
ON THE D-GAP FUNCTIONS FOR
VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH

AN APPLICATION TO CONTACT MECHANICS∗

Vo Minh Tam and Jein-Shan Chen†

Abstract: The aim of this paper is to investigate the difference gap (for brevity, D-gap) functions and global
error bounds for an abstract class of elliptic variational-hemivariational inequalities (for brevity, EVHIs).
Based on the optimality condition for the concerning minimization problem, the regularized gap function
for EVHIs is proposed under some suitable conditions. Accordingly, we establish the D-gap functions for
EVHIs in terms of these regularized gap functions. Furthermore, we provide global error bounds for EVHIs
by virtue of the regularized gap functions and the D-gap functions. An application to contact mechanic
problem is given to illustrate our main results.

Keywords: Elliptic variational-hemivariational inequality, regularized gap function, D-gap function, error
bound, contact mechanic problem
Mathematics Subject Classification: 47J20, 49J40, 49K40

1 Introduction
The target problem in this article is a class of generalized variational inequalities and the main tool is the
D-gap function. We start with briefly recall and review these two notions. In 1976, Auslender [1] introduced
the gap function as a valuable tool for solving variational inequalities via associated optimization problems.
A gap function defined by

p(z) = sup
v∈D
〈ρ(z), z − v〉,

where z ∈ D ⊂ Rn, ρ : Rn → Rn, and 〈·, ·〉 is the scalar product in Rn. The function p satisfies the following
conditions:

(i) p(z) ≥ 0, for all z ∈ D,

(ii) z∗ is a solution to the variational inequality (VI) of finding z∗ ∈ D such that

〈ρ(z∗), v − z∗〉 ≥ 0, for all v ∈ D

if and only if z∗ ∈ D and p(z∗) = 0.

A disadvantage is that the gap function p is non-differentiable in general. To conquer this drawback, in
1992, Fukushima [7] originally proposed a new gap function for VI in the following form:

pα(z) = sup
v∈D
{〈ρ(z), z − v〉 − α‖z − v‖2},

where α > 0. The function pα is finite valued and differentiable as long as the mapping ρ is differentiable,
and it is called the regularized gap function. Then, Peng [35] provided the notion of the D-gap (where
D stands for “difference”) function which leads to an unconstrained optimization reformulation of the VI.
Another D-gap function derived from the difference of two regularized gap functions, given by Yamashita
and Fukushima [43], is as follows:

dαβ(z) = pα(z)− pβ(z) (0 < α < β).

Note that dαβ is also a gap function for VI. Peng-Fukushima [36] developed a global error bound result
for variational inequalities in terms of D-gap functions using the strong monotonicity assumption. Error
bound explores the upper estimation of the distance between an arbitrary feasible point and the solution set
of a certain problem. So, it has been critical in analyzing the convergence of iterative methods for solving
variational inequalities. Therefore, the D-gap function and error bounds have been investigated for various
kinds of equilibrium problems and variational inequalities, see e.g., [2, 3, 16, 21, 17, 22, 25, 26, 38].

∗The research is supported by National Science and Technology Council, Taiwan.
†Corresponding author.
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On the other hand, it is well known that the theory of hemivariational inequalities is an extension of vari-
ational inequalities. This theory was introduced by Panagiotopoulos for dealing with various problems of me-
chanical problems with nonconvex and nonsmooth energy potentials, and based on the concept of the Clarke
generalized gradient for locally Lipschitz functions, see e.g., [33, 34]. Variational–hemivariational inequality
is a generalization of hemivariational inequality which includes both convex and nonconvex potentials. This
theory has been extensively investigated by many authors in various directions, and it has found different
applications in engineering, mechanics, especially in nonsmooth analysis and optimization. Recent existence
results for some types of variational–hemivariational inequalities can be found, in e.g., [20, 29, 27, 32, 31, 37],
the stability in the sense of convergence and the well-posedness, in e.g., [13, 24, 28, 41, 44, 45], the gap func-
tions and error bounds, in e.g., [8, 15, 19, 40] and the computational issues have been addressed in, e.g.,
[9, 12].

Regularized
gap functions

Gap functions
(Auslender)

D-gap
functions

Variational-hemivariational inqualities

Our new results

Variational inequalities,

Equilibrium problems

Figure 1: Illustration of the developments regarding different kinds of gap functions, regularized
gap functions and D-gap functions.

Although D-gap functions have turned out to be efficient mathematical tools to establish error bounds
for various variational inequalities and equilibrium problems, until now, there is no contribution which
deals with D-gap functions for variational-hemivariational inequalities. Based on the motivation, in this
paper, we develop the D-gap function and global error bounds for an abstract class of elliptic variational-
hemivariational inequalities (for brevity, EVHIs). Firstly, we provide the regularized gap function introduced
by Fukushima [7] for EVHIs under some suitable conditions based on the optimality condition for the
concerning minimization problem. The D-gap function for EVHIs in terms of regularized gap functions is
established. Furthermore, we also give some global error bounds for EVHIs by virtue of the regularized gap
function and the D-gap function. Finally, the theoretical results are applied to a contact mechanic problem.
To sum up, the contribution of this work and its relation to previous literature is depicted in Figure 1.

The rest of this paper is structured as follows. The basic notations and definitions that will be used
throughout the study are presented in Section 2. We also introduce an abstract class of elliptic variational-
hemivariational inequalities and provide their existence under some imposed hypotheses on the data. In
Section 3, we investigate the regularized gap function and the D-gap function for EVHIs. In Section 4,
we establish global error bounds for EVHIs by virtue of the gap functions considered in Section 3 under
some suitable conditions. Finally, an application to a contact problem is proposed in Section 5 to illustrate
abstract results in the paper.
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2 Preliminaries and Formulations
Let E be a normed space with its topological dual E∗. We denote by ‖ · ‖E the norm on E and 〈·, ·〉E
the duality pairing of E and E∗. For two normed spaces E and Z, L(E,Z) denotes the space of all linear
continuous operators from E to Z. We recall some fundamental concepts that will be used in the sequel.
For more details, please refer to [4, 5, 6, 30].

Definition 2.1. A function % : E → R := R ∪ {+∞} is said to be

(a) proper, if % 6≡ +∞;

(b) convex, if %(tu+ (1− t)v) ≤ t%(u) + (1− t)%(v) for all u, v ∈ E and t ∈ [0, 1];

(c) lower semicontinuous at u0 ∈ E, if for any sequence {un} ⊂ E such that un → u0, it holds %(u0) ≤
lim inf %(un);

(d) upper semicontinuous at u0 ∈ E, if for any sequence {un} ⊂ E such that un → u0, it holds
lim sup %(un) ≤ %(u0);

(e) lower semicontinuous (resp., upper semicontinuous) on E, if % is lower semicontinuous (resp., upper
semicontinuous) at every u0 ∈ E.

Definition 2.2. An operator G : E → E∗ is said to be:

(a) bounded, if G maps bounded sets of E into bounded sets of E∗;

(b) Lipschitz continuous, if there exists a constant lG > 0 such that

‖Gv − Gu‖E∗ ≤ lG‖v − u‖E for all u, v ∈ E;

(c) pseudomonotone, if G is a bounded operator and for every sequence {un} ⊂ E converging weakly to
u ∈ E such that lim sup〈Gun, un − u〉E ≤ 0, we have

〈Gu, u− v〉E ≤ lim inf〈Gun, un − v〉E , for all v ∈ E.

Definition 2.3. Let θ : E → R be a proper, convex and lower semicontinuous function. The convex
subdifferential ∂cθ : E ⇒ E∗ of θ is defined by

∂cθ(u) =
{
w∗ ∈ E∗ | 〈w∗, v − u〉E ≤ θ(v)− θ(u) for all v ∈ E

}
for all u ∈ E.

An element w∗ ∈ ∂cθ(u) is called a subgradient of θ at u ∈ E. Given a bifunction h : E × E → R, we will
denote by ∂2h the convex subdifferential of h with respect to the second component.

Definition 2.4. A function % : E → R is said to be locally Lipschitz, if for every u ∈ E, there exist a
neighbourhood N of u and a constant lu > 0 such that

|%(v1)− %(v2)| ≤ lu‖v1 − v2‖E for all v1, v2 ∈ N .

Given a locally Lipschitz function % : E → R, we denote by %0(u; v) the Clarke generalized directional
derivative of % at the point u ∈ E in the direction v ∈ E defined by

%0(u; v) = lim sup
y→u, t→0+

%(y + tv)− %(y)

t
.

The generalized gradient of % at u ∈ E, denoted by ∂%(u), is a subset of E∗ given by

∂%(u) =
{
ζ∗ ∈ E∗ | %0(u; v) ≥ 〈ζ∗, v〉E for all v ∈ E

}
.

For convenience, some basic and useful results of the generalized gradient and directional derivative of
a locally Lipschitz function are collected in the following lemma, see, e.g., [4, Proposition 2.1.1].

Lemma 2.5. Let E be a real Banach space and % : E → R be a locally Lipschitz function. Then, the
following assertions hold.

(i) For each u ∈ E, the function E 3 v 7→ %0(u; v) ∈ R is finite, positively homogeneous, subadditive and
Lipschitz continuous.

(ii) The function E × E 3 (u, v) 7→ %0(u; v) ∈ R is upper semicontinuous.
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(iii) For every u, v ∈ E, it holds
%0(u; v) = max {〈ζ, v〉E | ζ ∈ ∂%(u)}.

Next, we recall the existence and uniqueness result of solutions for uniformly convex optimization prob-
lems.

Definition 2.6 (see [23]). A function % : E → R is said to be uniformly convex if there exists a continuously
increasing function π : R→ R such that π(0) = 0 and that for all u, v ∈ E and for each t ∈ [0, 1], we have

%(tu+ (1− t)v) ≤ t%(u) + (1− t)%(v)− t(1− t)π(‖u− v‖)‖u− v‖.

If π(τ) = kτ for k > 0, then % is called a strongly convex function.

Lemma 2.7 (see [42], Chapter 1, Section 3, Theorem 9). Suppose that W is a nonempty, convex and closed
subset of a reflexive Banach space E, % : E → R is a uniformly convex and lower semicontinuous function.
Then the optimization problem

min
u∈W

%(u)

has the unique solution u∗ ∈ W.

Throughout the paper, unless otherwise specified, for each i ∈ {1, . . . , k}, let E be a Hilbert space and
EP , EΥi be Banach spaces, W ⊂ E and KP ⊂ EP . In addition, let G : E → E∗, δ : E → EP , γi : E → EΥi
be operators, P : KP × KP → R, Υi : EΥi → R be functions and f ∈ E∗. We now consider the abstract
elliptic variational-hemivariational inequality:

Problem 2.1. Find u∗ ∈ W such that

〈Gu∗, v − u∗〉E + P(δu∗, δv)− P(δu∗, δu∗) +

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu∗) ≥ 〈f, v − u∗〉E

for all v ∈ W.

To proceed, the following hypotheses are imposed on the data of Problem 2.1.
H(G) : For the operator G : E → E∗,

(a) G is Lipschitz continuous, i.e., there exists lG > 0 such that

‖Gv1 − Gv2‖E∗ ≤ lG‖v1 − v2‖E , ∀v1, v2 ∈ E;

(b) G is strongly monotone, i.e., there exists mG > 0 such that

〈Gv1 − Gv2, v1 − v2〉E ≥ mG‖v1 − v2‖2E , ∀v1, v2 ∈ E.

H(P) : For the function P : KP ×KP → R,

(a) for each u ∈ KP , P(u, ·) : KP → R is convex and lower semicontinuous;

(b) there exists αP > 0 such that

P(u1, v2)− P(u1, v1) + P(u2, v1)− P(u2, v2)

≤ αP‖u1 − u2‖EP ‖v1 − v2‖EP , ∀u1, u2, v1, v2 ∈ KP .

H(Υ) : For each i ∈ {1, . . . , k}, for the locally Lipschitz function Υi : EΥi → R,

(a) ‖ξ‖E∗Υi
≤ c0 + c1‖v‖EΥi

, ∀v ∈ EΥi , ξ ∈ ∂Υi(v) with some c0, c1 ≥ 0;

(b) there exists LΥi ≥ 0 such that

Υ0
i (w1; v2 − v1) + Υ0

i (w2; v1 − v2) ≤ LΥi‖w1 − w2‖EΥi
‖v1 − v2‖EΥi

, (2.1)

for all w1, w2, v1, v2 ∈ EΥi .

H(W) : W is a nonempty, closed and convex subset of E with 0E ∈ W.

H(K) : KP is a nonempty, closed and convex subset of EP with δ(W) ⊂ KP .

H(δ) : For the operator δ ∈ L(E,EP ), there exists cP > 0,

‖δv‖EP ≤ cP‖v‖E .
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H(γ) : For each i ∈ {1, . . . , k}, for the operator γi ∈ L(E,EΥi ), there exists cΥi > 0,

‖γiv‖EΥi
≤ cΥi‖v‖E .

H(f) : f ∈ E∗.
H(const.) :

mG − αPc2P −
k∑
i=1

LΥic
2
Υi

> 0.

Remark 2.8. (i) It is easily seen that H(G)(b) implies that G is pseudomonotone.
(ii) If w1 = v1, w2 = v2, then the condition (2.1) reduces to

Υ0
i (v1; v2 − v1) + Υ0

i (v2; v1 − v2) ≤ LΥi‖v1 − v2‖2EΥi
, ∀v1, v2 ∈ EΥi .

The following example illustrates that the case where the hypotheses H(P) and H(Υ) are satisfied.

Example 2.9. For each i ∈ {1, 2}, let EΥi = EP = E = R, KP = [0, 7
3

], P : KP × KP → R and
Υi : EΥi → R be the functions defined by

P(u, v) =
5 + uv2

3
and Υi(u) =

{(
1
2
− i
)
u2 + iu if u ≥ 0

0 if u < 0.

It is not difficult to show that the condition H(P)(a) holds. For any u1, u2, v1, v2 ∈ KP , we have

P(u1, v2)− P(u1, v1) + P(u2, v1)− P(u2, v2)

=
1

3

(
u1v

2
2 − u1v

2
1 + u2v

2
1 − u2v

2
2

)
=

1

3
(v1 + v2)(u2 − u1)(v1 − v2)

≤
14

9
|u1 − u2||v1 − v2|,

which implies that the condition H(P)(b) is satisfied with αP =
14

9
. Thus, H(P) is valid.

On the other hand, it is obvious that for each i ∈ {1, 2}, Υi is a locally Lipschitz nonconvex function.
Moreover, its generalized gradient and Clarke generalized directional derivative are given by

∂Υi(u) =


(1− 2i)u+ i if u > 0

[0, i] if u = 0

0 if u < 0,

and

Υ0
i (u; d) =


(1− 2i)ud+ id if u > 0

max{0, id} if u = 0

0 if u < 0

for all d ∈ R and i ∈ {1, 2}.

Hence, |w| ≤ i + (2i − 1)|u| for all w ∈ ∂Υi(u) and u ∈ R and i ∈ {1, 2} and so the condition H(Υ)(a)
holds with c0 = i, c1 = 2i− 1 for i ∈ {1, 2}. Furthermore, we also obtain

Υ0
i (w1; v2 − v1) + Υ0

i (w2; v1 − v2) ≤ (2i− 1)|w1 − w2||v1 − v2|

for all w1, w2, v1, v2 ∈ R and so the assumption H(Υ)(b) holds with LΥi = 2i− 1 for i ∈ {1, 2}.

By slightly modifying the arguments in [10, 31], we obtain the existence and uniqueness result for
Problem 2.1.

Theorem 2.10. Assume that the assumptions H(G), H(P), H(Υ), H(W), H(K), H(δ), H(γ), H(f) and
H(const.) hold, then Problem 2.1 has a unique solution.
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We point out that there are various problems investigated in the literature which are included as special
cases in Problem 2.1.

Special case (a): When k = 1, Υ1 = Υ and γ1 = γ, Problem 2.1 is equivalent to the following class of

variational-hemivariational inequalities studied by Han et al. [12]:

Problem 2.2. Find u ∈ W such that

〈Gu, v − u〉E + P(δu, δv)− P(δu, δu) + Υ0 (γu; γv − γu) ≥ 〈f, v − u〉E , ∀v ∈ W.

Special case (b): When Υi ≡ 0 for all i ∈ {1, . . . , k}, Problem 2.1 reduces to the following variational

inequality considered in Hung and Tam [18]:

Problem 2.3. Find u ∈ W such that

〈Gu, v − u〉E + P(δu, δv)− P(δu, δu) ≥ 〈f, v − u〉E , ∀v ∈ W.

Special case (c): When k = 2, P ≡ 0, Problem 2.1 has the below form, which was introduced by Han et al.

[10].

Problem 2.4. Find u ∈ W such that

〈Gu, v − u〉E + Υ0
1 (γ1u; γ1v − γ1u) + Υ0

2 (γ2u; γ2v − γ2u) ≥ 〈f, v − u〉E , ∀v ∈ W.

3 Different Gap Functions
In this section, we construct the gap functions in the regularized form of the Fukushima type for Problem 2.1
using some suitable conditions. Furthermore, based on these regularized gap functions, the D-gap function
for Problem 2.1 is established. Since the existence of solutions have been considered in Theorem 2.10, we
always assume that the solution set of Problem 2.1 is nonempty.

First, we propose the exact definition of gap functions of Problem 2.1 as below.

Definition 3.1. A real-valued function m : W → R is said to be a gap function for Problem 2.1, if it satisfies
the following properties:

(a) m(u) ≥ 0 for all u ∈ W.

(b) u∗ ∈ W is such that m(u∗) = 0 if and only if u∗ is a solution to Problem 2.1.

For each ω > 0, let the function Ξω,f :W ×W → R be defined by

Ξω,f (u, v) = 〈Gu− f, v − u〉E + P(δu, δv)− P(δu, δu)

+

k∑
i=1

Υ0
i (γiu; γiv − γiu) +

ω

2

∥∥v − u∥∥2

E
.

Lemma 3.2. For each i ∈ {1, . . . , k}, suppose that Υi : EΥi → R is a locally Lipschitz function and
γi ∈ L(E,EΥi ). Then, the function ϕi : EΥi × EΥi → R defined by

ϕi(ui, vi) = Υ0
i (ui; vi − ui) (3.1)

satisfies the following properties:

(i) For each ui ∈ EΥi , the function v 7→ ϕi(ui, γiv) is continuous and convex;

(ii) For each u ∈ W, ∂2(ϕi◦γi)(u, v) ⊂ γ∗i ∂2Υ0
i (γiu; γiv−γiu), where γ∗i : E∗i → E∗ is the adjoint operator

to γi and ϕi◦γi denotes the composition of the function ϕi with the operator γi, for all i ∈ {1, . . . , k}.

Proof. (i) It follows from the property (i) of Lemma 2.5 and γi ∈ L(E,EΥi ) for all i ∈ {1, . . . , k}.

(ii) Using the chain rule for generalized subgradient in [30, Proposition 3.37(ii)] with the condition γi ∈
L(E,EΥi ) for all i ∈ {1, . . . , k}, we obtain that

∂2(ϕi ◦ γi)(u, v) ⊂ γ∗i ∂2ϕi(γiu, γiv) = γ∗i ∂2Υ0
i (γiu; γiv − γiu)

for all i ∈ {1, . . . , k} and u ∈ W. �
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Lemma 3.3. Suppose that all the assumptions of Lemma 3.2, H(P)(a), H(W) and H(f) hold, and δ ∈
L(E,EP ). Then, for each u ∈ W and ω > 0 fixed, the optimization problem

min
v∈W

Ξω,f (u, v) (3.2)

attains a unique solution vω,f (u) ∈ W.

Proof. For each i ∈ {1, . . . , k}, by the condition H(P)(a) and Lemma 3.2(i), we achieve that functions v 7→
Υ0
i (γiu; γiv − γiu) and v 7→ P(δu, δv) are convex for all u ∈ W. Then, it is easy to prove that the function

Ξω,f (u, ·) is a strongly convex function for all u ∈ W. Furthermore, functions v 7→ Υ0
i (γiu; γiv − γiu)

and v 7→ P(δu, δv) are also lower semicontinuous for all u ∈ W. Hence, the function Ξω,f (u, ·) is lower
semicontinuous for all u ∈ W. It follows from the condition H(W) that W is a nonempty, closed and convex
set. Thus, applying Lemma 2.7, the minimization problem (3.2) attains a unique minimum vω,f (u) ∈ W,
for any u ∈ W and ω > 0 fixed. �

The optimality condition for the minimization problem (3.2) are described as follows.

Lemma 3.4. Suppose that all the assumptions of Lemma 3.3 hold. Then, for each u ∈ W and ω > 0 fixed,〈
Gu− f + ω(vω,f (u)− u), v − vω,f (u)

〉
E

+ P(δu, δv)− P(δu, δvω,f (u))

+

k∑
i=1

Υ0
i

(
γiu; γiv − γivω,f (u)

)
≥ 0, (3.3)

holds for all v ∈ W, where vω,f (u) is a unique solution of the problem (3.2).

Proof. For each u ∈ W and ω > 0, let vω,f (u) be a unique solution of the problem (3.2). Hence, using the
chain rule for generalized subgradient in [30, Proposition 3.35(ii) and Proposition 3.37(ii)], Lemma 3.2(ii)
and the optimality condition for the problem (3.2) (see [14, Theorem 1.23]), one has

0 ∈ ∂2Ξω,f (u, vω,f (u))

⊂ Gu− f + ∂2(P ◦ δ)(δu, vω,f (u))

+
k∑
i=1

∂2(ϕi ◦ γi)(u, vω,f (u)) + ω(vω,f (u)− u)

⊂ Gu− f + δ∗∂2P(δu, δvω,f (u))

+
k∑
i=1

γ∗i ∂2Υ0
i (γiu; γivω,f (u)− γiu) + ω(vω,f (u)− u),

where ϕi is defined by (3.1), δ∗ : E∗P → E∗ and γ∗i : E∗i → E∗ are the adjoint operators to δ and
γi, respectively for all i ∈ {1, . . . , k}. This implies that there exist z ∈ ∂2P(δu, δvω,f (u)) and ζi ∈
∂2ϕi(γiu, γivω,f (u)) = ∂2Υ0

i (γiu; γivω,f (u)− γiu) such that

f − Gu− ω(vω,f (u)− u) = δ∗z +

k∑
i=1

γ∗i ζi. (3.4)

For each i ∈ {1, . . . , k}, since δ∗ and γ∗i are adjoint operators to δ and γi, respectively, it follows from (3.4)
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that for all v ∈ W,〈
−Gu+ f − ω(vω,f (u)− u), v − vω,f (u)

〉
E

=
〈
δ∗z, v − vω,f (u)

〉
E

+

k∑
i=1

〈
γ∗i ζi, v − vω,f (u)

〉
E

=
〈
z, δv − δvω,f (u)

〉
E

+

k∑
i=1

〈
ζi, γiv − γivω,f (u)

〉
E

≤ P(δu, δv)− P(δu, δvω,f (u))

+

k∑
i=1

(
ϕi(γiu, γiv)− ϕi(γiu, γivω,f (u))

)
= P(δu, δv)− P(δu, δvω,f (u))

+
k∑
i=1

(
Υ0
i (γiu; γiv − γiu)−Υ0

i (γiu; γivω,f (u)− γiu)
)

≤ P(δu, δv)− P(δu, δvω,f (u)) +

k∑
i=1

Υ0
i (γiu; γiv − γivω,f (u)),

that is, 〈
Gu− f + ω(vω,f (u)− u), v − vω,f (u)

〉
E

+ P(δu, δv)− P(δu, vω,f (u))

+

k∑
i=1

Υ0
i (γiu; γiv − γivω,f (u)) ≥ 0.

Thus, for each u ∈ W, the inequality (3.3) holds for all v ∈ W. �

Now, we consider the function Fω,f : W → R defined by

Fω,f (u) = sup
v∈W
{−Ξω,f (u, v)}

= − inf
v∈W

Ξω,f (u, v) = −Ξω,f (u, vω,f (u)). (3.5)

In what follows, the function Fω,f is called to be a regularized gap function of Problem 2.1. We shall assert
that Fω,f is a gap function of Problem 2.1.

Theorem 3.5. Suppose that the hypotheses H(P)(a), H(Υ)(b), H(W), H(K) and H(f) hold, and δ ∈
L(E,EP ), γi ∈ L(E,EΥi ) for all i ∈ {1, ..., k}. Then, for any ω > 0, the function Fω,f is a gap function
for Problem 2.1.

Proof. (a) For all u ∈ W, we have

Fω,f (u) = sup
v∈W
{−Ξω,f (u, v)}

≥ −Ξω,f (u, u)

= 〈f − Gu, u− u〉E − P(δu, δu) + P(δu, δu)

−
k∑
i=1

Υ0
i (γiu; γiu− γiu)−

ω

2

∥∥u− u∥∥2

E

= −
k∑
i=1

Υ0
i

(
γiu; 0Ei

)
= 0.

(b) Suppose that u∗ is a solution of Problem 2.1. From (3.5), we have

Fω,f (u∗) = sup
v∈W
{−Ξω,f (u∗, v)}

= −Ξω,f (u∗, vω,f (u∗)). (3.6)
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Moreover, since u∗ is a solution of Problem 2.1, we obtain

〈Gu∗ − f, vω,f (u∗)− u∗〉E + P(δu∗, δvω,f (u∗))− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i

(
γiu
∗; γivω,f (u∗)− γiu∗

)
≥ 0. (3.7)

It follows from the result of Lemma 3.4 that〈
Gu∗ − f + ω(vω,f (u∗)− u∗), u∗ − vω,f (u∗)

〉
E

+ P(δu∗, δu∗)− P(δu∗, δvω,f (u∗))

+
k∑
i=1

Υ0
i

(
γiu
∗; γiu

∗ − γivω,f (u∗)
)
≥ 0. (3.8)

Combining (3.7) and (3.8), thanks to the assumption H(Υ)(b), we get

−ω‖vω,f (u∗)− u∗‖2E ≥ 0.

This implies that
‖vω,f (u∗)− u∗‖2E ≤ 0,

and so u∗ = vω,f (u∗). Therefore, it follows from (3.6) that Fω,f (u∗) = 0.

Conversely, for any x∗ ∈ W, we assume that Fω,f (u∗) = 0. This implies −Ξω,f (u∗, v) ≤ 0 for all v ∈ P , i.e.,
Ξω,f (u∗, v) ≥ 0 for all v ∈ P . Since Ξω,f (u∗, u∗) = 0, u∗ solves the following convex minimization problem

min
v∈W

Ξω,f (u∗, v).

Using the optimality condition for this problem, we have 0 ∈ ∂2Ξω,f (u∗, u∗). From similar arguments to
those used in the proof of Lemma 3.4 with fixed first argument of the function Ξω,f , we obtain that for each
v ∈ W,

f − Gu∗ = δ∗z∗ +

k∑
i=1

γ∗i ζ
∗
i ,

where z∗ ∈ ∂2P(δu∗, δu∗) and ζ∗i ∈ ∂2ϕi(γiu
∗; γiu∗) for all i ∈ {1, . . . , k}. Then, for all v ∈ W,

〈−Gu∗ + f, v − u∗〉E

= 〈δ∗z∗, v − u∗〉E +

k∑
i=1

〈γ∗i ζ∗i , v − u∗〉E

= 〈z∗, δv − δu∗〉E +

k∑
i=1

〈ζ∗i , γiv − γiu∗〉E

≤ P(δu∗, δv)− P(δu∗, δu∗) +
k∑
i=1

(ϕi(γiu
∗; γiv)− ϕi(γiu∗; γiu∗))

= P(δu∗, δv)− P(δu∗, δu∗) +
k∑
i=1

(
Υ0
i (γiu

∗; γiv − γiu∗)−Υ0
i (γiu

∗; 0Ei )
)

= P(δu∗, δv)− P(δu∗, δu∗) +

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu∗),

that is,

〈Gu∗, v − u∗〉E + P(δu∗, δv)− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu∗) ≥ 〈f, v − u∗〉E

which implies that u∗ is a solution of Problem 2.1. Thus, Fω,f is a gap function for Problem 2.1. �
Next, we will establish the D-gap function for Problem 2.1 by using the regularized gap functions of the

Fukushima type given above. To this end, let the regularized gap function Fω,f be defined by (3.5). Now,

we will consider the function Dfω,ρ : W → R defined by

Dfω,ρ(u) = Fω,f (u)−Fρ,f (u) (3.9)

where ρ > ω > 0. Then, we obtain the following property of the function Dfω,ρ.

9



Lemma 3.6. Suppose that the hypotheses of Theorem 3.5 hold. Then, for any ρ > ω > 0, we have∥∥u− vρ,f (u)
∥∥2

E
≤

2

ρ− ω
Dfω,ρ(u) ≤

∥∥u− vω,f (u)
∥∥2

E
, (3.10)

for all u ∈ W, where

vω,f (u) = arg min
v∈W

Ξω,f (u, v) and vρ,f (u) = arg min
v∈W

Ξρ,f (u, v).

Proof. By the definitions of the gap functions Fω,f ,Fρ,f and the function Dfω,ρ, we see that

Dfω,ρ(u) = sup
v∈W
{−Ξω,f (u, v)} − sup

v∈W
{−Ξρ,f (u, v)}

≤ −Ξω,f (u, vω,f (u)) + Ξρ,f (u, vω,f (u))

=
ρ− ω

2

∥∥u− vω,f (u)
∥∥2

E
.

Thus, the right-hand-side inequality in (3.10) holds. Similarly, we obtain the left-hand-side inequality in
(3.10). �

Theorem 3.7. Suppose that the hypotheses of Theorem 3.5 hold. Then, for any ρ > ω > 0, the function

Dfω,ρ defined by (3.9) is a gap function for Problem 2.1.

Proof. (a) It is clearly follows from (3.10) that Dfω,ρ(u) ≥ 0, for all u ∈ W.

(b) Suppose that u∗ is a solution of Problem 2.1. It follows from Theorem 3.5 that Fω,f (u∗) = Fρ,f (u∗) = 0

and so Dfω,ρ(u∗) = 0.

Conversely, for any u∗ ∈ W such that Dfω,ρ(u∗) = 0. From (3.10), we have u∗ = vρ,f (u∗). Applying Lemma
3.4 with u = u∗ and ω = ρ, we have,

〈Gu∗ − f, v − u∗〉E + P(δu∗, δv)− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γiv − γiu∗) ≥ 0,

for all v ∈ W, which implies that u∗ is a solution of Problem 2.1. Thus, Dfω,ρ is a gap function of Problem
2.1. �

Remark 3.8. (i) As discussed in the introduction, no work has been established on D-gap functions for
variational-hemivariational inequalities. As a result, our Theorem 3.7 is new.

(ii) Furthermore, using a formulation of the optimality condition in Lemma 3.4, the method of proof in

Theorem 3.5 for the regularized gap function Fω,f considered to investigate the D-gap function Dfω,ρ
for EVHIs is different from the corresponding results on regularized gap functions in [8, 15].

4 Global Error Bounds
In this section, we construct some global error bounds for Problem 2.1 given by the regularized gap function

Fω,f and the D-gap function Dfω,ρ considered in Section 3.

Lemma 4.1. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hypotheses H(G), H(P),
H(Υ), H(W), H(K), H(δ), H(γ), H(f) and H(const.) hold. Then, for each u ∈ W, we have

‖u− u∗‖E ≤
lG + ρ+

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k
i=1 LΥic

2
Υi

‖u− vρ,f (u)‖E . (4.1)

Proof. For each u ∈ W, since vρ,f (u) ∈ W and u∗ ∈ W is a solution of Problem 2.1,〈
Gu∗ − f, vρ,f (u)− u∗

〉
E

+ P(δu∗, δvρ,f (u))− P(δu∗, δu∗)

+

k∑
i=1

Υ0
i (γiu

∗; γivρ,f (u)− γiu∗) ≥ 0. (4.2)
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Moreover, we add (3.3) with ω = ρ, v = u∗ and obtain〈
Gu− f + ρ(vρ,f (u)− u), u∗ − vρ,f (u)

〉
E

+ P(δu, δu∗)− P(δu, δvρ,f (u))

+

k∑
i=1

Υ0
i

(
γiu; γiu

∗ − γivρ,f (u)
)
≥ 0. (4.3)

Combining (4.2) and (4.3) yields

0 ≤
〈
Gu∗ − Gu, vρ,f (u)− u∗

〉
E

+ P(δu∗, δvρ,f (u))− P(δu∗, δu∗) + P(δu, δu∗)− P(δu, δvρ,f (u))

+
k∑
i=1

[
Υ0
i (γiu

∗; γivρ,f (u)− γiu∗) + Υ0
i

(
γiu; γiu

∗ − γivρ,f (u)
)]

+ ρ
〈
vρ,f (u)− u, u∗ − vρ,f (u)

〉
E
. (4.4)

Since G is Lipschitz continuous with the constant lG and the condition H(G)(b) holds, we have〈
Gu∗ − Gu, vρ,f (u)− u∗

〉
E

=
〈
Gu∗ − Gu, vρ,f (u)− u

〉
E
− 〈Gu∗ − Gu, u∗ − u〉E

≤ lG‖u− u∗‖E‖u− vρ,f (u)‖E −mG‖u− u∗‖2E . (4.5)

Moreover, we also obtain

ρ
〈
vρ,f (u)− u, u∗ − vρ,f (u)

〉
E

= ρ
〈
vρ,f (u)− u, u∗ − u

〉
E

+ ρ
〈
vρ,f (u)− u, u− vρ,f (u)

〉
E

≤ ρ‖vρ,f (u)− u‖E‖u∗ − u‖E − ρ‖vρ,f (u)− u‖2E
≤ ρ‖vρ,f (u)− u‖E‖u∗ − u‖E . (4.6)

Using the conditions H(P)(b) and H(δ) lead to

P(δu∗, δvρ,f (u))− P(δu∗, δu∗) + P(δu, δu∗)− P(δu, δvρ,f (u))

≤ αP‖δu∗ − δu‖EP ‖δvω,f (u)− δu∗‖EP
≤ αPc2P‖u

∗ − u‖2E + αPc
2
P‖u

∗ − u‖E‖u− vρ,f (u)‖E . (4.7)

For each i ∈ {1, . . . , k}, by the conditions H(Υ)(b) and H(γ), we have

Υ0
i (γiu

∗; γivρ,f (u)− γiu∗) + Υ0
i

(
γiu; γiu

∗ − γivρ,f (u)
)

≤ LΥi‖γiu
∗ − γiu‖EΥi

‖γivρ,f (u)− γiu∗‖EΥi

≤ LΥic
2
Υi
‖u∗ − u‖2E + LΥic

2
Υi
‖u∗ − u‖E‖u− vρ,f (u)‖E . (4.8)

From (4.4)–(4.8), we have (
mG − αPc2P −

k∑
i=1

LΥic
2
Υi

)
‖u− u∗‖2E

≤
(
lG + ρ+

k∑
i=1

LΥic
2
Υi

)
‖u− u∗‖E‖u− vρ,f (u)‖E .

This implies that

‖u− u∗‖E ≤
lG + ρ+

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k
i=1 LΥic

2
Υi

‖u− vρ,f (u)‖E .

Thus, the inequality (4.1) holds. �

From Lemma 4.1, we get the following global error bound for Problem 2.1 by using the regularized gap
function of Fukushima type Fω,f .

Theorem 4.2. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hypotheses of Lemma
4.1 hold. Then, for each u ∈ W, we can get the following global error bound by the gap function Fω,f for
Problem 2.1:

‖u− u∗‖E ≤
lG + ω +

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k
i=1 LΥic

2
Υi

√
2

ω
Fω,f (u). (4.9)

11



Proof. For any u ∈ W, taking v = u in (3.3), we have〈
Gu− f + ω(vω,f (u)− u), u− vω,f (u)

〉
E

+ P(δu, δu)− P(δu, vω,f (u))

+

k∑
i=1

Υ0
i

(
γiu; γiu− γivω,f (u)

)
≥ 0.

Equivalently,

−
〈
Gu− f, vω,f (u)− u

〉
E
− P(δu, vω,f (u)) + P(δu, δu)

+

k∑
i=1

Υ0
i

(
γiu; γiu− γivω,f (u)

)
−
ω

2
‖u− vω,f (u)‖2E

≥
ω

2
‖u− vω,f (u)‖2E ,

which implies that

−Ξω,f (u, vω,f (u)) ≥
ω

2
‖u− vω,f (u)‖2E . (4.10)

It follows from (3.5) and (4.10) that

‖u− vω,f (u)‖E ≤
√

2

ω
Fω,f (u). (4.11)

From taking ρ = ω in (4.1) and (4.11), we obtain

‖u− u∗‖E ≤
lG + ω +

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k
i=1 LΥic

2
Υi

√
2

ω
Fω,f (u).

Thus, the inequality (4.9) holds. �

Without using the Lipschitz continuity of G, we can also provide an error bound for Problem 2.1.

Theorem 4.3. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hypotheses H(G)(b),
H(P), H(Υ), H(W), H(K), H(δ), H(γ) and H(f) hold. Then, for each ω > 0, u ∈ W, for any ω > 0 satisfying

mG − αPc2P −
k∑
i=1

LΥic
2
Υi
−
ω

2
> 0,

one has

‖u− u∗‖E ≤
1√

mG − αPc2P −
∑k
i=1 LΥic

2
Υi
− ω

2

√
Fω,f (u). (4.12)

Proof. Let u∗ ∈ W be the unique solution to Problem 2.1. Fix an arbitrary u ∈ W, it follows from the
definition of Fω,f that

Fω,f (u) = sup
v∈W
{−Ξω,f (u, v)}

≥ −Ξω,f (u, u∗)

= 〈f − Gu, u∗ − u〉E + P(δu, δu)− P(δu, δu∗)

−
k∑
i=1

Υ0
i (γiu; γiu

∗ − γiu)−
ω

2

∥∥u− u∗∥∥2

E
. (4.13)

Since u∗ is a solution to Problem 2.1, we have

〈Gu∗ − f, u− u∗〉E + P(δu∗, δu)− P(δu∗, δu∗)

+
k∑
i=1

Υ0
i (γiu

∗; γiu− γiu∗) ≥ 0. (4.14)

The condition H(G)(c) implies that

〈f − Gu, u∗ − u〉E − 〈Gu∗ − f, u− u∗〉E
= 〈Gu∗ − Gu, u∗ − u〉E
≥ mG‖u− u∗‖2E . (4.15)
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It follows from the conditions H(P)(b), H(Υ)(b), H(δ) and H(γ) that

− [P(δu, δu∗)− P(δu, δu) + P(δu∗, δu∗)− P(δu∗, δ)]

−
k∑
i=1

[
Υ0
i (γiu; γiu

∗ − γiu) + Υ0
i (γiu

∗; γiu− γiu∗)
]

≥ −αP‖δu∗ − δu‖2EP −
k∑
i=1

LΥi‖γiu
∗ − γiu‖2EΥi

≥ −
(
αPc

2
P +

k∑
i=1

LΥic
2
Υi

)
‖u− u∗‖2E . (4.16)

Having in mind relations (4.14)–(4.16), it follows that

〈f − Gu, u∗ − u〉E + P(δu, δu)− P(δu, δu∗)−
k∑
i=1

Υ0
i (γiu; γiu

∗ − γiu)

≥
(
mG − αPc2P −

k∑
i=1

LΥic
2
Υi

)
‖u− u∗‖2E . (4.17)

Combining (4.13) and (4.17), we have(
mG − αPc2P −

k∑
i=1

LΥic
2
Υi
−
ω

2

)∥∥u− u∗∥∥2

E
≤ Fω,f (u).

Then, the desired inequality (4.12) follows. �

We conclude this section with the global error bounds for Problem 2.1 associated with the D-gap function.

Theorem 4.4. Let u∗ ∈ W be the unique solution to Problem 2.1. Assume that the hypotheses of Lemma

4.1 hold. Then, for each u ∈ W, we can get the following global error bound by Dfω,ρ for Problem 2.1:

‖u− u∗‖E ≤
lG + ρ+

∑k
i=1 LΥic

2
Υi

mG − αPc2P −
∑k
i=1 LΥic

2
Υi

√
2

ρ− ω
Dfω,ρ(u). (4.18)

Proof. The inequality (4.18) is a consequence of (3.10) and (4.1). �

Remark 4.5. (i) By Remark 3.8 (i), the error bound for Problem 2.1 in Theorem 4.4 with respect to

the D-gap function Dfω,ρ is new.

(ii) On the other hand, the new error bounds in Theorem 4.2 and Theorem 4.3 via the regularized gap
function Fω,f extend to the corresponding results in [8, 15]. Furthermore, Theorem 4.2 and Theorem
4.3 also extend to the error bound studied in Proposition 3.4 of [39] for strongly monotone variational
inequalities.

5 Application to Contact Mechanics
The contact model will be described in this section, together with its variational formulation, which demon-
strates the applicability of the abstract results presented in the previous sections. The physical setting and
notation are as follows.

An elastic body occupies an open, connected and bounded set Ω in Rl (l = 2, 3) with Lipschitz continuous
boundary Γ divided into three disjoint measurable parts Γ1, Γ2 and Γ3 with meas(Γ1) > 0. The body is
fixed on Γ1 and in contact on Γ3 with a foundation. Moreover, it is in equilibrium under the action of a
surface traction of density f2 on Γ2 and a volume force of density f0 in Ω.

Let Sl be the space of second order symmetric tensors on Rl. Denote by τ = (τij) ∈ Sl and v = (vi) ∈ Rl,
where i, j ∈ {1, ..., l}. Let ν = (νi) be the unit outward normal vector on the boundary Γ and x = (xi)
for a generic point in Ω ∪ Γ. Unless stated otherwise, denote 0 by the zero element of Rl and Sl, and the
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summation convention over repeated indices is used. The inner products and the Euclidean norms on Rl
and Sl are given by

u · v = uivi, ‖u‖ = (u · u)
1
2 , for all u = (ui),v = (vi) ∈ Rl;

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 , for all σ = (σij) ∈ Sl, τ = (τij) ∈ Sl.

For a vector field v, vν := v · ν and vτ := v − vνν denote the normal and tangential components of
v on Γ. Also, the normal and tangential components of the stress field σ on the boundary are denoted
by σν := (σν) · ν and στ := σν − σνν. For the stress and strain fields, we shall use the Hilbert space
V = L2(Ω; Sl) with the canonical inner product

(σ, τ )V :=

∫
Γ
σij(x)τij(x)dx, σ, τ ∈ V

and the associated norm ‖ · ‖V . The function space for the displacement field is defined by

E := {v = (vi) ∈ H1(Ω;Rl) | v = 0 a.e on Γ1}.

It follows from an application of Korn’s inequality and meas(Γ1) > 0 that E is real Hilbert space endowed
with the inner product

(u,v)E :=

∫
Γ
ε(u)ε(v)dx, u,v ∈ E,

and the associated norm ‖ · ‖E , where ε represents the deformation operator defined by

ε(v) = (εij(v)), εij(v) =
vi,j + vj,i

2
∀v ∈ V.

We shall use Div to denote the divergence operator given by

Divσ = (σij,j) =

(
∂σij

∂xj

)
and the same symbol v for the trace of a function v ∈ H1(Ω;Rl) on Γ. By the Sobolev trace theorem, we
have

‖v‖L2(Γ3;Rl) ≤ ‖δ‖‖v‖E , ∀v ∈ E,

where ‖δ‖ is the norm of the trace operator δ : E → L2(Γ3;Rl). With the aforementioned discussions, we
revisit the following formulation of contact problems considered in [9, 11, 12].

Problem 5.1. Find a displacement field u : Ω→ Rl and a stress field σ : Ω→ Sl such that

σ =Mε(u) in Ω, (5.1)

Divσ + f0 = 0 in Ω, (5.2)

u = 0 on Γ1, (5.3)

σν = f2 on Γ2, (5.4){
uν ≤ g, σν + ζν ≤ 0,

(uν − g)(σν + ζν) = 0, ζν ∈ ∂hν(uν),
on Γ3, (5.5)

‖στ‖ ≤ Nb(uν), −στ = Nb(uν)
uτ

‖uτ‖
if uτ 6= 0, on Γ3. (5.6)

The elastic constitutive law is described in (5.1), where M : Ω× Sl → Sl denotes the elasticity operator
and satisfies the following conditions:

(a) there exists LM > 0 such that for all ε1, ε2 ∈ Sl, a.e. x ∈ Ω,

‖M(x, ε1)−M(x, ε2)‖ ≤ LM‖ε1 − ε2‖;

(b) M(·, ε) is measurable on Ω for all ε ∈ Sl

with M(x,0) = 0 for a.e. x ∈ Ω;

(c) there exists mM > 0 such that for all ε1, ε2 ∈ Sl, a.e. x ∈ Ω,

(M(x, ε1)−M(x, ε2)) · (ε1 − ε2) ≥ mM‖ε1 − ε2‖2.

(5.7)

Equation (5.2) represents the equilibrium equation and the classical displacement-traction boundary condi-
tions are described equations (5.3) and (5.4), where f0 and f2 are assumed to satisfy

f0 ∈ L2(Ω;Rl), f2 ∈ L2(Γ2;Rl). (5.8)
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We also define f ∈ V ∗ by the relation

〈f ,v〉V = (f0,v)L2(Ω;Rl) + (f2,v)L2(Γ2;Rl) ∀v ∈ V. (5.9)

The contact condition formulated on the surface Γ3 is represented in (5.5), where g : Γ3 → R describes the
thickness of the elastic layer. Assume that

g ∈ L2(Γ3), g(x) ≥ 0 a.e. on Γ3. (5.10)

Moreover, we define an admissible set K in E as follows:

K = {v ∈ E | vν ≤ g on Γ3}.

For the potential function hν : Γ3 × R→ R, we assume

(a) hν(·, r) is measurable on Γ3 for all r ∈ R and there

exists ẽ ∈ L2(Γ3) such that hν(·, ẽ(·)) ∈ L1(Γ3).

(b) hν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3.

(c) there exist c̄0, c̄1 ≥ 0 such that

|∂hν(x, r)| ≤ c̄0 + c̄1|r| for all r ∈ R and a.e. x ∈ Γ3.

(d) there exists Lhν ≥ 0 such that

h0
ν(x, s1; r2 − r1) + h0

ν(x, s2; r1 − r2)

≤ Lhν |s1 − s2||r1 − r2|,
∀r1, r2, s1, s2 ∈ R and a.e. x ∈ Γ3.

(5.11)

The condition (5.6) represents a version of Coulomb’s law of dry friction, where Nb : Γ3 × R→ R+ denotes
the friction bound which may depend on the normal displacement uν , and we assume

(a) Nb(·, r) is measurable on Γ3 for all r ∈ R.
(b) Nb(x, r) = 0 for all r ≤ 0,

Nb(x, r) ≥ 0 for all r ≥ 0, a.e. x ∈ Γ3;

(c) (Nb(x, r1)−Nb(x, r2))(r1 − r2) ≥ 0,

∀r1, r2 ∈ R and a.e. x ∈ Γ3;

(d) there exists LNb > 0 such that

|Nb(x, r1)−Nb(x, r2)| ≤ LNb |r1 − r2|
∀r1, r2 ∈ R and a.e. x ∈ Γ3.

(5.12)

We refer to [12, 30, 37] for more information and mechanical interpretation of static contact models with
elastic materials. The variational formulation of the contact problem 5.1 is in the following form:

Problem 5.2. Find a displacement field u ∈ K such that

(Mε(u), ε(v − u))V +

∫
Γ3

Nb(uν) · (‖vτ‖ − ‖uτ‖)ds

+

∫
Γ3

h0
ν(uν ; vν − uν)ds ≥

∫
Ω
f0 · (v − u)dx+

∫
Γ2

f2 · (v − u)dΓ

for all v ∈ K.

To apply the results presented in the previous sections on Problem 5.2, we let k = 1, W = K, EP =
L2(Γ3;Rl) with δ the trace operator from E to EP , EΥ = EΥ1 = L2(Γ3;R) with γv = γ1v = vν for v ∈ E,
and we define

G : E → E∗, 〈Gu,v〉E = (Mε(u), ε(v))V for u,v ∈ E,

P : L2(Γ3;Rl)× L2(Γ3;Rl)→ R,

P(δu, δv) =

∫
Γ3

Nb(uν)‖vτ‖ds for u,v ∈ E,

Υ: L2(Γ3;R)→ R, Υ(γv) =

∫
Γ3

hν(vν)ds for u,v ∈ E,

f = f ∈ V ∗, 〈f ,v〉E =

∫
Ω
f0 · vdx+

∫
Γ2

f2 · vdΓ for u,v ∈ E.
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It is easily seen that all conditions of Theorem 2.10 are satisfied with mG = mM, lG = LM, αP = LNb
and LΥ = LΥ1 = Lhν .

Let λ1,E > 0 and λ1ν,E > 0 be the smallest eigenvalues of the eigenvalue problem

u ∈ E,
∫

Ω
ε(u)·ε(v) dx = λ

∫
Γ3

u·v dΓ ∀v ∈ E,

and the eigenvalue problem

u ∈ E,
∫

Ω
ε(u)·ε(v) dx = λ

∫
Γ3

uνvνdΓ ∀v ∈ E,

respectively. Then we may take

cP = λ
−1/2
1,E , cΥ = λ

−1/2
1ν,E .

Using Theorem 2.10, we can conclude that Problem 5.2 admits a solution. Furthermore, the smallness
condition

LNbλ
−1
1,E + Lhνλ

−1
1ν,E < mM (5.13)

guarantees that Problem 5.2 is uniquely solvable (cf. [9, 11, 12]).

Next, for any parameter ω > 0, we introduce the function F̂ω,f0,2
: K → R defined by

F̂ω,f0,2
(u) = sup

v∈K

(
(Mε(u), ε(u− v))V +

∫
Γ3

Nb(uν) · (‖uτ‖ − ‖vτ‖)ds

−
∫

Γ3

h0
ν(uν ; vν − uν)ds+

∫
Ω
f0 · (u− v)dx

+

∫
Γ2

f2 · (u− v)dΓ−
ω

2
‖u− v‖2E

)
. (5.14)

Applying Theorem 3.5, Theorem 3.7, Theorem 4.2, Theorem 4.3 and Theorem 4.4, we directly obtain
the following error estimates with lG = LM.

Theorem 5.1. Let u∗ ∈ K be the unique solution to Problem 5.2. Under the hypotheses (5.7)–(5.13), the
following hold.

(i) For each ω > 0, f0 ∈ L2(Ω;Rl) and f2 ∈ L2(Γ2;Rl), F̂ω,f0,2
defined by (5.14), is a regularized gap

function for Problem 5.2.

(ii) If ω > 0 then, for each u ∈ K, it holds

‖u− u∗‖E ≤
LM + ω + Lhνλ

−1
1ν,E

mM − LNbλ
−1
1,E − Lhνλ

−1
1ν,E

√
2

ω
F̂ω,f0,2

(u). (5.15)

(iii) If ω > 0 satisfying

mM − LNbλ
−1
1,E − Lhνλ

−1
1ν,E −

ω

2
> 0,

then, for each u ∈ K, it also holds

‖u− u∗‖E ≤
1√

mM − LNbλ
−1
1,E − Lhνλ

−1
1ν,E −

ω
2

√
F̂ω,f0,2

(u). (5.16)

Theorem 5.2. Let u∗ ∈ K be the unique solution to Problem 5.2. Under the hypotheses (5.7)–(5.13), the
following hold.

(i) For any ρ > ω > 0, f0 ∈ L2(Ω;Rl) and f2 ∈ L2(Γ2;Rl), the function D̂
f0,2
ω,ρ : K → R defined by

D̂
f0,2
ω,ρ (u) = F̂ω,f0,2

(u)− F̂ρ,f0,2
(u)

is the D-gap function for Problem 5.2.

(ii) If ω > ρ > 0 then, for each u ∈ K, it holds

‖u− u∗‖E ≤
LM + ρ+ Lhνλ

−1
1ν,E

mM − LNbλ
−1
1,E − Lhνλ

−1
1ν,E

√
2

ρ− ω
D̂
f0,2
ω,ρ (u). (5.17)

Remark 5.3. Theorem 5.1 and Theorem 5.2 give the upper bounds of the distance between an arbitrary
displacement field in the admissible set and the unique solution of the contact problem. Computing the
upper bounds in (5.15)–(5.17) is based on the regularized gap function F̂ω,f0,2

and the D-gap function

D̂
f0,2
ω,ρ (u) with depending on the data of the such contact problem.
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[6] Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications,
Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[7] M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric
variational inequality problems, Math. Program. 53 (1992) 99–110.

[8] A. Gibali and Salahuddin, Error bounds and gap functions for various variational type problems, RAC-
SAM 115 (2021) 123.

[9] W. Han, Numerical analysis of stationary variational–hemivariational inequalities with applications in
contact mechanics, Math. Mech. Solids 23 (2018) 279–293.

[10] W. Han, Z. Huang, C. Wang and W. Xu, Numerical analysis of elliptic hemivariational inequalities for
semipermeable media, J. Comput. Math. 37 (2019) 545–562.

[11] W. Han and Y. Li, Stability analysis of stationary variational and hemivariational inequalities with
applications, Nonlinear Anal. RWA. 50 (2019) 171–191.

[12] W. Han, M. Sofonea and D. Danan, Numerical analysis of stationary variational–hemivariational in-
equalities, Numer. Math. 139 (2018) 563–592.

[13] W. Han and S.D. Zeng, On convergence of numerical methods for variational–hemivariational inequal-
ities under minimal solution regularity, Appl. Math. Lett. 93 (2019) 105–110.

[14] J. Haslinger, M. Miettinen and P.D. Panagiotopoulos, Finite Element Method for Hemivariational
Inequalities. Theory, Methods and Applications, Boston, Kluwer Academic Publishers, 1999.
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