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For simplicity, we focus on the single second-order cone Kn because all the analysis
can be carried over to the setting of Cartesian product. More details about second-
order cone, Jordan product, and (·)1/2 will be introduced in Section 2.

Indeed, the SOCAVE (1.1) (respectively, SOCAVE (1.2)) is a natural extension
of the standard absolute value equation (AVE for short) as bellow:

(1.3) Ax− |x| = b, (respectively, Ax+B|x| = b)

where |x| denotes the componentwise absolute value of vector x ∈ Rn. It is known
that the standard absolute value equation (1.3) was first introduced by Rohn in [44]
and recently has been investigated by many researchers. For standard absolute
value equation, there are two main research directions. One is on the theoretical
side in which the corresponding properties of the solution for the AVE (1.3) are
studied, see [21,25,28,29,32,35,42,44,52]. The other one focuses on the algorithm
for solving the absolute value equation, see [5, 23,30,31,33,34,45,53,54].

On the theoretical aspect, Mangasarian and Meyer [35] show that the AVE (1.3)
is equivalent to the bilinear program, the generalized LCP (linear complementarity
problem), and the standard LCP provided 1 is not an eigenvalue of A. Prokopyev
[42] further improves the above equivalence which indicates that the AVE (1.3) can
be equivalently recast as an LCP without any assumption on A and B, and also
provides a relationship with mixed integer programming. In general, if solvable, the
AVE (1.3) can have either unique solution or multiple (e.g., exponentially many)
solutions. Indeed, various sufficient conditions on solvability and non-solvability of
the AVE (1.3) with unique and multiple solutions are discussed in [35,42]. Moreover,
Wu and Guo [52] further study the unique solvability of the AVE (1.3), and give
some new and useful results for the unique solvability of the AVE (1.3).

Recently, the absolute value equation associated with second-order cone or cir-
cular cone are investigated in [22] and [27], respectively. In particular, Hu, Huang
and Zhang [22] show that the SOCAVE (1.2) is equivalent to a class of second-order
cone linear complementarity problems, and establish a result regarding the unique
solvability of the SOCAVE (1.2). Along this direction, we further look into the
SOCAVEs (1.1) and (1.2) in this paper, and achieve some new results about the
existence of (unique) solution.

The second optimization problem that we focus on is the so-called second-order
cone eigenvalue complementarity problem, SOCEiCP for short. More specifically,
given two matrices B,C ∈ Rn×n, the SOCEiCP is to find (x, y, λ) ∈ Rn ×Rn ×R

such that

(1.4) SOCEiCP(B,C) :


y = λBx− Cx,
y ⪰Kn 0, x ⪰Kn 0,
xT y = 0,
aTx = 1,

where a is an arbitrary fixed point with a ∈ int(Kn), and x ⪰Kn 0 means that
x ∈ Kn, a partial order. The SOCEiCP(B,C) given as in (1.4) comes naturally
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from the traditional eigenvalue complementarity problem [43, 47], which seeks to
find (x, y, λ) ∈ Rn ×Rn ×R such that

EiCP(B,C) :


y = λBx− Cx,
y ≥ 0, x ≥ 0,
xT y = 0,
eTx = 1,

where B,C ∈ Rn×n and e = (1, 1, · · · , 1)T ∈ Rn. Usually, the matrix B is assumed
to be positive definite. The scalar λ is called a complementary eigenvalue and x
is a complementary eigenvector associated to λ for the pair (B,C). The condition
xT y = 0 and the nonnegative requirements on x and y imply that either xi = 0 or
yi = 0 for 1 ≤ i ≤ n. These two variables are called complementary.

A natural extension of the EiCP goes to the quadratic eigenvalue complementarity
problem (QEiCP), whose mathematical format is as below. Given A,B,C ∈ Rn×n,
the QEiCP consists of finding (x, y, λ) ∈ Rn ×Rn ×R such that

QEiCP(A,B,C) :


y = λ2Ax+ λBx+ Cx,
y ≥ 0, x ≥ 0,
xT y = 0,
eTx = 1,

where e = (1, 1, · · · , 1)T ∈ Rn. It is clear that when A = 0, the QEiCP(A,B,C)
reduces to the EiCP(B,−C). The λ component of a solution to the QEiCP(A,B,C)
is called a quadratic complementary eigenvalue for the pair (A,B,C), whereas the x
component is called a quadratic complementary eigenvector for the pair (A,B,C).

Following the same idea for creating the SOCEiCP(B,C), the third optimization
problem that we study in this paper is the so-called second-order cone quadratic
eigenvalue complementarity problem (SOCQEiCP). In other words, given matrices
A,B,C ∈ Rn×n, the SOCQEiCP seeks to find (x, y, λ) ∈ Rn ×Rn ×R such that

(1.5) SOCQEiCP(A,B,C) :


y = λ2Ax+ λBx+ Cx,
y ⪰Kn 0, x ⪰Kn 0,
xT y = 0,
aTx = 1,

with arbitrary fixed point a ∈ int(Kn). The SOCEiCP (1.4) and the SOCQEiCP
(1.5) have been investigated in [2,3,19]. The purpose of this paper aims to establish
the solvabilities of the SOCEiCP (1.4) and the SOCQEiCP (1.5) by reformulating
them as second-order cone complementarity problem (SOCCP) and a nonsmooth
system of equations (see more details in Section 5).

We point out that the last normalization constraint appeared in the above EiCP,
QEiCP, SOCEiCP, and SOCQEiCP has been introduced in order to prevent the x
component of a solution to vanish. In other words, “for an arbitrary fixed point
a ∈ int(Kn), x ∈ Kn satisfying aTx > 0 is equivalent to x ̸= 0”. To see this, we
provide some arguments as below. First, it is trivial that aTx > 0 implies that
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x ̸= 0. Now, suppose that x = (x1, x2) ∈ Kn which is nonzero. Then, there must
have x1 > 0. Using the definition of

int(Kn) =
{
(x1, x2) ∈ R×Rn−1 | ∥x2∥ < x1

}
,

we have

aTx = a1x1 + ⟨a2, x2⟩ > |⟨a2, x2⟩|+ ⟨a2, x2⟩ ≥ 0.

This proves that aTx > 0.

Another thing needs to be pointed out is that the normalization constraint eTx =
1 is good enough for EiCP and QEiCP; moreover, this condition was also used in [2]
for SOCEiCP. However, we show that it does not make sense in the settings of
SOCEiCP and SOCQEiCP because e /∈ int(Kn). Indeed, for a counterexample, we

consider λ = 1, x =

[
1

−1

]
∈ K2, two matrices C =

[
1 2
2 5

]
∈ R2×2 and B :=

I ∈ R2×2. Then, we have λBx − Cx =

[
1

−1

]
−
[
1 2
2 5

] [
1

−1

]
=

[
2
2

]
∈ K2.

Hence, xT (λBx − Cx) = 0, but eTx = 0. This is why, in this paper, we require
a point a ∈ int(Kn) such that aTx = 1 to serve as the normalization constraint in
SOCEiCP and SOCQEiCP.

To close this section, we say a few words about notations. As usual, Rn de-
notes the space of n-dimensional real column vectors. R+ and R++ denote the
nonnegative and positive reals. For any x, y ∈ Rn, the Euclidean inner product are
denoted ⟨x, y⟩ = xT y, and the Euclidean norm ∥x∥ are denoted as ∥x∥ =

√
⟨x, x⟩.

Given a matrix A ∈ Rn×n, ∥A∥a denotes the arbitrary matrix norm, for example,
∥A∥1, ∥A∥2 and ∥A∥∞. In addition, ρ(A) means the spectral radius of A, that
is, ρ(A) := max{|λ| |λ is eigenvalue of A}, and M(Kn) ⊂ Kn denotes that for any
z ∈ Kn, we have Mz ∈ Kn. For convenience, we say that a pair (x, λ) ∈ Rn × R

solves the SOCEiCP(B,C) when the triplet (x, y, λ) with y = λBx − Cx, is a so-
lution to the SOCEiCP(B,C) in the sense defined in (1.4). Similarly, we say that
(x, λ) ∈ Rn × R solves the SOCQEiCP(A,B,C) when the same occurs with the
triplet (x, y, λ), where y = λ2Ax+ λBx+ Cx.

2. Preliminaries

In this section, we recall some basic concepts and background materials regarding
second-order cone and the absolute value of x ∈ Rn, which will be extensively used
in the subsequent analysis. More details can be found in [9, 14,16,17,20,22].

The official definition of second-order cone (SOC) is already defined in Section
1. We begin with introducing the concept of Jordan product. For any two vectors
x = (x1, x2) ∈ R×Rn−1 and y = (y1, y2) ∈ R×Rn−1, the Jordan product of x and
y associated with Kn is given by

x ◦ y :=

[
xT y

y1x2 + x1y2

]
.
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The Jordan product, unlike scalar or matrix multiplication, is not associative, which
is a main source of complication in the analysis of optimization problems involved
SOC, see [14, 16, 20] and references therein for more details. The identity element
under this Jordan product is e = (1, 0, · · · , 0)T ∈ Rn. With these definitions, x2

means the Jordan product of x with itself, i.e., x2 := x ◦ x; while x1/2 with x ∈ Kn

denotes the unique vector in Kn such that x1/2◦x1/2 = x. In light of this, the vector
|x| in the SOCAVEs (1.1) and (1.2) is computed by

|x| := (x ◦ x)1/2.

However, by the definition of |x|, it is not easy to write out the expression of |x|
explicitly. Fortunately, there is another way to reach |x| via spectral decomposition
and projection onto second-order cone. We elaborate it as below. For x = (x1, x2) ∈
R×Rn−1, the spectral decomposition of x with respect to SOC is given by

(2.1) x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

where λi(x) = x1 + (−1)i∥x2∥ for i = 1, 2 and

u(i)x =

 1
2

(
1, (−1)i

xT
2

∥x2∥

)T
if ∥x2∥ ̸= 0,

1
2

(
1, (−1)iωT

)T
if ∥x2∥ = 0,

with ω ∈ Rn−1 being any vector satisfying ∥ω∥ = 1. The two scalars λ1(x) and

λ2(x) are called spectral values (or eigenvalues) of x; while the two vectors u
(1)
x and

u
(2)
x are called the spectral vectors (or eigenvectors) of x. Moreover, it is obvious

that the spectral decomposition of x ∈ Rn is unique if x2 ̸= 0.

Next, we talk about the projection onto second-order cone. Let x+ be the projec-
tion of x onto Kn, while x− be the projection of −x onto its dual cone of Kn. Since
second-order cone Kn is self-dual, the dual cone of Kn is itself, i.e., (Kn)∗ = Kn.
In fact, the explicit formula of projection of x = (x1, x2) ∈ R × Rn−1 onto Kn is
characterized in [14,16–18,20] as below:

x+ =

 x if x ∈ Kn,
0 if x ∈ −Kn,
u otherwise,

where u =

[
x1+∥x2∥

2(
x1+∥x2∥

2

)
x2

∥x2∥

]
.

Similarly, the expression of x− is in the form of

x− =

 0 if x ∈ Kn,
−x if x ∈ −Kn,
w otherwise,

where w =

[
−x1−∥x2∥

2(
x1−∥x2∥

2

)
x2

∥x2∥

]
.

Together with the spectral decomposition (2.1) of x, it can be verified that x =
x+ − x− and the expression of x+ and x− have the form:

x+ = (λ1(x))+u
(1)
x + (λ2(x))+u

(2)
x ,

x− = (−λ1(x))+u
(1)
x + (−λ2(x))+u

(2)
x ,

where (α)+ = max{0, α} for α ∈ R.
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Based on the definitions and expressions of x+ and x−, we introduce another
expression of |x| associated with SOC. In fact, the alternative expression is obtained
by the so-called SOC-function, which can be found in [10]. For any x ∈ Rn, we
define the absolute value |x| of x with respect to SOC as |x| := x+ + x−. In fact, in

the setting of SOC, the form |x| = x++x− is equivalent to the form |x| = (x◦x)1/2.
Combining the above expression of x+ and x−, it is easy to see that the expression
of the absolute value |x| is in the form of

|x| =
[
(λ1(x))+ + (−λ1(x))+

]
u(1)x +

[
(λ2(x))+ + (−λ2(x))+

]
u(2)x

=
∣∣λ1(x)

∣∣u(1)x +
∣∣λ2(x)

∣∣u(2)x .

For the absolute value |x| associated with SOC, Hu, Huang and Zhang [22] have
obtained some properties as the following lemmas.

Lemma 2.1. [22, Theorem 2.1] The generalized Jacobian of the absolute value
function | · | is given as follows:

(a) Suppose that x2 = 0. Then, ∂|x| = {tI | t ∈ sgn(x1)}.
(b) Suppose that x2 ̸= 0.

(i) If x1+∥x2∥ < 0 and x1−∥x2∥ < 0, then ∂|x| = {∇|x|} =

{[
−1 0T

0 −I

]}
.

(ii) If x1+∥x2∥ > 0 and x1−∥x2∥ > 0, then ∂|x| = {∇|x|} =

{[
1 0T

0 I

]}
.

(iii) If x1 + ∥x2∥ > 0 and x1 − ∥x2∥ < 0, then

∂|x| = {∇|x|} =


 0

xT
2

∥x2∥
x2

∥x2∥
x1

∥x2∥

(
I − x2xT

2
∥x2∥2

)  .

(iv) If x1 + ∥x2∥ = 0 and x1 − ∥x2∥ < 0, then

∂|x| =

1

2

 t− 1 (t+ 1)
xT
2

∥x2∥

(t+ 1) x2
∥x2∥ −2I + (t+ 1)

x2xT
2

∥x2∥2

∣∣∣∣ t ∈ sgn(x1 + ∥x2∥)

 .

(v) If x1 + ∥x2∥ > 0 and x1 − ∥x2∥ = 0, then

∂|x| =

1

2

 t+ 1 (1− t)
xT
2

∥x2∥

(1− t) x2
∥x2∥ 2I − (1− t)

x2xT
2

∥x2∥2

∣∣∣∣ t ∈ sgn(x1 − ∥x2∥)

 ,

where the function sgn(·) denotes that sgn(a) =

 {1} if a > 0,
{t | t ∈ [−1, 1]} if a = 0,

{−1} if a < 0.

Lemma 2.2. [22, Theorem 2.2] For any V ∈ ∂|x|, the absolute value of every
eigenvalue of V is not greater than 1.

Lemma 2.3. [22, Theorem 2.3] For any V ∈ ∂|x|, we have V x = |x|.
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3. Existence of solution to the SOCAVEs

This section is devoted to the existence and nonexistence of solution to the SO-
CAVE (1.1) and SOCAVE (1.2).

Theorem 3.1. Let C ∈ Rn×n and b ∈ Rn.

(a) If the following system

(3.1) (C − I)z = b, z ∈ Kn

has a solution, then for any A = ±C the SOCAVE (1.1) has a solution.
(b) If the following system

(C +B)z = b, z ∈ Kn

has a solution, then for any A = ±C the SOCAVE (1.2) has a solution.

Proof. (a) Suppose that z := (z1, z2) ∈ R×Rn−1 is a solution to the system (3.1),
i.e.,

(C − I)z = b, z ∈ Kn.

Since z ∈ Kn, it follows that z1 ≥ ∥z2∥. Taking x = ±z, which means x =
(±z1,±z2) ∈ R×Rn−1. Using the definition of |x|, we see that

|x| =
∣∣λ1(x)

∣∣u(1)x +
∣∣λ2(x)

∣∣u(2)x

=

∣∣∣∣± z1 − ∥ ± z2∥
∣∣∣∣ [ 1

2
− ±z2

2∥z2∥

]
+

∣∣∣∣± z1 + ∥ ± z2∥
∣∣∣∣ [ 1

2±z2
2∥z2∥

]
= z.

Plugging in A = ±C yields that

Ax− |x| = ±Cx− z = (C − I)z = b.

This says that x is a solution to the SOCAVE (1.1).

(b) The arguments are similar to part (a). □

Theorem 3.2. Suppose that −b ∈ Kn and A(Kn) ⊆ Kn with ρ(A) < 1. Then, the
SOCAVE (1.1) has a solution x ∈ Kn.

Proof. We consider the iterative scheme xk+1 = Axk − b with x0 := −b. Since
−b ∈ Kn, it follows that xk ∈ Kn for every k ∈ N. Hence, from the condition
ρ(A) < 1, we can conclude that the sequence {xk} converges to a point x∗ such
that x∗ = Ax∗ − b. Combining with the closeness of Kn, this yields x∗ ∈ Kn, which
implies

Ax∗ − |x∗| = Ax∗ − x∗ = b.

Thus, x∗ ∈ Kn is a solution to the SOCAVE (1.1). □

Remark 3.3. In fact, if the condition ρ(A) < 1 in Theorem 3.2 is replaced by
∥A∥a < 1, where ∥A∥a denotes an arbitrary matrix norm, then the result of Theorem
3.2 still holds.
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Theorem 3.4. Suppose that 0 ̸= b ∈ Kn. Then, the following hold.

(a) If the spectral norm ∥A∥ < 1 with ∥A∥ :=
√
ρ(AHA), then the SOCAVE

(1.1) has no solution.
(b) If ∥A∥ < 1, B(Kn) ⊂ −Kn and ∥Bx∥ ≥ ∥x∥ for any x ∈ Kn, then the

SOCAVE (1.2) has no solution.

Proof. From Ax − |x| = b and 0 ̸= b ∈ Kn, it follows that Ax − |x| ∈ Kn. This
together with the fact |x| ∈ Kn implies Ax+ |x| ∈ Kn. Moreover, by the self-duality
of Kn, we see that

∥Ax∥2 − ∥x∥2 = ∥Ax∥2 − ∥|x|∥2

= ⟨Ax+ |x|, Ax− |x|⟩
≥ 0.

Hence, we have
∥x∥ ≤ ∥Ax∥ ≤ ∥A∥∥x∥ < ∥x∥,

where the last inequality is due to ∥A∥ < 1. This is a contradiction. Therefore, the
SOCAVE (1.1) has no solution.

(b) The idea for the proof is similar to part (a), we present it for completeness. From
Ax + B|x| = b and 0 ̸= b ∈ Kn, we know Ax + B|x| ∈ Kn. Then, it follows from
B(Kn) ⊂ −Kn and b ∈ Kn that Ax = b − B|x| ∈ Kn, which says Ax − B|x| ∈ Kn.
Moreover, by the self-duality of Kn, we have

∥Ax∥2 − ∥B|x|∥2 = ⟨Ax+B|x|, Ax−B|x|⟩ ≥ 0,

which implies
∥x∥ > ∥Ax∥ ≥ ∥B|x|∥ ≥ ∥|x|∥ = ∥x∥,

where the first inequality is due to ∥A∥ < 1 and the last inequality is due to
∥Bx∥ ≥ ∥x∥ for any x ∈ Kn. This is a contradiction. Hence, the SOCAVE (1.2)
has no solution. □

4. The unique solvability for the SOCAVEs

In this section, we further investigate the unique solvability of the SOCAVE (1.1)
and SOCAVE (1.2).

Theorem 4.1. (a) If all singular values of A exceed 1, then the SOCAVE (1.1)
has a unique solution.

(b) If all singular values of A ∈ Rn×n exceed the maximal singular value of
B ∈ Rn×n, then the SOCAVE (1.2) has a unique solution.

Proof. (a) For any V ∈ ∂|x|, by Lemma 2.3, we have |x| = V x, which implies that

Ax− |x| = Ax− V x = (A− V )x,

i.e., the SOCAVE (1.1) becomes the equation (A− V )x = b. Moreover, by Lemma
2.1, we know that the real matrix V is symmetric. This leads to that the singular
values of V are the absolute values of eigenvalue of V . On the other hand, from
Lemma 2.2, it follows that all singular values of V are not greater than 1. Combining
with the condition that all singular values of A exceed 1, we can assert that the
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matrix A−V is nonsingular. If not, there exists 0 ̸= x ∈ Rn such that (A−V )x = 0,
i.e., Ax = V x. Hence, we have

∥x∥2 < ⟨Ax,Ax⟩ = ⟨V x, V x⟩ ≤ ∥x∥2,
which is a contradiction. Thus, the matrix A − V is nonsingular, which says the
equation (A− V )x = b has a unique solution. Then, the proof is complete.

(b) The proof is similar to that for part (a), we present it for completeness. For any
V ∈ ∂|x|, by Lemma 2.3 again, we have |x| = V x; and hence

Ax+B|x| = (A+BV )x.

Moreover, we also know that all singular values of V are not greater than 1 due
to Lemma 2.2. Applying the condition that all singular values of A exceed the
maximal singular value of B ∈ Rn×n and [22, Theorem 3.1], we obtain that the
matrix A + BV is nonsingular. Thus, the equation (A + BV )x = b has a unique
solution, which says the SOCAVE (1.2) has a unique solution. □

Remark 4.2. We point out that in [22], Hu, Huang and Zhang have shown that
if all singular values of A ∈ Rn×n exceed the maximal singular value of B ∈ Rn×n,
the SOCAVE (1.2) has at least one solution for any b ∈ Rn. In Theorem 4.1(b),
we study when the SOCAVE (1.2) has a unique solution, which is a stronger result
than the aforementioned one in [22], although the same condition is used. In other
words, under the condition that all singular values of A ∈ Rn×n exceed the maximal
singular value of B ∈ Rn×n, it guarantees that the SOCAVE (1.2) not only has at
least one solution, but also has a unique solution.

Corollary 4.3. If the matrix A is nonsingular and ∥A−1∥ < 1, then the SOCAVE
(1.1) has a unique solution.

Proof. This is an immediate consequence of Theorem 4.1(a), whose proof is similar
to that for [35, Proposition 4.1]. Hence, we omit it. □

Theorem 4.4. (a) If the matrix A = [aij ] ∈ Rn×n satisfies

|aii| >
√
n+

∑
j ̸=i

|aij | ∀i ∈ N := {1, 2, · · · , n},

then for any b ∈ Rn the SOCAVE (1.1) has a unique solution.
(b) If the matrices A = [aij ] ∈ Rn×n and B ∈ Rn×n satisfy

|aii| > ∥B∥∞
√
n+

∑
j ̸=i

|aij | ∀i ∈ N := {1, 2, · · · , n},

then for any b ∈ Rn the SOCAVE (1.2) has a unique solution.

Proof. (a) Again, for any V ∈ ∂|x|, we know that |x| = V x and ∥V ∥ ≤ 1, which
implies that the SOCAVE (1.1) is equal to the equation (A − V )x = b. Moreover,
by the relationship between the spectral norm and the infinite norm, i.e.,

∥V ∥∞ ≤
√
n∥V ∥,
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it follows that ∥V ∥∞ ≤
√
n. Let [wij ] = W := A − V = [aij − vij ]. Then, we note

that for any i ∈ N = {1, 2, · · · , n},
|wii| = |aii − vii| ≥ |aii| − |vii|

>
√
n+

∑
j ̸=i

|aij | − |vii|

≥
√
n+

∑
j ̸=i

|wij | −
n∑

j=1

|vij |

≥
∑
j ̸=i

|wij |,

where the last inequality is due to ∥V ∥∞ ≤
√
n. This indicates that the matrix

A − V = W is a strictly diagonally dominant by row. Hence, the matrix A − V is
nonsingular, which leads to that the equation (A− V )x = b has a unique solution.
Thus, the SOCAVE (1.1) has a unique solution.

(b) The proof is similar to part (a) and we omit it here. □

Theorem 4.5. If the matrix A ∈ Rn×n can be expressed as

A = αI +M, where M(Kn) ⊆ Kn and α− 1 > ρ(M),

then for any b ∈ Rn, the SOCAVE (1.1) has a unique solution.

Proof. For any x ∈ Kn and V ∈ ∂|x|, we know that x = |x| = V x and ∥V ∥ ≤ 1.
Note that

Ax− |x| = (αI − V )x+Mx = (α− 1)|x|+Mx.

This implies that the matrix αI+M −V is a generalized M -matrix with respect to
Kn. Hence, we have the matrix αI +M − V is nonsingular. In addition, applying
the fact that Ax − |x| = (αI + M − V )x, it yields that the SOCAVE (1.1) has a
unique solution. □

Lemma 4.6. For any x, y ∈ Rn, let |x|, |y| be the absolute value coming from the
square root of x2 and y2 under the Jordan product, respectively. Then, we have∥∥|x| − |y|

∥∥ ≤ ∥x− y∥.

Proof. First, we note that

∥x− y∥2 −
∥∥|x| − |y|

∥∥2 = ⟨x− y, x− y⟩ − ⟨|x| − |y|, |x| − |y|⟩
= 2

(
⟨|x|, |y|⟩ − ⟨x, y⟩

)
= 2

(
⟨x+ + x−, y+ + y−⟩ − ⟨x+ − x−, y+ − y−⟩

)
= 4

(
⟨x+, y−⟩+ ⟨x−, y+⟩

)
≥ 0.

With this, it is clear to see that
∥∥|x|−|y|

∥∥ ≤ ∥x−y∥. Then, the proof is complete. □

Theorem 4.7. For any β ∈ R, assume that the matrix βI +A is nonsingular.
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(a) If the matrix A satisfies∥∥(βI +A)−1
∥∥ <

1

|β|+ 1
,

then the SOCAVE (1.1) has a unique solution.
(b) If the matrices A and B satisfy∥∥(βI +A)−1

∥∥ <
1

|β|+ ∥B∥
,

then the SOCAVE (1.2) has a unique solution.

Proof. (a) For the SOCAVE (1.1), we know that

Ax− |x| = b ⇐⇒ (βI +A)x = βx+ |x|+ b.

If the matrix βI +A is nonsingular, then we further have

Ax− |x| = b ⇐⇒ (βI +A)x = βx+ |x|+ b ⇐⇒ x = (βI +A)−1(βx+ |x|+ b).

In view of this, we consider the following iterative scheme

xk+1 = (βI +A)−1(βxk + |xk|+ b).

With this, it follows that

xk+1 − xk = (βI +A)−1
[
β(xk − xk−1) + (|xk| − |xk−1|)

]
.

Hence, we have∥∥∥xk+1 − xk
∥∥∥ =

∥∥∥(βI +A)−1
[
β(xk − xk−1) + (|xk| − |xk−1|)

]∥∥∥
≤

∥∥(βI +A)−1
∥∥ [|β|∥xk − xk−1∥+ ∥|xk| − |xk−1|∥

]
(4.1)

≤
∥∥(βI +A)−1

∥∥ (|β|+ 1)∥xk − xk−1∥,

where the last inequality holds due to Lemma 4.6. This together with the assump-
tion that

∥∥(βI +A)−1
∥∥ < 1

|β|+1 yields the sequence {xk} converges to a solution of

the SOCAVE (1.1).

Next, we verify the SOCAVE (1.1) has a unique solution. If there exist x∗ and x̄
that both satisfy the SOCAVE (1.1), then as done in (4.1) we have

∥x∗ − x̄∥ ≤
∥∥(βI +A)−1

∥∥ (|β|+ 1)∥∥x∗ − x̄∥.

Since
∥∥(βI +A)−1

∥∥ < 1
|β|+1 , we obtain that x∗ = x̄. This says that the SOCAVE

(1.1) has a unique solution. Thus, the proof is complete.

(b) The proof is similar to part (a) and we omit it here. □
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5. The solvabilities of SOCEiCP and SOCQEiCP

In this section, we focus on the solvabilities of the other two optimization prob-
lems, SOCEiCP(B,C) and SOCQEiCP(A,B,C), which are given as in (1.4) and
(1.5) respectively. In order to clearly describe our results, we need a few concepts
which were introduced in [3, 4].

Definition 5.1. Let Kn be a single second-order cone.

(a) A matrix A ∈ Rn×n is called Kn-regular if xTAx ̸= 0 for all nonzero x ⪰Kn 0.
(b) A matrix A ∈ Rn×n is called strictly Kn-copositive if xTAx > 0 for all

nonzero x ⪰Kn 0.
(c) A triple (A,B,C) with A,B,C ∈ Rn×n is called Kn-hyperbolic if

(xTBx)2 ≥ 4(xTAx)(xTCx)

for all nonzero x ⪰Kn 0.
(d) The class R0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n such that

there exists no nonzero x ∈ Kn satisfying Ax ∈ Kn and xTAx = 0.
(e) The class S0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n such that

Ax ∈ Kn for at least a nonzero x ∈ Kn.
(f) The class R

′
0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n such that

xTAx = 0 for at least a nonzero x ∈ Kn satisfying Ax ∈ Kn.
(g) The class S

′
0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n such that

there exists no nonzero x ∈ Kn satisfying Ax ∈ Kn.

In fact, there exist some study in [3, 46, 48], which investigated the eigenvalues
problems involved with general cones. The solvability results therein automatically
include solvabilities of SOCEiCP(B,C) and SOCQEiCP(A,B,C) as special cases.
For example, we extract some of them from [3, 46, 48], when the cone reduces to a
SOC or is a general cone, and list them as below.

Proposition 5.2. Let Kn be a single second-order cone and consider the SOCEiCP(B,C)
given as in (1.4) and the SOCQEiCP(A,B,C) given as in (1.5).

(a) If B ∈ Rn×n is strictly Kn-copositive, then SOCEiCP(B,C) has solutions
for any C ∈ Rn×n.

(b) If A is Kn-regular and (A,B,C) is Kn-hyperbolic, then SOCQEiCP(A,B,C)
has solutions.

(c) The matrix C ∈ R
′
0(Kn) if and only if 0 is a quadratic complementary

eigenvalue for SOCQEiCP(A,B,C).

(d) If C ∈ S
′
0(Kn) and A is strictly Kn-copositive, there exist at least one positive

and one negative quadratic complementary eigenvalue for SOCQEiCP(A,B,C).

(e) If A ∈ S
′
0(Kn) and C is strictly Kn-copositive, there exist at least one positive

and one negative quadratic complementary eigenvalue for SOCQEiCP(A,B,C).

In view of the above existing solvability results in the literature, we aim to seek
the solvabilities of SOCEiCP(B,C) and SOCQEiCP(A,B,C) via different approach.
In this section, we will recast these problems as three reformulations, called Refor-
mulation I, Reformulation II and Reformulation III.
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The idea of Reformulation I is to recast these problems as a form of second-order
cone complementarity problem (SOCCP), which is a natural extension of nonlinear
complementarity problem (NCP). To proceed, we first recall the mathematical for-
mat of the SOCCP as follows. More details can be found in [6–9, 12–14, 16, 36–41,
50,51]. Given a continuously differentiable mapping F : Rn → Rn, the SOCCP(F )
is to find x ∈ Rn satisfying

(5.1) SOCCP(F ) :

 x ⪰Kn 0,
F (x) ⪰Kn 0,
xTF (x) = 0.

It is well know that the KKT conditions of a second-order cone programming
problem can be rewritten as a SOCCP(F ). We now elaborate how to recast the
SOCEiCP(B,C) as the SOCCP(F ). Suppose that we are given the SOCEiCP(B,C)
as in (1.4), where B,C ∈ Rn×n and the matrix B is assumed to be positive definite.
For any x ∈ Rn such that x ̸= 0, plugging w = λBx−Cx into the complementarity

condition xTw = 0 yields λ = xTCx
xTBx

. Hence, we obtain

w =
xTCx

xTBx
Bx− Cx.

With this, for any x ∈ Rn such that x ̸= 0, we define a mapping F : Rn → Rn

which is given by

(5.2) F (x) :=
xTCx

xTBx
Bx− Cx.

This mapping F is not good enough to be put into the SOCCP (5.1) because F (0)
is not defined yet. To this end, we show the following lemma to make up the value
F (0).

Lemma 5.3. Consider the SOCEiCP(B,C) given as in (1.4) where B is positive
definite. Let F : Rn → Rn be defined as in (5.2) where x ̸= 0. Then, lim

x→0
F (x) = 0.

Proof. Since B is positive definite, from Cholesky factorization, there exists an
invertible lower triangle matrix L with positive diagonal entries such that B = LLT .
Hence, for x ̸= 0, we have

xTBx = xTLLTx =
(
LTx

)T (
LTx

)
and

xTCx = xTLL−1C(LT )−1LTx =
(
LTx

)T (
L−1C(L−1)T

) (
LTx

)
.

For convenience, we denote D := L−1C(L−1)T and let M := ∥D∥sup = max
1≤i,j≤n

|dij |

be the supremum norm of D, where dij means the (i, j)-entry of D. In addition,
for x ̸= 0, we denote y = (y1, · · · , yn)T := LTx. Then, we obtain∣∣∣∣xTCx

xTBx

∣∣∣∣ = ∣∣∣∣yTDy

yT y

∣∣∣∣ ≤
∑n

i,j=1 |dij ||yi||yj |∑n
i=1 |yi|2

.
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By Cauchy’s inequality |yi||yj | ≤
y2i +y2j

2 , we see that∑n
i,j=1 |dij ||yi||yj |∑n

i=1 |yi|2
≤

M ·
∑n

i,j=1

y2i +y2j
2∑n

i=1 y
2
i

=
M

2
·
n
∑n

i=1 y
2
i + n

∑n
j=1 y

2
j∑n

i=1 y
2
i

= nM

which says ∣∣∣∣xTCx

xTBx

∣∣∣∣ ≤ nM.

This further implies that

∥F (x)∥ ≤
∣∣∣∣xTCx

xTBx

∣∣∣∣ · ∥Bx∥+ ∥Cx∥ ≤ (nM)∥Bx∥+ ∥Cx∥.

Applying the continuity of linear transformation B and C proves lim
x→0

F (x) = 0. □

Very often, the mapping F in the SOCCP(F ) is required to be differentiable.
Therefore, in view of Lemma 5.3, it is natural to redefine F (x) as

(5.3) F (x) =

{
xTCx
xTBx

Bx− Cx if x ̸= 0,
0 if x = 0.

This enables that the mapping F : Rn → Rn is continuous. Indeed, it is clear that
the mapping F : Rn → Rn is even smooth except for 0. In other words, F may
not be differentiable at 0. To see this, we give an example as below. For n = 2, we

take B =

[
b11 b12
b21 b22

]
which is positive definite with b12 > 0 and C =

[
c11 c12
c21 c22

]
with c22 ̸= 0. Because B is positive definite, the entries b11, b22 are positive. If we

consider the first term of F (x) as in (5.2), i.e., xTCx
xTBx

Bx, it can be written out as(
c11x

2
1 + (c12 + c21)x1x2 + c22x

2
2

b11x21 + (b12 + b21)x1x2 + b22x22

)
·
[
b11x1 + b12x2
b21x1 + b22x2

]
.

If we denote

f(x) =

[
f1(x)
f2(x)

]
:=

xTCx

xTBx
Bx,

using the fact

lim
x1→0

[(
c11x

2
1 + (c12 + c21)x1x2 + c22x

2
2

b11x21 + (b12 + b21)x1x2 + b22x22

)
·
(
b11 +

b12x2
x1

)]
= ∞,

we see that ∂f1
∂x1

(0) does not exist. This means f is not differentiable at 0, and hence

F (x) = f(x)− Cx is not differentiable at 0.

Next, we provide two technical lemmas in order to express the Jacobian matrix
of F (x) for x ̸= 0.



SOLVABILITIES OF OPTIMIZATION PROBLEMS ASSOCIATED WITH SOC 951

Lemma 5.4. Suppose that f : Rn → R and gi : Rn → R (1 ≤ i ≤ n) are

real-valued differentiable functions. Denote G(x) =


g1(x)
g2(x)
...

gn(x)

 . Then, the scalar

product function f(x)G(x) =


f(x)g1(x)
f(x)g2(x)

...
f(x)gn(x)

 is a differentiable function on Rn and

its Jacobian matrix ∇(f(x)G(x)) is expressed as

∇
(
f(x)G(x)

)
= ∇f(x)(G(x))T + f(x)∇G(x).

Proof. The proof comes from direct computation as below.

∇
(
f(x)G(x)

)

=


( ∂f
∂x1

· g1 + f · ∂g1
∂x1

)(x) ( ∂f
∂x1

· g2 + f · ∂g2
∂x1

)(x) · · · ( ∂f
∂x1

· gn + f · ∂gn
∂x1

)(x)

( ∂f
∂x2

· g1 + f · ∂g1
∂x2

)(x) ( ∂f
∂x2

· g2 + f · ∂g2
∂x2

)(x) · · · ( ∂f
∂x2

· gn + f · ∂gn
∂x2

)(x)
...

...
. . .

...

( ∂f
∂xn

· g1 + f · ∂g1
∂xn

)(x) ( ∂f
∂xn

· g2 + f · ∂g2
∂xn

)(x) · · · ( ∂f
∂xn

· gn + f · ∂gn
∂xn

)(x)



=


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

[g1(x) g2(x) · · · gn(x)
]
+ f(x)


∂g1
∂x1

(x) ∂g2
∂x1

(x) · · · ∂gn
∂x1

(x)
∂g1
∂x2

(x) ∂g2
∂x2

(x) · · · ∂gn
∂x2

(x)
...

...
. . .

...
∂g1
∂xn

(x) ∂g2
∂xn

(x) · · · ∂gn
∂xn

(x)


= ∇f(x)(G(x))T + f(x)∇G(x).

□

Lemma 5.5. Consider the SOCEiCP(B,C) given as in (1.4) where B is positive
definite. Let F : Rn → Rn be defined as in (5.3). Then, F is smooth except for 0
and its Jacobian matrix is expressed as

∇F (x) =
[
(C + CT )xxTB − (B +BT )xxTC

] xxTBT

(xTBx)2
+

xTCx

xTBx
BT − CT .

Proof. Denote f(x) = xTCx
xTBx

and g(x) = Bx. Then, F (x) = f(x)g(x) − Cx. For
x ̸= 0, we know

∇f(x) =
∇(xTCx) · (xTBx)− (xTCx) · ∇(xTBx)

(xTBx)2

=
(C + CT )x · (xTBx)− (xTCx) · (B +BT )x

(xTBx)2

=

[
(C + CT )xxTB − (B +BT )xxTC

]
x

(xTBx)2
.
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Then, this together with Lemma 5.4 lead to the desired result. □

Now, we sum up the relation between SOCEiCP(B,C) and SOCCP(F ) in the
below theorem and we call it Reformulation I for SOCEiCP.

Theorem 5.6 (Reformulation I for SOCEiCP). Consider the SOCEiCP(B,C)
given as in (1.4) where B is positive definite. Let F : Rn → Rn be defined as in
(5.3). Then, the following hold.

(a) If (x∗, λ∗) solves the SOCEiCP(B,C), then x∗ solves the SOCCP(F ).
(b) Conversely, if x̄ is a nonzero solution of the SOCCP(F ), then (x∗, λ∗) solves

the SOCEiCP(B,C) with λ∗ = x̄TCx̄
x̄TBx̄

and x∗ = x̄
aT x̄

.

Proof. Part (a) is trivial and we only need to prove part (b). Suppose that x̄ is
a nonzero solution to the SOCCP(F ) with F given as in (5.3). Then, we have
x̄TCx̄
x̄TBx̄

·Bx̄−Cx̄ ∈ Kn, x̄ ∈ Kn, and x̄T
(
x̄TCx̄
x̄TBx̄

Bx̄− Cx̄
)
= 0. Since a ∈ int(Kn) and

x̄ ∈ Kn, it yields 1
aT x̄

> 0 by the same arguments as on page 4. From all the above,
we conclude that

y∗ := λ∗Bx∗ − Cx∗ = 1
aT x̄

[(
x̄TCx̄
x̄TBx̄

)
Bx̄− Cx̄

]
∈ Kn,

x∗ := 1
aT x̄

x̄ ∈ Kn,

aTx∗ = aT x̄
aT x̄

= 1,

(x∗)T y∗ =
(

1
aT x̄

)2 [
x̄T
(
x̄TCx̄
x̄TBx̄

Bx̄− Cx̄
)]

= 0.

Thus, (x∗, λ∗) solves the SOCEiCP(B,C). □

Next, we consider the SOCQEiCP(A,B,C) given as in (1.5), where A,B,C ∈
Rn×n such that the matrix A is positive definite (hence A is Kn-regular) and the
triplet (A,B,C) is Kn-hyperbolic. For any x ∈ Rn with x ̸= 0, plugging w =
λ2Ax+ λBx+Cx into the complementarity condition xTw = 0 yields (xTAx)λ2 +
(xTBx)λ+(xTCx) = 0. Thus, λ can be obtained by solving this quadratic equation,
i.e.,

λ1(x) =
−(xTBx) +

√
(xTBx)2 − 4(xTAx)(xTCx)

2(xTAx)
,(5.4)

λ2(x) =
−(xTBx)−

√
(xTBx)2 − 4(xTAx)(xTCx)

2(xTAx)
.(5.5)

Then, for x ̸= 0, we define Fi : R
n → Rn as

(5.6) Fi(x) = λ2
i (x)Ax+ λi(x)Bx+ Cx,

where i = 1, 2. In order to guarantee the well-definedness of Fi(0) for i = 1, 2, we
need to look into lim

x→0
Fi(x).

Lemma 5.7. Consider the SOCQEiCP(A,B,C) given as in (1.5) where A is pos-
itive definite. Let Fi : R

n → Rn be defined as in (5.6) where x ̸= 0. Then, we have
lim
x→0

Fi(x) = 0 for i = 1, 2.
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Proof. Since A is positive definite, by Cholesky factorization, there exists an in-
vertible lower triangle matrix L with positive diagonal entries such that A = LLT .
Using the same techniques in the proof of Lemma 5.3, for x ̸= 0, we obtain

xTAx = (LTx)T (LTx),

xTBx = (LTx)T (L−1B(L−1)T )(LTx),

xTCx = (LTx)T (L−1C(L−1)T )(LTx).

For convenience, we denoteD := L−1B(L−1)T , E := L−1C(L−1)T ,M1 := ∥D∥sup =
max

1≤i,j≤n
|dij | be the supremum norm of D, and M2 := ∥E∥sup = max

1≤i,j≤n
|eij | be the

supremum norm of E, where dij is the (i, j)-entry of D and eij is the (i, j)-entry
of E. In addition, we also denote y = (y1, · · · , yn)T := LTx. Using the same
techniques in the proof of Lemma 5.3, we obtain

|xTBx| = |yTDy| ≤ nM1

n∑
i=1

y2i ,

|xTCx| = |yTEy| ≤ nM2

n∑
i=1

y2i .

Hence, for each i and for x ̸= 0, we see that

|λi(x)|

≤ |xTBx|+
√
|xTBx|2 + 4|xTBx||xTCx|

2|xTAx|

≤
nM1

∑n
i=1 y

2
i +

√
(nM1

∑n
i=1 y

2
i )

2 + 4(nM1
∑n

i=1 y
2
i )(nM2

∑n
i=1 y

2
i )

2
∑n

i=1 y
2
i

≤ M3 :=

(
1 +

√
5

2

)
n max{M1,M2}.

This yields

∥Fi(x)∥ ≤ M2
3 ∥Ax∥+M3∥Bx∥+ ∥Cx∥,

for each i and x ̸= 0. Then, by the continuity of linear transformation A, B, and
C, the desired result follows. □

Again, in view of Lemma 5.7, we need to do something to construct a differen-
tiable mapping Fi. In other words, we redefine Fi(x) by

(5.7) Fi(x) =

{
λ2
i (x)Ax+ λi(x)Bx+ Cx if x ̸= 0,

0 if x = 0.

where λi(x), i = 1, 2 are given as in (5.4)-(5.5). From Lemma 5.7, it is clear that the
mapping Fi : R

n → Rn is continuous for i = 1, 2. In fact, the mapping Fi : R
n → Rn

is smooth except for 0. To see this fact, we give an example as follows. For n = 2,

we take A =

[
a11 a12
a21 a22

]
which is positive definite and B =

[
b11 b12
b21 b22

]
such
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that b22 ̸= 0. Because A is positive definite, the entries a22 are positive. Now for
each i = 1, 2, we consider the first two terms of Fi(x) described as in (5.6), i.e.,

λ2
i (x)

[
a11x1 + a12x2
a21x1 + a22x2

]
+ λi(x)

[
b11x1 + b12x2
b21x1 + b22x2

]
:=

[
gi1(x)
gi2(x)

]
.

It can be verified that

lim
x1→0

gi2(x)

x1
= ∞,

which implies that ∂gi2
∂x1

(0) does not exist. Therefore, Fi(x) is not differentiable at
0.

For x ̸= 0, the Jacobian matrix of Fi(x) in (5.7) is computed as below.

Lemma 5.8. Consider the SOCQEiCP(A,B,C) given as in (1.5) where A is pos-
itive definite. Let Fi : R

n → Rn be defined as in (5.7) for i = 1, 2. Then, Fi is
smooth except for 0 and its Jacobian matrix is expressed as

∇Fi(x) = ∇λi(x)
(
2λi(x)x

TAT + xTBT
)
+ λ2

i (x)A
T + λi(x)B

T + CT ,

where

∇λ1(x) =
1

2xTAx
(Bx+BTx)

(
(D(x))−

1
2 (xTBx)− 1

)
− 1

xTAx
· (D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx−

√
D(x)

]
(Ax+ATx),

∇λ2(x) = − 1

2xTAx
(Bx+BTx)((D(x))

1
2 (xTBx) + 1)

+
1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx+

√
D(x)

]
(Ax+ATx),

and D(x) := (xTBx)2 − 4(xTAx)(xTCx).
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Proof. The proof is routine check by applying chain rule. First, we denote D(x) :=
(xTBx)2 − 4(xTAx)(xTCx). Then, it can be verified that

∇λ1(x) =
1

2(xTAx)2

[
−∇(xTBx) +∇(

√
D(x))

]
(xTAx)

− 1

2(xTAx)2

[
−xTBx+

√
D(x)

]
∇(xTAx)

=
1

2xTAx
(−Bx−BTx) +

1

2xTAx
(D(x))−

1
2 (xTBx)(Bx+BTx)

− 1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
− 1

2(xTAx)2

[
−xTBx+

√
D(x)

]
(Ax+ATx)

=
1

2xTAx
(Bx+BTx)

[
(D(x))−

1
2 (xTBx)− 1

]
− 1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx−

√
D(x)

]
(Ax+ATx)

and

∇λ2(x) = − 1

2xTAx
(Bx+BTx)

]
(D(x))

1
2 (xTBx) + 1

]
+

1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx+

√
D(x)

]
(Ax+ATx).

Applying Lemma 5.4 for each i, we have

∇Fi(x)

= 2λi(x)∇λi(x) · (xTAT ) + λ2
i (x)A

T +∇λi(x) · (xTBT ) + λi(x)B
T + CT

= ∇λi(x)(2λi(x)x
TAT + xTBT ) + λ2

i (x)A
T + λi(x)B

T + CT .

Then, the proof is complete. □

Again, we sum up the relation between SOCQEiCP(A,B,C) and SOCCP(Fi) for
i = 1, 2 in the below theorem, and we call it Reformulation I for SOCQEiCP.

Theorem 5.9 (Reformulation I for SOCQEiCP).
Consider the SOCQEiCP(A,B,C) given as in (1.5) where A is positive definite.
Let Fi : R

n → Rn be defined as in (5.7) for i = 1, 2. Then, the following hold.

(a) If (x∗, λ∗) solves the SOCQEiCP(A,B,C), then x∗ solves either SOCCP(F1)
or SOCCP(F2).

(b) Conversely, if x̄ is a nonzero solution to the SOCCP(Fi) for i = 1, 2, then
(x∗, λ∗) solves the SOCQEiCP(A,B,C) with x∗ = x̄

aT x̄
and λ∗ = λi(x̄)

(i = 1, 2) defined as in (5.4)-(5.5).
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Proof. Again, part (a) is trivial. We only need to prove part (b). Suppose that x̄ is
a nonzero solution of SOCCP(Fi) with Fi as in (5.7), i = 1, 2. Then, for each i, we
know that λ2

i (x̄)Ax̄ + λi(x̄)Bx̄ + Cx̄ ∈ Kn, x̄ ∈ Kn, and x̄T (λ2
i (x̄)Ax̄ + λi(x̄)Bx̄ +

Cx̄) = 0. Since a ∈ int(Kn) and x̄ ∈ Kn, we have 1
aT x̄

> 0 by similar arguments as
on page 4. From all the above, we conclude that

y∗ := (λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ = 1
aT x̄

(
λ2
i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄

)
∈ Kn,

y∗ := 1
aT x̄

x̄ ∈ Kn,

aTx∗ = aT x̄
aT x̄

= 1,

(x∗)T y∗ =
(

1
aT x̄

)2 [
x̄T (λ2

i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄)

]
= 0.

Thus, (x∗, λ∗) solves the SOCQEiCP(A,B,C). □

Remark 5.10. Note that the mapping F as in (5.3) and (5.7) are continuous and
non-monotone [19], moreover, the term xTF (x) = 0 is indeed redundant in the
SOCCP (5.1). Hence, it is difficult to apply some usual techniques in the literature
(shown as in [18]) to solve (5.1). Thus, we consider other approach for solving (5.1),
which was proposed [1]. In particular, the SOCCP (5.1) can be replaced by solving
the following problem

min
n∑

j=1

θr(xj) + θr(Fj(x))− 1

s.t x ⪰Kn 0, F (x) ⪰Kn 0,

where θ : R → (−∞, 1) satisfies

θ(t) < 0 if t < 0, θ(0) = 0, lim
t→∞

θ(t) = 1,

and θr(t) = θ( tr ) for r > 0.

We now introduce the second approach to SOCEiCP and SOCQEiCP, which
recasts them as a SOCLCP and another SOCCP. The SOC linear complementarity
problem (SOCLCP) is to find a vector x ∈ Rn such that

(5.8) SOCLCP(M, q) :


x ⪰Kn 0,
y ⪰Kn 0,
y = Mx+ q,
xT y = 0,

where the vector q ∈ Rn and the matrix M ∈ Rn×n. We shall denote it by
SOCLCP(M , q). For the matrix C defined in the SOCEiCP (1.4), we will con-
sider SOCLCP(−C, 0) as follows:

SOCLCP(−C, 0) :

 x ∈ Kn,
−Cx ∈ Kn,
xT (−Cx) = 0.

For (x, λ) ∈ Rn ×R, we define functions F3 and F4 as follows:

(5.9) F3(x, λ) := (λBx− Cx, aTx− 1)
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and

(5.10) F4(x, λ) := (−λBx− Cx, aTx− 1)

where B,C are n×n matrices given as in the SOCEiCP(1.4) and a ∈ int(Kn). With
these two functions, F3, F4 defined as in (5.9) and (5.10) respectively, we consider
their corresponding SOCCPs as follows:

(5.11) SOCCP(F3) :


x ∈ Kn, λ ≥ 0,
λBx− Cx ∈ Kn, aTx− 1 ≥ 0,
xT (λBx− Cx) + λ(aTx− 1) = 0,

and

(5.12) SOCCP(F4) :


x ∈ Kn, λ ≥ 0,
−λBx− Cx ∈ Kn, aTx− 1 ≥ 0,
xT (−λBx− Cx) + λ(aTx− 1) = 0,

We also need a technical lemma for this approach.

Lemma 5.11. Suppose that x := (x1, x2) ∈ Kn, y := (y1, y2) ∈ Kn. Then, the
following hold.

(a): xT y ≥ 0.
(b): If x ∈ int(Kn), then xT y > 0 ⇐⇒ y ̸= 0.
(c): If x ̸= 0 and y ̸= 0, then xT y = 0 ⇐⇒ x1 = ∥x2∥ and y = α(x1,−x2),

where α is a positive constant. Similarly, if x ̸= 0 and y ̸= 0, then xT y = 0
⇐⇒ y1 = ∥y2∥ and x = β(x1,−x2), where β is a positive constant.

Proof. (a) By the definition of Kn and Schwarz’s inequality, the result follows by

xT y = x1y1 + xT2 y2 ≥ x1y1 − ∥x2∥∥y2∥ ≥ x1y1 − x1y1 = 0.

(b) It is clear by straightforward checking, or see [9].

(c) By the assumption, we know that x ̸= 0 implies that x1 > 0. Otherwise,
∥x2∥ ≤ x1 = 0 implies that x = 0. Similarly, we know that y1 > 0. Using the
assumption that xT y = 0, the definition of Kn and Schwarz’s inequality, we obtain

(5.13) x1y1 = | − x1y1| = |xT2 y2| ≤ ∥x2∥∥y2∥ ≤ x1y1.

This implies that

(5.14) x1y1 = ∥x2∥∥y2∥

By the equality (5.14) and x1, y1 > 0, we know that ∥x2∥, ∥y2∥ > 0. This fact
together with ∥x2∥ ≤ x1, ∥y2∥ ≤ y1 and the equality (5.14) yields

(5.15) x1 = ∥x2∥

and

(5.16) y1 = ∥y2∥.

Combining all the above equalities (5.13),(5.14),(5.15) and (5.16), we know that

xT2 y2 = −x1y1 = −∥x2∥∥y2∥.
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This implies the equality holds in the Schwarz’s inequality. Thus, there exists a
constant k such that

(5.17) y2 = kx2.

Since k∥x2∥2 = xT2 y2 = −x1y1 < 0, we obtain that k < 0. Choosing α = −k says
that α > 0 and y2 = −αx2. Now, applying the equalities (5.15),(5.16) and (5.17)
leads to

y1 = ∥y2∥ = ∥ − αx2∥ = | − α|∥x2∥ = α∥x2∥ = αx1,

which gives y = α(x1,−x2).

The other direction is trivial, so the proof is complete. □

We conclude the relation between SOCEiCP(B,C) and the SOCCP, SOCLCP in
the following theorem, and we call it Reformulation II for SOCEiCP.

Theorem 5.12 (Reformulation II for SOCEiCP).
Let F3 and F4 be defined as in (5.9) and (5.10), respectively. Suppose that (x∗, λ∗)
solves the SOCEiCP(B,C) defined as in (1.4). Then, the following hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the SOCCP(F3).
(b) If λ∗ < 0, then (x∗,−λ∗) solves the SOCCP(F4).
(c) If λ∗ = 0, then x∗ solves the SOCLCP(−C,0).

Conversely, consider the SOCLCP given as in (5.8), the SOCCP(F3) given as in
(5.11), and the SOCCP(F4) given as in (5.12).

(d) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F3), then (x∗, λ∗) solves the
SOCEiCP(B,C).

(e) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F4), then (x∗,−λ∗) solves the
SOCEiCP(B,C).

(f) If x∗ solves the SOCLCP(−C, 0) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) solves the
SOCEiCP(B,C).

Proof. From the assumption that (x∗, λ∗) solves the SOCEiCP(B,C), we observe
that

x∗ ∈ Kn and F3(x
∗, λ∗) = F4(x

∗,−λ∗) = (λ∗Bx∗ − Cx∗, 0) ∈ Kn ×K.

(a) If λ∗ > 0, then (x∗, λ∗) ∈ Kn ×K, F3(x
∗, λ∗) ∈ Kn ×K and

(x∗, λ∗) · F3(x
∗, λ∗) = (x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

This says that (x∗, λ∗) solves the SOCCP(F3).

(b) If λ∗ < 0, then (x∗,−λ∗) ∈ Kn ×K, F4(x
∗,−λ∗) ∈ Kn ×K and

(x∗,−λ∗) · F4(x
∗,−λ∗) = (x∗)T (λ∗Bx∗ − Cx∗)− λ∗(aTx∗ − 1) = 0.

This says that (x∗,−λ∗) solves the SOCCP(F4).

(c) If λ∗ = 0, then (x∗, λ∗) = (x∗, 0) ∈ Kn × K, λ∗Bx∗ − Cx∗ = −Cx∗ ∈ Kn and
(x∗)T (−Cx∗) = 0. This says that (x∗, 0) solves the SOCLCP(−C,0).
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(d) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F3), then we see that
x∗ ∈ Kn, λ∗ > 0,
λ∗Bx∗ − Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

By Lemma 5.11, it implies that (x∗)T (λ∗Bx∗ −Cx∗) ≥ 0 and aTx∗ − 1 = 0. Hence,
(x∗, λ∗) solves the SOCEiCP(B,C).

(e) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F4), then we see that
x∗ ∈ Kn, λ∗ > 0,
−λBx∗ − Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

By Lemma 5.11 again, it implies that (x∗)T (−λ∗Bx∗−Cx∗) ≥ 0 and aTx∗− 1 = 0.
Hence, (x∗,−λ∗) solves the SOCEiCP(B,C).

(f) If x∗ solves SOCLCP(−C, 0) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) solves the SOCEiCP(B,C)
trivially. □

To deal with SOCQEiCP, we have to define other functions. For (x, λ) ∈ Rn×R,
we define functions F5 and F6 as follows:

(5.18) F5(x, λ) = (λ2Ax+ λBx+ Cx, aTx− 1)

and

(5.19) F6(x, λ) = (λ2Ax− λBx+ Cx, aTx− 1),

where A,B,C are n×n matrices given as in the SOCQEiCP (1.5) and a ∈ int(Kn).
With these two new functions F5, F6 defined as in (5.18) and (5.19), respectively,
we consider their corresponding SOCCPs as below:

(5.20) SOCCP(F5) :


x ∈ Kn, λ ≥ 0,
λ2Ax− λBx+ Cx ∈ Kn, aTx− 1 ≥ 0,
xT (λ2Ax− λBx+ Cx) + λ(aTx− 1) = 0,

and

(5.21) SOCCP(F6) :


x ∈ Kn, λ ≥ 0,
λ2Ax− λBx+ Cx ∈ Kn, aTx− 1 ≥ 0,
xT (λ2Ax− λBx+ Cx) + λ(aTx− 1) = 0,

Likewise, we present the relation between SOCQEiCP(B,C) and the SOCCP,
SOCLCP in the following theorem, and we call it Reformulation II for SOC-
QEiCP.

Theorem 5.13 (Reformulation II for SOCQEiCP).
Let F5 and F6 be defined as in (5.18) and (5.19), respectively. Suppose that (x∗, λ∗)
solves the SOCQEiCP(A,B,C) defined as in (1.5). Then, the following hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the SOCCP(F5).
(b) If λ∗ < 0, then (x∗,−λ∗) solves the SOCCP(F6).
(c) If λ∗ = 0, then x∗ solves the SOCLCP(C,0).
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Conversely, consider the SOCLCP given as in (5.8), the SOCCP(F5) given as in
(5.20), and the SOCCP(F6) given as in (5.21).

(d) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F5), then (x∗, λ∗) solves the
SOCQEiCP(A,B,C).

(e) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F6), then (x∗,−λ∗) solves the
SOCQEiCP(A,B,C).

(f) If x∗ solves SOCLCP(C, 0) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) solves the SOCCP(F6).

Proof. The arguments are quite similar to those for Theorem 5.12. For com-
pleteness, we also present them. From the assumption that (x∗, λ∗) solves the
SOCQEiCP(A,B,C), we have the following observations: x∗ ∈ Kn and F5(x

∗, λ∗) =
F6(x

∗,−λ∗) = ((λ∗)2Ax∗ + λ∗Bx∗ + Cx∗, 0) ∈ Kn ×K.
(a) If λ∗ > 0, then (x∗, λ∗) ∈ Kn ×K, F5(x

∗, λ∗) ∈ Kn ×K and

(x∗, λ∗) · F5(x
∗, λ∗) = (x∗)T [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗] + λ∗(aTx∗ − 1) = 0.

This says that (x∗, λ∗) solves the SOCCP(F5).

(b) If λ∗ < 0, then (x∗,−λ∗) ∈ Kn ×K, F5(x
∗,−λ∗) ∈ Kn ×K and

(x∗,−λ∗) · F5(x
∗,−λ∗) = [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗]− λ∗(aTx∗ − 1) = 0.

This says that (x∗,−λ∗) solves the SOCCP(F5).

(c) If λ∗ = 0, then (x∗, λ∗) = (x∗, 0) ∈ Kn×K, (λ∗)2Ax∗+λ∗Bx∗+Cx∗ = Cx∗ ∈ Kn

and (x∗)TCx∗ = 0. This says that (x∗, 0) solves the SOCLCP(C,0).

(d) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F5), then we know that
x∗ ∈ Kn, λ∗ > 0,
(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗] + λ∗(aTx∗ − 1) = 0.

By Lemma 5.11, this implies that (x∗)T [(λ∗)2Ax∗+λ∗Bx∗+Cx∗] ≥ 0 and aTx∗−1 =
0. Hence, (x∗, λ∗) solves the SOCQEiCP(A,B,C).

(e) If λ∗ ̸= 0 and (x∗, λ∗) solves the SOCCP(F6), then we know that
x∗ ∈ Kn, λ∗ > 0,
(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T [(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗] + λ∗(aTx∗ − 1) = 0.

By Lemma 5.11, this implies that (x∗)T [(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗] ≥ 0 and
aTx∗ − 1 = 0. Hence, (x∗,−λ∗) solves the SOCEiCP(A,B,C).

(f) If x∗ solves the SOCLCP(C, 0) and x∗ ̸= 0, then ( x∗

aT x∗ , 0) solves the
SOCQEiCP(A,B,C) trivially. □

Remark 5.14. Let y = (x, λ) ∈ Rn×R and Fi be defined as in (5.9), (5.10), (5.18),
(5.19). The SOCCP(Fi), i = 3, 4, 5, 6 can be written as

SOCCP(Fi) :

 y ∈ Kn ×K1

F (y) ∈ Kn ×K1,
yTF (y) = 0.
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Since Fi, i = 3, 4, 5, 6 is continuously differentiable, it is easy to look for an algorithm
to solve the SOCCP(Fi), which is better than the SOCCP as in Reformulation I.

At last, we present the third approach to SOCEiCP and SOCQEiCP, which
recasts them as a nonsmooth system of equations. Note that this approach was also
investigated in [2], but the SOCEiCP (expression (13) given in [2]) is not correct
because the authors replace the condition x ̸= 0 by eTx > 0. This is not appropriate
like what are commented in Section 1. More specifically, for such approach, it needs
to find a function ϕ : Rn ×Rn → R+ such that

(5.22) ϕ(x, y) = 0 ⇐⇒ ⟨x, y⟩ = 0, x ∈ Kn, y ∈ Kn.

Such function is usually called a C-function or SOCCP-function. There are already
many C-functions in the literature [13–15,38,41]. In this approach, we employ two
popular ones, the natural residual function, also called the min-function, denoted
by ϕNR , and the Fischer-Burmeister function, denoted by ϕFB . They are defined as
below, respectively,

(5.23) ϕNR(x, y) := x− (x− y)+ = x− PKn(x− y),

(5.24) ϕFB(x, y) := (x+ y)− (x2 + y2)
1
2 ,

where PKn denotes the projection mapping onto Kn.

Before moving on, we also recall the concepts of the B-subdifferential and (strong)
semismoothness, which will be used later. Given a mapping H : Rn → Rm, if H is
locally Lipschitz continuous, then the set

∂BH(z) :=
{
V ∈ Rm×n | ∃{zk} ⊆ DH s.t. zk → z,H

′
(zk) → V

}
is nonempty and is called the B-subdifferential of H at z, where DH ⊆ Rn denotes
the set of points at whichH is differentiable. The convex hull ∂H(z) := conv∂BH(z)
is called the generalized Jacobian in Clarke sense [11]. A mapping H : Rn → Rm

is said to be semismooth at x if H is directionally differentiable at x; and for all
V ∈ ∂H(x+ h) and h → 0, there holds

V h−H
′
(x;h) = o(∥h∥).

The mapping H is said to be strongly semismooth at x if H is semismooth at x; and
for all V ∈ ∂H(x+ h) and h → 0, there holds

V h−H
′
(x;h) = o(∥h∥2).

The mapping H is called (strongly) semismooth if it is (strongly) semismooth ev-
erywhere.

In light of [15, Proposition 4.3], [24, Lemmas 2.4 and 2.5] and [10, Propositions
4 and 5], we list some results about the natural residual function and the Fischer-
Burmeister function.

Lemma 5.15. Let ϕNR be defined as in (5.23). Then, ϕNR is strongly semismooth
with

∂BϕNR(x, y) =
{[
I − V V

]
∈ Rn×2n |V ∈ PKn(x− y)

}
,

for all (x, y) ∈ Rn ×Rn.
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Lemma 5.16. Let ϕFB be defined as in (5.24). Then, ϕFB is strongly semismooth.
For any (x, y) ∈ Rn × Rn, we denote w = (w1, w2) := x2 + y2 and z = (z1, z2) :=

(x2 + y2)
1
2 . Then, each element in ∂BϕFB is described by[

I − Vx I − Vy

]
with Vx and Vy having the following representation:

(a) If x2 + y2 ∈ int(Kn), then Vx = L−1
z Lx and Vy = L−1

z Ly.
(b) If x2 + y2 ∈ bd(Kn), and (x, y) ̸= (0, 0), then

Vx ∈
{

1

2
√
2w1

(
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

)
Lx +

1

2

(
1

−w̄2

)
uT
}

and

Vy ∈
{

1

2
√
2w1

(
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

)
Ly +

1

2

(
1

−w̄2

)
vT
}
,

for some u = (u1, u2), v = (v1, v2) ∈ R × Rn−1 satisfying |u1| ≤ ∥u2∥ ≤ 1
and |v1| ≤ ∥v2∥ ≤ 1, where w̄2 =

w2
∥w2∥ .

(c) If (x, y) = (0, 0), then Vx ∈ {Lx̂}, Vy ∈ {Lŷ} for some x̂, ŷ with ∥x̂∥2 +
∥ŷ∥2 = 1, or

Vx ∈
{
1

2

(
1
w̄2

)
ξT +

1

2

(
1

−w̄2

)
uT + 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)}
,

Vy ∈
{
1

2

(
1
w̄2

)
ηT +

1

2

(
1

−w̄2

)
vT + 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)}
,

for some u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2) ∈ R × Rn−1

such that |u1| ≤ ∥u2∥ ≤ 1, |v1| ≤ ∥v2∥ ≤ 1, |ξ1| ≤ ∥ξ2∥ ≤ 1, |η1| ≤ ∥η2∥ ≤ 1,
w̄2 ∈ Rn−1 satisfying ∥w̄2∥ = 1, and s = (s1, s2), ω = (ω1, ω2) ∈ R × Rn−1

satisfying ∥s∥2 + ∥ω∥2 ≤ 1
2 .

From (5.22), it is clear to see that when ϕ : Rn × Rn → R is a C-function, the
SOCEiCP(B,C) can be reformulated as a nonsmooth system of equations:

Φ(z) = Φ(x, y, λ) :=

 ϕ(x, y)
λBx− Cx− y

aTx− 1

 = 0.(5.25)

Here Φ : Rn×Rn×R → R2n+1. We shall denote the above Φ by ΦNR and ΦFB when
ϕ represents the natural residual function ϕNR and the Fischer-Burmeister function
ϕFB , respectively. With these notations, the B-subdifferential of ΦNR and ΦFB , are
written out as below lemmas.

Lemma 5.17. The function ΦNR is semismooth. Moreover, the B-subdifferential
of ΦNR at z = (x, y, λ) is described by

∂BΦNR(z) = ∂BΦNR(x, y, λ)

=


 I − V V 0

λB − C −I Bx
aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x− y)

 .
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Proof. This is a direct consequence of Lemma 5.15. □

Lemma 5.18. The function ΦFB is semismooth. Moreover, the B-subdifferential of
ΦFB at z = (x, y, λ) is described by

∂BΦFB(z) = ∂BΦFB(x, y, λ)

=


 I − Vx I − Vy 0

λB − C −I Bx
aT 0 0

 ∣∣∣∣∣ [I − Vx I − Vy

]
∈ ∂BϕFB(z)

 ,

where Vx and Vy are given in Lemma 5.16.

Proof. This is a direct consequence of Lemma 5.16. □

Now, we are ready to conclude the relation between SOCEiCP(B,C) and the
nonsmooth system of equations in the following theorem. We will call it Reformu-
lation III for SOCEiCP.

Theorem 5.19 (Reformulation III for SOCEiCP). Let Φ(z) = Φ(x, y, λ) be
defined as in (5.25) and consider the SOCEiCP(B,C) given as in (1.4). Then, the
following hold.

(a) If (x∗, λ∗) solves the SOCEiCP(B,C), then Φ(x∗, y∗, λ∗) = 0 with y∗ =
λ∗Bx∗ − Cx∗.

(b) Conversely, if (x∗, y∗, λ∗) is a solution of the nonsmooth system of equations
Φ(z) = 0, i.e., Φ(x∗, y∗, λ∗) = 0, then (x∗, λ∗) solves the SOCEiCP(B,C).

Furthermore, if Φ represents ΦNR or ΦFB , then the B-subdifferential of Φ exists with

∂BΦNR (x∗, y∗, λ∗) =


 I − V V 0

λB − C −I Bx∗

aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x∗ − y∗)


and

∂BΦFB(x
∗, y∗, λ∗)

=


 I − Vx∗ I − Vy∗ 0

λB − C −I Bx∗

aT 0 0

 ∣∣∣∣∣ [I − Vx∗ I − Vy∗
]
∈ ∂BϕFB(x

∗, y∗)

 ,

where Vx∗ and Vy∗ are given in Lemma 5.16, respectively.

Proof. The results follow by the definition of the SOCEiCP, Lemma 5.17 and Lemma
5.18. □

As for SOCQEiCP(A,B,C), we observe that when ϕ : Rn × Rn → R is a C-
function, the SOCQEiCP(A,B,C) can be reformulated as another nonsmooth sys-
tem of equations:

Ψ(z) = Ψ(x, y, λ) :=

 ϕ(x, y)
λ2Ax+ λBx+ Cx− y

aTx− 1

 = 0.(5.26)
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Here Ψ : Rn×Rn×R → R2n+1. Again, we shall denote Ψ by ΨNR and ΨFB when ϕ
means ϕNR and ϕFB , respectively. In these cases, the B-subdifferential of ΨNR and
ΨFB are expressed as lemmas.

Lemma 5.20. The function ΨNR is semismooth. Moreover, the B-subdifferential
of ΨNR at z = (x, y, λ) is described by

∂BΨNR(z) = ∂BΨNR(x, y, λ)

=


 I − V V 0

λ2A+ λB + C −I 2λAx+Bx
aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x− y)

 .

Proof. By direct computation and Lemma 5.15, the proof is trivial. □

Lemma 5.21. The function ΨFB is semismooth. Moreover, the B-subdifferential
of ΨFB at z = (x, y, λ) is described by

∂BΨFB(z) = ∂BΨFB(x, y, λ)

=


 I − Vx I − Vy 0

λ2A+ λB + C −I 2λAx+Bx
aT 0 0

 ∣∣∣∣∣ [I − Vx I − Vy

]
∈ ∂BϕFB(z)

 ,

where Vx and Vy are given in Lemma 5.16.

Proof. By direct computation and Lemma 5.16, the proof is trivial. □

Now, we are ready to conclude the relation between SOCQEiCP(A,B,C) and the
nonsmooth system of equations in the following theorem. We call it Reformulation
III for SOCQEiCP.

Theorem 5.22 (Reformulation III for SOCQEiCP). Let Ψ(z) = Ψ(x, y, λ) be
defined as in (5.26) and consider the SOCQEiCP(A,B,C) given as in (1.5). Then,
the following hold.

(a) If (x∗, λ∗) solves the SOCQEiCP(A,B,C), then Ψ(x∗, y∗, λ∗) = 0 with y∗ =
(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗.

(b) Conversely, if (x∗, y∗, λ∗) is a solution of the nonsmooth system of equations
Ψ(z) = 0, i.e., Ψ(x∗, y∗, λ∗) = 0, then (x∗, λ∗) solves the SOCQEiCP(A,B,C).

Furthermore, if Ψ represents ΨNR or ΨFB , then the B-subdifferential of Ψ exists
with

∂BΨNR(x
∗, y∗, λ∗)

=


 I − V V 0

(λ∗)2A+ λ∗B + C −I 2λ∗Ax∗ +Bx∗

aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x∗ − y∗)

 .
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and

∂BΨFB(x
∗, y∗, λ∗)

=

{ I − Vx∗ I − Vy∗ 0
(λ∗)2A+ λ∗B + C −I 2λ∗Ax+Bx

aT 0 0


∣∣∣∣∣ [I − Vx∗ I − Vy∗

]
∈ ∂BϕFB(x

∗, y∗)

}
,

where Vx∗ and Vy∗ are given in Lemma 5.16, respectively.

Proof. Applying Lemma 5.20 and Lemma 5.21, the proof is trivial. □

6. Concluding remarks

In this paper, the existence of solutions for three types of optimization problems
involving SOC is studied. First, we look into the absolute value equations associated
with SOC, which are natural extensions of the standard absolute value equations.
For the absolute value equation associated with SOC, we have characterized un-
der what condition, the SOCAVEs have solution and unique solution. Such results
are new to the literature and will be helpful for further study of the SOCAVEs.
In addition, we study the solvabilities of two types of eigenvalue complementarity
problems, i.e., the SOCEiCP(B,C) and the SOCQEiCP(A,B,C). Our approach is
based on reformulating them as various second-order cone complementarity prob-
lems, which is a novel thinking different from the existing ways. Such an idea
may pave a way to seeking new algorithms for solving the SOCEiCP(B,C) and the
SOCQEiCP(A,B,C). We leave them as our future research topics.
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