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(a) If the function Ψ is constant, i.e., Ψ0(u; ·) = 0 for all u ∈ M, then the prob-
lem (QHVI)ξ,η reduces to the quasi-variational inequality under perturbed
parameters on Hadamard manifolds, denoted by (QVI)ξ,η, which consists of
finding u = u(ξ, η) ∈ K with u ∈ A(u) such that〈

F (u, ξ), exp−1
u v

〉
R ≥

〈
G(η), exp−1

u v
〉
R , ∀v ∈ A(u).

Note that this problem has not been considered in previous literature.
(b) In addition, if A(u) ≡ K, F (u, ξ) = F (u) and G ≡ 0 for all ξ ∈ Ξ, u ∈ M,

then the problem (QVI)ξ,η reduces to the variational inequality problem in
the setting of Hadamard manifolds in [16], which consists of finding u ∈ K
such that 〈

F (u), exp−1
u v

〉
R ≥ 0, ∀v ∈ K.

(c) If A(u) ≡ K, F (u, ξ) = F (u) and G ≡ 0 for all ξ ∈ Ξ, u ∈ M, then the
problem (QHVI)ξ,η reduces to the hemivariational inequality problem in the
setting of Hadamard manifolds in [23], denoted by (HVI), which consists of
finding u ∈ K such that〈

F (u), exp−1
u v

〉
R +Ψ0

(
u; exp−1

u v
)
≥ 0, ∀v ∈ K.

Over the past few years, many concepts and techniques of optimization and non-
linear analysis on linear spaces have been extended to the setting of Riemannian
manifolds, particularly on Hadamard manifolds. This natural extension has im-
portant advantages, for instance, some nonsmooth and nonconvex problems can be
transformed into smooth and convex ones on Riemannian manifolds or Hadamard
manifolds by choosing an appropriate Riemannian metric, see [6, 13, 19, 24] and
references therein.

On the other hand, in the early 1980s, Panagiotopoulos [17, 18] developed the
idea of hemivariational inequalities to solve nonmontone and nonsmooth problems
occurring in mechanics. The theory of hemivariational inequalities can be regarded
as an extension of variational inequalities based on the generalized subdifferen-
tials in the sense of Clarke of locally Lipschitz functions to the situation involving
both the convex and nonconvex potentials. It has been applied in various fields
such as economics, engineering sciences and mechanics. We refer the reader to the
monographs [7, 15, 21] and the references therein. Recently, Tang et al. [23] intro-
duced a class of hemivariational inequalities on Hadamard manifolds (HVI) and
studied its existence of solutions using KKM-technique and coercivity conditions.
Hung et al. [10] developed a class of quasi-hemivariational inequalities involving the
set-valued constraint in the setting of Hadamard manifolds. Some results of gap
functions and error bounds for this class of problems were established in [10]. Very
recently, Tam et al. [22] investigated the Levitin-Polyak well-posedness for hemivari-
ational inequalities of the split type on Hadamard manifolds. However, in [10, 22]
the authors have not considered the existence of solutions to quasi-hemivariational
inequalities and hemivariational inequalities of the split type.

Motivated by the aforementioned works, in this paper, we introduce the general
class of quasi-hemivariational inequalities involving the generalized subdifferentials
in the sense of Clarke and the set-valued constraint under perturbed parameters
(QHVI)ξ,η and develop a nonlinear inverse problem driven by (QHVI)ξ,η in the
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setting of constant curvature Hadamard manifolds. The purposes of the work are
twofold. The first is to show the nonemptiness and compactness of the solution set of
the problem (QHVI)ξ,η by using the Kakutani-Fan-Glicksberg type fixed point the-
orem for multi-valued maps on Hadamard manifolds without KKM-technique and
coercivity conditions considered in [23]. The second aim is to consider a nonlinear
inverse problem (Problem 1.1) to identify parameters for (QHVI)ξ,η and establish
the existence result for Problem 1.1

The rest of the paper is structured as follows. Section 2 gives some preliminary
materials on Hadamard manifolds, which will be used in Section 3. Our main results
in this paper are stated and proved in Section 3 including the nonemptiness and
compactness for (QHVI)ξ,η and Problem 1.1.

2. Preliminaries

The definitions and results about Riemannian manifolds that will be used through-
out this work are introduced in this section, most of them can be found in [3,4,12,
20,25].

Given a p-dimensional differentiable manifold M, we will denote by TwM the
tangent space of M at w and TM =

⋃
w∈M TwM the tangent bundle of M. A

Riemannian metric on TwM is an inner product 〈·, ·〉Rw on TwM. A tensor field
〈·, ·〉R is said to be a Riemannian metric on M if for every w ∈ M, the tensor
〈·, ·〉Rw is a Riemannian metric on TwM, where the subscript w can be omitted if no
confusion occurs. A Riemannian manifold, denoted by (M, 〈·, ·〉R), is a differentiable
manifold M endowed with a Riemannian metric 〈·, ·〉R.

Let γ : [a, b] → M be a piecewise smooth curve joining w to z, that is, γ(a) = w

and γ(b) = z, lR(γ) :=
∫ b
a ‖γ′(t)‖dt defines the length of γ. For any w, z ∈ M, the

Riemannian distance dR(w, z), which induces the original topology on M, is defined
by minimizing this length over the set of all such curves joining w to z.

A vector field Z is said to be parallel along γ if ∇γ′Z = 0, where γ is a smooth
curve in M, 0 denotes the zero tangent vector and ∇ is the Levi-Civita connection
associated with the Riemannian metric. We say that γ is a geodesic if γ′ itself is
parallel along γ. If the length of a geodesic joining w to z in M equals dR(w, z), then
it is said to be minimal. A Riemannian manifold is said to be complete if for any
w ∈ M, all geodesics emanating from w are defined for all t ∈ R. If M is complete
then any point in M can be joined by a minimal geodesic. Furthermore, (M, dR) is
a complete metric space, and so bounded closed subsets of M are compact (Hopf-
Rinow Theorem). M is said to be a Hadamard manifold if it is a complete simply
connected Riemannian manifold of nonpositive sectional curvature.

Given a Hadamard manifold M, the exponential map expw : TwM → M at w ∈ M
is defined by expw(z) = γz(1, w) for each z ∈ TwM, where γ(·) = γz(·, w) is the
geodesic starting at w with velocity z, that is, γ(0) = w and γ′(0) = z. It is easy to
see that expw(tz) = γz(w) for each real number t. Moreover, the exponential map
expw : TwM → M is a diffeomorphism for all w ∈ M. For w ∈ M, exp−1

w : M →
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TwM is the inverse of the exponential map. For any w, u ∈ M, we have

(2.1) ‖ exp−1
w (u)‖R = dR(w, u).

For any two distinct points w, u ∈ M, there exists a unique normalized geodesic
γ joining w to u such that γ(t) = expw(t exp

−1
w u) for all t ∈ [0, 1]. Note that

the exponential map and its inverse are continuous in the setting of Hadamard
manifolds.

In the rest of the section, unless otherwise specified, M is a constant curvature
Hadamard manifold.

Definition 2.1 (see [24]). A subset D ⊂ M is said to be geodesic convex if, for
any points w and z in D, the geodesic joining w to z is contained in D, that is,
if γ : [0, 1] → M is a geodesic such that w = γ(0) and z = γ(1), then γ(t) =
expw

(
t exp−1

w z
)
∈ D for all t ∈ [0, 1].

Lemma 2.2 (see [6], p. 136). Let M be a constant curvature Hadamard manifold
and w(r) be the geodesic segment starting at w1 and ending at w2 in M for all r ∈
[0, 1]. Then, there are some α, β ≥ 0 such that exp−1

u w(r) = α exp−1
u w1+β exp−1

u w2

for all u ∈ M, where α2 + β2 6= 0.

Lemma 2.3 (see [13]). Let w0 ∈ M and {wn} be a sequence in M such that
wn → w0. Then, the following assertions hold:

(i) For any u ∈ M, exp−1
wn

u → exp−1
w0

u and exp−1
u wn → exp−1

u w0;
(ii) If {zn} is a sequence such that zn ∈ TwnM and zn → z0, then z0 ∈ Tw0M;
(iii) Given sequences {zn} and {vn} satisfying zn, vn ∈ TwnM, if zn → z0 and

vn → v0, then 〈zn, vn〉R → 〈z0, v0〉R.

Definition 2.4 (see [8]). Let M be a Riemannian manifold. A real-valued function
θ : M → R is said to be

(a) Lipschitz of rank L on a given subset D of M if

|θ(u)− θ(w)| ≤ LdR(u,w), ∀u,w ∈ D.

(b) Lipschitz near w ∈ M if it is Lipschitz of some rank on an open neighborhood
of w.

(c) locally Lipschitz on M if it is Lipschitz near w, for every w ∈ M.

Definition 2.5 (see [8]). Let θ : M → R be a locally Lipschitz function on a
Riemannian manifold M. The Clarke’s generalized directional derivative of θ at
w ∈ M in direction z ∈ TwM, denoted by θ0(w; z), is defined as

θ0(w; z) := lim sup
u→w,t↓0

θ ◦ φ−1 (φ(u) + tdφ(w)(z))− θ ◦ φ−1(φ(u))

t
,(2.2)

where (φ,U) is a chart at w. Indeed, θ0(w; z) =
(
θ ◦ φ−1

)0
(φ(w); dφ(w)(z)). Note

that this definition is not dependent on charts. Taking into account 0w ∈ TwM, one
has

θ0(w; z) = (θ ◦ expw)
0 (0w; z).

In next lemma, we recall some primary properties of the Clarke’s generalized
directional derivative on Riemannian manifolds.
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Lemma 2.6 (see [8], Theorem 2.4). Let M be a Riemannian manifold, w ∈ M and
θ : M → R be Lipschitz of rank L on an open neighbourhood Nw of w. Then, the
following assertions hold.

(i) For each u ∈ Nw, the function TuM 3 z 7→ θ0(u; z) is finite, positively
homogeneous and subadditive on TuM, and satisfies∣∣θ0(u; z)∣∣ ≤ L‖z‖R;

(ii) θ0(·; ·) is upper semicontinuous on Nw × TuM as a function of (u, z) and,
as a function of z alone, is Lipschitz of rank L on TuM, for each u ∈ Nw.

Definition 2.7 (see [24]). Let M be a Hadamard manifold. A real-valued function
h : M → R is said to be geodesic convex if, for any w1, w2 ∈ M and s ∈ [0, 1],

h
(
expw1

(
s exp−1

w1
w2

))
≤ (1− s)h(w1) + sh(w2).

Note that h : M → R is called geodesic concave if −h is geodesic convex, i.e., for
any w1, w2 ∈ M and s ∈ [0, 1],

h
(
expw1

(
s exp−1

w1
w2

))
≥ (1− s)h(w1) + sh(w2).

Next, we recall some basic definitions of set-valued mappings and their properties
on Hadamard manifolds.

Definition 2.8 (see [14]). Let M be a Hadamard manifold, Γ : M ⇒ M be a
set-valued mapping and w0 ∈ M. Then, Γ is said to be

(a) lower semicontinuous at w0 if, for any open set O ⊂ M satisfying Γ(w0)∩O 6=
∅, there exists an open neighborhood N(w0) of w0 such that Γ(w) ∩ O 6= ∅
for all w ∈ N(w0);

(b) upper semicontinuous at w0 if, for any open set O ⊂ M satisfying Γ(w0) ⊂ O,
there exists an open neighborhood N(w0) of w0 such that Γ(w) ⊂ O for all
w ∈ N(w0);

(c) upper Kuratowski semicontinuous at w0 if, for any sequences {wk}, {vk} ⊂
M with each vk ∈ Γ(wk), the relations lim

k→∞
wk = w0 and lim

k→∞
vk = v0 imply

v0 ∈ Γ(w0);
(d) lower semicontinuous (resp. upper semicontinuous, upper Kuratowski semi-

continuous) on M if Γ is lower semicontinuous (resp. upper semicontinuous,
upper Kuratowski semicontinuous) at every point w ∈ M;

(e) continuous on M if Γ is lower semicontinuous and upper semicontinuous at
every point w ∈ M.

It is known that a mapping satisfies a property on A if it holds true at each point
of a set A ⊂ M. If A = M, we omit “on M” in the statement.

Lemma 2.9 (see [1], Corollary 2.12). Let M be a Hadamard manifold, C be a
geodesic convex and compact subset of M and Φ : C ⇒ C be a set-valued map such
that

(i) for each w ∈ C, Φ(w) is nonempty and geodesic convex;
(ii) for each w ∈ C, Φ−1(v) = {w ∈ C : v ∈ Φ(w)} is open on C.

Then, there exists x∗ ∈ K such that x∗ ∈ Φ(x∗).
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Using Lemma 2.9 and [1, Theorem 2.14] yields the following result.

Lemma 2.10. Let M be a Hadamard manifold, C be a geodesic convex and compact
subset of M and A be a subset of C × C such that

(i) for all w ∈ C, (w,w) ∈ A;
(ii) for all v ∈ C, the set {w ∈ C : (w, v) ∈ A} is closed on C;
(iii) for all w ∈ C, the set {v ∈ C : (w, v) /∈ A} is geodesic convex.

Then, there exists w∗ ∈ C such that (w∗, v) ∈ A for all v ∈ C.

To end this section, we derive the following lemma which provides the Kakutani-
Fan-Glicksberg type fixed point theorem on Hadamard manifolds.

Lemma 2.11 (see [5, 14]). Let M be a Hadamard manifold, C be a compact and
geodesic convex subset of M and Γ : C ⇒ C be a upper Kuratowski semicontinuous
mapping. If Γ(u) is closed and geodesic convex for any w ∈ C, then there exists
w∗ ∈ C such that w∗ ∈ Γ(w∗).

3. Main results

In this section, we first prove that the solution set of the problem (QHVI)ξ,η
is nonempty and compact by using the Kakutani-Fan-Glicksberg type fixed point
theorem on Hadamard manifolds under some suitable conditions. Then, Problem
1.1 in the form of a regularized optimal control problem for (QHVI)ξ,η is investigated
to establish the existence result.

To proceed, we now present the geodesic quasiconcavity-like of real functions in
the setting of Hadamard manifolds.

Definition 3.1. Let K ⊂ M be a nonempty geodesic convex subset of a Hadamard
manifold M. Then the function h : K → R is said to be geodesic quasiconcave-like
if, for any w1, w2 ∈ K and any s ∈ [0, 1] such that

[h(w1) ≥ 0 and h(w2) ≥ 0] ⇒ h
(
expw1

(
s exp−1

w1
w2

))
≥ 0.

Remark 3.2. We point out a few facts.

(i) The geodesic quasiconcavity-like in Definition 3.1 is a special case of the
quasiconcavities-like with respect to cones in [9, Definition 3.1] when set-
valued mappings reduce to real functions and cones are equivalent to 0.

(ii) Note that, from Definition 2.7 and Definition 3.1, every geodesic quasiconcave-
like function is geodesic concave.

Our first main result in this work is presented in the below theorem for the
nonemptiness and compactness for (QHVI)ξ,η.

Theorem 3.3. Let M be a Hadamard manifold with constant curvature and K ⊂
M be a nonempty compact and geodesic convex set. Suppose that the following
conditions hold:

(i) A : K ⇒ K is a continuous set-valued mapping such that A(u) is nonempty
closed and geodesic convex for all u ∈ K;

(ii) for all ξ ∈ Ξ, F (·, ξ) : K → TM is a continuous vector field;
(iii) Ψ: K → R is a locally Lipschitz function;
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(iv) for all v ∈ K and (ξ, η) ∈ Ξ× E, the function

K 3 w 7→
〈
F (w, ξ), exp−1

w v
〉
R +Ψ0

(
w; exp−1

w v
)
−
〈
G(η), exp−1

w v
〉
R

is geodesic quasiconcave-like, where G : E → TM is a vector field.

Then, for each (ξ, η) ∈ Ξ × E fixed, the solution set of (QHVI)ξ,η, i.e., U(ξ, η), is
nonempty and compact.

Proof. For each (ξ, η) ∈ Ξ×E fixed, we consider the set-valued mapping Sξ,η : K ⇒
K given by

Sξ,η(u) =
{
w ∈ A(u) :

〈
F (w, ξ), exp−1

w v
〉
R +Ψ0

(
w; exp−1

w v
)

≥
〈
G(η), exp−1

w v
〉
R , ∀v ∈ A(u)

}
.

Claim 1: We verify that Sξ,η(u) is nonempty for any u ∈ K.

In fact, for each u ∈ K, consider the following set

Pξ,η =
{
(w, v) ∈ A(u)×A(u) :

〈
F (w, ξ), exp−1

w v
〉
R +Ψ0

(
w; exp−1

w v
)

≥
〈
G(η), exp−1

w v
〉
R
}
.

It is easy to see that for any w ∈ A(u), there holds (w,w) ∈ Pξ,η. We now prove
that for any w ∈ A(u), the set V w

u := {v ∈ A(u) : (w, v) 6∈ Pξ,η} is geodesic convex
on K. Indeed, V w

u can be rewritten as follows:

V w
u =

{
v ∈ A(u) :

〈
F (w, ξ), exp−1

w v
〉
R +Ψ0

(
w; exp−1

w v
)
<

〈
G(η), exp−1

w v
〉
R
}
.

For any v1, v2 ∈ V w
u and r ∈ [0, 1], we set v(r) = expv1

(
r exp−1

v1 v2
)
. Then, we have

vi ∈ A(u) and

(3.1)
〈
F (w, ξ), exp−1

w vi
〉
R +Ψ0

(
w; exp−1

w vi
)
<

〈
G(η), exp−1

w vi
〉
R

for all i = 1, 2. It follows from the geodesic convexity of A(u) that v(r) ∈ A(u).
Since v(r) is the geodesic segment starting at v1 and ending at v2, by Lemma 2.2,
there are some α, β ≥ 0 such that exp−1

w v(r) = α exp−1
w v1 + β exp−1

w v2, where
α2 + β2 6= 0. Using the linearity of the inner product 〈·, ·〉R defined on the tangent
space TwM, one has

(3.2)
〈
F (w, ξ), exp−1

w v(r)
〉
R = α

〈
F (w, ξ), exp−1

w v1
〉
R + β

〈
F (w, ξ), exp−1

w v2
〉
R .

Note that the function z 7→ Ψ0(w; z) is positively homogeneous and subadditive on
TwM. Consequently, we have

(3.3) Ψ0
(
w; exp−1

w v(r)
)
≤ αΨ0

(
w; exp−1

w v1
)
+ βΨ0

(
w; exp−1

w v2
)
.

From (3.1)–(3.3), we see that〈
F (w, ξ), exp−1

w v(r)
〉
R +Ψ0

(
w; exp−1

w v(r)
)

≤ α
(〈
F (w, ξ), exp−1

w v1
〉
R +Ψ0

(
w; exp−1

w v1
))

+β
(〈
F (w, ξ), exp−1

w v2
〉
R +Ψ0

(
w; exp−1

w v2
))

< α
〈
G(η), exp−1

w v1
〉
R +

〈
G(η), β exp−1

w v2
〉
R

=
〈
G(η), α exp−1

w v1 + β exp−1
w v2

〉
R

=
〈
G(η), exp−1

w v(r)
〉
R .
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Hence, v(r) ∈ V w
u , i.e., V w

u is geodesic convex on K. Moreover, for any v ∈ A(u),

the set Ṽ v
u := {w ∈ A(u) : (w, v) ∈ Pξ,η} is closed on K. To see this, let {wn} ⊂ Ṽ v

u

and wn → w0. We shall argue that w0 ∈ Ṽ v
u . For each n ∈ N, since wn ∈ Ṽ v

u , we
have wn ∈ A(u) and (wn, v) ∈ Pξ,η, i.e.,

(3.4)
〈
F (wn, ξ), exp

−1
wn

v
〉
R +Ψ0

(
wn; exp

−1
wn

v
)
≥

〈
G(η), exp−1

wn
v
〉
R ,

for all v ∈ A(u). By the continuity of F (·, ξ), 〈·, ·〉R and the upper semicontinuity
of Ψ0(·; ·), passing to the upper limit in (3.4), as n → ∞, we obtain〈

F (w0, ξ), exp
−1
w0

v
〉
R +Ψ0

(
w0; exp

−1
w0

v
)

≥ lim sup
n→∞

〈
F (wn, ξ), exp

−1
wn

v
〉
R + lim sup

n→∞
Ψ0

(
wn; exp

−1
wn

v
)

≥ lim sup
n→∞

(〈
F (wn, ξ), exp

−1
wn

v
〉
R +Ψ0

(
wn; exp

−1
wn

v
))

≥ lim sup
n→∞

〈
G(η), exp−1

wn
v
〉
R

=
〈
G(η), exp−1

w0
v
〉
R ,

for all v ∈ A(u). This implies that w0 ∈ Ṽ v
u , and hence Ṽ v

u is closed on K.

Now, by applying Lemma 2.10, there exists w∗ ∈ A(u) such that (w∗, v) ∈ Pξ,η, for
all v ∈ A(u), i.e.,〈

F (w∗, ξ), exp−1
w∗ v

〉
R +Ψ0

(
w∗; exp−1

w∗ v
)
≥

〈
G(η), exp−1

w∗ v
〉
R , ∀v ∈ A(u),

which says that Sξ,η(u) is nonempty for any u ∈ K.

Claim 2: We prove that Sξ,η(u) is geodesic convex for any u ∈ K.

Indeed, let w1, w2 ∈ Sξ,η(u) and s ∈ [0, 1]. Since w1, w2 ∈ A(u) and A(u) is a
geodesic convex set, we have w(s) = expw1

(s exp−1
w1

w2) ∈ A(u). It follows from
w1, w2 ∈ Sξ,η(u) that〈

F (wi, ξ), exp
−1
wi

v
〉
R +Ψ0

(
wi; exp

−1
wi

v
)
−
〈
G(η), exp−1

wi
v
〉
R ≥ 0,

for all v ∈ A(u). By condition (iv), we know〈
F (w(s), ξ), exp−1

w(s) v
〉
R
+Ψ0

(
w(s); exp−1

w(s) v
)
−
〈
G(η), exp−1

w(s) v
〉
R
≥ 0,

for all v ∈ A(u). This implies that〈
F (w(s), ξ), exp−1

w(s) v
〉
R
+Ψ0

(
w(s); exp−1

w(s) v
)
≥

〈
G(η), exp−1

w(s) v
〉
R
,

for all v ∈ A(u), i.e., w(s) ∈ Sξ,η(u). Thus, Sξ,η(u) is geodesic convex for any u ∈ K.

Claim 3: We show that Sξ,η(u) is compact for any u ∈ K.

Since Sξ,η(u) ⊂ K and K is compact, we only need to prove that Sξ,η(u) is closed
for any u ∈ K. Let {wn}n∈N ⊂ Sξ,η(u) and wn → w0 as n → ∞. We verify that
w0 ∈ Sξ,η(u). In fact, due to {wn}n∈N ⊂ Sξ,η(u), one has wn ∈ A(u) and〈

F (wn, ξ), exp
−1
wn

v
〉
R +Ψ0

(
wn; exp

−1
wn

v
)
−
〈
G(η), exp−1

wn
v
〉
R ≥ 0,
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for all v ∈ A(u). Because A(u) is closed and wn → w0, there holds w0 ∈ A(u).
Moreover, passing to the upper limit in the above inequality, as n → ∞, it leads to〈

F (w0, ξ), exp
−1
w0

v
〉
R +Ψ0

(
w0; exp

−1
w0

v
)
−
〈
G(η), exp−1

w0
v
〉
R ≥ 0,

for all v ∈ A(u). Thus, w0 ∈ Sξ,η(u), which says Sξ,η(u) is compact for any u ∈ K.

Claim 4: We prove that Sξ,η(·) is upper Kuratowski semicontinuous on K.

In fact, let {un}n∈N ⊂ K such that un → u0 with wn ∈ Sξ,η(un) such that wn →
w0 ∈ K. Since wn ∈ A(un) and A is continuous and closed valued on K, we
know that w0 ∈ A(u0) and for every v0 ∈ A(u0), there exists vn ∈ A(un) such
that vn → v0. Thus, we have w0 ∈ Sξ,η(u0). On the contrary, we suppose that
w0 /∈ Sξ,η(u0). Then, there exists v0 ∈ A(u0) such that

(3.5)
〈
F (w0, ξ), exp

−1
w0

v0
〉
R +Ψ0

(
w0; exp

−1
w0

v0
)
−
〈
G(η), exp−1

w0
v0
〉
R < 0.

Consequently, it follows from wn ∈ Sξ,η(un) that

(3.6)
〈
F (wn, ξ), exp

−1
wn

vn
〉
R +Ψ0

(
wn; exp

−1
wn

vn
)
−
〈
G(η), exp−1

wn
vn

〉
R ≥ 0.

Passing to the upper limit in the inequality (3.6), as n → ∞, one has

(3.7)
〈
F (w0, ξ), exp

−1
w0

v0
〉
R +Ψ0

(
w0; exp

−1
w0

v0
)
−
〈
G(η), exp−1

w0
v0
〉
R ≥ 0.

This is the contradiction between (3.5) and (3.7). Hence, w0 ∈ Sξ,η(u0), which
shows that Sξ,η(·) is upper Kuratowski semicontinuous on K.

Claim 5: We need to prove the solution set of (QHVI)ξ,η, i.e., U(ξ, η), is nonempty
and compact.

Applying the aforementioned results of Claim 1 to Claim 4, it is clear to see that
Sξ,η(·) is upper Kuratowski semicontinuous on K and Sξ,η(u) is a nonempty compact
and geodesic convex subset of K for all u ∈ K. By Lemma 2.11, there exists a point
u∗ ∈ K such that u∗ ∈ Sξ,η(u

∗). This indicates that u∗ ∈ A(u∗) satisfies〈
F (u∗, ξ), exp−1

u∗ v
〉
R +Ψ0

(
u∗; exp−1

u∗ v
)
≥

〈
G(η), exp−1

u∗ v
〉
R , ∀v ∈ A(u∗),

which implies that U(ξ, η) is nonempty.

Let {un}n∈N ⊂ U(ξ, η) and un → u0, as n → ∞. It can be verified that u0 ∈ U(ξ, η).
Indeed, since {un}n∈N ⊂ U(ξ, η), one has un ∈ A(un) and

(3.8)
〈
F (un, ξ), exp

−1
un

v
〉
R +Ψ0

(
un; exp

−1
un

v
)
−
〈
G(η), exp−1

un
v
〉
R ≥ 0,

for all v ∈ A(un). Because A is upper Kuratowski semicontinuous and closed-valued,
we know that u0 ∈ A(u0). For every v0 ∈ A(u0), by the lower semicontinuity of A,
there exist vn ∈ A(un) such that vn → v0. Applying inequality (3.8) yields〈

F (un, ξ), exp
−1
un

vn
〉
R +Ψ0

(
un; exp

−1
un

vn
)
−
〈
G(η), exp−1

un
vn

〉
R ≥ 0.

Then, passing to the upper limit as n → ∞ in the above inequality, we have〈
F (u0, ξ), exp

−1
u0

v0
〉
R +Ψ0

(
u0; exp

−1
u0

v0
)
−
〈
G(η), exp−1

u0
v0
〉
R ≥ 0.

This implies u0 ∈ U(ξ, η), i.e., U(ξ, η) is a closed set. Furthermore, since U(ξ, η) ⊂
K and K is compact, we conclude that U(ξ, η) is a compact set in K. □
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Remark 3.4. The problem (QHVI)ξ,η is a generalization of hemivariational in-
equality problems on Hadamard manifolds presented in Tang et al. [23] to the quasi-
hemivariational inequality involving the generalized subdifferentials in the sense of
Clarke and the set-valued constraint under perturbed parameters. Besides, our
proof techniques in Theorem 3.3 for the existence result of (QHVI)ξ,η are different
from those for Theorem 3.1, Theorem 3.2 and Theorem 3.3 in [23]. In particu-
lar, we adopt the Kakutani-Fan-Glicksberg fixed point theorem (Lemma 2.11) as
a main tool for proving the existence result of solution set in Theorem 3.3, while
Tang et al. [23] studied existence conditions by using KKM technique and coercivity
conditions. Furthermore, Theorem 3.3 additionally studies the compactness of the
solution set of (QHVI)ξ,η.

We now give an example to illustrate our first main result in Theorem 3.3.

Example 3.5. Let M = R++ := {w ∈ R : w > 0} be a Riemannian manifold. Here
M is endowed with the Riemannian metric 〈·, ·〉R defined by

〈u, z〉R =
1

w2
uz, ∀w ∈ M, ∀(u, z) ∈ TwM× TwM,

where TwM denotes the tangent plane at w ∈ M. For all w ∈ M, the tangent plane
TwM equals to R. It is well known that M is a Hadamard manifold with sectional
curvature 0, see [2, 14].

The Riemannian distance between the points w and z in M is described by

dR(w, z) =
∣∣∣ln(w

z

)∣∣∣ .
The exponential map expw and the inverse exponential map exp−1

w are given by

expw(tv) = we(
v
w
)t and exp−1

w (z) = w ln
( z

w

)
for all w, z ∈ M and v ∈ TwM.

Now, consider M1 = M2 = M, K = Ξ = E = {u ∈ R : u = e
5
3
s, s ∈ [0, 1]}. For any

u ∈ K, ξ ∈ Ξ and η ∈ E , we define

A(u) =

{
w ∈ R : w = e5m, m ∈

[
1

5
ln(u),

1

3

]}
,

F (u, ξ) = ξu(1 + lnu), G(η) = −3 ln2 η and Ψ(u) =
3

2
lnu+ 2.

It is not difficult to see that K is a nonempty compact and geodesic convex set and
the assumptions (i)–(iii) are satisfied.

Moreover, the Clarke’s generalized directional derivative of Ψ at u ∈ K in the
direction z ∈ TuM is computed as Ψ0(u; z) = 3z

2u . Then, for all v ∈ K and (ξ, η) ∈
Ξ× E , we have

h(w) :=
〈
F (w, ξ), exp−1

w v
〉
R +Ψ0

(
w; exp−1

w v
)
−
〈
G(η), exp−1

w v
〉
R

= ξ(1 + lnw) ln
( v

w

)
+

3

2
ln
( v

w

)
+ 3

ln2 η

w
ln
( v

w

)
=

[
ξ(1 + lnw) +

3

2
+ 3

ln2 η

w

]
(ln v − lnw) , for al w ∈ K.
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For any w1, w2 ∈ K such that h(w1) ≥ 0 and h(w2) ≥ 0, using K being geodesic
convex for all s ∈ [0, 1], it yields w(s) = expw1

(
s exp−1

w1
w2

)
∈ K. It follows from

h(w1) ≥ 0 and h(w2) ≥ 0 that lnw1 ≤ ln v and lnw2 ≤ ln v, respectively. Hence,
(1 − s) ln(w1) + s ln(w2) ≤ ln v and so, ln v − ln(w1−s

1 ws
2) ≥ 0. Note that w(s) =

expw1

(
s exp−1

w1
w2

)
= w1−s

1 ws
2. Therefore, ln v − ln(w(s)) ≥ 0, which implies that

0 ≤
[
ξ(1 + lnw(s)) +

3

2
+ 3

ln2 η

w(s)

]
(ln v − lnw(s)) = h(w(s))

for all v ∈ K and (ξ, η) ∈ Ξ× E . To sum up, we show that the mapping w 7→ h(w)
is geodesic quasiconcave-like.

Now, all conditions in Theorem 3.3 hold, hence we conclude that the solution set
of (QHVI)ξ,η is nonempty and compact. In fact, for each (ξ, η) ∈ Ξ × E fixed, we
compute

U(ξ, η)

=
{
u ∈ K : u ∈ A(u),

〈
F (u, ξ), exp−1

u v
〉
R +Ψ0

(
u; exp−1

u v
)

≥
〈
G(η), exp−1

u v
〉
R , ∀v ∈ A(u)

}
=

{
u ∈ K : u ∈ A(u),

[
ξ(1 + lnu) +

3

2
+ 3

ln2 η

u

]
(ln v − lnu) ≥ 0, ∀v ∈ A(u)

}
= {1}.

To establish the other main result, we need to employ some assumptions. Given
two nonempty, closed and convex sets Ξ ⊂ M1 and E ⊂ M2, we assume the following
hypotheses to Problem 1.1.

• A(Q) : Q : M → R is a lower semicontinuous and bounded from below
function, i.e.,

Q(u) ≤ lim inf
n→∞

Q(un) and mQ ≤ Q(w) for all w ∈ M,

whenever {un}n∈N ⊂ M and u ∈ M are such that un → u for some mQ ∈ R.
• A(W ) : W : Ξ× E → R is lower semicontinuous and bounded from below.

We now provide the existence result for Problem 1.1 of the regularized optimiza-
tion type.

Theorem 3.6. Assume that all conditions shown as in Theorem 3.3 hold. If, in
addition, A(Q) and A(W ) are satisfied, then for each β > 0 the solution set of
Problem 1.1 is nonempty.

Proof. We shall prove this theorem by five steps.

Step 1: The functional ℧ defined in equation (1.1) is well-defined.

We emphasize that it suffices to demonstrate that for any fixed (ξ, η) ∈ Ξ× E , the
following optimization problem

inf
u∈U(ξ,η)

Q(u)(3.9)
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is solvable, that is, there exists u∗ ∈ U(ξ, η) such that the following equality

inf
u∈U(ξ,η)

Q(u) = Q(u∗)(3.10)

holds. Indeed, since the function Q is bounded from below, there exists {un}n∈N ⊂
U(ξ, η) being a minimizing sequence to problem (3.9), i.e.,

inf
u∈U(ξ,η)

Q(u) = lim
n→∞

Q(un).

Thanks to Theorem 3.3, we obtain that U(ξ, η) is a compact set. Therefore, without
any loss of generality, we may assume that un → u∗, as n → ∞ with u∗ ∈ U(ξ, η).
Then, it follows from the lower semicontinuity of Q that

inf
u∈U(ξ,η)

Q(u) = lim
n→∞

Q(un) = lim inf
n→∞

Q(un) ≥ Q(u∗) ≥ inf
u∈U(ξ,η)

Q(u).

This shows that for every (ξ, η) ∈ Ξ×E there exists u∗ ∈ U(ξ, η) such that equality
equation (3.10) is valid. Thus, ℧ is well-defined.

Step 2: The function U maps bounded sets of Ξ× E to bounded sets of K.

For any fixed (ξ, η) ∈ Ξ×E and u ∈ U(ξ, η), it follows from Claim 5 in the proof of
Theorem 3.3 that U(ξ, η) is a bounded set for all (ξ, η) ∈ Ξ× E . This gives that U
maps bounded sets of Ξ× E into bounded sets of K.

Step 3: If {(ξn, ηn)}n∈N ⊂ Ξ× E is a sequence such that ξn → ξ in Ξ and ηn → η
in E for some (ξ, η) ∈ Ξ× E , then there holds

(3.11) ∅ 6= lim sup
n→∞

U(ξn, ηn) ⊂ U(ξ, η).

Using Step 2, we conclude that
⋃

n≥1U(ξn, ηn) is bounded in M and so the set

lim sup
n→∞

U(ξn, ηn) 6= ∅ is nonempty. Let u ∈ lim sup
n→∞

U(ξn, ηn) be arbitrary. Then,

we can find a sequence {un}n∈N ⊂ M (by taking a subsequence if necessary) such
that

un ∈ U(ξn, ηn) and un → u in M.

Thus, for every n ∈ N, we have un ∈ A(un) and

(3.12)
〈
F (un, ξn), exp

−1
un

v
〉
R +Ψ0

(
un; exp

−1
un

v
)
−
〈
G(ηu), exp

−1
un

v
〉
R ≥ 0,

for all v ∈ A(un). Since A is upper semicontinuous and closed-valued and un → u,
we achieve that u ∈ A(u). Moreover, for every v ∈ A(u), by the lower semicontinuity
of A, there exist vn ∈ A(un) for all n ∈ N such that vn → v. Plugging v = vn into
equation (3.12) yields〈

F (un, ξn), exp
−1
un

vn
〉
R +Ψ0

(
un; exp

−1
un

vn
)
−
〈
G(ηn), exp

−1
un

vn
〉
R ≥ 0.

Then, taking the upper limit as n → ∞ in the above inequality leads to〈
F (u, ξ), exp−1

u v
〉
R +Ψ0

(
u; exp−1

u v
)
−

〈
G(η), exp−1

u v
〉
R ≥ 0.

This implies that u ∈ U(ξ, η) and so lim sup
n→∞

U(ξn, ηn) ⊂ U(ξ, η). Thus, equation

(3.11) is proved.
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Step 4: If {(ξn, ηn)}n∈N ⊂ Ξ × E is such that ξn → ξ in Ξ and ηn → η in E for
some (ξ, η) ∈ Ξ× E , then the inequality

(3.13) ℧β(ξ, η) ≤ lim inf
n→∞

℧β(ξn, ηn)

holds.

Let {(ξn, ηn)}n∈N ⊂ Ξ × E be such that ξn → ξ in Ξ and ηn → η in E for some
(ξ, η) ∈ Ξ× E . In addition, let {un}n∈N ⊂ M be a sequence satisfying

(3.14) un ∈ U(ξn, ηn) and inf
u∈U(ξn,ηn)

Q(u) = Q(un)

for each n ∈ N. It follows from Step 2 that
⋃

n∈NU(ξn, ηn) is bounded. Hence,
without loss of generality, we may assume that un → u∗ in M for some u∗ ∈ M.
Then, by Step 3, we obtain that u∗ ∈ lim sup

n→∞
U(ξn, ηn) ⊂ U(ξ, η). Using the lower

semicontinuity of Q and W , we have

lim inf
n→∞

℧β(ξn, ηn) = lim inf
n→∞

[Q(un) + βW (ξn, ηn)]

≥ lim inf
n→∞

Q(un) + lim inf
n→∞

βW (ξn, ηn)

≥ Q(u∗) + βW (ξ, η)

≥ min
u∈U(ξ,η)

Q(u) + βW (ξ, η)

= ℧β(ξ, η).

Thus, the inequality (3.13) holds.

Step 5: The solution set of Problem 1.1 is nonempty.

Using assumptions A(Q) and A(W ) and from the definition of the function ℧,
we can conclude that ℧ is bounded from below. Thus, there exists a minimizing
sequence {(ξn, ηn)}n∈N ⊂ Ξ× E of equation (1.1) satisfying

(3.15) inf
(ξ,η)∈Ξ×E

℧β(ξ, η) = lim
n→∞

℧β(ξn, ηn).

By the definition of ℧β , it is not difficult to see that the sequence {(ξn, ηn)}n∈N ⊂
Ξ× E are bounded in M1 ×M2. Passing to a subsequence if necessary, we have

(3.16) ξn → ξ∗ in M1 and ηn → η∗ in M2

for some (ξ∗, η∗) ∈ Ξ× E .

Given a sequence {un}n∈N ⊂ M satisfying equation (3.14). Using the convergence
ξn → ξ, ηn → η and the boundedness of U (see Step 2), we obtain the boundedness
of the sequence {un}n∈N in M. Without loss of generality, we can assume that
un → u∗ in M for some u∗ ∈ M. From Step 3, it is clear that u∗ ∈ U(ξ∗, η∗). Thus,
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we achieve

lim inf
n→∞

℧β(ξn, ηn) = lim inf
n→∞

[Q(un) + βW (ξn, ηn)]

≥ lim inf
n→∞

Q(un) + lim inf
n→∞

βW (ξn, ηn)

≥ Q(u∗) + βW (ξ∗, η∗)

≥ min
u∈U(ξ∗,η∗)

Q(u) + βW (ξ∗, η∗)

= ℧β(ξ
∗, η∗)

≥ inf
(ξ,η)∈Ξ×E

℧β(ξ, η).(3.17)

Combining relations (3.15) and (3.17), it indicates that (ξ∗, η∗) ∈ Ξ×E is a solution
to Problem 1.1. □

4. Conclusions

In this paper, we studied a class of quasi-hemivariational inequalities (QHVI)ξ,η
on constant curvature Hadamard manifolds. Our main contribution lies on pro-
viding the properties of solution sets including the nonemptiness and compactness
for (QHVI)ξ,η and the existence of nonlinear inverse problem driven by a quasi-
hemivariational inequality in the setting of Hadamard manifolds, see Theorem 3.3
and Theorem 3.6.

Very recently, Kumari and Ahmad [11] considered a penalty function method for
a class of variational inequalitires on Hadamard manifolds. This approach induced
an interesting result that the sequence of a solution to the penalized variational
inequality has at least one limit point which belongs to the feasible region. In view
of this, a possible future direction will be on developing the algorithm by apply-
ing penalty function methods for quasi-hemivariational inequalities on Hadamard
manifolds.
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[6] O. P. Ferreira, L. R. Lucambio Pérez and S. Z. Németh, Singularities of monotone vector fields

and an extragradient-type algorithm, J. Global Optim. 31 (2005), 133–151.



AN INVERSE PROBLEM FOR (QHVI)ξ,η ON HADAMARD MANIFOLDS 2973
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