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Abstract

We present a new approach which combines smoothing technique and semi-proxi-
mal alternating direction method of multipliers for image deblurring. More specif-
ically, in light of a nondifferentiable model, which is indeed of the hybrid model
of total variation and Tikhonov regularization models, we consider a smoothing
approximation to conquer the disadvantage of nonsmoothness. We employ four
smoothing functions to approximate the hybrid model and build up a new model
accordingly. It is then solved by semi-proximal alternating direction method of mul-
tipliers. The algorithm is shown globally convergent. Numerical experiments and
comparisons affirm that our method is an efficient approach for image deblurring.

Keywords TV regularization - Image restoration - SP-ADMM - Smoothing function

Mathematics Subject Classification 49K10 - 90C90

1 Introduction

In this paper, the target problem is image deblurring, which has wide applications
in image processing tasks, such as image segmentation, edge detection and pat-
tern recognition. Tremendous amount of articles related to this topic can be found
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in the literature, and hence we do not repeat its importance and realistic applica-
tions here. Therefore, we look into its mathematical model directly and convey
our new idea for tackling this problem. The image deblurring model is described
as follows:

f=AQu+se, D

where u € R™" is the unknown clear image, f € R™" is the observed degraded
image, € € R™" is the Gaussian white noise, A is the blurring operator, and A @ u
is the convolution of A with # meaning

[A® ul(i,j) = Z Al ) = (s, 0] Xu(s, 1), Q={1,2m}x {1,2-n}.
(s,H)EQ

For each 2D image u, u(i, j) denotes the image value at pixel (i,j) € Q. Restor-
ing the unknown image u from the degraded image f is an ill-posed problem. In
order to deal with the image deblurring problem (1), many researchers consider
the associated regularized optimization problem [20]:

. M
min ZJIA @ u—flI; + [IVull,, )

where V denotes the gradient operator, Vu = [V,u, V u] € R2™" is the gradient in

the discrete setting with Vu(i, j) = (qu(i, s Vyu(i, j)), and V, u, Vyu denote the hor-
izontal and vertical first order differences with Dirichlet boundary condition respec-
tively, which are defined as follows:

V. u(i,)) ={ wi+Lp-uip if i<m
Vyu(i,j) ={ g(l,] + 1) —u@,)) }f Jj j m,

Here || Vu||, means the /;-norm of Vu, that is,

IVull, = Y |VuG.j)l. where |Vu(.j)l =\/(qu(i,j))z+(Vyu(i,j))2. 3)
(i,)eQ

The above regularized minimization model (2) is called the total variation (TV)
model for image recovery. This model is powerful for preserving sharp edges, and
plenty of studies and variants based on this model have been investigated, please see
[2-4, 8, 14, 16, 19] and references therein.

However, image deblurring with TV model often leads to staircase effects. In
order to avoid this phenomenon, one popular approach is combining the TV regu-
larization term with some more effective models. In [9, 21], through mixing TV
and Tikhonov regularization terms, the authors presented a hybrid model, and their
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experiments demonstrated that their model can effectively reduce noise. In [10, 15,
18], some other hybrid regularization models were investigated with combining the
TV model and LLT model (originally proposed by Lysaker, Lundervold and Tai in
[15]). In [1, 12], the authors employed the TV model with harmonic model for the
image recovery. Among all these hybrid models, we focus on the model of combin-
ing TV and Tikhonov regularization, which is described by

" 1
min §||A®u—f||§+||vu||1 +§||Vu||§, “)

where y € R is a parameter.

Although all the aforementioned hybrid models based on total variation and Tik-
honov regularization models are widely used in the field of image recovery, there is
one drawback that the objective function is nondifferentiable. There are many ways
to conquer the disadvantage of nonsmoothness, one of them is using the smooth-
ing approximation. In this paper, we employ four smoothing functions, which were
studied in [17, 25, 26], to approximate the TV part in model (4). Accordingly, we
reformulate the image deblurring problem as a smoothing convex optimization
problem, and then apply semi-proximal alternating direction method of multipliers
(SP-ADMM) to solve the smoothing model. In view of the smoothing feature, we
can achieve the analytical solutions of subproblems in SP-ADMM without using
soft threshold operator. To the contrast, in the literature of image processing, solv-
ing the model with TV part usually requires soft threshold operator. Our proposed
algorithm is shown globally convergent. Moreover, we compare the proposed algo-
rithm with different kinds of denoising and deblurring algorithms, including TV
[20], DCA [13], TRL2 [24], SOCF [11], and BM3D [6] respectively. Numerical
simulations demonstrate that our model effectively eliminates the noise and blur at
the same time, and it has higher peak signal to noise ratio (PSNR) and structural
similarity index (SSIM) compared to other methods. In summary, our new approach
provides a promising way in this field, which is a good contribution.

2 The smoothing hybrid regularization model

Recently, there are six smoothing functions studied in [17] to approximate the
absolute value function. In particular, they were employed for signal reconstruc-
tion in [25, 26], which show promising performance and effectiveness in real
applications. Inspired by this, we adopt those smoothing functions to approxi-
mate the TV part in model (4). Since our algorithm needs to exploit and calculate
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their analytic solutions, we could only use four of them due to this reason. First,
we present them out as below:

t if > %,
2o M U U
@iy ) =y -+t —7‘M<t<7‘,
— 4
t if < >
Py 1) =\[4ui + 12,
£ if |7 <
— 1 < .
P3(p, ) =4 H
1] = 5 if [t] > py,
t if t>ﬂ1,
* 312 3u; -
Q)= “gp st 0 —mstsp,
—t if t<—py,

where y; > 0 is a smoothing parameter. With these smoothing functions, the hybrid
model (4) can be replaced by

. M 2 .. 1 2
min ZIA@u—flly+ X @iy, IVuG. D+ S1IVull3, )
(i)eQ
where [ =1,2,3,4. More specifically, each ¢, is a smoothing approximation of
|Vu(@, )|, i.e.,
@(uys [Vu@@ p) ~ |Vudi, jl.

Figure 1 depicts the graphs of ¢, for [ = 1,2, 3, 4. With this, we apply a version of
semi-proximal alternating direction method of multipliers (SP-ADMM), which will
be presented in the next section, to solve the smoothing model (5).

3 Algorithm and convergence analysis

This section is devoted to the detailed description and implementation of our algo-
rithmic idea and its global convergence. In order to apply semi-proximal alternat-
ing direction method of multipliers (SP-ADMM), we further recast the smoothing
model (5) as an equivalent form,

.M .. 1
min SA@u—fI3+ Y, @y, kG )D + 5 Ikl

“ 2 (i) 2 ©)
st. Vu—k=0.

The augmented Lagrangian function of problem (6) is expressed as
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Fig. 1 The figure of approximate effects when y; = 1.0e — 5

.. 1
Hiuk ) = ZIA@ u—fI5+ 3 @i, 1K) + 5 1K
(i)eQ )

+ (A, Vu—ky+ gHVu — k||,

where A= (4,,4,) € R is the Lagrange multiplier parameter matrix with
A, J) = (4,0, )), 4,3, ))), and f > O is a parameter. Accordingly, the SP-ADMM iter-
ative scheme for solving (7) goes as below:
. 1 2
no_ n—1 an-1 = _ 1
u' = arg;mnH(u,k AT+ 2”u u ”51’
2

b}

S

k" = argmin H(u", k, A”‘l) + %”k — !
k

A=y B(VU = K,

where n € <0, 1+2 5). The matrix norm is defined by |lx|¢ := 4/(x, Sx) for any

u € R™" and § € R™. In our implementations, we set S| = p,I, S, = p,I, where
p1 > 0, p, > 0and [ is the unit matrix.
Algorithm 1

Step 0. Input a blurred noisy image f, a blurring operator A, standard deviation
o, and Gaussian kernel . Set parameters u, u;, f, 11, S}, S,, tol, MaxlIter.
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Step 1. Using the BM3D technique as in [5] to preprocess blurred image f.
Step 2. Initialize W =0,k=0,1=0.

Step 3. For n = 1: Maxlter, iterate.

u" = argmin H(u, k"1, A"~1) + %”u—u"‘]”;, ®)
n ! 3 n n— n— 2

K" = arg min H' k2 DR Ly Sl P ©)
A= g BV — k). (10)

(=l =V, }
. < .
Step 4 If{ W ae J < oSt

Step 5. Output u".

To proceed, we elaborate more about how to solve the subproblems (8) and (9) in
Algorithm 1. From subproblem (8), we know

PATAQu—f)+ VI A= VT + fAu+ p,(u—u"") =0,

where Au = V7' Vu. In light of the convolution theorem of Fourier transforms [22],
the solution of subproblem (8) can be written as

_ { KFAT) © F) + FVTR" = 7)) + Fpyu™ } .
- HFAT) ® F(A) + FPA + py]) > b

where © denotes componentwise multiplication. As for solving the subproblem (9),
we notice that the subproblem (9) is equivalent to

K =argmin Y @, (y. k@, )I) + %||k||§ (L — )
(i,)EQ (12)

ﬂ n 2 1 n—1y2
[IVu —k||2+§||k—k Ils,

+ =
2

foreachl = 1,2,3,4. It is easy to verify that (12) is indeed the same as

K' (i, j) = arg min @ (11 kG DI + Elk(w)l2 + (A7), Vi (L)) — k@)
i
e Pa e it o2
+ Vi)~ kP + 2|k - 06
(13)
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Since each ¢, for [ = 1,2, 3, 4 is differentiable, the optimality condition of (13) is
characterized by

Vo, (uy, [K'GHD = A7) = BV ) — pok" 71 ) + (14 B+ p)K'(L)) = 0.
(14)
(i) For [ = 1, when |k"(i,j)| > %, we have
L]
1+ 1+ B+ p)lk(G NI

It is nonlinear, by using the information of the previous step in the algorithm, we
approximate it as

K" (i.j) =

(PK"1 o) + BV G ) + A", ).

[k,
L+ 1+ B+ p)lk=1( I

Likewise, when |k"(i, j)| < %, we obtain

K'(i,j) = (P2 k"1 ) + BV G ) + A7) (15)

Hy
2+ +p+p)m

(i1) For [ = 2, in light of (14), we have

K'(i.j) =

(Pok"™ @)+ BV G+ 7N 0D)- (16)

S
@RI + 4

Like (15), the problem (17) is approximately solved as

+ 14+ p, |G j) — A7 j) = BVU"(L ) — ok (L) = 0.

a7

ne: P nelys s N s nelss -
k', j) = m(ﬂzk o)) + VUG )) + A1) (18)

where P = 4/ |k"~1(i, )% + 4y%.
(iii) For [ = 3, when |k"(i,j)| > u,, applying the same approximation technique
yields

k"=,
L+ 1+ B+ p)lk=1( I

In addition, when |k"(7,j)| < u,, it leads to

K'(i,j) = (P2 k"1 ) + BV G ) + A7) (19)

Hy

KD = T+ v o,

(P K"+ BV G )+ 4G ). (20)

(iv) For [ = 4, when |k"(i, )| > u,, the approximate solution is
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k" (@, )l

k'@, j) = L+ (L4 B+ p)k=1(, )|

(0K 10 ) + BV G ) + A1), (21)

while, when |k"(i, j)| < u,, the approximate solution is

21 (k" (B ) + BV ) + A7)

K'(i,j) = .
TG U H B+ m)2u i — (1))

(22)

From all the above discussions, we achieve explicit expressions for k" with
explicit k"(i, j), which is the solution to the subproblem (9).

With the four smoothing functions and the above results, we are ready to pre-
sent the global convergence of our algorithm. The proof follows the similar idea and
analysis techniques used in [7, 11], albeit a bit tedious.

Theorem 3.1 For any pu, > 0, consider the Algorithm 1. Let {(u", k", A")} be the
sequence generated by Algorithm 1. Then, we have

lim VH@u", k", A") = 0.

n—oo

Proof For convenience, we denote

.. 1
Fu) := gnA@u—fug and G(k) := Z @, (uy., kG, 1) + E||k||§ forl=1,2,3,4.
()EQ
We see that (i, k) i_s an optimal solution of problem (6) if and only if there exists
Lagrange multiplier 4 such that

0= VF@) + VI,
0=VGK - 4,

0=Vu—k,

where VF = yAT(A ® u — f). From the KKT conditions, we know that if (i, k, A) is
the KKT point of problem (6), then

0=VFu)+ VT4,
0= VG(k) — A, (23)
0=Vu-—k.

From the definition of ¢, for / = 1,2,3,4, we know that the function ¢; is con-
vex. Since ||k||§ is strongly convex, the function G is strongly convex. It is also clear
to see that the function F is strongly convex. Thus, the gradients VF and VG are
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strongly monotone. These indicate that there exist positive constants ¢, and o, such
that for all u, i € R™", w = VF(u) and @ = VF (i), there holds

(w—d),u—ﬁ>261||u—ﬁ||§=IIM—IQIIEF, Xy =0l (24)
as well as for all k, k € R x = VG(k) and & = VG(k), there holds
(=2 k=B 2 ollk = kI = k= kI3 . g =0l 25)

On the other hand, from the Algorithm 1, we have

0= VF@™")+ VT (B(Vut! — k") + A7) + S, ("' — "),
0= VG(kn+1) _ (ﬂ(vun+l _ kn+1) + /ln) + Sz(kn+l _ kn)’ (26)
0= (Vun+] _ kn+l) _ (ﬁn)_l(/ln_H _ /1").

For notational simplicity, let e(u, k) := Vu — k and denote ul i=u" —u. Similar
notational ideas are applied to k;’, A% as well. Then, we have

wn+1 — /1”+1 + (] _ n)ﬂe(u"“,k"“) +ﬂ(k"+1 _ k"),
xn+1 — /1"_“ + (1 _ I’])ﬂ€(un+l,kn+l),

which imply
e(uzﬂ’kgﬂ) = Vit 1 = e K
= (AT = 2e")
= (B~ (A" = 4.
Using (23)—(26) all together yields

||”Z+1||§F — “un+l _EH%F < <wn+l _5’ un+1 —ﬁ)

— 27
— <VT(), _ /1") + ﬂ(VTkn _ Aun+l) _ Sl(un+l _ M”),MZ+1>, ( )

”k:+1 ”§G — ”kn+1 _ zuéc < <xn+1 -X, i+l %)
_ (28)
= <(,1" — 1)+ B(Vu" — Ky = S, (k" — kM, kg+1>.

By calculation, it follows that
_VTWn+1 — VT [/{}’l+1 + (1 _ n)ﬂe(un+1,k"+1) + ﬁ(kn+l _ kn)]
== VA" = BVTVu™ 4+ pVTE",
)Cn+1 =A,n+1 + (1 _ n)ﬂe(un+l,k”+l)
=" + ﬂ(vun+l _ kn+1).
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Hence, inequality (27) is converted to (29) and inequality (28) becomes (30), that

is,
) —
MZ+1 . S<_V'I'Wn+l _ Sl(un+l _ u") + VT)(, uZ+l>, (29)
2 —
”kf“ st S<xn+l ~ S -k = 4, kZH > (30)

Then, according to (29) and (30), we achieve

un+ 1
e

2 2
[+ s = ey = pGet - ke e )
F G
— B — KK — AL — e K2

_ <S1(Mn+l _ un)’ u:+l> _ <S2(kn+l _ kn)’ k:+l>)
(€1}
Next, we estimate the term {k"*! — k", e(u™*', k"*1)). First, it follows from Eq.
(26) that
K S (kT — k) = VG, X" =S, (k" — k") = VG(KY).

In addition, by the strong monotonicity of VG(-), we have

(R ey
= (K — 1 = SR — K — (2 = S, (K" — K))
+ R — R S, (R — K — (R — kL S,k — k1))
2 [IF* = KIS + K™ = KNG = (R = K Sy = k)
> ||k _kn”§7 — R R S, — K.
Moreover, by denoting a,,,, = —(1 — n) k" — k", e(u", k™)), it further implies
— B K e )
= —(1 = DRU" = K, e(™ ", k1))
(R R = (1= e k) + (1 = ) e, K))
=a,, + (R = —

2 32
< Ay — kn+1 —k" N + <kn+1 _ kn752(kn _ kn—l» ( )
2 2
< Uy — ”kn+l _ kn||§2 + %| kn+l o N + % |kn _kn—l N
2 2
=y — % K — st % k' — k! 5

Since A" = A" + (Bn)e(™!, k1), applying (31) and (32) indicate
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2012, + 20K,
S 2(ﬁ,,,)—1<)’z+l7 )'Z _ iz+l> _ 2ﬂ<kn+l _ kn’ €(Mn+1,kn+l)>
= 2Bk — KK = 2(1 = plle™ ! K™D
_ 2<Sl(un+l _ un)’ u:+l> _ 2<S2(kn+l _ k”), k:+]>
< BT AP = 1A = 2 = mplle@™ kD)2 (33)
+2a, — K = KTIS + 11K = K
— BIK™ = K112 = BIKEZ + BIKLN
=l =2 = 2,
1 2 12 2
— R = K2 = R R
To proceed, we further define
8upr = min{n, 14+ — 2} BIIE™ — K712 + [ = k|15,
2 _
st = By + 0 =2+ 20l = a2+ 200 — K2
Wil = g(un+1’kn+1’ ﬂ'ﬁ'l) + ”kn+1 _ kn”i, (34)
Ok, 2) = (B~ 1A = AI7 + llu = all§ + Ik = kIS + Bllk — k||,
and discuss two cases as below.
Case (1): 7 € (0, 1]. It is obvious that
2
2(K = K e kM) < ’ L — k|| 4 e, k)
From the definition of «,, ; and (33), we see
n+l 7n+l 2 n oy 2
Ve + (1= B[ e k| = [w, + (1 = mpllew, k1]
2 (35)
+o+ ﬂ||e(u"+1,k"+1)|| <.
Case (2):n € (1, 1+2\/§)' Similarly, we obtain
2
Ve + (1= le@ k|| = [y, + (4 = nHBllew, k1]
(36)

2
+l 0 4y - 112)/3||€(u"“, k"“)” <0.
In other words, by introducing a new notation g, ;, it says

Vet + (L= Bl DI, n € .11,
8nt+1 = _
T\ W + A= DBl KD, e (1,25,

Thus, from (35) and (36), we conclude that the sequence {g,} is bounded and
monotonically decreasing, which guarantees a limit. Since y, > 0, the sequence
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40 Page 12 of 25 C.Wuetal

{w,} is bounded. Let y = 1 or y = 7' (1 + 5 — #*). Again, applying (35) and (36)
implies

0 < t n+l + 7ﬁ||€(un+l kn+l)”2 < gn gn+l‘

This says that there must have

te1 = 0, n— oo, (37

||€(un+1,kn+1)|| -0, n- . (38)

Considering the relationship A™!' — A" = (yf)e("*!, k™), we have
| A1 — A*|| = 0. In view of (37) and the boundedness of {y,}, one can conclude
these sequences {[|A"*!|[}, {1l IS 3 (et IS, 3 QRIS 3 QRIS 3 LI+ 1%

are all bounded. Then, by using the inequality
IV < IVt =K+ R = e D1+ 1K
we deduce that { ||Vu;“rl [|}is also bounded, hence { ||u;“rl [lyry } is bounded. Since

1 1 1
I 'EH- Il = ||”Z+ s, 5, +vTver — ||”Z+ s, +5,+v7v>

and the positive definiteness of S| + X + V'V + I, the sequence {||u’ZJrl ||} is guar-

anteed bounded, and hence the sequence {||u"*!||} is bounded. In summary, the

sequence {(u", k", A")} is bounded, which glves the existence of a convergent subse-

quence to a cluster point, denoted by hml_,oo(u K ﬂ") = (u*, k*, A*).
Consequently, it follows from (34) and (37) that

lim Ik —K"|| =0,
Tim [k — k||, =0, (39)
Jlim lJu*t — ||, = 0.

Therefore, from ||[Vu™' — k|| < ||Vu™' — kY| + ||k — k'], we have

m,_, . ||Vu”Jrl — k"|| = 0. Taking limits on both sides of Eq. (26) along the subse-
quence { (", k", A"y} and using the closedness of subdifferential, there hold

—VTA* = VF(u"),
2 = VGK),
0= Vu* —k*.

In other words, (u*, k*) is the optimal solution of (6) and A* is the corresponding
Lagrange multiplier.

Now, it remains to verify that 11m (u k", A" = (u*, k*, A*). Since (u*, k*, A*) sat-
isfies (26), we could replace (i, k /l) with (u*, k*, A*) in the above analysis. From
(35)-(38), we find 8n, — 0 as i —» oo. In particular, (35) and (36) indicate the
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Applying smoothing technique and semi-proximal ADMM for image. .. Page 130f25 40

sequence {g,} has limits, then g, — 0 as n — oo0. Accordingly, y,, = 0 as n = oo.
Furthermore, we know from the definition of y,, that when n — oo,

A" = A% > 0 => A" — A*
K" — k|| = 0 => k" — k*

(40)

n+1 2

oo o
e Sl
Taking into account of (37) and (38), we conclude that
2
Wt =0, n- oo 1)
e ZF

From (41), it also guarantees that lim

sum up, when n € (0, 1+2 2

u"|| = 0, namely, lim u" = u*. To
e y n—oo

n— oo

), we show that

lim (u", k", A") = (u*, k*, A¥).

Then, the proof is complete. O

4 Numerical experiments

In this section, we report the results of our simulations demonstrating the applicabil-
ity, efficiency and merits of our algorithm. All the experiments are performed under
windows 10 and MATLAB R2018a running on a desktop (Inter(CR) Core(TM)
i5-8250 CPU @ 1.60 GHZ).

Our tests consist of 16 images, including 11 gray images and 5 color images, as
shown in Fig. 2. When running Algorithm 1, we use three types of blurring func-
tions, Gaussian blur (GB), Motion blur (MB) and Average blur (AB), with different
levels of Gaussian noise. The notation GB(9, 5)/c, = 5 denotes the Gaussian kernel
with the free parameter o5 =5, size 9 X 9, and the Gaussian noise with standard
deviation 6, = 5. Other symbols of blur and noise have similar meanings.

We compare our algorithm with other famous algorithms in the literature. They
are the classic TV [20], DCA with L, — 0.5L, [13], TRL2 [24], SOCF [11], and
BM3D [6]. We adopt the peak signal to noise ratio (PSNR) and the structural
similarity index (SSIM) to evaluate the quality of image restoration. The PSNR is
defined by

A 2552 A 1 o A
PSNR(#) = 10log MSEG)’ MSE(@) = ——— Z (i, ) = 2, )Y,
(I)eQ

where u is the original image and i is the restored image, and SSIM is defined in

[23].
The parameters of our algorithm are summarized as follows:
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40 Page 14 of 25 C.Wuetal.

Shepp-Logan Shapel50 House Boat

Man Barbara Couple Plate

Duck Building Hats Car

Fig.2 Set of 16 test images

u =le—10, u € (2000,7000), B € (0.2,0.7), n=1.1.

In order to express clearly the influence of parameter u on our algorithm, we plot the
PSNR values and SSIM values versus the values of y in Fig. 3.
In particular, we stop Algorithm 1 when

1 . . _ Ase - 2 _
\/an Z (u(i,j) — a@i,j))* < 5e—5

(i)EQ
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The value of 1 The value of

Fig.3 a, b Are graphs of the PSNR and SSIM variation curve with different parameter values of u for
gray image “Pepper" with AB(9,9)/0, =3

or the iteration number exceeds 500. The parameter settings for the other compared
algorithms are given below.

e For TV [20], we set

u™ e {120,150, 160, 170, 180,190,200} and ATV € {10,11,12,13, 14,15, 16}.

For DCA [13], we set

APCA =1 and uP e {160, 170, 180, 190, 200, 220}.

For TRL2 [24], we set

7TRE2 € 10.04,0.05,0.06}, a™2 e {60, 80, 100, 120, 150, 180}
and AR e {80, 100, 120, 150}.

For SOCF [11], we set

ASO0CF € (5,7,10,11,13,15,16,18}, u5°CF € {le —8,1e — 10},

pOh =02, % =1le-5 and =15

For BM3D [6], we set
Rl € {4e—4,4¢ —3,1e—3} and RWI € {5¢ —3,3¢ —2}.

Experiment 1 We compare the performance of our Algorithm 1 with other famous
algorithms under different blur kernels and different Gaussian noise levels. The
summary of numerical results are presented in Tables 1, 2 and 3, respectively. From
these, we see that Algorithm 1 has higher PSNR and SSIM when ¢, for/ = 1,2,3,4
is used. The performance of the proposed algorithm with the function ¢, is rela-
tively poor.
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Table 4 The average value
of PSNR/SSIM for different
algorithms under different
Gaussian noise levels

Table 5 The average value
of PSNR/SSIM for different
algorithms under different
Gaussian noise levels

Table 6 The average value
of PSNR/SSIM for different
algorithms under different
Gaussian noise levels

Blur Method o, =3 o, =5 o, =7
GB(9,5) Degraded  22.36/0.653 22.13/0.593 21.84/0.538
TV [20] 24.55/0.759  24.66/0.764  24.75/0.761
DCA [13]  24.83/0.770  24.99/0.770  24.69/0.756
TRL2 [24]  26.32/0.774  25.35/0.734  24.95/0.739
SOCF [11] 27.07/0.804 26.05/0.764  25.67/0.773
BM3D [6]  27.26/0.819  26.35/0.782  25.74/0.771
@, 27.62/0.830  26.65/0.792  26.10/0.789
@, 26.21/0.739  25.44/0.710  24.96/0.712
@3 27.60/0.830  26.65/0.800  26.06/0.785
@y 27.59/0.825  26.66/0.804  26.10/0.784
Blur Method o, =3 o, =5 o, =7
MB(20, 60) Degraded  19.90/0.627 20.70/0.587 20.47/0.500
TV [20] 26.12/0.807 23.86/0.741 24.81/0.767
DCA[13] 26.48/0.812 25.05/0.768 25.20/0.759
TRL2 [24] 26.56/0.759 24.53/0.661 24.43/0.706
SOCF [11] 27.14/0.824 26.00/0.769 25.20/0.738
BM3D [6] 27.69/0.821 26.37/0.789 25.52/0.770
@, 27.85/0.833 26.58/0.787 25.92/0.778
[ 26.14/0.724  25.15/0.700 24.50/0.678
@3 28.02/0.835 26.78/0.796 26.00/0.782
A 28.64/0.836  26.77/0.796  26.01/0.782
Blur Method o, =3 o, =5 o, =7
AB(9,9) Degraded  22.04/0.638 21.84/0.579 21.56/0.516
TV [20] 24.45/0.753  24.42/0.752  25.24/0.772
DCA [13]  24.79/0.768  24.92/0.768  25.09/0.772
TRL2 [24]  26.53/0.779  25.22/0.696  25.04/0.740
SOCF [11] 26.97/0.824  26.47/0.800  25.85/0.781
BM3D [6]  27.54/0.826  26.58/0.798  25.96/0.779
@ 27.88/0.836  26.90/0.800  26.27/0.793
@, 26.46/0.756  25.61/0.712  25.08/0.699
@3 27.89/0.833  26.93/0.809  26.28/0.786
@y 27.77/0.828  26.92/0.804  26.29/0.793

@ Springer
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Table 7 The average time for all compared methods

Image Blur Method Time  Blur Time  Blur Time
512 x 512 gray 768 x 512 GB(9,5) TV [20] 1.97  MB(20,60) 2.04 AB(9,9) 1.84
RGB 2.06 1.86 2.12
DCA [13] 284.02 263.39 152.97
408.62 321.50 262.73
TRL2 [24] 21.06 21.90 20.38
23.30 29.35 32.20
SOCF [11] 20.70 2891 22.03
174.25 266.01 193.18
BM3D [6] 4.34 4.39 442
8.46 7.80 7.47
@, 32.42 38.72 53.96
178.76 162.20 126.54
®, 25.54 22.60 34.71
165.72 103.79 160.37
@3 2431 51.96 51.31
54.36 203.06 181.94
@4 39.46 43.85 41.03
181.02 175.02 179.04

)

(a) Original image (b)Degraded image (c) TV [20] (d) DCA [13]

22.48/0.622 27.38,/0.789 27.29/0.790

(e) TRL2 [24] (f) SOCF [11] (g) BM3D [6] (h) p1
27.71/0.788 27.98/0.793 28.03/0.802 28.56/0.807

(i) p2 () ¢3 (k) ¢4
27.14/0.737 28.54/0.808 28.58,/0.805

Fig.4 Deblurring result of MB(20, 60) and 6, = 5 for gray image “Duck” with zoomed areas and PSNR
values and SSIM values
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(a) Original image (b) Degraded image (c) TV [20] (d) DCA [13]
23.32/0.462 28.50/0.793 28.00/0.794

(e) TRL2 [24] (f) SOCF [11] (g) BM3D [6] (h) 1
~ 28.38/0.746 29.07/0.791 29.56/0.784 29.87/0.809

(i) ¥2 () ¥3 (k) ¥4
28.21/0.701 29.92/0.812 29.89/0.813

Fig.5 Deblurring result of AB(20, 60) and o, = 7 for gray image “House” with zoomed areas and PSNR
values and SSIM values

Experiment 2 In this experiment, on the premise of the same blur kernel, we provide
the average value of PSNR and SSIM of different methods with different Gaussian
noise levels for all test images. The results are shown in Tables 4, 5 and 6. From
these tables, we find that the average value of PSNR and SSIM reduces as the noise
level increases. We observe the same pattern that Algorithm 1 provides higher aver-
age values by using function ¢, for / =1,2,3,4 and has lower average values by
using function @,.

Experiment 3 In this experiment, we try to do comparison based on CPU time. In
our test, we take 5 gray images with size 512 X 512 and one color image with size
768 X 512. Then, for each algorithm, we get two data, one is the average time of
these 5 grey images, and the other is the time of the given color image, see Table 7.
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Fig.6 The convergence behavior: the noise level vs. PSNR

®4

@,

@3

9,
200 400 600 800 1000

Iteration

Fig.7 The convergence behavior: the iteration vs. PSNR

From Table 7, we observe that our algorithm takes more CPU time, this is caused by
the fact that Algorithm 1 needs to evaluate the function values ¢, for/ =1,2,3,4 at
each step. Acceleration will be considered in the future work.

Experiment 4 In this test, we present detailed information of restored images with
zoomed area for better illustration. Figures 4 and 5 show that our method yields the
better image quality in terms of deblurring and removing noise.
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Experiment 5 In this test, we observe and discuss the overall convergence behav-
ior of our algorithm. First, we do experiments about the noise level versus PSNR.
We compare our algorithm with five other algorithms: TV, DCA, TRL2, SOCF
and BM3D. We select the gray image Cameraman and the color image Duck under
GB(9, 5), see Fig. 6. On the other hand, we do experiments about the iteration ver-
sus PSNR for our four functions ¢, for [ = 1,2, 3,4, and we choose the gray image
Cameraman under AB(9,9)/0, = 3, see Fig. 7.

According to the simulations and numerical results in Tables 1, 2, 3, 4, 5, 6
and Table 7, we summarize our numerical findings:

1. The SP-ADMM with the functions ¢, ¢; and @, provide higher PSNR and SSIM.
On the whole, Algorithm 1 with the smoothing function ¢, provides the best
results, and the functions ¢, and ¢, have similar effects, the performance of
our algorithm with the function ¢, is relatively poor. Taking into account both
the PSNR and SSIM , which are two important indicators for evaluating image
quality, we believe that our algorithm provides better performance among all
algorithms considered as it can solve more images at higher PSNR and SSIM. In
this respect, our algorithm has a major advantage.

2. Even though Algorithm 1 takes more CPU time of convergence, our method still
has high image reconstruction effect when the noise increases.

3. While BM3D [6] is often the best solver among other algorithms considered in
this paper, we note that our algorithm has highest average value of PSNR/SSIM
for different algorithms under different Gaussian noise levels. In this sense, our
algorithm has good generalization ability.

4. The visual results of image deblurring show that the proposed method yields the
better image quality in terms of deblurring and removing noises.

5. Analyzing all the numerical results, we can be sure that smoothing method can
deal with image reconstruction problem well. Usually, In the field of image recon-
struction, solving the TV part requires soft threshold operator. Thus, this paper
provides a new technical support for image reconstruction from the mathematical
point of view.

5 Conclusion

In this paper, the image deblurring problem is investigated. We build up a new
smoothing model (5), which employs smoothing approximations ¢,;(yu,,t) for
l=1,2,3,4. We propose an unified smoothing approach to solve the image deblur-
ring problem. On the whole, the smoothing strategy along with SP-ADMM for
image deblurring is the main contribution of this paper, both theoretically and
numerically. In particular, from various experiments and comparisons, we suggest
that all ¢, for [ = 1, 3,4 except for @, are good choices to work with Algorithm 1. In
addition, it is observed that our algorithm gives relatively better behavior whether in
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terms of the visual quality or the values of PSNR and SSIM. We also zoom in key
parts of the restored image for better illustration. In brief, we provide a new effective
way to deal with the image deblurring problem.
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