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Abstract
Strongly motivated from applications in various fields including machine learning, the
methodology of sparse optimization has been developed intensively so far. Especially,
the advancement of algorithms for solving problems with nonsmooth regularizers has
been remarkable. However, those algorithms suppose that weight parameters of reg-
ularizers, called hyperparameters hereafter, are pre-fixed, but it is a crucial matter
how the best hyperparameter should be selected. In this paper, we focus on the hyper-
parameter selection of regularizers related to the �p function with 0 < p ≤ 1 and
apply a bilevel programming strategy, wherein we need to solve a bilevel problem,
whose lower-level problem is nonsmooth, possibly nonconvex and non-Lipschitz.
Recently, for solving a bilevel problem for hyperparameter selection of the pure
�p (0 < p ≤ 1) regularizer Okuno et al. discovered new necessary optimal-
ity conditions, called SB(scaled bilevel)-KKT conditions, and further proposed a
smoothing-type algorithm using a specific smoothing function. However, this opti-
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mality measure is loose in the sense that there could be many points that satisfy the
SB-KKT conditions. In this work, we propose new bilevel KKT conditions, which are
new necessary optimality conditions tighter than the ones proposed by Okuno et al.
Moreover, we propose a unified smoothing approach using smoothing functions that
belong to the Chen-Mangasarian class, and then prove that generated iteration points
accumulate at bilevel KKT points under milder constraint qualifications. Another
contribution is that our approach and analysis are applicable to a wider class of reg-
ularizers. Numerical comparisons demonstrate which smoothing functions work well
for hyperparameter optimization via bilevel optimization approach.

Keywords Hyperparameter learning · Smoothing functions · Bilevel optimization

Mathematics Subject Classification 90C26 · 90C30

1 Introduction

A learning algorithm in machine learning usually involves solving the unconstrained
optimization problem

min
ω∈�n

g(ω) +
r∑

i=1

λi Ri (ω), (1)

where λ = (λ1, . . . , λr ) is called a hyperparameter, whose value is decided prior to
implementation of the algorithm. Here, Ri , g : �n → �, i = 2, . . . , r are twice
continuously differentiable functions, and

R1(ω) :=
n∑

i=1

ψ
(|ωi |p

)
(0 < p ≤ 1), (2)

with ψ satisfying the following assumption:

Assumption (A).ψ : [0,∞) → � is twice continuously differentiable on [0,∞) and
there exist two positive constants α, β such that 0 < ψ

′
(t) ≤ α and −β ≤ ψ

′′
(t) ≤ 0

for all t ∈ [0,∞).

In this manuscript, we make Assumption (A) our blanket assumption on ψ . There
are many penalty functions often used in statistics and signal reconstruction satisfy-
ing Assumption (A) (see Appendix A). It is well-known that the function R1(ω) is
nonsmooth, nonconvex, and even non-Lipschitz when p ∈ (0, 1).

For notation purposes, we denote

G(ω, λ̄) := g(ω) + λ̄T R̄(w),

with λ̄ := (λ2, . . . , λr )
T ∈ �r−1 and R̄ : �n → �r−1 given by R̄(w) :=

(R2(w), . . . , Rr (w))T . Then problem (1) can be rewritten as

min
ω∈�n

G(ω, λ̄) + λ1R1(ω). (3)
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Unified smoothing approach for best hyperparameter… 481

The problem of finding the optimal values of the hyperparameters for (3) can be
accomplished using grid search and Bayesian optimization [2, 27]. This paper, on the
other hand, is devoted to a bilevel optimization strategy to find the best hyperparameter.
In particular, we focus on the bilevel nonsmooth programming problem

min
ω∗

λ,λ
f (ω∗

λ)

s.t ω∗
λ ∈ argmin

ω∈�n
G(ω, λ̄) + λ1R1(ω)

(λ1, λ̄) ∈ �ε ⊂ �r ,

(4)

where f : �n → � is continuously differentiable and

�ε := {(λ1, λ̄) ∈ � × �r−1 : λ1 ≥ ε, λ̄ ≥ 0}, (5)

for some small parameter ε > 0. Problem (3) that appears in the constraint set of (4)
is called the lower-level problem, and the minimization of f is called the upper-level
problem. Note that in the interest of obtaining sparsemodels,we impose a strict positive
lower bound condition for the parameter λ1 corresponding to the sparsity-promoting
regularizer R1.

Bilevel optimization problems were introduced by Bracken and McGill [5]. The
reader is referred to [10, 11, 24] for a survey of methods for solving the bilevel opti-
mization problem as well as their applications. Significant efforts have been put forth
by many researchers in the past few decades to use bilevel optimization strategy to the
problem of finding the best hyperparameter values. In particular, [3, 4] focused on a
bilevel support-vector regression (SVR) problem where the lower-level optimization
problem is cast as a convex quadratic program. The authors in [17, 18] proposed
a bilevel cross-validation program for support-vector machine (SVM), where the
upper-level problem is convex and nonsmooth, while the lower-level problem is differ-
entiable. [20] used gradient-based methods for the bilevel optimization problem with
nonsmooth convex lower-level problem (for example, sparse models based on the �1-
norm). However, [3, 17, 20] only provided algorithms to solve the bilevel optimization,
and theoretical guarantees are not established. [26] formulated the hyperparameter
optimization problem through K -fold cross-validation as a bilevel optimization prob-
lem with LASSO regression and an �1-norm support-vector machine (SVM) in the
lower-level problem. They used parametric programming theory to reformulate the
bilevel optimization problem as a single level problem, which is called the bilevel and
parametric optimization approach to hyperparameter optimization (HY-POP). Simi-
larly, the authors only provided the numerical experiments to show the efficiency of
HY-POP without any theoretical analysis. [16] considered bilevel optimization prob-
lems for variational image denoisingmodels, where the upper-level problem is smooth
while the lower-level problem is the �p regularizer with p = 1

2 , 1, 2. They proposed
semismooth Newton method for solving the bilevel optimization problem including
the �2-norm and the �1-norm. Especially, they only provided numerical experiments
for the � 1

2
-norm and leave the theoretical analysis for nonconvex � 1

2
-norm to future

work. Nevertheless, they showed that the � 1
2
-norm has better denoising performance
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than the �1-norm. Recently, [21] considered the bilevel program (4) with the function
R1(ω) := ‖ω‖p

p = ∑n
i=1|ωi |p (0 < p ≤ 1) (i.e. the �p-regularizer) and ε = 0 by

employing a smoothing method via the twice continuously differentiable function

ϕμ(ω) =
n∑

i=1

(
ω2
i + μ2

) p
2

(6)

as a smooth approximation of R1. Using such a smoothing function, problem (4)
can be approximated by a smooth bilevel program, which then allows for use of
several optimization techniques that normally require differentiability. The authors
established the convergence analysis of their smoothing algorithm when �p-norm is
used with p ∈ (0, 1].

The following are the main theoretical contributions of our present work:

(I) First, we propose bilevel KKT conditions (BKKT conditions for short) for prob-
lem (4), which are new necessary optimality conditions for the relaxation of (4)
obtained by replacing its lower-level optimization problem by the correspond-
ing first order necessary conditions in terms of generalized subdifferentials (see
Sect. 2.1), that is,

min
ω,λ

f (ω)

s.t 0 ∈ ∂ω

(
G(ω, λ̄) + λ1R1(ω)

)

(λ1, λ̄) ∈ �ε.

(7)

Our proposed BKKT conditions are notably tighter than the scaled bilevel KKT
conditions (SB-KKT conditions for short) discovered in [21]. As a special case,
when p = 1 and the functions f , g and Ri (i = 1, . . . , r ) are all convex functions,
the proposed BKKT conditions are necessary optimality conditions for the original
bilevel problem (4).

(II) Second, we consider a general framework for constructing smoothing functions
for R1 given by (2), where the associated ψ is any function that satisfies Assump-
tion (A) and the absolute value mapping is smoothly approximated by a function
generated via density functions, as inspired by the smoothing technique for plus
functions by Chen and Mangasarian [7]. Based on this approach, we propose a
smoothing algorithm and prove its convergence to BKKT points by utilizing only
some information on the generating density function. That is, we do not rely on a
specific formula of a smoothing function, and therefore our framework provides
a unified theory for a class of smoothing algorithms for (4). Indeed, one novelty
of this work is our unified convergence analysis that solely depends on density
functions. Along with these, we only suppose weaker algorithmic assumptions
and constraint qualifications, as opposed to the specific model and algorithm con-
sidered in [21]. Finally, in connection with contribution (I) described above, we
obtain stronger results since we establish convergence to BKKT points, which are
tighter necessary conditions than SB-KKT conditions.

The SB-KKT conditions proposed in [21] for problem (7) with ε = 0 are more
loose than our proposed BKKT conditions as mentioned in (I). Consequently, we
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provide a better optimality measure for the relaxation (7) of the bilevel program (4).
In fact, when p = 1, the SB-KKT conditions proposed in [21] are not even necessary
conditions for the relaxed problem (7), but for another relaxation which has a larger
feasible region (see model (12) and Proposition 3.1). Hence, our proposed BKKT
conditions provide a significant improvement over the prior work.

Moreover, under an appropriate assumption on the algorithm iterates (see Remark
3), our convergence analysis significantly generalizes the existing technique of [21]
that only holds for the case when ε = 0,ψ(t) ≡ t , and the function ϕμ in (6) is used to
smoothly approximate the �p norm in (4). In the said work, the formula of the smooth-
ing function (6) was fully exploited to derive important inequalities that are specific
to (6). The specific formula of (6) was also exhaustively utilized to obtain fundamen-
tal lemmas for establishing global subsequential convergence (see, for instance, [21,
Lemma 7, Proposition 8, and the proof of Theorem 5]). Indeed, the lines of arguments
used to establish the aforementioned results are only applicable to the chosen smooth-
ing function (6). It should be noted that extension to a wider class of regularizers R1
given by (2) with an arbitrary smooth approximation of the absolute value function is
not trivial and requires more subtle arguments. To this end, the present work provides
a unified analysis that derives alternative fundamental lemmas and properties. This
is achieved using arguments that do not rely on the specific formula of a smoothing
function but rather only on certain analytic properties of a density function generating
the smoothing function. In turn, other important contributions of our work involve the
flexibility of our algorithm concerning the smoothing functions used and its applica-
bility to a considerably wider class of regularizers for the hyperparameter optimization
problem. Compared to [21], our algorithm comes with convergence guarantees under
less restrictive constraint qualifications andweaker algorithmic assumptions, allwithin
the framework of the unified analysis.

From a practical point of view, the choice of smoothing functions is critical in
achieving successful simulations with fast convergence. We compare the numeri-
cal performance of six smoothing functions generated via Chen and Mangasarian’s
method [7] to determine which function is more suitable for our smoothing approach.
Our proposed algorithm involves the use of a semismooth Newton method to solve a
sequence of bilevel KKT systems, thereby significantly improving upon themethodol-
ogy proposed in [21].As a result, one significant finding fromour numerical experience
indicates that some smoothing functions result to a faster algorithm that achieves sparse
modelswith lower validation and test errors. Consequently, this gives insights onwhich
smoothing function can work well with the proposed strategy.

This paper is organized as follows: In Sect. 2, we review some fundamental concepts
in analysis and a brief review of the method for constructing smoothing functions of
the plus function by means of density functions, which was proposed in [7]. This
will serve as our basis to construct smoothing functions for R1(ω), and our theoretical
analysis will all be dependent on the density function. In Sect. 3, we recall the SB-KKT
conditions introduced in [21], and then propose our BKKT conditions. In Sect. 4, we
present our smoothing algorithm along with its convergence analysis. In Sect. 5, we
compare the numerical performance of different smoothing functions generated from
different density functions in solving (4).
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Throughout this paper, we denote the vector ω ∈ �n by ω = (ω1, . . . , ωn)
T . We

let |ω| := (|ω1|, . . . , |ωn|)T , and |ω|p := (|ω1|p, . . . , |ωn|p)T . We define I (ω) :=
{ j ∈ {1, 2, . . . , n} | ω j = 0} for any ω ∈ �n . The Hadamard product of two vectors
ω ∈ �n and ω̆ ∈ �n is denoted by ω 
 ω̆ := (ω1ω̆1, . . . , ωnω̆n)

T . We define the
sgn function as sgn(t) = 1 if t > 0, sgn(t) = 0 if t = 0, and sgn(t) = −1 if t < 0.
For a differentiable function f : �n → �, we denote the gradient of f by ∇ f with
∇ f (ω) := (

∂ f (ω)
∂ω1

, . . . ,
∂ f (ω)
∂ωn

)T ∈ �n . If f is twice differentiable, we denote the

Hessian of f by ∇2 f with ∇2 f (ω) :=
(

∂2 f (ω)
∂ωi ∂ω j

)

1≤i, j≤n
∈ �n×n .

2 Preliminaries

We review some important concepts in nonsmooth analysis. We also recall the method
of Chen and Mangasarian to construct smoothing functions for the plus function, and
discuss how to use this to obtain a smoothing function for the absolute value function.

2.1 Some concepts in analysis

The following facts can be found in Rockafellar and Wets [22].

Definition 2.1 [22, Definition 8.3] Let f : �n → � ∪ {∞} be a proper function. For
vectors v ∈ �n and x̄ ∈ �n , one say that

1. v is a regular subgradient of f at x̄ , written v ∈ ∂̂ f (x̄), if

f (x) ≥ f (x̄) + vT (x − x̄) + o(‖x − x̄‖).

2. v is a general subgradient of f at x̄ , written v ∈ ∂ f (x̄), if there are sequences
{xν} ⊆ �n and {vν} ⊆ �n such that

lim
ν→∞ xν = x̄ and vν ∈ ∂̂ f (xν) with lim

ν→∞ vν = v.

Note that a regular subgradient of f at x̄ is also called a Fréchet subgradient of f at
x̄ (see in [15]). Moreover, if f is a proper and convex function, the regular subgradient
of f coincides with the subgradient of f in the sense of convex analysis (see in [22,
Proposition 8.12]).

Proposition 2.1 [22, Theorem 8.6] For a function f : �n → � ∪ {∞} and a point x̄
where f is finite, the subgradient sets ∂̂ f (x̄) and ∂ f (x̄) are closed, with ∂̂ f (x̄) convex
and ∂̂ f (x̄) ⊂ ∂ f (x̄).

Proposition 2.2 [22, Theorem 10.1] If a proper function f : �n → � ∪ {∞} has a
local minimum at x̄ , then 0 ∈ ∂̂ f (x̄) ⊂ ∂ f (x̄).
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2.2 Smoothing functions of |x| via density functions

We recall the general definition of a smoothing function.

Definition 2.2 [6, Definition 1] Let h : �n → � be a continuous function. We say
that φ : �++ × �n → � is a smoothing function of h if it satisfies the following:

(i) φ(μ, ·) is continuously differentiable for any μ > 0;
(ii) lim

w→z,μ↓0φ(μ,w) = h(z) for any z ∈ �n .

To construct a smoothing function for the absolute value function, we briefly recall
from [6, 7] that the plus function (x)+ = max{x, 0} for x ∈ � can be smoothly
approximated by

φ̂(μ, x) =
∫ +∞

−∞
(x − t)+ t̂(μ, t)dt =

∫ x

−∞
(x − t)t̂(μ, t)dt, (8)

where t̂(μ, t) := 1
μ
ρ
(

t
μ

)
, and ρ : � → �+ is a piecewise continuous density

function1 that satisfies

ρ(x) = ρ(−x) and κ :=
∫ +∞

−∞
|x |ρ(x)dx < +∞. (9)

Using the fact that |x | = (x)+ + (−x)+, we obtain a smoothing function for the
absolute value function as follows:

φ(μ, x) := φ̂(μ, x) + φ̂(μ,−x) =
∫ +∞

−∞
|x − t |t̂(μ, t)dt . (10)

Analogous to [7, Proposition 2.2], we have the following properties of φ(μ, x).

Proposition 2.3 Suppose that φ(μ, x) is defined as in (10). Then, for a fixed μ > 0,
we have

(a) φ(μ, ·) is continuously differentiable.
(b) 0 ≤ φ(μ, x) − |x | ≤ κμ for all x ∈ � and μ > 0, where the constant κ > 0 is

defined in (9).
(c) φ′(μ, x) is bounded satisfying −1 ≤ φ′(μ, x) ≤ 1 for all x ∈ �, μ > 0.

From Proposition 2.3, given any sequence {(xk, μk)} ⊂ �×�++ such that xk → x ∈
� and μk ↓ 0, we have

lim
k→∞ φ(μk, x

k) = |x | ∀x ∈ �,

and
lim
k→∞ φ′(μk, x

k) = sgn(x) ∀x �= 0. (11)

1 That is, ρ is a nonnegative function whose integral over � is 1. Consequently, it is easy to see that
t̂(μ, x) → δ(x) as μ → 0 for all x ∈ �, where δ is the Dirac delta function provided that ρ(0) > 0.
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We also have from Proposition 2.3(c) that subsequential limits of the sequence of
{φ′(μk, xk)} exist and belong to [−1, 1].

3 Necessary conditions

Using Proposition 2.2, the first-order optimality condition for the lower-level problem
(3) is given by

0 ∈ ∂ω(G(ω∗, λ̄) + λ1R1(ω
∗)),

where ∂ω(G(ω∗, λ̄) + λ1R1(ω
∗)) is the general subgradient with respect to ω of

G(ω, λ̄) + λ1R1(ω) at ω∗. Then problem (4) can be transformed into the one-level
problem given in (7).

3.1 Scaled bilevel KKT conditions

In [21], a smooth version of (7) with R1(ω) = ‖ω‖p
p was presented by replacing its

lower-level problemby the scaled first-order necessary condition,whichwas originally
introduced by Chen, Xu and Ye [8] for non-Lipschitz continuous functions. Since the
function G(ω, λ̄) + λ1‖ω‖p

p may be non-Lipschitz, the scaled first-order necessary
condition for the lower-level problem (3) proposed in [21], as adapted from [8], can
be extended to our setting with R1 given by (2), as in Definition 3.1. In particular,
when ψ(t) ≡ t , the following definition reduces to the scaled first-order necessary
condition given in [21].

Definition 3.1 We say that ω∗ satisfies the scaled first-order necessary condition of
(3) if

W∗∇ωG(ω∗, λ̄) + pλ1|W∗|pψ ′(|ω∗|p) = 0,

where W∗ := diag(ω∗), |W∗|p := diag(|ω∗|p), and
ψ ′(|ω∗|p) := (ψ ′(|ω∗

1 |p), ψ ′(|ω∗
2|p), . . . , ψ ′(|ω∗

n|p))T .

Using this scaled first-order necessary condition, one can obtain the following one-
level problem:

min
ω,λ

f (ω)

s.t W∇ωG(ω, λ̄) + pλ1|W |pψ ′(|ω|p) = 0
λ ∈ �ε,

(12)

where W := diag(ω), |W |p := diag(|ω|p), and
ψ ′(|ω|p) := (ψ ′(|ω1|p), ψ ′(|ω2|p), . . . , ψ ′(|ωn|p))T .

Though this problem looks different from (7), the following proposition2 indicates
that the problems are indeed identical when p ∈ (0, 1). However, when p = 1, the
feasible region of problem (7) is contained in that of (12).

2 The proof is analogous to [21, Lemma 3].
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Proposition 3.1 For ω ∈ �n and λ ∈ �r+, if 0 ∈ ∂ω(G(ω, λ̄) + λ1R1(ω)), then
W∇ωG(ω, λ̄) + pλ1|W |pψ ′(|ω|p) = 0. In particular, when p < 1, the converse is
also true.

Based on this scaling, one can extend the scaled bilevel KKT (SB-KKT) conditions
proposed in [21] to our general setting of (4) as in the following definition.

Definition 3.2 Wesay that (ω∗, λ∗) ∈ �n×�r is a scaled bilevelKarush-Kuhn-Tucker
(SB-KKT) point for problem (4) if there exists a pair of vectors (ζ ∗, η∗) ∈ �n × �r

such that

W 2∗ ∇ f (ω∗) + H(ω∗, λ∗)ζ ∗ = 0, (13)

W∗∇ωG(ω∗, λ̄∗) + pλ∗
1|W∗|pψ ′(|ω∗|p) = 0, (14)

p
∑

j /∈I (ω∗) sgn(ω
∗
j )|ω∗

j |p−1ψ ′(|ω∗
j |p)ζ ∗

j = η∗
1, (15)

ζ ∗
j = 0 ( j ∈ I (ω∗)), (16)

∇R j (ω
∗)T ζ ∗ − η∗

j = 0 ( j = 2, 3, . . . , r), (17)

λ∗ − εe1 ≥ 0, η∗ ≥ 0, (λ∗ − εe1)T η∗ = 0, (18)

where W∗ := diag(ω∗), and e1 = (1, 0, . . . , 0)T ∈ �r . Here, we write

H(ω, λ) = W 2∇2
ωωG(ω, λ̄) + λ1 p(p − 1)diag(|W |pψ ′(|ω|p))

+λ1 p
2diag(|W |2pψ ′′(|ω|p))

with W := diag(ω), |W |p := diag(|ω|p), and |W |2p := diag(|ω|2p) for ω ∈ �n and
λ ∈ �r .

The SB-KKT conditions are necessary optimality conditions for problem (12) as
asserted in the following result, whose proof is essentially similar to [21, Theorem 2].

Proposition 3.2 Let (ω∗, λ∗) ∈ �n × �r be a local optimum of (12). Then, (ω∗, λ∗)
together with some pair of vectors (ζ ∗, η∗) ∈ �n×�r satisfies the SB-KKT conditions
(13)–(18) under an appropriate constraint qualification concerning the constraints
∂G(ω,λ̄)

∂ω j
+ psgn(ω j )λ1|ω j |p−1ψ ′(|ω j |p) = 0 ( j /∈ I (ω∗)), ω j = 0 ( j ∈ I (ω∗)), and

λ ∈ �ε .

3.2 Bilevel KKT conditions

An immediate consequence of Propositions 3.1 and 3.2 is that when p ∈ (0, 1), a local
optimumof the one-level problem (7) satisfies the SB-KKT conditions under appropri-
ate constraint qualifications. However, one main drawback of the SB-KKT conditions
presented in the preceding section is that the process of “scaling” enlarges the feasible
region of the relaxed one-level problem (7) when p = 1. In the following definition,
we propose an alternative necessary condition which avoids the multiplication by W
and W 2 as defined in Definition 3.2.
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Definition 3.3 We say that (ω∗, λ∗) ∈ �n ×�r is a bilevel Karush-Kuhn-Tucker point
(BKKT point) for problem (4) if there exists (ζ ∗, η∗) ∈ �n × �r such that

∇ω̃ f (ω∗) + H̃(ω∗, λ∗)ζ̃ ∗ = 0, (19)

∇ω̃G(ω∗, λ̄∗) + pλ∗
1ψ

′(|ω̃∗|p) 
 |ω̃∗|p−1 
 sgn(ω̃∗) = 0, (20)

ζ̆ ∗ = 0 , (21)

p
(
ψ ′(|ω̃∗|p) 
 |ω̃∗|p−1 
 sgn(ω̃∗)

)T
ζ̃ ∗ = η∗

1, (22)

∇ω̃ R̄(ω∗)T ζ̃ ∗ − η̄∗ = 0, (23)

λ∗ − εe1 ≥ 0, η∗ ≥ 0, (λ∗ − εe1)T η∗ = 0, (24)

where η̄∗ = (η∗
2, . . . , η

∗
r ),

H̃(ω, λ) := ∇2
ω̃ω̃

G(ω, λ̄) + λ1 p(p − 1)|W̃ |p−2ψ ′(|ω̃|p) + p2λ1|W̃ |2p−2ψ ′′(|ω̃|p),
|W̃ | := diag(|ω̃|), ω̃∗ := (ω∗

i )i /∈I (ω∗),

ω̆∗ := (ω∗
i )i∈I (ω∗), ζ̃ ∗ := (ζ ∗

i )i /∈I (ω∗), ζ̆ ∗ := (ζ ∗
i )i∈I (ω∗).

We show in the following propositions that the proposed bilevel KKT conditions in
Definition 3.3 are necessary conditions for the one-level relaxation (7) of the original
bilevel problem (4). In other words, the scaling used in the preceding section, as
extended from the prior work [21], is not needed.

Proposition 3.3 Let p ∈ (0, 1) and (ω∗, λ∗) ∈ �n × �r be a local optimum of
(7). Then, (ω∗, λ∗) is a BKKT point under an appropriate constraint qualification

concerning the constraints ∂G(ω,λ̄)
∂ω j

+psgn(ω j )λ1|ω j |p−1ψ ′(|ω j |p) = 0 ( j /∈ I (ω∗)),
ω j = 0 ( j ∈ I (ω∗)), and λ ∈ �ε .

Proof Let (ω∗, λ∗) ∈ �n × �r be a local minimum of (7), and consider the problem

min
ω,λ

f (ω)

s.t ∇ω̃G(ω, λ̄) + pλ1ψ ′(|ω̃|p) 
 |ω̃|p−1 
 sgn(ω̃) = 0,
ω̆ = 0,
λ ∈ �ε,

(25)

where ω̃ = (ωi )i /∈I (ω∗) and ω̆ = (ωi )i∈I (ω∗).Weclaim that (ω∗, λ∗) is a localminimum
of (25). It is clear that (ω∗, λ∗) is feasible to (25). Let (ω, λ) be a feasible point of
(25) in some sufficiently small neighborhood of (ω∗, λ∗) so that ω̃ �= 0. Then with the
first equality constraint in (25) together with the fact that ∂ω̆

(
G(ω, λ̄) + λ1R1(ω)

) =
�|I (ω∗)|, it immediately follows that 0 ∈ ∂ω(G(ω, λ̄)+λ1R1(ω)), and therefore (ω, λ)

belongs to the feasible region of (7). Using the fact that (ω∗, λ∗) is a local minimum
of (7), we indeed obtain that (ω∗, λ∗) is a local minimum of (25). Hence, there exist
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Lagrange multipliers (ζ̂ (1), ζ̂ (2), η̂) ∈ �n−|I (ω∗)| × �|I (ω∗)| × �r such that

⎡

⎢⎢⎣

∇ω̃ f (ω∗)
∇ω̆ f (ω∗)

0
0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

H̃(ω∗, λ̄∗) 0
∇2

ω̆ω̃
G(ω∗, λ̄∗) I

pψ ′(|ω̃∗|p) 
 |ω̃∗|p−1 
 sgn(ω̃∗) 0
∇ω̃ R̄(ω∗)T 0

⎤

⎥⎥⎦

[
ζ̂ (1)

ζ̂ (2)

]
−

⎡

⎢⎢⎣

0
0
η̂1¯̂η

⎤

⎥⎥⎦ = 0,

∇ω̃G(ω∗, λ̄)∗ + pλ∗
1ψ

′(|ω̃∗|p) 
 |ω̃∗|p−1 
 sgn(ω̃∗) = 0,

λ∗ − εe1 ≥ 0, η∗ ≥ 0, (λ∗ − εe1)
T η∗ = 0,

where ¯̂η = (η̂2, η̂3, . . . , η̂r )
T . Taking η∗ = η̂ and setting ζ ∗ ∈ �n such that ζ ∗

i = ζ̂
(1)
i

for i /∈ I (ω∗) and ζ ∗
i = 0 for i ∈ I (ω∗), one can easily check that all the conditions

(19)–(24) are satisfied. ��
For the case p = 1, we obtain a similar result provided that the feasibility condition

‖∇ω̆G(ω∗, λ̄∗)‖∞ < λ∗
1ψ

′(0) (26)

holds, where ω̆ = (ωi )i∈I (ω∗). We note that this is equivalent to saying that
− 1

λ∗
1

∂G
∂ωi

(ω∗, λ̄∗) belongs to the interior of the subdifferential set ∂ψ(|t |)|t=0 for all

i ∈ I (ω∗). This condition is used in the convergence analysis of the smoothing algo-
rithm in [21], but its connection with the necessary conditions for solutions of (7) was
not explored. This precise connection is revealed in the following proposition.

Proposition 3.4 Let p = 1 and (ω∗, λ∗) ∈ �n × �r be a local optimum of (7)
that satisfies (26). Then, (ω∗, λ∗) is a BKKT point under an appropriate constraint

qualification concerning the constraints ∂G(ω,λ̄)
∂ω j

+ psgn(ω j )λ1|ω j |p−1ψ ′(|ω j |p) =
0 ( j /∈ I (ω∗)), ω j = 0 ( j ∈ I (ω∗)), and λ ∈ �ε .

Proof We consider a problem similar to (25) but with (26) as an added inequality
constraint, that is,

min
ω,λ

f (ω)

s.t ∇ω̃G(ω, λ̄) + λ1ψ
′(|ω̃|) 
 sgn(ω̃) = 0,

ω̆ = 0,
λ ∈ �ε

‖∇ω̆G(ω, λ̄)‖∞ < λ1ψ
′(0),

(27)

where ω̃ = (ωi )i /∈I (ω∗) and ω̆ = (ωi )i∈I (ω∗). Note that ‖∇ω̆G(ω, λ̄)‖∞ < λ1ψ
′(0)

is a non-binding inequality constraint of (27). Hence, following the proof of Proposi-
tion 3.3, it suffices to show that (ω∗, λ∗) is feasible to (27) and that the feasible region
of (27) is contained in that of (7). The former is clear due to our hypothesis. To show
the inclusion of the feasible regions, let (ω, λ) be a feasible point of (27). If i ∈ I (ω∗),
then ωi = 0, which together with (26) implies that 0 ∈ ∂ωi (G(ω, λ̄) + λ1R1(ω)). If
i /∈ I (ω∗) andωi �= 0, it is clear that 0 ∈ ∂ωi (G(ω, λ̄)+λ1R1(ω)) from the first equal-
ity constraint in (27). On the other hand, if i /∈ I (ω∗) but ωi = 0, we also have from
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the first equality constraint in (27) that ∂G(w, λ̄)/∂ωi = 0. Since 0 ∈ ∂ψ(|t |)|t=0,
we again have 0 ∈ ∂ωi (G(ω, λ̄) + λ1R1(ω)). This completes the proof. ��
Remark 1 We make some comments about the case p = 1.

(a) For this case,we always need to assume that a candidate bilevelKKTpoint (ω∗, λ∗)
satisfies inequality (26). This will also be the standing assumption for our subse-
quent analysis when dealing with the case of p = 1, as we shall see in the next
section.

(b) Note that if g and R j , j = 2, . . . , r are convex functions, thenwe obtain a stronger
result that the bilevel KKT conditions are necessary conditions for the original
bilevel problem (4) under appropriate constraint qualifications, rather than just
necessary conditions for the relaxed problem (7), which is the situation when
p ∈ (0, 1) (even if the functions g and R j are all convex). Hence, in this case,
bilevel KKT points are indeed candidate solutions to the bilevel problem (4).

4 Proposed algorithm and its convergence

In this section, we describe our smoothing algorithm for (4) and present our conver-
gence results.

4.1 Smoothing approach and the algorithm

One main source of difficulty in solving the bilevel program (4) is the nonsmooth,
nonconvex and possibly non-Lipschitz component R1(ω) = ∑n

i=1 ψ(|ωi |p), where
p ∈ (0, 1]. To overcome this, we apply the smoothing technique to R1 with the
smoothing function φ defined in the previous section, yielding the following smooth
approximation:

ϕμ(ω) :=
n∑

j=1

ψ
([φ(μ,ω j )]p

)
. (28)

Then, as in [21], we consider problem(4) with ϕμ in place of R1, and further replace
the obtained smoothed lower-level problem with its first-order condition. Hence, the
following problem is obtained:

min
ω,λ

f (ω)

s.t ∇ωG(ω, λ̄) + λ1∇ϕμ(ω) = 0
λ ∈ �ε.

(29)

Next, we suppose that ϕμ is twice continuously differentiable from this moment,
and we also recall Assumption (A) together with our differentiability assumptions on
Ri (i = 2, . . . , r ) and g. These properties enable us to consider the KKT conditions.3

3 Without the C2 property of ϕμ, the KKT conditions cannot be considered because the constraint function
∇ωG(ω, λ̄) + λ1∇ϕμ(ω) may not necessarily be smooth.

123



Unified smoothing approach for best hyperparameter… 491

By virtue of this fact, we can find candidate solutions to (29) by looking at its KKT
points.

In fact, it is sufficient to obtain approximate KKT points: Given a parameter ε̂ > 0,
we define an ε̂-approximate KKT point for problem (29) as follows: We say that
{(ω, λ, ζ, η)} ⊆ �n × �r × �n × �r is an ε̂-approximate KKT point for (29) if there
exists a vector ε̂ = (ε1, ε2, ε3, ε4, ε5) ∈ �n × � × �r−1 × �n × � such that

∇ f (ω) + (∇2
ωωG(ω, λ̄) + λ1∇2ϕμ(ω))ζ = ε1, (30)

∇ϕμ(ω)T ζ − η1 = ε2, (31)

∇R j (ω)T ζ − η j = (ε3) j−1 ( j = 2, 3, . . . , r), (32)

∇ωG(ω, λ̄) + λ1∇ϕμ(ω) = ε4, (33)

λ − εe1 ≥ 0, η ≥ 0, (λ − εe1)T η = ε5, (34)

and
‖(εT1 , εT2 , εT3 , εT4 , εT5 )T ‖ ≤ ε̂,

where ∇2
ωωG(ω, λ̄) is the Hessian of G with respect to ω. Note that when ε̂ = 0, an

ε̂-approximate KKT point is identical to a KKT point.

Now, by iteratively computing an ε̂-approximate KKT point while decreasing ε̂

and the smoothing parameter μ, we obtain the smoothing algorithm presented in
Algorithm 1.

Algorithm 1 (A smoothing method for nonsmooth bilevel optimization)
Step 0 Choose μ0 > 0, β1, β2 ∈ (0, 1) and ε̂0 ≥ 0. Set k := 0.
Step 1 Find an ε̂k -approximate KKT point {(ωk+1, λk+1, ζ k+1, ηk+1)} for problem (29) with μ = μk .
Step 2 Set μk+1 = β1μk , ε̂k+1 = β2ε̂k and k := k + 1.

Algorithm1 is quite similar to the one proposed by Okuno et al [21]. However,
whereas Okuno et al supposed to employ only

∑n
i=1(ω

2
i + μ2)

p
2 as the smoothing

function ϕμ, Algorithm1 enjoys much more freedom in the choice of smoothing
functions, as well as penalty functions ψ .

In our convergence analysis, we assume that at every iteration, an ε̂k-approximate
KKT point can always be computed. In order to establish the global convergence of
Algorithm1, we will require some more properties of the density function ρ used for
constructing the smoothing function φ, such as properties that will guarantee that ϕμ

is C2 as supposed above.
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4.2 Convergence analysis

4.2.1 Assumptions on density function

We have mentioned in the Introduction that the setting of all our analysis is based
on density functions. That is, we wish to prove all our convergence results by solely
looking at density functions used to induce the smoothing functions. To this end,
we must be able to identify necessary properties of a given density function so that
Algorithm 1 converges to a candidate solution of the main problem (4). Indeed, one
novelty of our work is precisely the identification of these required properties and its
application to the convergence analysis.

We summarize necessary assumptions on the density function ρ that we will use in
the next subsection.

Assumption (B). Let ρ : � → �+ be a density function. Then, the following prop-
erties hold:

(B1) ρ is symmetric, i.e. ρ(x) = ρ(−x) for all x ∈ �.
(B2) ρ is continuous and nonincreasing on [0,∞).
(B3) There exist positive constants c, r > 0 such that

2

S∫

0

ρ(x) dx ≥ 1 − c

Sr + c
for all S ≥ 0.

(B4) If p = 1, we have ρ(x) > 0 for all x ∈ �.

Some remarks are in order: First, although Assumption (B1) was already supposed
in Sect. 2.2, we have restated it for later use. Under this assumption, note that the
smoothing function φ(μ, x) is strictly positive for all μ > 0 and x ∈ �. Indeed, we
already have from Proposition 2.3(b) that φ(μ, x) > 0 for x �= 0. On the other hand,
since ρ is a symmetric density function by Assumption (B1), then ρ is not identical
to the zero function on the interval [0,∞). Consequently,

∫ +∞
0 tρ(t)dt > 0, which

together with (8) and (10) yields φ(μ, 0) > 0. Moreover, we can easily calculate the
first and second derivatives of the induced φ(μ, x) as

φ′(μ, x) = 2sgn(x)
∫ |x |

0

1

μ
ρ

(
t

μ

)
dt = 2sgn(x)

∫ |x |
μ

0
ρ(t) dt, (35)

and

φ′′(μ, x) = 2

μ
ρ

(
x

μ

)
, (36)

respectively. From Eq. (36) and strict positivity of φ(μ, x), we see that φ(μ, ·) is twice
continuously differentiable approximation of |x | by the continuity assumption in (B2).

Assumptions (B1) and (B2) will also have other important roles in the proofs of
our main result. Among them are formulas for the limits of {(∇ϕμk−1(ω

k)) j } and
{(∇2ϕμk−1(ω

k)) j j } when j /∈ I (ω∗), where ϕμ is the smooth function given by (28).
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First, with simple calculations, the components of ∇ϕμ(ω) ∈ �n are given by

(∇ϕμ(ω)) j = pψ ′ ([φ(μ,ω j )]p
)
φ′(μ, ω j )[φ(μ,ω j )]p−1, (37)

while ∇2ϕμ(ω) ∈ �n×n is a diagonal matrix whose diagonal entries are given by

(∇2ϕμ(ω)) j j = p2ψ ′′ ([φ(μ,ω j )]p
) [φ′(μ, ω j )[φ(μ,ω j )]p−1]2

+ p(p − 1)ψ ′ ([φ(μ,ω j )]p
) [φ′(μ, ω j )]2[φ(μ,ω j )]p−2

+ pψ ′ ([φ(μ,ω j )]p
) [φ(μ,ω j )]p−1φ′′(μ, ω j ), (38)

for j = 1, . . . , n. Since φ(μ, x) is strictly positive under Assumption (B1), the factor
[φ(μ,ω j )]p−1 that appears in (37) and (38) is real-valued for any p ∈ (0, 1]. In
addition, it is clear from (38) that the components of the Hessian of ϕμ are continuous
by using Assumption (A), Eq. (36), and Assumptions (B1)-(B2).

We now list some important formulas that will be useful in our subsequent analysis.

Lemma 4.1 Suppose that Assumptions (B1)-(B2) hold. Let {(ωk, μk−1)} ⊆ �n ×�++
be an arbitrary sequence converging to (ω∗, 0). Then for j /∈ I (ω∗), we have

lim
k→∞(∇ϕμk−1(ω

k)) j = psgn(ω∗
j )|ω∗

j |p−1ψ ′ (|ω∗
j |p
)

, (39)

lim
k→∞(∇2ϕμk−1(ω

k)) j j = p2ψ ′′ (|ω∗
j |p
)

|ω∗
j |2p−2 + p(p − 1)ψ ′ (|ω∗

j |p
)

|ω∗
j |p−2.

(40)

Proof Let j /∈ I (ω∗). We have from (11) that

lim
k→∞ φ′(μk−1, ω

k
j ) = sgn(ω∗

j ).

Since φ(μ, x) is a smoothing function of |x | that is strictly positive by Assump-
tion (B1), we have [φ(μk−1, ω

k
j )]p−1 → |ω∗

j |p−1 as k → ∞. Moreover, since ψ is

C2 by Assumption (A), then we easily obtain (39) by letting k → ∞ in Eq. (37) with
ω = ωk and μ = μk−1.

For Eq. (40), we first show that limk→∞ φ′′(μk−1, ω
k
j ) = 0, which by (36) is

equivalent to showing that

lim
k→∞

1

μk−1
ρ

(
ωk

j

μk−1

)
= lim

k→∞
1

μk−1
ρ

( |ωk
j |

μk−1

)
= 0. (41)

Since j /∈ I (ω∗), then |ω∗
j |/2 < |ωk

j | for all k sufficiently large. Thus,

0 ≤ 1

μk−1
ρ

(
ωk

j

μk−1

)
≤ 1

μk−1
ρ

(
ω∗

j

2μk−1

)
→ δ(ω∗

j/2) = 0 as k → ∞,
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by invoking Assumptions (B1)-(B2) and the definition of the Dirac delta function.
This proves (41). Finally, taking the limit in (38) when k → ∞, we obtain

lim
k→∞(∇2ϕμk−1(ω

k)) j j

= p2ψ ′′ (|ω∗
j |p
)

[sgn(ω∗
j )|ω∗

j |p−1]2 + p(p − 1)ψ ′ (|ω∗
j |p
)

[sgn(ω∗
j )]2|ω∗

j |p−2

= p2ψ ′′ (|ω∗
j |p
)

|ω∗
j |2p−2 + p(p − 1)ψ ′ (|ω∗

j |p
)

|ω∗
j |p−2.

This completes the proof of the lemma. ��
On the other hand, the other technical assumption on ρ, namely (B3), is important

in our subsequent analysis. Without knowing definitively the formula for φ(μ, x), the
analysis becomes extremely difficult. In particular, if ωk = (ωk

1, . . . , ω
k
n) and μk−1

are generated from Algorithm 1, it is challenging to understand the behavior of the

sequence
{
Skj

}
, where

Skj := |ωk
j |

μk−1
, (42)

when ωk
j → 0 as k → ∞ for some j ∈ {1, . . . , n}. Nonetheless, this problem can be

addressed thanks to the simple assumption (B3). Finally, Assumption (B4) will later
be important in proving the unboundedness of the sequence

{|∇2ϕμk−1(ω
k)) j j |

}
when

p = 1 and ωk
j → 0 as k → ∞. Interestingly, we shall see shortly that (B4) is not

needed for the case p ∈ (0, 1).
In the forthcoming discussions, wewill see in great detail how these assumptions on

ρ will play a central role in establishing the main convergence result. In Appendix B,
we provide some specific examples of density functions satisfying Assumption (B).

4.2.2 Subsequential convergence

We now prove our main result that accumulation points of the sequence generated
by Algorithm 1 are in fact bilevel KKT points (see Definition 3.3), which in turn
are candidate solutions for (7) when p < 1, and candidate solutions for the original
bilevel problem (4). As mentioned in Remark 1, we will assume that for any given
accumulation point of such sequence generated by Algorithm 1, the inequality (26)
holds when p = 1.

Theorem 4.1 Let p ∈ (0, 1] and assume that (ω∗, λ∗, ζ ∗, η∗) is an accumulation point
of a sequence {(ωk, λk, ζ k, ηk)} generated by Algorithm 1. Then (ω∗, λ∗) is a bilevel
KKT point for the original problem (4) provided that Assumptions (A) and (B) hold.

To prove Theorem 4.1, we show that (ω∗, λ∗, ζ ∗, η∗) satisfies Eqs. (19)–(24).
To this end, we prove a series of lemmas, and in particular, we do the following:

(i) Prove that {Skj }k∈K is bounded, where Skj is given by (42), j ∈ I (ω∗), K ⊂
{1, 2, . . . , } such that (ωk, λk) → (ω∗, λ∗) as k ∈ K → ∞ and {(ωk, λk)} is
generated by Algorithm 1;
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(ii) Using the boundedness of {Skj }k∈K , we compute the limit of the sequence{
(∇2ϕμk−1(ω

k)) j j
}
k∈K , where j ∈ I (ω∗) and the index set K is as described

in (i);
(iii) Using (ii) and Lemma 4.1, we show that ζ̆ ∗ = 0 and equation (22) holds.

The above objectives are formally stated and proved, respectively, in Lemma 4.2 to
Lemma 4.4. We will prove these results without knowledge of the exact formula for
the smoothing function φ(μ, x) used to construct ϕμ given by (28), that is, only using
Assumption (B) on the density function.

To facilitate our subsequent analysis, we note here that a sequence {(ωk , λk, ζ k, ηk)}
generated by Algorithm 1 satisfies

∇ f (ωk) + (∇2
ωωG(ωk, λ̄k) + λk1∇2ϕμk−1(ω

k))ζ k = εk−1
1 , (43)

∇ϕμk−1(ω
k)T ζ k − ηk1 = εk−1

2 , (44)

∇R j (ω
k)T ζ k − ηkj = (εk−1

3 ) j−1 ( j = 2, 3, . . . , r), (45)

∇ωG(ωk, λ̄k) + λk1∇ϕμk−1(ω
k) = εk−1

4 , (46)

λk − εe1 ≥ 0, ηk ≥ 0, (λk − εe1)T ηk = εk−1
5 , (47)

for all k.

In [21], the authors proved that when ψ(t) = t and φ(μ, x) = √
x2 + μ2 and

under Assumptions (B1)-(B3), there exists some γ > 0 such that

μ2
k−1 ≥ γ |ωk

j |
2

2−p ( j ∈ I (ω∗)) (48)

for all sufficiently large k ∈ K , where K is the subsequence described in (i). This result
is especially important in proving results related to (ii)-(iii) above. However, in order
to derive inequality (48), [21] takes advantage of the specific function φ(μ, x) chosen,
which is not the case in the present work. Nevertheless, we have found out that such
a strong result is not necessarily required to prove (ii)-(iii). In particular, it suffices to
establish (i), which is indeed a weaker property. To this end, Assumption (B3) will
play a very significant role without which the analysis becomes extremely difficult.

We now prove our first lemma which establishes property (i).

Lemma 4.2 Suppose that Assumptions (B1)-(B3) hold. Let (ω∗, λ∗) be an arbitrary
accumulation point of the sequence {(ωk, λk)} generated by Algorithm 1, and let
{(ωk, λk)}k∈K be an arbitrary subsequence converging to (ω∗, λ∗). For any j ∈ I (ω∗),
{Skj }k∈K is bounded. Moreover, Skj → 0 as k ∈ K → ∞ if p ∈ (0, 1).

Proof Denote

Fj (ω
k, λ̄k) := ∂G(ωk, λ̄k)

∂ω j
. (49)
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From Eqs. (46) and (37), we have

Fj (ω
k, λ̄k) + pλk1ψ

′ ([φ(μk−1, ω
k
j )]p
)

φ′(μk−1, ω
k
j )[φ(μk−1, ω

k
j )]p−1 = (εk−1

4 ) j .

(50)
Case 1. Suppose that p = 1. Then

Fj (ω
k, λ̄k) + λk1ψ

′(φ(μk−1, ω
k
j ))φ

′(μk−1, ω
k
j ) = (εk−1

4 ) j . (51)

Rearranging the terms and using Assumptions (A) and (B3), there are constants c, r >

0 such that for sufficiently large k,

|(εk−1
4 ) j − Fj (ω

k, λ̄k)|
λk1ψ

′(φ(μk−1, ω
k
j ))

= |φ′(μk−1, ω
k
j )| = 2

∫ Skj

0
ρ(s) ds ≥ 1 − c

(Skj )
r + c

,

where the second equality holds by (35), and λk1 > 0 for sufficiently large k since
λ∗
1 ≥ ε > 0. Consequently, we get

c

(Skj )
r + c

≥ 1 − |(εk−1
4 ) j − Fj (ω

k, λ̄k)|
λk1ψ

′(φ(μk−1, ω
k
j ))

= λk1ψ
′(φ(μk−1, ω

k
j )) − |(εk−1

4 ) j − Fj (ω
k, λ̄k)|

λk1ψ
′(φ(μk−1, ω

k
j ))

.

Note that λk1ψ
′(φ(μk−1, ω

k
j )) − |(εk−1

4 ) j − Fj (ω
k, λ̄k)| > 0 for all large k by using

the fact that (26) holds at (ω∗, λ∗) when p = 1 and by invoking Proposition 2.3(c)
and (51). Then

0 ≤ (Skj )
r

c
≤ (Skj )

r + c

c
≤ λk1ψ

′(φ(μk−1, ω
k
j ))

λk1ψ
′(φ(μk−1, ω

k
j )) − |(εk−1

4 ) j − Fj (ωk, λ̄k)|

→ λ∗
1ψ

′(0)
λ∗
1ψ

′(0) − |Fj (ω∗, λ̄∗)| as k ∈ K → ∞,

where the finiteness of the limit is guaranteed by (26). Hence, it easily follows that
{Skj }k∈K is bounded.

Case 2. Now, suppose p ∈ (0, 1). From Eq. (50), we have

|(εk−1
4 ) j − Fj (ω

k, λ̄k)|
pλk1ψ

′(φ(μk−1, ω
k
j ))

= |φ′(μk−1, ω
k
j )| · [φ(μk−1, ω

k
j )]p−1.

Using Assumptions (B1) and (B3) and by (35), we get

[φ(μk−1, ω
k
j )]1−p · |(εk−1

4 ) j − Fj (ω
k, λ̄k)|

pλk1ψ
′(φ(μk−1, ω

k
j ))

= |φ′(μk−1, ω
k
j )| ≥ 1− c

(Skj )
r + c

≥ 0.
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Meanwhile, note that since 1 − p > 0 and ωk
j → 0 as k ∈ K → ∞, we have

lim
k∈K→∞[φ(μk−1, ω

k
j )]1−p = 0.

Since λ∗
1 > 0

and ψ ′(0) > 0 by Assumption (A), then

lim
k∈K→∞

|(εk−1
4 ) j − Fj (ω

k, λ̄k)|
pλk1ψ

′(φ(μk−1, ω
k
j ))

= |Fj (ω
∗, λ̄∗)|

pλ∗
1ψ

′(0)
.

Thus,

lim
k∈K→∞

c

(Skj )
r + c

= 1.

It follows that limk∈K→∞ Skj = 0, as desired. This completes the proof. ��

We now focus on the sequence
{∇2ϕμk−1(ω

k)
}
k∈K . Using Lemma 4.2, we prove

the following important result.

Lemma 4.3 Suppose that Assumptions (B1)-(B4) hold. Let (ω∗, λ∗) be an arbitrary
accumulation point of the sequence {(ωk, λk)} generated by Algorithm 1 and let
{(ωk, λk)}k∈K be an arbitrary subsequence converging to (ω∗, λ∗). Then

lim
k∈K→∞|(∇2ϕμk−1(ω

k)) j j | = ∞ for j ∈ I (ω∗).

Proof We first consider the case when p = 1. In this instance, we have from Eq. (38)
that

(∇2ϕμk−1(ω
k)) j j = ψ ′′ (φ(μk−1, ω

k
j )
)

φ′(μk−1, ω
k
j )
2 +ψ ′ (φ(μk−1, ω

k
j )
)

φ′′(μk−1, ω
k
j ).

It follows from Assumption (A) and Proposition 2.3(c) that

ψ ′′ (φ(μk−1, ω
k
j )
)

φ′(μk−1, ω
k
j )
2 ≥ −β,

and there exists γ > 0 such that for sufficient large k,

ψ ′ (φ(μk−1, ω
k
j )
)

≥ γ > 0.

Hence, for sufficiently large k, we obtain

(∇2ϕμk−1(ω
k)) j j ≥ −β + γφ′′(μk−1, ω

k
j ) = −β + γ

2

μk−1
ρ

(
ωk

j

μk−1

)
,
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where φ′′(μk−1, ω
k
j ) is defined in (36).

By Lemma 4.2, there exists M > 0 such that
|ωk

j |
μk−1

≤ M for all k ∈ K . Since ρ is
nonincreasing on [0,∞) by Assumption (B2), we have

lim
k∈K→∞(∇2ϕμk−1(ω

k)) j j ≥ −β + lim
k∈K→∞

2γ

μk−1
ρ

(
ωk

j

μk−1

)

≥ −β + lim
k∈K→∞

2γ

μk−1
ρ(M) = ∞,

where the rightmost equality holds since ρ(t) > 0 on � by Assumption (B4). This
proves the claim for p = 1.

We now consider the case when 0 < p < 1. We look at two disjoint subsets of K :

U j
1 := {k ∈ K | ωk

j = 0}, and U j
2 := {k ∈ K | ωk

j �= 0},

and the corresponding subsequences. For k ∈ U j
1 , we get from (35) thatφ′(μk−1, 0) =

0. From (38), we have

(∇2ϕμk−1(ω
k)) j j = pψ ′ ([φ(μk−1, ω

k
j )]p
)

[φ(μk−1, ω
k
j )]p−1φ′′(μk−1, ω

k
j ). (52)

Meanwhile, from (36),

lim
k∈U j

1 →∞
φ′′(μk−1, ω

k
j ) = lim

k∈U j
1 →∞

2

μk−1
ρ

(
ωk

j

μk−1

)
= lim

k∈U j
1 →∞

2

μk−1
ρ(0) = ∞,

(53)
where we note that ρ(0) > 0 by Assumption (B1) and the definition of density
function. Moreover, it is clear that

lim
k∈U j

1 →∞
[φ(μk−1, ω

k
j )]p−1 = ∞. (54)

It follows from (52), (53), (54) and Assumption (A) that

lim
k∈U j

1 →∞
|(∇2ϕμk−1(ω

k)) j j | = ∞.

For k ∈ U j
2 , we obtain

lim
k∈U j

2 →∞
φ′′(μk−1, ω

k
j ) = lim

k∈U j
2 →∞

2

μk−1
ρ

(
ωk

j

μk−1

)
= ∞, (55)
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by using Eq. (36) and the facts that lim
k∈U j

2 →∞
|ωk

j |
μk−1

= 0 from Lemma 4.2 and ρ is

continuous by Assumption (B2).
Meanwhile, we obtain φ′′(μk−1, ω

k
j ) �= 0 for sufficiently large k using Lemma 4.2,

Eq. (36) and Assumption (B1). Thus, invoking Assumption (A), we have for large
k ∈ U j

2 that

ψ ′′ ([φ(μk−1, ω
k
j )]p
) [φ′(μk−1, ω

k
j )]2[φ(μk−1, ω

k
j )]p−1

φ′′(μk−1, ω
k
j )

= ψ ′′ ([φ(μk−1, ω
k
j )]p
) [φ′(μk−1, ω

k
j )]2[φ(μk−1, ω

k
j )]p

φ′′(μk−1, ω
k
j )φ(μk−1, ω

k
j )

≥ −β
[φ′(μk−1, ω

k
j )]2[φ(μk−1, ω

k
j )]p

φ′′(μk−1, ω
k
j )φ(μk−1, ω

k
j )

. (56)

Using (36) again, the symmetry of ρ, and Proposition 2.3(b), we have

φ′′(μk−1, ω
k
j )φ(μk−1, ω

k
j ) ≥ 2

μk−1
ρ

(
ωk

j

μk−1

)
|ωk

j | = 2Skjρ(Skj ).

Using this fact together with (56) and Eq. (35), we obtain

ψ ′′ ([φ(μk−1, ω
k
j )]p
) [φ′(μk−1, ω

k
j )]2[φ(μk−1, ω

k
j )]p−1

φ′′(μk−1, ω
k
j )

≥ −β

2

[∫ Skj
0 ρ(t)dt

]2
[φ(μk−1, ω

k
j )]p

Skjρ(Skj )

≥ −β
2Skj (ρ(0))2[φ(μk−1, ω

k
j )]p

ρ(Skj )
→ 0 as k ∈ U j

2 → ∞, (57)

where the last inequality holds since

[∫ Skj
0 ρ(t)dt

]2
≤ (Skj )

2(ρ(0))2. Similarly, we

also have

(p − 1)
[φ′(μk−1, ω

k
j )]2

φ′′(μk−1, ω
k
j )φ(μk−1, ω

k
j )

≥ (p − 1)
2

[∫ Skj
0 ρ(t)dt

]2

Skjρ(Skj )

≥ (p − 1)
2Skj (ρ(0))2

ρ(Skj )
→ 0 as k ∈ U j

2 → ∞.

(58)
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For brevity, denote φk := φ(μk−1, ω
k
j ), φ′

k := φ′(μk−1, ω
k
j ), φ′′

k := φ′′(μk−1, ω
k
j ).

Then (38) can be written as

(∇2ϕμk−1 (ω
k)) j j = pφ′′

k φ
p−1
k

[
pψ ′′ (φ p

k

) [φ′
k ]2φ p−1

k

φ′′
k

+ (p − 1)ψ ′ (φ p
k

) [φ′
k ]2

φ′′
k φk

+ ψ ′ (φ p
k

)
]

.

(59)
Since 0 < ψ ′(t) ≤ α by Assumption (A), we have

lim
k∈U j

2 →∞

[
pψ ′′ (φ p

k

) [φ′
k]2φ p−1

k

φ′′
k

+ (p − 1)ψ ′ (φ p
k

) [φ′
k]2

φ′′
kφk

+ ψ ′ (φ p
k

)
]

> 0

by using the obtained limits (57) and (58). On the other hand, it is clear from (55) that
φ′′
kφ

p−1
k → ∞ as k ∈ U j

2 → ∞. Hence, taking the limit in (59),

lim
k∈U j

2 →∞
(∇2ϕμk−1(ω

k)) j j = ∞.

This completes the proof. ��

Remark 2 Note that the main result presented in Theorem 4.1 considers an arbitrary
accumulation point of a sequence {(ωk, λk, ζ k, ηk)} generated by Algorithm 1. The
existence of such accumulation points is guaranteed if the generated sequence is
bounded. We defer our discussion on the boundedness of the sequence to Sect. 4.3 in
order to focus solely on the main ideas for proving Theorem 4.1. We highlight that
Lemma 4.3, which relies only on Assumption (B), serves as one of our primary tools
for establishing boundedness (see Proposition 4.2).However, an additional assumption
and lemma are required to prove boundedness, and thus, we postpone the discussion
of the details to Sect. 4.3.

Lemma 4.4 Suppose that Assumptions (B1)-(B4) hold, and (ω∗, λ∗, ζ ∗, η∗) is an accu-
mulation point of the sequence {(ωk, λk, ζ k, ηk)} generated by Algorithm 1. Then

(i) ζ ∗
j = 0 for all j ∈ I (ω∗), that is, ζ̆ ∗ = 0; and

(ii) p
∑

j /∈I (ω∗) sgn(ω
∗
j )|ω∗

j |p−1ψ ′(|ω∗
j |p)ζ ∗

j = η∗
1 .

Proof Let {(ωk, λk, ζ k, ηk)}k∈K be a subsequence converging to (ω∗, λ∗, ζ ∗, η∗).
From (43), we have for all k ∈ K that

(∇ f (ωk)) j +
(
∇2

ωωG(ωk , λ̄k)ζ k
)

j
+ λk1(∇2ϕμk−1(ω

k)) j j ζ
k
j = (εk−1

1 ) j , ( j = 1, 2, . . . , n).

Since G is twice continuously differentiable and f is continuously differentiable,
then {λk1(∇2ϕμk−1(ω

k)) j jζ
k
j }k∈K is a bounded sequence for each j . Consequently,
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ζ ∗
j = 0 for all j ∈ I (ω∗), since λ∗

1 > 0 and limk∈K→∞(∇2ϕμk−1(ω
k)) j j = +∞ for

each j ∈ I (ω∗) by Lemma 4.3. This proves part (i).
To prove part (ii), we note from (46) that for all k ∈ K ,

Fj (ω
k, λ̄k) + λk1(∇ϕμk−1(ω

k)) j = (εk−1
4 ) j , ( j = 1, 2, . . . , n),

so that {(∇ϕμk−1(ω
k)) j }k∈K is convergent since Fj given by (49) is continuous and

λ∗
1 > 0. Hence, we obtain from item (i) that limk∈K→∞(∇ϕμk−1(ω

k)) jζ
k
j = 0, ( j ∈

I (ω∗)) and therefore,

lim
k∈K→∞

∑

j∈I (ω∗)
(∇ϕμk−1(ω

k)) jζ
k
j = 0.

Together with (39) and (44), it follows that

η∗
1 = lim

k∈K→∞ ηk1 = lim
k∈K→∞ ∇ϕμk−1(ω

k)T ζ k

= lim
k∈K→∞

∑

j /∈I (ω∗)
(∇ϕμk−1(ω

k)) jζ
k
j

=
∑

j /∈I (ω∗)
psgn(ω∗

j )|ω∗
j |p−1ψ ′(|ω∗

j |p)ζ ∗
j ,

proving part (ii). ��
Remark 3 Crucial in the proofs of Lemmas 4.2–4.4 is the strict positivity of the reg-
ularization parameter λ∗

1 that corresponds to an accumulation point of {λk1}. This is
automatically guaranteed by the constraint set (5), as opposed to thework of [21]where
the parameter ε is set to 0. In turn, [21] requires the assumption that lim infk→∞ λk1 > 0
to ensure that λ∗

1 > 0, but such an assumption is difficult to guarantee for the iterates
generated by Algorithm 1.

Having derived all the necessary lemmas, we can now prove our main result.

Proof of Theorem 4.1 Let {(ωk, λk, ζ k, ηk)}k∈K be a subsequence converging to an
accumulation point (ω∗, λ∗, ζ ∗, η∗). It is clear from (45) and (47) that Eqs. (23) and
(24) hold. Meanwhile, we obtain from (43) and (46), respectively, that

∇ω̃ f (ωk) + (∇2
ω̃ω̃

G(ωk, λ̄k)ζ̃ k + (∇2
ω̃ω̆

G(ωk, λ̄k)ζ̆ k + λk1∇2
ω̃
ϕμk−1(ω

k))ζ̃ k = ε̃k−1
1 ,

(60)

∇ω̃G(ωk, λ̄k) + λk1∇ω̃ϕμk−1(ω
k) = ε̃k−1

4 , (61)

where ε̃k−1
1 = {(εk−1

1 ) j } j /∈I (ω∗) and ε̃k−1
4 = {(εk−1

4 ) j } j /∈I (ω∗). Using Lemma 4.1 and
Lemma 4.4(i), and letting k ∈ K → ∞ in (60) and (61), we obtain the bilevel KKT
conditions (19) and (20). Finally, (21) and (22) hold by Lemma 4.4. This completes
the proof of Theorem 4.1. ��
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4.3 Boundedness

In the preceding discussion, we have shown that accumulation points of
{(ωk, λk, ζ k, ηk)} correspond to bilevel KKT points. The existence of these accu-
mulation points is guaranteed by boundedness of the full sequence {(ωk, λk, ζ k, ηk)}.
In this section, we show that the boundedness of {(ωk, λk)} is sufficient to conclude
that the {(ζ k, ηk)} is likewise bounded.

4.3.1 Weaker constraint qualification

In [21], linearly independent constraint qualification (LICQ) was one of the assump-
tions used to obtain the boundedness of the sequence {(ωk, λk, ζ k, ηk)}. In this present
work, we only assume that the Mangasarian-Fromovitz constraint qualification holds
at accumulation points of a sequence generated by the smoothing algorithm.

Assumption (C). Let (ω∗, λ∗) ∈ �n × �r be an accumulation point of {(ωk, λk)}
generated by Algorithm 1. Denote

I (λ∗) := {i ∈ {1, 2, . . . , r} | λ∗
i = ε(e1)i , }

where e1 = (1, 0, . . . , 0) ∈ �r , and

� j (ω, λ) := ∂G(ω, λ̄)

∂ω j
+ psgn(ω j )λ1|ω j |p−1ψ ′(|ω j |p) ( j /∈ I (ω∗)).

Then, the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at (ω, λ) =
(ω∗, λ∗) for the constraints � j (ω, λ) = 0 for all j = 1, . . . , n and λ ≥ 0, where

� j (ω, λ) :=
{

� j (ω, λ) if j /∈ I (ω∗),
ω j if j ∈ I (ω∗).

That is, {∇(ω,λ)� j (ω
∗, λ∗)}nj=1 is linearly independent and there exists d̄ ∈ �n+r such

that

∇(ω,λ)� j (ω
∗, λ∗)T d̄ = 0 ∀ j = 1, . . . , n, (62)

(∇(ω,λ)λi |(ω,λ)=(ω∗,λ∗))
T d̄ > 0 ∀i ∈ I (λ∗). (63)

The following lemma is needed for subsequent analysis.

Lemma 4.5 Suppose that (ω∗, λ∗) is an arbitrary accumulation point of the sequence
{(ωk, λk)} such that Assumption (C) holds. Then, {∇(ω̃,λ)� j (ω

∗, λ∗)} j /∈I (ω∗) is linearly
independent and there exists a vector d ∈ �n−|I (ω∗)|+r such that

∇(ω̃,λ)� j (ω
∗, λ∗)T d = 0 ∀ j /∈ I (ω∗), (64)

(∇(ω̃,λ)λi |(ω,λ)=(ω∗,λ∗))
T d > 0 ∀i ∈ I (λ∗), (65)

123



Unified smoothing approach for best hyperparameter… 503

where ω̃ := (ω j ) j /∈I (ω∗).

Proof See AppendixC. ��

4.3.2 Boundedness of algorithm iterates

We will now show the boundedness of the sequence of Lagrange multiplier vectors
{(ζ k, ηk)} in the following lemma.

Proposition 4.2 Suppose that Assumptions (B) and (C) hold. Let {(ζ k, ηk)} ⊆ �n ×
�r be a sequence of the accompanying Lagrange multiplier vectors generated by
Algorithm 1. If {(ωk, λk)} is bounded, then {(ζ k, ηk)} is bounded.
Proof For convenience, denote

ξ k := ((ζ k)T , (ηk)T )T , ζ̂ k := ζ k

‖ξ k‖ , η̂k := ηk

‖ξ k‖

for each k. We prove by contradiction that the sequence {(ζ k, ηk)} is bounded.Without
loss of generality, we may assume that

‖ξ k‖ → ∞, lim
k→∞

ξ k

‖ξ k‖ = ξ̂∗,

where ξ̂∗ := ((ζ̂ ∗)T , (η̂∗)T )T with ζ̂ ∗ and η̂∗ are accumulation points of {ζ̂ k} and {η̂k},
respectively. We may suppose without loss of generality that limk→∞(ωk, λk) =
(ω∗, λ∗). Dividing by ‖ξ k‖ both sides of (30), (31), (32) and (34) evaluated at
(ω, λ, ζ, η) = (ωk, λk, ζ k, ηk) and (ε1, ε2, ε3, ε4, ε5) = (εk−1

1 , εk−1
2 , εk−1

3 , εk−1
4 ,

εk−1
5 ), we have for each k the following equations:

(∇ f (ωk)) j

‖ξ k‖ +
(
∇2

ωωG(ωk, λ̄k)ζ̂ k
)

j
+ λk1(∇2ϕμk−1(ω

k)) j j ζ̂
k
j

= (εk−1
1 ) j

‖ξ k‖ ( j = 1, 2, . . . , n), (66)

∇ϕμk−1(ω
k)T ζ̂ k − η̂k1 = εk−1

2

‖ξ k‖ , (67)

∇R j (ω
k)T ζ̂ k − η̂kj = (εk−1

3 ) j−1

‖ξ k‖ ( j = 2, 3, . . . , r), (68)

λkj − ε(e1) j ≥ 0,

η̂kj ≥ 0, (λkj − ε(e1) j )η̂
k
j ≤

r∑

j=1

(λkj − ε(e1) j )η̂
k
j = εk−1

5

‖ξ k‖ ( j = 1, . . . , r). (69)
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Since limk→∞
εk−1
l

‖ξ k‖ = 0, l = 1, 2, 3, 5, letting k → ∞ in inequality (69) gives

η̂∗
j = 0 ( j /∈ I (λ∗)) and η̂∗

j ≥ 0 ( j ∈ I (λ∗)). (70)

Since ‖ξ̂∗‖ = 1, we get from (70) that

1 = ‖ζ̂ ∗‖2 + ‖η̂∗‖2 = ‖ζ̂ ∗‖2 +
∑

j∈I (λ∗)
|η̂∗

j |2. (71)

Meanwhile, since G is twice continuously differentiable and f is continuously differ-

entiable, then both {∇2
ωωG(ωk, λ̄k)ζ̂ k} and

{∇ f (ωk)

‖ξ k‖
}
are bounded. This implies the

boundedness of {λk1(∇2ϕμk−1(ω
k)) j j ζ̂

k
j } for each j by (66). Consequently, we obtain

limk→∞ ζ̂ k
j = 0 for j ∈ I (ω∗) by Lemma 4.3 and noting that λ∗

1 > 0. That is,

ζ̂ ∗
j = 0 ( j ∈ I (ω∗)). (72)

Letting k → ∞ in (33), it is clear that

lim
k→∞|∇(ϕμk−1(ω

k)) j | = |Fj (ω
∗, λ̄∗)|

λ∗
1

,

where Fj (ω
∗, λ̄∗) is given by (49). This together with (72) gives us

lim
k→∞

∑

j∈I (ω∗)
(∇ϕμk−1(ω

k)) j ζ̂
k
j = 0. (73)

Thus,

η̂∗
1
(67)= lim

k→∞ ∇ϕμk−1(ω
k)T ζ̂ k

= lim
k→∞

⎛

⎝
∑

j∈I (ω∗)
(∇ϕμk−1(ω

k)) j ζ̂
k
j +

∑

j /∈I (ω∗)
(∇ϕμk−1(ω

k)) j ζ̂
k
j

⎞

⎠

(73)= lim
k→∞

∑

j /∈I (ω∗)
(∇ϕμk−1(ω

k)) j ζ̂
k
j

(39)=
∑

j /∈I (ω∗)
psgn(ω∗

j )|ω∗
j |p−1ψ ′(|ω∗

j |p)ζ̂ ∗
j . (74)

On the other hand, we have from (68) and (72) that

η̂∗
j =

∑

i /∈I (ω∗)

∂R j (ω
∗)

∂ωi
ζ̂ ∗
i , ( j = 2, . . . , r). (75)
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Meanwhile, letting k → ∞ in (66) and using Eqs. (72) and (40), we have

(
∇2

ω̃ω̃
G(ω∗, λ̄∗) + λ∗

1 p
2ψ ′′ (|ω̃∗

j |p
)

|ω̃∗
j |2p−2 + λ∗

1 p(p − 1)ψ ′ (|ω̃∗
j |p
)

|ω̃∗
j |p−2

) ˜̂
ζ∗ = 0,

(76)

where ˜̂
ζ ∗ = (ζ̂ ∗

i )i /∈I (ω∗). Combining Eqs. (74), (75) and (76), we obtain

∑

j /∈I (ω∗)
ζ̂ ∗
j ∇(ω̃,λ)� j (ω

∗, λ∗) −
∑

j∈I (λ∗)
η̂∗
j∇(ω̃,λ)λ j (ω

∗, λ∗) = 0, (77)

where ω̃ := (ω j ) j /∈I (ω∗) and � j (ω, λ) ( j /∈ I (ω∗)) are as defined in Assumption (C).
On the other hand, by Lemma 4.5, we can find a vector d ∈ �n−|I (ω∗)|+r such that
(64) and (65) hold. From (77), we have

∑

j /∈I (ω∗)
ζ̂ ∗
j ∇(ω̃,λ)� j (ω

∗, λ∗)T d −
∑

j∈I (λ∗)
η̂∗
j∇(ω̃,λ)λ j (ω

∗, λ∗)T d = 0.

Together with equation (64), we obtain

∑

j∈I (λ∗)
η̂∗
j∇(ω̃,λ)λ j (ω

∗, λ∗)T d = 0.

Consequently, we have from (70) and (65) that η̂∗
j = 0 for all j ∈ I (λ∗). In turn, (77)

implies that ∑

j /∈I (ω∗)
ζ̂ ∗
j ∇(ω̃,λ)� j (ω

∗, λ∗) = 0.

Since {∇(ω̃,λ)� j (ω
∗, λ∗)} j /∈I (ω∗) is linearly independent by Lemma 4.5, then ζ̂ ∗

j = 0

for all j /∈ I (ω∗). Together with (72), we have ζ̂ ∗ = 0 which in turn implies that
‖ζ̂ ∗‖2 +∑ j∈I (λ∗)|η̂∗

j |2 = 0. This contradicts (71). Therefore, the sequence {(ζ k, ηk)}
is bounded. ��

5 Numerical results

We compare the efficiency of different smoothing functions, namely the functions
φi (i = 1, 2, . . . , 6) presented in Appendix B by means of numerical simulation. The
program is coded in MATLAB R2022b and run on a machine with Intel(R) Core(TM)
i7-7500U CPU@2.70GHz and 8.0 GB RAM.
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5.1 Problemwith an elastic-net-type regularizer

We solve the following bilevel problem arising from squared linear regression using
an Elastic-Net-type regularizer:

min
ω,λ

1

2
‖A1ω − b1‖22

s.t. ω ∈ argmin
ω̂∈�n

{
1

2
‖A2ω̂ − b2‖22 + λ1‖ω̂‖p

p + λ2‖ω̂‖22
}

λ1 ≥ ε, λ2 ≥ 0,

(78)

where Ai ∈ �mi×n , bi ∈ �mi for i ∈ {1, 2} and ε = 10−6. We produce 20 synthetic
problems for (n,m1,m2) = (500, 1000, 1000) and for (n,m1,m2) = (500, 300, 300)
generated in Matlab as follows:

Ai := rand(mi , n),

[
b1
b2

]
:=
[

A1 ∗ θ

A2 ∗ θ + 0.01 ∗ (2 ∗ rand (m2, 1) − ones (m2, 1))

]
,

θ := zeros(n, 1), θ(randsample(n, 0.15 ∗ n)) = −5 + 10 ∗ rand(0.15 ∗ n, 1),

with rand, randn, randsample, ones, and zeros being MATLAB commands,
and apply Algorithms 1 with the smoothing functions φi (i = 1, 2, . . . , 6) to the
problems (78) with the generated data. The random number generator is initialized at
default. The test data A3 ∈ �m3×n and b3 ∈ �m3 are generated in the samemanner
as Ai and bi for i = 1, 2, with m3 := m1.

In order to compute a KKT point of the smoothed subproblem for (78) in Step 1 of
Algorithm1, we utilize the MATLAB solver fmincon with “MaxIterations= 104”
and opt for the interior-point method as an algorithm that runs within fmincon.
We initialize fmincon for (29) at some initial point (ω0, λ0) in the first iteration
k = 0, and then use the previous iteration point (ωk−1, λk−1) as the initial point
for the succeeding iterations, i.e., for k ≥ 1. The smoothing parameter is initialized
at μ0 = 0.1, and the factor of decrease is set to β1 = 0.8. To obtain a reasonable
initial point (ω0, λ0), we employ a semismooth Newton (SSN) method for solving the
KKT system (30)–(34). We first use a complementarity function to reformulate the
conditions (34) with ε5 = 0 as a system of equations [1]. In particular, we use the
Fischer-Burmeister function φFB : �r → �r given by

φFB(x, y) = x + y −
√
x2 + y2,

where the operations are understood to be taken component-wise, so that the conditions
(34) with ε5 = 0 are equivalent to solving

φFB(λ − εe1, η) = 0. (79)
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With this, a KKT point satisfying (30)–(34) can be obtained by solving approximately
the equation

�
μ
FB(ω, λ, ζ, η) :=

⎛

⎜⎜⎜⎜⎝

∇ f (ω) + (∇2
ωωG(ω, λ̄) + λ1∇2ϕμ(ω))ζ

∇ϕμ(ω)T ζ − η1
∇ R̄(ω)T ζ − η̄

∇ωG(ω, λ̄) + λ1∇ϕμ(ω)

φFB(λ − εe1, η)

⎞

⎟⎟⎟⎟⎠
= 0. (80)

By our differentiability assumptions on f , g, R j ( j = 2, . . . , r ) and the smoothness
of ϕμ, Eqs. (31)–(33) are all smooth. On the other hand, from Eqs. (36) and (38)
and invoking Assumptions (A) and (B), Eq. (30) is semismooth provided that ρ is
semismooth, which is the case for piecewise smooth functions [13, Proposition 7.4.6],
such as the density functions that we considered in Appendix B. Finally, since φFB is
strongly semismooth [13, Proposition 7.4.8], then Eq. (79) is likewise a semismooth
equation.Hence, for solving (80),wemay employ the semismoothNewtonmethod, the
convergence of which has already been established (see, for instance, [13, Theorem
7.5.2]). Our warmstarting algorithm to obtain an initial point (ω0, λ0) is described
in Algorithm 2.4 Similar to Algorithm 1, we consider a sequence of Eq. (80) for
decreasing values of μ. In our experiments, we set τ1 = 0.8, τ2 = 0.1, γmin = 10−6,
μ0 = 10, and γ0 = 0.1. We initialize Algorithm 2 with ω0 = 100 ∗ ones(n, 1) and
λ0 = (ε, 0), ζ 0 = 0, and η0 = 0.

Algorithm 2 (A semismooth Newton method for warmstarting Algorithm 1)

Step 0 Choose μ0, γ0 > 0, τ1, τ2, γmin ∈ (0, 1), and z0 := (ω0, λ0, ζ 0, η0). Set k := 0.
Step 1 Select an element V k ∈ ∂C�

μk
FB(zk ), where ∂C denotes the Clarke subdifferential (see [13, Defini-

tion 7.1.1]), and solve the linear system

�
μk
FB(zk ) + V k�zk = 0.

Step 2 Set zk+1 := zk + �zk .
Step 3 Set

(μk+1, γk+1) :=
{

(μk , γk ) if ‖�μk
FB(zk )‖ > γk

(τ1μk ,min{τ2γk , γmin}) if ‖�μk
FB(zk )‖ ≤ γk

If ‖�μk
FB(zk )‖ < γmin, terminate the algorithm. Otherwise, go to Step 1 and set k := k + 1.

4 Onemay consider employing the semismoothNewtonmethod, i.e., Algorithm2, as a standalone algorithm
for obtaining BKKT points. However, relying on this algorithm alone does not yield accurate solution for
the BKKT system, given as well that its convergence guarantee is only local. Alternatively, a globally subse-
quentially convergent semismoothNewtonmethod, incorporating anArmijo-type linesearch algorithm,was
proposed in [12]. However, due to the linesearch scheme, this approach is more computationally expensive,
making it less suitable especially as a warmstarting algorithm. Moreover, another challenge in semismooth
Newton-type algorithms is that apart from providing an initial guess for primal variables (ω0, λ0), we also
need to provide an initial guess for the Lagrange multipliers (ζ 0, η0) when using Algorithm 2, which could
influence the quality of the solution obtained by the algorithm.
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In light of the SB-KKT conditions (13)–(18) and the value of the smoothing param-
eter μ, we terminate the algorithm when either one of the following criteria is met:

1. The norms of the residuals of the equations in (19)–(24) are smaller than 10−2. To
estimate the index set I (ω∗) in conditions (15) and (16), we regard ωk

i as zero if
|ωk

i | ≤ 10−5.
2. μk+1 ≤ 10−8.

The obtained results are summarized in Tables1, 2, 3, 4, in which each column is
described as follows. Here, the averages are taken over the set of problems that are
counted in success(%).

i : the smoothing function φi
val: average validation error at the resulting solution; the validation

error is the least squares error for the validation data A1 at the
obtained solution, i.e., the value of the objective function at the
resulting solution

test: average test error at the resulting solution; the test error is the
the least squares error for the validation data A3 at the obtained
solution, i.e., the value of the objective function at the resulting
solution

bkkt: average residual of the BKKT conditions
sparsity(%): average ratio of zero elements of the resulting solution ω∗,

in which each element wi is counted as zero if |ωi | ≤ 10−5

time(s): average time spent by the algorithm in seconds; in parenthesis, we
include the average time spent in the initialization phase via
Algorithm 2

ssn.iter: average number of iterations for the initialization phase
iter: average number of iterations of Algorithm 1 executed by employing

Matlab’s fmincon built-in function.
success(%): ratio of problems for which BKKT points are computed successfully

in the sense that the first termination condition in the above is
satisfied

The best values are displayed in bold in the tables, with the results for the smoothing
function φ5 excluded from the tables due to the overflow that often occurred when
computing its gradient as μ gets smaller. Now, the following insights are obtained
from the numerical results.

Comparison with p = 0.5, 1 and m2 = 300, 1000
In terms of the sparsity of solutions obtained, we see that �0.5 tends to attain sparser
solutions than �1. Indeed, it is evident from Table 2 (resp., Table 4) that the solutions
obtained for p = 0.5 are sparser than those obtained by p = 1 shown in Table 1 (resp.,
Table3). This is by virtue of the nonconvexity of �p with p < 1. Moreover, �0.5 tends
to attain solutions with better validation errors than �1.

On the other hand, the problems with m2 < n is related to the problem of finding
sparse solutions of underdetermined linear systems. Such kind of problems are often
regarded more intractable than those with m2 ≥ n, as illustrated by the obtained
numerical results. When p = 1, the success rate of the smoothing algorithm is largely
diminished when m2 < n. In addition, it is clear from Tables 1 and 3 that for this
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Table 1 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 1)

i val Test bkkt Sparsity(%) Time(s) ssn.iter iter Success(%)

1 7.32e-03 7.31e-03 4.98e-03 45.8 187.5 (7.2) 182.1 34.9 100

2 7.90e-03 7.83e-03 5.34e-03 43.4 175.5 (7.2) 183.7 32.5 100

3 9.17e-03 9.07e-03 4.23e-03 36.3 157.4 (7.2) 183.7 27.7 95

4 1.08e-02 1.06e-02 4.59e-03 29.1 148.9 (7.1) 185.2 26.4 100

6 1.01e-02 9.95e-03 4.80e-03 31.4 165.7 (7.2) 182.9 30.9 100

Table 2 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 0.5)

i val Test bkkt Sparsity(%) Time(s) ssn.iter iter Success(%)

1 1.39e-03 1.39e-03 5.76e-03 84.7 198.9 (7.5) 180.9 31.2 100

2 1.36e-03 1.37e-03 6.66e-03 84.7 206.8 (7.4) 181.7 32.8 100

3 1.35e-03 1.36e-03 6.38e-03 83.5 213.3 (8.0) 180.8 33.0 100

4 3.01e-03 2.95e-03 6.96e-03 75.8 210.9 (7.6) 183.3 32.5 100

6 3.02e-03 2.96e-03 6.05e-03 76.4 202.2 (7.4) 180.4 32.4 100

Table 3 Averaged results for (n,m2,m1, p) = (500, 300, 300, 1)

i val Test bkkt Sparsity(%) time(s) ssn.iter iter Success(%)

1 1.07e-02 1.10e-02 4.43e-03 58.6 244.5 (4.9) 124.8 44.4 50

2 9.68e-03 1.02e-02 4.56e-03 59.9 268.6 (4.7) 116.7 45.7 30

3 1.23e-02 1.28e-02 3.85e-03 56.2 262.0 (5.2) 132.9 45.1 35

4 1.17e-02 1.23e-02 5.32e-03 58.4 314.1 (6.4) 147.2 52.7 50

6 2.24e-02 2.27e-02 7.66e-03 58.5 299.5 (4.4) 114.5 56.0 20

instance, the algorithm required more time to solve the problems as compared when
m2 ≥ n. When p < 1, while the average times spent by the algorithm are apparently
not very distinct for both m2 = 1000 and m2 = 300, it is evident from Tables 2 and
4 that the success rate is also diminished for the latter case. Meanwhile, for the case
m2 < n, we note that the success rate when p = 0.5 is significantly better than when
p = 1.

Comparison of the five smoothing functions
In view of the validation and test errors, bilevel KKT residuals, sparsity, average time
and success rates, the qualities of the resulting solutions as well as the efficiency of
the algorithm with different smoothing functions are comparable. From Table1, we
see that Algorithm 1 with φ4 is the fastest method obtaining a 100% success rate in
solving the problems, but the solutions obtained are neither the sparsest ones, nor do
they correspond to the lowest validation and test errors. As these factors are quite
important in evaluating the performance of the model, we observe that Algorithm 1
equipped with smoothings functions φ1 and φ2 provide higher quality of solutions
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Table 4 Averaged results for (n,m2,m1, p) = (500, 300, 300, 0.5)

i val Test bkkt Sparsity(%) Time(s) ssn.iter iter Success(%)

1 2.11e-03 2.25e-03 5.62e-03 80.8 185.3 (4.9) 114.5 33.5 100

2 2.06e-03 2.19e-03 6.00e-03 73.0 180.6 (4.7) 129.2 33.2 85

3 2.11e-03 2.20e-03 5.88e-03 75.2 189.5 (5.2) 119.5 35.2 90

4 2.06e-03 2.15e-03 5.68e-03 79.2 200.9 (6.4) 146.1 37.5 95

6 2.58e-03 2.58e-03 5.90e-03 75.2 196.6 (4.4) 120.5 36.4 90

attained at a running time not significantly longer than that required byφ4. Considering
these important criteria along with the success rates of the algorithms, we also observe
from Tables 2, 3, 4 that the algorithm equipped with φ1 consistently obtains the best
success rates with low validation error, as well as sparser solutions.

5.2 Problems with other regularizers

In this section, we solve problem(78) with the regularizers ψ2(‖ω‖p
p) and ψ3(‖ω‖p

p)

in place of ‖ω‖p
p, with ψ2 and ψ3 defined in Appendix A, where we set a = 1

and p = 0.5. Both the experimental settings and the 20 synthetic problem-data of
Ai , bi (i = 1, 2, 3) are identical to the ones used in the preceding section. The obtained
results are summarized in Tables 5, 6, 7, 8.

Similar to the remarks in the preceding sections, we observe that taking into account
the quality of the solutions obtained as reflected by the validation errors and sparsity,
together with the running times and success rates of the algorithm, we observe that
Algorithm 1with the smoothing function φ1 has a consistent good performance among
all the functions considered.

5.3 Comparisons with Bayesian optimization

As mentioned in the introduction, two popular methods for dealing with the hyperpa-
rameter learning problem include the grid search method and Bayesian optimization.
For practical purposes, however, grid search algorithm is not a viable approach due to
the necessity of solving the lower level problem (1) for many values of the hyperpa-

Table 5 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 0.5) using ψ2

i val Test bkkt Sparsity(%) Time(s) ssn.iter iter Success(%)

1 1.39e-03 1.39e-03 5.76e-03 84.7 276.7 (4.9) 180.9 31.2 100

2 1.36e-03 1.37e-03 6.66e-03 84.7 284.4 (4.7) 181.7 32.8 100

3 1.35e-03 1.36e-03 6.22e-03 84.1 259.4 (5.2) 180.7 32.9 95

4 3.01e-03 2.95e-03 6.96e-03 75.8 262.6 (6.4) 183.3 32.5 100

6 3.10e-03 3.05e-03 5.88e-03 76.0 244.1 (4.4) 180.3 32.1 95
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Table 6 Averaged results for (n,m2,m1, p) = (500, 300, 300, 0.5) using ψ2

i val Test bkkt Sparsity(%) Time(s) ssn.iter iter Success(%)

1 2.06e-03 2.17e-03 5.78e-03 80.7 200.4 (4.9) 112.5 32.8 95

2 2.06e-03 2.19e-03 6.00e-03 73.0 211.8 (4.7) 129.2 33.2 85

3 2.11e-03 2.17e-03 5.90e-03 74.9 196.3 (5.2) 119.6 33.2 85

4 2.06e-03 2.15e-03 5.68e-03 79.2 237.3 (6.4) 146.1 37.5 95

6 2.58e-03 2.58e-03 5.90e-03 75.2 217.2 (4.4) 120.5 36.4 90

Table 7 Averaged results for (n,m2,m1, p) = (500, 1000, 1000, 0.5) using ψ3

i val Test bkkt Sparsity(%) Time(s) ssn.iter iter Success(%)

1 1.39e-03 1.39e-03 5.76e-03 84.7 193.1 (4.9) 180.9 31.2 100

2 1.37e-03 1.38e-03 6.68e-03 84.8 193.9 (4.7) 181.6 31.7 95

3 1.35e-03 1.36e-03 6.38e-03 83.5 195.0 (5.2) 180.8 33.0 100

4 3.01e-03 2.95e-03 6.96e-03 75.8 192.4 (6.4) 183.3 32.5 100

6 3.02e-03 2.96e-03 6.05e-03 76.4 214.5 (5.4) 180.4 32.4 100

Table 8 Averaged results for (n,m2,m1, p) = (500, 300, 300, 0.5) using ψ3

i val Test bkkt Sparsity(%) time(s) ssn.iter iter Success(%)

1 2.11e-03 2.25e-03 5.62e-03 80.8 227.6 (4.9) 114.5 33.5 100

2 2.06e-03 2.19e-03 6.00e-03 73.0 227.8 (4.7) 129.2 33.2 85

3 2.11e-03 2.20e-03 5.88e-03 75.2 231.4 (5.2) 119.5 35.2 90

4 2.06e-03 2.15e-03 5.68e-03 79.2 220.9 (6.4) 146.1 37.5 95

6 2.58e-03 2.58e-03 5.90e-03 75.2 231.5 (4.4) 120.5 36.4 90

Table 9 Averaged results for (n,m2,m1) = (250, 500, 500) using ψ1

p Method val Test Sparsity(%) Time(s)

1 Algorithm 1 w/ φ1 4.15e-03 4.12e-03 41.7 39.4

Bayesian optimization 7.10e+00 6.79e+00 50.4 314.8

0.5 Algorithm 1 w/ φ1 6.60e-04 6.67e-04 72.7 39.9

Bayesian optimization 4.47e+01 4.47e+01 19.1 160.8

rameters (λ1, . . . , λr ), as was also demonstrated in [21]. Hence, we only compare our
approach with Bayesian optimization. As shown in Table 9, our approach needed only
roughly 25% of the time required by Bayesian optimization for p = 0.5, while still
achieving low validation and test errors, as well as sparse models. For p = 1, while
the Bayesian optimization strategy attained sparser solutions, it required almost eight
times more computing time, and the validation and test errors are significantly larger
than the one obtained by our approach.

123



512 J. H. Alcantara et al.

6 Conclusion

This paper considers a class of nonsmooth, possibly nonconvex and non-Lipschitz reg-
ularizers for the best hyperparameter selection problem using a bilevel programming
strategy. The class of regularizers we consider subsumes the traditional �p regularizer,
which is the focus of the earlier work [21]. We propose new bilevel KKT conditions
which are tighter than the SBKKT conditions proposed in [21]. These are neces-
sary conditions for the original bilevel problem (4) when p = 1, and are necessary
conditions for the relaxed problem (7) when p < 1. The convergence analysis of
the smoothing algorithm presented in this paper is unified, in the sense that it is not
limited to the chosen smoothing function, unlike the previous work [21] where the
analysis is centered on the selected smoothing function. Finally, we proved our main
convergence result under a milder constraint qualification. More precisely, we only
assumed the Mangasarian-Fromovitz constraint qualification (MFCQ) for our conver-
gence analysis, which is weaker than the linearly independent constraint qualification
(LICQ) used in [21]. For our numerical simulations, we compared the performance of
six smoothing functions in solving the bilevel programming problem using different
regularizers. Theoretically, we can use these smoothing functions for all the regu-
larizers considered as their corresponding density functions satisfy Assumption (B).
On the other hand, our practical experience revealed that the smoothing function φ1
provides the best performance when taking into account the validation and test errors
of the resulting model, as well as the sparsity of the solution and running time of the
algorithm. Interestingly, the function φ1 is the closest approximation to the regularizer
R1 among all the smoothing functions, as proved in Appendix B.

Appendix A Penalty functions that satisfy Assumption (A)

We consider four penalty functions as follows:

ψ1(t) = t, ψ2(t) = log(1 + at), ψ3(t) = at

1 + at
, ψ4(t) = −1

1 + at
,

where a is positive number. In particular,

(1) ψ1 is a soft-thresholding penalty function [14, 25]. We have ψ ′
1(t) = 1 and

ψ ′′
1 (t) = 0. Hence, it satisfies Assumption (A).

(2) ψ2 is a logistic penalty function [19]. We have

ψ ′
2(t) = a

1 + at
, ψ ′′

2 (t) = − a2

(1 + at)2
,

which implies that 0 < limt→0 ψ ′
2(t) = a and |ψ ′′

2 (t)| ≤ a2. Hence, it satisfies
Assumption (A).
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(3) ψ3 is fraction penalty function [9, 19]. We have

ψ ′
3(t) = a

(1 + at)2
, ψ ′′

3 (t) = − 2a2

(1 + at)3
,

which implies that 0 < limt→0 ψ ′
3(t) = a and |ψ ′′

3 (t)| ≤ 2a2. Hence, it satisfies
Assumption (A).

(4) For function ψ4, we have

ψ ′
4(t) = a

(1 + at)2
, ψ ′′

4 (t) = − 2a2

(1 + at)3
,

which implies that 0 < limt→0 ψ ′
4(t) = a and |ψ ′′

4 (t)| ≤ 2a2. Hence, it satisfies
Assumption (A).

Appendix B Examples of smoothing functions

A key aspect in successful numerical implementations of a smoothing algorithm is the
choice of the approximating functions. Here, we enumerate six smoothing functions
that we will use in our numerical simulations.

There are many density functions commonly used and called kernel functions in
statistics (see also [7]). Some density functions satisfying (9) are given as follows.

ρ1(x) :=
{

35
32 (1 − x2)3 if |x | ≤ 1,

0 otherwise.

ρ2(x) :=
{

15
16 (1 − x2)2 if |x | ≤ 1,

0 otherwise.

ρ3(x) :=
{ 3

4 (1 − x2) if |x | ≤ 1,
0 otherwise,

ρ4(x) := 1√
2π

e− x2
2 ∀x ∈ �.

ρ5(x) := e−x

(1 + e−x )2
.

ρ6(x) := 1

(x2 + 1)
3
2

.
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Following the discussion in Sect. 2.2, the corresponding smoothing functions of |x |
are given as follows:

φ1(μ, x) :=
{

− 5x8

128μ7 + 7x6

32μ5 − 35x4

64μ3 + 35x2
32μ + 35μ

128 if |x | ≤ μ,

|x | if |x | > μ.

φ2(μ, x) :=
{

x6

16μ5 − 5x4

16μ3 + 15x2
16μ + 5μ

16 if |x | ≤ μ,

|x | if |x | > μ.

φ3(μ, x) :=
{

− x4

8μ3 + 3x2
4μ + 3μ

8 if |x | ≤ μ,

|x | if |x | > μ.

φ4(μ, x) := xerf

(
x√
2μ

)
+
√

2

π
μe

− x2

2μ2 ,

φ5(μ, x) := μ
[
log
(
1 + e− x

μ

)
+ log

(
1 + e

x
μ

)]
.

φ6(μ, x) :=
√

μ2 + x2.

Here, the error function is defined by

erf(x) = 2√
π

∫ x

0
e−u2du ∀x ∈ �.

The graphs of |x | and φi (μ, x), i = 1, 2, . . . , 6 with μ = 0.25 are illustrated in Fig. 1.
From the graphs, we infer the following inequality relating the smoothing functions:

{
|x | ≤ φ1(μ, x) ≤ φ2(μ, x) ≤ φ3(μ, x) ≤ φ4(μ, x) ≤ φ5(μ, x), φ6(μ, x).

there exists α > 0 such that φ6(μ, x) ≤ φ5(μ, x) for all x ∈ [−α, α].

It is not difficult to show that the relation |x | ≤ φ1(μ, x) ≤ φ2(μ, x) ≤ φ3(μ, x),while
the proof of the relation φ3(μ, x) ≤ φ4(μ, x) ≤ φ5(μ, x) can be found in [23]. Using
the same proof technique in [23], one can easily achieve the remaining inequalities. On
the other hand, the graphs of the corresponding smoothing functions for |x |p where
p ∈ (0, 1] is shown in Figs. 1 and 2. We note that the smooth approximation φ6 is the
function used in [21] for their smoothing algorithm for (4) with R1(ω) :=∑n

i=1|ωi |p
(0 < p ≤ 1).

In this paper, we consider the six functions above and determine which approxi-
mation is the best suitable in solving (4) with R1(ω) satisfying Assumption (A). It is
easy to check that the six density functions as above satisfy Assumptions (B1)-(B2).
Condition (B3), on the other hand, holds by choosing c = 4, and r = 2. Indeed,

1 − 4

4 + S2
≤
√
1 − 4

4 + S2
= 2

S∫

0

ρ3(s) ds ≤ 2

S∫

0

ρi (s) ds ∀i = 1, . . . , 6.
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Fig. 1 Graph of |x | and φi (μ, x), i = 1, 2, . . . , 6 with μ = 0.25

Fig. 2 Graph of |x |p and (φ(μ, x))p , i = 1, 2, . . . , 6 with μ = 0.25 and p = 0.5

According to Assumption (B4), only the functions ρ4, ρ5 and ρ6 can be used (theo-
retically) for the case p = 1.

Appendix C Proof of Lemma4.5

In this appendix, we give a proof of Lemma4.5.
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Proof By Assumption (C), we know that there exists d̄ ∈ �n+r such that (62) and
(63) hold. Meanwhile, we have from the formula of � j that

∇(ω,λ)� j (ω, λ) =

⎧
⎪⎨

⎪⎩

∇(ω,λ)� j (ω, λ) if j /∈ I (ω∗)[
e j
0r

]
if j ∈ I (ω∗),

(C1)

where e j is the j th standard unit vector in �n and 0r denotes the zero vector in �r . It
is then clear from (C1) and (62) that d̄ j = 0 for all j ∈ I (ω∗). Consequently, letting
d ∈ �n−|I (ω∗)|+r be the vector d := (d̄) j /∈I (ω∗), it follows from (62) and (63) that
Eqs. (64) and (65) hold.

It remains to show that {∇(ω̃,λ)� j (ω
∗, λ∗)} j /∈I (ω∗) is linearly independent. To

this end, note first that we have from Assumption (C) the linear independence of
{∇(ω,λ)� j (ω

∗, λ∗)}nj=1, that is, the matrix

M :=
[(∇(ω,λ)� j (ω

∗, λ∗)
)
( j /∈I (ω∗)) ,

(∇(ω,λ)� j (ω
∗, λ∗)

)
( j∈I (ω∗))

]
∈ �(n+r)×n

has full column rank. Using Eq. (C1) and switching the rows of M so that the first
|I (ω∗)| rows correspond to the index set I (ω∗), we have that the matrix

[
(∇ω̆� j (ω

∗, λ∗)) j /∈I (ω∗) E|I (ω∗)|
(∇(ω̃,λ)� j (ω

∗, λ∗)) j /∈I (ω∗) O(n−|I (ω∗)|+r)×|I (ω∗)|

]

has full column rank, where ω̆ := (ω j ) j∈I (ω∗), Es denotes the identity matrix of order
s, and Os×t is the zero matrix of size s × t . Since the upper and lower right blocks
of the above matrix are the identity matrix and zero matrix, respectively, a series of
elementary column operations leads us to conclude that

[
O|I (ω∗)|×(n−|I (ω∗)|) E|I (ω∗)|

(∇(ω̃,λ)� j (ω
∗, λ∗)) j /∈I (ω∗) O(n−|I (ω∗)|+r)×|I (ω∗)|

]

also has full column rank. As a consequence, {∇(ω̃,λ)� j (ω
∗, λ∗)} j /∈I (ω∗) is linearly

independent, as desired. ��
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