(63) and (64) hold. From (76), we have∑

j /∈I(ω∗)

ζ̂∗j∇(ω̃,λ)Φj(ω
∗, λ∗)T d−

∑
j∈I(λ∗)

η̂∗j∇(ω̃,λ)λj(ω
∗, λ∗)T d = 0.

Together with equation (63), we obtain∑
j∈I(λ∗)

η̂∗j∇(ω̃,λ)λj(ω
∗, λ∗)T d = 0.

Consequently, we have from (69) and (64) that η̂∗j = 0 for all j ∈ I(λ∗). In turn, (76)
implies that ∑

j /∈I(ω∗)

ζ̂∗j∇(ω̃,λ)Φj(ω
∗, λ∗) = 0.

Since {∇(ω̃,λ)Φj(ω
∗, λ∗)}j /∈I(ω∗) is linearly independent by Lemma 4.5, then ζ̂∗j = 0

for all j /∈ I(ω∗). Together with (71), we have ζ̂∗ = 0 which in turn implies that
∥ζ̂∗∥2+

∑
j∈I(λ∗)|η̂

∗
j |

2 = 0. This contradicts (70). Therefore, the sequence {(ζk, ηk)}
is bounded. □

5 Numerical results

We compare the efficiency of different smoothing functions, namely the func-
tions ϕi (i = 1, 2, . . . , 6) presented in Appendix B by means of numerical
simulation. The program is coded in MATLAB R2022b and run on a machine
with Intel(R) Core(TM) i7-7500U CPU@2.70GHz and 8.0 GB RAM.

5.1 Problem with an Elastic-Net-type regularizer

We solve the following bilevel problem arising from squared linear regression
using an Elastic-Net-type regularizer:

min
ω,λ

1

2
∥A1ω − b1∥22

s.t. ω ∈ argmin
ω̂∈ℜn

{
1

2
∥A2ω̂ − b2∥22 + λ1∥ω̂∥pp + λ2∥ω̂∥22

}
λ1 ≥ ϵ, λ2 ≥ 0,

(77)

where Ai ∈ ℜmi×n, bi ∈ ℜmi for i ∈ {1, 2} and ϵ = 10−6. We produce 20
synthetic problems for (n,m1,m2) = (500, 1000, 1000) and for (n,m1,m2) =
(500, 300, 300) generated in Matlab as follows:

Ai := rand(mi, n),

[
b1
b2

]
:=

[
A1 ∗ θ

A2 ∗ θ + 0.01 ∗ (2 ∗ rand (m2, 1)− ones (m2, 1))

]
,
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θ := zeros(n, 1), θ(randsample(n, 0.15 ∗ n)) = −5 + 10 ∗ rand(0.15 ∗ n, 1),

with rand, randn, randsample, ones, and zeros being MATLAB commands,
and apply Algorithms 1 with the smoothing functions ϕi (i = 1, 2, . . . , 6) to
the problems (77) with the generated data. The random number generator is
initialized at default. The test data A3 ∈ ℜm3×n and b3 ∈ ℜm3 are generated
in the same manner as Ai and bi for i = 1, 2, with m3 := m1.

In order to compute a KKT point of the smoothed subproblem for (77)
in Step 1 of Algorithm1, we utilize the MATLAB solver fmincon with
“MaxIterations= 104” and opt for the interior-point method as an algorithm
that runs within fmincon. We initialize fmincon for (29) at some initial point
(ω0, λ0) in the first iteration k = 0, and then use the previous iteration point
(ωk−1, λk−1) as the initial point for the succeeding iterations, i.e., for k ≥ 1.
The smoothing parameter is initialized at µ0 = 0.1, and the factor of decrease
is set to β1 = 0.8. To obtain a reasonable initial point (ω0, λ0), we employ a
semismooth Newton (SSN) method for solving the KKT system (30)-(34). We
first use a complementarity function to reformulate the conditions (34) with
ε5 = 0 as a system of equations [1]. In particular, we use the Fischer-Burmeister
function ϕFB : ℜr → ℜr given by

ϕFB(x, y) = x+ y −
√
x2 + y2,

where the operations are understood to be taken component-wise, so that the
conditions (34) with ε5 = 0 are equivalent to solving

ϕFB(λ− ϵe1, η) = 0. (78)

With this, a KKT point satisfying (30)-(34) can be obtained by solving
approximately the equation

Φµ
FB(ω, λ, ζ, η) :=


∇f(ω) + (∇2

ωωG(ω, λ̄) + λ1∇2φµ(ω))ζ
∇φµ(ω)

T ζ − η1
∇R̄(ω)T ζ − η̄

∇ωG(ω, λ̄) + λ1∇φµ(ω)
ϕFB(λ− ϵe1, η)

 = 0. (79)

By our differentiability assumptions on f , g, Rj (j = 2, . . . , r) and the smooth-
ness of φµ, equations (31)-(33) are all smooth. On the other hand, from
equations (36) and (38) and invoking Assumptions (A) and (B), equation (30)
is semismooth provided that ρ is semismooth, which is the case for piece-
wise smooth functions [13, Proposition 7.4.6], such as the density functions
that we considered in Appendix B. Finally, since ϕFB is strongly semis-
mooth [13, Proposition 7.4.8], then equation (78) is likewise a semismooth
equation. Our warmstarting algorithm to obtain an initial point (ω0, λ0) is
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described in Algorithm 2.4 Similar to Algorithm 1, we consider a sequence of
equations (79) for decreasing values of µ. In our experiments, we set τ1 = 0.8,
τ2 = 0.1, γmin = 10−6, µ0 = 10, and γ0 = 0.1. We initialize Algorithm 2 with
ω0 = 100 ∗ ones(n, 1) and λ0 = (ϵ, 0), ζ0 = 0, and η0 = 0.

Algorithm 2 (A semismooth Newton method for warmstarting Algorithm 1)

Step 0 Choose µ0, γ0 > 0, τ1, τ2, γmin ∈ (0, 1), and z0 := (ω0, λ0, ζ0, η0). Set
k := 0.

Step 1 Select an element V k ∈ ∂CΦ
µk

FB(z
k), where ∂C denotes the Clarke

subdifferential (see [13, Definition 7.1.1]), and solve the linear system

Φµk

FB(z
k) + V k∆zk = 0.

Step 2 Set zk+1 := zk +∆zk.
Step 3 Set

(µk+1, γk+1) :=

{
(µk, γk) if ∥Φµk

FB(z
k)∥ > γk

(τ1µk,min{τ2γk, γmin}) if ∥Φµk

FB(z
k)∥ ≤ γk

If ∥Φµk

FB(z
k)∥ < γmin, terminate the algorithm. Otherwise, go to Step 1

and set k := k + 1.

In light of the SB-KKT conditions (13)-(18) and the value of the smoothing
parameter µ, we terminate the algorithm when either one of the following
criteria is met:
1. The norms of the residuals of the equations in (19)-(24) are smaller than

10−2. To estimate the index set I(ω∗) in conditions (15) and (16), we
regard ωk

i as zero if |ωk
i | ≤ 10−5.

2. µk+1 ≤ 10−8.
The obtained results are summarized in Tables 1-4, in which each column

is described as follows. Here, the averages are taken over the set of problems
that are counted in success(%).

The best values are displayed in bold in the tables, with the results for the
smoothing function ϕ5 excluded from the tables due to the overflow that often
occurred when computing its gradient as µ gets smaller. Now, the following
insights are obtained from the numerical results.

4One may consider employing the semismooth Newton method, i.e., Algorithm 2, as a stan-
dalone algorithm for obtaining BKKT points. However, relying on this algorithm alone does not
yield accurate solution for the BKKT system, given as well that its convergence guarantee is only
local. is that apart from providing an initial guess for primal variables (ω0, λ0), we also need to
provide an initial guess for the Lagrange multipliers (ζ0, η0) when using Algorithm 2, which could
influence the quality of the solution obtained by the algorithm.
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i: the smoothing function ϕi
val: average validation error at the resulting solution; the validation

error is the least squares error for the validation data A1 at the
obtained solution, i.e., the value of the objective function at the
resulting solution

test: average test error at the resulting solution; the test error is the
the least squares error for the validation data A3 at the obtained
solution, i.e., the value of the objective function at the resulting
solution

bkkt: average residual of the BKKT conditions
sparsity(%): average ratio of zero elements of the resulting solution ω∗,

in which each element wi is counted as zero if |ωi| ≤ 10−5

time(s): average time spent by the algorithm in seconds; in parenthesis, we
include the average time spent in the initialization phase via
Algorithm 2

ssn.iter: average number of iterations for the initialization phase
iter: average number of iterations of Algorithm 1 executed by employing

Matlab’s fmincon built-in function.
success(%): ratio of problems for which BKKT points are computed successfully

in the sense that the first termination condition in the above is
satisfied

Comparison with p = 0.5, 1 and m2 = 300, 1000

In terms of the sparsity of solutions obtained, we see that ℓ0.5 tends to attain
sparser solutions than ℓ1. Indeed, it is evident from Table 2 (resp., Table 4)
that the solutions obtained for p = 0.5 are sparser than those obtained by
p = 1 shown in Table 1 (resp., Table 3). This is by virtue of the nonconvexity
of ℓp with p < 1. Moreover, ℓ0.5 tends to attain solutions with better validation
errors than ℓ1.

On the other hand, the problems with m2 < n is related to the problem
of finding sparse solutions of underdetermined linear systems. Such kind of
problems are often regarded more intractable than those with m2 ≥ n, as
illustrated by the obtained numerical results. When p = 1, the success rate of
the smoothing algorithm is largely diminished when m2 < n. In addition, it is
clear from Tables 1 and 3 that for this instance, the algorithm required more
time to solve the problems as compared when m2 ≥ n. When p < 1, while the
average times spent by the algorithm are apparently not very distinct for both
m2 = 1000 and m2 = 300, it is evident from Tables 2 and 4 that the success
rate is also diminished for the latter case. Meanwhile, for the case m2 < n, we
note that the success rate when p = 0.5 is significantly better than when p = 1.

Comparison of the four smoothing functions

In view of the validation and test errors, bilevel KKT residuals, sparsity, aver-
age time and success rates, the qualities of the resulting solutions as well as the
efficiency of the algorithm with different smoothing functions are comparable.
From Table 1, we see that Algorithm 1 with ϕ4 is the fastest method obtaining
a 100% success rate in solving the problems, but the solutions obtained are
neither the sparsest ones, nor do they correspond to the lowest validation and
test errors. As these factors are quite important in evaluating the performance
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of the model, we observe that Algorithm 1 equipped with smoothings func-
tions ϕ1 and ϕ2 provide higher quality of solutions attained at a running time
not significantly longer than that required by ϕ4. Considering these important
criteria along with the success rates of the algorithms, we also observe from
Tables 2-4 that the algorithm equipped with ϕ1 consistently obtains the best
success rates with low validation error, as well as sparser solutions.

Table 1 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 1)

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 7.32e-03 7.31e-03 4.98e-03 45.8 187.5 (7.2) 182.1 34.9 100
2 7.90e-03 7.83e-03 5.34e-03 43.4 175.5 (7.2) 183.7 32.5 100
3 9.17e-03 9.07e-03 4.23e-03 36.3 157.4 (7.2) 183.7 27.7 95
4 1.08e-02 1.06e-02 4.59e-03 29.1 148.9 (7.1) 185.2 26.4 100
6 1.01e-02 9.95e-03 4.80e-03 31.4 165.7 (7.2) 182.9 30.9 100

Table 2 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 0.5)

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 1.39e-03 1.39e-03 5.76e-03 84.7 198.9 (7.5) 180.9 31.2 100
2 1.36e-03 1.37e-03 6.66e-03 84.7 206.8 (7.4) 181.7 32.8 100
3 1.35e-03 1.36e-03 6.38e-03 83.5 213.3 (8.0) 180.8 33.0 100
4 3.01e-03 2.95e-03 6.96e-03 75.8 210.9 (7.6) 183.3 32.5 100
6 3.02e-03 2.96e-03 6.05e-03 76.4 202.2 (7.4) 180.4 32.4 100

Table 3 Averaged results for (n,m2,m1, p) = (500, 300, 300, 1)

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 1.07e-02 1.10e-02 4.43e-03 58.6 244.5 (4.9) 124.8 44.4 50
2 9.68e-03 1.02e-02 4.56e-03 59.9 268.6 (4.7) 116.7 45.7 30
3 1.23e-02 1.28e-02 3.85e-03 56.2 262.0 (5.2) 132.9 45.1 35
4 1.17e-02 1.23e-02 5.32e-03 58.4 314.1 (6.4) 147.2 52.7 50
6 2.24e-02 2.27e-02 7.66e-03 58.5 299.5 (4.4) 114.5 56.0 20

5.2 Problems with other regularizers

In this section, we solve problem (77) with the regularizers ψ2(∥ω∥pp) and
ψ3(∥ω∥pp) in place of ∥ω∥pp, with ψ2 and ψ3 defined in Appendix A, where
we set a = 1 and p = 0.5. Both the experimental settings and the 20 syn-
thetic problem-data of Ai, bi (i = 1, 2, 3) are identical to the ones used in the
preceding section. The obtained results are summarized in Tables 5-8.
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Table 4 Averaged results for (n,m2,m1, p) = (500, 300, 300, 0.5)

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 2.11e-03 2.25e-03 5.62e-03 80.8 185.3 (4.9) 114.5 33.5 100
2 2.06e-03 2.19e-03 6.00e-03 73.0 180.6 (4.7) 129.2 33.2 85
3 2.11e-03 2.20e-03 5.88e-03 75.2 189.5 (5.2) 119.5 35.2 90
4 2.06e-03 2.15e-03 5.68e-03 79.2 200.9 (6.4) 146.1 37.5 95
6 2.58e-03 2.58e-03 5.90e-03 75.2 196.6 (4.4) 120.5 36.4 90

Similar to the remarks in the preceding sections, we observe that taking
into account the quality of the solutions obtained as reflected by the validation
errors and sparsity, together with the running times and success rates of the
algorithm, we observe that Algorithm 1 with the smoothing function ϕ1 has a
consistent good performance among all the functions considered.

Table 5 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 0.5) using ψ2

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 1.39e-03 1.39e-03 5.76e-03 84.7 276.7 (4.9) 180.9 31.2 100
2 1.36e-03 1.37e-03 6.66e-03 84.7 284.4 (4.7) 181.7 32.8 100
3 1.35e-03 1.36e-03 6.22e-03 84.1 259.4 (5.2) 180.7 32.9 95
4 3.01e-03 2.95e-03 6.96e-03 75.8 262.6 (6.4) 183.3 32.5 100
6 3.10e-03 3.05e-03 5.88e-03 76.0 244.1 (4.4) 180.3 32.1 95

Table 6 Averaged results for (n,m2,m1, p) = (500, 300, 300, 0.5) using ψ2

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 2.06e-03 2.17e-03 5.78e-03 80.7 200.4 (4.9) 112.5 32.8 95
2 2.06e-03 2.19e-03 6.00e-03 73.0 211.8 (4.7) 129.2 33.2 85
3 2.11e-03 2.17e-03 5.90e-03 74.9 196.3 (5.2) 119.6 33.2 85
4 2.06e-03 2.15e-03 5.68e-03 79.2 237.3 (6.4) 146.1 37.5 95
6 2.58e-03 2.58e-03 5.90e-03 75.2 217.2 (4.4) 120.5 36.4 90

5.3 Comparisons with Bayesian optimization

As mentioned in the introduction, two popular methods for dealing with the
hyperparameter learning problem include the grid search method and Bayesian
optimization. For practical purposes, however, grid search algorithm is not a
viable approach due to the necessity of solving the lower level problem (1) for
many values of the hyperparameters (λ1, . . . , λr), as was also demonstrated
in [21]. Hence, we only compare our approach with Bayesian optimization. As
shown in Table 9, our approach needed only roughly 25% of the time required
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Table 7 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 0.5) using ψ3

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 1.39e-03 1.39e-03 5.76e-03 84.7 193.1 (4.9) 180.9 31.2 100
2 1.37e-03 1.38e-03 6.68e-03 84.8 193.9 (4.7) 181.6 31.7 95
3 1.35e-03 1.36e-03 6.38e-03 83.5 195.0 (5.2) 180.8 33.0 100
4 3.01e-03 2.95e-03 6.96e-03 75.8 192.4 (6.4) 183.3 32.5 100
6 3.02e-03 2.96e-03 6.05e-03 76.4 214.5 (5.4) 180.4 32.4 100

Table 8 Averaged results for (n,m2,m1, p) = (500, 300, 300, 0.5) using ψ3

i val test bkkt sparsity(%) time(s) ssn.iter iter success(%)

1 2.11e-03 2.25e-03 5.62e-03 80.8 227.6 (4.9) 114.5 33.5 100
2 2.06e-03 2.19e-03 6.00e-03 73.0 227.8 (4.7) 129.2 33.2 85
3 2.11e-03 2.20e-03 5.88e-03 75.2 231.4 (5.2) 119.5 35.2 90
4 2.06e-03 2.15e-03 5.68e-03 79.2 220.9 (6.4) 146.1 37.5 95
6 2.58e-03 2.58e-03 5.90e-03 75.2 231.5 (4.4) 120.5 36.4 90

by Bayesian optimization for p = 0.5, while still achieving low validation and
test errors, as well as sparse models. For p = 1, while the Bayesian optimiza-
tion strategy attained sparser solutions, it required almost eight times more
computing time, and the validation and test errors are significantly larger than
the one obtained by our approach.

Table 9 Averaged results for (n,m2,m1) = (250, 500, 500) using ψ1

p method val test sparsity(%) time(s)

1
Algorithm 1 w/ ϕ1 4.15e-03 4.12e-03 41.7 39.4

Bayesian Optimization 7.10e+00 6.79e+00 50.4 314.8

0.5
Algorithm 1 w/ ϕ1 6.60e-04 6.67e-04 72.7 39.9

Bayesian Optimization 4.47e+01 4.47e+01 19.1 160.8

6 Conclusion

This paper considers a class of nonsmooth, possibly nonconvex and non-
Lipschitz regularizers for the best hyperparameter selection problem using a
bilevel programming strategy. The class of regularizers we consider subsumes
the traditional ℓp regularizer, which is the focus of the earlier work [21]. We
propose new bilevel KKT conditions which are tighter than the SBKKT con-
ditions proposed in [21]. These are necessary conditions for the original bilevel
problem (4) when p = 1, and are necessary conditions for the relaxed prob-
lem (7) when p < 1. The convergence analysis of the smoothing algorithm
presented in this paper is unified, in the sense that it is not limited to the
chosen smoothing function, unlike the previous work [21] where the analysis is
centered on the selected smoothing function. Finally, we proved our main con-
vergence result under a milder constraint qualification. More precisely, we only
assumed the Mangasarian-Fromovitz constraint qualification (MFCQ) for our
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convergence analysis, which is weaker than the linearly independent constraint
qualification (LICQ) used in [21]. For our numerical simulations, we compared
the performance of six smoothing functions in solving the bilevel programming
problem using different regularizers. Theoretically, we can use these smooth-
ing functions for all the regularizers considered as their corresponding density
functions satisfy Assumption (B). On the other hand, our practical experience
revealed that the smoothing function ϕ1 provides the best performance when
taking into account the validation and test errors of the resulting model, as
well as the sparsity of the solution and running time of the algorithm. Interest-
ingly, the function ϕ1 is the closest approximation to the regularizer R1 among
all the smoothing functions, as proved in Appendix B.
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Appendix A Penalty functions that satisfy
Assumption (A)

We consider four penalty functions as follows:

ψ1(t) = t, ψ2(t) = log(1 + at), ψ3(t) =
at

1 + at
, ψ4(t) =

−1

1 + at
,

where a is positive number. In particular,
(1) ψ1 is a soft-thresholding penalty function [14, 25]. We have ψ′

1(t) = 1 and
ψ′′
1 (t) = 0. Hence, it satisfies Assumption (A).

(2) ψ2 is a logistic penalty function [19]. We have

ψ′
2(t) =

a

1 + at
, ψ′′

2 (t) = − a2

(1 + at)2
,

which implies that 0 < limt→0 ψ
′
2(t) = a and |ψ′′

2 (t)| ≤ a2. Hence, it
satisfies Assumption (A).

(3) ψ3 is fraction penalty function [9, 19]. We have

ψ′
3(t) =

a

(1 + at)2
, ψ′′

3 (t) = − 2a2

(1 + at)3
,

which implies that 0 < limt→0 ψ
′
3(t) = a and |ψ′′

3 (t)| ≤ 2a2. Hence, it
satisfies Assumption (A).
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(4) For function ψ4, we have

ψ′
4(t) =

a

(1 + at)2
, ψ′′

4 (t) = − 2a2

(1 + at)3
,

which implies that 0 < limt→0 ψ
′
4(t) = a and |ψ′′

4 (t)| ≤ 2a2. Hence, it
satisfies Assumption (A).

Appendix B Examples of Smoothing
Functions

A key aspect in successful numerical implementations of a smoothing algorithm
is the choice of the approximating functions. Here, we enumerate six smoothing
functions that we will use in our numerical simulations.

There are many density functions commonly used and called kernel func-
tions in statistics (see also [7]). Some density functions satisfying (9) are given
as follows.

ρ1(x) :=

{
35
32 (1− x2)3 if |x| ≤ 1,

0 otherwise.

ρ2(x) :=

{
15
16 (1− x2)2 if |x| ≤ 1,

0 otherwise.

ρ3(x) :=

{
3
4 (1− x2) if |x| ≤ 1,

0 otherwise,

ρ4(x) :=
1√
2π
e−

x2

2 ∀x ∈ ℜ.

ρ5(x) :=
e−x

(1 + e−x)2
.

ρ6(x) :=
1

(x2 + 1)
3
2

.

Following the discussion in Section 2.2, the corresponding smoothing
functions of |x| are given as follows:

ϕ1(µ, x) :=

{
− 5x8

128µ7 + 7x6

32µ5 − 35x4

64µ3 + 35x2

32µ + 35µ
128 if |x| ≤ µ,

|x| if |x| > µ.

ϕ2(µ, x) :=

{
x6

16µ5 − 5x4

16µ3 + 15x2

16µ + 5µ
16 if |x| ≤ µ,

|x| if |x| > µ.

ϕ3(µ, x) :=

{
− x4

8µ3 + 3x2

4µ + 3µ
8 if |x| ≤ µ,

|x| if |x| > µ.
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ϕ4(µ, x) := xerf

(
x√
2µ

)
+

√
2

π
µe

− x2

2µ2 ,

ϕ5(µ, x) := µ
[
log

(
1 + e−

x
µ

)
+ log

(
1 + e

x
µ

)]
.

ϕ6(µ, x) :=
√
µ2 + x2.

Here, the error function is defined by

erf(x) =
2√
π

∫ x

0

e−u2

du ∀x ∈ ℜ.

The graphs of |x| and ϕi(µ, x), i = 1, 2, . . . , 6 with µ = 0.25 are illustrated
in Figure 1. From the graphs, we infer the following inequality relating the
smoothing functions:{

|x| ≤ ϕ1(µ, x) ≤ ϕ2(µ, x) ≤ ϕ3(µ, x) ≤ ϕ4(µ, x) ≤ ϕ5(µ, x), ϕ6(µ, x).

there exists α > 0 such that ϕ6(µ, x) ≤ ϕ5(µ, x) for all x ∈ [−α, α].

It is not difficult to show that the relation |x| ≤ ϕ1(µ, x) ≤ ϕ2(µ, x) ≤ ϕ3(µ, x),
while the proof of the relation ϕ3(µ, x) ≤ ϕ4(µ, x) ≤ ϕ5(µ, x) can be found
in [23]. Using the same proof technique in [23], one can easily achieve the
remaining inequalities. On the other hand, the graphs of the corresponding
smoothing functions for |x|p where p ∈ (0, 1] is shown in Figures B1 and B2.
We note that the smooth approximation ϕ6 is the function used in [21] for
their smoothing algorithm for (4) with R1(ω) :=

∑n
i=1|ωi|p (0 < p ≤ 1).
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Fig. B1 Graph of |x| and ϕi(µ, x), i = 1, 2, . . . , 6 with µ = 0.25.
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Fig. B2 Graph of |x|p and (ϕ(µ, x))p, i = 1, 2, . . . , 6 with µ = 0.25 and p = 0.5.

In this paper, we consider the six functions above and determine which
approximation is the best suitable in solving (4) with R1(ω) satisfying Assump-
tion (A). It is easy to check that the six density functions as above satisfy
Assumptions (B1)-(B2). Condition (B3), on the other hand, holds by choosing
c = 4, and r = 2. Indeed,

1− 4

4 + S2
≤

√
1− 4

4 + S2
= 2

S∫
0

ρ3(s) ds ≤ 2

S∫
0

ρi(s) ds ∀i = 1, . . . , 6.

According to Assumption (B4), only the functions ρ4, ρ5 and ρ6 can be used
(theoretically) for the case p = 1.

Appendix C Proof of Lemma4.5

In this appendix, we give a proof of Lemma4.5.

Proof By Assumption (C), we know that there exists d̄ ∈ ℜn+r such that (61) and
(62) hold. Meanwhile, we have from the formula of Ψj that

∇(ω,λ)Ψj(ω, λ) =


∇(ω,λ)Φj(ω, λ) if j /∈ I(ω∗)[
ej

0r

]
if j ∈ I(ω∗),

(C1)

where ej is the jth standard unit vector in ℜn and 0r denotes the zero vector in
ℜr. It is then clear from (C1) and (61) that d̄j = 0 for all j ∈ I(ω∗). Consequently,

letting d ∈ ℜn−|I(ω∗)|+r be the vector d := (d̄)j /∈I(ω∗), it follows from (61) and (62)
that equations (63) and (64) hold.

It remains to show that {∇(ω̃,λ)Φj(ω
∗, λ∗)}j /∈I(ω∗) is linearly independent. To

this end, note first that we have from Assumption (C) the linear independence of
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{∇(ω,λ)Ψj(ω
∗, λ∗)}nj=1, that is, the matrix

M :=

[(
∇(ω,λ)Ψj(ω

∗, λ∗)
)
(j /∈I(ω∗))

,
(
∇(ω,λ)Ψj(ω

∗, λ∗)
)
(j∈I(ω∗))

]
∈ ℜ(n+r)×n

has full column rank. Using equation (C1) and switching the rows of M so that the
first |I(ω∗)| rows correspond to the index set I(ω∗), we have that the matrix[

(∇ω̆Φj(ω
∗, λ∗))j /∈I(ω∗) E|I(ω∗)|

(∇(ω̃,λ)Φj(ω
∗, λ∗))j /∈I(ω∗) O(n−|I(ω∗)|+r)×|I(ω∗)|

]
has full column rank, where ω̆ := (ωj)j∈I(ω∗), Es denotes the identity matrix of
order s, and Os×t is the zero matrix of size s × t. Since the upper and lower right
blocks of the above matrix are the identity matrix and zero matrix, respectively, a
series of elementary column operations leads us to conclude that[

O|I(ω∗)|×(n−|I(ω∗)|) E|I(ω∗)|
(∇(ω̃,λ)Φj(ω

∗, λ∗))j /∈I(ω∗) O(n−|I(ω∗)|+r)×|I(ω∗)|

]
also has full column rank. As a consequence, {∇(ω̃,λ)Φj(ω

∗, λ∗)}j /∈I(ω∗) is linearly
independent, as desired. □
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