
Journal of Global Optimization (2025) 91:39–58
https://doi.org/10.1007/s10898-024-01427-8

Smoothing penalty approach for solving second-order cone
complementarity problems

Chieu Thanh Nguyen1 · Jan Harold Alcantara2 · Zijun Hao3 · Jein-Shan Chen4

Received: 7 July 2023 / Accepted: 18 August 2024 / Published online: 18 September 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In this paper, we propose a smoothing penalty approach for solving the second-order cone
complementarity problem (SOCCP). The SOCCP is approximated by a smooth nonlinear
equation with penalization parameter. We show that any solution sequence of the approx-
imating equations converges to the solution of the SOCCP under the assumption that the
associated function of the SOCCP satisfies a uniform Cartesian-type property. We present a
corresponding algorithm for solving the SOCCP based on this smoothing penalty approach,
and we demonstrate the efficiency of our method for solving linear, nonlinear and tensor
complementarity problems in the second-order cone setting.

Keywords Second-order cone · Nonlinear complementarity problem · Penalty method

Mathematics Subject Classification 90C25 · 90C30 · 90C33

The author’s work is supported by the Natural Science Fund of Ningxia (No. 2022AAC03235). The author’s
work is supported by the National Science and Technology Council, Taiwan.

B Jein-Shan Chen
jschen@math.ntnu.edu.tw

Chieu Thanh Nguyen
ntchieu@vnua.edu.vn

Jan Harold Alcantara
janharold.alcantara@riken.jp

Zijun Hao
zijunhao@126.com

1 Department of Mathematics, Faculty of Information Technology, Vietnam National University of
Agriculture, Hanoi 131000, Vietnam

2 Center for Advanced Intelligence Project, RIKEN, Tokyo 103-0027, Japan

3 School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China

4 Department of Mathematics, National Taiwan Normal University, Taipei 116059, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-024-01427-8&domain=pdf
http://orcid.org/0000-0002-4596-9419

40 Journal of Global Optimization (2025) 91:39–58

1 Introduction

Let K be the Cartesian product of second-order cones (SOCs), also called Lorentz cones [9,
16], described by

K:=Kn1 × · · · × Knr (1)

with r , n1, . . . , nr ≥ 1, n1 + · · · + nr = n and

Kni := {
(x1, x2) ∈ R × Rni−1 | ‖x2‖ ≤ x1

}
,

where ‖ · ‖ denotes the Euclidean norm and (x1, x2):=(x1, xT2)T . Note that K1 denotes
the set of nonnegative real numbers R+. In this paper, we consider the second-order cone
complementarity problem (SOCCP), which involves finding a vector x ∈ Rn such that

x ∈ K, F(x) ∈ K, 〈x, F(x)〉 = 0, (2)

where 〈·, ·〉 is the Euclidean inner product and F = (F1, F2, . . . , Fr) with continuously
differentiable functions Fi : Rn → Rni , i = 1, 2, . . . , r . In particular, when F is affine,
SOCCP (2) reduces to the second-order cone linear complementarity problem (SOCLCP).

The SOCCP (2) is an extension of the nonlinear complementarity problem (NCP), which
corresponds to the case whereK = Rn+, while the special case of SOCLCPwithK = Rn+ is a
generalization of the standard linear complementarity problem (LCP). These problems have
a broad range of applications in economics, engineering problems and robust Nash equilibria
(see [5, 17, 24] and the references therein). Moreover, they can also be obtained from the
KKT optimality conditions of the nonlinear second-order cone programming (SOCP):

min f (x)
s.t Ax = b, x ∈ K,

where f : Rn → R is a convex twice continuously differentiable function, A is an m × n
matrix with m ≤ n, rank A = m, b ∈ Rm .

There are various methods for solving SOCCP including the interior-point method [3,
28, 30], the smoothing Newton method [13, 18, 26], the smoothing-regularization approach
[22], the semismooth Newton method [27, 31], the merit function approach [7, 8, 11], and the
matrix splitting method [21, 37], among others. Recently, power penalty methods for linear
and nonlinear complementarity problems (that is, K = Rn+) were proposed in [25, 36], and
this approach is extended to the general SOCCP problem (2) by Hao et al. in [20]. In this
approach, the complementarity problem is approximated by an equation of the form

F(x) − α[x]σ− = 0, (3)

where σ > 0 is a power parameter, α > 0 is the penalty parameter, and [x]− denotes
projection of the vector −x onto the cone K. By letting the penalty parameter go to infinity,
it was shown in the aforementioned works that the corresponding solution sequence of the
approximate nonlinear equations converges to the solution of the complementarity problem
under certainmonotonicity assumptions on F .While theoretically appealing, themain hurdle
lies in the development of solution methods due to the nonsmoothnes of the projection
operator in the equation (3).

To deal with the nonsmoothness that prohibits the use of available efficient numerical
methods for solving (3), the recent work [19] focused on the SOCLCP case (i.e., F is affine)
and used a novel smoothing function approach to approximate the projection [x]− in (3)
for the SOCLCP problem. Motivated by this approach, we extend the framework to the
general SOCCP (2), where the function F may be nonlinear, and we also propose a practical

123

Journal of Global Optimization (2025) 91:39–58 41

smoothing power penalty algorithm by utilizing the smoothing functions in [6]. We provide
theoretical guarantees under the assumption that F is a uniform ξ -P function, a class of
functions introduced in [34], which is larger than the one considered in [20]. In particular, we
show that the smoothing approximation of equation (3) has a unique solution, and we derive
an error bound of order O(α−1/ξσ) between the solution sequence of the approximating
penalty equations and the solution of the SOCCP (2). Therefore, our main contributions are
threefold: First, we significantly generalize and improve the algorithm proposed in [19] that
only considers affine functions F with positive definite Jacobian. Second, our theoretical
framework is applicable to uniform ξ -P functions which subsumes the class of monotonic
functions in [20]. Finally, as opposed to [20], our algorithm has a practical implementation
due to the smoothing strategy that permits the use of derivative-based algorithms for solving
systems of equations. Indeed, we demonstrate the applicability and efficiency of our proposed
algorithm through numerical experiments involving affine and nonlinear functions F , as well
as applications to second-order cone tensor complementarity problems.

This paper is organized as follows: In Sect. 2, we briefly introduce some properties related
to the second-order cone that will be useful in our subsequent analysis. We also present
smoothing approximations for the function [x]σ−. In Sect. 3, we prove our main convergence
results under the uniform ξ -P assumption. Extensive numerical experiments are presented in
Sect. 4, and concluding remarks are given in Sect. 5.

2 Preliminaries

2.1 The second-order cone

We review some definitions and properties for the case of single block second-order cone
K = Kn ; most of the materials herein can be found in [9, 16, 18]. For any x = (x1, x2) ∈ R×
Rn−1, y = (y1, y2) ∈ R×Rn−1, their Jordan product is defined as x ◦ y = (〈x, y〉 , y1x2 +
x1y2). The spectral decomposition of x with respect to the SOC is given by

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

where for i = 1, 2,

λi (x) = x1 + (−1)i‖x2‖, u(i)
x =

{
1
2

(
1, (−1)i x2‖x2‖

)
if ‖x2‖
= 0,

1
2 (1, (−1)iw) if ‖x2‖ = 0,

(4)

with w ∈ Rn−1 being any unit vector. The two scalars λ1(x) and λ2(x) are called spectral
values of x , while the two vectors u(1)

x and u(2)
x are called the spectral vectors of x .

For any x ∈ Rn , let [x]+ denote the projection of x onto Kn , and [x]− be the projection
of −x onto Kn , that is, [x]− = [−x]+. It is well-known that x = [x]+ − [x]−, and we also
have the following useful formulas:

[x]+ = [λ1(x)]+u(1)
x + [λ2(x)]+u(2)

x , [x]− = [λ1(x)]−u(1)
x + [λ2(x)]−u(2)

x , (5)

and

[x]σ+ = [λ1(x)]σ+u(1)
x + [λ2(x)]σ+u(2)

x , [x]σ− = [λ1(x)]σ−u(1)
x + [λ2(x)]σ−u(2)

x ,

where σ > 0, [t]+ = max{0, t} and [t]− = max{0,−t} for t ∈ R (see [9], for instance). We
also have that [x]+, [x]− ∈ Kn and [x]+ ◦ [x]− = 0.

The following results play an important role in our convergence analysis.

123

42 Journal of Global Optimization (2025) 91:39–58

Proposition 2.1 [9, 16, 18] For any x = (x1, x2) ∈ R × Rn−1 with the spectral values
λ1(x), λ2(x) and spectral vectors u

(1)
x , u(2)

x given as (4), we have:

(a) u(1)
x ◦ u(2)

x = 0 and u(i)
x ◦ u(i)

x = u(i)
x , ‖u(i)

x ‖2 = 1/2 for i = 1, 2.
(b) λ1(x), λ2(x) are nonnegative (positive) if and only if x ∈ Kn (x ∈ int(Kn), where int(Kn)

denotes the interior of Kn).
(c) For any x ∈ Rn, x ∈ Kn if and only if 〈x, y〉 ≥ 0 for all y ∈ Kn.
(d) The norm of x can be expressed in terms of λ1(x) and λ2(x) as follows:

‖x‖2 = 1

2
(λ21(x) + λ22(x)).

Lemma 2.2 For any x = (x1, x2) ∈ R×Rn−1, y = (y1, y2) ∈ R×Rn−1. ‖x1y2+ y1x2‖ ≤
‖x‖‖y‖
Proof By expanding the terms of ‖x1y2 + y1x2‖2 − ‖x‖2‖y‖2 and using Cauchy-Schwarz
inequality, the result immediately follows. ��
Lemma 2.3 For any x = (x1, x2) ∈ R × Rn−1, y = (y1, y2) ∈ R × Rn−1. Then the
following results hold:

(a) If y ∈ Kn then 〈x, y〉 ≤ 〈[x]+, y〉.
(b) ‖x ◦ y‖ ≤ √

2‖x‖‖y‖ and λ2(x ◦ y) = 2
〈
x ◦ y, u(2)

x◦y
〉
≤ 2‖x‖‖y‖.

Proof (a) holds by [4, Lemma 3.1], while (b) is a direct consequence of Lemma 2.2. ��

2.2 Smoothing approximation of the projection function with power parameter

From (5), we see that the nonsmoothness of the operator [x]− comes from the nonsmoothness
of the real-valued function [t]− = max(0,−t), which in turn renders the equation (3) to be
nonsmooth as well. To avoid this problem, we use smooth approximations. We say that
φ− : R++ × R → R is a smoothing function of [t]− = max(0,−t) if it satisfies the
following conditions:

(i) φ− is continuously differentiable at (μ, t) ∈ R++ × R;
(ii) lim

μ↓0φ−(μ, t) = [t]− for any t ∈ R.

In [6], a systematic framework of generating smoothing functions for the plus function
[t]+ = max(0, t) is developed using density functions. By using the property that [t]− =
[−t]+, we may then obtain smoothing functions for [t]−, and consequently for [x]− via (5).
Indeed, some specific smoothing functions of [t]− are also provided in [19].

Naturally, the function (φ−)σ is a candidate smoothing functionof [t]σ−,which is indeed the
case provided thatσ ≥ 1. For the sake of generality,wemake the following assumptions given
in Assumption 2.1 so that our framework applies to the general case σ > 0. Nevertheless,
Assumption 2.1 is not required when σ ≥ 1.We also note that there are numerous smoothing
functions satisfying Assumption 2.1. For instance, we may take φ−(μ, t):=ψ(μ,−t), where
ψ is a strictly positive smoothing function of the plus function generated in [2].

Assumption 2.1 (a) φ−(μ, t) is a stricly positive smoothing function of [t]−, i.e.,φ−(μ, t) >

0 for all μ > 0 and t ∈ R.
(b) Fixed μ > 0, (φ−(μ, t))′ is a monotonecally decreasing function for all t ∈ R.

123

Journal of Global Optimization (2025) 91:39–58 43

Lemma 2.4 Suppose that φ−(μ, t) satisfies Assumption 2.1(a). Then, for any σ > 0,
φ−(μ, t)σ is a smoothing function of [t]σ−.

Proof The proof is straightforward. ��

Using these smoothing functions, we now construct a smoothing function for [x]− asso-
ciated with the general SOC (1). Denote x = (x1, x2, . . . , xr) ∈ Rn so that [x]− =
([x1]−, [x2]−, . . . , [xr]−) ∈ K. Assume that φ−(μ, t) satisfies Assumption 2.1, then for
any σ > 0, we define the vector-valued functions

�−(μ, x):=(�−
1 (μ, x1),�−

2 (μ, x2), . . . , �−
r (μ, xr)), (6)

�−(μ, x)σ :=(�−
1 (μ, x1)σ ,�−

2 (μ, x2)σ , . . . , �−
r (μ, xr)σ), (7)

with �−
ν : R++ × Rnν → Rnν , ν ∈ {1, 2, . . . , r} given by

�−
ν (μ, xν):=φ− (

μ, λ1(x
ν)

)
u(1)
xν + φ− (

μ, λ2(x
ν)

)
u(2)
xν , (8)

�−
ν (μ, xν)σ :=φ− (

μ, λ1(x
ν)

)σ
u(1)
xν + φ− (

μ, λ2(x
ν)

)σ
u(2)
xν , (9)

where μ ∈ R++ is a parameter, λ1(xν), λ2(xν) are the spectral values, and u(1)
xν , u

(2)
xν are the

spectral vectors of xν as shown in (4).
As shown in the following lemma, the functions (6) and (7) serve as smooth approximations

of [x]− and [x]σ−, respectively. That is,
lim

μ→0+ �−(μ, x) = [x]−,

and

lim
μ→0+ �−(μ, x)σ = [x]σ−.

Lemma 2.5 Suppose that �−
ν (μ, xν), �−

ν (μ, xν)σ are defined in (8), (9), respectively. Then
�−

ν (μ, xν), �−
ν (μ, xν)σ are smooth onR++ × Rnν . Moreover,

lim
μ→0+ �−

ν (μ, xν) = [λ1(xν)]−u(1)
xν + [λ2(xν)]−u(2)

xν = [xν]−.

lim
μ→0+ �−

ν (μ, xν)σ = [λ1(xν)]σ−u(1)
xν + [λ2(xν)]σ−u(2)

xν = [xν]σ−.

Proof The proof follows from [10, Proposition 5] and Lemma 2.4. ��

The following result will later be important in our analysis.

Lemma 2.6 Suppose that �−
ν (μ, xν), �−

ν (μ, xν)σ are defined in (8), (9), respectively. Then,
the following hold.

(a) �−
ν (μ, xν) ∈ Knν and �−(μ, x) ∈ K; and

(b) �−
ν (μ, xν)σ ∈ Knν and �−(μ, x)σ ∈ K.

Proof The proof is analogous to that of [19, Lemma 3.2]. ��

123

44 Journal of Global Optimization (2025) 91:39–58

3 Smoothing power penalty algorithm

3.1 Convergence analysis

Inspired by Lemma 2.5, we propose a penalty approach for solving SOCCP (2). More pre-
cisely, we consider the approximate penalty equations (APEs): find x ∈ Rn such that

Hσ
μ,α(x):=F(x) − α�−(μ, x)σ = 0, (10)

where σ > 0 is a given power parameter, α > 0 is a penalty parameter and �−(μ, x)σ is
defined in (7). We denote a solution of (10) by xμ,α . Since the penalty term α�−(μ, x)σ

penalizes the negative part of x , the equation (10) is a penalized equation associated with
SOCCP (2). Moreover, from Lemma 2.6 and (10), it is easy to verify that F(xμ,α) ∈ K.
Hence, intuitively, a sequence of solutions {xμ,α} of (10) includes points that satisfy the
second feasibility condition in (2), while the penalization forces xμ,α to be in the cone K to
satisfy the first condition, and orthogonality is obtained in the limit by pre-multiplying (10)
by xTμ,α .

Our main goal is to show that indeed, any solution sequence {xμ,α} converges to a solution
of the SOCCP (2) when α → +∞ and μ → 0+. To this end, we consider the following
class of functions introduced in [34].

Definition 3.1 [34] F is a uniform ξ -P function for some ξ > 1, i.e., there exist ρ > 0 and
an index ν ∈ {1, 2, . . . , r} such that

〈
xν − yν, Fν(x) − Fν(y)

〉 ≥ ρ‖x − y‖ξ ∀x, y ∈ Rn .

An important property of the SOCCP (2) is that it has a unique solution when F is a
uniform ξ -P function, as shown in the following result.

Lemma 3.1 Suppose that F is a uniform ξ -P function for some ξ > 1. Then, the SOCCP (2)
has a unique solution.

Proof The proof follows by using the same arguments as Proposition 2.12 and Proposition
2.13 in [34] when we consider a closed convex cone K ⊂ Rn . ��

We will now show that the APE (10) also has a unique solution when F is a uniform ξ -P
function for some ξ > 1.

Lemma 3.2 Suppose that F is a uniform ξ -P function for some ξ > 1. Then for anyμ, α, σ >

0, the function Hσ
μ,α(x):=F(x) − α�−(μ, x)σ is a uniform ξ -P function.

Proof For simplicity, we denote �−
ν (·) ≡ �−

ν (μ, ·) where ν ∈ {1, 2, . . . , r} is an index such
that Definition 3.1 is satisfied. We also denote φ−(·) ≡ φ−(μ, ·). First, note that

〈
(xν − yν) ◦ (�−

ν (x)σ − �−
ν (y)σ), u(1)

yν

〉

=
〈
xν ◦ �−

ν (x)σ , u(1)
yν

〉
−

〈
xν ◦ �−

ν (y)σ , u(1)
yν

〉
−

〈
yν ◦ �−

ν (x)σ , u(1)
yν

〉
+

〈
yν ◦ �−

ν (y)σ , u(1)
yν

〉

=
〈
xν ◦ �−

ν (x)σ , u(1)
yν

〉
−

〈
xν , �−

ν (y)σ ◦ u(1)
yν

〉
−

〈
�−

ν (x)σ , yν ◦ u(1)
yν

〉
+

〈
yν ◦ �−

ν (y)σ , u(1)
yν

〉
.

We have
〈
xν ◦ �−

ν (x)σ , u(1)
yν

〉
=

〈
λ1(x

ν)φ−(λ1(x
ν))u(1)

xν + λ2(x
ν)φ−(λ2(x

ν))u(2)
xν , u(1)

yν

〉

123

Journal of Global Optimization (2025) 91:39–58 45

= λ1(x
ν)φ−(λ1(x

ν))
〈
u(1)
xν , u(1)

yν

〉
+ λ2(x

ν)φ−(λ2(x
ν))

〈
u(2)
xν , u(1)

yν

〉
.

〈
xν,�−

ν (y)σ ◦ u(1)
yν

〉
=

〈
λ1(x

ν)u(1)
xν + λ2(x

ν)u(2)
xν , φ−(λ1(y

ν))u(1)
yν

〉

= λ1(x
ν)φ−(λ1(y

ν))
〈
u(1)
xν , u(1)

yν

〉
+ λ2(x

ν)φ−(λ1(y
ν))

〈
u(2)
xν , u(1)

yν

〉
.

〈
�−

ν (x)σ , yν ◦ u(1)
yν

〉
=

〈
φ−(λ1(x

ν))u(1)
xν + φ−(λ2(x

ν))u(2)
xν , λ1(y

ν)u(1)
yν

〉

= λ1(y
ν)φ−(λ1(x

ν))
〈
u(1)
xν , u(1)

yν

〉
+ λ1(y

ν)φ−(λ2(x
ν))

〈
u(2)
xν , u(1)

yν

〉
.

〈
yν ◦ �−

ν (y)σ , u(1)
yν

〉
=

〈
λ1(y

ν)φ−(λ1(y
ν))u(1)

yν + λ2(y
ν)φ−(λ2(y

ν))u(2)
yν , u(1)

yν

〉

= 1

2
λ1(y

ν)φ−(λ1(y
ν)).

From the above equations, we get
〈
(xν − yν) ◦ (�−

ν (x)σ − �−
ν (y)σ), u(1)

yν

〉

= (
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ1(x
ν))

) 〈
u(1)
xν , u(1)

yν

〉

+ (
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ2(x
ν))

) 〈
u(2)
xν , u(1)

yν

〉

+ 1

2
λ1(y

ν)φ−(λ1(y
ν))

= 1

4

(
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ1(x
ν))

)
(

1 + xT2 y2
‖x2‖‖y2‖

)

+ 1

4

(
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ2(x
ν))

)
(

1 − xT2 y2
‖x2‖‖y2‖

)

+ 1

2
λ1(y

ν)φ−(λ1(y
ν)).

Similarly, we also have
〈
(xν − yν) ◦ (�−

ν (x)σ − �−
ν (y)σ), u(2)

yν

〉

= (
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ1(x
ν))

) 〈
u(1)
xν , u(2)

yν

〉

+ (
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ2(x
ν))

) 〈
u(2)
xν , u(2)

yν

〉

+ 1

2
λ2(y

ν)φ−(λ2(y
ν))

= 1

4

(
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ1(x
ν))

)
(

1 − xT2 y2
‖x2‖‖y2‖

)

+ 1

4

(
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ2(x
ν))

)
(

1 + xT2 y2
‖x2‖‖y2‖

)

+ 1

2
λ2(y

ν)φ−(λ2(y
ν)).

123

46 Journal of Global Optimization (2025) 91:39–58

Then
〈
(xν − yν) ◦ (�−

ν (x)σ − �−
ν (y)σ), u(1)

yν + u(2)
yν

〉

= A + B
xT2 y2

‖x2‖‖y2‖ + 1

2
λ1(y

ν)φ−(λ1(y
ν)) + 1

2
λ2(y

ν)φ−(λ2(y
ν)),

where

A:=1

4

(
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ1(x
ν))

)

+ 1

4

(
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ2(x
ν))

)

+ 1

4

(
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ1(x
ν))

)

+ 1

4

(
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ2(x
ν))

)

and

B:=1

4

(
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ1(x
ν))

)

− 1

4

(
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ1(y
ν)) − λ1(y

ν)φ−(λ2(x
ν))

)

− 1

4

(
λ1(x

ν)φ−(λ1(x
ν)) − λ1(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ1(x
ν))

)

+ 1

4

(
λ2(x

ν)φ−(λ2(x
ν)) − λ2(x

ν)φ−(λ2(y
ν)) − λ2(y

ν)φ−(λ2(x
ν))

)

Since φ−(·) is the monotonically decreasing by Assumption 2.1(b) and λ2(·) ≥ λ1(·), we
have

B = 1

4

(
φ−(λ1(y

ν)) − φ−(λ2(y
ν))

) (
λ2(x

ν) − λ1(x
ν)

)

+ 1

4

(
φ−(λ1(x

ν)) − φ−(λ2(x
ν))

) (
λ2(y

ν) − λ1(y
ν)

)

≥ 0.

It follows that
〈
(xν − yν) ◦ (�−

ν (x)σ − �−
ν (y)σ), u(1)

yν + u(2)
yν

〉

≤ A + B + 1

2
λ1(y

ν)φ−(λ1(y
ν)) + 1

2
λ2(y

ν)φ−(λ2(y
ν))

= 1

2

(
φ−(λ1(x

ν)) − φ−(λ1(y
ν))

) (
λ1(x

ν) − λ1(y
ν)

)

+ 1

2

(
φ−(λ2(x

ν)) − φ−(λ2(y
ν))

) (
λ2(x

ν) − λ2(y
ν)

)

≤ 0

which implies that
〈
xν − yν,�−

ν (μ, x)σ − �−
ν (μ, y)σ

〉 ≤ 0.

123

Journal of Global Optimization (2025) 91:39–58 47

This, together with the fact that F is a uniform ξ -P function, implies that
〈
xν − yν , (Hσ

μ,α)ν (x) − (Hσ
μ,α)ν (y)

〉
=

〈
xν − yν , Fν (x) − Fν (y) − α(�−

ν (μ, x)σ − �−
ν (μ, y)σ)

〉

≥ ρ‖x − y‖ξ .

The proof is complete. ��
The following proposition shows that if we start from a sufficiently small smoothing

parameter μ, the sequence of solutions of (10) for a fixed power parameter σ and penalty
parameter α is bounded, and therefore has accumulation points.

Proposition 3.3 Suppose that F is a uniform ξ -P function for some ξ > 1, and let σ > 0 and
α > 0 be given. Then, there exists δ > 0 such that the set {xμ,α ∈ Rn : xμ,α solves the APE
(10) and μ ∈ (0, δ]} is bounded.
Proof Since F is a uniform ξ -P function, there exist ρ > 0 and an index ν ∈ {1, 2, . . . , r}
such that

ρ‖xμ,α‖ξ ≤ 〈
xν
μ,α − 0, Fν(xμ,α) − Fν(0)

〉

= 〈
xν
μ,α, Fν(xμ,α)

〉 − 〈
xν
μ,α, Fν(0)

〉
. (11)

To proceed, we consider three cases. For convenience, we denote λ1 ≡ λ1(xν
μ,α) and

λ2 ≡ λ2(xν
μ,α).

Case 1: Suppose xν
μ,α ∈ Knν . From (10), (11) and using Cauchy-Schwarz inequality, we

have

ρ‖xμ,α‖ξ ≤ ‖xν
μ,α‖(α‖�−

ν (μ, xν
μ,α)σ ‖ + ‖Fν(0)‖)

≤ ‖xν
μ,α‖(α‖φ−(μ, λ1)

σ u(1) + φ−(μ, λ2)
σ u(2)‖ + ‖Fν(0)‖)

≤ ‖xμ,α‖(α‖√2φ−(μ, 0)σ ‖ + ‖Fν(0)‖), (12)

where the last inequality holds by the triangle inequality and the monotone decreasing prop-
erty of φ−(μ, t) with respect to t , since 0 ≤ λ1 ≤ λ2 in this case. From Lemma 2.4 we have
that limμ→0+ φ−(μ, 0)σ = 0. Hence, there exists a positive real number δ, such that

√
2α‖φ−(μ, 0)σ ‖ ≤ 1, ∀μ ∈ (0, δ]. (13)

It follows from (12) and (13) that

‖xμ,α‖ξ−1 ≤ 1

ρ
(1 + ‖Fν(0)‖).

Thus, ‖xμ,α‖ ≤
(
1+‖Fν (0)‖

ρ

) 1
ξ−1

.

Case 2: Suppose xν
μ,α ∈ −Knν , that is λ1 ≤ λ2 ≤ 0. Using Assumption 2.1(b), we have that

〈
xν
μ,α,�−

ν (μ, xν
μ,α)σ

〉 = 1

2

(
λ1φ

−(μ, λ1)
σ + λ2φ

−(μ, λ2)
σ
) ≤ 0.

This, together with (10) and (11), gives

ρ‖xμ,α‖ξ ≤ − 〈
xν
μ,α, Fν(0)

〉 ≤ ‖xν
μ,α‖‖Fν(0)‖ ≤ ‖xμ,α‖‖Fν(0)‖.

It follows that ‖xμ,α‖ ≤
(‖Fν (0)‖

ρ

) 1
ξ−1

.

123

48 Journal of Global Optimization (2025) 91:39–58

Case 3:Suppose xν
μ,α /∈ Knν ∪ −Knν . Under this case, we know that λ1 < 0 < λ2, and

therefore [xν
μ,α]+ = λ2u(2) and λ1φ

−(μ, λ1)
σ < 0 < λ2φ

−(μ, λ2)
σ . In turn,

α
〈
xν
μ,α,�−

ν (μ, xν
μ,α)σ

〉 = 1

2
α

(
λ1φ

−(μ, λ1)
σ + λ2φ

−(μ, λ2)
σ
)

≤
√
2

2

(√
2

2
λ2

)

αφ−(μ, λ2)
σ

≤
√
2

2
‖xν

μ,α‖αφ−(μ, λ2)
σ

≤ √
2‖xν

μ,α‖αφ−(μ, 0)σ , (14)

where the second inequality holds due to
√
2
2 λ2 = ‖[xν

μ,α]+‖ ≤ ‖xν
μ,α‖. It follows from (10),

(11), (13) and (14) that

ρ‖xμ,α‖ξ ≤ ‖xν
μ,α‖(√2αφ−(μ, 0)σ + ‖Fν(0)‖)

≤ ‖xμ,α‖(√2αφ−(μ, 0)σ + ‖Fν(0)‖)
≤ ‖xμ,α‖(1 + ‖Fν(0)‖).

Therefore,

‖xμ,α‖ ≤
(
1 + ‖Fν(0)‖

ρ

) 1
ξ−1

.

Setting M :=
(
1+‖Fν (0)‖

ρ

) 1
ξ−1

. From the above three cases, we obtain ‖xμ,α‖ ≤ M . Thus, the

proof is complete. ��
From Proposition 3.3 and the continuity of F , we have that for a fixed σ > 0 and α > 0,

the set {‖F(xμ,α)‖ : xμ,α solves APE (10) and μ ∈ (0, δ]} is bounded, provided that δ is
sufficiently small. Using the same techniques as in [20, Proposition 4.4], we can obtain the
following proposition.

Proposition 3.4 Suppose that F is a uniform ξ -P function for some ξ > 1. Let σ > 0, α > 0
and ν ∈ {1, 2, . . . , r}. Then, there exist positive constants Cν and δ > 0 such that

‖�−
ν (μ, xμ,α)‖ ≤ Cν

α1/σ ,

and
∥∥[xν

μ,α]−
∥∥ ≤ Cν

α1/σ , (15)

for all μ ∈ (0, δ].
We now prove our main result.

Theorem 3.5 Suppose that F is a uniform ξ -P function for some ξ > 1. Let σ > 0, α > 0,
and x∗ be the solution of SOCCP (2). Then, there exist positive constants C and δ > 0 such
that

‖x∗ − xμ,α‖ ≤ C

α1/ξσ
, ∀μ ∈ (0, δ]. (16)

123

Journal of Global Optimization (2025) 91:39–58 49

Proof Since x∗ solves the SOCCP (2), then we have that xν∗ ∈ Knν , Fν(x∗) ∈ Knν , and
〈xν∗ , Fν(x∗)〉 = 0. From Lemma 2.3 and using the Cauchy-Schwarz inequality, we have

ρ‖x∗ − xμ,α‖ξ ≤ 〈
xν∗ − xν

μ,α, Fν(x∗) − Fν(xμ,α)
〉

= 〈
xν
μ,α, Fν(xμ,α)

〉 + 〈
xν∗ ,−Fν(xμ,α)

〉 + 〈−xν
μ,α, Fν(x∗)

〉

≤ λ2(x
ν
μ,α ◦ Fν(xμ,α)) + 〈[−Fν(xμ,α)]+, xν∗

〉 + 〈[−xν
μ,α]+, Fν(x∗)

〉

≤ λ2([xν
μ,α ◦ Fν(xμ,α)]+) + ‖[−Fν(xμ,α)]+‖‖xν∗‖ + ‖[−xν

μ,α]+‖‖Fν(x∗)‖
≤ √

2‖[xν
μ,α ◦ Fν(xμ,α)]+‖ + ‖[Fν(xμ,α)]−‖‖xν∗‖ + ‖[xν

μ,α]−‖‖Fν(x∗)‖.
Since

xν
μ,α ◦ Fν(xμ,α) = α[xν

μ,α ◦�−
ν (μ, xμ,α)σ] = α[λ1φ−(μ, λ1)

σ u(1)
xν
μ,α

+λ2φ
−(μ, λ2)

σ u(2)
xν
μ,α

],
it follows that

[Fν(xμ,α) ◦ xν
μ,α]+ =

⎧
⎪⎨

⎪⎩

α[λ1φ−(μ, λ1)
σ u(1)

xν
μ,α

+ λ2φ
−(μ, λ2)

σ u(2)
xν
μ,α

] if xν
μ,α ∈ Knν ,

0 if xν
μ,α ∈ −Knν ,

αλ2φ
−(μ, λ2)

σ u(2)
xν
μ,α

otherwise.

If xν ∈ Knν , then using the Cauchy-Schwarz inequality and Proposition 2.1(d), we have that

α[λ1φ−(μ, λ1)
σ u(1)

xν
μ,α

+ λ2φ
−(μ, λ2)

σ u(2)
xν
μ,α

] ≤ α√
2

(
λ1φ

−(μ, λ1)
σ + λ2φ

−(μ, λ2)
σ
)

≤ α√
2

√
λ21 + λ22

√
φ−(μ, λ1)2σ + φ−(μ, λ2)2σ

≤ √
2α‖xν‖φ−(μ, 0)σ ‖

≤ √
2α‖xμ,α‖φ−(μ, 0)σ

≤ √
2αMφ−(μ, 0)σ ,

where M is the constant stipulated in the proof of Proposition 3.3, and satisfies ‖xμ,α‖ ≤ M .

It follows from Case 3 of Proposition 3.3 that ‖αλ2φ
−(μ, λ2)

σ u(2)
xν
μ,α

‖ ≤ √
2αMφ−(μ, 0)σ .

Hence, we obtain

‖[Fν(xμ,α) ◦ xν
μ,α]+‖ ≤ √

2αMφ−(μ, 0)σ .

Since limμ→0+ φ−(μ, 0)σ = 0, for any α > 0, there exists a positive real number δ such
that √

2αM‖φ−(μ, 0)σ ‖ ≤ 1

α1/σ , ∀μ ∈ (0, δ].
Therefore,

‖[Fν(xμ,α) ◦ xν
μ,α]+‖ ≤ 1

α1/σ .

On the other hand, since Fν(xμ,α) ∈ Knν , ν = 1, 2, . . . , r , we have ‖[Fν(xμ,α)]−‖ = 0. All
of these in conjunction with (15) lead to

ρ‖x∗ − xμ,α‖ξ ≤ 1

α1/σ + Cν‖Fν(x∗)‖
α1/σ .

Therefore, (16) holds with C :=
(
1+Cν‖Fν (x∗)‖

ρ

) 1
ξ
, thus completing the proof. ��

123

50 Journal of Global Optimization (2025) 91:39–58

3.2 Implementation of the algorithm

In light of Theorem 3.5, we develop an algorithm that solves a sequence of APEs (10) with
α → +∞ and μ → 0+ in order to obtain the solution of the SOCCP (2). One important
aspect towards practical implementation of the algorithm is the development of a procedure
to increase α and decrease μ. To this end, we propose a scheme to manage these parameters
based on Proposition 3.6 below.

Proposition 3.6 Let α > 0 and σ > 0, and suppose that Fν has no zeros for some ν ∈
{1, 2, . . . , r}, that is, Fν(x)
= 0 for any x ∈ Rn. Then, there exists δ > 0 such that the νth

block of xμ,α does not belong to Knν for all μ ∈ (0, δ], that is, xν
μ,α /∈ Knν .

Proof Suppose otherwise. Then there exists a sequence {μk} with μk → 0 such that xν
μk ,α

belongs to Knν for all k. From (10), we have

‖Fν(xμk ,α)‖ = α‖�−
ν (μk , x

ν
μk ,α

)σ ‖ = α‖φ−(μk , η1)
σ v(1) + φ−(μk , η2)

σ v(2)‖ ≤ √
2αφ−(μk , 0)

σ .

Since limμ→0+ φ−(μ, 0)σ = 0 by Lemma 2.4, we have that

lim
k→∞ ‖Fν(xμk ,α)‖ = 0. (17)

Meanwhile, a consequence of Proposition 3.3 is that the sequence {xν
μk ,α

} is bounded, and
therefore has an accumulation point, say x∗. SinceKnν is closed, we also have that x∗ ∈ Knν .
By continuity of Fν , together with (17), we conclude that Fν(x∗) = 0. As this contradicts
our hypothesis on Fν , thus completing the proof. ��

We now summarize in Algorithm 1 our smoothing power penalty approach based on
Theorem 3.5 and Proposition 3.6. Naturally, we increase the penalty parameter when the
constraints of SOCCP (2) are violated, which is the essence of penalty-based methods.
However, note that an exact solution of (20) yields F(xμ,α) ∈ K, and therefore we only
need to keep track of whether or not the first constraint in the SOCCP (2) holds. Indeed, this
condition is satisfied if and only if λ1(xν) ≥ 0 for all ν = 1, . . . , r , that is,

β(x):=max{(−λ1(x
1)

)
+ , . . . ,

(−λ1(x
r)

)
+} = 0. (18)

When this condition is not satisfied up to a certain tolerance, we increase α as indicated in
(19), and in this case, we also reset the value of the smoothing parameter μ to the initial
estimate μ0. On the other hand, we decrease μ if the current point nearly satisfies the first
feasibility condition x ∈ K, since Proposition 3.6 implies that satisfaction of this feasibility
constraint is suggestive that the smoothing parameter is not yet sufficiently small. In summary,
our implementation’s update schemes for the penalty and smoothing parameters are based on
the satisfaction of the feasibility conditions of the SOCCP, as inspired by Theorem 3.5 and
Proposition 3.6.We note that another novel implementation that has been used in the literature
of smoothing techniques for complementarity problems involves the introduction of a merit
function that incorporates the smoothing parameter as a variable (for instance, see [1]). In this
approach, the update on the smoothing parameter is dictated by the descent on the formulated
merit function. For nonlinear complementarity problems, this kind of implementation along
with a smoothing power penalty approach was used in [35].

Remark 3.7 Although our SPPA algorithm is applicable in general for continuous functions
F , the assumptions of most algorithms that are efficient for solving nonlinear equations (e.g.,

123

Journal of Global Optimization (2025) 91:39–58 51

Algorithm 1: Smoothing Power Penalty Algorithm for SOCCP (SPPA)

Choose an initial point x0 ∈ Rn , an initial penalty parameter α0 > 0, an initial smoothing parameter
μ0 ∈ (0, 1), and a termination parameter ε. Choose parameters c1 > 1 and c2 ∈ (0, 1), a power
parameter σ > 0, and feasibility tolerance parameter τ ∈ (0, 1). Set μ̄ = μ0 and k = 0.

Step 1. Terminate the algorithm if Residual(xk) < ε, where Residual is given in (21). Otherwise, let
βk = β(xk), where β is defined by (18), and set

(μk+1, αk+1) =
{

(μ̄, c1αk) if βk > τ,

(c2μk , αk) otherwise,
(19)

then go to Step 2.
Step 2. Obtain a solution of the nonlinear equation

F(x) − αk�
−(μk , x)

σ = 0, (20)

and denote it by xk+1. Set k ← k + 1 and go to Step 1.

Newton method) are quite prohibitive. Consequently, in Sect. 4, we only consider differen-
tiable functions F similar to the existing works in SOCCP literature [13, 23]. In turn, this
allows us to take advantage of our smoothing approach as the left-hand side of (20) is indeed
a differentiable function, therefore permitting the use of Newton method for finding its zeros.
As for the power parameter, Theorem 3.5 suggests that a lower value of σ theoretically pro-
vides tighter error bounds, and is therefore desirable to obtain faster convergence. However,
setting σ ∈ (0, 1) renders equation (20) more difficult to solve numerically, and so we set
σ = 1 in our simulations.

4 Numerical experiments

In this section, we illustrate through numerous experiments the applicability and efficiency
of our proposed SPPA algorithm for solving second-order cone linear complementarity prob-
lems (SOCLCP) and nonlinear complementarity problems (SOCNCP) in Examples 1 and 2,
respectively. We also test our approach for a special class of SOCNCP, namely tensor com-
plementarity problems (SOCTCP) in Example 3.

For the parameters of our algorithm, we universally set α0 = 106, μ0 = 10−6, c1 = 10,
c2 = 0.9, σ = 1 and τ = 10−6 all throughout our experiments. As indicated in Remark
3.7, we consider smooth instances of F , and therefore we employ Newton’s method for
approximately solving the smoothed penalized equation (20). For the smoothing function
φ−, we use φ−

1 (μ, t) = −t+μ ln(1+exp(t/μ)) for problems involving functions F that has

the uniform Cartesian property. Otherwise, we use φ−
2 (μ, t) = 0.5(

√
4μ2 + t2 − t) which

has a better numerical behavior for general problems (for instance, when F is only a P0
function).1 Comparisons with two well-known algorithms, namely the combined smoothing
and regularizedmethod calledReSNA2 in [23] and the smoothingNewtonFischer-Burmeister
(SNFB) algorithm in [13] are conducted.We used the default setting of parameters of ReSNA
and SNFB. These algorithms are similar in nature to ours, in the sense that a Newton direction

1 In our numerical experiments, we only used φ−
2 for the test problem SOCTCP3.

2 The codes for ReSNA are publicly available and can be downloaded from http://optima.ws.hosei.ac.jp/
hayashi/ReSNA/.

123

http://optima.ws.hosei.ac.jp/hayashi/ReSNA/
http://optima.ws.hosei.ac.jp/hayashi/ReSNA/

52 Journal of Global Optimization (2025) 91:39–58

Table 1 Comparison of algorithms for solving SOCLCPs using the smoothing function φ−
1

Test Problem Algorithm x0 = 0 x0 = 1 x0 = e x0 = −1
NI CPU NI CPU NI CPU NI CPU

SOCLCP1 SPPA 9 0.0002 11 0.0002 10 0.0002 11 0.0003

ReSNA 7 0.0009 8 0.0008 6 0.0006 6 0.0005

SNFB – – 9 0.0004 – – – –

SOCLCP2 SPPA 17 0.0003 14 0.0003 15 0.0009 12 0.0002

ReSNA 6 0.0006 4 0.0004 7 0.0007 7 0.0006

SNFB 7 0.0004 – – – – – –

SOCLCP3 SPPA 32 0.0008 32 0.0007 30 0.0009 34 0.0011

ReSNA 6 0.0010 6 0.0007 5 0.0007 6 0.0008

SNFB 9 0.0008 8 0.0005 – – 9 0.0006

SOCLCP4 SPPA 33 0.0009 32 0.0008 31 0.0008 36 0.0009

ReSNA 8 0.0009 8 0.0009 7 0.0007 6 0.0007

SNFB 8 0.0007 8 0.0007 6 0.0004 8 0.0005

is computed at every iteration. To obtain a fair comparison, we terminate the algorithms when
the residual given by

Residual(x):= max
ν=1,...,r

{‖xν − [xν − F(xν)]+‖} (21)

is less than ε = 10−6 at the current iteration x = xk (see [15, Proposition 1.5.8]), or when
the maximum number of iterations is reached, which we set to 100 for SPPA and SNFB, and
to 50 for ReSNA (default value).

All tests are implemented inMATLABR2021a in a laptop with 8GB RAM and Intel Core
i7 at 2.6 GHz. The results of our experiments are summarized in Tables 1-5. NI denotes the
number of Newton iterations conducted by the algorithm, whileCPU is the time (in seconds)
needed to obtain a point x∗ satisfyingResidual(x∗) < 10−6. An entry “−” indicates that the
corresponding algorithm for the given initial point x0 did not reach the required residual value.
The vectors 0 and 1 denote the zero vector and the vector consisting of ones, respectively,
while e = (e1, e2, . . . , er), where eν is the identity element in Knν .

For small dimensional linear, nonlinear, and tensor complementarity problems presented
in Tables 1, 3, and 4, respectively, our approach is quite competitive: It obtains an SOCCP
solution in at most one-hundredth or one-thousandth of a second, and often outperforms
ReSNA and SNFB.Moreover, our SPPA is relativelymore consistent in solving the SOCCPs,
whereas ReSNA and SNFB do not always arrive at an SOCCP solution,

On the other hand, we can see from Tables 2 and 5 that our algorithm can significantly
outperform both ReSNA and SNFB for larger dimensional problems. For instance, observe
from Table 5 that for n = 100, SPPA solved SOCTCP3 for all initial points considered,
whereas ReSNA failed to solve the problem when x0 = 10 · 1. For the initial points x0 ∈
{e, 10 · 1}, SNFB is marginally faster than our algorithm, but for the initial point x0 = ±1,
our algorithm significantly outperforms SNFB.

Example 1 (SOCLCP test problems)We test different functions F(x) = Ax − b and cones
K described below.

123

Journal of Global Optimization (2025) 91:39–58 53

Ta
bl
e
2

C
om

pa
ri
so
n
of

al
go

ri
th
m
s
fo
r
so
lv
in
g
SO

C
L
C
P5

w
ith

n
=

20
00

fo
r
di
ff
er
en
t
va
lu
es

of
r
us
in
g
th
e
sm

oo
th
in
g
fu
nc
tio

n
φ

− 1
.W

e
ge
ne
ra
te
d
10

ra
nd
om

SO
C
L
C
P5

te
st

pr
ob
le
m
s,
so
lv
e
ea
ch

ge
ne
ra
te
d
pr
ob
le
m
w
ith

fo
ur

in
iti
al
po
in
ts
,a
nd

ge
tt
he

av
er
ag
e
nu
m
be
ro

fN
ew

to
n
ite
ra
tio

ns
(N

I)
an
d
C
PU

tim
e
(C

PU
)f
or

su
cc
es
sf
ul
si
m
ul
at
io
ns
.P

S
de
no
te
s

th
e
nu

m
be
r
of

pr
ob

le
m
s
so
lv
ed

by
th
e
al
go

ri
th
m

R
an
k
(r
)

A
lg
or
ith

m
x0

=
0

x0
=

1
x0

=
e

x0
=

−1
PS

N
I

C
PU

PS
N
I

C
PU

PS
N
I

C
PU

PS
N
I

C
PU

r
=

20
0

SP
PA

10
18

.1
2.
55

±0
.3
8

10
25

.8
3.
86

±0
.8
9

10
26

3.
90

±1
.1
3

10
24

.3
3.
61

±0
.6
7

R
eS
N
A

10
9.
3

6.
54

±1
.8
6

10
11

.5
8.
10

±3
.7
7

10
6.
8

4.
83

±1
.6
7

10
10

.8
7.
61

±2
.8
2

SN
FB

9
8.
56

5.
48

±1
.8
2

9
14

.4
4

9.
51

±6
.6
2

8
8.
38

5.
40

±2
.3
6

9
13

.8
88

9
9.
18

±7
.0
6

r
=

50
0

SP
PA

10
22

.9
3.
43

±0
.6
3

10
22

.9
3.
45

±0
.4
5

10
23

.4
3.
55

±0
.5
6

10
23

.4
3.
55

±0
.4
4

R
eS
N
A

10
10

.1
7.
20

±3
.5
1

10
10

.9
7.
81

±2
.8
4

10
7.
7

5.
52

±3
.3
5

10
10

.7
7.
66

±2
.4
9

SN
FB

10
8.
5

5.
48

±0
.6
2

10
15

.2
10

.1
8±

9.
84

10
8.
1

5.
28

±0
.9
7

10
13

. 9
9.
21

±7
.7
6

r
=

10
00

SP
PA

10
25

.4
3.
79

±0
.8
6

10
26

.2
4.
00

±0
.9
2

10
22

.4
3.
34

±0
.6
2

10
24

.3
3.
65

±0
.4
2

R
eS
N
A

10
10

.9
7.
77

±2
.4
7

10
11

.5
8.
17

±2
.5
8

10
11

7.
96

±4
.5
4

10
11

.7
8.
35

±2
.7
1

SN
FB

10
8.
6

5.
55

±0
.6
5

10
12

.2
7.
99

±3
.6
3

10
8

5.
22

±0
.6
5

10
11

.6
7.
57

±3
.0
2

r
=

15
00

SP
PA

10
24

3.
50

±0
.7
9

10
25

.2
3.
79

±0
.6
1

10
24

.3
3.
67

±0
.7
3

10
26

.2
3.
92

±0
.8
9

R
eS
N
A

10
14

9.
92

±2
.5
4

10
12

.3
8.
75

±2
.0
4

10
20

.5
14

.5
6±

5.
97

10
12

.4
8.
80

±2
.0
3

SN
FB

10
10

.1
6.
52

±0
.9
5

10
16

.8
11

.1
6±

4.
48

10
9.
3

6.
09

±1
.0
2

10
16

.3
10

.6
5±

4.
08

r
=

20
00

SP
PA

10
20

.9
2.
95

±0
.1
6

10
20

.9
2.
99

±0
.5
3

10
19

.9
2.
83

±0
.5
2

10
20

.9
2.
99

±0
.5
3

R
eS
N
A

10
11

.5
7.
91

±2
.0
2

10
11

.7
8.
00

±3
.2
1

10
16

.9
11

.6
3±

5.
91

10
11

.6
7.
95

±3
.0
8

SN
FB

10
9.
6

5.
99

±0
.8
9

10
17

.3
11

.2
0±

6.
86

10
9.
2

5.
85

±1
.0
7

9
15

.6
7

10
.1
5±

6.
98

123

54 Journal of Global Optimization (2025) 91:39–58

Table 3 Comparison of algorithms for solving SOCNCPs using the smoothing function φ−
1

Test Problem Algorithm x0 = 0 x0 = 1 x0 = e x0 = −1
NI CPU NI CPU NI CPU NI CPU

SOCNCP1 SPPA 41 0.0009 19 0.0005 – – 34 0.0010

ReSNA 8 0.0012 7 0.0008 8 0.0010 7 0.0009

SNFB 8 0.0006 8 0.0005 8 0.0004 7 0.0004

SOCNCP2 SPPA 46 0.0021 46 0.0016 48 0.0018 45 0.0031

ReSNA 8 0.0031 27 0.0092 – – 12 0.0031

SNFB 15 0.0052 10 0.0016 10 0.0018 13 0.0022

SOCNCP3 SPPA 46 0.0047 62 0.0079 – – 465 0.0165

ReSNA – – – – – – – –

SNFB 8 0.0007 9 0.0007 9 0.0007 13 0.0023

SOCNCP4 SPPA 23 0.0006 24 0.0005 25 0.0005 23 0.0005

ReSNA 9 0.0010 9 0.0010 8 0.0011 10 0.0012

SNFB – – 12 0.0013 12 0.0016 – –

SOCNCP5 SPPA 15 0.0007 15 0.0006 14 0.0006 15 0.0006

ReSNA 5 0.0008 6 0.0010 5 0.0008 6 0.0010

SNFB 9 0.0012 10 0.0015 – – – –

SOCLCP1 ([12]). A =

⎛

⎜⎜⎜⎜
⎝

15 −5 −1 4 −5
0 5 0 0 1
1 −3 8 2 −3
2 −4 2 9 −4
0 −5 0 0 10

⎞

⎟⎟⎟⎟
⎠
, b =

⎛

⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟
⎠
, and K = K5

SOCLCP2 ([12]). A =
⎛

⎝
21 −9 18
−9 4 −7
18 −7 19

⎞

⎠, b =
⎛

⎝
−3
−7
−1

⎞

⎠, and K = K3.

SOCLCP3 ([19]). A as given in SOCLCP2, b = (3, 0, 2, 2, 5)T , and K = K3 × K2.
SOCLCP4 ([19]).

A =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

3.9475 1.1370 −0.3462 −0.1258 −1.2034 −0.4979 −1.0337
1.1370 3.5593 −1.2955 −0.4391 −0.3009 −0.6016 −0.0404

−0.3462 −1.2955 5.0908 −1.1187 −0.6652 −1.5541 −1.0419
−0.1258 −0.4391 −1.1187 3.5778 −0.4033 −0.1402 −0.1991
−1.2034 −0.3009 −0.6652 −0.4033 2.9766 0.3725 0.0995
−0.4979 −0.6016 −1.5541 −0.1402 0.3725 4.8431 −0.5048
−1.0337 −0.0404 −1.0419 −0.1991 0.0995 −0.5048 4.0049

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

b = (2, −1, 3, −2, 4, −1, 3)T ,

and K = K3 × K4.
SOCLCP5 ([23]). A is randomly generated by setting A = BBT , where B ∈ Rn×r with
entries uniformly sampled from [−1, 1]. The vector b is set to b = Ae−10αn0.5 p, where

p = 1√
2

(
cos θ

(
1
w

)
+ sin θ

(
1

−w

))
∈ intKn , θ randomly chosen from (0, π/2), w ∈

Rn−1 with entries randomly chosen from [−1, 1], and α randomly chosen from [−1, 1].
The cone is K = Kn .

123

Journal of Global Optimization (2025) 91:39–58 55

Example 2 (SOCNCP test problems) We test different nonlinear functions F and cones K
as follows.

SOCNCP1 ([12, 20, 23]). F(x) =
⎛

⎝
0.07x31 − 4

0.04x32 − 3.93
0.03x33 − 5.72

⎞

⎠ and K = K3.

SOCNCP2 ([12, 33]).

F(x) =

⎛

⎜⎜⎜⎜
⎝

24(2x1 − x2)
3 + ex1−x3 − 4x4 + x5

−12(2x1 − x2)
3 + 3(3x2 + 5x3)/

√
1 + (3x2 + 5x3)2 − 6x4 − 7x5

−ex1−x3 + 5(3x2 + 5x3)/
√
1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2

⎞

⎟⎟⎟⎟
⎠

and K = K3 × K2.

SOCNCP3 ([20]). F(x) =
⎛

⎝
ea

T x1

1+eaT x1
a + cT x1√

3+(cT x1)2
c + d − AT x2

Ax1 + b

⎞

⎠, where

a = (10, 5,−4,−8)T , b = (1, 0, 0, 0)T , c = (6, 2,−3,−5)T

d = (6, 3.5,−7.5,−3.5)T , A = diag(5/3, 1,−4, 2),

and K = K4 × K4.

SOCNCP4 ([29]). F(x) =

⎛

⎜⎜
⎝

2x1 + 2x2 − 10 + x3 + 2(x1 + 1)x4
2x1 + 4x2 − 12 − 3x3 + 2(x2 − 1)x4

8 − x1 + 3x2
3 − x21 − 2x1 + 2x2 − x22

⎞

⎟⎟
⎠ and K = K2 ×

K2.
SOCNCP5 ([33]).

F(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2x1 + x2 + 1
x1 + 6x2 − x3 − 2

−x2 + 3x3 − 6
5 x4 + 3

− 6
5 x3 + 2x4 + 1

2 sin x4 cos x5 sin x6 + 6
1
2 cos x4 sin x5 sin x6 + 2x5 − 5

2− 1
2 cos x4 cos x5 cos x6 + 2x6 + 1

4 cos x6 sin x7 cos x8 + 1
1
4 sin x6 cos x7 cos x8 + 4x7 − 2

− 1
4 sin x6 sin x7 sin x8 + 2x8 + 1

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and K = K3 × K3 × K2.

Example 3 (SOCTCP test problems) We consider the second-order cone complementarity
problem which involves a tensor A = (ai1i2···im) ∈ T

m(Rn) (i j ∈ {1, . . . , n}), a function
F(x) = A xm−1 − b where A xm−1 ∈ Rn with components

(A xm−1)i :=
m∑

i2,i3,··· ,im=1

aii2···im xi2 xi3 · · · xim , ∀i ∈ {1, . . . , n},

and K = Kn . We test different tensors A from the indicated references.

SOCTCP1 ([32]) The entries of A are listed below

A (:, :, 1) =
⎛

⎝
0.4333 0.4278 0.4140
0.8154 0.0199 0.5598
0.0643 0.3815 0.8834

⎞

⎠

123

56 Journal of Global Optimization (2025) 91:39–58

Table 4 Comparison of algorithms for solving SOCTCP1 and SOCTCP2 using the smoothing function φ−
1 .

Note that 0 is a solution of SOCTCP1 and SOCTCP2

Test Problem Algorithm x0 = 1 x0 = e x0 = −1 x0 = 10 · 1
NI CPU NI CPU NI CPU NI CPU

SOCTCP1 SPPA 29 0.0014 29 0.0011 28 0.0010 48 0.0028

ReSNA – – – – 5 0.0010 – –

SNFB – – – – – – 12 0.0014

SOCTCP2 SPPA 18 0.0010 18 0.0007 13 0.0006 24 0.0009

ReSNA 16 0.0027 16 0.0028 – – 4 0.0007

SNFB 13 0.0023 13 0.0023 – – 19 0.0020

Table 5 Comparison of algorithms for solvingSOCTCP3 for different values of n using the smoothing function
φ−
2 . Note that 0 is a solution of SOCTCP3 for any n

Dimension Algorithm x0 = 1 x0 = e x0 = −1 x0 = 10 · 1
NI CPU NI CPU NI CPU NI CPU

n = 5 SPPA 14 0.0068 11 0.0019 29 0.0051 36 0.0075

ReSNA 14 0.0148 6 0.0036 11 0.0056 6 0.0028

SNFB 14 0.0078 8 0.0027 12 0.0026 20 0.0113

n = 10 SPPA 27 0.0351 15 0.0125 34 0.0278 18 0.0147

ReSNA 15 0.0262 6 0.0134 5 0.0072 13 0.0260

SNFB 14 0.0201 9 0.0114 14 0.0099 19 0.0150

n = 20 SPPA 20 0.0700 33 0.0994 16 0.0441 43 0.1076

ReSNA 5 0.0264 6 0.0326 13 0.0760 21 0.1012

SNFB 16 0.0704 9 0.0606 16 0.0681 22 0.0988

n = 50 SPPA 18 0.7924 28 1.2155 24 1.0365 32 1.3768

ReSNA 15 1.3777 6 0.5939 16 1.4744 26 2.4700

SNFB 21 1.5373 9 0.3724 20 1.4494 24 0.9822

n = 100 SPPA 36 23.7014 23 15.1790 15 9.9174 39 25.6518

ReSNA 22 29.3993 9 14.5196 10 13.8577 – –

SNFB 27 74.8485 8 5.2614 29 84.3143 26 16.8180

A (:, :, 2) =
⎛

⎝
0.4866 0.8087 0.2073
0.7641 0.9924 0.8752
0.6708 0.8296 0.1325

⎞

⎠

A (:, :, 3) =
⎛

⎝
0.3871 0.0769 0.3151
0.1355 0.7727 0.4089
0.9715 0.7726 0.5526

⎞

⎠

and we set b = (−4,−3, 1)T .
SOCTCP2 A ∈ T

4(R2) with nonzero entries A1i j1 = 1 and A2i j2 = −2 for all
i, j ∈ {1, 2} and we set b = (−1, 1)T .
SOCTCP3 ([14]) A ∈ T

4(Rn) such that Ai1i2i3i4 = arctan(i1i22 i
3
3 i

4
4), and we set

b = −e.

123

Journal of Global Optimization (2025) 91:39–58 57

5 Conclusions

In this work, we proposed a smoothing power penalty approach for solving the SOCCP (2),
wherein the SOCCP (2) is approximated by a nonlinear equation with power penalty and
smoothing parameters. Under the assumption that the function involved has the uniform ξ -
P property, we provided a theoretical guarantee that the solution sequence of the APE (10)
converges to the unique solution of the SOCCP (2). Our proposed algorithm yields promising
performance as compared with two existing well-knownmethods in the literature, as we have
shown in our extensive numerical experiments involving second-order cone linear, nonlinear,
and tensor complementarity problems.

References

1. Alcantara, J.H., Chen, J.-S.: A new class of neural networks for NCPS using smooth perturbations of the
natural residual function. J. Comput. Appl. Math. 407, 114092 (2022)

2. Alcantara, J.H., Nguyen, C.T., Okuno, T., Takeda, A., Chen, J.-S.: Unified smoothing approach for best
486 hyperparameter selection problem using a bilevel optimization strategy. Math. Program. (2024).
https://doi.org/10.1007/s10107-024-02113-z

3. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)
4. Auslender, A.: Variational inequalities over the cone of semidefinite positivematrices and over the Lorentz

cone. Optim. Methods Softw. 18, 359–376 (2003)
5. Billups, S.C., Murty, K.G.: Complementarity problems. J. Comput. Appl. Math. 124, 303–318 (2000)
6. Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity

problems. Comput. Optim. Appl. 5, 97–138 (1996)
7. Chen, J.: Two classes of merit functions for the second-order cone complementarity problem. Math.

Methods Oper. Res. 64(3), 495–519 (2006)
8. Chen, J., Pan, S.: A descent method for a reformulation of the second-order cone complementarity

problem. J. Comput. Appl. Math. 213(2), 547–558 (2008)
9. Chen, J.-S.: SOC Functions and their Applications, vol. 143. Springer, Singapore (2019)

10. Chen, J.-S., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-
order cones. Math. Program. 101, 95–117 (2004)

11. Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone
complementarity problem. Math. Program. 104, 297–327 (2005)

12. Chen, L., Ma, C.: A modified smoothing and regularized Newton method for monotone second-order
cone complementarity problems. Comput. Math. Appl. 61, 1407–1418 (2011)

13. Chen, X., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing
Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56
(2003)

14. Cheng, L., Zhang, X.: A semidefinite relaxation method for second-order cone polynomial complemen-
tarity problems. Comput. Optim. Appl. 75, 629–647 (2020)

15. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems.
Springer-Verlag, New York, NY (2003)

16. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, Oxford Mathematical Mono-
graphs (1994)

17. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM
Rev. 39(4), 669–713 (1997)

18. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order cone complementarity
problems. SIAM J. Optim. 12, 436–460 (2002)

19. Hao, Z., Nguyen, C., Chen, J.-S.: An approximate lower order penalty approach for solving second-order
cone linear complementarity problems. J. Global Optim. 83, 671–697 (2022)

20. Hao, Z., Wan, Z., Chi, X., Chen, J.: A power penalty method for second-order cone nonlinear comple-
mentarity problems. J. Comput. Appl. Math. 290, 136–149 (2015)

21. Hayashi, S., Yamaguchi, T., Yamashita, N., Fukushima, M.: A matrix-splitting method for symmetric
affine second-order cone complementarity problems. J. Comput. Appl. Math. 175(2), 335–353 (2005)

22. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for mono-
tone second-order cone complementarity problems. SIAM J. Optim. 15(2), 563–615 (2005)

123

https://doi.org/10.1007/s10107-024-02113-z

58 Journal of Global Optimization (2025) 91:39–58

23. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for mono-
tone second-order cone complementarity problems. SIAM J. Optim. 15(2), 563–615 (2005)

24. Hayashi, S., Yamashita, N., Fukushimay, M.: Robust NASH equilibria and second-order cone comple-
mentarity problems. J. Nonlinear Convex Anal. 6(2), 283–296 (2005)

25. Huang, C., Wang, S.: A power penalty approach to a nonlinear complementarity problem. Oper. Res.
Lett. 38, 72–76 (2010)

26. Huang, Z.-H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones. Com-
put. Optim. Appl. 45, 557–579 (2010)

27. Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth newton methods for
linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20(1),
297–320 (2009)

28. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.
Linear Algebra Appl. 284(1), 193–228 (1998)

29. Miao, X., Chen, J.-S., Ko, C.-H.: A smoothed NR neural network for solving nonlinear convex programs
with second-order cone constraints. Inf. Sci. 268, 255–270 (2014)

30. Monteiro, R., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone
program based on the MZ-family of directions. Math. Program. Ser. B 88, 61–83 (2000)

31. Pan, S., Chen, J.: A regularization method for the second-order cone complementarity problem with the
Cartesian P0-property. Nonlinear Anal. Theory Methods Appl. 70(4), 1475–1491 (2009)

32. Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32(2),
430–442 (2011)

33. Sun, J., Fu, W., Alcantara, J.H., Chen, J.-S.: A neural network based on the metric projector for solving
SOCCVI problem. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 2886–2900 (2021)

34. Tian, B.,Hu,Y.,Yang,X.:Abox-constrained differentiable penaltymethod for nonlinear complementarity
problems. J. Global Optim. 62, 724–747 (2015)

35. Tian, B., Yang, X.: Smoothing power penalty method for nonlinear complementarity problems. Pac. J.
Optim. 12(2), 461–484 (2016)

36. Wang, S., Yang, X.: A power penalty method for linear complementarity problems. Oper. Res. Lett. 36(2),
211–214 (2008)

37. Zhang, L.-H.,Yang,W.H.:An efficientmatrix splittingmethod for the second-order cone complementarity
problem. SIAM J. Optim. 24(3), 1178–1205 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Smoothing penalty approach for solving second-order cone complementarity problems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The second-order cone
	2.2 Smoothing approximation of the projection function with power parameter

	3 Smoothing power penalty algorithm
	3.1 Convergence analysis
	3.2 Implementation of the algorithm

	4 Numerical experiments
	5 Conclusions
	References

