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Abstract. In this paper, we study the solvabilities of three optimiza-
tion problems associated with second-order cone, including the absolute
value equations associated with second-order cone (SOCAVE), eigen-
value complementarity problem associated with second-order cone (SOCE-
iCP), and quadratic eigenvalue complementarity problem associated with
second-order cone (SOCQEiCP). More specifically, we characterize un-
der what conditions these optimizations have solution and unique solu-
tion, respectively.

1. Introduction

In this paper, we study the solvabilities of three optimization problems
associated with second-order cone. The first optimization problem that our
target is the so-called absolute value equations associated with second-order
cone, abbreviated as SOCAVEs. For SOCAVEs, there have two types of
them. The first type is in the form of

(1) Ax− |x| = b.

Another one is a more general SOCAVE, which is in the form of

(2) Ax+B|x| = b,

where A,B ∈ Rn×n, B 6= 0, and b ∈ Rn. Note that, unlike the standard
absolute value equation that is presented below, here |x| means the absolute
value of x coming from the square root of the Jordan product “◦”, associated
with second-order cone (SOC), of x and x, that is, |x| := (x ◦ x)1/2. The
second-order cone in Rn (n ≥ 1), also called the Lorentz cone or ice-cream
cone, is defined as

Kn :=
{

(x1, x2) ∈ R×Rn−1 | ‖x2‖ ≤ x1

}
,
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where ‖ · ‖ denotes the Euclidean norm. If n = 1, then K1 is the set of
nonnegative reals R+. In general, a general second-order cone K could be
the Cartesian product of SOCs, i.e.,

K := Kn1 × · · · × Knr .

For simplicity, we focus on the single second-order cone Kn because all the
analysis can be carried over to the setting of Cartesian product. More de-
tails about second-order cone, Jordan product, and (·)1/2 will be introduced
in Section 2.

Indeed, the SOCAVE (1) (respectively, SOCAVE (2)) is a natural exten-
sion of the standard absolute value equation (AVE for short) as bellow:

(3) Ax− |x| = b, (respectively, Ax+B|x| = b)

where |x| denotes the componentwise absolute value of vector x ∈ Rn. It is
known that the standard absolute value equation (3) was first introduced by
Rohn in [44] and recently has been investigated by many researchers. For
standard absolute value equation, there are two main research directions.
One is on the theoretical side in which the corresponding properties of the
solution for the AVE (3) are studied, see [21, 25, 28, 29, 32, 35, 42, 44, 52].
The other one focuses on the algorithm for solving the absolute value equa-
tion, see [5, 23, 30, 31, 33, 34, 45, 53, 54].

On the theoretical aspect, Mangasarian and Meyer [35] show that the
AVE (3) is equivalent to the bilinear program, the generalized LCP (lin-
ear complementarity problem), and the standard LCP provided 1 is not
an eigenvalue of A. Prokopyev [42] further improves the above equivalence
which indicates that the AVE (3) can be equivalently recast as an LCP with-
out any assumption on A and B, and also provides a relationship with mixed
integer programming. In general, if solvable, the AVE (3) can have either
unique solution or multiple (e.g., exponentially many) solutions. Indeed,
various sufficient conditions on solvability and non-solvability of the AVE
(3) with unique and multiple solutions are discussed in [35, 42]. Moreover,
Wu and Guo [52] further study the unique solvability of the AVE (3), and
give some new and useful results for the unique solvability of the AVE (3).

Recently, the absolute value equation associated with second-order cone
or circular cone are investigated in [22] and [27], respectively. In particular,
Hu, Huang and Zhang [22] show that the SOCAVE (2) is equivalent to a
class of second-order cone linear complementarity problems, and establish
a result regarding the unique solvability of the SOCAVE (2). Along this
direction, we further look into the SOCAVEs (1) and (2) in this paper, and
achieve some new results about the existence of (unique) solution.



SOLVABILITIES OF OPTIMIZATION PROBLEMS ASSOCIATED WITH SOC 3

The second optimization problem that we focus on is the so-called second-
order cone eigenvalue complementarity problem, SOCEiCP for short. More
specifically, given two matrices B,C ∈ Rn×n, the SOCEiCP is to find
(x, y, λ) ∈ Rn ×Rn ×R such that

(4) SOCEiCP(B,C) :


y = λBx− Cx,
y �Kn 0, x �Kn 0,
xT y = 0,
aTx = 1,

where a is an arbitrary fixed point with a ∈ int(Kn), and x �Kn 0 means
that x ∈ Kn, a partial order. The SOCEiCP(B,C) given as in (4) comes
naturally from the traditional eigenvalue complementarity problem [43, 47],
which seeks to find (λ, x, w) ∈ Rn ×Rn ×R such that

EiCP(B,C) :


y = λBx− Cx,
y ≥ 0, x ≥ 0,
xT y = 0,
eTx = 1,

where B,C ∈ Rn×n and e = (1, 1, · · · , 1)T ∈ Rn. Usually, the matrix B
is assumed to be positive definite. The scalar λ is called a complementary
eigenvalue and x is a complementary eigenvector associated to λ for the pair
(B,C). The condition xT y = 0 and the nonnegative requirements on x and
y imply that either xi = 0 or yi = 0 for 1 ≤ i ≤ n. These two variables are
called complementary.

A natural extension of the EiCP goes to the quadratic eigenvalue comple-
mentarity problem (QEiCP), whose mathematical format is as below. Given
A,B,C ∈ Rn×n, the QEiCP consists of finding (x, y, λ) ∈ Rn×Rn×R such
that

QEiCP(A,B,C) :


y = λ2Ax+ λBx+ Cx,
y ≥ 0, x ≥ 0,
xT y = 0,
eTx = 1,

where e = (1, 1, · · · , 1)T ∈ Rn. It is clear that whenA = 0, the QEiCP(A,B,C)
reduces to the EiCP(B,−C). The λ component of a solution to the QEiCP(A,B,C)
is called a quadratic complementary eigenvalue for the pair (A,B,C), whereas
the x component is called a quadratic complementary eigenvector for the pair
(A,B,C).

Following the same idea for creating the SOCEiCP(B,C), the third op-
timization problem that we study in this paper is the so-called second-
order cone quadratic eigenvalue complementarity problem (SOCQEiCP).
In other words, given matrices A,B,C ∈ Rn×n, the SOCQEiCP seeks to
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find (x, y, λ) ∈ Rn ×Rn ×R such that

(5) SOCQEiCP(A,B,C) :


y = λ2Ax+ λBx+ Cx,
y �Kn 0, x �Kn 0,
xT y = 0,
aTx = 1,

with arbitrary fixed point a ∈ int(Kn). The SOCEiCP (4) and the SOC-
QEiCP (5) have been investigated in [2, 3, 19]. The purpose of this paper
aims to establish the solvabilities of the SOCEiCP (4) and the SOCQEiCP
(5) by reformulating them as second-order cone complementarity problem
(SOCCP) and a nonsmooth system of equations (see more details in Section
5).

We point out that the last normalization constraint appeared in the above
EiCP, QEiCP, SOCEiCP, and SOCQEiCP has been introduced in order to
prevent the x component of a solution to vanish. In other words, “for an
arbitrary fixed point a ∈ int(Kn), x ∈ Kn satisfying aTx > 0 is equivalent to
x 6= 0”. To see this, we provide some arguments as below. First, it is trivial
that aTx > 0 implies that x 6= 0. Now, suppose that x = (x1, x2) ∈ Kn
which is nonzero. Then, there must have x1 > 0. Using the definition of

int(Kn) =
{

(x1, x2) ∈ R×Rn−1 | ‖x2‖ < x1

}
,

we have
aTx = a1x1 + 〈a2, x2〉 > |〈a2, x2〉|+ 〈a2, x2〉 ≥ 0.

This proves that aTx > 0.

Another thing needs to be pointed out is that the normalization constraint
eTx = 1 is good enough for EiCP and QEiCP; moreover, this condition was
also used in [2] for SOCEiCP. However, we show that it does not make
sense in the settings of SOCEiCP and SOCQEiCP because e /∈ int(Kn).

Indeed, for a counterexample, we consider λ = 1, x =

[
1
−1

]
∈ K2,

two matrices C =

[
1 2
2 5

]
∈ R2×2 and B := I ∈ R2×2. Then, we

have λBx − Cx =

[
1
−1

]
−
[

1 2
2 5

] [
1
−1

]
=

[
2
2

]
∈ K2. Hence,

xT (λBx− Cx) = 0, but eTx = 0. This is why, in this paper, we require an
point a ∈ int(Kn) such that aTx = 1 to serve as the normalization constraint
in SOCEiCP and SOCQEiCP.

To close this section, we say a few words about notations. As usual, Rn

denotes the space of n-dimensional real column vectors. R+ and R++ denote
the nonnegative and positive reals. For any x, y ∈ Rn, the Euclidean inner
product are denoted 〈x, y〉 = xT y, and the Euclidean norm ‖x‖ are denoted

as ‖x‖ =
√
〈x, x〉. Given a matrix A ∈ Rn×n, ‖A‖a denotes the arbitrary
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matrix norm, for example, ‖A‖1, ‖A‖2 and ‖A‖∞. In addition, ρ(A) means
the spectral radius of A, that is, ρ(A) := max{|λ| |λ is eigenvalue of A}, and
M(Kn) ⊂ Kn denotes that for any z ∈ Kn, we have Mz ∈ Kn. For conve-
nience, we say that a pair (x, λ) ∈ Rn×R solves the SOCEiCP(B,C) when
the triplet (x, y, λ) with y = λBx−Cx, is a solution to the SOCEiCP(B,C)
in the sense defined in (4). Similarly, we say that (x, λ) ∈ Rn×R solves the
SOCQEiCP(A,B,C) when the same occurs with the triplet (x, λ), where
y = λ2Ax+ λBx+ Cx.

2. Preliminaries

In this section, we recall some basic concepts and background materials
regarding second-order cone and the absolute value of x ∈ Rn, which will
be extensively used in the subsequent analysis. More details can be found
in [9, 14, 16, 17, 20, 22].

The official definition of second-order cone (SOC) is already defined in
Section 1. We begin with introducing the concept of Jordan product. For
any two vectors x = (x1, x2) ∈ R×Rn−1 and y = (y1, y2) ∈ R×Rn−1, the
Jordan product of x and y associated with Kn is given by

x ◦ y :=

[
xT y

y1x2 + x1y2

]
.

The Jordan product, unlike scalar or matrix multiplication, is not associa-
tive, which is a main source of complication in the analysis of optimization
problems involved SOC, see [14, 16, 20] and references therein for more de-
tails. The identity element under this Jordan product is e = (1, 0, · · · , 0)T ∈
Rn. With these definitions, x2 means the Jordan product of x with itself,
i.e., x2 := x ◦ x; while x1/2 with x ∈ Kn denotes the unique vector in Kn
such that x1/2 ◦ x1/2 = x. In light of this, the vector |x| in the SOCAVEs
(1) and (2) is computed by

|x| := (x ◦ x)1/2.

However, by the definition of |x|, it is not easy to write out the expression
of |x| explicitly. Fortunately, there is another way to reach |x| via spectral
decomposition and projection onto second-order cone. We elaborate it as
below. For x = (x1, x2) ∈ R × Rn−1, the spectral decomposition of x with
respect to SOC is given by

(6) x = λ1(x)u(1)
x + λ2(x)u(2)

x ,

where λi(x) = x1 + (−1)i‖x2‖ for i = 1, 2 and

u(i)
x =

 1
2

(
1, (−1)i

xT2
‖x2‖

)T
if ‖x2‖ 6= 0,

1
2

(
1, (−1)iωT

)T
if ‖x2‖ = 0,
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with ω ∈ Rn−1 being any vector satisfying ‖ω‖ = 1. The two scalars λ1(x)
and λ2(x) are called spectral values (or eigenvalues) of x; while the two

vectors u
(1)
x and u

(2)
x are called the spectral vectors (or eigenvectors) of x.

Moreover, it is obvious that the spectral decomposition of x ∈ Rn is unique
if x2 6= 0.

Next, we talk about the projection onto second-order cone. Let x+ be
the projection of x onto Kn, while x− be the projection of −x onto its dual
cone of Kn. Since second-order cone Kn is self-dual, the dual cone of Kn
is itself, i.e., (Kn)∗ = Kn. In fact, the explicit formula of projection of
x = (x1, x2) ∈ R × Rn−1 onto Kn is characterized in [14, 16, 17, 20, 18] as
below:

x+ =

 x if x ∈ Kn,
0 if x ∈ −Kn,
u otherwise,

where u =

[
x1+‖x2‖

2(
x1+‖x2‖

2

)
x2
‖x2‖

]
.

Similarly, the expression of x− is in the form of

x− =

 0 if x ∈ Kn,
−x if x ∈ −Kn,
w otherwise,

where w =

[
−x1−‖x2‖

2(
x1−‖x2‖

2

)
x2
‖x2‖

]
.

Together with the spectral decomposition (6) of x, it can be verified that
x = x+ − x− and the expression of x+ and x− have the form:

x+ = (λ1(x))+u
(1)
x + (λ2(x))+u

(2)
x ,

x− = (−λ1(x))+u
(1)
x + (−λ2(x))+u

(2)
x ,

where (α)+ = max{0, α} for α ∈ R.

Based on the definitions and expressions of x+ and x−, we introduce
another expression of |x| associated with SOC. In fact, the alternative ex-
pression is obtained by the so-called SOC-function, which can be found in
[10]. For any x ∈ Rn, we define the absolute value |x| of x with respect to
SOC as |x| := x++x−. In fact, in the setting of SOC, the form |x| = x++x−
is equivalent to the form |x| = (x ◦ x)1/2. Combining the above expression
of x+ and x−, it is easy to see that the expression of the absolute value |x|
is in the form of

|x| =
[
(λ1(x))+ + (−λ1(x))+

]
u(1)
x +

[
(λ2(x))+ + (−λ2(x))+

]
u(2)
x

=
∣∣λ1(x)

∣∣u(1)
x +

∣∣λ2(x)
∣∣u(2)
x .

For the absolute value |x| associated with SOC, Hu, Huang and Zhang
[22] have obtained some properties as the following lemmas.

Lemma 2.1. [22, Theorem 2.1] The generalized Jacobian of the absolute
value function | · | is given as follows:

(a) Suppose that x2 = 0. Then, ∂|x| = {tI | t ∈ sgn(x1)}.
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(b) Suppose that x2 6= 0.
(i) If x1 + ‖x2‖ < 0 and x1 − ‖x2‖ < 0, then ∂|x| = {∇|x|} ={[

−1 0T

0 −I

]}
.

(ii) If x1 + ‖x2‖ > 0 and x1 − ‖x2‖ > 0, then ∂|x| = {∇|x|} ={[
1 0T

0 I

]}
.

(iii) If x1 + ‖x2‖ > 0 and x1 − ‖x2‖ < 0, then

∂|x| = {∇|x|} =


 0

xT2
‖x2‖

x2
‖x2‖

x1
‖x2‖

(
I − x2xT2

‖x2‖2

)  .

(iv) If x1 + ‖x2‖ = 0 and x1 − ‖x2‖ < 0, then

∂|x| =

1

2

 t− 1 (t+ 1)
xT2
‖x2‖

(t+ 1) x2
‖x2‖ −2I + (t+ 1)

x2xT2
‖x2‖2

∣∣∣∣ t ∈ sgn(x1 + ‖x2‖)

 .

(v) If x1 + ‖x2‖ > 0 and x1 − ‖x2‖ = 0, then

∂|x| =

1

2

 t+ 1 (1− t) xT2
‖x2‖

(1− t) x2
‖x2‖ 2I − (1− t) x2x

T
2

‖x2‖2

∣∣∣∣ t ∈ sgn(x1 − ‖x2‖)

 ,

where the function sgn(·) denotes that sgn(a) =

 {1} if a > 0,
{t | t ∈ [−1, 1]} if a = 0,

{−1} if a < 0.

Lemma 2.2. [22, Theorem 2.2] For any V ∈ ∂|x|, the absolute value of
every eigenvalue of V is not greater than 1.

Lemma 2.3. [22, Theorem 2.3] For any V ∈ ∂|x|, we have V x = |x|.

3. Existence of solution to the SOCAVEs

This section is devoted to the existence and nonexistence of solution to
SOCAVE (1) and SOCAVE (2).

Theorem 3.1. Let C ∈ Rn×n and b ∈ Rn.

(a) If the following system

(7) (C − I)z = b, z ∈ Kn

has a solution, then for any A = ±C the SOCAVE (1) has a solution.
(b) If the following system

(C +B)z = b, z ∈ Kn

has a solution, then for any A = ±C the SOCAVE (2) has a solution.
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Proof. (a) Suppose that z := (z1, z2) ∈ R×Rn−1 is a solution to the system
(7), i.e.,

(C − I)z = b, z ∈ Kn.
Since z ∈ Kn, it follows that z1 ≥ ‖z2‖. Taking x = ±z, which means
x = (±z1,±z2) ∈ R×Rn−1. Using the definition of |x|, we see that

|x| =
∣∣λ1(x)

∣∣u(1)
x +

∣∣λ2(x)
∣∣u(2)
x

=

∣∣∣∣± z1 − ‖ ± z2‖
∣∣∣∣ [ 1

2
− ±z22‖z2‖

]
+

∣∣∣∣± z1 + ‖ ± z2‖
∣∣∣∣ [ 1

2±z2
2‖z2‖

]
= z.

Plugging in A = ±C yields that

Ax− |x| = ±Cx− z = (C − I)z = b.

This says that x is a solution to the SOCAVE (1).

(b) The arguments are similar to part (a). 2

Theorem 3.2. Suppose that −b ∈ Kn and A(Kn) ⊆ Kn with ρ(A) < 1.
Then, the SOCAVE (1) has a solution x ∈ Kn.

Proof. We consider the iterative scheme xk+1 = Axk − b with x0 := −b.
Since −b ∈ Kn, it follows that xk ∈ Kn for every k ∈ N. Hence, from the
condition ρ(A) < 1, we can conclude that the sequence {xk} converges to a
point x∗ such that x∗ = Ax∗ − b. Combining with the closeness of Kn, this
yields x∗ ∈ Kn, which implies

Ax∗ − |x∗| = Ax∗ − x∗ = b.

Thus, x∗ ∈ Kn is a solution to the SOCAVE (1). 2

Remark 3.1. In fact, if the condition ρ(A) < 1 in Theorem 3.2 is replaced
by ‖A‖a < 1, where ‖A‖a denotes an arbitrary matrix norm, then the result
of Theorem 3.2 still holds.

Theorem 3.3. Suppose that 0 6= b ∈ Kn. Then, the following hold.

(a) If the spectral norm ‖A‖ < 1 with ‖A‖ :=
√
ρ(AHA), then the SO-

CAVE (1) has no solution.
(b) If ‖A‖ < 1, B(Kn) ⊂ −Kn and ‖Bx‖ ≥ ‖x‖ for any x ∈ Kn, then

the SOCAVE (2) has no solution.

Proof. From Ax − |x| = b and 0 6= b ∈ Kn, it follows that Ax − |x| ∈ Kn.
This together with the fact |x| ∈ Kn implies Ax + |x| ∈ Kn. Moreover, by
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the self-duality of Kn, we see that

‖Ax‖2 − ‖x‖2 = ‖Ax‖2 − ‖|x|‖2

= 〈Ax+ |x|, Ax− |x|〉
≥ 0.

Hence, we have

‖x‖ ≤ ‖Ax‖ ≤ ‖A‖‖x‖ < ‖x‖,
where the last inequality is due to ‖A‖ < 1. This is a contradiction. There-
fore, the SOCAVE (1) has no solution.

(b) The idea for the proof is similar to part(a), we present it for completeness.
From Ax + B|x| = b and 0 6= b ∈ Kn, we know Ax + B|x| ∈ Kn. Then, it
follows from B(Kn) ⊂ −Kn and b ∈ Kn that Ax = b − B|x| ∈ Kn, which
says Ax−B|x| ∈ Kn. Moreover, by the self-duality of Kn, we have

‖Ax‖2 − ‖B|x|‖2 = 〈Ax+B|x|, Ax−B|x|〉 ≥ 0,

which implies

‖x‖ > ‖Ax‖ ≥ ‖B|x|‖ ≥ ‖|x|‖ = ‖x‖,
where the first inequality is due to ‖A‖ < 1 and the last inequality is due to
‖Bx‖ ≥ ‖x‖ for any x ∈ Kn. This is a contradiction. Hence, the SOCAVE
(2) has no solution. 2

4. The unique solvability for the SOCAVEs

In this section, we further investigate the unique solvability of SOCAVE
(1) and SOCAVE (2).

Theorem 4.1. (a) If all singular values of A exceed 1, then the SO-
CAVE (1) has a unique solution.

(b) If all singular values of A ∈ Rn×n exceed the maximal singular value
of B ∈ Rn×n, then the SOCAVE (2) has a unique solution.

Proof. (a) For any V ∈ ∂|x|, by Lemma 2.3, we have |x| = V x, which implies
that

Ax− |x| = Ax− V x = (A− V )x,

i.e., the SOCAVE (1) becomes the equation (A − V )x = b. Moreover, by
Lemma 2.1, we know that the real matrix V is symmetric. This leads to
that the singular values of V are the absolute values of eigenvalue of V . On
the other hand, from Lemma 2.2, it follows that all singular values of V are
not greater than 1. Combining with the condition that all singular values
of A exceed 1, we can assert that the matrix A − V is nonsingular. If not,
there exists 0 6= x ∈ Rn such that (A− V )x = 0, i.e., Ax = V x. Hence, we
have

‖x‖2 < 〈Ax,Ax〉 = 〈V x, V x〉 ≤ ‖x‖2,
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which is a contradiction. Thus, the matrix A − V is nonsingular, which
says the equation (A − V )x = b has a unique solution. Then, the proof is
complete.

(b) The proof is similar to that for part (a), we present it for completeness.
For any V ∈ ∂|x|, by Lemma 2.3 again, we have |x| = V x; and hence

Ax+B|x| = (A+BV )x.

Moreover, we also know that all singular values of V are not greater than
1 due to Lemma 2.2. Applying the condition that all singular values of A
exceed the maximal singular value of B ∈ Rn×n and [22, Theorem 3.1],
we obtain that the matrix A + BV is nonsingular. Thus, the equation
(A + BV )x = b has a unique solution, which says the SOCAVE (2) has a
unique solution. 2

Remark 4.1. We point out that in [22], Hu, Huang and Zhang have shown
that if all singular values of A ∈ Rn×n exceed the maximal singular value
of B ∈ Rn×n, the SOCAVE (2) has at least one solution for any b ∈ Rn.
In Theorem 4.1(b), we study when the SOCAVE (2) has a unique solution,
which is a stronger result than the aforementioned one in [22], although the
same condition is used. In other words, under the condition that all singular
values of A ∈ Rn×n exceed the maximal singular value of B ∈ Rn×n, it
guarantees that the SOCAVE (2) not only has at least one solution, but also
has unique solution.

Corollary 4.1. If the matrix A is nonsingular and ‖A−1‖ < 1, then the
SOCAVE (1) has a unique solution.

Proof. This is an immediate consequence of Theorem 4.1(a), whose proof is
similar to that for [35, Proposition 4.1]. Hence, we omit it. 2

Theorem 4.2. (a) If the matrix A = [aij ] ∈ Rn×n satisfies

|aii| >
√
n+

∑
j 6=i
|aij | ∀i ∈ N := {1, 2, · · · , n},

then for any b ∈ Rn the SOCAVE (1) has a unique solution.
(b) If the matrices A = [aij ] ∈ Rn×n and B ∈ Rn×n satisfy

|aii| > ‖B‖∞
√
n+

∑
j 6=i
|aij | ∀i ∈ N := {1, 2, · · · , n},

then for any b ∈ Rn the SOCAVE (2) has a unique solution.

Proof. (a) Again, for any V ∈ ∂|x|, we know that |x| = V x and ‖V ‖ ≤ 1,
which implies that the SOCAVE (1) is equal to the equation (A− V )x = b.
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Moreover, by the relationship between the spectral norm and the infinite
norm, i.e.,

‖V ‖∞ ≤
√
n‖V ‖,

it follows that ‖V ‖∞ ≤
√
n. Let [wij ] = W := A − V = [aij − vij ]. Then,

we note that for any i ∈ N = {1, 2, · · · , n},

|wii| = |aii − vii| ≥ |aii| − |vii|
>
√
n+

∑
j 6=i
|aij | − |vii|

≥
√
n+

∑
j 6=i
|wij | −

n∑
j=1

|vij |

≥
∑
j 6=i
|wij |,

where the last inequality is due to ‖V ‖∞ ≤
√
n. This indicates that the

matrix A − V = W is a strictly diagonally dominant by row. Hence, the
matrix A−V is nonsingular, which leads to that the equation (A−V )x = b
has a unique solution. Thus, the SOCAVE (1) has a unique solution.

(b) The proof is similar to part (a) and we omit it here. 2

Theorem 4.3. If the matrix A ∈ Rn×n can be expressed as

A = αI +M, where M(Kn) ⊆ Kn and α− 1 > ρ(M),

then for any b ∈ Rn, the SOCAVE (1) has a unique solution.

Proof. For any x ∈ Kn and V ∈ ∂|x|, we know that x = |x| = V x and
‖V ‖ ≤ 1. Note that

Ax− |x| = (αI − V )x+Mx = (α− 1)|x|+Mx.

This implies that the matrix αI + M − V is a generalized M -matrix with
respect to Kn. Hence, we have the matrix αI + M − V is nonsingular. In
addition, applying the fact that Ax − |x| = (αI + M − V )x, it yields that
the SOCAVE (1) has a unique solution. 2

Lemma 4.1. For any x, y ∈ Rn, let |x|, |y| be the absolute value coming
from the square root of x2 and y2 under the Jordan product, respectively.
Then, we have ∥∥|x| − |y|∥∥ ≤ ‖x− y‖.
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Proof. First, we note that

‖x− y‖2 −
∥∥|x| − |y|∥∥2

= 〈x− y, x− y〉 − 〈|x| − |y|, |x| − |y|〉
= 2

(
〈|x|, |y|〉 − 〈x, y〉

)
= 2

(
〈x+ + x−, y+ + y−〉 − 〈x+ − x−, y+ − y−〉

)
= 4

(
〈x+, y−〉+ 〈x−, y+〉

)
≥ 0.

With this, it is clear to see that
∥∥|x| − |y|∥∥ ≤ ‖x − y‖. Then, the proof is

complete. 2

Theorem 4.4. For any β ∈ R, assume that the matrix βI + A is nonsin-
gular.

(a) If the matrix A satisfies∥∥(βI +A)−1
∥∥ < 1

|β|+ 1
,

then the SOCAVE (1) has a unique solution.
(b) If the matrices A and B satisfy∥∥(βI +A)−1

∥∥ < 1

|β|+ ‖B‖
,

then the SOCAVE (2) has a unique solution.

Proof. (a) For the SOCAVE (1), we know that

Ax− |x| = b ⇐⇒ (βI +A)x = βx+ |x|+ b.

If the matrix βI +A is nonsingular, then we further have

Ax−|x| = b ⇐⇒ (βI+A)x = βx+|x|+b ⇐⇒ x = (βI+A)−1(βx+|x|+b).
In view of this, we consider the following iterative scheme

xk+1 = (βI +A)−1(βxk + |xk|+ b).

With this, it follows that

xk+1 − xk = (βI +A)−1
[
β(xk − xk−1) + (|xk| − |xk−1|)

]
.

Hence, we have∥∥∥xk+1 − xk
∥∥∥ =

∥∥∥(βI +A)−1
[
β(xk − xk−1) + (|xk| − |xk−1|)

]∥∥∥
≤

∥∥(βI +A)−1
∥∥ [|β|‖xk − xk−1‖+ ‖|xk| − |xk−1|‖

]
(8)

≤
∥∥(βI +A)−1

∥∥ (|β|+ 1)‖xk − xk−1‖,
where the last inequality holds due to Lemma 4.1. This together with the
assumption that

∥∥(βI +A)−1
∥∥ < 1

|β|+1 yields the sequence {xk} converges

to a solution of the SOCAVE (1).
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Next, we verify the SOCAVE (1) has a unique solution. If there exist x∗

and x̄ that both satisfy the SOCAVE (1), then as done in (8) we have

‖x∗ − x̄‖ ≤
∥∥(βI +A)−1

∥∥ (|β|+ 1)‖‖x∗ − x̄‖.

Since
∥∥(βI +A)−1

∥∥ < 1
|β|+1 , we obtain that x∗ = x̄. This says that the

SOCAVE (1) has a unique solution. Thus, the proof is complete.

(b) The proof is similar to part (a) and we omit it here. 2

5. The solvabilities of SOCEiCP and SOCQEiCP

In this section, we focus on the solvabilities of the other two optimization
problems, SOCEiCP(B,C) and SOCQEiCP(A,B,C), which are given as in
(4) and (5) respectively. In order to clearly describe our results, we need a
few concepts which were introduced in [3, 4].

Definition 5.1. Let Kn be a single second-order cone.

(a) A matrix A ∈ Rn×n is called Kn-regular if xTAx 6= 0 for all nonzero
x �Kn 0.

(b) A matrix A ∈ Rn×n is called strictly Kn-copositive if xTAx > 0 for
all nonzero x �Kn 0.

(c) A triple (A,B,C) with A,B,C ∈ Rn×n is called Kn-hyperbolic if

(xTBx)2 ≥ 4(xTAx)(xTCx)

for all nonzero x �Kn 0.
(d) The class R0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n

such that there exists no nonzero x ∈ Kn satisfying Ax ∈ Kn and
xTAx = 0.

(e) The class S0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n such
that Ax ∈ Kn for at least a nonzero x ∈ Kn.

(f) The class R
′
0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n such

that xTAx = 0 for at least a nonzero x ∈ Kn satisfying Ax ∈ Kn.
(g) The class S

′
0(Kn) ⊆ Rn×n consists of those matrices A ∈ Rn×n such

that there exists no nonzero x ∈ Kn satisfying Ax ∈ Kn.

In fact, there exist some study in [3, 46, 48], which investigated the eigen-
values problems involved with general cones. The solvability results therein
automatically include solvabilities of SOCEiCP(B,C) and SOCQEiCP(A,B,C)
as special cases. For example, we extract some of them from [3, 46, 48], when
the cone reduces to an SOC or is a general cone, and list them as below.

Proposition 5.1. Let Kn be a single second-order cone and consider the
SOCEiCP(B,C) given as in (4) and the SOCQEiCP(A,B,C) given as in
(5).
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(a) If B ∈ Rn×n is strictly Kn-copositive, then SOCEiCP(B,C) has
solutions for any C ∈ Rn×n.

(b) If A is Kn-regular and (A,B,C) is Kn-hyperbolic, then SOCQEiCP(A,B,C)
has solutions.

(c) The matrix C ∈ R′0(Kn) if and only if 0 is a quadratic complementary
eigenvalue for SOCQEiCP(A,B,C).

(d) If C ∈ S
′
0(Kn) and A is strictly Kn-copositive, there exist at least

one positive and one negative quadratic complementary eigenvalue
for SOCQEiCP(A,B,C).

(e) If A ∈ S
′
0(Kn) and C is strictly Kn-copositive, there exist at least

one positive and one negative quadratic complementary eigenvalue
for SOCQEiCP(A,B,C).

In view of the above existing solvability results in the literature, we aim
to seek the solvabilities of SOCEiCP(B,C) and SOCQEiCP(A,B,C) via dif-
ferent approach. In this section, we will recast these problems as three
reformulations, called Reformulation I, Reformulation II and Refor-
mulation III.

The idea of Reformulation I is to recast these problems as a form of
second-order cone complementarity problem (SOCCP), which is a natural
extension of nonlinear complementarity problem (NCP). To proceed, we first
recall the mathematical format of the SOCCP as follows. More details can
be found in [6, 7, 8, 9, 12, 13, 14, 16, 36, 37, 38, 39, 40, 41, 50, 51]. Given
a continuously differentiable mapping F : Rn → Rn, the SOCCP(F ) is to
find x ∈ Rn satisfying

(9) SOCCP(F ) :

 x �Kn 0,
F (x) �Kn 0,
xTF (x) = 0.

It is well know that the KKT conditions of an second-order cone program-
ming problem can be rewritten as an SOCCP(F ). We now elaborate how
we to recast the SOCEiCP(B,C) as the SOCCP(F ). Suppose that we are
given an SOCEiCP(B,C) as in (4), where B,C ∈ Rn×n and the matrix B
is assumed to be positive definite. For any x ∈ Rn such that x 6= 0, plug-
ging w = λBx − Cx into the complementarity condition xTw = 0 yields

λ = xTCx
xTBx

. Hence, we obtain

w =
xTCx

xTBx
Bx− Cx.

With this, for any x ∈ Rn such that x 6= 0, we define a mapping F : Rn →
Rn which is given by

(10) F (x) :=
xTCx

xTBx
Bx− Cx.
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This mapping F is not good enough to be put into the SOCCP (9) because
F (0) is not defined yet. To this end, we show the following lemma to make
up the value F (0).

Lemma 5.1. Consider the SOCEiCP(B,C) given as in (4) where B is
positive definite. Let F : Rn → Rn be defined as in (10) where x 6= 0. Then,
lim
x→0

F (x) = 0.

Proof. Since B is positive definite, from Cholesky factorization, there exists
an invertible lower triangle matrix L with positive diagonal entries such that
B = LLT . Hence, for x 6= 0, we have

xTBx = xTLLTx =
(
LTx

)T (
LTx

)
and

xTCx = xTLL−1C(LT )−1LTx =
(
LTx

)T (
L−1C(L−1)T

) (
LTx

)
.

For convenience, we denote D := L−1C(L−1)T and let M := ‖D‖sup =
max

1≤i,j≤n
|dij | be the supremum norm of D, where dij means the (i, j)-entry of

D. In addition, for x 6= 0, we denote y = (y1, · · · , yn)T := LTx. Then, we
obtain ∣∣∣∣xTCxxTBx

∣∣∣∣ =

∣∣∣∣yTDyyT y

∣∣∣∣ ≤
∑n

i,j=1 |dij ||yi||yj |∑n
i=1 |yi|2

.

By Cauchy’s inequality |yi||yj | ≤
y2i +y2j

2 , we see that∑n
i,j=1 |dij ||yi||yj |∑n

i=1 |yi|2
≤
M ·

∑n
i,j=1

y2i +y2j
2∑n

i=1 y
2
i

=
M

2
·
n
∑n

i=1 y
2
i + n

∑n
j=1 y

2
j∑n

i=1 y
2
i

= nM

which says ∣∣∣∣xTCxxTBx

∣∣∣∣ ≤ nM.

This further implies that

‖F (x)‖ ≤
∣∣∣∣xTCxxTBx

∣∣∣∣ · ‖Bx‖+ ‖Cx‖ ≤ (nM)‖Bx‖+ ‖Cx‖.

Applying the continuity of linear transformation B and C proves lim
x→0

F (x) =

0. 2

Very often, the mapping F in an SOCCP(F ) is required to be differ-
entiable. Therefore, in view of Lemma 5.1, it is natural to redefine F (x)
as

(11) F (x) =

{
xTCx
xTBx

Bx− Cx if x 6= 0,
0 if x = 0.

This enables that the mapping F : Rn → Rn is continuous. Indeed, it is
clear that the mapping F : Rn → Rn is even smooth except for 0. In other
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words, F may not be differentiable at 0. To see this, we give an example as

below. For n = 2, we take B =

[
b11 b12

b21 b22

]
which is positive definite with

b12 > 0 and C =

[
c11 c12

c21 c22

]
with c22 6= 0. Because B is positive definite,

the entries b11, b22 are positive. If we consider the first term of F (x) as in

(10), i.e., xTCx
xTBx

Bx, it can be written out as

(
c11x

2
1 + (c12 + c21)x1x2 + c22x

2
2

b11x2
1 + (b12 + b21)x1x2 + b22x2

2

)
·
[
b11x1 + b12x2

b21x1 + b22x2

]
.

If we denote

f(x) =

[
f1(x)
f2(x)

]
:=

xTCx

xTBx
Bx,

using the fact

lim
x1→0

[(
c11x

2
1 + (c12 + c21)x1x2 + c22x

2
2

b11x2
1 + (b12 + b21)x1x2 + b22x2

2

)
·
(
b11 +

b12x2

x1

)]
=∞,

we see that ∂f1
∂x1

(0) does not exist. This means f is not differentiable at 0,

and hence F (x) = f(x)− Cx is not differentiable at 0.

Next, we provide two technical lemmas in order to express the Jacobian
matrix of F (x) for x 6= 0.

Lemma 5.2. Suppose that f : Rn → R and gi : Rn → R (1 ≤ i ≤ n)

are real-valued differentiable functions. Denote G(x) =


g1(x)
g2(x)

...
gn(x)

 . Then,

the scalar product function f(x)G(x) =


f(x)g1(x)
f(x)g2(x)

...
f(x)gn(x)

 is a differentiable

function on Rn and its Jacobian matrix ∇(f(x)G(x)) is expressed as

∇
(
f(x)G(x)

)
= ∇f(x)(G(x))T + f(x)∇G(x).
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Proof. The proof comes from direct computation as below.

∇
(
f(x)G(x)

)

=


( ∂f∂x1 · g1 + f · ∂g1∂x1

)(x) ( ∂f∂x1 · g2 + f · ∂g2∂x1
)(x) · · · ( ∂f∂x1 · gn + f · ∂gn∂x1

)(x)

( ∂f∂x2 · g1 + f · ∂g1∂x2
)(x) ( ∂f∂x2 · g2 + f · ∂g2∂x2

)(x) · · · ( ∂f∂x2 · gn + f · ∂gn∂x2
)(x)

...
...

. . .
...

( ∂f
∂xn
· g1 + f · ∂g1∂xn

)(x) ( ∂f
∂xn
· g2 + f · ∂g2∂xn

)(x) · · · ( ∂f
∂xn
· gn + f · ∂gn∂xn

)(x)



=


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

[g1(x) g2(x) · · · gn(x)
]

+ f(x)


∂g1
∂x1

(x) ∂g2
∂x1

(x) · · · ∂gn
∂x1

(x)
∂g1
∂x2

(x) ∂g2
∂x2

(x) · · · ∂gn
∂x2

(x)
...

...
. . .

...
∂g1
∂xn

(x) ∂g2
∂xn

(x) · · · ∂gn
∂xn

(x)


= ∇f(x)(G(x))T + f(x)∇G(x).

2

Lemma 5.3. Consider the SOCEiCP(B,C) given as in (4) where B is
positive definite. Let F : Rn → Rn be defined as in (11). Then, F is smooth
except for 0 and its Jacobian matrix is expressed as

∇F (x) =
[
(C + CT )xxTB − (B +BT )xxTC

] xxTBT

(xTBx)2
+
xTCx

xTBx
BT − CT .

Proof. Denote f(x) = xTCx
xTBx

and g(x) = Bx. Then, F (x) = f(x)g(x)− Cx.
For x 6= 0, we know

∇f(x) =
∇(xTCx) · (xTBx)− (xTCx) · ∇(xTBx)

(xTBx)2

=
(C + CT )x · (xTBx)− (xTCx) · (B +BT )x

(xTBx)2

=

[
(C + CT )xxTB − (B +BT )xxTC

]
x

(xTBx)2
.

Then, this together with Lemma 5.2 lead to the desired result. 2

Now, we sum up the relation between SOCEiCP(B,C) and SOCCP(F )
in the below theorem and we call it Reformulation I for SOCEiCP.

Theorem 5.1 (Reformulation I for SOCEiCP). Consider the SOCEiCP(B,C)
given as in (4) where B is positive definite. Let F : Rn → Rn be defined
as in (11). Then, the mapping F is smooth except for 0 and its Jacobian
matrix is given as in Lemma 5.3. Moreover, the following hold.

(a) If (x∗, λ∗) solves the SOCEiCP(B,C), then x∗ solves the SOCCP(F ).
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(b) Conversely, if x̄ is a nonzero solution of the SOCCP(F ), then (x∗, λ∗)

solves the SOCEiCP(B,C) with λ∗ = x̄TCx̄
x̄TBx̄

and x∗ = x̄
aT x̄

.

Proof. Part (a) is trivial and we only need to prove part(b). Suppose that
x̄ is a nonzero solution to SOCCP(F ) with F given as in (11). Then, we

have x̄TCx̄
x̄TBx̄

· Bx̄ − Cx̄ ∈ Kn, x̄ ∈ Kn, and x̄T
(
x̄TCx̄
x̄TBx̄

Bx̄− Cx̄
)

= 0. Since

a ∈ int(Kn) and x̄ ∈ Kn, it yields 1
aT x̄

> 0 by the same arguments as on
page 4. From all the above, we conclude that

y∗ := λ∗Bx∗ − Cx∗ = 1
aT x̄

[(
x̄TCx̄
x̄TBx̄

)
Bx̄− Cx̄

]
∈ Kn,

x∗ := 1
aT x̄

x̄ ∈ Kn,
aTx∗ = aT x̄

aT x̄
= 1,

(x∗)T y∗ =
(

1
aT x̄

)2 [
x̄T
(
x̄TCx̄
x̄TBx̄

Bx̄− Cx̄
)]

= 0.

Thus, (x∗, λ∗) solves SOCEiCP(B,C). 2

Next, we consider the SOCQEiCP(A,B,C) given as in (5), whereA,B,C ∈
Rn×n such that the matrix A is positive definite (hence A is Kn-regular) and
the triplet (A,B,C) is Kn-hyperbolic. For any x ∈ Rn with x 6= 0, plugging
w = λ2Ax+ λBx+ Cx into the complementarity condition xTw = 0 yields
(xTAx)λ2 + (xTBx)λ + (xTCx) = 0. Thus, λ can be obtained by solving
this quadratic equation, i.e.,

λ1(x) =
−(xTBx) +

√
(xTBx)2 − 4(xTAx)(xTCx)

2(xTAx)
,(12)

λ2(x) =
−(xTBx)−

√
(xTBx)2 − 4(xTAx)(xTCx)

2(xTAx)
.(13)

Then, for x 6= 0, we define Fi : Rn → Rn as

(14) Fi(x) = λ2
i (x)Ax+ λi(x)Bx+ Cx,

where i = 1, 2. In order to guarantee the well-definedness of Fi(0) for i =
1, 2, we need to look into lim

x→0
Fi(x).

Lemma 5.4. Consider the SOCQEiCP(A,B,C) given as in (5) where A
is positive definite. Let Fi : Rn → Rn be defined as in (14) where x 6= 0.
Then, we have lim

x→0
Fi(x) = 0 for i = 1, 2.

Proof. Since A is positive definite, by Cholesky factorization, there exists an
invertible lower triangle matrix L with positive diagonal entries such that
A = LLT . Using the same techniques in the proof of Lemma 5.1, for x 6= 0,
we obtain

xTAx = (LTx)T (LTx),

xTBx = (LTx)T (L−1B(L−1)T )(LTx),

xTCx = (LTx)T (L−1C(L−1)T )(LTx).
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For convenience, we denote D := L−1B(L−1)T , E := L−1C(L−1)T , M1 :=
‖D‖sup = max

1≤i,j≤n
|dij | be the supremum norm of D, and M2 := ‖E‖sup =

max
1≤i,j≤n

|eij | be the supremum norm of E, where dij is the (i, j)-entry of D and

eij is the (i, j)-entry of E. In addition, we also denote y = (y1, · · · , yn)T :=
LTx. Using the same techniques in the proof of Lemma 5.1, we obtain

|xTBx| = |yTDy| ≤ nM1

n∑
i=1

y2
i ,

|xTCx| = |yTEy| ≤ nM2

n∑
i=1

y2
i .

Hence, for each i and for x 6= 0, we see that

|λi(x)|

≤ |xTBx|+
√
|xTBx|2 + 4|xTBx||xTCx|

2|xTAx|

≤
nM1

∑n
i=1 y

2
i +

√
(nM1

∑n
i=1 y

2
i )

2 + 4(nM1
∑n

i=1 y
2
i )(nM2

∑n
i=1 y

2
i )

2
∑n

i=1 y
2
i

≤ M3 :=

(
1 +
√

5

2

)
n max{M1,M2}.

This yields

‖Fi(x)‖ ≤M2
3 ‖Ax‖+M3‖Bx‖+ ‖Cx‖,

for each i and x 6= 0. Then, by the continuity of linear transformation A,
B, and C, the desired result follows. 2

Again, in view of Lemma 5.4, we need to do something to construct a
differentiable mapping Fi. In other words, we redefine Fi(x) by

(15) Fi(x) =

{
λ2
i (x)Ax+ λi(x)Bx+ Cx if x 6= 0,

0 if x = 0.

where λi(x), i = 1, 2 are given as in (12)-(13). From Lemma 5.4, it is clear
that the mapping Fi : Rn → Rn is continuous for i = 1, 2. In fact, the
mapping Fi : Rn → Rn is smooth except for 0. To see this fact, we give an

example as follows. For n = 2, we take A =

[
a11 a12

a21 a22

]
which is positive

definite and B =

[
b11 b12

b21 b22

]
such that b22 6= 0. Because A is positive

definite, the entries a22 are positive. Now for each i = 1, 2, we consider the
first two terms of Fi(x) described as in (14), i.e.,

λ2
i (x)

[
a11x1 + a12x2

a21x1 + a22x2

]
+ λi(x)

[
b11x1 + b12x2

b21x1 + b22x2

]
:=

[
gi1(x)
gi2(x)

]
.
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It can be verified that

lim
x1→0

gi2(x)

x1
=∞,

which implies that ∂gi2
∂x1

(0) does not exist. Therefore, Fi(x) is not differen-
tiable at 0.

For x 6= 0, the Jacobian matrix of Fi(x) in (15) is computed as below.

Lemma 5.5. Consider the SOCQEiCP(A,B,C) given as in (5) where A is
positive definite. Let Fi : Rn → Rn be defined as in (15) for i = 1, 2. Then,
Fi is smooth except for 0 and its Jacobian matrix is expressed as

∇Fi(x) = ∇λi(x)
(
2λi(x)xTAT + xTBT

)
+ λ2

i (x)AT + λi(x)BT + CT ,

where

∇λ1(x) =
1

2xTAx
(Bx+BTx)

(
(D(x))−

1
2 (xTBx)− 1

)
− 1

xTAx
· (D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx−

√
D(x)

]
(Ax+ATx),

∇λ2(x) = − 1

2xTAx
(Bx+BTx)((D(x))

1
2 (xTBx) + 1)

+
1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx+

√
D(x)

]
(Ax+ATx),

and D(x) := (xTBx)2 − 4(xTAx)(xTCx).
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Proof. The proof is routine check by applying chain rule. First, we denote
D(x) := (xTBx)2 − 4(xTAx)(xTCx). Then, it can be verified that

∇λ1(x) =
1

2(xTAx)2

[
−∇(xTBx) +∇(

√
D(x))

]
(xTAx)

− 1

2(xTAx)2

[
−xTBx+

√
D(x)

]
∇(xTAx)

=
1

2xTAx
(−Bx−BTx) +

1

2xTAx
(D(x))−

1
2 (xTBx)(Bx+BTx)

− 1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
− 1

2(xTAx)2

[
−xTBx+

√
D(x)

]
(Ax+ATx)

=
1

2xTAx
(Bx+BTx)

[
(D(x))−

1
2 (xTBx)− 1

]
− 1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx−

√
D(x)

]
(Ax+ATx)

and

∇λ2(x) = − 1

2xTAx
(Bx+BTx)

]
(D(x))

1
2 (xTBx) + 1

]
+

1

xTAx
(D(x))−

1
2
[
(Ax+ATx)(xTCx) + (Cx+ CTx)(xTAx)

]
+

1

2(xTAx)2

[
xTBx+

√
D(x)

]
(Ax+ATx).

Applying Lemma 5.2 for each i, we have

∇Fi(x)

= 2λi(x)∇λi(x) · (xTAT ) + λ2
i (x)AT +∇λi(x) · (xTBT ) + λi(x)BT + CT

= ∇λi(x)(2λi(x)xTAT + xTBT ) + λ2
i (x)AT + λi(x)BT + CT .

Then, the proof is complete. 2

Again, we sum up the relation between SOCQEiCP(A,B,C) and SOCCP(Fi)
for i = 1, 2 in the below theorem, and we call it Reformulation I for SOC-
QEiCP.

Theorem 5.2 (Reformulation I for SOCQEiCP). Consider the SOCQEiCP(A,B,C)
given as in (5) where A is positive definite. Let Fi : Rn → Rn be defined as
in (15) for i = 1, 2. Then, the mapping Fi is smooth except for 0 and its
Jacobian matrix is given as in Lemma 5.5. Moreover, the following hold.

(a) If (x∗, λ∗) solves the SOCQEiCP(A,B,C), then x∗ solves either
SOCCP(F1) or SOCCP(F2).
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(b) Conversely, if x̄ is a nonzero solution to the SOCCP(Fi) for i = 1, 2,
then (x∗, λ∗) solves the SOCQEiCP(A,B,C) with x∗ = x̄

aT x̄
and

λ∗ = λi(x̄) (i = 1, 2) defined as in (12)-(13).

Proof. Again, part (a) is trivial. We only need to prove part (b). Suppose
that x̄ is a nonzero solution of SOCCP(Fi) with Fi as in (15), i = 1, 2.
Then, for each i, we know that λ2

i (x̄)Ax̄ + λi(x̄)Bx̄ + Cx̄ ∈ Kn, x̄ ∈ Kn,
and x̄T (λ2

i (x̄)Ax̄ + λi(x̄)Bx̄ + Cx̄) = 0. Since a ∈ int(Kn) and x̄ ∈ Kn, we
have 1

aT x̄
> 0 by similar arguments as on page 4. From all the above, we

conclude that

y∗ := (λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ = 1
aT x̄

(
λ2
i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄

)
∈ Kn,

y∗ := 1
aT x̄

x̄ ∈ Kn,
aTx∗ = aT x̄

aT x̄
= 1,

(x∗)T y∗ =
(

1
aT x̄

)2 [
x̄T (λ2

i (x̄)Ax̄+ λi(x̄)Bx̄+ Cx̄)

]
= 0.

Thus, (x∗, λ∗) solves the SOCQEiCP(A,B,C). 2

Remark 5.1. Note that the mapping F as in (11)-(15) are continuous and
non-monotone [19], moreover, the term xTF (x) = 0 is indeed redundant in
the SOCCP (9). Hence, it is difficult to apply some usual techniques in the
literature (shown as in [18]) to solve (9). Thus, we consider other approach
for solving (9), which was proposed [1]. In particular, the SOCCP (9) can
be replaced by solving the following problem

min
n∑
j=1

θr(xj) + θr(Fj(x))− 1

s.t x �Kn 0, F (x) �Kn 0,

where θ : R→ (−∞, 1) satisfies

θ(t) < 0 if t < 0, θ(0) = 0, lim
t→∞

θ(t) = 1,

and θr(t) = θ( tr ) for r > 0.

We now introduce the second approach to SOCEiCP and SOCQEiCP,
which recasts them as a SOCLCP and another SOCCP. The SOC linear
complementarity problem (SOCLCP) is to find a vector x ∈ Rn such that

(16) SOCLCP(M, q) :


x �Kn 0,
y �Kn 0,
y = Mx+ q,
xT y = 0,

where the vector q ∈ Rn and the matrix M ∈ Rn×n. We shall denote it
by SOCLCP(M , q). For the matrix C defined in the SOCEiCP (4), we will
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consider SOCLCP(−C, 0) as follows:

SOCLCP(−C, 0) :

 x ∈ Kn,
−Cx ∈ Kn,
xT (−Cx) = 0.

For (x, λ) ∈ Rn ×R, we define functions F3 and F4 as follows:

(17) F3(x, λ) := (λBx− Cx, aTx− 1)

and

(18) F4(x, λ) := (−λBx− Cx, aTx− 1)

where B,C are n×n matrices given as in the SOCEiCP(4) and a ∈ int(Kn).
With these two functions, F3, F4 defined as in (17) and (18) respectively, we
consider their corresponding SOCCPs as follows:

(19) SOCCP(F3) :


x ∈ Kn, λ ≥ 0,
λBx− Cx ∈ Kn, aTx− 1 ≥ 0,
xT (λBx− Cx) + λ(aTx− 1) = 0,

and

(20) SOCCP(F4) :


x ∈ Kn, λ ≥ 0,
−λBx− Cx ∈ Kn, aTx− 1 ≥ 0,
xT (−λBx− Cx) + λ(aTx− 1) = 0,

We also need a technical lemma for this approach.

Lemma 5.6. Suppose that x := (x1, x2), y := (y1, y2) ∈ Kn. Then, the
following hold.

(a): xT y ≥ 0.
(b): If x ∈ int(Kn), then xT y > 0⇐⇒ y 6= 0.
(c): If x 6= 0 and y 6= 0, then xT y = 0 ⇐⇒ x1 = ‖x2‖ and y =
α(x1,−x2), where α is a positive constant. Similarly, if x 6= 0 and
y 6= 0, then xT y = 0 ⇐⇒ y1 = ‖y2‖ and x = β(x1,−x2), where β is
a positive constant.

Proof. (a) By the definition of Kn and Schwarz’s inequality, the result follows
by

xT y = x1y1 + xT2 y2 ≥ x1y1 − ‖x2‖‖y2‖ ≥ x1y1 − x1y1 = 0.

(b) It is clear by straightforward checking, or see [9].

(c) By the assumption, we know that x 6= 0 implies that x1 > 0. Otherwise,
‖x2‖ ≤ x1 = 0 implies that x = 0. Similarly, we know that y1 > 0. Using
the assumption that xT y = 0, the definition of Kn and Schwarz’s inequality,
we obtain

(21) x1y1 = | − x1y1| = |xT2 y2| ≤ ‖x2‖‖y2‖ ≤ x1y1.

This implies that

(22) x1y1 = ‖x2‖‖y2‖
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By the equality (22) and x1, y1 > 0, we know that ‖x2‖, ‖y2‖ > 0. This fact
together with ‖x2‖ ≤ x1, ‖y2‖ ≤ y1 and the equality (22) yields

(23) x1 = ‖x2‖

and

(24) y1 = ‖y2‖.

Combining all the above equalities (21),(22),(23) and (24), we know that

xT2 y2 = −x1y1 = −‖x2‖‖y2‖.

This implies the equality holds in the Schwarz’s inequality. Thus, there
exists a constant α such that

(25) y2 = kx2.

Since α‖y2‖2 = xT2 y2 = −x1y1 < 0, we obtain that k < 0. Choosing α = −k
says that α > 0 and y2 = −αx2. Now, applying the equalities (23),(24) and
(25) leads to

y1 = ‖y2‖ = ‖ − αx2‖ = | − α|‖x2‖ = α‖x2‖ = αx1,

which gives y = α(x1,−x2).

The other direction is trivial, so the proof is complete. 2

We conclude the relation between SOCEiCP(B,C) and the SOCCP, SO-
CLCP in the following theorem, and we call it Reformulation II for
SOCEiCP.

Theorem 5.3 (Reformulation II for SOCEiCP). Let F3 and F4 be
defined as in (17) and (18), respectively. Suppose that (x∗, λ∗) solves the
SOCEiCP(B,C) defined as in (4). Then, the following hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the SOCCP(F3).
(b) If λ∗ < 0, then (x∗,−λ∗) solves the SOCCP(F4).
(c) If λ∗ = 0, then x∗ solves the SOCLCP(−C,0).

Conversely, consider the SOCLCP given as in (16), the SOCCP(F3) given
as in (19), and the SOCCP(F4) given as in (20).

(d) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F3), then (x∗, λ∗) solves
the SOCEiCP(B,C).

(e) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F4), then (x∗,−λ∗) solves
the SOCEiCP(B,C).

(f) If x∗ solves the SOCLCP(−C, 0) and x∗ 6= 0, then ( x∗

aT x∗
, 0) solves

the SOCEiCP(B,C).

Proof. From the assumption that (x∗, λ∗) solves the SOCEiCP(B,C), we
observe that

x∗ ∈ Kn and F3(x∗, λ∗) = F4(x∗,−λ∗) = (λ∗Bx∗ − Cx∗, 0) ∈ Kn ×K.
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(a) If λ∗ > 0, then (x∗, λ∗) ∈ Kn ×K, F3(x∗, λ∗) ∈ Kn ×K and

(x∗, λ∗) · F3(x∗, λ∗) = (x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

This says that (x∗, λ∗) solves the SOCCP(F3).

(b) If λ∗ < 0, then (x∗,−λ∗) ∈ Kn ×K, F4(x∗,−λ∗) ∈ Kn ×K and

(x∗,−λ∗) · F4(x∗,−λ∗) = (x∗)T (λ∗Bx∗ − Cx∗)− λ∗(aTx∗ − 1) = 0.

This says that (x∗,−λ∗) solves the SOCCP(F4).

(c) If λ∗ = 0, then (x∗, λ∗) = (x∗, 0) ∈ Kn ×K, λ∗Bx∗ −Cx∗ = −Cx∗ ∈ Kn
and (x∗)T (−Cx∗) = 0. This says that (x∗, 0) solves the SOCLCP(−C,0).

(d) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F3), then we see that
x∗ ∈ Kn, λ∗ > 0,
λ∗Bx∗ − Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

By Lemma 5.6, it implies that (x∗)T (λ∗Bx∗ − Cx∗) ≥ 0 and aTx∗ − 1 = 0.
Hence, (x∗, λ∗) solves the SOCEiCP(B,C).

(e) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F4), then we see that
x∗ ∈ Kn, λ∗ > 0,
−λBx∗ − Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T (λ∗Bx∗ − Cx∗) + λ∗(aTx∗ − 1) = 0.

By Lemma 5.6 again, it implies that (x∗)T (−λ∗Bx∗−Cx∗) ≥ 0 and aTx∗−
1 = 0. Hence, (x∗,−λ∗) solves the SOCEiCP(B,C).

(f) If x∗ solves SOCLCP(−C, 0) and x∗ 6= 0, then ( x∗

aT x∗
, 0) solves the

SOCEiCP(B,C) trivially. 2

To deal with SOCQEiCP, we have to define other functions. For (x, λ) ∈
Rn ×R, we define functions F5 and F6 as follows:

(26) F5(x, λ) = (λ2Ax+ λBx+ Cx, aTx− 1)

and

(27) F6(x, λ) = (λ2Ax− λBx+ Cx, aTx− 1),

where A,B,C are n × n matrices given as in the SOCQEiCP (5) and a ∈
int(Kn). With these two new functions F5, F6 defined as in (26) and (27),
respectively, we consider their corresponding SOCCPs as below:

(28) SOCCP(F5) :


x ∈ Kn, λ ≥ 0,
λ2Ax− λBx+ Cx ∈ Kn, aTx− 1 ≥ 0,
xT (λ2Ax− λBx+ Cx) + λ(aTx− 1) = 0,



26 X. MIAO, W.-M. HSU, C. T. NGUYEN, AND J.-S. CHEN

and

(29) SOCCP(F6) :


x ∈ Kn, λ ≥ 0,
λ2Ax− λBx+ Cx ∈ Kn, aTx− 1 ≥ 0,
xT (λ2Ax− λBx+ Cx) + λ(aTx− 1) = 0,

Likewise, we present the relation between SOCQEiCP(B,C) and the
SOCCP, SOCLCP in the following theorem, and we call it Reformulation
II for SOCQEiCP.

Theorem 5.4 (Reformulation II for SOCQEiCP). Let F5 and F6 be
defined as in (26) and (27), respectively. Suppose that (x∗, λ∗) solves the
SOCQEiCP(A,B,C) defined as in (5). Then, the following hold.

(a) If λ∗ > 0, then (x∗, λ∗) solves the SOCCP(F5).
(b) If λ∗ < 0, then (x∗,−λ∗) solves the SOCCP(F6).
(c) If λ∗ = 0, then x∗ solves the SOCLCP(C,0).

Conversely, consider the SOCLCP given as in (16), the SOCCP(F5) given
as in (28), and the SOCCP(F6) given as in (29).

(d) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F5), then (x∗, λ∗) solves
the SOCQEiCP(A,B,C).

(e) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F6), then (x∗,−λ∗) solves
the SOCQEiCP(A,B,C).

(f) If x∗ solves SOCLCP(C, 0) and x∗ 6= 0, then ( x∗

aT x∗
, 0) solves the

SOCCP(F6).

Proof. The arguments are quite similar to those for Theorem 5.3. For com-
pleteness, we also present them. From the assumption that (x∗, λ∗) solves
the SOCQEiCP(A,B,C), we have the following observations: x∗ ∈ Kn and
F5(x∗, λ∗) = F6(x∗,−λ∗) = ((λ∗)2Ax∗ + λ∗Bx∗ + Cx∗, 0) ∈ Kn ×K.
(a) If λ∗ > 0, then (x∗, λ∗) ∈ Kn ×K, F5(x∗, λ∗) ∈ Kn ×K and

(x∗, λ∗) · F5(x∗, λ∗) = (x∗)T [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗] + λ∗(aTx∗ − 1) = 0.

This says that (x∗, λ∗) solves the SOCCP(F5).

(b) If λ∗ < 0, then (x∗,−λ∗) ∈ Kn ×K, F5(x∗,−λ∗) ∈ Kn ×K and

(x∗,−λ∗) · F5(x∗,−λ∗) = [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗]− λ∗(aTx∗ − 1) = 0.

This says that (x∗,−λ∗) solves the SOCCP(F5).

(c) If λ∗ = 0, then (x∗, λ∗) = (x∗, 0) ∈ Kn ×K, (λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ =
Cx∗ ∈ Kn and (x∗)TCx∗ = 0. This says that (x∗, 0) solves SOCLCP(C,0).

(d) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F5), then we know that
x∗ ∈ Kn, λ∗ > 0,
(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗] + λ∗(aTx∗ − 1) = 0.

By Lemma 5.6, this implies that (x∗)T [(λ∗)2Ax∗ + λ∗Bx∗ + Cx∗] ≥ 0 and
aTx∗ − 1 = 0. Hence, (x∗, λ∗) solves the SOCQEiCP(A,B,C).
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(e) If λ∗ 6= 0 and (x∗, λ∗) solves the SOCCP(F6), then we know that
x∗ ∈ Kn, λ∗ > 0,
(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗ ∈ Kn, aTx∗ − 1 ≥ 0,
(x∗)T [(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗] + λ∗(aTx∗ − 1) = 0.

By Lemma 5.6, this implies that (x∗)T [(−λ∗)2Ax∗ + (−λ∗)Bx∗ + Cx∗] ≥ 0
and aTx∗ − 1 = 0. Hence, (x∗,−λ∗) solves the SOCEiCP(A,B,C).

(f) If x∗ solves SOCLCP(C, 0) and x∗ 6= 0, then ( x∗

aT x∗
, 0) solves the SOCQEiCP(A,B,C)

trivially. 2

Remark 5.2. Let y = (x, λ) ∈ Rn × R and Fi be defined as in (17), (18),
(26), (27). The SOCCP(Fi), i = 3, 4, 5, 6 can be written as

SOCCP(Fi) :

 y ∈ Kn ×K1

F (y) ∈ Kn ×K1,
yTF (y) = 0.

Since Fi, i = 3, 4, 5, 6 is continuously differentiable, it is easy to look for an
algorithm to solve the SOCCP(Fi), which is better than the SOCCP as in
Reformulation I.

At last, we present the third approach to SOCEiCP and SOCQEiCP,
which recasts them as a nonsmooth system of equations. Note that this
approach was also investigated in [2], but the SOCEiCP (expression (13)
given in [2]) is not correct because the authors replace the condition x 6= 0
by eTx > 0. This is not appropriate like what are commented in Section
1. More specifically, for such approach, it needs to find a smooth function
φ : Rn ×Rn → R+ such that

(30) nm, .φ(x, y) = 0 ⇐⇒ 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn.

Such function is usually called an C-function or SOCCP-function. There
are already many C-functions in the literature [13, 14, 15, 38, 41]. In this
approach, we employ two popular ones, the natural residual function, also
called the min-function, denoted by φNR , and the Fischer–Burmeister func-
tion, denoted by φFB . They are defined as below, respectively,

(31) φNR(x, y) := x− (x− y)+ = x− PKn(x− y),

(32) φFB(x, y) := (x+ y)− (x2 + y2)
1
2 ,

where PKn denotes the projection mapping onto Kn.

Before moving on, we also recall the concepts of the B-subdifferential
and (strong) semismoothness, which will be used later. Given a mapping
H : Rn → Rm, if H is locally Lipschitz continuous, then the set

∂BH(z) :=
{
V ∈ Rm×n | ∃{zk} ⊆ DH s.t. zk → z,H

′
(zk)→ V

}
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is nonempty and is called the B-subdifferential of H at z, where DH ⊆ Rn
denotes the set of points at which H is differentiable. The convex hull
∂H(z) := conv∂BH(z) is called the generalized Jacobian in Clarke sense
[11]. A mapping H : Rn → Rm is said to be semismooth at x if H is
directionally differentiable at x; and for all V ∈ ∂H(x+h) and h→ 0, there
holds

V h−H ′(x;h) = o(‖h‖).
The mapping H is said to be strongly semismooth at x if H is semismooth
at x; and for all V ∈ ∂H(x+ h) and h→ 0, there holds

V h−H ′(x;h) = o(‖h‖2).

The mapping H is called (strongly) semismooth if it is (strongly) semismooth
everywhere.

In light of [15, Proposition 4.3], [24, Lemma 2.4 and 2.5] and [10, Propo-
sitions 4 and 5], we list some results about the natural residual function and
the Fischer-Burmeister function.

Lemma 5.7. Let φNR be defined as in (31). Then, φNR is strongly semis-
mooth with

∂BφNR(x, y) =
{[
I − V V

]
∈ Rn×2n |V ∈ PKn(x− y)

}
,

for all (x, y) ∈ Rn ×Rn.

Lemma 5.8. Let φFB be defined as in (32). Then, φFB is strongly semis-
mooth. For any (x, y) ∈ Rn × Rn, we denote w = (w1, w2) := x2 + y2 and

z = (z1, z2) := (x2 + y2)
1
2 . Then, each element in ∂BφFB is described by[

I − Vx I − Vy
]

with Vx and Vy having the following representation:

(a) If x2 + y2 ∈ int(Kn), then Vx = L−1
z Lx and Vy = L−1

z Ly.
(b) If x2 + y2 ∈ bd(Kn), and (x, y) 6= (0, 0), then

Vx ∈
{

1

2
√

2w1

(
1 w̄T2
w̄2 4I − 3w̄2w̄

T
2

)
Lx +

1

2

(
1
−w̄2

)
uT
}

and

Vy ∈
{

1

2
√

2w1

(
1 w̄T2
w̄2 4I − 3w̄2w̄

T
2

)
Ly +

1

2

(
1
−w̄2

)
vT
}
,

for some u = (u1, u2), v = (v1, v2) ∈ R × Rn−1 satisfying |u1| ≤
‖u2‖ ≤ 1 and |v1| ≤ ‖v2‖ ≤ 1, where w̄2 = w2

‖w2‖ .

(c) If (x, y) = (0, 0), then Vx ∈ {Lx̂}, Vy ∈ {Lŷ} for some x̂, ŷ with
‖x̂‖2 + ‖ŷ‖2 = 1, or

Vx ∈
{

1

2

(
1
w̄2

)
ξT +

1

2

(
1
−w̄2

)
uT + 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)}
,
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Vy ∈
{

1

2

(
1
w̄2

)
ηT +

1

2

(
1
−w̄2

)
vT + 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)}
,

for some u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2) ∈
R × Rn−1 such that |u1| ≤ ‖u2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, |ξ1| ≤
‖ξ2‖ ≤ 1, |η1| ≤ ‖η2‖ ≤ 1, w̄2 ∈ Rn−1 satisfying ‖w̄2‖ = 1, and
s = (s1, s2), ω = (ω1, ω2) ∈ R×Rn−1 satisfying ‖s‖2 + ‖ω‖2 ≤ 1

2 .

From (30), it is clear to see that when φ : Rn × Rn → R is an C-
function, the SOCEiCP(B,C) can be reformulated as a nonsmooth system
of equations:

Φ(z) = Φ(x, y, λ) :=

 φ(x, y)
λBx− Cx− y

aTx− 1

 = 0.(33)

Here Φ : Rn × Rn × R → R2n+1. We shall denote the above Φ by ΦNR

and ΦFB when φ represents the natural residual function φNR and the Fis-
cher–Burmeister function φFB , respectively. With these notations, the B-
subdifferential of ΦNR and ΦFB , are written out as below lemmas.

Lemma 5.9. The function ΦNR is semismooth. Moreover, the B-subdifferential
of ΦNR at z = (x, y, λ) is described by

∂BΦNR(z) = ∂BΦNR(x, y, λ)

=


 I − V V 0

λB − C −I Bx
aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x− y)

 .

Proof. This is a direct consequence of Lemma 5.7. 2

Lemma 5.10. The function ΦFB is semismooth. Moreover, the B-subdifferential
of ΦFB at z = (x, y, λ) is described by

∂BΦFB(z) = ∂BΦFB(x, y, λ)

=


 I − Vx I − Vy 0

λB − C −I Bx
aT 0 0

 ∣∣∣∣∣ [I − Vx I − Vy
]
∈ ∂BφFB(z)

 ,

where Vx and Vy are given in Lemma 5.8.

Proof. This is a direct consequence of Lemma 5.8. 2

Now, we are ready to conclude the relation between SOCEiCP(B,C) and
the nonsmooth system of equations in the following theorem. We will call
it Reformulation III for SOCEiCP.
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Theorem 5.5 (Reformulation III for SOCEiCP). Let Φ(z) = Φ(x, y, λ)
be defined as in (33) and consider the SOCEiCP(B,C) given as in (4). Then,
the following hold.

(a) If (x∗, λ∗) solves the SOCEiCP(B,C), then Φ(x∗, y∗, λ∗) = 0 with
y∗ = λ∗Bx∗ − Cx∗.

(b) Conversely, if (x∗, y∗, λ∗) is a solution of the nonsmooth system of
equations Φ(z) = 0, i.e., Φ(x∗, y∗, λ∗) = 0, then (x∗, λ∗) solves the
SOCEiCP(B,C).

Furthermore, if Φ represents ΦNR or ΦFB, then the B-subdifferential of Φ
exists with

∂BΦNR (x∗, y∗, λ∗) =


 I − V V 0

λB − C −I Bx∗

aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x∗ − y∗)


and

∂BΦFB(x∗, y∗, λ∗) =


 I − Vx∗ I − Vy∗ 0

λB − C −I Bx∗

aT 0 0

 ∣∣∣∣∣ [I − Vx∗ I − Vy∗] ∈ ∂BφFB(x∗, y∗)

 ,

where Vx∗ and Vy∗ are given in Lemma 5.8, respectively.

Proof. The results follow by the definition of the SOCEiCP, Lemma 5.9 and
Lemma 5.10. 2

As for SOCQEiCP(A,B,C), we observe that when φ : Rn × Rn → R

is an C-function, the SOCQEiCP(A,B,C) can be reformulated as another
nonsmooth system of equations:

Ψ(z) = Ψ(x, y, λ) :=

 φ(x, y)
λ2Ax+ λBx+ Cx− y

aTx− 1

 = 0.(34)

Here Ψ : Rn × Rn × R → R2n+1. Again, we shall denote Ψ by ΨNR

and ΨFB when φ means φNR and φFB , respectively. In these cases, the
B-subdifferential of ΨNR and ΨFB are expressed as lemmas.

Lemma 5.11. The function ΨNR is semismooth. Moreover, the B-subdifferential
of ΨNR at z = (x, y, λ) is described by

∂BΨNR(z) = ∂BΨNR(x, y, λ)

=


 I − V V 0

λ2A+ λB + C −I 2λAx+Bx
aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x− y)

 .

Proof. By direct computation and Lemma 5.7, the proof is trivial. 2
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Lemma 5.12. The function ΨFB is semismooth. Moreover, the B-subdifferential
of ΨFB at z = (x, y, λ) is described by

∂BΨFB(z) = ∂BΨFB(x, y, λ)

=


 I − Vx I − Vy 0

λ2A+ λB + C −I 2λAx+Bx
aT 0 0

 ∣∣∣∣∣ [I − Vx I − Vy
]
∈ ∂BφFB(z)

 ,

where Vx and Vy are given in Lemma 5.8.

Proof. By direct computation and Lemma 5.8, the proof is trivial. 2

Now, we are ready to conclude the relation between SOCQEiCP(A,B,C)
and the nonsmooth system of equations in the following theorem. We call
it Reformulation III for SOCQEiCP.

Theorem 5.6 (Reformulation III for SOCQEiCP). Let Ψ(z) = Ψ(x, y, λ)
be defined as in (34) and consider the SOCQEiCP(A,B,C) given as in (5).
Then, the following hold.

(a) If (x∗, λ∗) solves the SOCQEiCP(A,B,C), then Ψ(x∗, y∗, λ∗) = 0
with y∗ = (λ∗)2Ax∗ + λ∗Bx∗ + Cx∗.

(b) Conversely, if (x∗, y∗, λ∗) is a solution of the nonsmooth system of
equations Ψ(z) = 0, i.e., Ψ(x∗, y∗, λ∗) = 0, then (x∗, λ∗) solves the
SOCQEiCP(A,B,C).

Furthermore, if Ψ represents ΨNR or ΨFB, then the B-subdifferential of Ψ
exists with

∂BΨNR(x∗, y∗, λ∗)

=


 I − V V 0

(λ∗)2A+ λ∗B + C −I 2λ∗Ax∗ +Bx∗

aT 0 0

 ∣∣∣∣∣V ∈ ∂BPKn(x∗ − y∗)

 .

and

∂BΨFB(x∗, y∗, λ∗)

=


 I − Vx∗ I − Vy∗ 0

(λ∗)2A+ λ∗B + C −I 2λ∗Ax+Bx
aT 0 0

 ∣∣∣∣∣ [I − Vx∗ I − Vy∗
]
∈ ∂BφFB(x∗, y∗)

 ,

where Vx∗ and Vy∗ are given in Lemma 5.8, respectively.

Proof. Applying Lemma 5.11 and Lemma 5.12, the proof is trivial. 2
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6. Concluding Remarks

In this paper, the existence of solutions for three types of optimization
problems involving SOC is studied. First, we look into the absolute value
equations associated with SOC, which are natural extensions of the stan-
dard absolute value equations. For the absolute value equation associated
with SOC, we have characterized under what condition, the SOCAVEs have
solution and unique solution. Such results are new to the literature and will
be helpful for further study of the SOCAVEs. In addition, we study the
solvabilities of two types of eigenvalue complementarity problems, i.e., the
SOCEiCP(B,C) and the SOCQEiCP(A,B,C). Our approach is based on
reformulating them as various second-order cone complementarity problems,
which is a novel thinking different from the existing ways. Such an idea may
pave a way to seeking new algorithms for solving the SOCEiCP(B,C) and
the SOCQEiCP(A,B,C). We leave them as our future research topics.
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