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Up to now, a variety of NCP functions have been studied. Among them, the well-
known Fischer-Burmeister function is one of the most prominent NCP functions
which is defined by

(1.3) ϕFB(a, b) =
√
a2 + b2 − (a+ b), ∀(a, b) ∈ R2.

Notice that ϕFB is not smooth everywhere. With the above characterization of ϕFB,
the NCP is equivalent to the following nonsmooth equations:

(1.4) H(x, y) :=


F (x)− y
ϕFB(x1, y1)

...
ϕFB(xn, yn)

 = 0.

Some nonsmooth algorithms have been successfully extended to solve (1.4), includ-
ing nonsmooth inexact Newton method [13], generalized Newton and Gauss-Newton
methods [20], nonsmooth Levenberg-Marquardt algorithm [10] and so on.

Based on the Fischer-Burmeister function ϕFB in (1.3), Chen and Pan [5] intro-
duced a family of NCP functions defined by

(1.5) ϕCP
p (a, b) = ∥(a, b)∥p − (a+ b), ∀(a, b) ∈ R2,

where p ∈ (1,∞) is any fixed real number and ∥(a, b)∥p denotes the p-norm of (a, b),
i.e.,

∥(a, b)∥p = p
√
|a|p + |b|p.

In fact, the function ϕCP
p is obtained by replacing the 2-norm of (a, b) in ϕFB by

a more general p-norm. Chen and Pan showed that the function ϕCP
p has several

favorable properties analogous to what ϕFB has. Based on ϕCP
p , a derivative-free

descent algorithm [4, 5] and a regularization semismooth Newton method [6] have
been studied for solving the NCP.

In this paper, based on the function ϕCP
p and motivated by the work in [1], we

introduce a family of new NCP functions which is defined by

(1.6) ϕp,q(a, b) = ∥(a, b)∥qp − sgn(a+ b)|a+ b|q, ∀(a, b) ∈ R2,

where p ∈ (1,∞) and q ∈ [1,∞) are any fixed real numbers and

sgn(t) :=


1 if t > 0

0 if t = 0.

−1 if t < 0

Obviously, ϕp,q taking q = 1 yields the NCP function ϕCP
p . We show that, dif-

ferent from the NCP functions ϕFB and ϕCP
p , the function ϕp,q in (1.6) is smooth

everywhere for any q ≥ p. Moreover, we show that ϕp,q is coercive and strongly
semismooth under suitable choices of p, q. By using the function ϕp,q, we reformulate
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the NCP as the following smooth equations

(1.7) Hp,q(x, y) :=


F (x)− y
ϕp,q(x1, y1)

...
ϕp,q(xn, yn)

 = 0

and propose an inexact Levenberg-Marquardt method (ILMM) to solve it. The
proposed ILMM differentiates itself from the current exact/inexact Levenberg-
Marquardt methods by adopting a derivative-free line search to ensure its glob-
alization. Specially, we prove that the iteration sequence generated by the proposed
ILMM is bounded when the function F is a uniform P -function, and if the generated
iteration sequence has an isolated accumulation point, then the whole sequence con-
verges to this point. Moreover, we prove that the convergence rate of the proposed
ILMM is superlinear/quadratic under a local error bound condition which is weaker
than the nonsingularity condition. It is worth pointing out that, different from
existing exact/inexact Levenberg-Marquardt methods, we obtain the local conver-
gence rate of our ILMM by using the (strong) semismoothness of the function Hp,q

in (1.7). We also report some numerical results which indicate that the proposed
ILMM is very effective for solving large-scale NCPs.

This paper is organized as follows. In Section 2, we give some properties of the
function ϕp,q. In Section 3, we propose an inexact Levenberg-Marquardt method to
solve the smooth equations (1.7). In Section 4, we analyze the global convergence of
the method. In Section 5, we establish the local superlinear/quadratic convergence
of the method under a local error bound condition. Numerical results are reported
in Section 6. Some conclusions are given in Section 7.

Throughout this paper, Rn denotes the set of all n dimensional real column
vectors. For simplicity, the column vector (xT , yT )T is written as (x, y) where
x, y ∈ Rn. ∥ · ∥ denotes the 2-norm. sgn(·) is the sign function. For any x∗ ∈ Rn,
the neighbourhood of x∗ is denoted by N(x∗, ε) := {x ∈ Rn|∥x − x∗∥ ≤ ε} where
ε > 0 is a constant. For any differentiable function f(x) : Rn → R, ∇f(x) denotes
the gradient of f at x, and for any differentiable mapping f(x) : Rn → Rn, J(x)
denotes the Jacobian of f at x. For any α, β > 0, α = O(β) (respectively, α = o(β))
means that lim supβ→0

α
β <∞ (respectively, lim supβ→0

α
β = 0).

2. Properties of the function ϕp,q(a, b)

In this section, we show that the function ϕp,q defined by (1.6) is a family of NCP
functions and it is smooth, coercive and strongly semismooth. It is worth pointing
out that the continuous-type generalization technique adopted in the function ϕp,q
was introduced by Alcantara and Chen [1] to generalize the NR function. This
generalization subsumes the discrete-type generalization used in [3, 7, 25, 31] where
one requires q is a positive odd integer.

Proposition 2.1. The function ϕp,q is a family of NCP functions, i.e.,

(2.1) ϕp,q(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.
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Proof. Let

fq(t) := sgn(t)|t|q, ∀ q ∈ [1,+∞).

Then we have

(2.2) ϕp,q(a, b) = fq(∥(a, b)∥p)− fq(a+ b).

Since fq is a bijective function, it follows that

ϕp,q(a, b) = 0 ⇐⇒ fq(∥(a, b)∥p) = fq(a+ b)

⇐⇒ ∥(a, b)∥p = a+ b

⇐⇒ ϕCP
p (a, b) = 0.

Since ϕCP
p is a family of NCP functions, we have proved (2.1). □

Proposition 2.2. (i) If q ≥ p, then the function ϕp,q is continuously differentiable
at any (a, b) ∈ R2 whose gradient is given by

(2.3) ∇ϕp,q(a, b) =
[
∇aϕp,q
∇bϕp,q

]
,

where

∇aϕp,q = q[sgn(a)|a|p−1∥(a, b)∥q−p
p − |a+ b|q−1],

∇bϕp,q = q[sgn(b)|b|p−1∥(a, b)∥q−p
p − |a+ b|q−1].

(ii) If p > 2 and q ≥ 2p, then ϕp,q is twice continuously differentiable at any
(a, b) ∈ R2 whose Hessian is given by

(2.4) ∇2ϕp,q(a, b) =

[
∇2

aaϕp,q ∇2
abϕp,q

∇2
baϕp,q ∇2

bbϕp,q

]
,

where

∇2
aaϕp,q = q[(p− 1)|a|p−2∥(a, b)∥q−p

p + (q − p)a2p−2∥(a, b)∥q−2p
p

− (q − 1)sgn(a+ b)|a+ b|q−2
]
,

∇2
abϕp,q = ∇2

baϕp,q(a, b)

= q
[
(q − p)sgn(a)|a|p−1sgn(b)|b|p−1∥(a, b)∥q−2p

p

− (q − 1)sgn(a+ b)|a+ b|q−2
]
,

∇2
bbϕp,q = q[(p− 1)|b|p−2∥(a, b)∥q−p

p + (q − p)b2p−2∥(a, b)∥q−2p
p

− (q − 1)sgn(a+ b)|a+ b|q−2
]
.

Proof. Note that the function fq(t) = sgn(t)|t|q is continuously differentiable when
q > 1 with f ′q(t) = q|t|q−1. Thus, when q ≥ p, by (2.2) we have for any (a, b) ̸= (0, 0),

(2.5) ∇aϕp,q(a, b) = q[sgn(a)|a|p−1∥(a, b)∥q−p
p − |a+ b|q−1],

(2.6) ∇bϕp,q(a, b) = q[sgn(b)|b|p−1∥(a, b)∥q−p
p − |a+ b|q−1].

In the following, we show that ϕp,q is differentiable at (a, b) = (0, 0) with gradient
being zero when q ≥ p. In fact, since ϕp,q(a, b) = fq(∥(a, b)∥p) − fq(a + b) and
fq is continuously differentiable as q > 1, it is sufficient to show that fq(∥(a, b)∥p)
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is differentiable at (a, b) = (0, 0) with gradient being zero. Since fq(∥(a, b)∥p) =
∥(a, b)∥qp, we have

(2.7) lim
(a,b)→(0,0)

fq(∥(a, b)∥p)
∥(a, b)∥p

= lim
(a,b)→(0,0)

∥(a, b)∥q−1
p = 0,

where the last step is due to the fact q > 1 since q ≥ p and p > 1. The equation
(2.7) means fq(∥(a, b)∥p) = o(∥(a, b)∥p) = o(∥(a, b)∥2), where the last equation
follows from the equivalence of norms in finite dimensional space. This shows that
fq(∥(a, b)∥p) is differentiable at (a, b) = (0, 0) with gradient being zero and so is
ϕp,q. Note that ∇ϕp,q is continuous at (a, b) = (0, 0) according to the formula (2.5)
and (2.6). Hence, ϕp,q is continuously differentiable everywhere. Moreover, when
p > 2 and q ≥ 2p, by using (sgn(t)|t|α)′ = α|t|α−1 and (|t|α)′ = αsgn(t)|t|α−1 for
any α > 1, we can prove the result (ii). The proof is completed. □

Chen and Pan proved that the function ϕCP
p is coercive for any p > 1, see [5,

Lemma 3.1]. The following proposition shows that this property also holds for the
function ϕp,q.

Proposition 2.3. Let ϕp,q be defined by (1.6). If {(ak, bk)} ⊂ R2 with ak → −∞
or bk → −∞, or ak → ∞ and bk → ∞, then |ϕp,q(ak, bk)| → ∞ as k → ∞.

Proof. For the sequence {(ak, bk)}, we consider the following three cases.
Case 1. ak + bk > 0. Let uk = ∥(ak, bk)∥p and vk = ak + bk. Then uk, vk > 0 and

|ϕp,q(ak, bk)| = |uqk − vqk| = |uk − vk||uq−1
k + uq−2

k vk + · · ·+ ukv
q−2
k + vq−1

k |
≥ |uk − vk|uq−1

k = |ϕCP
p (ak, bk)|∥(ak, bk)∥q−1

p .

Case 2. ak + bk < 0. Then

|ϕp,q(ak, bk)| = |∥(ak, bk)∥qp + |ak + bk|q| ≥ ∥(ak, bk)∥qp.

Case 3. ak + bk = 0. Then |ϕp,q(ak, bk)| = ∥(ak, bk)∥qp.
Combining these three cases, we obtain that for any k ≥ 0,

|ϕp,q(ak, bk)| ≥ min
{
|ϕCP

p (ak, bk)|, ∥(ak, bk)∥p
}
∥(ak, bk)∥q−1

p .

Since ∥(ak, bk)∥p → ∞ and |ϕCP
p (ak, bk)| → ∞ by [5, Lemma 3.1], the desired result

follows. □

As it is well-known, the strongly semismooth property plays a fundamental role
in analyzing the local quadratic convergence of smooth/nonsmooth Newton-type
methods. Let G(x) : Rn → Rm be a locally Lipschitz continuous function. Then G
is differentiable almost everywhere by Rademacher’s theorem. Let DG ⊆ Rn be the
set of points at which G is differentiable. Then the B-subdifferential ∂BG(x) of G
at x is defined by

∂BG(x) :=
{
V ∈ Rm×n|V = lim

xk→x
G′(xk), {xk} ⊆ DG

}
and the Clarke’s generalized Jacobian of G at x is ∂G(x) := conv(∂BG(x)) [8].
Observe that ∂G(x) = {G′(x)} if G is continuously differentiable at x. We say that
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G is directionally differentiable at x along the direction d if

G′(x; d) := lim
t↓0

G(x+ td)−G(x)

t

exists where G′(x; d) is called the directional derivative of G at x along the direction
d, and G is directionally differentiable at x if G is directionally differentiable at x
along any direction d ̸= 0.

Definition 2.4. (see [26]) Let G(x) : Rn → Rm be a locally Lipschitz continuous
function around x ∈ Rn. We say that G is semismooth at x if G is directionally
differentiable at x and for any y → x and V ∈ ∂G(y),

G(y)−G(x)− V (y − x) = o(∥y − x∥).

G is further said to be strongly semismooth at x if G is semismooth at x and for
any y → x and V ∈ ∂G(y),

G(y)−G(x)− V (y − x) = O(∥y − x∥2).

G is called (strongly) semismooth on Rn if it is (strongly) semismooth at each
point x ∈ Rn. Semismooth functions include smooth functions, piecewise smooth
functions and convex and concave functions. We also mention that the composition
of two (strongly) semismooth functions is a (strongly) semismooth function (see, [14,
Proposition 7.4.4]), and a vector-valued function is (strongly) semismooth if and
only if its all component functions are (strongly) semismooth (see, [26, Corollary
2.4]).

Proposition 2.5. The function ϕp,q defined by (1.6) is semismooth on R2 if q ≥ 1
and strongly semismooth if q ≥ 2.

Proof. Recall that ϕp,q(a, b) = fq(∥(a, b)∥p) − fq(a + b). Since the p-norm function
∥(a, b)∥p is strongly semismooth on R2 by [14, Proposition 7.4.8], it only needs to
show that fq(t) = sgn(t)|t|q is semismooth if q ≥ 1 and strongly semismooth if
q ≥ 2. This holds automatically because fq is continuously differentiable as q ≥ 1
and twice continuously differentiable as q > 2 respectively. The remaining case is
q = 2. In this case, f2(t) = sgn(t)t2. It is twice continuously differentiable at t ̸= 0
and strongly semismooth at t = 0 due to

lim
h→0

|f2(h)− f2(0)− f ′2(h)h|
h2

= lim
h→0

|sgn(h)h2 − 2|h|h|
h2

= 1.

This completes the proof. □

At the end of this section, we illustrate the geometrical interpretation of the
function z = ϕp,q with different p and q. From Figures 1–9, we can see that the
function ϕp,q with q = 1, i.e., ϕCP

p (a, b), is convex but it is not smooth at (0, 0).
While the function ϕp,q with q ≥ p is smooth everywhere but it is neither convex
nor concave. It is worth pointing out that the convexity of the function ϕCP

p (a, b)
has been proved by Chen and Pan [5, Proposition 3.1 (d)].
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3. An inexact Levenberg-Marquardt method

In the rest of this paper, for simplicity, we denote z := (x, y). In this section, we
study an inexact Levenberg-Marquardt method for solving the smooth nonlinear
equation (1.7). By Propositions 2.1 and 2.2, we have the following result.

Proposition 3.1. Let Hp,q(z) be given in (1.7). Then the following results hold.

(a) Hp,q(z) = 0 if and only if z = (x, y) is the solution of the NCP.
(b) Hp,q(z) is continuously differentiable at any z ∈ R2n with the Jacobian

Jp,q(z) =

[
F ′(x) −I
Dx Dy

]
,

where both Dx and Dy are diagonal matrices in Rn×n satisfying

(Dx)ii = q[sgn(xi)|xi|p−1(∥(xi, yi)∥p)q−p − |xi + yi|q−1],

(Dy)ii = q[sgn(yi)|yi|p−1(∥(xi, yi)∥p)q−p − |xi + yi|q−1].

We define the merit function ψp,q : R2n → R as

(3.1) ψp,q(z) :=
1

2
∥Hp,q(z)∥2.

Then, ψp,q(z) is continuously differentiable at any z ∈ R2n with

(3.2) ∇ψp,q(z) = Jp,q(z)
THp,q(z).

We now describe our method as follows.

Algorithm 3.1 (An inexact Levenberg-Marquardt method)

Step 0: Choose ρ, τ, γ, δ, σ ∈ (0, 1), α > 0, β ∈ (0, 2] and z0 := (x0, y0) ∈ Rn × Rn.
Let η, θ > 0 be given constants and {ηk}, {θk} be given positive sequences satisfying∑∞

k=0 ηk ≤ η <∞ and θk ≤ θ for all k ≥ 0. Set k := 0.

Step 1: If ∥∇ψp,q(z
k)∥ = 0, then stop.

Step 2: Set

(3.3) µk := α∥Hp,q(z
k)∥β .

Find a search direction dk ∈ R2n which satisfies

(3.4) (Jp,q(z
k)TJp,q(z

k) + µkI)dk = −∇ψp,q(z
k) + rk,

where

(3.5) ∥rk∥ ≤ min{ρ∥∇ψp,q(z
k)∥, θkψp,q(z

k)}.
If dk satisfies

(3.6) ∥Hp,q(z
k + dk)∥ ≤ τ∥Hp,q(z

k)∥,
then set λk := 1 and go to Step 4.

Step 3: If the descent condition

(3.7) ∇ψp,q(z
k)Tdk ≤ −γ∥dk∥2
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is not satisfied, then set dk := −∇ψp,q(z
k). Let lk be the smallest nonnegative

integer l satisfying

(3.8) ∥Hp,q(z
k + δldk)∥ ≤ (1 + ηk)∥Hp,q(z

k)∥ − σ∥δldk∥2.

Set λk := δlk and go to Step 4.

Step 4: Set zk+1 := zk + λkdk. Set k := k + 1 and go to Step 1.
For Algorithm 3.1, we have the following remarks.

(i) For some k, if ∇ψp,q(z
k) ̸= 0, then by (3.2) we have Hp,q(z

k) ̸= 0 and hence

µk > 0. So, the matrix Jp,q(z
k)T Jp,q(z

k) + µkI is positive definite and the search
direction dk in Step 2 is always obtained. Notice that dk ̸= 0. In fact, if dk = 0,
then by (3.4) we have ∥rk −∇ψp,q(z

k)∥ = 0. Since ∥rk∥ ≤ ρ∥∇ψp,q(z
k)∥, it follows

that ∥∇ψp,q(z
k)∥ = ∥rk∥ = 0 which contradicts ∇ψp,q(z

k) ̸= 0.
(ii) The search direction dk obtained in Step 2 may not be a good descent direction
of ψp,q since it is an approximate solution of Levenberg-Marquardt equation. So,
in Step 3, if the descent condition (3.7) is not satisfied, then we reset dk to be the
steepest descent direction of ψp,q. By this way, we can ensure that dk is always a
descent direction of ψp,q.
(iii) To ensure the globalization, existing exact/inexact Levenberg-Marquardt meth-
ods (e.g., [2, 9, 11, 12, 19, 21, 23, 29, 33]) usually adopt the Armijo line search rule.
While, in Step 3 of Algorithm 3.1, we adopt a derivative-free line search which was
introduced by Li and Fukushima [22] to ensure the globalization of Broyden-like
method. It is easy to see that the inequality (3.8) holds for all sufficiently large
l, because when l → ∞, the left-hand side of (3.8) tends to ∥Hp,q(z

k)∥ but the

right-hand side tends to (1+ ηk)∥Hp,q(z
k)∥. This shows that the line search in Step

3 is well-defined.

4. Global convergence

In the following, we assume that ∇ψp,q(z
k) ̸= 0 for all k ≥ 0, so that Algorithm

3.1 generates an infinite sequence {zk} with ∥Hp,q(z
k)∥ > 0 for all k ≥ 0.

Lemma 4.1. Let {zk} be the iteration sequence generated by Algorithm 3.1. Then
the sequence {∥Hp,q(z

k)∥} is convergent. Moreover, ∥Hp,q(z
k)∥ ≤ eη∥Hp,q(z

0)∥ for
all k ≥ 0.

Proof. For any k ≥ 0, if the condition (3.6) holds, then zk+1 = zk + dk and

(4.1) ∥Hp,q(z
k+1)∥ ≤ τ∥Hp,q(z

k)∥.

Otherwise, zk+1 = zk + λkdk with λk being generated by (3.8) and

(4.2) ∥Hp,q(z
k+1)∥ ≤ (1 + ηk)∥Hp,q(z

k)∥ − σ∥λkdk∥2.

So, we can conclude from (4.1) and (4.2) that for all k ≥ 0

(4.3) ∥Hp,q(z
k+1)∥ ≤ (1 + ηk)∥Hp,q(z

k)∥.

Since
∑∞

k=0 ηk ≤ η < ∞, by (4.3) and [22, Lemma 2.2], we have the first result.
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Moreover, due to (4.3), by following the proof of [22, Lemma 2.1], we can obtain
the second result. □

Theorem 4.2. Let {zk = (xk, yk)} be the iteration sequence generated by Algorithm
3.1. Then any accumulation point z∗ := (x∗, y∗) of {zk} is a stationary point of
the merit function ψp,q(z), i.e., ∇ψp,q(z

∗) = 0. Moreover, if Jp,q(z
∗) is nonsingular,

then Hp,q(z
∗) = 0 and (x∗, y∗) is a solution of the NCP.

Proof. Since z∗ is the accumulation point of {zk}, there exists a subsequence {zk}k∈K
where K ⊂ {0, 1, ...} such that lim(K∋)k→∞ zk = z∗. By continuity, we have

lim
(K∋)k→∞

Hp,q(z
k) = Hp,q(z

∗), lim
(K∋)k→∞

Jp,q(z
k) = Jp,q(z

∗),

lim
(K∋)k→∞

ψp,q(z
k) = ψp,q(z

∗), lim
(K∋)k→∞

∇ψp,q(z
k) = ∇ψp,q(z

∗).

We assume that ∇ψp,q(z
∗) ̸= 0 and will derive a contradiction. Since ∇ψp,q(z

∗) ̸= 0,

∥Hp,q(z
∗)∥ > 0 which implies lim(K∋)k→∞ µk = α∥Hp,q(z

∗)∥β > 0. So, there exists

a constant ξ such that µk ≥ ξ > 0 for all k ∈ K. Moreover, {∇ψp,q(z
k)}k∈K is

bounded since it is convergent. Thus, for any k ∈ K, if dk is generated in Step 2 by
(3.4) with (3.5) and it satisfies the condition (3.7), then

∥dk∥ ≤ ∥(Jp,q(zk)TJp,q(zk) + µkI)
−1∥(∥∇ψp,q(z

k)∥+ ∥rk∥)

≤ ∥∇ψp,q(z
k)∥+ ∥rk∥
µk

≤ (1 + ρ)∥∇ψp,q(z
k)∥

ξ
< ∞.

Otherwise, ∥dk∥ = ∥−∇ψp,q(z
k)∥ <∞. Hence, the sequence {∥dk∥}k∈K is bounded

and it has at least one accumulation point d∗. We may assume that lim(K1∋)k→∞ dk =

d∗ where K1 ⊂ K is an infinite subset. Now, we will show ∇ψp,q(z
∗)Td∗ = 0. Since

{∥Hp,q(z
k)∥} is convergent by Lemma 4.1, we have

(4.4) lim
k→∞

∥Hp,q(z
k)∥ = ∥Hp,q(z

∗)∥ > 0.

So, if there are infinitely many k for which λk is determined by (3.6),
then ∥Hp,q(z

k+1)∥ ≤ τ∥Hp,q(z
k)∥ holds for infinitely many k. This yields

lim infk→∞ ∥Hp,q(z
k)∥ = 0 which contradicts (4.4). Thus, there exists an index

k̄ such that λk is determined by (3.8) for all k ≥ k̄. In what follows, we divide the
proof into two parts.

Part 1. λk ≥ c > 0 for all k ≥ k̄ and k ∈ K1 where c is a fixed constant. Then
it follows from (3.8) that

(4.5) σc2∥dk∥2 ≤ σ∥λkdk∥2 ≤ (1 + ηk)∥Hp,q(z
k)∥ − ∥Hp,q(z

k+1)∥.

Since limk→∞ ηk = 0 and limk→∞ ∥Hp,q(z
k)∥ = ∥Hp,q(z

∗)∥, by letting k → ∞ with
k ∈ K1 in (4.5), we have d∗ = 0 and hence ∇ψp,q(z

∗)Td∗ = 0.
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Part 2. {λk}k∈K1 has a subsequence converging to zero and we may assume
lim(K2∋)k→∞ λk = 0 where K2 ⊂ K1 is an infinite set. From (3.8), we have for all

k ≥ k̄ and k ∈ K2,

∥Hp,q(z
k + δ−1λkdk)∥ > (1 + ηk)∥Hp,q(z

k)∥ − σ∥δ−1λkdk∥2

≥ ∥Hp,q(z
k)∥ − σ∥δ−1λkdk∥2,

which gives

(4.6)
∥Hp,q(z

k + δ−1λkdk)∥ − ∥Hp,q(z
k)∥

δ−1λk
> −σδ−1λk∥dk∥2.

Multiplying both sides of (4.6) by 1
2 [∥Hp,q(z

k+δ−1λkdk)∥+∥Hp,q(z
k)∥], we have for

all k ≥ k̄ and k ∈ K2,

ψp,q(z
k + δ−1λkdk)− ψp,q(z

k)

δ−1λk

(4.7) > −1

2
σδ−1λk∥dk∥2[∥Hp,q(z

k + δ−1λkdk)∥+ ∥Hp,q(z
k)∥].

Since ψp,q is continuously differentiable at z∗, by letting k → ∞ with k ∈ K2 in
(4.7), we have ∇ψp,q(z

∗)Td∗ ≥ 0. On the other hand, since dk is a sufficient descent

direction of ψp,q, we have ∇ψp,q(z
∗)Td∗ = lim(K2∋)k→∞∇ψp,q(z

k)Tdk ≤ 0. These

give ∇ψp,q(z
∗)Td∗ = 0.

Let K̄ := {k ∈ K1|dk = −∇ψp,q(z
k)}. If K̄ is an infinite set, then we have

∥∇ψp,q(z
∗)∥2 = lim

(K̄∋)k→∞
∥∇ψp,q(z

k)∥2

= lim
(K̄∋)k→∞

−∇ψp,q(z
k)Tdk

= −∇ψp,q(z
∗)Td∗

= 0,

which contradicts the assumption ∇ψp,q(z
∗) ̸= 0. Otherwise, K̄ is a finite set and

dk satisfies (3.7) for all sufficiently large k ∈ K1. Then, by (3.7) we have

γ∥d∗∥2 = lim
(K1∋)k→∞

γ∥dk∥2

≤ lim
(K1∋)k→∞

−∇ψp,q(z
k)Tdk

= −∇ψp,q(z
∗)Td∗

= 0,

which gives d∗ = 0. By (3.4), we have for all k ∈ K1,

(4.8) ∥rk −∇ψp,q(z
k)∥ ≤ ∥Jp,q(zk)T Jp,q(zk) + µkI∥∥dk∥.

Since
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lim
(K1∋)k→∞

(Jp,q(z
k)TJp,q(z

k) + µkI) = Jp,q(z
∗)TJp,q(z

∗) + α∥Hp,q(z
∗)∥βI,

by (4.8) and d∗ = 0, we have

(4.9) lim
(K1∋)k→∞

∥rk −∇ψp,q(z
k)∥ = 0.

Since ∥rk∥ ≤ ρ∥∇ψp,q(z
k)∥, we can deduce from (4.9) that

∥∇ψp,q(z
∗)∥ = lim

(K1∋)k→∞
∥∇ψp,q(z

k)∥ = lim
(K1∋)k→∞

∥rk∥ = 0,

which also contradicts the assumption ∇ψp,q(z
∗) ̸= 0. Therefore, we can conclude

that any accumulation point z∗ of {zk} satisfies ∇ψp,q(z
∗) = 0. The second result

follows directly from (3.2). We have completed the proof. □

In Theorem 4.2, we prove that any accumulation point of the iteration sequence
{zk} generated by Algorithm 3.1, if it exists, is a stationary point of the merit
function ψp,q(z). An important question that remains unanswered is whether such
an accumulation point exists or not. In the rest of this section, we answer this
question by investigating the boundedness of the sequence {zk}. For this purpose,
we introduce commonly studied uniform P -functions. A function F : Rn → Rn is
said to be a uniform P -function on Rn if there exists a positive scalar ξ > 0 such
that

max
1≤i≤n

(ui − vi)(Fi(u)− Fi(v)) ≥ ξ∥u− v∥2, ∀ u, v ∈ Rn.

A stronger condition than the uniform P -property of F is the so-called strong mono-
tonicity which states that there exists a positive scalar ξ > 0 such that

⟨u− v, F (u)− F (v)⟩ ≥ ξ∥u− v∥2, ∀ u, v ∈ Rn.

Both uniform P -functions and strong monotone functions are very broad and have
very fine properties. By using the coerciveness of the function ϕp,q given in Propo-
sition 2.3, similarly as the proof of [5, Proposition 3.5], we can obtain the following
result.

Lemma 4.3. If F is a uniform P -function, then the level sets

(4.10) L(C) := {z = (x, y) ∈ R2n|ψp,q(z) ≤ C}

are bounded for any C > 0.

Theorem 4.4. If F is a uniform P -function, then the iteration sequence {zk}
generated by Algorithm 3.1 is bounded and hence it has at least one accumulation
point.

Proof. By (3.1) and the second result in Lemma 4.1, we have ψp,q(z
k) ≤ e2ηψp,q(z

0)

for all k ≥ 0. This implies {zk} ⊂ L(e2ηψp,q(z
0)) where L(·) is the level set defined

by (4.10). Then, by Lemma 4.3, we obtain the desired result. □
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Theorem 4.5. Let {zk} be the iteration sequence generated by Algorithm 3.1. If
{zk} has an isolated accumulation point z∗, then the whole sequence {zk} converges
to z∗.

Proof. Let {zk}k∈K be any subsequence of {zk} such that lim(K∋)k→∞ zk = z∗.

By Theorem 4.2, it holds lim(K∋)k→∞∇ψp,q(z
k) = ∇ψp,q(z

∗) = 0. Since either

∇ψp,q(z
k)Tdk ≤ −γ∥dk∥2 or dk = −∇ψp,q(z

k) for any k, we have lim(K∋)k→∞ ∥dk∥ =

0 which gives lim(K∋)k→∞ ∥zk+1 − zk∥ = 0. Thus, by [14, Proposition 8.3.10], we
have the desired result. □

5. Local superlinear/quadratic convergence

In this section, we suppose that the iteration sequence {zk} generated by Algo-
rithm 3.1 converges to z∗ and Hp,q(z

∗) = 0. We prove that {zk} converges to z∗

locally superlinearly or quadratically under the following assumption.

Assumption 5.1. There exist constants ξ > 0 and ϵ > 0 such that

(5.1) ∥Hp,q(z)∥ ≥ ξ∥z − z∗∥, ∀ z ∈ N(z∗, ϵ).

Assumption 5.1 is a local error bound condition which has been used to analyze
the local convergence properties of some smoothing Levenberg-Marquardt methods
(e.g., [21,23]). Note that if Jp,q(z

∗) is nonsingular, then Assumption 5.1 holds by [31,
Lemma 8]. However, the converse is not necessarily true. A simple counterexample
is Hp,q(z) = |z| = 0 where z ∈ R. Hence, Assumption 5.1 is weaker than the
nonsingularity condition.

Lemma 5.2. The function Hp,q defined by (1.7) is semismooth on R2n if q ≥ 1.
Moreover, if F ′ is locally Lipschitzian and q ≥ 2, then Hp,q is strongly semismooth
on R2n.

Proof. The lemma holds by Proposition 2.5. □

Lemma 5.3. Suppose that Assumption 5.1 holds. Let dk be the direction generated
by (3.4) and (3.5). If q ≥ 1, then for all sufficiently large k,

(5.2) ∥Hp,q(z
k) + Jp,q(z

k)dk∥ ≤ o(∥zk − z∗∥) + ∥Jp,q(zk)∥
∥rk∥
µk

.

Moreover, if F ′ is locally Lipschitzian and q ≥ 2, then for all sufficiently large k,

(5.3) ∥Hp,q(z
k) + Jp,q(z

k)dk∥ ≤ O(∥zk − z∗∥1+
β
2 ) + ∥Jp,q(zk)∥

∥rk∥
µk

.

Proof. Let

d̂k := −(Jp,q(z
k)T Jp,q(z

k) + µkI)
−1∇ψp,q(z

k).

Then, by (3.4) it holds

(5.4) dk = d̂k + (Jp,q(z
k)TJp,q(z

k) + µkI)
−1rk.

For any k ≥ 0, we now define
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(5.5) φk(d) := ∥Hp,q(z
k) + Jp,q(z

k)d∥2 + µk∥d∥2,

and consider the following optimization problem:

(5.6) min
d∈R2n

φk(d).

It is easy to see that d̂k is the solution of (5.6) because φk(d) is convex and d̂k is a
stationary point of φk(d). Hence, by (5.4) and (5.5), for all sufficiently large k,

∥Hp,q(z
k) + Jp,q(z

k)dk∥

= ∥Hp,q(z
k) + Jp,q(z

k)
[
d̂k + (Jp,q(z

k)T Jp,q(z
k) + µkI)

−1rk
]
∥

≤ ∥Hp,q(z
k) + Jp,q(z

k)d̂k∥+ ∥Jp,q(zk)∥
∥rk∥
µk

≤
√
φk(d̂k) + ∥Jp,q(zk)∥

∥rk∥
µk

≤
√
φk(z∗ − zk) + ∥Jp,q(zk)∥

∥rk∥
µk

=
√

∥Hp,q(zk)− Jp,q(zk)(zk − z∗)∥2 + µk∥zk − z∗∥2

+ ∥Jp,q(zk)∥
∥rk∥
µk

.(5.7)

Since Hp,q is semismooth at z∗ when q ≥ 1 and Hp,q(z
∗) = 0, for all sufficiently large

k,

(5.8) ∥Hp,q(z
k)− Jp,q(z

k)(zk − z∗)∥ = o(∥zk − z∗∥).

Also noticing that limk→∞ µk = α∥Hp,q(z
∗)∥β = 0, for all sufficiently large k,

(5.9) µk∥zk − z∗∥2 = o(∥zk − z∗∥2).

So, by (5.7)–(5.9), we have (5.2). Moreover, if F ′ is locally Lipschitzian and q ≥ 2,
then Hp,q is strongly semismooth at z∗ and so for all sufficiently large k,

(5.10) ∥Hp,q(z
k)− Jp,q(z

k)(zk − z∗)∥ = O(∥zk − z∗∥2).

Since Hp,q is semismooth at z∗, Hp,q is locally Lipschitz continuous near z∗. Hence,
for all z sufficiently close to z∗,

(5.11) ∥Hp,q(z)∥ = ∥Hp,q(z)−Hp,q(z
∗)∥ = O(∥z − z∗∥).

Then, by the definition of µk, for all sufficiently large k,

µk = α∥Hp,q(z
k)∥β = O(∥zk − z∗∥β),

which gives

(5.12) µk∥zk − z∗∥2 = O(∥zk − z∗∥2+β).

Thus, by (5.7), (5.10) and (5.12), we have (5.3). The proof is completed. □
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Lemma 5.4. Suppose that Assumption 5.1 holds and q ≥ 1. Let dk be the direction

generated by (3.4) and (3.5). If limk→∞
∥rk∥
µk

= 0, then limk→∞ dk = 0.

Proof. By (5.4), we have for all k ≥ 0

∥dk∥ = ∥d̂k + (Jp,q(z
k)TJp,q(z

k) + µkI)
−1rk∥

≤ ∥d̂k∥+ ∥(Jp,q(zk)TJp,q(zk) + µkI)
−1∥∥rk∥

≤ ∥d̂k∥+
∥rk∥
µk

.

Thus, we only need to show that limk→∞ ∥d̂k∥ = 0. In fact, by the definition of µk
and (5.1), for all sufficiently large k,

(5.13) µk = α∥Hp,q(z
k)∥β ≥ αξβ∥zk − z∗∥β .

Since d̂k is the solution of (5.6), by (5.5), (5.8) and (5.13), for all sufficiently large
k,

∥d̂k∥2 ≤ φk(d̂k)

µk

≤ φk(z
∗ − zk)

µk

=
∥Hp,q(z

k)− Jp,q(z
k)(zk − z∗)∥2

µk
+ ∥zk − z∗∥2

≤ o(∥zk − z∗∥2)
αξβ∥zk − z∗∥β

+ ∥zk − z∗∥2.

This gives limk→∞ ∥d̂k∥ = 0 and completes the proof. □

Theorem 5.5. Let Assumption 5.1 hold and q ≥ 1. Then {zk} converges to z∗

superlinearly if one of the following conditions holds:

(i) β ∈ (0, 1);
(ii) β = 1 and θk → 0 as k → ∞.

Proof. By (3.1), (3.3) and (5.11), for all sufficiently large k,

(5.14)
ψp,q(z

k)

µk
=

1

2α
∥Hp,q(z

k)∥2−β = O(∥zk − z∗∥2−β).

Thus, if β ∈ (0, 1), then by (3.5) and (5.14), for all sufficiently large k,

∥rk∥
µk

≤ θkψp,q(z
k)

µk
≤ θO(∥zk − z∗∥2−β) = o(∥zk − z∗∥).

And if β = 1 and θk → 0 as k → ∞, then by (3.5) and (5.14), for all sufficiently
large k,

∥rk∥
µk

≤ θkψp,q(z
k)

µk
= θkO(∥zk − z∗∥) = o(∥zk − z∗∥).



A FAMILY OF SMOOTH NCP FUNCTIONS AND AN INEXACT LM METHOD 2377

So, we conclude that if one of the conditions (i) and (ii) holds, then for all sufficiently
large k,

(5.15)
∥rk∥
µk

= o(∥zk − z∗∥),

which together with (5.2) gives

(5.16) ∥Hp,q(z
k) + Jp,q(z

k)dk∥ = o(∥zk − z∗∥).

Moreover, by Lemma 5.4 and (5.15), we have limk→∞ dk = 0 and hence limk→∞(zk+
dk) = z∗. Since Hp,q is semismooth at x∗, for all sufficiently large k,

(5.17) ∥Hp,q(z
k)−Hp,q(z

∗)− Jp,q(z
k)(zk − z∗)∥ = o(∥zk − z∗∥),

(5.18) ∥Hp,q(z
k + dk)−Hp,q(z

∗)− Jp,q(z
k + dk)(zk + dk − z∗)∥ = o(∥zk + dk − z∗∥).

Moreover, by the continuity of Jp,q(x) we have

(5.19) lim
k→∞

∥Jp,q(zk + dk)− Jp,q(z
k)∥ = 0.

Thus, by (5.17), (5.18) and (5.19), for all sufficiently large k,

∥Hp,q(z
k + dk)−Hp,q(z

k)− Jp,q(z
k)dk∥

≤ ∥Hp,q(z
k + dk)−Hp,q(z

∗)− Jp,q(z
k + dk)(zk + dk − z∗)∥

+∥(Jp,q(zk + dk)− Jp,q(z
k))(zk + dk − z∗)∥

+∥Hp,q(z
k)−Hp,q(z

∗)− Jp,q(z
k)(zk − z∗)∥

= o(∥zk + dk − z∗∥) + o(∥zk − z∗∥).(5.20)

On the other hand, by (5.1), for all sufficiently large k,

ξ∥zk + dk − z∗∥ ≤ ∥Hp,q(z
k + dk)∥

≤ ∥Hp,q(z
k + dk)−Hp,q(z

k)− Jp,q(z
k)dk∥

+∥Hp,q(z
k) + Jp,q(z

k)dk∥,(5.21)

which together with (5.16) and (5.20) gives

(5.22) ∥zk + dk − z∗∥ = o(∥zk − z∗∥).

Hence, by (5.1), (5.11), and (5.22), for all sufficiently large k,

∥Hp,q(z
k + dk)∥ = O(∥zk + dk − z∗∥) = o(∥zk − z∗∥) = o(∥Hp,q(z

k)∥).

This indicates that for all sufficiently large k, the direction dk generated by (3.4)
and (3.5) always satisfies the condition (3.6) and hence λk = 1. Consequently,
for all sufficiently large k, zk+1 = zk + dk, which together with (5.22) proves the
theorem. □
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Theorem 5.6. Let Assumption 5.1 hold. Suppose that F ′ is locally Lipschitzian
near z∗ and q ≥ 2. If we choose β = 2 and θk = O(∥Hp,q(z

k)∥2), then {zk} converges
to z∗ quadratically.

Proof. By (3.1), (3.3), (3.5) and (5.11), for all sufficiently large k,

(5.23)
∥rk∥
µk

≤ θkψp,q(z
k)

µk
=
θk
2α

= O(∥zk − z∗∥2),

which together with (5.3) gives

(5.24) ∥Hp,q(z
k) + Jp,q(z

k)dk∥ = O(∥zk − z∗∥2).

By Lemma 5.2, Hp,q is strongly semismooth at z∗. Thus, for all sufficiently large k,

∥Hp,q(z
k)−Hp,q(z

∗)− Jp,q(z
k)(zk − z∗)∥ = O(∥zk − z∗∥2).

Moreover, by Lemma 5.4 and (5.23), we have limk→∞ dk = 0 and so limk→∞(zk +
dk) = z∗. Therefore, the inequality (5.20) becomes

(5.25) ∥Hp,q(z
k +dk)−Hp,q(z

k)−Jp,q(z
k)dk∥ = o(∥zk +dk − z∗∥)+O(∥zk − z∗∥2).

By (5.21), (5.24) and (5.25), for all sufficiently large k,

ξ∥zk + dk − z∗∥ ≤ o(∥zk + dk − z∗∥) +O(∥zk − z∗∥2),

which gives

∥zk + dk − z∗∥ = O(∥zk − z∗∥2).
Then, by following the proof of Theorem 5.5, we can obtain the quadratic conver-
gence. □

6. Numerical results

In this section, we report some numerical results of Algorithm 3.1. All exper-
iments were carried out on a PC with CPU of Inter(R) Core(TM)i7-7700 CPU
@ 3.60 GHz and RAM of 8.00GB. The codes are written in MATLAB and run in
MATLAB R2018a environment. The parameters used in Algorithm 3.1 are chosen
as ρ = 0.01, τ = 0.5, γ = 0.8, δ = 0.8, σ = 0.2, α = 10−3, β = 1, ηk = 0.85k, θk =

1
2k+1 . In Step 2, GMRES is used as the linear solver to find the inexact direction

dk. Moreover, we use ∥Hτ,q(z
k)∥ ≤ 10−5 as the stopping criterion.

6.1. Algorithm 3.1 for solving LCP. In this subsection, we apply Algorithm
3.1 to solve the linear complementarity problem (LCP):

(6.1) (LCP) x ≥ 0, y ≥ 0, y =Mx+ a, xT y = 0,

in which M ∈ Rn×n and a ∈ Rn are given matrix and vector. In our experiments,
we investigate the following two LCPs:

(i) Let M be the block diagonal matrix with
NT

1 N1

∥NT
1 N1∥

, ...,
NT

4 N4

∥NT
4 N4∥

as block diag-

onals, i.e., M = diag
( NT

i Ni

∥NT
i Ni∥

)
in which Ni = rand(n4 ,

n
4 ) for i = 1, ..., 4. Take

a = rand(n, 1). In this case, the function F (x) = Mx + a has the Cartesian
P0-property.
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Table 1 Numerical results of Algorithm 3.1 for LCP (i)
p q n mIT aIT aCPU aHK
1.5 2.0 1000 3 3.8 1.58 1.1256e-06

2000 3 3.8 8.37 1.5427e-06
3000 3 4.2 26.16 3.3168e-06

2.5 1000 3 4.2 1.70 4.1813e-06
2000 3 4.4 9.80 2.0970e-06
3000 4 4.9 30.78 3.0403e-06

3.0 1000 4 5.0 1.98 1.4613e-06
2000 5 5.4 12.03 4.5947e-07
3000 5 5.7 37.48 2.2154e-06

4.0 1000 5 6.3 2.63 2.3774e-06
2000 5 6.4 14.32 2.2187e-06
3000 5 7.1 44.80 2.8037e-06

2.0 2.0 1000 3 3.0 1.22 1.0820e-06
2000 3 3.0 6.67 1.5592e-06
3000 3 3.9 24.74 3.3452e-06

2.5 1000 4 4.1 1.73 1.5391e-06
2000 4 4.3 9.73 1.0381e-06
3000 4 4.7 30.29 8.9666e-07

3.0 1000 4 5.0 2.11 1.7055e-06
2000 4 5.2 12.32 1.6543e-06
3000 4 5.8 37.41 1.1828e-06

4.0 1000 5 6.3 2.63 2.0269e-06
2000 5 6.7 14.9 1.9541e-06
3000 5 7.1 45.18 3.0181e-06

3.0 3.0 1000 5 5.3 2.16 1.4450e-06
2000 5 5.5 12.49 8.0427e-07
3000 5 5.9 38.01 1.0286e-06

3.5 1000 5 5.9 2.52 1.7069e-06
2000 6 6.2 14.23 7.9032e-07
3000 6 6.6 42.34 2.2772e-06

4.0 1000 6 6.5 2.61 1.5799e-06
2000 6 6.9 15.51 8.0136e-07
3000 6 7.3 46.58 2.3059e-06

5.0 1000 6 7.6 3.08 2.6571e-06
2000 7 8.0 17.69 1.8766e-06
3000 7 8.2 52.73 3.9742e-06
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Table 2 Numerical results of Algorithm 3.1 for LCP (ii)
p q n mIT aIT aCPU aHK
1.5 2.0 1000 3 4.9 2.01 9.6543e-07

2000 3 4.9 10.99 2.9507e-06
3000 3 6.1 31.95 2.2055e-06

2.5 1000 3 5.1 2.08 1.6982e-06
2000 3 5.7 12.80 7.8356e-07
3000 3 7.0 44.83 1.7204e-06

3.0 1000 3 5.4 2.17 3.2059e-06
2000 3 6.2 12.80 1.1019e-06
3000 3 7.5 48.29 2.7454e-06

4.0 1000 3 6.4 2.83 6.4125e-07
2000 3 6.9 16.33 3.3298e-06
3000 3 8.5 54.06 3.0430e-06

2.0 2.0 1000 2 4.1 1.70 1.3339e-06
2000 3 4.7 10.79 8.5056e-07
3000 3 5.7 37.92 1.1304e-06

2.5 1000 2 4.5 2.01 1.9688e-06
2000 3 5.1 11.89 1.5761e-06
3000 3 6.4 41.98 2.0109e-06

3.0 1000 2 5.0 2.04 1.0729e-06
2000 3 5.4 12.20 1.6718e-06
3000 3 7.1 45.86 2.3872e-06

4.0 1000 2 5.6 2.66 2.0955e-06
2000 3 6.5 14.55 9.9662e-07
3000 3 8.1 52.34 2.5604e-06

3.0 3.0 1000 2 4.6 1.87 2.2813e-06
2000 3 5.3 11.90 8.2407e-07
3000 3 6.8 43.80 1.9457e-06

3.5 1000 2 5.0 2.05 1.7447e-06
2000 3 5.6 12.73 1.5802e-06
3000 3 7.4 47.25 1.6054e-06

4.0 1000 2 5.5 2.42 4.9046e-07
2000 3 6.0 13.41 2.4359e-06
3000 3 7.6 48.91 3.3615e-06

5.0 1000 2 6.0 2.43 1.9316e-06
2000 3 6.9 15.69 1.6752e-06
3000 3 8.5 54.22 2.1936e-06
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Table 3 Numerical results of Algorithm 3.1 (p = 2, q = 2) for LCP
LCP n aIT aCPU aHK
(i) 5000 3.0 75.52 1.4415e-06

6000 3.0 129.35 8.0437e-07
7000 3.0 222.79 2.9783e-07
8000 3.1 446.83 9.7375e-07

(ii) 5000 4.3 106.82 2.6809e-06
6000 4.4 190.79 9.7585e-07
7000 5.2 364.81 2.2891e-06
8000 5.2 739.36 5.5599e-07

(ii) Let M = diag
(

Ni
∥Ni∥ − eye(n/4)

)
in which Ni = rand(n4 ,

n
4 ) for i = 1, ..., 4.

Take a = rand(n, 1). In this case, the function F (x) = Mx + a has no Cartesian
P0-property.

In the experiments, we generate 10 problem instances for each size n. We use
x0 = (1, 0, ..., 0)T and y0 = Mx0 + a as the starting point. Numerical results are
listed in Tables 1 and 2 in which p and q are parameters used in the NCP function
ϕp,q, mIT denotes the smallest value of the iteration numbers, aIT denotes the
average value of the iteration numbers, aCPU denotes the average value of the
CPU time in seconds and aHK denotes the average value of ∥Hp,q(z

k)∥ when the
algorithm terminates among the 10 testing.

From Tables 1 and 2, we can see that Algorithm 3.1 is very effective for solving
LCPs even though these problems have no Cartesian P/P0-property. Moreover,
from our numerical implementations, we find that the performance of our algorithm
becomes worse when p and q increase. This indicates that Algorithm 3.1 may
cause numerical difficulty and ill-conditional effects for large values of p and q. A
reasonable interpretation for this is that the values of elements in ∇ϕp,q(a, b) may be
very large/small when p and q are larger. This may make Jacobian matrix Jp,q(z)
to be close to singular or badly scaled so that the performance of Algorithm 3.1 is
worse. Table 3 gives some numerical results of Algorithm 3.1 with p = 2 and q = 2
from which we can see that Algorithm 3.1 is fairly capable for solving large-scale
LCPs with a limited amount of work.

6.2. Algorithm 3.1 for solving NCP. In this subsection, we apply Algorithm
3.1 to solve the NCP defined by (1.1). The test problem is generated in the way
proposed by Gomes-Ruggiero et al [16]. Let f(x) = (f1(x), ..., fn(x)) be a differen-
tiable nonlinear mapping from Rn to Rn. Let x∗ = (0, 1, 0, 1, ...)T . For i = 1, ..., n,
set

Fi(x) =

{
fi(x)− f(x∗i ) + 1, if i is odd,
fi(x)− f(x∗i ), otherwise.

Obviously, x∗ is a nondegenerate solution of this NCP. In this example, for the
function f , we consider the following four cases:

(a) fi(x) = exi − 1, i = 1, ..., n;
(b) fi(x) = sin(xi)− x2i , i = 1, ..., n;
(c) fi(x) = x2i − i, i = 1, ..., n;
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(d) fi(x) =

{
x2i + xi+1, i = 1, ..., n− 1,

x2i , i = n.

In the experiments, we choose with p = 2 and q = 2 and use x0 = y0 = (1, ..., 1)T

as the starting point. First, to observe local convergence behavior of our algorithm,
we apply Algorithm 3.1 to solve these NCPs with the size n = 1000. Table 4 gives
the value of ∥Hp,q(z

k)∥ at the k-th iteration from which we can clearly see the local
fast convergence rate of our algorithm.

Table 4 The value of ∥Hp,q(z
k)∥ at the k-th iteration

NCP(a) NCP (b) NCP (c) NCP (d)
k = 1 15.8076 28.3128 14.2327 14.8954
k = 2 2.5974 5.5398 4.9297 7.1101
k = 3 0.3398 0.3643 0.7105 1.0330
k = 4 0.0019 0.0042 0.0083 0.0298
k = 5 3.2660e-08 7.3018e-07 1.5768e-06 9.9516e-06
k = 6 5.0250e-15 2.1499e-14 6.1935e-14 1.5354e-12

Next, we apply Algorithm 3.1 to solve these NCPs with different sizes. Numerical
results are listed in Table 5 in which IT denotes the iteration numbers, CPU denotes
the CPU time in seconds andHK denotes the value of ∥Hp,q(z

k)∥ when the algorithm
terminates. From Table 5, we may see that Algorithm 3.1 is very effective for solving
large-scale NCPs.

Table 5 Numerical results of Algorithm 3.1 for NCP

NCP n IT CPU HK
(a) 5000 5 235.80 5.6812e-08

6000 5 373.69 5.8987e-08
7000 5 572.07 6.0467e-08
8000 5 989.94 6.1401e-08

(b) 5000 4 179.65 1.2951e-10
6000 4 309.81 1.6573e-10
7000 4 458.72 2.0575e-10
8000 4 616.21 8.2120e-14

(c) 5000 5 218.55 3.1020e-06
6000 5 329.52 3.3193e-06
7000 5 545.96 3.5074e-06
8000 5 817.39 3.6727e-06

(d) 5000 5 257.61 3.8963e-12
6000 6 419.20 4.1944e-12
7000 6 671.42 4.4223e-12
8000 6 929.52 4.5971e-12

7. Conclusions

We have introduced a new NCP function ϕp,q(a, b) defined by (1.6) and showed
that it is smooth, coercive and strongly semismooth. By the equivalent reformula-
tion, we have proposed an inexact Levenberg-Marquardt method (ILMM) to solve
the NCP which is designed based on a derivative-free line search technique. We
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have proved that the proposed ILMM has global convergence without any addi-
tional condition. Moreover, under a local error bound condition which is weaker
than the nonsingularity condition, we have proved that the proposed ILMM has lo-
cal superlinear/quadratic convergence rate. We have also reported some numerical
results which indicate that the proposed ILMM is very effective for solving large-
scale LCPs and NCPs. In the terms of Jordan algebra, Ma et al. [25] proposed a
generalized Fischer-Burmeister ϕqD−FB : Rn × Rn → Rn which is defined by

ϕqD−FB(x, y) := (
√
x2 + y2)q − (x+ y)q,

where q > 1 is a positive odd integer. Ma et al. [25] showed that ϕqD−FB is a com-
plementarity function associated with the second-order cone and it is continuously
differentiable everywhere. Based on results established in [25], the ILMM stud-
ied in this paper may be extended to solve general large-scale second-order cone
complementarity problems which is an interesting issue deserves further research.
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