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Abstract. In this paper, we derive a few type of trace versions of
Young inequality associated with second-order cone, which can be ap-
plied to derive the Hölder inequality, Minkowski inequality. Moreover,
the triangular inequality is also considered.

1. Introduction

It is well-known that the Young inequality, the Hölder inequality, and the
Minkowski inequality are powerful tools in analysis and are widely applied in
many fields. There exist many kinds of variants, generalizations, and refine-
ments, which provide a variety of applications. In this paper, we explore the
trace versions of Young inequality, Hölder inequality, Minkowski inequality
in the setting of second-order cone (SOC for short and will be introduced in
Section 2). We start with recalling these three classical inequalities [3, 11]
briefly.

Suppose that a, b ≥ 0 and 1 < p, q < ∞ with 1
p + 1

q = 1, the Young

inequality is expressed by

(1.1) ab ≤ ap

p
+
bq

q
.

The Young inequality is a special case of the weighted arithmetic mean-
geometric mean inequality and very useful in real analysis. In particular, it
can be employed as a tool to prove the Hölder inequality:

n∑
k=1

|akbk| ≤

(
n∑
k=1

|ak|p
) 1

p
(

n∑
k=1

|bk|q
) 1

q

,

where a1, a2, · · · , an, b1, b2, · · · , bn are real (or complex) numbers. In light
of the Hölder inequality, one can deduce the Minkowski inequality as below:(

n∑
k=1

|ak + bk|p
) 1

p

≤

(
n∑
k=1

|ak|p
) 1

p

+

(
n∑
k=1

|bk|p
) 1

p

.
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In 1995, Ando [1] showed the singular value version of Young inequality
that

(1.2) sj(AB) ≤ sj
(
Ap

p
+
Bq

q

)
for all 1 ≤ j ≤ n,

where A and B are positive definite matrices. Note that both positive semi-
definite cone and second-order cone belong to symmetric cones [9]. It is nat-
ural to ask whether there is a similar version in the setting of second-order
cone. First, in view of the classical Young inequality, one may conjecture
that the Young inequality in the SOC setting is in form of

x ◦ y �Kn

xp

p
+
yq

q
.

However, this inequality does not hold in general (a counterexample is pre-
sented in Section 3). Here “◦” is the Jordan product associated with second-
order cone that will be introduced in Section 2. Next, according to Ando’s
inequality (1.2), we naively make a conjecture that the eigenvalue version of
Young inequality in the SOC setting.

Conjecture 1. For any x, y ∈ Kn, there holds

(1.3) λj(x ◦ y) ≤ λj
(
xp

p
+
yq

q

)
. j = 1, 2.

In fact, we use some program to check this inequality and there is no
counterexample. We believe it is true, but it is very complicated to prove
the inequality directly due to the algebraic structure of xp

p + yq

q . Eventually,

we seek another variant and establish the trace version of Young inequality.
Accordingly, we further deduce the trace versions of Hölder and Minkowski
inequalities.

2. Preliminary

In this section, we review the basic concepts and properties concerning
Jordan algebras and symmetric cones from the book [9] which are needed
in the subsequent analysis. Especially, we recall some background materials
regarding second-order cone as well.

A Euclidean Jordan algebra is a finite dimensional inner product space
(V, 〈·, ·〉) (V for short) over the field of real numbers R equipped with a
bilinear map (x, y) 7→ x ◦ y : V × V → V, which satisfies the following
conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V;
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ V,
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where x2 := x◦x, and x◦y is called the Jordan product of x and y. Moreover,
if there is an (unique) element e ∈ V such that x ◦ e = x for all x ∈ V, the
element e is called the identity element in V. Note that a Jordan algebra
does not necessarily have an identity element. Throughout this paper, we
assume that V is a Euclidean Jordan algebra with an identity element e.

In a Euclidean Jordan algebra V, the set of squares K := {x2 : x ∈ V} is
called a symmetric cone [9, Theorem III.2.1], which means K is a self-dual
closed convex cone and, for any two elements x, y ∈ int(K), there exists an
invertible linear transformation Γ : V → V such that Γ(x) = y and Γ(K) =
K. An element c ∈ V is called an idempotent if c2 = c, and it is a primitive
idempotent if it is nonzero and cannot be written as a sum of two nonzero
idempotents. The idempotents c, d are said to be orthogonal if c ◦ d = 0.
In addition, a finite set {e(1), e(2), · · · , e(r)} of primitive idempotents in V is
said to be a Jordan frame if

e(i) ◦ e(j) = 0 for i 6= j, and
r∑
i=1

e(i) = e.

With the above, there has the spectral decomposition of an element x in V.

Theorem 2.1. (Spectral Decomposition Theorem) [9, Theorem III.1.2] Let
V be a Euclidean Jordan algebra. Then there is a number r such that, for
every x ∈ V, there exists a Jordan frame {e(1), · · · , e(r)} and real numbers
λ1(x), · · · , λr(x) with

x = λ1(x)e(1) + · · ·+ λr(x)e(r).

Here, the numbers λi(x) (i = 1, · · · , r) are called the spectral values of x,

the expression λ1(x)e(1) + · · ·+λr(x)e(r) is called the spectral decomposition
of x. Moreover, tr(x) :=

∑r
i=1 λi(x) is called the trace of x, det(x) :=

λ1(x)λ2(x) · · ·λr(x) is called the determinant of x, and r is called the rank
of V.

The second-order cone (SOC for short) in Rn, also called the Lorentz
cone, is defined by

Kn =
{
x = (x1, x2) ∈ R× Rn−1 | ‖x2‖ ≤ x1

}
.

While n = 1, Kn denotes the set of nonnegative real number R+. For any
x, y ∈ Rn, we write x �Kn y if x− y ∈ Kn, and x �Kn y if x− y ∈ int(Kn).
The relation �Kn is a partial ordering but not a linear ordering in Kn. For
any x = (x1, x2) ∈ R × Rn−1 and y = (y1, y2) ∈ R × Rn−1, we define their
Jordan product as

x ◦ y = (xT y , y1x2 + x1y2).

Then, (Rn, ◦, 〈·, ·〉) forms a Euclidean Jordan algebra with identity element
e = (1, 0, . . . , 0)T . Notice that this Jordan product is not associative. How-
ever, it is power associative, i.e., x ◦ (x ◦ x) = (x ◦ x) ◦ x for all x ∈ Rn.
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Without loss of ambiguity, we may write xm for the product of m copies of
x and xm+n = xm ◦xn for all positive integers m and n. Here, we set x0 = e.

For any x ∈ Kn, it is known that there exists a unique vector in Kn
denoted by x1/2 such that (x1/2)2 = x1/2 ◦ x1/2 = x. Indeed,

x1/2 =
(
s,
x2
2s

)
, where s =

√
1

2

(
x1 +

√
x21 − ‖x2‖2

)
.

In the above formula, the term x2/s is defined to be the zero vector if
s = 0, i.e., x = 0. Since x2 ∈ Kn for any x ∈ Rn, there exists a unique
vector (x2)1/2 ∈ Kn, denoted by |x|. It is easy to verify that |x| �Kn 0
and x2 = |x|2 for any x ∈ Rn. For any x ∈ Rn, we define [x]+ to be the
nearest point projection of x onto Kn, which is the same definition as in
Rn+. In other words, [x]+ is the optimal solution of the parametric SOCP:
[x]+ = arg min{‖x − y‖ | y ∈ Kn}. In addition, it can be verified that
[x]+ = (x+ |x|)/2; see [9, 10].

Optimization problems involved second-order cones have been appeared
in real world applications. For dealing with second-order cone programs
(SOCP) and second-order cone complementarity problems (SOCCP), there
needs spectral decomposition associated with SOC [8]. More specifically, for
any x = (x1, x2) ∈ R× Rn−1, the vector x can be decomposed as

(2.1) x = λ1u
(1)
x + λ2u

(2)
x ,

where λ1, λ2 and u
(1)
x , u

(2)
x are the spectral values and the associated spectral

vectors of x, respectively, given by

(2.2) λi = x1 + (−1)i‖x2‖,

(2.3) u(i)x =

{ 1
2(1, (−1)i x2

‖x2‖) if x2 6= 0,
1
2(1, (−1)iw) if x2 = 0,

for i = 1, 2 with w being any vector in Rn−1 satisfying ‖w‖ = 1. If x2 6= 0,
the decomposition is unique. Accordingly, the determinant, the trace, and
the Euclidean norm of x can all be represented in terms of λ1 and λ2:

det(x) = λ1λ2, tr(x) = λ1 + λ2, ‖x‖2 =
1

2

(
λ21 + λ22

)
.

From the simple calculation, we especially point out that tr(x) = 2x1, which
we frequently use in the following paragraphs.

For any real valued function f : R → R, the following vector-valued
function associated with Kn (n ≥ 1) was considered in [6, 7]:

(2.4) f soc(x) = f(λ1)u
(1)
x + f(λ2)u

(2)
x , ∀x = (x1, x2) ∈ R× Rn−1.

If f is defined only on a subset of R, then f soc is defined on the corresponding
subset of Rn. The definition (2.4) is unambiguous whether x2 6= 0 or x2 = 0.
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The cases of f soc(x) = x1/2, x2, exp(x) are discussed in [9]. For subsequent
analysis, we will frequently use the vector-valued functions corresponding to
tp (t > 0, p > 0) and |t|p (t ∈ R, p > 0), respectively. In particular, they can
be expressed as

xp = λp1u
(1)
x + λp2u

(2)
x , ∀x ∈ Kn,

|x|p = |λ1|pu(1)x + |λ2|pu(2)x , ∀x ∈ Rn.
The spectral decomposition along with the Jordan algebra associated with
SOC entail some basic properties as listed in the following text. We omit
the proofs since they can be found in [6, 9, 10].

Lemma 2.2. For any x = (x1, x2) ∈ R× Rn−1 with spectral decomposition
given as in (2.1)-(2.3), there have

(a) |x| = (x2)1/2 = |λ1|u(1)x + |λ2|u(2)x ;

(b) [x]+ = [λ1]+u
(1)
x + [λ2]+u

(2)
x = 1

2(x+ |x|);
(c) x = [x]+ + [x]− and |x| = [x]+ + [−x]+ = [x]+ − [x]−.

Lemma 2.3. For any x, y ∈ Rn with spectral decomposition given as in
(2.1)-(2.3), the following hold.

(a) |x| �Kn x.
(b) x �Kn 0 ⇐⇒ 〈x, y〉 ≥ 0, ∀y �Kn 0.
(c) If x �Kn y, then λi(x) ≥ λi(y), ∀i = 1, 2; and hence tr(x) ≥ tr(y).
(d) tr(x ◦ y) ≤ λ1(x)λ1(y) + λ2(x)λ2(y).
(e) tr(αx+ βy) = αtr(x) + βtr(y), ∀α, β ∈ R.

3. The Young Inequalities

As mentioned earlier, one may conjecture that the Young inequality in
the SOC setting is in form of

x ◦ y �Kn

xp

p
+
yq

q
.

However, this inequality does not hold in general. For example, taking
p = 3, q = 3

2 , x = (18 ,
1
8 , 0), and y = (18 , 0,

1
8), we obtain x3 = ( 1

128 ,
1

128 , 0),

y
3
2 = ( 1

16 , 0,
1
16). Hence,

x ◦ y =

(
1

64
,

1

64
,

1

64

)
and

x3

3
+
y

3
2

3
2

=

(
17

384
,

1

384
,

16

384

)
,

which says

x3

3
+
y

3
2

3
2

− x ◦ y =

(
11

384
,
−5

384
,

10

384

)
/∈ Kn.

In view of this and motivated by the Ando’s singular value version of Young
inequality as in (1.2), we turn to derive the eigenvalue version of Young
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inequality in the setting of second-order cone. But, we do not succeed in
achieving such type inequality. Instead, we consider the SOC trace version
of the Young inequality. In fact, a SOC trace version of Young inequality
is shown in [5, Theorem 4.2], which we call it Young inequality-Type I as
below.

Theorem 3.1. (Young inequality-Type I) For any x, y ∈ Kn, there
holds

tr(x ◦ y) ≤ tr

(
xp

p
+
yq

q

)
where 1 < p, q <∞ and

1

p
+

1

q
= 1.

Proof. We present the arguments again for completeness although it is shown
in [5, Theorem 4.2]. The desired result follows by

tr(x ◦ y) ≤ λ1(x)λ1(y) + λ2(x)λ2(y)

≤
(
λ1(x)p

p
+
λ1(y)q

q

)
+

(
λ2(x)p

p
+
λ2(y)q

q

)
= tr

(
xp

p
+
yq

q

)
,

where the last inequality is due to the Young inequality on real number
setting. �

Remark 3.2. When p = q = 2, the Young inequality in Theorem 3.1
reduces to

2〈x, y〉 = tr(x ◦ y) ≤ tr

(
x2

2
+
y2

2

)
= ‖x‖2 + ‖y‖2,

which is equivalent to 0 ≤ ‖x− y‖2. As a matter of fact, for any x, y ∈ Rn,
the inequality (x−y)2 �Kn 0 always holds, which implies 2x◦y �Kn x2+y2.

Therefore, by Lemma 2.3(c), we obtain tr(x ◦ y) ≤ tr
(
x2

2 + y2

2

)
as well.

We note that the classical Young inequality can be extended to nonneg-
ative real numbers, that is,

|ab| = |a| · |b| ≤ |a|
p

p
+
|b|q

q
, ∀a, b ∈ R.

This motivates us to consider further generalization of the SOC trace version
of Young inequality as in Theorem 3.1. However, |x| ◦ |y| and |x ◦ y| are
unequal in general; and no relationship between them in the partial order
�Kn . To see this, taking x = (

√
2, 1, 1) ∈ K3 and y = (

√
2, 1,−1) ∈ K3,

yields x ◦ y = (2, 2
√

2, 0) /∈ K3. In addition, it implies

|x| ◦ |y| = (2, 2
√

2, 0) �Kn (2
√

2, 2, 0) = |x ◦ y|.
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On the other hand, let x = (0, 1, 0), y = (0, 1, 1), which give |x| = (1, 0, 0),
|y| = (

√
2, 0, 0). However, we see that

|x ◦ y| = (1, 0, 0) �Kn (
√

2, 0, 0) = |x| ◦ |y|.
From these two examples, it also indicates that there is no relationship
between tr(|x| ◦ |y|) and tr(|x ◦ y|). In other words, there are two possible
extensions of Theorem 3.1:

tr(|x| ◦ |y|) ≤ tr

(
|x|p

p
+
|y|q

q

)
or tr(|x ◦ y|) ≤ tr

(
|x|p

p
+
|y|q

q

)
.

Fortunately, these two types of generalizations are both true, and we will
prove them in Theorem 3.3 and Theorem 3.8.

Theorem 3.3. (Young inequality-Type II) For any x, y ∈ Rn, there
holds

tr(|x| ◦ |y|) ≤ tr

(
|x|p

p
+
|y|q

q

)
where 1 < p, q <∞ and

1

p
+

1

q
= 1.

Proof. We note that both |x| and |y| are in Kn. The desired inequality
follows by applying Theorem 3.1 to |x| and |y|. �

We point out that Theorem 3.3 is more general than Theorem 3.1 because
it is true for all x, y ∈ Rn, not necessary restricted to x, y ∈ Kn. For real
numbers, it is clear that ab ≤ |a| · |b|. It is natural to ask whether tr(x ◦ y)
is less than tr(|x| ◦ |y|) or not. Before establishing the relationship, we need
the following technical lemma.

Lemma 3.4. If x, y ∈ Kn, then tr(x ◦ y) ≥ 0. Furthermore, if v �Kn u and
0 �Kn w, there holds tr(v ◦ w) ≤ tr(u ◦ w).

Proof. By using the definitions of Jordan product and trace, and applying
the fact that 〈x, y〉 ≥ 0 for any x, y ∈ Kn, the desired inequalities follow. �

Proposition 3.5. For any x, y ∈ Rn, there holds tr(x ◦ y) ≤ tr (|x| ◦ |y|) .

Proof. For any x ∈ Rn, it can be expressed by x = [x]+ + [x]−, and then

tr(x ◦ y) = tr(([x]+ + [x]−) ◦ y)

= tr([x]+ ◦ y) + tr((−[x]−) ◦ (−y))

≤ tr([x]+ ◦ |y|) + tr((−[x]−) ◦ |y|)
= tr(([x]+ − [x]−) ◦ |y|)
= tr(|x| ◦ |y|),

where the inequality holds by Lemma 3.4. �
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Remark 3.6. We elaborate the geometric view of Proposition 3.5. By the
definition of trace in second-order cone, we notice

tr(x ◦ y) = 2〈x, y〉 = 2‖x‖ · ‖y‖ cos θ

where θ is the angle between the vectors x and y. By the definition of
absolute value in second-order cone, we know the equality in Proposition
3.5 holds whenever x, y ∈ Kn or x, y ∈ −Kn. Otherwise, it can be observed
that the angle between |x| and |y| is smaller than the angle between x and y
since the vector x, |x| and the axis of second-order cone are in a hyperplane.

Proposition 3.7. For any x, y ∈ Rn, the following inequalities hold.

(a) tr((x+ y)2) ≤ tr((|x|+ |y|)2), i.e., ‖x+ y‖ ≤ ‖|x|+ |y|‖.
(b) tr((x− y)2) ≥ tr((|x| − |y|)2), i.e., ‖x− y‖ ≥ ‖|x| − |y|‖.

Proof. (a) From Proposition 3.5, we have

tr
(
(x+ y)2

)
= tr

(
x2 + 2x ◦ y + y2

)
≤ tr

(
|x|2 + 2|x| ◦ |y|+ y2

)
= tr

(
(|x|+ |y|)2

)
.

It is equivalent to ‖x+y‖2 ≤ ‖|x|+ |y|‖2, which implies ‖x+y‖ ≤ ‖|x|+ |y|‖.
(b) The proof is similar to part(a). �

In contrast to Proposition 3.5, applying Lemma 2.3, it is obvious that
tr(x ◦ y) ≤ tr (|x ◦ y|) because x ◦ y �Kn |x ◦ y|. In view of this, we try to
achieve another extension as below.

Theorem 3.8. (Young inequality-Type III) For any x, y ∈ Rn, there
holds

tr(|x ◦ y|) ≤ tr

(
|x|p

p
+
|y|q

q

)
where 1 < p, q <∞ and

1

p
+

1

q
= 1.

Proof. For analysis needs, we write x = (x1, x2) ∈ R × Rn−1 and y =
(y1, y2) ∈ R×Rn−1. Note that if x ◦ y ∈ Kn ∪ (−Kn), the desired inequality
holds immediately by Theorem 3.3 and Proposition 3.5. Thus, it suffices to
show the inequality holds for x ◦ y /∈ Kn ∪ (−Kn). In fact, we only need to
show the inequality for the case of x1 ≥ 0 and y1 ≥ 0. The other cases can
be derived by suitable changing variable like

|x ◦ y| = | − (x ◦ y)| = |(−x) ◦ y| = |x ◦ (−y)| = |(−x) ◦ (−y)|.

To proceed, we first claim the following inequality

(3.1) 2‖x1y2 + y1x2‖ ≤ |λ1(x)λ1(y)|+ |λ2(x)λ2(y)|,
which is also equivalent to 4‖x1y2 +y1x2‖2 ≤ (|λ1(x)λ1(y)|+ |λ2(x)λ2(y)|)2.
Indeed, we observe that

4‖x1y2 + y1x2‖2 = 4
(
x21‖y2‖2 + y21‖x2‖2 + 2x1y1x

T
2 y2
)
.
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On the other hand,

(|λ1(x)λ1(y)|+ |λ2(x)λ2(y)|)2

= [λ1(x)λ1(y)]2 + [λ2(x)λ2(y)]2 + 2 |λ1(x)λ1(y)λ2(x)λ2(y)|
= 2(x1y1 + ‖x2‖‖y2‖)2 + 2(x1‖y2‖+ y1‖x2‖)2

+ 2
∣∣(x21 − ‖x2‖2) (y21 − ‖y2‖2)∣∣

= 2
(
x21y

2
1 + ‖x2‖2‖y2‖2 + x21‖y2‖2 + y21‖x2‖2

)
+ 8x1y1‖x2‖‖y2‖

+ 2
∣∣(x21 − ‖x2‖2) (y21 − ‖y2‖2)∣∣ .

Therefore, we conclude that (3.1) is satisfied by checking

(|λ1(x)λ1(y)|+ |λ2(x)λ2(y)|)2 − 4‖x1y2 + y1x2‖2

= 2
(
x21y

2
1 + ‖x2‖2‖y2‖2 + x21‖y2‖2 + y21‖x2‖2

)
+8x1y1‖x2‖‖y2‖+ 2

∣∣(x21 − ‖x2‖2) (y21 − ‖y2‖2)∣∣
−4
(
x21‖y2‖2 + y21‖x2‖2 + 2x1y1x

T
2 y2
)

= 2
(
x21y

2
1 + ‖x2‖2‖y2‖2 − x21‖y2‖2 − y21‖x2‖2

)
+8x1y1

(
‖x2‖‖y2‖ − xT2 y2

)
+ 2

∣∣(x21 − ‖x2‖2) (y21 − ‖y2‖2)∣∣
= 2

(
x21 − ‖x2‖2

) (
y21 − ‖y2‖2

)
+ 2

∣∣(x21 − ‖x2‖2) (y21 − ‖y2‖2)∣∣
+8x1y1(‖x2‖‖y2‖ − xT2 y2)

≥ 0,

where the last inequality is due to the Cauchy-Schwarz inequality.

Suppose that x ◦ y /∈ Kn ∪ (−Kn). From the simple calculation, we have

|x ◦ y| =
(
‖x1y2 + y1x2‖,

x1y1 + xT2 y2
‖x1y2 + y1x2‖

(x1y2 + y1x2)

)
,

which says tr(|x ◦ y|) = 2‖x1y2 + y1x2‖. Using inequality (3.1), we obtain

tr(|x ◦ y|) ≤ |λ1(x)λ1(y)|+ |λ2(x)λ2(y)|

≤
(
|λ1(x)|p

p
+
|λ1(y)|q

q

)
+

(
|λ2(x)|p

p
+
|λ2(y)|q

q

)
= tr

(
|x|p

p
+
|y|q

q

)
,

where the last inequality holds by the classical Young inequality on real
number setting. �

Following the argument of SOC trace versions of Young inequality, we now
turn to derive the trace versions of Young inequality in Euclidean Jordan
algebra. We recall the crucial inequality which is established in [2, Theorem
23].
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Theorem 3.9. [2, Theorem 23] Let V be a simple Euclidean Jordan algebra
with rank r. For any x, y ∈ V, there holds

tr(x ◦ y) ≤
r∑
i=1

λi(x)λi(y),

where λi(x) and λi(y) are the spectral values of x and y with decreasing
order, respectively.

Now, we are able to establish some trace versions of Young inequality in
Euclidean Jordan algebra.

Theorem 3.10. (EJA Young inequality-Type I) Let V be a simple
Euclidean Jordan algebra with rank r. For any x, y ∈ K, there holds

tr(x ◦ y) ≤ tr

(
xp

p
+
yq

q

)
where 1 < p, q <∞ and

1

p
+

1

q
= 1.

Proof. Following the same argument of Theorem 3.1, we obtain

tr(x ◦ y) ≤
r∑
i=1

λi(x)λi(y)

≤
r∑
i=1

(
λi(x)p

p
+
λi(y)q

q

)
= tr

(
xp

p
+
yq

q

)
,

by Theorem 3.9 and the Young inequality on real number setting. �

Theorem 3.11. (EJA Young inequality-Type II) Let V be a simple
Euclidean Jordan algebra with rank r. For any x, y ∈ V, there holds

tr(|x| ◦ |y|) ≤ tr

(
|x|p

p
+
|y|q

q

)
where 1 < p, q <∞ and

1

p
+

1

q
= 1 and |x| = |λ1(x)|e(1) + · · ·+ |λr(x)|e(r).

Proof. We note that |x|, |y| ∈ K, then the desired result follows by Theorem
3.10. �

4. Applications

In real analysis, Young inequality as in (1.1) is the main tool to derive
the Hölder inequality, and then the Minkowski inequality can be derived by
Hölder inequality as well. As a matter of fact, Tao et al. [13] establish a
trace p-norm in Euclidean Jordan algebra, that is, the authors directly show
the trace version of Minkowski inequality, see [13, Theorem 4.1]. As an
application of trace versions of Young inequality, we use the approach which
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follows the same idea as in real analysis to derive the trace versions of Hölder
inequality. Furthermore, the SOC trace version of Minkowski inequality is
also deduced.

Theorem 4.1. (Hölder inequality-Type I) For any x, y ∈ Rn, there
holds

tr(|x| ◦ |y|) ≤ [tr(|x|p)]
1
p · [tr(|y|q)]

1
q

where 1 < p, q <∞ and
1

p
+

1

q
= 1.

Proof. Let α = [tr(|x|p)]
1
p , β = [tr(|y|q)]

1
q . Since α = 0 (or β = 0) implies

x = 0 (y = 0, respectively), the inequality will hold automatically. Suppose
α · β 6= 0, by Theorem 3.3, we have

tr

(
|x|
α
◦ |y|
β

)
≤ tr

 | |x|α |p
p

+
| |y|β |

q

q


=

1

p
tr

(
|x|p

αp

)
+

1

q
tr

(
|y|q

βq

)
=

1

p
+

1

q
= 1.

Therefore, we conclude that

tr(|x| ◦ |y|) ≤ α · β = [tr(|x|p)]
1
p · [tr(|y|q)]

1
q

since α, β > 0. �

Theorem 4.2. (Hölder inequality-Type II) For any x, y ∈ Rn, there
holds

tr(|x ◦ y|) ≤ [tr(|x|p)]
1
p · [tr(|y|q)]

1
q

where 1 < p, q <∞ and
1

p
+

1

q
= 1.

Proof. The proof is similar to Theorem 4.1 by using Theorem 3.8. �

Remark 4.3. When p = q = 2, both inequalities in Theorem 4.1 and
Theorem 4.2 deduce

2〈x, y〉 = tr(x ◦ y) ≤
[
tr(|x|2)

] 1
2 ·
[
tr(|y|2)

] 1
2 = 2‖x‖ · ‖y‖,

which is equivalent to the Cauchy-Schwarz inequality in Rn.

Theorem 4.4. (EJA Hölder inequality) Let V be a simple Euclidean
Jordan algebra with rank r. For any x, y ∈ V, there holds

tr(|x| ◦ |y|) ≤ [tr(|x|p)]
1
p · [tr(|y|q)]

1
q

where 1 < p, q <∞ and
1

p
+

1

q
= 1.



12 C. H. HUNAG, J. S. CHEN, AND C.-C. HU

Proof. Following the same argument of Theorem 4.1 the desired inequality
can be derived by Theorem 3.11. �

Next, we derive the SOC trace version of Minkowski inequality by using
the SOC trace version of Hölder inequality.

Theorem 4.5. (Minkowski inequality) For any x = (x1, x2) ∈ R×Rn−1
and y = (y1, y2) ∈ R× Rn−1, and p > 1, there holds

[tr(|x+ y|p)]
1
p ≤ [tr(|x|p)]

1
p + [tr(|y|p)]

1
p .

Proof. We partition the proof into three parts. Let q > 1 and 1
p + 1

q = 1.

(i) For x+ y ∈ Kn, we have |x+ y| = x+ y, then we have

tr(|x+ y|p)
= tr(|x+ y| ◦ |x+ y|p−1) = tr((x+ y) ◦ |x+ y|p−1)
= tr(x ◦ |x+ y|p−1) + tr(y ◦ |x+ y|p−1)

≤ [tr(|x|p)]
1
p ·
[
tr(|x+ y|(p−1)q)

] 1
q

+ [tr(|y|p)]
1
p ·
[
tr(|x+ y|(p−1)q)

] 1
q

=
(

[tr(|x|p)]
1
p + [tr(|y|p)]

1
p

)
· [tr(|x+ y|p)]

1
q ,

which implies [tr(|x+ y|p)]
1
p ≤ [tr(|x|p)]

1
p + [tr(|y|p)]

1
p .

(ii) For x+ y ∈ −Kn, we have |x+ y| = −x− y, then we have

tr(|x+ y|p)
= tr((−x) ◦ |x+ y|p−1) + tr((−y) ◦ |x+ y|p−1)

≤ [tr(|x|p)]
1
p ·
[
tr(|x+ y|(p−1)q)

] 1
q

+ [tr(|y|p)]
1
p ·
[
tr(|x+ y|(p−1)q)

] 1
q

=
(

[tr(|x|p)]
1
p + [tr(|y|p)]

1
p

)
· [tr(|x+ y|p)]

1
q ,

which also implies [tr(|x+ y|p)]
1
p ≤ [tr(|x|p)]

1
p + [tr(|y|p)]

1
p .

(iii) For x+ y /∈ Kn ∪ (−Kn), we note that λ1(x+ y) < 0 and λ2(x+ y) > 0,
which say,

|λ1(x+ y)| = ‖x2 + y2‖ − x1 − y1 ≤ ‖x2‖+ ‖y2‖ − x1 − y1,
|λ2(x+ y)| = x1 + y1 + ‖x2 + y2‖ ≤ x1 + y1 + ‖x2‖+ ‖y2‖.
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This yields

[tr(|x+ y|p)]
1
p = [|λ1(x+ y)|p + |λ2(x+ y)|p]

1
p

≤ [(‖x2‖+ ‖y2‖ − x1 − y1)p + (‖x2‖+ ‖y2‖+ x1 + y1)
p]

1
p

= [(−λ1(x)− λ1(y))p + (λ2(x) + λ2(y))p]
1
p

= [|λ1(x) + λ1(y)|p + |λ2(x) + λ2(y)|p]
1
p

≤ [|λ1(x)|p + |λ2(x)|p]
1
p + [|λ1(y)|p + |λ2(y)|p]

1
p

= [tr(|x|p)]
1
p + [tr(|y|p)]

1
p ,

where the last inequality holds by the classical Minkowski inequality on real
number setting. �

Remark 4.6. We elaborate more about Theorem 4.5. It can define a norm
||| · |||p on Rn by

|||x|||p := [tr(|x|p)]
1
p ,

and hence it induces a distance d(x, y) = |||x − y|||p on Rn. In particular,
this norm will deduce the Euclidean-norm when p = 2, and the inequality
reduces to the triangular inequality. In addition, this norm is similar to
Schatten p-norm, which arise when applying the p-norm to the vector of
singular values of a matrix. For more details, please refer to [4].

According to the arguments in Theorem 4.5, if we wish to establish the
SOC trace version of Minkowski inequality in the same framework, the cru-
cial key is verifying the SOC triangular inequality

|x+ y| �Kn |x|+ |y|.

Unfortunately, this inequality does not hold in general. To see this, checking
x = (

√
2, 1,−1) and y = (−

√
2,−1, 0) will lead to a counterexample. More

specifically, x ∈ Kn, y ∈ −Kn, and x + y = (0, 0,−1) /∈ Kn ∪ (−Kn), which
say |x+ y| = (1, 0, 0) and |x|+ |y| = x+ (−y) = (2

√
2, 2,−1). Hence,

|x|+ |y| − |x+ y| = (2
√

2− 1, 2,−1) /∈ Kn ∪ (−Kn).

Moreover, we have

λ1(|x+ y|) = 1 > 2
√

2−
√

5 = λ1(|x|+ |y|),
λ2(|x+ y|) = 1 < 2

√
2 +
√

5 = λ2(|x|+ |y|).

Nonetheless, we build another SOC trace version of triangular inequality
as below. In fact, the trace version of triangular inequality holds for any
Euclidean Jordan algebra (see [12, Proposition 4.3] and [13, Corollary 3.1]).
In the setting of second-order cone, we can prove the inequality by discussing
in three cases directly.
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Theorem 4.7. (Triangular inequality) For any x = (x1, x2) ∈ R×Rn−1
and y = (y1, y2) ∈ R× Rn−1, there holds

tr(|x+ y|) ≤ tr(|x|) + tr(|y|).

Proof. In order to complete the proof, we discuss three cases.
(i) If x+ y ∈ Kn, then |x+ y| = x+ y �Kn |x|+ |y|, and hence

tr(|x+ y|) ≤ tr(|x|) + tr(|y|)

by Lemma 2.3(c).
(ii) If x+ y ∈ −Kn, then |x+ y| = −x− y �Kn |x|+ |y|, and hence

tr(|x+ y|) ≤ tr(|x|) + tr(|y|).

(iii) Suppose x+ y /∈ Kn ∪ (−Kn), we have

|x+ y| =
(
‖x2 + y2‖,

x1 + y1
‖x2 + y2‖

(x2 + y2)

)
from simple calculation, and then

tr(|x+ y|) = 2‖x2 + y2‖.

If one of x, y is in Kn, say x ∈ Kn, we have two subcases: y ∈ −Kn and
y /∈ Kn ∪ (−Kn). For y ∈ −Kn, we have |y| = −y and −y1 ≥ ‖y2‖, and
hence

tr(|x|+ |y|) = 2(x1 − y1) ≥ 2(‖x2‖+ ‖y2‖) ≥ 2‖x2 + y2‖ = tr(|x+ y|).

For y /∈ Kn ∪ (−Kn), we have |y| =
(
‖y2‖, y1

‖y2‖y2

)
, and hence

tr(|x|+ |y|) = 2(x1 + ‖y2‖) ≥ 2(‖x2‖+ ‖y2‖) ≥ 2‖x2 + y2‖ = tr(|x+ y|).

If one of x, y is in −Kn, then the argument is similar. To complete the proof,
it remains to show the inequality holds for x, y /∈ Kn ∪ (−Kn). Indeed, in
this case, we have

tr(|x|+ |y|) = 2(‖x2‖+ ‖y2‖) ≥ 2‖x2 + y2‖ = tr(|x+ y|).

Hence, we complete the proof. �

5. Conclusion

In this paper, we have established the trace versions of Young inequality,
and then Hölder inequality, Minkowski inequality, and triangular inequality
can be deduced. There are still some directions which deserve to be further
investigated. We outline them as below.

• Does the eigenvalue version of inequality (1.3) parallel to Ando’s
inequality (1.2) hold?
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• Lastly, as remarked in Remark 4.6, it deduces a norm on Rn for
some certain values of p. With this norm, we suspect that some
algorithms based on proximal distance, for example, proximal point
algorithm and proximal-like algorithm can be applied accordingly to
solve second-order cone programming.
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