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USING SCHUR COMPLEMENT THEOREM TO PROVE
CONVEXITY OF SOME SOC-FUNCTIONS

JEIN-SHAN CHEN*, TSUN-KO LIAO, AND SHAOHUA PAN'

ABSTRACT. In this paper, we provide an important application of the Schur
Complement Theorem in establishing convexity of some functions associated with
second-order cones (SOCs), called SOC-trace functions. As illustrated in the
paper, these functions play a key role in the development of penalty and barrier
functions methods for second-order cone programs, and establishment of some
important inequalities associated with SOCs.

1. INTRODUCTION

The second-order cone (SOC) in IR", also called Lorentz cone, is a set defined as
(1.1) K o= {(m,22) € RXR™™ 21 > [las },

where || - | denotes the Euclidean norm. When n = 1, K™ reduces to the set of
nonnegative real numbers IR;. As shown in [11], K™ is also a set composed of the
squared elements from Jordan algebra (IR™, o), where the Jordan product “o” is a
binary operation defined by

(1.2) zoy = ((z,y),z1y2 + y122)
for any = = (z1,%2),y = (y1,%2) € IR X IR™ 1. Unless otherwise stated, in the rest
of this note, we use e = (1,0,...,0)7 € IR™ to denote the unit element of Jordan

algebra (IR™,0), i.e., eoz = z for any = € IR", and for any z € IR", use z; to denote
the first component of x, and z3 to denote the vector consisting of the rest n — 1
components.

From [12, 11], we recall that each = € IR™ admits a spectral factorization associ-
ated with K™, of the following form

(1.3) z = M (z)ul? + Ao (z)ul?,

where \;(z) and u) for i = 1,2 are the spectral values and the associated spectral

vectors of z, respectively, defined by

. , 1 .
(L4) N(@) =21+ (- 1llzall, ) = (1, (-1)5),
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with Ty = ”;":—;” if zo # 0, and otherwise Z, being any vector in IR™! such that
|Z2|| = 1. When zz # 0, the spectral factorization is unique. The determinant
and trace of z are defined as det(z) = Ai(z)A2(z) and tr(z) := A\i(z) + Ao (),
respectively.

With the spectral factorization above, for any given scalar function f: J C IR —
IR, we may define a vector-valued function f°¢: § C R™ — IR" by

(1.5) @) = fOu(@)ul) + fo(z))ul

where J is an interval (finite or infinite, open or closed) of IR, and S is the domain
of f5°¢ determined by f. Obviously, f5°°¢ is well-defined whether T2 = 0 or not.
Assume that f is differentiable on intJ. Then, by Lemma 2.2 in Section 2, f5°°is
differentiable on intS, and moreover, for any z € intS, V f%°¢(z) has a structure
which entails the application of the Schur Complement Theorem in establishing its
positive semidefiniteness or positive definiteness. On the other hand, Lemma 2.2
shows that the SOC-trace function

(1.6) fH(@) = fu(2)) + Fe(z)) = tr(f*(z)) Vze S
is differentiable on intS with V f(z) = (#/)%°°(z) for any z € intS, which means
that

(1.7) V2 (z) = V(f)*°°(z) Vz € intS.

The two sides show that we may establish the convexity of f* with the help of the
Schur Complement Theorem. In fact, the Schur Complement Theorem is frequently
used in the topics related to semidefinite programming (SDP), but there is no paper
to introduce its application involving SOCs, to the best of our knowledge.

Motivated by this, in this paper we provide such an application of the Schur
Complement Theorem in establishing the convexity of SOC-trace functions and the
compounds of SOC-trace functions and real-valued functions. As illustrated in the
next section, some of these functions are the key of penalty and barrier function
methods for second-order cone programs (SOCPs), as well as the establishment of
some important inequalities associated with SOCs, for which the proof of convexity
of these functions is a necessity. But, this requires computation of the first and
second-order derivatives, which is technically much more demanding than in the
linear and semidefinite cases. As will be seen, Theorem 2.1 gives a simple way to
achieve this objective via the Schur Complement Theorem, by which one only needs
to check the sign of the second-order derivative of a scalar function.

Throughout this note, for any z,y € IR", we write z = yifz—y e K7
and write z >~ , y if £ — y € intK™. For a real symmetric matrix A, we write
A = 0 (respectively, A = 0) if A is positive semidefinite (respectively, positive
definite). For any f : J — IR, f'(t) and f”(t) denote the first derivative and
second-order derivative of f at the differentiable point ¢ € J, respectively; for any
F: S CR" — R, VF(z) and V2F(z) denote the gradient and the Hessian matrix
of F' at the differentiable point z € S, respectively.
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2. MAIN RESULTS

The Schur Complement Theorem gives a characterization for the positive semidef-
initeness (definiteness) of a matrix via the positive semidefiniteness (definiteness)
of the Schur-complement with respect to a block partitioning of the matrix, which
is stated as below.

Lemma 2.1 (Schur Complement Theorem [13]). Let A € R™*™ be a symmetric
positive definite matriz, C € R™"™ be a symmetric matriz, and B € R™*™. Then,

(2.1) [ ;T g ] >0 <= C-BTA'B»o0
and
(2.2) { ;T g ] =0 <= C-BTA'B»o.

In this section, we focus on on the application of the Schur Complement Theorem
in establishing convexity of SOC-trace functions. To the end, we need the following
lemma.

Lemma 2.2. For any given f: J CIR —» IR, let f5°°: S - IR" and f*: S — R be
given by (1.5) and (1.6), respectively. Assume that J is open. Then, the following
results hold.

(a) The domain S of f5°° and f* is also open.
(b) If f is (continuously) differentiable on J, then f*°¢ is (continuously) differ-
entiable on S. Moreover, for any x € S, Vf°¢(z) = f'(z1)I if zo =0, and

otherwise
b(x) C(x)i
(2.3) Vfo(z) = . L] a7 |’
c(z)—  a(z)I + (b(z) — a(x))@_zz
[[22]] (&2
where

ooy — SNt FO)
2 7
I'Oa(@) = f'(Ma(@))

olz) = " ,
a(z)

fQa(z)— f(Mi(2))
A2(z) — Aa(z)

(c) If f is (continuously) differentiable, then f* is (continuously) differen-
tiable on S with V¥ (z) = (f)°°(z); if f is twice (continuously) differen-
tiable, then f¥ is twice (continuously) differentiable on S with V2 f%(z) =
V() ().

Proof. (a) Fix any z € S. Then Ai(z),A\2(x) € J. Since J is an open subset
of IR, there exist d1,d2 > 0 such that {t € R| |t — A\i(z)| < &} C J and {t €
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R| [t — A2(z)| < d2} C J. Let § := min{dy,d2}/v/2. Then, for any y satisfying
ly — z|| < 6, we have |A1(y) — Ai(x)| < 61 and |Aa(y) — A2(z)| < d2 by noting that

(M () = M(®)? + (Aa(z) — A2(y))?

2(z1 + llz2l®) + 2(6F + ll2ll?) — Amrys + |22l [lv2]])
2(z3 + [lz2ll®) + 2(6F + ll2l?) — Az1ys + (@2, 32))
= 2(l=®+ llyl* — 2(z, ) = 2]z — y|?,

and consequently A\i(y) € J and A2(y) € J. Since f is a function from J to IR, this
means that {y € R"| |y — z|| < §} C S, and therefore the set S is open.

IN

(b) The proof is direct by using the same arguments as those of [10, Props. 4 and
5].

(c) If f is (continuously) differentiable, then from part (b) and f%(z) = e f%°°(z) it
follows that f is (continuously) differentiable. In addition, a simple computation
yields that Vf%(z) = Vf*°°(z)e = (f/)%°°(z). Similarly, by part (b), the second
part follows. O

Theorem 2.3. For any given f: J — IR, let f°°: S — R" and f: S - R
be given by (1.5) and (1.6), respectively. Assume that J is open. If f is twice
differentiable on J, then :
(a) f(t) 20 foranyt € J <= V(f)°(z) = 0 for any z € § <> f is
convez in S.
(b) f'(t) > 0 for any t € J <= V(f')*°(z) = 0 Vz € S = f is strictly
convez in S.

Proof. (a) By Lemma 2.2(c), V2f%(z) = V(f')*°°(z) for any = € S, and the second
equivalence follows by Prop. B.4(a) and (c) of [7]. We next come to the first equiv-
alence. By Lemma 2.2(b), for any fixed z € S, V(f’)%°°(z) = f"(z1)I if zo = 0, and
otherwise V(f')*°¢(z) has the same expression as in (2.3) except that

f"a(@)+ f"(M(z))

b(x) 5 )
_ e@) - @)

c(x) 2 ]

o(z) F'a(@)~ f'(i(e)

A2(z) = Ai(z)

Assume that V(f")*°°(z) > 0 for any = € S. Then, we readily have b(z) > 0 for any
z € S. Noting that b(x) = f”(x1) when z3 = 0, we particularly have f”(z;) > 0
for all z; € J, and consequently f”(t) > 0 for all t € J. Assume that f”(t) > 0
forallt € J. Fix any z € S. Clearly, b(z) > 0 and a(z) > 0. If b(z) = 0, then
F"(M(z)) = f"(A2(z)) = 0, and consequently c(x) = 0, which in turn implies that

0 0
(2.4) V(' *(z) = [0 ey (I_ _'xz_xgg) ] = 0.

llz2]l
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If b(z) > 0, then by the first equivalence of Lemma 2.1 and the expression of
V(f’)%°¢(z) it suffices to argue that the following matrix

T3 B cA(x) zoxd
22l b(z) ||z2]

is positive semidefinite. Since the rank-one matrix wgmg has only one nonzero
eigenvalue ||z2||?, the matrix in (2.5) has one eigenvalue a(z) of multiplicity n — 1

and one eigenvalue % of multiplicity 1. Since a(z) > 0 and %@ =

F"(A\i(z)) f"(A2(z)) > 0, the matrix in (2.5) is positive semidefinite. By the arbi-
trary of z, we have that V(f')*°¢(z) = 0 for all z € S.

(b) The first equivalence is direct by using (2.2) of Lemma (2.1), noting V(f")%°¢(z) >~
0 implies a(z) > 0 when z3 # 0, and following the same arguments as part (a). The
second part is due to [7, Prop. B.4(b)]. O

(2.5) a(z)I + (b(z) — a(x)

Remark 2.4. Note that the strict convexity of f** does not necessarily imply the
positive definiteness of V2f%(z). Consider f(t) = t* for t € IR. We next show
that f% is strictly convex. Indeed, f*F is convex in IR™ by Theorem 2.3(a) since
f"(t) = 12t> > 0. Taking into account that f* is continuous, it remains to prove
that

(2.6) fir (-’E 2 y) _ f"@) * ()

Since h(t) = (to + t)* + (to — t)* for some ty € IR is increasing on [0, +00), and the
function f(t) = t* is strictly convex in IR, we have that

m() - bR

_ <w1 +y1 — ||z2 —|—y2||)4+ (1'1 +y1 + ||z2 +yz||)4

— z=49.

2 2
. <x1+yl—|£xzu—||yzn)4+(w1+yl+l£wzn+||y2u)4
M@ +Mm))*, (ee) + X))
_ (1 . 1y> +( 2 : 2 )
< K@)+ @) + Ca@)! + e@))’
- 2
f5(z) + 1*(9)
2 )

and moreover, the above inequalities become the equalities if and only if

llza + 2l = llz2ll + [ly2ll, Ar(z) = Ai(y), Aa(z) = A2(y).

It is easy to verify that the three equalities hold if and only if x = y. So, the
implication in (2.6) holds, i.e., f* is strictly convex. However, by Theorem 2.3(b),
V(f")%°¢(z) > 0 does not hold for all z € IR™ since f”(t) > 0 does not hold for all
t € R.
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It should be mentioned that the fact that the strict convexity of f implies the
strict convexity of f* was proved in [2, 5] via the definition of convex function, but
here we use the Shcur Complement Theorem and the relation between V(f/)°¢ and
V2% to establish the convexity of SOC-trace functions. In addition, we also note
that the necessity involved in the first equivalence of Theorem 2.3(a) was given in
[12] via a different way. Next, we illustrate the application of Theorem 2.3 with
some SOC-trace functions.

Proposition 2.5. The following functions associated with K™ are all strictly conve.
(a) Fi(xz) = —In(det(z)) for z € intK".
(b) Fp(z) =tr(z™1) for z € intk".
(c) F3(z) = tr(¢(x)) for z € intK™, where

_ | T ifpe(01] g> 1

¢(x)—{ 2'“@”I;:itl_e—lqngr: if pe[0,1], ¢=1.
(d) Fy(z) = —In(det(e — z)) for z <. e.
(e) Fs(z) =tr((e—xz) toz) forz <, e.
(f) Fg(z) = tr(exp(z)) for z € R™.
(8) Fr(x) = In(det(e + exp(z))) for z € R™.

2 1/2

(h) Fg(z) =tr 2+ (@ ;46) ) for z € IR™.

Proof. Note that Fy(z), Fao(z) and F3(z) are the SOC-trace functions associated
with f1(¢t) = —1Int (¢ > 0), fa(t) =t~ (¢ > 0) and f3(t) (¢t > 0), respectively, where

+1_ 1-q_q .
f3(t):{ tpPTl—I_tqjll if pe0,1], ¢ > 1,

2ol -t ifpe(0,1], ¢=1;

Fy(x) is the SOC-trace function associated with f4(t) = —In(1 —t) (¢t < 1), Fx(z)

is the SOC-trace function associated with f5(t) = &5 (¢ < 1) by noting that

_ A1) A2 ()
—x) logp =21\ @), 72\ (2).
(e—z) oz Al(e—x)uz +)\2(e—x)ux -
Fs(z) and F7(z) are the SOC-trace functions associated with fg(t) = exp(t) (t € IR)
and f7(t) = In(1+exp(t)) (t € R), respectively, and Fg(x) is the SOC-trace function
associated with fr(t) = 27! (t + V2 + 4) (t € R). It is easy to verify that the

functions fi-fs have positive second-order derivatives in their respective domain,
and therefore F1-Fy are strictly convex functions by Theorem 2.3(b). O

The functions Fi, F; and F3 are the popular barrier functions which play a
key role in the development of interior point methods for SOCPs, see, e.g., [6,
4, 14, 15, 17], where F3 covers a wide range of barrier functions, including the
classical logarithmic barrier function, the self-regular functions and the non-self-
regular functions; see [4] for details. The functions F; and Fy are the popular
shifted barrier functions [1, 2, 3] for SOCPs, and Fg-Fg can be used as penalty
functions for second-order cone programs (SOCPs), and these functions are added
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to the objective of SOCPs for forcing the solution to be feasible.

Besides the application in establishing convexity for SOC-trace functions, the
Schur complement theorem can be employed to establish convexity of some com-
pound functions of SOC-trace functions and scalar-valued functions, which is usually
difficult to achieve by the definition of convex function. The following proposition
presents such an application.

Proposition 2.6. For any x € K, let Fo(x) := —[det(z)]/? with p > 1. Then,

(a) Fy is twice continuously dzﬁerentmble in intK".
(b) Fy is conver when p > 2, and moreover, it is strictly conver when p > 2.

Proof. (a) Note that —Fy(z) = exp (p~'In(det(z))) for any z € intK", and
In(det(z)) = f¥(z) with f(t) = In(¢) for ¢ € R44. By Lemma 2.2(c), In(det(z))
is twice continuously differentiable in intK™. Hence —Fy(z) is twice continuously
differentiable in intX". The result then follows.

(b) In view of the continuity of Fy, we only need to prove its convexity over intx™.
By part (a), we next achieve this goal by proving that the Hessian matrix V2Fy(z)
for any x € intK™ is positive semidefinite when p > 2, and positive definite when
p > 2. Fix any x € intK™. From direct computations, we obtain

VEy(a) =~ [ o= e Jaal®) ]

P | (—22) (o — llz2]?) "
and
(2.7)
2 2
4z — 2p(a?—||z2|12) —dg T
ViFy (@) = 2ot (det(e))s 2 | T o et

2 22
—4z1729 dzoxl + 2p(z1p_||1:1:2|] I
Since x € intK™, we have 1 > 0 and det(z) = x2 — ||z2]|2 > 0, and therefore

2p (23 — ||z2|| ) 2p 2 2p
= 4z . P 2
a1(z) = 4z] — po1 o1 $1+p_1||$2||

We next proceed the arguments by the following two cases: (1) ai(z) = 0; (2)
ai(z) > 0.

Case 1: aj(z) = 0. Since p > 2, under this case we must have o = 0, and
consequently,

p—l 2_4 0 0 :l
V2Fy(z) = T1)P [ > 0.
9( ) pz ( 1) 0 172—&1$%I

Case 2: aj(z) > 0. Under this case, we calculate that

2 D 2 .Tz_ 2
[45;’ p (23— | 2n)] [W% p<; ||x2||)1}_mgmg

p—1 -1

4p (22 — ||z2]|?
(2.8) = p( ;_”1 2| ) [ — II+ ||w2[|2I 2x2z2]
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Since the rank-one matrix 2z2z3 has only one nonzero eigenvalue 2||z3||?, the matrix
in the bracket of the right hand side of (2.8) has one eigenvalue of multiplicity 1
given by

2

lozll® — 2ljel? = 2=

p
-1

-2
ot (at — llz2]*) 2 0,
and one eigenvalue of multiplicity n—1 given by —g{%x%—{-p%l l|z2]|> > 0. Furthermore,
we see that these eigenvalues must be positive when p > 2 since x% > 0 and .’L'% —
|z2||* > 0. This means that the matrix on the right hand side of (2.8) is positive
semidefinite, and moreover, it is positive definite when p > 2. Applying Lemma 2.1,
we have that V2Fy(z) = 0, and furthermore V2Fy(z) > 0 when p > 2.

Since a1(z) > 0 must hold when p > 2, the arguments above show that Fy(z) is
convex over intK"™ when p > 2, and strictly convex over intKC™ when p > 2. O

It is worthwhile to point out that det(z) is neither convex nor concave on K, and
it is difficult to argue the convexity of those compound functions involving det(z)
by the definition of convex function. But, as shown in Proposition 2.6, the Schur
Complement Theorem offers a simple way to prove their convexity.

To close section, we take a look at the application of some of convex functions
above in establishing inequalities associated with SOCs. Some of these inequal-
ities have been used to analyze the properties of SOC-function f%°¢ [9] and the
convergence of interior point methods for SOCPs [2].

Proposition 2.7. For any x =, 0 and y =, 0, the following inequalities hold.
(a) det(az + (1 — @)y) > (det(z))*(det(y)) = for any 0 < a < 1.
2
(b) det(z +y)/P > 257! (det(x)l/p + det(y)l/p) for any p > 2.
(c) det(z +y) > det(z) + det(y).
(d) det(az + (1 — @)y) > a’det(z) + (1 — a)?det(y) for any 0 < a < 1.
(e) [det(e+ x)]Y/2 > 1 4 det(x)'/2.
() If x =, y, then det(z) > det(y).
1
(g) det(z)Y/? = inf §tr(:z oy): det(y) =1, y>,, 0p. Furthermore, when

T >,n 0, the same relation holds with inf replaced by min.
(h) tr(z oy) > 2det(z)/?det(y) /2.

Proof. (a) From Prop. 2.5(a), we know that In(det(z)) is strictly concave in intA"™.
Thus,

In(det(az + (1 - @)y)) > aln(det(z)) + (1 — a)det(y)
= In(det(z)®) + In(det(z)'~%)

for any 0 < a < 1and z,y € intK". This, together with the increasing of In¢ (¢ > 0)
and the continuity of det(z), implies the desired result.
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(b) By Prop. 2.6(b), det(z)'/? is concave over K™. So, for any z,y € K", we have
that

1/p
det (m ;L y) > % [det(a:)l/p + det(y)l/p]

2
9 [(311 +y1> .
2
1
4

= [+ e+ wl?]7? 2 5 [ (@ — a2l + @ - lw2l®)"”]

= det(z+y)"? > 2" (det(a)"? + det(y)/7) ,

T2 + Y2

2 1/p 1
1
; ] > (22 — [|z2l2) " + (43 — llwall®)"”

which is the desired result.
(c) Using the inequality in part (b) with p = 2, we have
det(z + y)/? > det(z)/? + det(y)/2.
Squaring both sides yields
det(z + y) > det(z) + det(y) + 2det(x)!/2det(y)'/2 > det(z) + det(y),
where the last inequality is by the nonnegativity of det(x) and det(y) since z,y € K.
(d) The inequality is direct by part (c) and the fact det(az) = a*det(z).
(e) The inequality follows from part (b) with p = 2 and the fact that det(e) = 1.
(f) Using part (c) and noting that x >, y, it is easy to verify that
det(z) = det(y + = — y) > det(y) + det(z — y) > det(y).

(g) Using the Cauchy-Schwartz inequality, it is easy to verify that
tr(z oy) > Mi(x)A2(y) + M(y)Ae(z) Vz,y € R™

For any z,y € K™, this along with the arithmetic-geometric mean inequality implies
that

tr(z o y) A(z)A2(y) + A1 (y) A2 ()
2 - 2
>V A1(@) A2 (y) M (y) Aa(z)
= det(x)l/zdet(y)l/z,

1
which means that inf {?ﬁr(m oy): det(y) =1, y >,n 0} = det(z)/2 for a fixed

z € K". If z >, 0, then we can verify that the feasible point y* = fl o is such
et(T

1
that §tr(x o y*) = det(z)"/?, and the second part follows.

(h) Using part (g), for any z € K™ and y € int(K"), we have that

w@oy) _, (o U -
m““( JW)ZV“()’
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which together with the continuity of det(z) and tr(z) implies that
tr(z o y) > 2det(z)/2det(y)/?  Vr,y € K™
Thus, we complete the proof. O

Note that some of the inequalities in Prop. 2.7 were ever established with the
help of the Schwartz-inequality [9], but here we achieve the goal easily by using the
convexity of SOC-functions. These inequalities all have the corresponding coun-
terparts for matrix inequalities [8, 13, 16]. For example, Prop. 2.7(b) with p = 2,
i.e., p equal to the rank of Jordan algebra (IR",o), corresponds to the Minkowski
inequality of matrix case:

det(A + B)/™ > det(A)Y/™ + det(B)/"

for any n x n positive semidefinite matrices A and B.

3. CONCLUSIONS

We studied an application of the Schur complement theorem in establishing con-
vexity of SOC-functions, especially for SOC-trace functions, which are the key of
penalty and barrier function methods for SOCPs and some important inequalities
associated with SOCs. One possible future direction is proving self-concordancy
for such barrier/penalty functions associated with SOCs. We also believe that the
results in this paper will be helpful towards establishing further properties of other
SOC-functions.
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