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Abstract In this paper, we propose a smoothing penalty approach for solving the

second-order cone complementarity problem (SOCCP). The SOCCP is approximated by

a smooth nonlinear equation with penalization parameter. We show that any solution

sequence of the approximating equations converges to the solution of the SOCCP under

the assumption that the associated function of the SOCCP satisfies a uniform Cartesian-

type property. We present a corresponding algorithm for solving the SOCCP based on
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this smoothing penalty approach, and we demonstrate the efficiency of our method for

solving linear, nonlinear and tensor complementarity problems in the second-order cone

setting.

Keywords Second-order cone; nonlinear complementarity problem; penalty method

MC codes 90C25; 90C30; 90C33

1 Introduction

Let K be the Cartesian product of second-order cones (SOCs), also called Lorentz cones

[9, 16], described by

K := Kn1 × · · · × Knr (1)

with r, n1, . . . , nr ≥ 1, n1 + · · ·+ nr = n and

Kni :=
{
(x1, x2) ∈ IR× IRni−1 | ∥x2∥ ≤ x1

}
,

where ∥ · ∥ denotes the Euclidean norm and (x1, x2) := (x1, x
T
2 )

T . Note that K1 denotes

the set of nonnegative real numbers IR+. In this paper, we consider the second-order

cone complementarity problem (SOCCP), which involves finding a vector x ∈ IRn such

that

x ∈ K, F (x) ∈ K, ⟨x, F (x)⟩ = 0, (2)

where ⟨·, ·⟩ is the Euclidean inner product and F = (F1, F2, . . . , Fr) with continuously

differentiable functions Fi : IR
n → IRni , i = 1, 2, . . . , r. In particular, when F is affine,

SOCCP (2) reduces to the second-order cone linear complementarity problem (SOCLCP).

The SOCCP (2) is an extension of the nonlinear complementarity problem (NCP),

which corresponds to the case where K = IRn
+, while the special case of SOCLCP with

K = IRn
+ is a generalization of the standard linear complementarity problem (LCP).

These problems have a broad range of applications in economics, engineering problems

and robust Nash equilibria (see [5, 17, 24] and the references therein). Moreover, they

can also be obtained from the KKT optimality conditions of the nonlinear second-order

cone programming (SOCP):

min f(x)

s.t Ax = b, x ∈ K,

where f : IRn → IR is a convex twice continuously differentiable function, A is an m× n
matrix with m ≤ n, rank A = m, b ∈ IRm.

There are various methods for solving SOCCP including the interior-point method

[3, 28, 30], the smoothing Newton method [13, 18, 26], the smoothing-regularization
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approach [22], the semismooth Newton method [27, 31], the merit function approach

[7, 8, 11], and the matrix splitting method [21, 37], among others. Recently, power

penalty methods for linear and nonlinear complementarity problems (that is, K = IRn
+)

were proposed in [36, 25], and this approach is extended to the general SOCCP problem

(2) by Hao et al. in [20]. In this approach, the complementarity problem is approximated

by an equation of the form

F (x)− α[x]σ− = 0, (3)

where σ > 0 is a power parameter, α > 0 is the penalty parameter, and [x]− denotes pro-

jection of the vector −x onto the cone K. By letting the penalty parameter go to infinity,

it was shown in the aforementioned works that the corresponding solution sequence of

the approximate nonlinear equations converges to the solution of the complementarity

problem under certain monotonicity assumptions on F . While theoretically appealing,

the main hurdle lies in the development of solution methods due to the nonsmoothnes of

the projection operator in the equation (3).

To deal with the nonsmoothness that prohibits the use of available efficient numerical

methods for solving (3), the recent work [19] focused on the SOCLCP case (i.e., F is

affine) and used a novel smoothing function approach to approximate the projection [x]−
in (3) for the SOCLCP problem. Motivated by this approach, we extend the framework

to the general SOCCP (2), where the function F may be nonlinear, and we also propose

a practical smoothing power penalty algorithm by utilizing the smoothing functions in

[6]. We provide theoretical guarantees under the assumption that F is a uniform ξ-P

function, a class of functions introduced in [34], which is larger than the one considered

in [20]. In particular, we show that the smoothing approximation of equation (3) has a

unique solution, and we derive an error bound of order O(α−1/ξσ) between the solution

sequence of the approximating penalty equations and the solution of the SOCCP (2).

Therefore, our main contributions are threefold: First, we significantly generalize and

improve the algorithm proposed in [19] that only considers affine functions F with pos-

itive definite gradient. Second, our theoretical framework is applicable to uniform ξ-P

functions which subsumes the class of monotonic functions in [20]. Finally, as opposed

to [20], our algorithm has a practical implementation due to the smoothing strategy that

permits the use of derivative-based algorithms for solving systems of equations. Indeed,

we demonstrate the applicability and efficiency of our proposed algorithm through nu-

merical experiments involving affine and nonlinear functions F , as well as applications

to second-order cone tensor complementarity problems.

This paper is organized as follows: In Section 2, we briefly introduce some properties

related to the second-order cone that will be useful in our subsequent analysis. We also

present smoothing approximations for the function [x]σ−. In Section 3, we prove our main

convergence results under the uniform ξ-P assumption. Extensive numerical experiments

are presented in Section 4, and concluding remarks are given in Section 5.
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2 Preliminaries

2.1 The second-order cone

We review some definitions and properties for the case of single block second-order

cone K = Kn; most of the materials herein can be found in [9, 16, 18] . For any

x = (x1, x2) ∈ IR × IRn−1, y = (y1, y2) ∈ IR × IRn−1, their Jordan product is defined as

x ◦ y = (⟨x, y⟩ , y1x2 + x1y2). The spectral decomposition of x with respect to the SOC is

given by

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

where for i = 1, 2,

λi(x) = x1 + (−1)i∥x2∥, u(i)x =

{
1
2
(1, (−1)i x2

∥x2∥) if ∥x2∥ ≠ 0,
1
2
(1, (−1)iw) if ∥x2∥ = 0,

(4)

with w ∈ IRn−1 being any unit vector. The two scalars λ1(x) and λ2(x) are called spectral

values of x, while the two vectors u
(1)
x and u

(2)
x are called the spectral vectors of x.

For any x ∈ IRn, let [x]+ denote the projection of x onto Kn, and [x]− be the projection

of −x onto Kn, that is, [x]− = [−x]+. It is well-known that x = [x]+ − [x]−, and we also

have the following useful formulas:

[x]+ = [λ1(x)]+u
(1)
x + [λ2(x)]+u

(2)
x , [x]− = [λ1(x)]−u

(1)
x + [λ2(x)]−u

(2)
x , (5)

and

[x]σ+ = [λ1(x)]
σ
+u

(1)
x + [λ2(x)]

σ
+u

(2)
x , [x]σ− = [λ1(x)]

σ
−u

(1)
x + [λ2(x)]

σ
−u

(2)
x ,

where σ > 0, [t]+ = max{0, t} and [t]− = max{0,−t} for t ∈ IR (see [9], for instance).

We also have that [x]+, [x]− ∈ Kn and [x]+ ◦ [x]− = 0.

The following results play an important role in our convergence analysis.

Proposition 2.1. [9, 16, 18] For any x = (x1, x2) ∈ IR× IRn−1 with the spectral values

λ1(x), λ2(x) and spectral vectors u
(1)
x , u

(2)
x given as (4), we have:

(a) u
(1)
x ◦ u(2)x = 0 and u

(i)
x ◦ u(i)x = u

(i)
x , ∥u(i)x ∥2 = 1/2 for i = 1, 2.

(b) λ1(x), λ2(x) are nonnegative (positive) if and only if x ∈ Kn (x ∈ int(Kn), where

int(Kn) denotes the interior of Kn).

(c) For any x ∈ IRn, x ∈ Kn if and only if ⟨x, y⟩ ≥ 0 for all y ∈ Kn.

(d) The norm of x can be expressed in terms of λ1(x) and λ2(x) as follows:

∥x∥2 = 1

2
(λ21(x) + λ22(x)).
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Lemma 2.2. For any x = (x1, x2) ∈ IR×IRn−1, y = (y1, y2) ∈ IR×IRn−1. ∥x1y2+y1x2∥ ≤
∥x∥∥y∥

Proof. By expanding the terms of ∥x1y2+y1x2∥2−∥x∥2∥y∥2 and using Cauchy-Schwarz

inequality, the result immediately follows. 2

Lemma 2.3. For any x = (x1, x2) ∈ IR × IRn−1, y = (y1, y2) ∈ IR × IRn−1. Then the

following results hold:

(a) If y ∈ Kn then ⟨x, y⟩ ≤ ⟨[x]+, y⟩.

(b) ∥x ◦ y∥ ≤
√
2∥x∥∥y∥ and λ2(x ◦ y) = 2

〈
x ◦ y, u(2)x◦y

〉
≤ 2∥x∥∥y∥.

Proof. (a) holds by [4, Lemma 3.1], while (b) is a direct consequence of Lemma 2.2.

2

2.2 Smoothing approximation of the projection function with

power parameter

From (5), we see that the nonsmoothness of the operator [x]− comes from the nonsmooth-

ness of the real-valued function [t]− = max(0,−t), which in turn renders the equation

(3) to be nonsmooth as well. To avoid this problem, we use smooth approximations. We

say that ϕ− : IR++ × IR → IR is a smoothing function of [t]− = max(0,−t) if it satisfies
the following conditions:

(i) ϕ− is continuously differentiable at (µ, t) ∈ IR++ × IR;

(ii) lim
µ↓0

ϕ−(µ, t) = [t]− for any t ∈ IR.

In [6], a systematic framework of generating smoothing functions for the plus function

[t]+ = max(0, t) is developed using density functions. By using the property that [t]− =

[−t]+, we may then obtain smoothing functions for [t]−, and consequently for [x]− via

(5). Indeed, some specific smoothing functions of [t]− are also provided in [19].

Naturally, the function (ϕ−)σ is a candidate smoothing function of [t]σ−, which is

indeed the case provided that σ ≥ 1. For the sake of generality, we make the following

assumptions given in Assumption 2.1 so that our framework applies to the general case

σ > 0. Nevertheless, Assumption 2.1 is not required when σ ≥ 1. We also note that

there are numerous smoothing functions satisfying Assumption 2.1. For instance, we may

take ϕ−(µ, t) := ψ(µ,−t), where ψ is a strictly positive smoothing function of the plus

function generated in [2].

Assumption 2.1.

(a) ϕ−(µ, t) is a stricly positive smoothing function of [t]−, i.e., ϕ
−(µ, t) > 0 for all

µ > 0 and t ∈ IR.
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(b) Fixed µ > 0, (ϕ−(µ, t))′ is a monotonecally decreasing function for all t ∈ IR.

Lemma 2.4. Suppose that ϕ−(µ, t) satisfies Assumption 2.1(a). Then, for any σ > 0,

ϕ−(µ, t)σ is a smoothing function of [t]σ−.

Proof. The proof is straightforward. 2

Using these smoothing functions, we now construct a smoothing function for [x]−
associated with the general SOC (1). Denote x = (x1, x2, . . . , xr) ∈ IRn so that [x]− =

([x1]−, [x
2]−, . . . , [x

r]−) ∈ K. Assume that ϕ−(µ, t) satisfies Assumption 2.1, then for any

σ > 0, we define the vector-valued functions

Φ−(µ, x) := (Φ−
1 (µ, x

1),Φ−
2 (µ, x

2), . . . ,Φ−
r (µ, x

r)), (6)

Φ−(µ, x)σ := (Φ−
1 (µ, x

1)σ,Φ−
2 (µ, x

2)σ, . . . ,Φ−
r (µ, x

r)σ), (7)

with Φ−
ν : IR++ × IRnν → IRnν , ν ∈ {1, 2, . . . , r} given by

Φ−
ν (µ, x

ν) := ϕ− (µ, λ1(x
ν))u

(1)
xν + ϕ− (µ, λ2(x

ν))u
(2)
xν , (8)

Φ−
ν (µ, x

ν)σ := ϕ− (µ, λ1(x
ν))σ u

(1)
xν + ϕ− (µ, λ2(x

ν))σ u
(2)
xν , (9)

where µ ∈ IR++ is a parameter, λ1(x
ν), λ2(x

ν) are the spectral values, and u
(1)
xν , u

(2)
xν are

the spectral vectors of xν as shown in (4).

As shown in the following lemma, the functions (6) and (7) serve as smooth approxi-

mations of [x]− and [x]σ−, respectively. That is,

lim
µ→0+

Φ−(µ, x) = [x]−,

and

lim
µ→0+

Φ−(µ, x)σ = [x]σ−.

Lemma 2.5. Suppose that Φ−
ν (µ, x

ν), Φ−
ν (µ, x

ν)σ are defined in (8), (9), respectively.

Then Φ−
ν (µ, x

ν), Φ−
ν (µ, x

ν)σ are smooth on IR++ × IRnν . Moreover,

lim
µ→0+

Φ−
ν (µ, x

ν) = [λ1(x
ν)]−u

(1)
xν + [λ2(x

ν)]−u
(2)
xν = [xν ]−.

lim
µ→0+

Φ−
ν (µ, x

ν)σ = [λ1(x
ν)]σ−u

(1)
xν + [λ2(x

ν)]σ−u
(2)
xν = [xν ]σ−.

Proof. The proof follows from [10, Proposition 5] and Lemma 2.4. 2

The following result will later be important in our analysis.

Lemma 2.6. Suppose that Φ−
ν (µ, x

ν), Φ−
ν (µ, x

ν)σ are defined in (8), (9), respectively.

Then, the following hold.

(a) Φ−
ν (µ, x

ν) ∈ Knν and Φ−(µ, x) ∈ K; and

(b) Φ−
ν (µ, x

ν)σ ∈ Knν and Φ−(µ, x)σ ∈ K.
Proof. The proof is analogous to that of [19, Lemma 3.2]. 2
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3 Smoothing power penalty algorithm

3.1 Convergence analysis

Inspired by Lemma 2.5, we propose a penalty approach for solving SOCCP (2). More

precisely, we consider the approximate penalty equations (APEs): find x ∈ IRn such that

Hσ
µ,α(x) := F (x)− αΦ−(µ, x)σ = 0, (10)

where σ > 0 is a given power parameter, α > 0 is a penalty parameter and Φ−(µ, x)σ is

defined in (7). We denote a solution of (10) by xµ,α. Since the penalty term αΦ−(µ, x)σ

penalizes the negative part of x, the equation (10) is a penalized equation associated with

SOCCP (2). Moreover, from Lemma 2.6 and (10), it is easy to verify that F (xµ,α) ∈ K.
Hence, intuitively, a sequence of solutions {xµ,α} of (10) includes points that satisfy the

second feasibility condition in (2), while the penalization forces xµ,α to be in the cone K
to satisfy the first condition, and orthogonality is obtained in the limit by pre-multiplying

(10) by xTµ,α.

Our main goal is to show that indeed, any solution sequence {xµ,α} converges to a

solution of the SOCCP (2) when α → +∞ and µ → 0+. To this end, we consider the

following class of functions introduced in [34].

Definition 3.1. [34] F is a uniform ξ-P function for some ξ > 1, i.e., there exist ρ > 0

and an index ν ∈ {1, 2, . . . , r} such that

⟨xν − yν , Fν(x)− Fν(y)⟩ ≥ ρ∥x− y∥ξ ∀x, y ∈ IRn.

An important property of the SOCCP (2) is that it has a unique solution when F is

a uniform ξ-P function, as shown in the following result.

Lemma 3.1. Suppose that F is a uniform ξ-P function for some ξ > 1. Then, the

SOCCP (2) has a unique solution.

Proof. The proof follows by using the same arguments as Proposition 2.12 and Propo-

sition 2.13 in [34] when we consider a closed convex cone K ⊂ IRn. 2

We will now show that the APE (10) also has a unique solution when F is a uniform

ξ-P function for some ξ > 1.

Lemma 3.2. Suppose that F is a uniform ξ-P function for some ξ > 1. Then for any

µ, α, σ > 0, the function Hσ
µ,α(x) := F (x)− αΦ−(µ, x)σ is a uniform ξ-P function.
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Proof. For simplicity, we denote Φ−
ν (·) ≡ Φ−

ν (µ, ·) where ν ∈ {1, 2, . . . , r} is an index

such that Definition 3.1 is satisfied. We also denote ϕ−(·) ≡ ϕ−(µ, ·). First, note that〈
(xν − yν) ◦ (Φ−

ν (x)
σ − Φ−

ν (y)
σ), u

(1)
yν

〉
=
〈
xν ◦ Φ−

ν (x)
σ, u

(1)
yν

〉
−
〈
xν ◦ Φ−

ν (y)
σ, u

(1)
yν

〉
−
〈
yν ◦ Φ−

ν (x)
σ, u

(1)
yν

〉
+
〈
yν ◦ Φ−

ν (y)
σ, u

(1)
yν

〉
=
〈
xν ◦ Φ−

ν (x)
σ, u

(1)
yν

〉
−
〈
xν ,Φ−

ν (y)
σ ◦ u(1)yν

〉
−
〈
Φ−

ν (x)
σ, yν ◦ u(1)yν

〉
+
〈
yν ◦ Φ−

ν (y)
σ, u

(1)
yν

〉
.

We have〈
xν ◦ Φ−

ν (x)
σ, u

(1)
yν

〉
=
〈
λ1(x

ν)ϕ−(λ1(x
ν))u

(1)
xν + λ2(x

ν)ϕ−(λ2(x
ν))u

(2)
xν , u

(1)
yν

〉
= λ1(x

ν)ϕ−(λ1(x
ν))
〈
u
(1)
xν , u

(1)
yν

〉
+ λ2(x

ν)ϕ−(λ2(x
ν))
〈
u
(2)
xν , u

(1)
yν

〉
.

〈
xν ,Φ−

ν (y)
σ ◦ u(1)yν

〉
=
〈
λ1(x

ν)u
(1)
xν + λ2(x

ν)u
(2)
xν , ϕ−(λ1(y

ν))u
(1)
yν

〉
= λ1(x

ν)ϕ−(λ1(y
ν))
〈
u
(1)
xν , u

(1)
yν

〉
+ λ2(x

ν)ϕ−(λ1(y
ν))
〈
u
(2)
xν , u

(1)
yν

〉
.

〈
Φ−

ν (x)
σ, yν ◦ u(1)yν

〉
=
〈
ϕ−(λ1(x

ν))u
(1)
xν + ϕ−(λ2(x

ν))u
(2)
xν , λ1(y

ν)u
(1)
yν

〉
= λ1(y

ν)ϕ−(λ1(x
ν))
〈
u
(1)
xν , u

(1)
yν

〉
+ λ1(y

ν)ϕ−(λ2(x
ν))
〈
u
(2)
xν , u

(1)
yν

〉
.

〈
yν ◦ Φ−

ν (y)
σ, u

(1)
yν

〉
=
〈
λ1(y

ν)ϕ−(λ1(y
ν))u

(1)
yν + λ2(y

ν)ϕ−(λ2(y
ν))u

(2)
yν , u

(1)
yν

〉
=

1

2
λ1(y

ν)ϕ−(λ1(y
ν)).

From the above equations, we get〈
(xν − yν) ◦ (Φ−

ν (x)
σ − Φ−

ν (y)
σ), u

(1)
yν

〉
=
(
λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ1(x
ν))
) 〈
u
(1)
xν , u

(1)
yν

〉
+
(
λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ2(x
ν))
) 〈
u
(2)
xν , u

(1)
yν

〉
+

1

2
λ1(y

ν)ϕ−(λ1(y
ν))

=
1

4

(
λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ1(x
ν))
)(

1 +
xT2 y2
∥x2∥∥y2∥

)
+

1

4

(
λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ2(x
ν))
)(

1− xT2 y2
∥x2∥∥y2∥

)
+

1

2
λ1(y

ν)ϕ−(λ1(y
ν)).
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Similarly, we also have〈
(xν − yν) ◦ (Φ−

ν (x)
σ − Φ−

ν (y)
σ), u

(2)
yν

〉
=
(
λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ1(x
ν))
) 〈
u
(1)
xν , u

(2)
yν

〉
+
(
λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ2(x
ν))
) 〈
u
(2)
xν , u

(2)
yν

〉
+

1

2
λ2(y

ν)ϕ−(λ2(y
ν))

=
1

4

(
λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ1(x
ν))
)(

1− xT2 y2
∥x2∥∥y2∥

)
+

1

4

(
λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ2(x
ν))
)(

1 +
xT2 y2
∥x2∥∥y2∥

)
+

1

2
λ2(y

ν)ϕ−(λ2(y
ν)).

Then 〈
(xν − yν) ◦ (Φ−

ν (x)
σ − Φ−

ν (y)
σ), u

(1)
yν + u

(2)
yν

〉
= A+B

xT2 y2
∥x2∥∥y2∥

+
1

2
λ1(y

ν)ϕ−(λ1(y
ν)) +

1

2
λ2(y

ν)ϕ−(λ2(y
ν)),

where

A := 1
4
(λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ1(x
ν)))

+1
4
(λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ2(x
ν)))

+1
4
(λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ1(x
ν)))

+1
4
(λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ2(x
ν)))

and
B := 1

4
(λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ1(x
ν)))

−1
4
(λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ1(y

ν))− λ1(yν)ϕ−(λ2(x
ν)))

−1
4
(λ1(x

ν)ϕ−(λ1(x
ν))− λ1(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ1(x
ν)))

+1
4
(λ2(x

ν)ϕ−(λ2(x
ν))− λ2(xν)ϕ−(λ2(y

ν))− λ2(yν)ϕ−(λ2(x
ν)))

Since ϕ−(·) is the monotonically decreasing by Assumption 2.1(b) and λ2(·) ≥ λ1(·), we
have

B =
1

4

(
ϕ−(λ1(y

ν))− ϕ−(λ2(y
ν))
)
(λ2(x

ν)− λ1(xν))

+
1

4

(
ϕ−(λ1(x

ν))− ϕ−(λ2(x
ν))
)
(λ2(y

ν)− λ1(yν))

≥ 0.

9



It follows that 〈
(xν − yν) ◦ (Φ−

ν (x)
σ − Φ−

ν (y)
σ), u

(1)
yν + u

(2)
yν

〉
≤ A+B +

1

2
λ1(y

ν)ϕ−(λ1(y
ν)) +

1

2
λ2(y

ν)ϕ−(λ2(y
ν))

=
1

2

(
ϕ−(λ1(x

ν))− ϕ−(λ1(y
ν))
)
(λ1(x

ν)− λ1(yν))

+
1

2

(
ϕ−(λ2(x

ν))− ϕ−(λ2(y
ν))
)
(λ2(x

ν)− λ2(yν))

≤ 0

which implies that 〈
xν − yν ,Φ−

ν (µ, x)
σ − Φ−

ν (µ, y)
σ
〉
≤ 0.

This, together with the fact that F is a uniform ξ-P function, implies that〈
xν − yν , (Hσ

µ,α)ν(x)− (Hσ
µ,α)ν(y)

〉
=
〈
xν − yν , Fν(x)− Fν(y)− α(Φ−

ν (µ, x)
σ − Φ−

ν (µ, y)
σ)
〉

≥ ρ∥x− y∥ξ.

The proof is complete. 2

The following proposition shows that if we start from a sufficiently small smoothing

parameter µ, the sequence of solutions of (10) for a fixed power parameter σ and penalty

parameter α is bounded, and therefore has accumulation points.

Proposition 3.3. Suppose that F is a uniform ξ-P function for some ξ > 1, and let

σ > 0 and α > 0 be given. Then, there exists δ > 0 such that the set {xµ,α ∈ IRn :

xµ,α solves the APE (10) and µ ∈ (0, δ]} is bounded.

Proof. Since F is a uniform ξ-P function, there exist ρ > 0 and an index ν ∈ {1, 2, . . . , r}
such that

ρ∥xµ,α∥ξ ≤
〈
xνµ,α − 0, Fν(xµ,α)− Fν(0)

〉
=
〈
xνµ,α, Fν(xµ,α)

〉
−
〈
xνµ,α, Fν(0)

〉
. (11)

To proceed, we consider three cases. For convenience, we denote λ1 ≡ λ1(x
ν
µ,α) and

λ2 ≡ λ2(x
ν
µ,α).

Case 1: Suppose xνµ,α ∈ Knν . From (10), (11) and using Cauchy-Schwarz inequality, we

have

ρ∥xµ,α∥ξ ≤ ∥xνµ,α∥(α∥Φ−
ν (µ, x

ν
µ,α)

σ∥+ ∥Fν(0)∥)
≤ ∥xνµ,α∥(α∥ϕ−(µ, λ1)

σu(1) + ϕ−(µ, λ2)
σu(2)∥+ ∥Fν(0)∥)

≤ ∥xµ,α∥(α∥
√
2ϕ−(µ, 0)σ∥+ ∥Fν(0)∥), (12)

10



where the last inequality holds by the triangle inequality and the monotone decreasing

property of ϕ−(µ, t) with respect to t, since 0 ≤ λ1 ≤ λ2 in this case. From Lemma 2.4

we have that limµ→0+ ϕ
−(µ, 0)σ = 0. Hence, there exists a positive real number δ, such

that √
2α∥ϕ−(µ, 0)σ∥ ≤ 1, ∀µ ∈ (0, δ]. (13)

It follows from (12) and (13) that

∥xµ,α∥ξ−1 ≤ 1

ρ
(1 + ∥Fν(0)∥).

Thus, ∥xµ,α∥ ≤
(

1+∥Fν(0)∥
ρ

) 1
ξ−1

.

Case 2: Suppose xνµ,α ∈ −Knν , that is λ1 ≤ λ2 ≤ 0. Using Assumption 2.1(b), we have

that 〈
xνµ,α,Φ

−
ν (µ, x

ν
µ,α)

σ
〉
=

1

2

(
λ1ϕ

−(µ, λ1)
σ + λ2ϕ

−(µ, λ2)
σ
)
≤ 0.

This, together with (10) and (11), gives

ρ∥xµ,α∥ξ ≤ −
〈
xνµ,α, Fν(0)

〉
≤ ∥xνµ,α∥∥Fν(0)∥ ≤ ∥xµ,α∥∥Fν(0)∥.

It follows that ∥xµ,α∥ ≤
(

∥Fν(0)∥
ρ

) 1
ξ−1

.

Case 3:Suppose xνµ,α /∈ Knν ∪ −Knν . Under this case, we know that λ1 < 0 < λ2, and

therefore [xνµ,α]+ = λ2u
(2) and λ1ϕ

−(µ, λ1)
σ < 0 < λ2ϕ

−(µ, λ2)
σ. In turn,

α
〈
xνµ,α,Φ

−
ν (µ, x

ν
µ,α)

σ
〉

=
1

2
α
(
λ1ϕ

−(µ, λ1)
σ + λ2ϕ

−(µ, λ2)
σ
)

≤
√
2

2
(

√
2

2
λ2)αϕ

−(µ, λ2)
σ

≤
√
2

2
∥xνµ,α∥αϕ−(µ, λ2)

σ

≤
√
2∥xνµ,α∥αϕ−(µ, 0)σ, (14)

where the second inequality holds due to
√
2
2
λ2 = ∥[xνµ,α]+∥ ≤ ∥xνµ,α∥. It follows from

(10), (11), (13) and (14) that

ρ∥xµ,α∥ξ ≤ ∥xνµ,α∥(
√
2αϕ−(µ, 0)σ + ∥Fν(0)∥)

≤ ∥xµ,α∥(
√
2αϕ−(µ, 0)σ + ∥Fν(0)∥)

≤ ∥xµ,α∥(1 + ∥Fν(0)∥).

Therefore,

∥xµ,α∥ ≤
(
1 + ∥Fν(0)∥

ρ

) 1
ξ−1

.
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Setting M :=
(

1+∥Fν(0)∥
ρ

) 1
ξ−1

. From the above three cases, we obtain ∥xµ,α∥ ≤M . Thus,

the proof is complete. 2

From Proposition 3.3 and the continuity of F , we have that for a fixed σ > 0 and

α > 0, the set {∥F (xµ,α)∥ : xµ,α solves APE (10) and µ ∈ (0, δ]} is bounded, provided

that δ is sufficiently small. Using the same techniques as in [20, Proposition 4.4], we can

obtain the following proposition.

Proposition 3.4. Suppose that F is a uniform ξ-P function for some ξ > 1. Let σ > 0,

α > 0 and ν ∈ {1, 2, . . . , r}. Then, there exist positive constants Cν and δ > 0 such that

∥Φ−
ν (µ, xµ,α)∥ ≤

Cν

α1/σ
,

and ∥∥[xνµ,α]−∥∥ ≤ Cν

α1/σ
, (15)

for all µ ∈ (0, δ].

We now prove our main result.

Theorem 3.5. Suppose that F is a uniform ξ-P function for some ξ > 1. Let σ > 0,

α > 0, and x∗ be the solution of SOCCP (2). Then, there exist positive constants C and

δ > 0 such that

∥x∗ − xµ,α∥ ≤
C

α1/ξσ
, ∀µ ∈ (0, δ]. (16)

Proof. Since x∗ solves the SOCCP (2), then we have that xν∗ ∈ Knν , Fν(x∗) ∈ Knν , and

⟨xν∗, Fν(x∗)⟩ = 0. From Lemma 2.3 and using the Cauchy-Schwarz inequality, we have

ρ∥x∗ − xµ,α∥ξ ≤
〈
xν∗ − xνµ,α, Fν(x∗)− Fν(xµ,α)

〉
=
〈
xνµ,α, Fν(xµ,α)

〉
+ ⟨xν∗,−Fν(xµ,α)⟩+

〈
−xνµ,α, Fν(x∗)

〉
≤ λ2(x

ν
µ,α ◦ Fν(xµ,α)) + ⟨[−Fν(xµ,α)]+, x

ν
∗⟩+

〈
[−xνµ,α]+, Fν(x∗)

〉
≤ λ2([x

ν
µ,α ◦ Fν(xµ,α)]+) + ∥[−Fν(xµ,α)]+∥∥xν∗∥+ ∥[−xνµ,α]+∥∥Fν(x∗)∥

≤
√
2∥[xνµ,α ◦ Fν(xµ,α)]+∥+ ∥[Fν(xµ,α)]−∥∥xν∗∥+ ∥[xνµ,α]−∥∥Fν(x∗)∥.

Since

xνµ,α ◦ Fν(xµ,α) = α[xνµ,α ◦ Φ−
ν (µ, xµ,α)

σ] = α[λ1ϕ
−(µ, λ1)

σu
(1)
xν
µ,α

+ λ2ϕ
−(µ, λ2)

σu
(2)
xν
µ,α

],

it follows that

[Fν(xµ,α) ◦ xνµ,α]+ =


α[λ1ϕ

−(µ, λ1)
σu

(1)
xν
µ,α

+ λ2ϕ
−(µ, λ2)

σu
(2)
xν
µ,α

] if xνµ,α ∈ Knν ,

0 if xνµ,α ∈ −Knν ,

αλ2ϕ
−(µ, λ2)

σu
(2)
xν
µ,α

otherwise.
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If xν ∈ Knν , then using the Cauchy-Schwarz inequality and Proposition 2.1(d), we have

that

α[λ1ϕ
−(µ, λ1)

σu
(1)
xν
µ,α

+ λ2ϕ
−(µ, λ2)

σu
(2)
xν
µ,α

] ≤ α√
2

(
λ1ϕ

−(µ, λ1)
σ + λ2ϕ

−(µ, λ2)
σ
)

≤ α√
2

√
λ21 + λ22

√
ϕ−(µ, λ1)2σ + ϕ−(µ, λ2)2σ

≤
√
2α∥xν∥ϕ−(µ, 0)σ∥

≤
√
2α∥xµ,α∥ϕ−(µ, 0)σ

≤
√
2αMϕ−(µ, 0)σ,

whereM is the constant stipulated in the proof of Proposition 3.3, and satisfies ∥xµ,α∥ ≤
M .

It follows from Case 3 of Proposition 3.3 that ∥αλ2ϕ−(µ, λ2)
σu

(2)
xν
µ,α
∥ ≤
√
2αMϕ−(µ, 0)σ.

Hence, we obtain

∥[Fν(xµ,α) ◦ xνµ,α]+∥ ≤
√
2αMϕ−(µ, 0)σ.

Since limµ→0+ ϕ
−(µ, 0)σ = 0, for any α > 0, there exists a positive real number δ such

that √
2αM∥ϕ−(µ, 0)σ∥ ≤ 1

α1/σ
, ∀µ ∈ (0, δ].

Therefore,

∥[Fν(xµ,α) ◦ xνµ,α]+∥ ≤
1

α1/σ
.

On the other hand, since Fν(xµ,α) ∈ Knν , ν = 1, 2, . . . , r, we have ∥[Fν(xµ,α)]−∥ = 0. All

of these in conjunction with (15) lead to

ρ∥x∗ − xµ,α∥ξ ≤
1

α1/σ
+
Cν∥Fν(x∗)∥

α1/σ
.

Therefore, (16) holds with C :=
(

1+Cν∥Fν(x∗)∥
ρ

) 1
ξ
, thus completing the proof. 2

3.2 Implementation of the algorithm

In light of Theorem 3.5, we develop an algorithm that solves a sequence of APEs (10)

with α → +∞ and µ → 0+ in order to obtain the solution of the SOCCP (2). One

important aspect towards practical implementation of the algorithm is the development

of a procedure to increase α and decrease µ. To this end, we propose a scheme to manage

these parameters based on Proposition 3.6 below.

Proposition 3.6. Let α > 0 and σ > 0, and suppose that Fν has no zeros for some

ν ∈ {1, 2, . . . , r}, that is, Fν(x) ̸= 0 for any x ∈ IRn. Then, there exists δ > 0 such that

the νth block of xµ,α does not belong to Knν for all µ ∈ (0, δ], that is, xνµ,α /∈ Knν .

13



Proof. Suppose otherwise. Then there exists a sequence {µk} with µk → 0 such that

xνµk,α
belongs to Knν for all k. From (10), we have

∥Fν(xµk,α)∥ = α∥Φ−
ν (µk, x

ν
µk,α

)σ∥ = α∥ϕ−(µk, η1)
σv(1)+ϕ−(µk, η2)

σv(2)∥ ≤
√
2αϕ−(µk, 0)

σ.

Since limµ→0+ ϕ
−(µ, 0)σ = 0 by Lemma 2.4, we have that

lim
k→∞
∥Fν(xµk,α)∥ = 0. (17)

Meanwhile, a consequence of Proposition 3.3 is that the sequence {xνµk,α
} is bounded,

and therefore has an accumulation point, say x∗. Since Knν is closed, we also have that

x∗ ∈ Knν . By continuity of Fν , together with (17), we conclude that Fν(x∗) = 0. As this

contradicts our hypothesis on Fν , thus completing the proof. 2

We now summarize in Algorithm 1 our smoothing power penalty approach based on

Theorem 3.5 and Proposition 3.6. Naturally, we increase the penalty parameter when the

constraints of SOCCP (2) are violated, which is the essence of penalty-based methods.

However, note that an exact solution of (20) yields F (xµ,α) ∈ K, and therefore we only

need to keep track of whether or not the first constraint in the SOCCP (2) holds. Indeed,

this condition is satisfied if and only if λ1(x
ν) ≥ 0 for all ν = 1, . . . , r, that is,

β(x) := max{
(
−λ1(x1)

)
+
, . . . , (−λ1(xr))+} = 0. (18)

When this condition is not satisfied up to a certain tolerance, we increase α as indicated

in (19), and in this case, we also reset the value of the smoothing parameter µ to the

initial estimate µ0. On the other hand, we decrease µ if the current point nearly satis-

fies the first feasibility condition x ∈ K, since Proposition 3.6 implies that satisfaction

of this feasibility constraint is suggestive that the smoothing parameter is not yet suf-

ficiently small. In summary, our implementation’s update schemes for the penalty and

smoothing parameters are based on the satisfaction of the feasibility conditions of the

SOCCP, as inspired by Theorem 3.5 and Proposition 3.6. We note that another novel

implementation that has been used in the literature of smoothing techniques for comple-

mentarity problems involves the introduction of a merit function that incorporates the

smoothing parameter as a variable (for instance, see [1]). In this approach, the update

on the smoothing parameter is dictated by the descent on the formulated merit func-

tion. For nonlinear complementarity problems, this kind of implementation along with a

smoothing power penalty approach was used in [35].

Remark 3.7. Although our SPPA algorithm is applicable in general for continuous

functions F , the assumptions of most algorithms that are efficient for solving nonlinear

equations (e.g., Newton method) are quite prohibitive. Consequently, in Section 4, we

only consider differentiable functions F similar to the existing works in SOCCP literature

[13, 23]. In turn, this allows us to take advantage of our smoothing approach as the left-

hand side of (20) is indeed a differentiable function, therefore permitting the use of
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Algorithm 1: Smoothing Power Penalty Algorithm for SOCCP (SPPA)

Choose an initial point x0 ∈ IRn, an initial penalty parameter α0 > 0, an initial

smoothing parameter µ0 ∈ (0, 1), and a termination parameter ϵ. Choose

parameters c1 > 1 and c2 ∈ (0, 1), a power parameter σ > 0, and feasibility

tolerance parameter τ ∈ (0, 1). Set µ̄ = µ0 and k = 0.

Step 1. Terminate the algorithm if Residual(xk) < ϵ, where Residual is given in

(21). Otherwise, let βk = β(xk), where β is defined by (18), and set

(µk+1, αk+1) =

{
(µ̄, c1αk) if βk > τ,

(c2µk, αk) otherwise,
(19)

then go to Step 2.

Step 2. Obtain a solution of the nonlinear equation

F (x)− αkΦ
−(µk, x)

σ = 0, (20)

and denote it by xk+1. Set k ← k + 1 and go to Step 1.

Newton method for finding its zeros. As for the power parameter, Theorem 3.5 suggests

that a lower value of σ theoretically provides tighter error bounds, and is therefore

desirable to obtain faster convergence. However, setting σ ∈ (0, 1) renders equation

(20) more difficult to solve numerically, and so we set σ = 1 in our simulations.

4 Numerical experiments

In this section, we illustrate through numerous experiments the applicability and ef-

ficiency of our proposed SPPA algorithm for solving second-order cone linear comple-

mentarity problems (SOCLCP) and nonlinear complementarity problems (SOCNCP) in

Examples 4.1 and 4.2, respectively. We also test our approach for a special class of

SOCNCP, namely tensor complementarity problems (SOCTCP) in Example 4.3.

For the parameters of our algorithm, we universally set α0 = 106, µ0 = 10−6, c1 = 10,

c2 = 0.9, σ = 1 and τ = 10−6 all throughout our experiments. As indicated in Remark

3.7, we consider smooth instances of F , and therefore we employ Newton’s method for

approximately solving the smoothed penalized equation (20). For the smoothing function

ϕ−, we use ϕ−
1 (µ, t) = −t + µ ln(1 + exp(t/µ)) for problems involving functions F that

has the uniform Cartesian property. Otherwise, we use ϕ−
2 (µ, t) = 0.5(

√
4µ2 + t2 − t)

which has a better numerical behavior for general problems (for instance, when F is only
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a P0 function)5. Comparisons with two well-known algorithms, namely the combined

smoothing and regularized method called ReSNA6 in [23] and the smoothing Newton

Fischer-Burmeister (SNFB) algorithm in [13] are conducted. We used the default setting

of parameters of ReSNA and SNFB. These algorithms are similar in nature to ours,

in the sense that a Newton direction is computed at every iteration. To obtain a fair

comparison, we terminate the algorithms when the residual given by

Residual(x) := max
ν=1,...,r

{∥xν − [xν − F (xν)]+∥} (21)

is less than ϵ = 10−6 at the current iteration x = xk (see [15, Proposition 1.5.8]), or when

the maximum number of iterations is reached, which we set to 100 for SPPA and SNFB,

and to 50 for ReSNA (default value).

All tests are implemented in MATLAB R2021a in a laptop with 8GB RAM and Intel

Core i7 at 2.6 GHz. The results of our experiments are summarized in Tables 1-5. NI

denotes the number of Newton iterations conducted by the algorithm, while CPU is the

time (in seconds) needed to obtain a point x∗ satisfying Residual(x∗) < 10−6. An entry

“−” indicates that the corresponding algorithm for the given initial point x0 did not

reach the required residual value. The vectors 0 and 1 denote the zero vector and the

vector consisting of ones, respectively, while e = (e1, e2, . . . , er), where eν is the identity

element in Knν .

For small dimensional linear, nonlinear, and tensor complementarity problems pre-

sented in Tables 1, 3, and 4, respectively, our approach is quite competitive: It obtains

an SOCCP solution in at most one-hundredth or one-thousandth of a second, and often

outperforms ReSNA and SNFB. Moreover, our SPPA is relatively more consistent in

solving the SOCCPs, whereas ReSNA and SNFB do not always arrive at an SOCCP

solution,

On the other hand, we can see from Tables 2 and 5 that our algorithm can signifi-

cantly outperform both ReSNA and SNFB for larger dimensional problems. For instance,

observe from Table 5 that for n = 100, SPPA solved SOCTCP3 for all initial points con-

sidered, whereas ReSNA failed to solve the problem when x0 = 10 · 1. For the initial

points x0 ∈ {e, 10 · 1}, SNFB is marginally faster than our algorithm, but for the initial

point x0 = ±1, our algorithm significantly outperforms SNFB.

Example 4.1 (SOCLCP test problems). We test different functions F (x) = Ax− b and
cones K described below.

5In our numerical experiments, we only used ϕ−
2 for the test problem SOCTCP3.

6The codes for ReSNA are publicly available and can be downloaded from http://optima.ws.hosei.

ac.jp/hayashi/ReSNA/.
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Table 1: Comparison of algorithms for solving SOCLCPs using the smoothing function

ϕ−
1 .

Test Problem Algorithm

x0 = 0 x0 = 1 x0 = e x0 = −1

NI CPU NI CPU NI CPU NI CPU

SOCLCP1

SPPA 9 0.0002 11 0.0002 10 0.0002 11 0.0003

ReSNA 7 0.0009 8 0.0008 6 0.0006 6 0.0005

SNFB − − 9 0.0004 − − − −

SOCLCP2

SPPA 17 0.0003 14 0.0003 15 0.0009 12 0.0002

ReSNA 6 0.0006 4 0.0004 7 0.0007 7 0.0006

SNFB 7 0.0004 − − − − − −

SOCLCP3

SPPA 32 0.0008 32 0.0007 30 0.0009 34 0.0011

ReSNA 6 0.0010 6 0.0007 5 0.0007 6 0.0008

SNFB 9 0.0008 8 0.0005 − − 9 0.0006

SOCLCP4

SPPA 33 0.0009 32 0.0008 31 0.0008 36 0.0009

ReSNA 8 0.0009 8 0.0009 7 0.0007 6 0.0007

SNFB 8 0.0007 8 0.0007 6 0.0004 8 0.0005

SOCLCP1 ([12]). A =


15 −5 −1 4 −5
0 5 0 0 1

1 −3 8 2 −3
2 −4 2 9 −4
0 −5 0 0 10

, b =


0

0

0

0

1

, and K = K5

SOCLCP2 ([12]). A =

 21 −9 18

−9 4 −7
18 −7 19

, b =

 −3−7
−1

, and K = K3.

SOCLCP3 ([19]). A as given in SOCLCP2, b = (3, 0, 2, 2, 5)T , and K = K3 ×K2.

SOCLCP4 ([19]).

A =



3.9475 1.1370 −0.3462 −0.1258 −1.2034 −0.4979 −1.0337
1.1370 3.5593 −1.2955 −0.4391 −0.3009 −0.6016 −0.0404
−0.3462 −1.2955 5.0908 −1.1187 −0.6652 −1.5541 −1.0419
−0.1258 −0.4391 −1.1187 3.5778 −0.4033 −0.1402 −0.1991
−1.2034 −0.3009 −0.6652 −0.4033 2.9766 0.3725 0.0995

−0.4979 −0.6016 −1.5541 −0.1402 0.3725 4.8431 −0.5048
−1.0337 −0.0404 −1.0419 −0.1991 0.0995 −0.5048 4.0049


b = (2,−1, 3,−2, 4,−1, 3)T ,

and K = K3 ×K4.
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SOCLCP5 ([23]). A is randomly generated by setting A = BBT , where B ∈ IRn×r

with entries uniformly sampled from [−1, 1]. The vector b is set to b = Ae −

10αn0.5p, where p = 1√
2

(
cos θ

(
1

w

)
+ sin θ

(
1

−w

))
∈ intKn, θ randomly chosen

from (0, π/2), w ∈ IRn−1 with entries randomly chosen from [−1, 1], and α randomly

chosen from [−1, 1]. The cone is K = Kn.

Table 3: Comparison of algorithms for solving SOCNCPs using the smoothing function

ϕ−
1 .

Test Problem Algorithm

x0 = 0 x0 = 1 x0 = e x0 = −1

NI CPU NI CPU NI CPU NI CPU

SOCNCP1

SPPA 41 0.0009 19 0.0005 − − 34 0.0010

ReSNA 8 0.0012 7 0.0008 8 0.0010 7 0.0009

SNFB 8 0.0006 8 0.0005 8 0.0004 7 0.0004

SOCNCP2

SPPA 46 0.0021 46 0.0016 48 0.0018 45 0.0031

ReSNA 8 0.0031 27 0.0092 − − 12 0.0031

SNFB 15 0.0052 10 0.0016 10 0.0018 13 0.0022

SOCNCP3

SPPA 46 0.0047 62 0.0079 − − 465 0.0165

ReSNA − − − − − − − −
SNFB 8 0.0007 9 0.0007 9 0.0007 13 0.0023

SOCNCP4

SPPA 23 0.0006 24 0.0005 25 0.0005 23 0.0005

ReSNA 9 0.0010 9 0.0010 8 0.0011 10 0.0012

SNFB − − 12 0.0013 12 0.0016 − −

SOCNCP5

SPPA 15 0.0007 15 0.0006 14 0.0006 15 0.0006

ReSNA 5 0.0008 6 0.0010 5 0.0008 6 0.0010

SNFB 9 0.0012 10 0.0015 − − − −

Example 4.2 (SOCNCP test problems). We test different nonlinear functions F and

cones K as follows.

SOCNCP1 ([12, 20, 23]). F (x) =

 0.07x31 − 4

0.04x32 − 3.93

0.03x33 − 5.72

 and K = K3.

SOCNCP2 ([12, 33]).

F (x) =


24(2x1 − x2)

3 + ex1−x3 − 4x4 + x5
−12(2x1 − x2)

3 + 3(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 6x4 − 7x5
−ex1−x3 + 5(3x2 + 5x3)/

√
1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1

−x1 + 7x2 − 5x3 + 2
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and K = K3 ×K2.

SOCNCP3 ([20]). F (x) =

(
ea

T x1

1+eaT x1
a+ cT x1√

3+(cT x1)2
c+ d− ATx2

Ax1 + b

)
, where

a = (10, 5,−4,−8)T , b = (1, 0, 0, 0)T , c = (6, 2,−3,−5)T
d = (6, 3.5,−7.5,−3.5)T , A = diag(5/3, 1,−4, 2),

and K = K4 ×K4.

SOCNCP4 ([29]). F (x) =


2x1 + 2x2 − 10 + x3 + 2(x1 + 1)x4
2x1 + 4x2 − 12− 3x3 + 2(x2 − 1)x4

8− x1 + 3x2
3− x21 − 2x1 + 2x2 − x22


and K = K2 ×K2.

SOCNCP5 ([33]).

F (x) =



2x1 + x2 + 1

x1 + 6x2 − x3 − 2

−x2 + 3x3 − 6
5
x4 + 3

−6
5
x3 + 2x4 +

1
2
sinx4 cosx5 sinx6 + 6

1
2
cosx4 sinx5 sinx6 + 2x5 − 5

2

−1
2
cosx4 cosx5 cosx6 + 2x6 +

1
4
cosx6 sinx7 cosx8 + 1

1
4
sinx6 cosx7 cosx8 + 4x7 − 2

−1
4
sinx6 sinx7 sinx8 + 2x8 +

1
2


and K = K3 ×K3 ×K2.

Example 4.3 (SOCTCP test problems). We consider the second-order cone comple-

mentarity problem which involves a tensor A = (ai1i2···im) ∈ Tm(IRn) (ij ∈ {1, . . . , n}),
a function F (x) = A xm−1 − b where A xm−1 ∈ IRn with components

(A xm−1)i :=
m∑

i2,i3,··· ,im=1

aii2···imxi2xi3 · · ·xim , ∀i ∈ {1, . . . , n},

and K = Kn. We test different tensors A from the indicated references.
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SOCTCP1 ([32]) The entries of A are listed below

A (:, :, 1) =

0.4333 0.4278 0.4140

0.8154 0.0199 0.5598

0.0643 0.3815 0.8834


A (:, :, 2) =

0.4866 0.8087 0.2073

0.7641 0.9924 0.8752

0.6708 0.8296 0.1325


A (:, :, 3) =

0.3871 0.0769 0.3151

0.1355 0.7727 0.4089

0.9715 0.7726 0.5526


and we set b = (−4,−3, 1)T .

SOCTCP2 A ∈ T4(IR2) with nonzero entries A1ij1 = 1 and A2ij2 = −2 for all i, j ∈
{1, 2} and we set b = (−1, 1)T .

SOCTCP3 ([14]) A ∈ T4(IRn) such that Ai1i2i3i4 = arctan(i1i
2
2i

3
3i

4
4), and we set b =

−e.

Table 4: Comparison of algorithms for solving SOCTCP1 and SOCTCP2 using the

smoothing function ϕ−
1 . Note that 0 is a solution of SOCTCP1 and SOCTCP2.

Test Problem Algorithm

x0 = 1 x0 = e x0 = −1 x0 = 10 · 1

NI CPU NI CPU NI CPU NI CPU

SOCTCP1

SPPA 29 0.0014 29 0.0011 28 0.0010 48 0.0028

ReSNA − − − − 5 0.0010 − −
SNFB − − − − − − 12 0.0014

SOCTCP2

SPPA 18 0.0010 18 0.0007 13 0.0006 24 0.0009

ReSNA 16 0.0027 16 0.0028 − − 4 0.0007

SNFB 13 0.0023 13 0.0023 − − 19 0.0020

5 Conclusions

In this work, we proposed a smoothing power penalty approach for solving the SOCCP

(2), wherein the SOCCP (2) is approximated by a nonlinear equation with power penalty

and smoothing parameters. Under the assumption that the function involved has the

uniform ξ-P property, we provided a theoretical guarantee that the solution sequence of

the APE (10) converges to the unique solution of the SOCCP (2). Our proposed algorithm

yields promising performance as compared with two existing well-known methods in the
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Table 5: Comparison of algorithms for solving SOCTCP3 for different values of n using

the smoothing function ϕ−
2 . Note that 0 is a solution of SOCTCP3 for any n.

Dimension Algorithm

x0 = 1 x0 = e x0 = −1 x0 = 10 · 1

NI CPU NI CPU NI CPU NI CPU

n = 5

SPPA 14 0.0068 11 0.0019 29 0.0051 36 0.0075

ReSNA 14 0.0148 6 0.0036 11 0.0056 6 0.0028

SNFB 14 0.0078 8 0.0027 12 0.0026 20 0.0113

n = 10

SPPA 27 0.0351 15 0.0125 34 0.0278 18 0.0147

ReSNA 15 0.0262 6 0.0134 5 0.0072 13 0.0260

SNFB 14 0.0201 9 0.0114 14 0.0099 19 0.0150

n = 20

SPPA 20 0.0700 33 0.0994 16 0.0441 43 0.1076

ReSNA 5 0.0264 6 0.0326 13 0.0760 21 0.1012

SNFB 16 0.0704 9 0.0606 16 0.0681 22 0.0988

n = 50

SPPA 18 0.7924 28 1.2155 24 1.0365 32 1.3768

ReSNA 15 1.3777 6 0.5939 16 1.4744 26 2.4700

SNFB 21 1.5373 9 0.3724 20 1.4494 24 0.9822

n = 100

SPPA 36 23.7014 23 15.1790 15 9.9174 39 25.6518

ReSNA 22 29.3993 9 14.5196 10 13.8577 − −
SNFB 27 74.8485 8 5.2614 29 84.3143 26 16.8180

literature, as we have shown in our extensive numerical experiments involving second-

order cone linear, nonlinear, and tensor complementarity problems.
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