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HÖLDER CONTINUITY AND UPPER BOUND RESULTS FOR GENERALIZED
PARAMETRIC ELLIPTICAL VARIATIONAL-HEMIVARIATIONAL

INEQUALITIES

VO MINH TAM1,2, JEIN-SHAN CHEN2,∗

1Department of Mathematics, Dong Thap University, Cao Lanh City 870000, Dong Thap Province, Vietnam
2Department of Mathematics, National Taiwan Normal University, Taipei 116059, Taiwan

Abstract. The main purpose of this paper is to investigate the upper bound and Hölder continuity for
a general class of parametric elliptical variational-hemivariational inequalities via regularized gap func-
tions. More precisely, we deliver a formulation of the elliptical variational-hemivariational inequalities
in the case of the perturbed parameters governed by both the set of constraints and the mappings (for
brevity, PEVHI (CM)). Based on the arguments of monotonicity and properties of the Clarke’s gener-
alized directional derivative, we establish an upper bound result for the PEVHI (CM) and provide the
Hölder continuity of the solution mapping for the PEVHI (CM) under suitable assumptions on the data.
Keywords. Hölder continuity; Parametric elliptical variational–hemivariational inequality; Regularized
gap function; Upper bound.

1. INTRODUCTION

In the early 1980s, the theory of variational-hemivariational inequality problems has been
introduced as a generalization of variational inequality and hemivariational inequality problems
to both the convex and the nonconvex potentials based on the Clarke’s generalized gradient
of locally Lipschitz functions. This study was applied to various fields of engineering and
mechanics, especially in optimization and nonsmooth analysis; see e.g., [27, 28]. Many authors
have extensively developed the theory of variational-hemivariational inequalities and elliptical
variational-hemivariational inequalities (for brevity, EVHI) in various directions, such as the
existence of solution sets, the regularity of solutions, the solution method, and the stability in
the sense of well-posedness and convergence; see, e.g., [11, 12, 13, 14, 24, 26, 29, 39] and the
references therein.

To formulate variational inequality problems by virtue of optimization problems, Auslender
[3] introduced a valuable tool called the gap function. However, in general, this gap function is
non-differentiable. This disadvantage was improved by Fukushima [10] by introducing a new
class of regularized gap functions for variational inequality problems. Using the form of regu-
larized gap functions in [10], Yamashita and Fukushima [37] established an upper estimate of
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the distance between an arbitrary feasible point and the solution set of their variational inequal-
ity problems, so-called error bound or upper bound. In recent years, regularized gap functions
have been employed for problems on various interesting topics, such as the well-posedness
[23, 35] and the error bound [1, 16, 17, 18, 19, 21, 31, 32, 33, 34] .

On the other hand, the Hölder continuity is known as an important feature of the stability
analysis of solution mappings for parametric or perturbed problems related to the fields of op-
timization and nonlinear analysis. It can provide an error estimate between the exact solution
sets and the parametric or perturbed solution sets of concerning problems. Recently, a lot of
authors paid attention to developing the Hölder continuity of solution mappings for various
kinds of equilibrium problems, variational inequality problems, optimization problems; see,
e.g., [2, 4, 7, 22, 36] and the references therein. In specially, using the property of regular-
ized gap functions, Hu and Li [15] established the Hölder continuity of solution mappings for
a class of variational inequalities. Tam [30] also developed the Hölder continuity of solution
mappings for vector network equilibrium problems with a polyhedral ordering cone by virtue of
the regularized gap functions. To the best of our knowledge, there are only a few works devoted
to the Hölder continuity of the solution mapping for variational-hemivariational inequalities.
In 2021, Hung et al. [20] studied the Hölder continuity for a parametric elliptical variational-
hemivariational inequalities with perturbed constraints (for brevity, PEVHI (C)) applying the
nice properties of the regularized gap functions. Besides, Chang et al. [6] investigated the
existence of an elliptical variational-hemivariational inequality which is formulated by the per-
turbed parameters in the setting of mappings (for brevity, PEVHI (M)). They also provided an
application of PEVHI (M) to a parametric frictional unilateral contact problem.

EVHI

PEVHI (C) Hölder continuity, Upper bounds

PEVHI (M) PEVHI (CM)

O
ur new

results

Hung et al. [20]

+ perturbed constraints

+ perturbed mappings+ perturbed constraints and mappings

+ perturbed constraints

+ perturbed mappings

FIGURE 1. Illustration of the development of Hölder continuity and upper bounds re-
sults regarding different kinds of PEVHIs based on regularized gap functions.

Motivated essentially by the aforementioned works, in the present paper, we look into the
Hölder continuity of solution mappings to a general class of parametric elliptical variational-
hemivariational inequalities (for brevity, PEVHI (CM)) which is formulated by the perturbed
parameters governed by both the set of constraints and the mappings; see Problem 2.1. In
particular, we first establish a regularized gap function of PEVHI (CM) and verify its Hölder
continuity. Then, using arguments of monotonicity and properties of the Clarke’s directional
derivative, an upper bound result depended on parameters for PEVHI is investigated. Finally,
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we provide the Hölder continuity of the solution mapping for PEVHI (CM) by using the regu-
larized gap function under suitable assumptions on the data. To sum up, Figure 1 illustrates the
contribution of this work and how it relates to previous literature on different kinds of PEVHIs.

2. PRELIMINARIES AND FORMULATIONS

Let (V,‖ · ‖V ) and (V ∗,‖ · ‖V ∗) be the real Banach space and its dual space, respectively. Let
the duality pairing between V ∗ and V be denoted by 〈·, ·〉V . Next, some basic concepts and
properties needed in the sequel are recalled. We refer to [8, 9, 25] for more details.

Definition 2.1. Let R : V →V ∗ be a single-valued operator. R is said to be pseudomonotone in
the sense of Brézis [5] if it is a bounded operator and for every sequence {pn} ⊂V converging
weakly to p ∈V such that

limsup〈Rpn,qn− p〉 ≤ 0,

we have
〈Rp, p−q〉 ≤ liminf〈Rpn, pn−q〉

for all q ∈V .

Definition 2.2. A function φ : V → R̂ := R∪{+∞} is said to be
(a) proper if φ 6≡+∞;
(b) convex if φ(t p+(1− t)q)≤ tφ(p)+(1− t)φ(q), for all p,q ∈V and t ∈ [0,1];
(c) lower semicontinuous (l.s.c.) at p0 ∈V if for any sequence {pn} ⊂V such that pn→ p0,

it holds φ(p0)≤ liminfφ(pn);
(d) l.s.c. on V if p is l.s.c. at every p0 ∈V .

Definition 2.3. Let Ψ : V → R̂ be a proper, convex, and l.s.c. function. The convex subdiffer-
ential ∂cΨ : V ⇒V ∗ of Ψ is defined by

∂cΨ(p) :=
{

w∗ ∈V ∗ | 〈w∗,q− p〉V ≤Ψ(q)−Ψ(p), ∀q ∈V
}

for all p ∈V . An element w∗ ∈ ∂cΨ(p) is called a subgradient of Ψ at p ∈V .

Definition 2.4. A function Ψ : V → R is said to be locally Lipschitz if, for every p ∈ V , there
exist N (p) and a constant lp > 0 such that

|Ψ(p1)−Ψ(p2)| ≤ lp‖p1− p2‖V for all p1, p2 ∈N (p),

where N (p) is a neighbourhood of p. Given a locally Lipschitz function Ψ : V → R, we
denote by Ψ0(p;q) the Clarke’s generalized directional derivative of Ψ at the point p ∈V in the
direction q ∈V defined by

Ψ
0(p;q) := limsup

v→p, t→0+

Ψ(v+ tq)−Ψ(v)
t

.

The generalized gradient of Ψ at p ∈ X , denoted by ∂Ψ(p), is a subset of V ∗ given by

∂Ψ(p) :=
{

w∗ ∈V ∗ |Ψ0(p;q)≥ 〈w∗,q〉V for all p ∈V
}
.

The following lemma describes some fundamental and important characteristics of a locally
Lipschitz function’s directional derivative; see [8, Proposition 2.1.1].
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Lemma 2.1. Let Ψ : V → R be a locally Lipschitz function, where V is a real Banach space.
Then, for each q ∈V , V 3 p 7→Ψ0(p;q) ∈R is finite, positively homogeneous, subadditive, and
satisfies |Ψ0(p;q)| ≤ lp‖q‖V for all q ∈ X, where lp > 0 is the Lipschitz constant of Ψ near p.

In the rest of the paper, unless otherwise specified, let (V,‖ · ‖V ) be a reflexive Banach space
and (E,‖ ·‖E), (Z,‖ ·‖Z), and (W ,‖ ·‖W ) be normed spaces of parameters. Given a set-valued
mapping M : E ⇒ V , a linear control operator Φ : Z→ V ∗, a nonlinear operator R : W ×V ×
V →V ∗, a functional S : W×V×V →R, a locally Lipschitz (in general nonconvex) functional
Ψ : W ×V → R, and a mapping f : W → V ∗, we introduce the general class of parametric
elliptical variational-hemivariational inequalities as follows:

Problem 2.1. For given (e,z,w) ∈ E×Z×W , find p∗ ∈M(e) such that

〈R(w, p∗, p∗),q− p∗〉V +S (w, p∗,q)−S (w, p∗, p∗)+Ψ
0 (w, p∗;q− p∗)

≥ 〈 f (w)+Φ(z),q− p∗〉V , ∀q ∈M(e),

where Ψ0(w, p;q) denotes the Clarke’s generalized directional derivative of Ψ(w, ·) at the point
p ∈V in direction q ∈V .

Some special cases of Problem 2.1 are as follows:
(i) Given w ∈W , if M(e)≡M, Φ(z)≡ 0, then Problem 2.1 reduces to the following prob-

lem of finding p∗ ∈M such that

〈R(w, p∗, p∗),q− p∗〉V +S (w, p∗,q)−S (w, p∗, p∗)+Ψ
0 (w, p∗;q− p∗)

≥ 〈 f (w),q− p∗〉V ,
for all q ∈M. This problem was studied in [6].

(ii) Given (e,z)∈E×Z, if R(w, p, p)≡R(p), S (w, p,q)≡S (p,q), and Ψ(w, p)≡Ψ(p),
f (w)≡ f , then Problem 2.1 reduces to the following problem, which was considered in
[20] for finding p∗ ∈M(e) such that

〈R(p∗),q− p∗〉V +S (p∗,q)−S (p∗, p∗)+Ψ
0 (p∗;q− p∗)

≥ 〈 f +Φ(z),q− p∗〉V ,
for all q ∈M(e).

In the paper, the following assumptions are imposed on the data of Problem 2.1.

(C1): For each e ∈ E,M(e) is a nonempty, closed, and convex subset of V .

(C2): f (w) ∈V ∗ and Φ(z) ∈V ∗ for all w ∈W and z ∈ Z.

(C3): R : W ×V ×V →V ∗ is such that
(a) there exist lR , l′R , l′′R > 0 such that for any w1,w2 ∈W , p1,q1, p2,q2 ∈M(E),

‖R(w1, p1,q1)−R(w2, p2,q2)‖V ∗
≤ lR‖w1−w2‖W + l′R‖p1− p2‖V + l′′R‖q1−q2‖V ;

(b) there exists αR > 0 such that, for any w ∈W and p1, p2,q ∈M(E),

〈R(w, p1,q)−R(w, p2,q), p1− p2〉V ≥−αR‖p1− p2‖2
V ;

(c) there exists kR > 0 such that, for any w ∈W and p,q1,q2 ∈M(E),

〈R(w, p,q1)−R(w, p,q2),q2−q1〉V ≤−kR‖q1−q2‖2
V .
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(C4): S : W ×V ×V → R is such that

(a) for each w ∈W and p ∈V , S (w, p, ·) : V → R is convex;
(b) there exist lS , l′S , l′′S > 0, such that, for any w1,w2 ∈W and p1,q1, p2,q2 ∈M(E),

|S (w1, p1,q1)−S (w2, p2,q2)|
≤ lS ‖w1−w2‖W + l′S ‖p1− p2‖V + l′′S ‖q1−q2‖V ;

(c) there exist αS > 0 and βS ≥ 0, such that, for any w1,w2 ∈W and p1,q1, p2,q2 ∈M(E),

S (w1, p1,q2)−S (w1, p1,q1)+S (w2, p2,q1)−S (w2, p2,q2)

≤ αS ‖p1− p2‖V‖q1−q2‖V +βS ‖w1−w2‖W ‖q1−q2‖V .

(C5): Ψ : W ×V → R is such that

(a) for each w ∈W , Ψ(w, ·) : V → R is a locally Lipschitz function;
(b) there exist lΨ, l′Ψ > 0 such that, for any w1,w2 ∈W and p1, p2,q ∈M(E),

|Ψ0(w1, p1;q)−Ψ
0(w2, p2;q)| ≤ lΨ‖w1−w2‖W + l′Ψ‖p1− p2‖V ;

(c) there exist αΨ > 0 and βΨ ≥ 0 such that, for any w1,w2 ∈W and p1, p2 ∈M(E),

Ψ
0(w1, p1; p2− p1)+Ψ

0(w2, p2; p1− p2)

≤ αΨ‖p1− p2‖2
V +βΨ‖w1−w2‖W ‖p1− p2‖V .

(C6): kR−αR−αS −αΨ > 0.

Lemma 2.2. Let assumptions (C3)(b),(c) hold. Then, for any w ∈W, p,q ∈M(E),

〈R(w, p, p), p−q〉V −〈R(w,q,q), p−q〉V ≥ (kR−αR)‖p−q‖2
V . (2.1)

Proof. For any w ∈W , p,q ∈M(E), it follows from hypotheses (C3)(b),(c) that

〈R(w, p, p), p−q〉V −〈R(w,q,q), p−q〉V
= 〈R(w, p, p)−R(w,q, p), p−q〉V −〈R(w,q,q)−R(w,q, p), p−q〉V
≥−αR‖p−q‖2

V + kR‖p−q‖2
V

= (kR−αR)‖p−q‖2
V ,

which implies that inequality (2.1) holds. �

We now provide the example of operator R to illustrate the above result.

Example 2.1. Let V = E =W =R and M(e) =
[

1
2 + sin2

(
e

1
3
2

)
,2
]

for all e ∈ E. Let R : W ×

V ×V →V ∗ be defined by

R(w, p,q) = 3sin2
(

w+1
2

)
−2p+

7
2

q3

for all w ∈W , p,q ∈M(E).



320 V.M. TAM, J.-S. CHEN

(a) For any w1,w2 ∈W , p1,q1, p2,q2 ∈M(E),

|R(w1, p1,q1)−R(w2, p2,q2)|

≤3
∣∣∣∣sin2

(
w1 +1

2

)
− sin2

(
w2 +1

2

)∣∣∣∣+2|p1− p2|+
7
2
|q3

1−q3
2|

≤3 |w1−w2|+2|p1− p2|+42|q1−q2|.

(b) For any w ∈W , p1, p2,q ∈M(E),

〈R(w, p1,q)−R(w, p2,q), p1− p2〉= 2(p2− p1)(p1− p2) =−2|p1− p2|2.

(c) For any w ∈W , p,q1,q2 ∈M(E),

〈R(w, p,q1)−R(w, p,q2),q2−q1〉=
7
2
(q3

1−q3
2)(q2−q1)≤−

21
8
|q1−q2|2.

Hence, conditions (C3)(a–c) hold with lR = 3, l′R = 2, l′′R = 42, kR = 21
8 , and αR = 2. Also,

for any w ∈W , p,q ∈M(E), we have

〈R(w, p, p), p−q〉−〈R(w,q,q), p−q〉=
[
−2(p−q)+

7
2
(p3−q3)

]
(p−q)

≥−2|p−q|2 + 21
8
|p−q|2

=(kR−αR)|p−q|2.

Thus inequality (2.1) is valid.

Remark 2.1. (i) Assumption (C3)(a) implies that, for each w ∈W , R̃(·) := R(w, ·, ·) is
continuous and so it is hemicontinuous. Moreover, it follows from Lemma 2.2 that R̃(·)
is monotone. Thus, we can conclude that R̃(·) is pseudomonotone (see [38, Proposi-
tion 27.6(a)]).

(ii) It follows immediately from condition (C4)(b) that S is an l.s.c. function in the third
argument on M(E).

(iii) By assumption (C5)(b), an easy computation proves that there exist c0,c1,c2 ≥ 0 such
that ‖ξ‖V ∗ ≤ c0 + c1‖p‖V + c2‖w‖W for all w ∈W , p ∈M(E) and ξ ∈ ∂Ψ(w, p).

(iv) Examples of the functions which satisfy conditions (C1)–(C6) can also be founded in [25,
29, 38].

Using assumptions (C1)–(C6) and Remark 2.1(i–iii), the existence and uniqueness of solu-
tions for Problem 2.1 considered in [6, Theorem 3.1] are provided in the following result.

Theorem 2.1. Let assumptions (C1)–(C6) hold. Then, for every (e,z,w) ∈ E×Z×W, Prob-
lem 2.1 has a unique solution p(e,z,w) ∈M(e).

Remark 2.2. For each (e,z,w) ∈ E×Z×W , we denote the solution mapping of Problem 2.1
by f(e,z,w), i.e.,

f(e,z,w) :=
{

p ∈M(e) | 〈R(w, p, p)− f (w)−Φ(z),q− p〉V

+S (w, p,q)−S (w, p, p)+Ψ
0 (w, p;q− p)≥ 0, ∀q ∈M(e)

}
.
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It follows from Theorem 2.1 that, for each (e,z,w) ∈ E×Z×W , f(e,z,w) is a singleton set,
i.e., f(e,z,w) = {p(e,z,w)}.

To end this section, we recall the definition of Hölder continuity of set-valued mappings.

Definition 2.5 (Classical notion). A set-valued mapping M : E ⇒ V is said to be l.ν-Hölder
continuous on Q⊂ E for some l > 0 and α > 0, if, for any e1,e2 ∈ Q,

M(e1)⊂M(e2)+ l‖e1− e2‖ν

EBV , (2.2)

where BV is the closed unit ball of V . If M is a single-valued mapping, then (2.2) reduces to

‖M(e1)−M(e2)‖V ≤ l‖e1− e2‖ν

E .

Remark 2.3. Let e ∈ E and Q be a neighborhood of e. Then assumption (2.2) also states that
M is locally Hölder continuous at e.

3. MAIN RESULTS

In the rest of paper, let (ẽ, z̃, w̃) ∈ E×Z×W be fixed. In this section, we mainly provide an
upper bound and the Hölder continuity of the solution mapping f(·, ·, ·) to Problem 2.1 around
the considered point (ẽ, z̃, w̃).

Let (e,z,w) ∈ E × Z ×W and θ > 0 be arbitrarily given. We now consider the function
Gθ : M(e)×E×Z×W → R defined by

Gθ (p,e,z,w) = sup
q∈M(e)

(
〈R(w, p, p)− f (w)−Φ(z), p−q〉V

−S (w, p,q)+S (w, p, p)−Ψ
0 (w, p;q− p)− θ

2
‖p−q‖2

V

)
(3.1)

for all p ∈M(e).

Proposition 3.1. Suppose that hypotheses (C1)–(C6) are true. Then, for any (e,z,w)∈ E×Z×
W and θ > 0, the function Gθ defined by (3.1) satisfies the following properties:

(a): Gθ (p,e,z,w)≥ 0 for all p ∈M(e);
(b): p∗ ∈ M(e) is such that Gθ (p∗,e,z,w) = 0 if and only if p∗ ∈ f(e,z,w), i.e., p∗ is a

solution to Problem 2.1.

Proof. (a) For each (e,z,w) ∈ E×Z×W , θ > 0 and f (w) ∈V ∗ fixed, it follows from p ∈M(e)
and the definition of Gθ that

Gθ (p,e,z,w) ≥ 〈R(w, p, p)− f (w)−Φ(z), p− p〉V

−S (w, p, p)+S (w, p, p)−Ψ
0 (w, p; p− p)− θ

2
‖p− p‖2

V

= −Ψ
0 (w, p;0)

= 0.
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(b) Assume that p∗ ∈M(e) is such that Gθ (p∗,e,z,w) = 0, namely,

sup
q∈M(e)

(
〈R(w, p∗, p∗)− f (w)−Φ(z), p∗−q〉V

−S (w, p∗,q)+S (w, p∗, p∗)−Ψ
0 (w, p∗;q− p∗)− θ

2
‖p∗−q‖2

V

)
= 0.

This means

〈R(w, p∗, p∗)− f (w)−Φ(z), p∗−q〉V

−S (w, p∗,q)+S (w, p∗, p∗)−Ψ
0 (w, p∗;q− p∗)≤ θ

2
‖p∗−q‖2

V

for all q ∈M(e). For any y ∈M(e) and δ ∈ (0,1), we insert

q = qδ := (1−δ )p∗+δy ∈M(e)

into the above inequality to obtain

δ 〈R(w, p∗, p∗)− f (w)−Φ(z), p∗− y〉V −δS (w, p∗,y)+δS (w, p∗, p∗)

−δΨ
0 (w, p∗;y− p∗)

≤ 〈R(w, p∗, p∗)− f (w)−Φ(z), p∗−qδ 〉V −S (w, p∗,qδ )+S (w, p∗, p∗)

−Ψ
0 (w, p∗;qδ − p∗)

≤ θ

2
‖p∗−qδ‖2

V =
δ 2θ

2
‖p∗− y‖2

V .

Here, the positive homogeneity of q 7→Ψ0 (w, p∗;q− p∗) and convexity of q 7→S (w, p∗,q) are
used. Hence, we obtain

〈R(w, p∗, p∗)− f (w)−Φ(z),y− p∗〉V

+S (w, p∗,y)−S (w, p∗, p∗)+Ψ
0 (w, p∗;y− p∗)≥−δ 2θ

2
‖p∗− y‖2

V

for all y ∈M(e). Taking δ → 0+ for the above inequality, we find that

〈R(w, p∗, p∗)− f (w)−Φ(z),y− p∗〉V
+S (w, p∗,y)−S (w, p∗, p∗)+Ψ

0 (w, p∗;y− p∗)≥ 0

for all y ∈M(e). Hence, p∗ is also a solution to Problem 2.1.
Conversely, let p∗ ∈M(e) be a solution to Problem 2.1, i.e.,

〈R(w, p∗, p∗)− f (w)−Φ(z),q− p∗〉V
+S (w, p∗,q)−S (w, p∗, p∗)+Ψ

0 (w, p∗;q− p∗)≥ 0
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for all q ∈M(e). This implies

Gθ (p∗,e,z,w)

= sup
q∈M(e)

(
〈R(w, p∗, p∗)− f (w)−Φ(z), p∗−q〉V

−S (w, p∗,q)+S (w, p∗, p∗)−Ψ
0 (w, p∗;q− p∗)− θ

2
‖p∗−q‖2

V

)
≤ 0.

The latter combined with the fact Gθ (p∗,e,z,w)≥ 0 reveals that Gθ (p∗,e,z,w) = 0. This com-
pletes the proof. �

Remark 3.1. (i) By Fukushima-Yamashita [10, 37] and Proposition 3.1, the function Gθ

defined by (3.1) is known as a regularized gap function of Problem 2.1.
(ii) For each (e,z,w) ∈ E×Z×W and θ > 0, the close relationship between Gθ and f is

given by
f(e,z,w) = {p ∈M(e) |Gθ (p,e,z,w) = 0} .

We now establish an upper bound for Problem 2.1 associated with Gθ , the regularized gap
function.

Theorem 3.1. Let (e,z,w) ∈N (ẽ)×N (z̃)×N (w̃) be fixed and p∗(e,z,w) ∈ f(e,z,w). As-
sume that all assumptions (C1)–(C5) hold, and further, for each θ > 0 satisfies

θ < 2(kR−αR−αS −αΨ).

Then, for each p ∈M(e),

‖p− p∗(e,z,w)‖V ≤
1√

kR−αR−αS −αΨ− θ

2

√
Gθ (p,e,z,w). (3.2)

Proof. Let p∗(e,z,w) ∈ f(e,z,w), i.e., p∗(e,z,w) ∈M(e) and

〈R(w, p∗(e,z,w), p∗(e,z,w))− f (w)−Φ(z),q− p∗(e,z,w)〉V
+S (p∗(e,z,w),q)−S (p∗(e,z,w), p∗(e,z,w))

+Ψ
0 (p∗(e,z,w);q− p∗(e,z,w))≥ 0,

for all q ∈M(e). For any p ∈M(e) fixed, taking q = p in the above inequality, we conclude that

〈R(w, p∗(e,z,w), p∗(e,z,w))− f (w)−Φ(z), p− p∗(e,z,w)〉V
+S (p∗(e,z,w), p)−S (p∗(e,z,w), p∗(e,z,w))

+Ψ
0 (p∗(e,z,w); p− p∗(e,z,w))≥ 0. (3.3)

From the definition of Gθ in (3.1), we have

Gθ (p,e,z,w)≥ 〈R(w, p, p)− f (w)−Φ(z), p− p∗(e,z,w)〉V
−S (p, p∗(e,z,w))+S (p, p)−Ψ

0 (p; p∗(e,z,w)− p)

− θ

2
‖p− p∗(e,z,w)‖2

V . (3.4)
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It follows from assumptions (C4)(c), (C5)(c) and Lemma 2.2 that

〈R(w, p, p)− f (w)−Φ(z), p− p∗(e,z,w)〉V
−S (p, p∗(e,z,w))+S (p, p)−Ψ

0 (p; p∗(e,z,w)− p)

≥ 〈R(w, p∗(e,z,w), p∗(e,z,w))− f (w)−Φ(z), p− p∗(e,z,w)〉V
+S (p∗(e,z,w), p)−S (p∗(e,z,w), p∗(e,z,w))

+Ψ
0 (p∗(e,z,w); p− p∗(e,z,w))

+(kR−αR−αS −αΨ)‖p− p∗(e,z,w)‖2
V . (3.5)

Combining inequalities (3.3)–(3.5), one has

Gθ (p,e,z,w)≥
(

kR−αR−αS −αΨ−
θ

2

)
‖p− p∗(e,z,w)‖2

V .

Hence, inequality (3.2) holds. �

Let N (ẽ) (resp., N (w̃)) be a bounded neighborhood of the considered point ẽ (resp., w̃).
Then we impose the following assumptions for Problem 2.1.

(C7): M : E ⇒V is such that
(a) M is lM.ν-Hölder continuous on N (ẽ);
(b) for each e ∈N (ẽ), p ∈M(e), there exists bM > 0,‖p‖V ≤ bM.

(C8): Φ : Z→V ∗ is such that
(a) Φ is lΦ .µ-Hölder continuous on N (z̃);
(b) for each z ∈N (z̃), there exists bΦ > 0, ‖Φ(z)‖V ∗ ≤ bΦ .

(C9): f : W →V ∗ is such that
(a) f is l f .1-Hölder continuous on N (w̃);
(b) for each w ∈N (w̃), there exists b f > 0, ‖ f (w)‖V ∗ ≤ b f .

Remark 3.2. Combining assumptions (C3)(b) and (C7)(b) implies that, for each w ∈N (w̃)
and p,q ∈M(N (ẽ)), ‖R(w, p,q)‖V ∗ ≤ bR , where

bR = ‖R(0W ,0,0)‖V ∗+ lR‖w‖W +(l′R + l′′R)bM.

Using the imposed assumptions above, we now provide the Hölder property of Gθ , which will
be used to investigate the Hölder continuity of the solution mapping f(·, ·, ·) to Problem 2.1.

Proposition 3.2. Suppose that hypotheses (C1)–(C9) hold. Then, for each θ > 0, for any
(p1,e1,z1,w1), (p2,e2,z2,w2) ∈M(N (ẽ))×N (ẽ)×N (z̃)×N (w̃),

|Gθ (p1,e1,z1,w1)−Gθ (p2,e2,z2,w2)|
≤ L̃(‖p1− p2‖V +‖w1−w2‖W +‖e1− e2‖ν

E +‖z1− z2‖µ

Z), (3.6)

where

L̃ := max
{

2bM(l′R + l′′R)+2bMθ +bR +bΦ +b f +2l′S + l′′S + l′Ψ + l∗,

2bM(lR + l f )+2lS + lΨ, lM
(
2bMθ +bR +bΦ +b f + l′S + l∗

)
,2bMlΦ

}
, (3.7)

l∗ := sup
p∈M(N (ẽ))

{
lp > 0 | |Ψ0(w, p;q)| ≤ lp‖q‖V , ∀w ∈W ,q ∈M(N (ẽ))

}
.
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Proof. Let (e1,z1,w1),(e2,z2,w2) ∈ N (ẽ)×N (w̃) and (p1, p2) ∈ M(e1)×M(e2) be fixed.
Note that the regularized gap function Gθ is defined by (3.1). We have the following assertion:
for any ε > 0, there exists qε ∈M(e1) such that

Gθ (p1,e1,z1,w1)≤ 〈R(w1, p1, p1)− f (w1)−Φ(z1), p1−qε〉V −S (w1, p1,qε)

+S (w1, p1, p1)−Ψ
0 (w1, p1;qε − p1)−

θ

2
‖p1−qε‖2

V + ε. (3.8)

Since M(·) is lM.ν-Hölder continuous on N (ẽ), we see that there exist lM > 0 and α > 0 such
that

M(e1)⊂M(e2)+ lM ‖e1− e2‖ν

E BV , (3.9)

which implies that there exists q2 ∈M(e2) such that

‖qε −q2‖V ≤ lM ‖e1− e2‖ν

E . (3.10)

Moreover, we also have

Gθ (p2,e2,z2,w2)

≥ 〈R(p2, p2,w2)− f (w2)−Φ(z2), p2−q2〉V

+S (w2, p2, p2)−S (w2, p2,q2)−Ψ
0 (p2;q2− p2)−

θ

2
‖p2−q2‖2

V . (3.11)

From (3.8) and (3.11), we obtain

Gθ (p1,e1,z1,w1)−Gθ (p2,e2,z2,w2)

≤ 〈R(w1, p1, p1)−R(w2, p2, p2)+Φ(z2)−Φ(z1)+ f (w2)− f (w1), p1−qε〉V
+ 〈R(w2, p2, p2)− f (w2)−Φ(z2), p1− p2 +q2−qε〉V
+S (w1, p1, p1)−S (w2, p2, p2)+S (w2, p2,q2)−S (w1, p1,qε)

+Ψ
0 (w2, p2;q2− p2)−Ψ

0 (w1, p1;qε − p1)

+
θ

2
(
‖p2−q2‖2

V −‖p1−qε‖2
V
)
+ ε

≤ (‖R(w1, p1, p1)−R(w2, p2, p2)‖V ∗+‖Φ(z2)−Φ(z1)‖V ∗)(‖p1‖V +‖qε‖V )
+‖ f (w2)− f (w1)‖V ∗(‖p1‖V +‖qε‖V )
+(‖R(w2, p2, p2)‖V ∗+‖ f (w2)‖V ∗+‖Φ(z2)‖V ∗)(‖p1− p2‖V +‖q2−qε‖V )
+ |S (w1, p1, p1)−S (w2, p2, p2)|+ |S (w2, p2,q2)−S (w1, p1,qε)|

+ |Ψ0 (w2, p2;q2−qε) |+ |Ψ0 (w2, p2; p1− p2) |

+ |Ψ0 (w2, p2;qε − p1)−Ψ
0 (w1, p1;qε − p1) |

+
θ

2
(‖p2‖V +‖q2‖V +‖p1‖V +‖qε‖V )(‖p1− p2‖V +‖q2−qε‖V )+ ε. (3.12)
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Hence, from Lemma 2.1, assumptions (C3)(a), (C4)(b), (C5)(b), (C7)–(C9), Remark 3.2, in-
equality (3.10) and the arbitrariness of ε, we have

Gθ (p1,e1,z1,w1)−Gθ (p2,e2,z2,w2)

≤ 2bM

(
lR‖w1−w2‖W +(l′R + l′′R)‖p1− p2‖V + lΦ‖z1− z2‖µ

Z

)
+2bMl f ‖w1−w2‖W +(bR +b f +bΦ)(‖p1− p2‖V + lM‖e1− e2‖ν

E)

+ lS ‖w1−w2‖W +(l′S + l′′S )‖p1− p2‖V + lS ‖w1−w2‖W + l′S ‖p1− p2‖V
+ lMl′′S ‖e1− e2‖ν

E + lMlp2‖e1− e2‖ν

E + lp2‖p1− p2‖V + lΨ‖w1−w2‖W

+ l′Ψ‖p1− p2‖V +
θ

2
4bM

(
‖p1− p2‖V + lM‖e1− e2‖ν

E
)

and then

Gθ (p1,e1,z1,w1)−Gθ (p2,e2,z2,w2)

≤
(
2bM(l′R + l′′R)+2bMθ +bR +bΦ +b f +2l′S + l′′S + l′Ψ + l∗

)
‖p1− p2‖V

+(2bM(lR + l f )+2lS + lΨ)‖w1−w2‖W
+ lM

(
2bMθ +bR +bΦ +b f + l′′S + l∗

)
‖e1− e2‖ν

E
+2bMlΦ‖z1− z2‖µ

Z
≤ L̃(‖p1− p2‖V +‖w1−w2‖W +‖e1− e2‖ν

E +‖z1− z2‖µ

Z),

where L̃ is given by (3.7). Therefore, using the symmetry between (p1,e1,z1,w1) and (p2,e2,z2,w2),
the conclusion of Proposition 3.2 holds. �

Finally, we deduce the Hölder continuity of the solution mapping f(·, ·, ·) to Problem 2.1
around the point (ẽ, z̃, w̃) by using the nice properties of the gap function Gθ in Proposition 3.2.

Theorem 3.2. Assume that hypotheses (C1)–(C5) and (C7)–(C9) hold. Then, for θ > 0 with
θ < 2(kR−αR−αS −αΨ), for any (e1,z1,w1),(e2,z2,w2) ∈N (ẽ)×N (z̃)×N (w̃),

‖p∗(e1,z1,w1)− p∗(e2,z2,w2)‖V

≤ lM ‖e1− e2‖ν

E +

(
L̃

kR−αR−αS −αΨ− θ

2

) 1
2

(3.13)

×
[
‖w1−w2‖W +(1+ lM)‖e1− e2‖ν

E +‖z1− z2‖µ

Z

] 1
2
,

where p∗(e1,z1,w1) ∈ f(e1,z1,w1), p∗(e2,z2,w2) ∈ f(e2,z2,w2), and L̃ is defined by (3.7).

Proof. Let (e1,z1,w1),(e2,z2,w2) ∈N (ẽ)×N (z̃)×N (w̃) be fixed and

p∗(e1,z1,w1) ∈ f(e1,z1,w1), p∗(e2,z2,w2) ∈ f(e2,z2,w2).

Then, we have p∗(e1,z1,w1) ∈M(e1). Thus it follows from (3.9) that there exists p2 ∈M(e2)
such that

‖p∗(e1,z1,w1)− p2‖V ≤ lM ‖e1− e2‖ν

E . (3.14)
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Applying (3.2), (3.6), (3.14), and p∗(e1,z1,w1) ∈ f(e1,z1,w1), that is,

Gθ (p∗(e1,z1,w1),e1,z1,w1) = 0,

one has

‖p∗(e1,z1,w1)− p∗(e2,z2,w2)‖V
≤ ‖p∗(e1,z1,w1)− p2‖V +‖p2− p∗(e2,z2,w2)‖V

≤ lM ‖e1− e2‖ν

E +
1√

kR−αR−αS −αΨ− θ

2

√
Gθ (p2,e2,z2,w2)

= lM ‖e1− e2‖ν

E +
1√

kR−αR−αS −αΨ− θ

2

×

√
Gθ (p2,e2,z2,w2)−Gθ (p∗(e1,z1,w1),e1,z1,w1)

≤ lM ‖e1− e2‖ν

E

+

√√√√L̃(‖p∗(e1, z1,w1)− p2‖V +‖w1−w2‖W +‖e1− e2‖ν

E +‖z1− z2‖µ

Z)

kR−αR−αS −αΨ− θ

2

≤ lM ‖e1− e2‖ν

E +

(
L̃

kR−αR−αS −αΨ− θ

2

) 1
2

×

[
‖w1−w2‖W +(1+ lM)‖e1− e2‖ν

E +‖z1− z2‖µ

Z

] 1
2
.

Therefore, inequality (3.14) holds. �

Remark 3.3. There are some comments regarding Theorem 3.1 and Theorem 3.2.

(i) The upper bound established in Theorem 3.1 derives an upper estimate of the distance
from an arbitrary point in the admissible set to the unique solution of PEVHI. Comput-
ing the upper estimate in (3.2) is controlled by the regularized gap function Gθ depend-
ing on the perturbed parameters of PEVHI.

(ii) Let us consider the special case (ii) of Problem 2.1, studied in [20]. Then our Prob-
lem 2.1 is a generalization to elliptical variational-hemivariational inequalities associ-
ated with perturbed parameters governed by both the set of constraints and the map-
pings. The Hölder continuous behavior of the solution mapping for Problem 2.1 in
Theorem 3.2 depends on the perturbed properties of the set of constraints and the map-
pings. Thus Theorem 3.2 extends remarkably the corresponding result in [20].

We now present an example to illustrate the main results in the paper.

Example 3.1. Let V = E = W = Z = R and the functions M and R be given in Example 2.1.
Let S : W ×V ×V → R, f : W →V ∗, Φ : Z→V ∗, and Ψ : W ×V → R be defined by

S (w, p,q) =
1

36
sin2

(
w+1

2

)
pq2, f (w) = sin2

(
w+1

2

)
−7,Φ(z) = cos

(
z

1
3 +1
2

)
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and

Ψ(w, p) =

{
sin2(w+1

2 )p2

12 if p > 0
(w2 +1)p if p≤ 0,

respectively for all w,z, p,q ∈ R.
It is clear that Ψ(w, ·) is a locally Lipschitz function. Moreover, the Clarke’s generalized

directional derivative Ψ0(w, p;q) is given by

Ψ
0(w, p;q) =


sin2(w+1

2 )pq
6 if p > 0,

max{0,(w2 +1)q} if p = 0,
(w2 +1)q if p < 0,

for all w, p,q ∈ R.

Then Problem 2.1 is equivalent to finding p ∈
[

1
2 + sin2

(
e

1
3
2

)
,2
]

such that

[
7−2p+

7
2

q3− cos

(
z

1
3 +1
2

)
+

(
2+

(p+q+6)p
36

)
sin2

(
w+1

2

)]
(q− p)≥ 0,

for all q ∈
[

1
2 + sin2

(
e

1
3
2

)
,2
]

.

By Example 2.1 and direct checking, it is not difficult to verify that the hypotheses (C1)–(C3)
hold with lR = 3, l′R = 2, l′′R = 42,kR = 21

8 ,αR = 2.
We now check condition (C4). It is clear that q 7→S (w, p,q) is convex for all w ∈W and

p ∈V . Moreover, for any w1,w2 ∈W , p1,q1, p2,q2 ∈M(E) =
[1

2 ,2
]
, we have

|S (w1, p1,q1)−S (w2, p2,q2)|

=

∣∣∣∣ 1
36

sin2
(

w1 +1
2

)
p1q2

1−
1

36
sin2

(
w2 +1

2

)
p2q2

2

∣∣∣∣
≤ 1

36
|p1q2

1|
∣∣∣∣sin2

(
w1 +1

2

)
− sin2

(
w2 +1

2

)∣∣∣∣+ 1
36

∣∣∣∣sin2
(

w2 +1
2

)
q2

1

∣∣∣∣ |p1− p2|

+
1

36

∣∣∣∣sin2
(

w2 +1
2

)
p2

∣∣∣∣ |q2
1−q2

2|

≤ 2
9
|w1−w2|+

1
9
|p1− p2|+

2
9
|q1−q2|;
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and

S (w1, p1,q2)−S (w1, p1,q1)+S (w2, p2,q1)−S (w2, p2,q2)

=
1

36
sin2

(
w1 +1

2

)
p1(q2

2−q2
1)+

1
36

sin2
(

w2 +1
2

)
p2(q2

1−q2
2)

=
1

36
(q2

2−q2
1)

(
sin2

(
w1 +1

2

)
p1− sin2

(
w2 +1

2

)
p2

)
≤ 1

36
|q2

1−q2
2|
(∣∣∣∣sin2

(
w1 +1

2

)
− sin2

(
w2 +1

2

)∣∣∣∣ |p1|+
∣∣∣∣sin2

(
w2 +1

2

)∣∣∣∣ |p1− p2|
)

≤ 1
9
|q1−q2|(2|w1−w2|+ |p1− p2|) =

1
9
|p1− p2||q1−q2|+

2
9
|w1−w2||q1−q2|.

This implies that condition (C4) is satisfied with lS = 2
9 , l
′
S = 1

9 , l
′′
S = 2

9 ,αS = 1
9 ,βS = 2

9 .
Similarly, we can show that hypothesis (C5) hold with lΨ = 2

3 , l
′
Ψ
= 1

3 ,αΨ = 1
6 ,βΨ = 1

3 . Since
kR−αR−αS −αΨ = 25

72 > 0, the assumption (C6) is valid.
Then, by using Theorem 2.1, we obtain that Problem 2.1 has a unique solution and the solu-

tion mapping f is given by

f(e,z,w) =

{
1
2
+ sin2

(
e

1
3

2

)}
.

Next, let θ = 1
3 satisfy the condition θ < 2(kR −αR −αS −αΨ) =

25
36 . Then, all the as-

sumptions of Theorem 3.1 are satisfied.
On the other hand, we consider ẽ = 1

2 , z̃ = 0, w̃ = 1 and N (ẽ) = [0,1], N (z̃) = [−1
2 ,

1
2 ],

N (w̃) = [1
2 ,

3
2 ]. Then, we define

g(e) =
1
2
+ sin2

(
e

1
3

2

)
, e ∈ E.

Thus M(e) = [g(e),2] for all e ∈ E. For any e1,e2 ∈N (ẽ), we have

|g(e1)−g(e2)|=

∣∣∣∣∣∣sin2

e
1
3
1
2

− sin2

e
1
3
1
2

∣∣∣∣∣∣
≤
∣∣∣∣e 1

3
1 − e

1
3
2

∣∣∣∣≤ |e1− e2|
1
3 .

Hence,

[g(e1),2]⊂ [g(e2),2]+ |e1− e2|
1
3 BR, ∀e1,e2 ∈N (ẽ),

where BR = [−1,1]. Consequently, for any e1,e2 ∈N (ẽ)

M(e1)⊂M(e2)+ |e1− e2|
1
3 BR,

so M is lM.ν-Hölder continuous on N (ẽ) with lM = 1,ν = 1
3 . Moreover, for each e ∈N (ẽ),

p ∈ M(e), there exists bM = 2, |p| ≤ bM. Hence, assumption (C7) holds. Also, we can verify
that conditions (C8) and (C9) are valid with µ = 1

3 , lΦ = 1
2 , bΦ = 1, bR = 3sin2 (1

2

)
+ 185

2 ,
l f = 1 and b f = 7− sin2 (3

4

)
. Thus, all the hypotheses in Theorem 3.2 are satisfied.
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We now obtain

l∗ = sup
p∈M(N (ẽ))

{
lp > 0 | |Ψ0(w, p;q)| ≤ lp‖q‖V , ∀w ∈W ,q ∈M(N (ẽ))

}
=

1
3
.

Then, it follows from (3.7) that

L̃=
5021
18

+3sin2
(

1
2

)
− sin2

(
3
4

)
.

Let (e1,z1,w1),(e2,z2,w2) ∈N (ẽ)×N (z̃)×N (w̃) be fixed and

p∗(e1,z1,w1) =
1
2
+ sin2

e
1
3
1
2

 ∈ f(e1,z1,w1),

p∗(e2,z2,w2) =
1
2
+ sin2

e
1
3
2
2

 ∈ f(e2,z2,w2).

We have

lM ‖e1− e2‖ν

E +

(
L̃

kR−αR−αS −αΨ− θ

2

) 1
2

×

[
‖w1−w2‖W +(1+ lM)‖e1− e2‖ν

E +‖z1− z2‖µ

Z

] 1
2

= |e1− e2|
1
3 +

√
5021
18 +3sin2 (1

2

)
− sin2 (3

4

)
13
72

√
|w1−w2|+2 |e1− e2|

1
3 + |z1− z2|

1
3

≥ |e1− e2|
1
3 ≥

∣∣∣∣∣∣sin2

e
1
3
1
2

− sin2

e
1
3
1
2

∣∣∣∣∣∣= |p∗(e1,z1,w1)− p∗(e2,z2,w2)|

= ‖p∗(e1,z1,w1)− p∗(e2,z2,w2)‖V .

This demonstrates the Hölder continuous behavior of the solution mapping f(·, ·, ·) for Problem
2.1 around the point (ẽ, z̃, w̃) =

(1
2 ,0,1

)
in Theorem 3.2.

4. CONCLUSION

In this work, we focus on considering a class of the elliptical variational-hemivariational
inequalities in the case of the perturbed parameters governed by both the set of constraints
and the mappings (for brevity, PEVHI (CM)); see Problem 2.1. Based on the arguments of
monotonicity and properties of the Clarke’s generalized directional derivative, we provide an
upper bound result for PEVHI (CM) (Theorem 3.1) and the Hölder continuity of the solution
mapping for PEVHI (CM) (Theorem 3.2) by using regularized gap functions under suitable
assumptions on the data.
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[29] M. Sofonea, S. Migórski, Variational-Hemivariational Inequalities with Applications, Pure and Applied
Mathematics, Chapman & Hall/CRC Press, Boca Raton, 2018.

[30] V.M. Tam, Sharp Hölder continuous behaviour of solutions to vector network equilibrium problems with a
polyhedral ordering cone, Filomat 36 (2022), 4563-4573.

[31] V.M. Tam, Upper-bound error estimates for double phase obstacle problems with Clarke’s subdifferential,
Numer. Funct. Anal. Optim. 43 (2022), 463-485.

[32] V.M. Tam, J.-S. Chen, Upper error bounds of DG-functions for history-dependent variational-hemivariational
inequalities, Appl. Set-Valued Anal. Optim. 5 (2023), 347-367.

[33] V.M. Tam, J.-S. Chen, Upper bounds for vector equilibrium problems associated with a p-order cone on
Hadamard manifolds, J. Nonlinear Convex Anal. 24 (2023), 2593-2609.

[34] V.M. Tam, J.-S. Chen, On the D-gap functions for variational-hemivariational inequalities with an application
to contact mechanics, Pacific J. Optim. in press (2024).

[35] G. Virmani, M. Srivastava, Levitin-Polyak well-posedness of constrained inverse quasivariational inequality,
Numer. Funct. Anal. Optim. 38 (2017), 91-109.
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