
Calcolo           (2019) 56:42 
https://doi.org/10.1007/s10092-019-0340-5

Signal reconstruction by conjugate gradient algorithm
based on smoothing l1-norm

Caiying Wu1 · Jiaming Zhan1 · Yue Lu2 · Jein-Shan Chen3

Received: 12 January 2019 / Accepted: 9 October 2019
© Istituto di Informatica e Telematica (IIT) 2019

Abstract
The l1-norm regularized minimization problem is a non-differentiable problem and
has a wide range of applications in the field of compressive sensing. Many approaches
have been proposed in the literature. Among them, smoothing l1-norm is one of the
effective approaches. This paper follows this path, in which we adopt six smoothing
functions to approximate the l1-norm. Then, we recast the signal recovery problem as
a smoothing penalized least squares optimization problem, and apply the nonlinear
conjugate gradient method to solve the smoothing model. The algorithm is shown
globally convergent. In addition, the simulation results not only suggest some nice
smoothing functions, but also show that the proposed algorithm is competitive in view
of relative error.
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1 Introduction

In this paper, we focus on the topic of reconstructing signals, which is one of the
most important applications in compressive sensing [8,9,16]. There exist numerous
textbooks and articles related to this topic and there is no need to repeat its importance
and applications here. Therefore, we get into its mathematical model directly and
convey our new idea for tackling this problem. Mathematically, the noise-free signal
reconstruction problem model is described as follows:

min ‖x‖0
s.t. b = Ax,

(1)

where x ∈ IRn is the original sparse signal that needs to be recovered, A ∈ IRm×n

(m � n) is the measurement matrix, b ∈ IRm is the observation vector, and ‖x‖0
represents the l0-norm of x , which is defined as the number of nonzero components of
x . Without loss of generality, we assume that there exists a positive constant K ≤ n
such that ‖x‖0 = K . Besides this condition, if the measurement matrix A satisfies
Restricted Isometry Property (RIP) of order K , then we can recover the signal x more
accurately through the model (1), see [6–10] for more details.

Unfortunately, the l0-norm minimization problem (1) is an NP-hard combinatorial
optimization problem. In order to avoid this difficulty, researchers attempt to replace
l0-norm by l1-norm in model (1) and obtain the following l1 minimization problem

min ‖x‖1
s.t. b = Ax,

(2)

where ‖x‖1 denotes the l1 norm of x and ‖x‖1 = ∑n
i=1 |xi |. Under the RIP con-

dition, the model (2) has the same solution as (1). In practice, the probed signal b
is usually impacted by noise, therefore there arises investigation on the noise signal
reconstruction problem:

min ‖x‖1
s.t. b = Ax + e,

(3)

where e ∈ IRm denotes the noise. In order to deal with (3), researchers prefer to
consider the associated penalized least squares optimization problem

min λ‖x‖1 + 1

2
‖b − Ax‖22 (4)

where λ > 0 is the penalty factor. In the sequel, we call (4) the l1-norm regularized
problem.

Until now, there are plenty of numerical algorithms for solving the model (4)
and some first-order algorithms have drawn much attention during the past decades.
Due the huge amount of literature, we only outline and recall some approaches
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as below. The gradient projection algorithm [18] is one of the earliest gradient-
based algorithms for solving (4), in which it was reformulated as a box constrained
quadratic program and solved by the gradient projection algorithm. Recently, the
most extensively investigated first order algorithm for the solution of (4) was the iter-
ative shrinkage/thresholding (IST) algorithm [15,21]. Their results triggered off many
contributions based on this method [17,24,25]. In light of the IST algorithm, many
variants are proposed under different optimization reformulations and techniques. For
instances, Hale, Yin and Zhang [19,20] presented an IST fixed point continuation
(FPC) method by an operator splitting skill. Wright, Nowak and Figueiredo [29] stud-
ied the spaRSA for sparse reconstruction from solving nonsmooth convex problem.
Experimental results show that the accelerated IST methods (two IST [4] and fast IST
[1]) have better convergence properties. In addition, the famous NESTA [2] first pro-
posed the smoothing function of the l1-norm and then usedNesterov’s gradientmethod
to get the solution of (3). Besides these methods, the gradient projection technique
and alternating direction ideas are also considered, see [3,5,30] for more details.

Because the simplicity and lower storage requirements, conjugate gradient algo-
rithms are suitable for large scale problems. In this paper, like [28,31,33], we are
interested in applying the conjugate gradient method for signal recovery. We use six
smoothing functions, which are studied in [23,27] for absolute value function, to
approximate the l1-norm. Accordingly, we reformulate the signal recovery problem
as a smoothing penalized least squares optimization problem, and apply the nonlinear
conjugate gradientmethod [32] to solve the smoothingmodel. The proposed algorithm
is shown globally convergent. Moreover, we report some numerical experiments to
demonstrate the effectiveness of our method. Numerical comparisons with “NESTA”,
“FPCBB”, and “FISTA”, which are well-known open softwares, are presented as well.

2 Preliminary

This section recalls some ideas about smoothing technique which can be found in
[11,12,23] and references therein.

It is well known that the absolute value function |t | (t ∈ IR) is not smooth at zero. In
order to overcome this difficulty, we introduce some smoothing functions of |t | used
in the sequel.

Definition 2.1 The function ψ : IR++ × IR → IR is a smoothing function of |t |, if the
following two conditions hold:

(a) ψ is continuously differentiable at (μ, t) ∈ IR++ × IR;
(b) limμ↓0 ψ(μ, t) = |t | for any t ∈ IR.

How to construct smoothing functions for |t |? First, we observe that |t | can be
divided into two parts:

|t | = (t)+ − (t)− = (t)+ + (−t)+,

where (t)+ denotes the plus function, i.e., (t)+ = max{0, t}, and (t)− = min{0, t}. As
mentioned in [11,12,23], one can follow the below procedure to construct a smoothing
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function for (t)+. More specifically, through importing a density (kernel) function d(t)
with finite number of pieces satisfying

d(t) ≥ 0 and
∫ +∞

−∞
d(t)dt = 1,

one can define

ŝ(t, μ) := 1

μ
d

(
t

μ

)

,

where μ is a positive parameter. If the following condition holds

∫ +∞

−∞
|t | d(t) dt < +∞,

then the function p̂(t, μ) defined as

p̂(t, μ) =
∫ +∞

−∞
(t − s)+ŝ(s, μ)ds =

∫ t

−∞
(t − s)ŝ(s, μ)ds ≈ (t)+

is a smoothing approximation for (t)+. There are existing well-known smoothing
functions for the plus function [11,22,23], for example,

ψ̂1(μ, t) = t + μ ln
(
1 + e− t

μ

)
, (5)

ψ̂2(μ, t) =
⎧
⎨

⎩

t if t ≥ μ
2 ,

1
2μ

(
t + μ

2

)2 if − μ
2 < t <

μ
2 ,

0 if t ≤ −μ
2 ,

(6)

ψ̂3(μ, t) =
√
4μ2 + t2 + t

2
, (7)

ψ̂4(μ, t) =
⎧
⎨

⎩

t − μ
2 if t > μ,

t2
2μ if 0 ≤ t ≤ μ,

0 if t < 0.
(8)

where the corresponding kernel functions are respectively given by

d1(t) = e−x

(1 + e−x )2
,

d2(t) =
{
1 if − 1

2 ≤ x ≤ 1
2 ,

0 otherwise,

d3(t) = 2

(x2 + 4)
3
2

,
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d4(t) =
{
1 if 0 ≤ x ≤ 1,
0 otherwise.

Likewise, we can achieve the smoothing function of |t | via convolution as follows:

p̂(|t | , μ) = p̂(t, μ) + p̂(−t, μ) =
∫ +∞

−∞
|t − s| ŝ(s, μ)ds.

Analogous to (5)–(8), we construct four smoothing functions for |t | as [23]:

ψ1(μ, t) = μ
[
ln

(
1 + e− t

μ

)
+ ln

(
1 + e

t
μ

)]
, (9)

ψ2(μ, t) =
⎧
⎨

⎩

t if t ≥ μ
2 ,

t2
μ

+ μ
4 if − μ

2 < t <
μ
2 ,

−t if t ≤ −μ
2 ,

(10)

ψ3(μ, t) =
√
4μ2 + t2, (11)

ψ4(μ, t) =
{

t2
2μ if |t | ≤ μ,

|t | − μ
2 if |t | > μ.

(12)

In particular, if we take a Epanechnikov kernel function

d(t) =
{ 3

4 (1 − t2) if |t | ≤ 1,
0 if otherwise,

then the associated smoothing function for |t | is expressed by

ψ5(μ, t) =

⎧
⎪⎨

⎪⎩

t if t > μ,

− t4

8μ3 + 3t2
4μ + 3μ

8 if − μ ≤ t ≤ μ,

−t if t < −μ.

(13)

Moreover, taking a Gaussian kernel function d(t) = 1√
2π

e− t2
2 for all t ∈ IR yields

ŝ(t, μ) := 1

μ
d

(
t

μ

)

= 1
√
2πμ2

e
− t2

2μ2 ,

which leads to another type of smoothing function [27] for |t |:

ψ6(μ, t) = terf

(
t√
2μ

)

+
√

2

π
μe

− t2

2μ2 , (14)

where the error function is defined as follows:

erf(t) = 2√
π

∫ t

0
e−u2du ∀t ∈ IR.
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In summary, we have obtained six smoothing functions and will employ them to
approximate the l1-norm for signal recovery problem.

3 Algorithm and convergence properties

This section is devoted to the detailed description and implementation of our algorith-
mic idea and its global convergence results. Basically, it is a type of conjugate gradient
algorithm. To proceed, we briefly review the conjugate gradient method. Suppose that
f : IRn → IR is a continuously differentiable function and the target problem is

min
x∈IRn

f (x).

Let dk denote the search direction andαk be a step length. Then, the general framework
of conjugate gradient method is as below.

xk+1 = xk + αkd
k,

dk =
{−∇ f (xk) if k = 0,

−∇ f (xk) + βkdk−1 if k > 0,
(15)

where ∇ f is the gradient of f and βk is a parameter. In general, various choices
of parameters βk represent (correspond to) different conjugate gradient algorithms.
Among them, the three-term PRP (Polak–Ribiere–Polyak) conjugate gradient method
is the most efficient, where

dk =
{−∇ f (xk) if k = 0,

−∇ f (xk) + βkdk−1 − θk yk−1 if k > 0,

yk−1 = ∇ f (xk) − ∇ f (xk−1),

βk = (∇ f (xk))T yk−1

‖∇ f (xk−1)‖2 ,

θk = (∇ f (xk))T dk−1

‖∇ f (xk−1)‖2 . (16)

The utmost feature of this conjugate gradient method is to ensure the sufficient descent
property of direction at each iteration, which plays a prominent role in the global
convergence analysis. For more details, please refer to [32] and references therein.

For convenience, we denote

fμ(x) := λφi (μ, x) + 1

2
‖b − Ax‖22, x ∈ IRn, (17)

where φi (μ, x) is a smoothing function of l1 norm ‖x‖1. In other words, it corresponds
to the format as below:
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φi (μ, x) :=
n∑

j=1

ψi (μ, x j ), i = 1, 2, 3, 4, 5, 6. (18)

Thus, the problem (4) is equivalent to the smoothing penalized least squares optimiza-
tion problem:

min
x∈IRn

fμ(x) (19)

which is our new target problem. To deal with the unconstrained minimization (19),
the following iterative scheme is employed, see [32].
The Algorithm

Step 0 Given starting point x0 ∈ IRn and μ0 > 0. Choose parameters ρ, δ, γ , and
γ̄ ∈ (0, 1). Let d0 = −∇ fμ0(x

0). Set k = 0.
Step 1 If termination criterion is reached, then stop.
Step 2 Determine αk = max{ρ j , j = 0, 1, 2, . . .} satisfying

fμk (x
k + αkd

k) ≤ fμk (x
k) − 2δ(1 − γ )αk fμk (x

k).

Step 3 Let xk+1 = xk + αkdk and μk+1 = γ̄ μk . Replace f with fμk+1 in formula
(16) and compute dk+1 by (16).
Step 4 Set k = k + 1 and return to step 1.

We also say a few words about how to update μk in Step 3. For Experiment 1, μk

is updated at each iteration by μk+1 = γ̄ μk , γ̄ ∈ (0, 1) and we select γ̄ = 0.4. For
Experiment 2 and Experiment 3, an inner loop is used to solve our relaxed problem
for μk , and then reduces μk . This is indeed a technique appeared in NESTA. When
μk is small enough, our algorithm no longer updates the parameter μk .

Lemma 3.1 Suppose that the function fμ(x) is defined by (17). Then, there exists a
constant L > 0 such that

∥
∥∇ fμ(x) − ∇ fμ(y)

∥
∥ ≤ L‖x − y‖ for all x, y ∈ IRn.

Proof For any fixed μ > 0, in order to prove the Lipschitz property of ∇ fμ(x), we
need to verify the Lipschitz condition of ψi

′ (i = 1, 2, 3, 4, 5, 6). To this end, we
discuss two cases.
Case (i): i = 1, 3, 5, 6. For any t1, t2 ∈ IR, without losing of generality, let t1 < t2, by
Lagrange Mean Value Theorem, we have

∣
∣
∣ψ

′
i (μ, t1) − ψ

′
i (μ, t2)

∣
∣
∣ =

∣
∣
∣ψ

′′
i (μ, ξ)

∣
∣
∣ |t1 − t2| , ξ ∈ (t1, t2).

For subsequent analysis, we need to estimate
∣
∣
∣ψ

′′
i (μ, ξ)

∣
∣
∣ for each i = 1, 3, 5, 6.

For i = 1, we know that

|ψ ′′
1 (μ, ξ)| = 1

μ

⎡

⎣ e
ξ
μ

(1 + e
ξ
μ )2

+ e
−ξ
μ

(1 + e
−ξ
μ )2

⎤

⎦ <
2

μ
.

123



   42 Page 8 of 26 Caiying Wu et al.

For i = 3, it is clear that
∣
∣
∣ψ

′′
3 (μ, ξ)

∣
∣
∣ = 4μ2

(4μ2+ξ2)3/2
< 1

2μ .

For i = 5, we have

ψ
′
5(μ, t) =

⎧
⎪⎨

⎪⎩

1 if t > μ,

− t3

2μ3 + 3t
2μ if − μ ≤ t ≤ μ,

−1 if t < −μ.

ψ
′′
5 (μ, t) =

⎧
⎪⎨

⎪⎩

0 if t > μ,

− 3t2

2μ3 + 3
2μ if − μ ≤ t ≤ μ,

0 if t < −μ.

which yields

∣
∣
∣ψ

′′
5 (μ, ξ)

∣
∣
∣ <

3μ2

2μ3 + 3

2μ
= 3

μ
.

For i = 6, we compute

ψ
′
6(μ, t) = 2√

π

∫ t√
2μ

0
e−u2du, ψ

′′
6 (μ, t) =

√
2√

πμ
e

−t2

2μ2 ,

which imply
∣
∣
∣ψ

′′
6 (μ, ξ)

∣
∣
∣ <

√
2√

πμ
.

All the aforementioned results indicate that

∣
∣
∣ψ

′
i (μ, t1) − ψ

′
i (μ, t2)

∣
∣
∣ ≤ 3

μ
|t1 − t2|, i = 1, 3, 5, 6. (20)

for any t1, t2 ∈ IR.
Case (ii): i = 2, 4. Indeed, we will provide a version like (20) for ψ

′
2 and ψ

′
4.

For i = 2, we know that

ψ
′
2(μ, t) =

⎧
⎨

⎩

1 if t ≥ μ
2 ,

2t
μ

if − μ
2 < t <

μ
2 ,

−1 if t ≤ −μ
2 .

If t1 ≥ μ
2 , t2 ≥ μ

2 , t1 ≤ −μ
2 , t2 ≤ −μ

2 or t1, t2 ∈ (−μ
2 ,

μ
2 ), then

∣
∣
∣ψ

′
2(μ, t1) − ψ

′
2(μ, t2)

∣
∣
∣ ≤ 2

μ
|t1 − t2|.

If t1 ≥ μ
2 , t2 ≤ −μ

2 , then

∣
∣
∣ψ

′
2(μ, t1) − ψ

′
2(μ, t2)

∣
∣
∣ = 2 = μ

2

μ
≤ 2

μ
|t1 − t2|.

If t1 ≥ μ
2 , t2 ∈ (−μ

2 ,
μ
2 ), then

∣
∣
∣ψ

′
2(μ, t1) − ψ

′
2(μ, t2)

∣
∣
∣ = 1 − 2t2

μ
<

2t1
μ

− 2t2
μ

= 2

μ
|t1 − t2|.
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If t1 ≤ −μ
2 , t2 ∈ (−μ

2 ,
μ
2 ), then

∣
∣
∣ψ

′
2(μ, t1) − ψ

′
2(μ, t2)

∣
∣
∣ = 1 + 2t2

μ
< −2t1

μ
+ 2t2

μ
= 2

μ
|t1 − t2|.

Thus, it is clear to conclude that

∣
∣
∣ψ

′
2(μ, t1) − ψ

′
2(μ, t2)

∣
∣
∣ ≤ 2

μ
|t1 − t2|, ∀ t1, t2 ∈ IR.

For i = 4, using the similar arguments for case of i = 2, it can be verified that

∣
∣
∣ψ

′
4(μ, t1) − ψ

′
4(μ, t2)

∣
∣
∣ ≤ 1

μ
|t1 − t2|, ∀ t1, t2 ∈ IR.

In summary, we also achieve

∣
∣
∣ψ

′
i (μ, t1) − ψ

′
i (μ, t2)

∣
∣
∣ ≤ 2

μ
|t1 − t2|, i = 2, 4. (21)

for any t1, t2 ∈ IR.
Now, applying (20) and (21), for any x, y ∈ IRn , we have

∥
∥∇ fμ(x) − ∇ fμ(y)

∥
∥

=
∥
∥
∥λ [∇φi (μ, x) − ∇φi (μ, y)] + AT (Ax − b) − AT (Ay − b)

∥
∥
∥

≤ 3

μ
λn‖x − y‖ + ‖A‖2‖x − y‖

= L‖x − y‖,

where L = 3
μ
λn + ‖A‖2. Thus, the proof is complete. ��

Lemma 3.2 For μ > 0, the level set L(x0) = {x ∈ IRn | fμ(x) ≤ fμ(x0)} is bounded.
Proof We prove it by contradiction. Suppose that the set L(x0) is unbounded. Then,
there exists an index set K1, such that ‖xk‖ → ∞, k → ∞, k ∈ K1. Recalling
the definition of fμ(x), we have fμ(xk) → ∞, k → ∞, k ∈ K1. This contradicts
fμ(xk) ≤ fμ(x0). Thus, the level set L(x0) is bounded. ��
In fact, since the continuity of fμ(x), we find the level set L(x0) is compact.

We point out that Lemmas 3.1 and 3.2 play key roles in our theoretical part. They
were assumed as two assumptions in [32] and other literature like [14]. Here we
assert them by showing that function (17) based on the proposed smoothing functions
satisfies these assumptions. With these properties, we are ready to present the global
convergence of our algorithm.
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Theorem 3.1 For anyμ > 0, consider the aforementioned algorithmwith any starting
point x0. Let {xk} be the sequence generated by the algorithm. Then

lim inf
k→∞ ‖∇ fμ(xk)‖ = 0. (22)

Proof Suppose that the conclusion (22) is not true. Then, there exists a constant ε0 > 0,
such that

‖∇ fμ(xk)‖ ≥ ε0, ∀ k. (23)

Since (∇ fμ(xk))T dk = −‖∇ fμ(xk)‖2, there exists αk > 0, such that

fμ(xk + αkd
k) ≤ fμ(xk) − 2δ(1 − γ )αk fμ(xk). (24)

This means { fμ(xk)} is decreasing and bounded, which implies that xk ∈ L(x0) and
{ fμ(xk)} is convergent. We denote that limk→∞ fμ(xk) = f∗. From (24), it can be
verified that limk→∞ αk fμ(xk) = 0. By the definition of fμ(x), we know f∗ > 0,

and therefore 0 < αk = αk fμ(xk )
fμ(xk )

≤ αk fμ(xk )
f∗ . To sum up, we obtain

lim
k→∞ αk = 0. (25)

Now, applying Lemma 3.2, there is a constant r > 0, such that

‖∇ fμ(xk)‖ ≤ r , ∀ k. (26)

Next, we prove {‖dk‖} is bounded by a contradiction argument. If {‖dk‖} is
unbounded, then there exists an index K2, such that ‖dk‖ → ∞, k → ∞, k ∈ K2.
Let θk be the angle between −∇ fμ(xk) and dk . Then, we see that

cos θk = −(∇ fμ(xk))T dk

‖∇ fμ(xk)‖‖dk‖ = ‖∇ fμ(xk)‖
‖dk‖ . (27)

This relation enables us to apply ε0 ≤ ‖∇ fμ(xk)‖ ≤ r to conclude cos θk → 0,
k ∈ K2, k → ∞, which means θk → π

2 , k ∈ K2, k → ∞. Considering this geometric
relationship, we have (∇ fμ(xk))T dk → 0, k ∈ K2, k → ∞, from which we find

−‖∇ fμ(xk)‖2 = (∇ fμ(xk))T dk → 0, k ∈ K2, k → ∞,

which contradicts (23). Thus, {‖dk‖} is bounded, i.e., there exists a constant M∗ > ε0,
such that

‖dk‖ ≤ M∗, ∀ k. (28)
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Then, combining (25) together with (28) gives

lim
k→∞ αk‖dk‖ = 0. (29)

In addition, from (27), we have cos θk ≥ ε0
M∗ , which further yields

− (∇ fμ(xk))T dk = ‖∇ fμ(xk)‖‖dk‖ cos θk ≥ ε20

M∗ ‖dk‖. (30)

Applying the mean value theorem, we obtain

fμ(xk + αkd
k) = fμ(xk) + αk(∇ fμ(ξ k))T dk

= fμ(xk) + αk(∇ fμ(xk))T dk + αk(∇ fμ(ξ k) − ∇ fμ(xk))T dk

≤ fμ(xk) + αk‖dk‖
( (∇ fμ(xk))T dk

‖dk‖ + ‖∇ fμ(ξ k) − ∇ fμ(xk)‖
)
,

(31)

where ξ k is between xk and xk + αkdk . Using Lemma 3.1 and the compact property
of level set L(x0) imply that ∇ fμ(x) is uniformly continuous on L(x0). This together
and (29) implies that there exists a constant α̂ > 0, for sufficiently large k, such that
αk‖dk‖ < α̂ and

‖∇ fμ(ξ k) − ∇ fμ(xk)‖ <
1

2

ε20

M∗ . (32)

Then, when k is sufficiently large, from (31), we have

fμ(xk + αkd
k) ≤ fμ(xk) + α̂

(
− ε20

M∗ + 1

2

ε20

M∗
)

= fμ(xk) − α̂ε20

2M∗ , (33)

which contradicts fμ(xk+1) − fμ(xk) → 0, k → ∞. Therefore, there must hold

lim inf
k→∞ ‖∇ fμ(xk)‖ = 0.

��

4 Numerical experiments

In this section, we conduct numerical experiments to show the performance of our
algorithm for signal recovery. All tests are run in MATLAB R20116 on a 64-bit PC
with an Intel (R)Core(TM) i7-6500Uof 2.50GHzCPUand 8.00GBofRAMequipped
with Windows 7 operating system.
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Experiment 1
In what follows, we divide our tests into two groups: noise-free case and noise case.
we report the numerical results of our algorithm for signal recovery. In all of our
simulations, A ∈ IRm×n is assumed to be Gaussian matrix and m = n

2 ,
n
4 , x

∗ ∈ IRn is
a K -sparse original signal with K = n

40 , whose nonzero component satisfies normal
distribution N (0, 1). Moreover, we set b = Ax + e in the noisy case, where e is the
Gaussian noise with zero mean and variance σ 2.

The parameters of our algorithm are summarized as follows:

x0 = zeros(n, 1), λ = 0.001 ∗ ‖AT b‖∞, ρ = 0.5, δ = 0.002, γ = 0.2, σ 2 = 0.0001.

In Tables 1 and 2, we set μ0 = 0.1, μk+1 = 0.4μk and the algorithm terminates when
the relative error

‖x − x∗‖
‖x∗‖ < 4 × 10−3,

where x is the reconstruction signal. In Tables 3 and 4, F denotes the smoothing
functions, CPU denotes cpu time, Re denotes the relative error and It denotes the
iterations, we set μ = 1.0 e−2, 1.0 e−3, 1.0 e−4, 1.0 e−5 and the algorithm terminates
when

| fμ(xk+1) − fμ(xk)|
| fμ(xk+1)| < 1.0 e−12.

Note that the result from each test is obtained by running our algorithm 10 times and
taking its average result.

In our experiments, we found thatψ1 is very unstable, sometimes it is not applicable
to solve the test problems. Similar concern had also been addressed in [13, page 135].

Table 1 Comparisons of five smoothing functions for noise-free case

CPU time Iterations

n m ψ2 ψ3 ψ4 ψ5 ψ6 ψ2 ψ3 ψ4 ψ5 ψ6

2000 n/2 1.21 0.94 1.32 1.27 0.92 72 74 75 73 69

n/4 1.37 0.90 1.45 1.59 1.00 129 135 142 148 147

4000 n/2 4.16 3.83 5.01 4.50 3.80 70 70 78 72 68

n/4 4.68 4.12 5.19 5.58 4.50 131 143 143 148 146

6000 n/2 9.54 8.49 9.80 9.22 8.61 70 70 70 69 68

n/4 9.69 10.35 10.71 12.91 10.54 134 163 145 159 164

8000 n/2 16.93 16.25 18.76 18.91 15.55 67 71 74 78 69

n/4 15.76 15.65 18.65 19.49 15.75 126 137 145 144 138

10000 n/2 25.88 24.06 30.07 25.83 24.21 67 67 76 68 68

n/4 27.94 28.28 29.96 34.48 27.60 139 138 151 160 149
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Table 2 Comparisons of five smoothing functions for noisy case

CPU time Iterations

n m ψ2 ψ3 ψ4 ψ5 ψ6 ψ2 ψ3 ψ4 ψ5 ψ6

2000 n/2 1.27 1.00 1.30 1.33 1.00 73 78 75 75 72

n/4 1.54 0.92 1.64 1.55 0.91 145 151 154 150 144

4000 n/2 4.48 4.47 4.89 4.62 4.36 72 80 75 72 76

n/4 4.94 5.16 5.77 5.09 4.65 137 159 154 143 158

6000 n/2 8.81 9.07 9.80 9.91 8.97 65 72 72 67 69

n/4 11.65 11.61 12.10 12.38 10.12 160 167 152 165 154

8000 n/2 16.27 17.05 18.28 18.53 16.69 69 75 76 74 71

n/4 15.76 18.04 19.27 17.99 16.91 132 155 145 145 143

10000 n/2 25.59 25.58 26.04 25.82 25.38 68 71 67 67 68

n/4 25.82 27.23 37.00 29.52 27.73 136 150 175 150 155

Accordingly, we try to adopt the equivalent expression suggested in [13, formula (3.1)]
and rewrite ψ1(t) as below:

ψ1(t) = μ

[

ln

(

e
λ1(A(t))

μ + e
λ2(A(t))

μ

)

+ ln

(

e
λ1(B(t))

μ + e
λ2(B(t))

μ

)]

= λ1(A(t)) + μ

(

e
λ2(A(t))−λ1(A(t))

μ

)

+ λ1(B(t)) + μ

(

e
λ2(B(t))−λ1(B(t))

μ

)

where

A(t) =
[
0 0
0 −t

]

, B(t) =
[
0 0
0 t

]

,

λ1(A(t)) = 0, λ2(A(t)) = −t, λ1(B(t)) = 0, λ2(B(t)) = t .

Nonetheless, ψ1 still does not work well along with the algorithm. We therefore omit
it in our numerical reports.
From the experiments, we have the following observations:

(1) The sparse original signal can be recovered by our algorithm effectively.
Tables 1, 2, 3, 4 and Figs. 1, 2, 3, 4, 5 illustrate that the five smoothing func-
tions (except ψ1) in our algorithm work quite well whether the given problem is
noise-free or noisy.

(2) The convergence behavior with respect to CPU time, iterations, signal size, and
the relative error are depicted in Figs. 1, 2, 3, 4, 5, respectively. From Tables 1, 2
and Figs. 1, 2, we see that our algorithm costs more cpu time when increasing
the dimension n, while the changes of their iterations are very marginal. On the
whole, the performance order can be summarized as below:

ψ2 ≥ ψ4 ≈ ψ5 ≈ ψ6 > ψ3
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Fig. 1 The convergence behavior: cpu time versus signal size (n)when μk+1 = 0.4μk

Fig. 2 The convergence behavior: iterations versus signal size (n) when μk+1 = 0.4μk
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Fig. 3 The convergence behavior: cpu time versus − logμ with n = 5000

Fig. 4 The convergence behavior: iterations versus − logμ with n = 5000
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Fig. 5 The convergence behavior: relative error versus − logμ with n = 5000

where “≥” means performs better than and “≈” means there is no difference in
numerical performance.

(3) According toTables 3, 4 andFigs. 3, 4, 5, the smaller the parameterμ, the better the
signal to recover; and the more cpu time and iterations have to spend accordingly.
For any fixed μ, although the function ψ2 sometimes takes a bit more cpu time
and iterations, it has a lower relative error. In view of this, we could conclude that
the function ψ2 works best along with the proposed algorithm. From Fig. 5, the
function ψ6 also has a lower relative error, which means ψ6 is a possible good
choice as well. To sum up, in view of relative error, we have

ψ2 ≥ ψ4 ≈ ψ5 ≈ ψ6 > ψ3.

Experiment 2
Next, we try to do comparison with “NESTA”, which is a well-known, fast, open
software proposed in [2]. In the noisy case, b = Ax + e, where e is the Gaussian noise
with zero mean and variance σ 2. In all of our simulations, A ∈ IRm×n is assumed to
be Gaussian matrix, where n = 213 and m = n

4 . We select K -sparse original signal
x∗ ∈ IRn with K = n

40 , its nonzero component satisfies normal distribution N (0, 1).
In our test, we set

x0 = AT b, λ = 0.0048 ∗ ‖AT b‖∞, ρ = 0.5, δ = 0.002, γ = 0.2, σ 2 = 0.0001.

123



Signal reconstruction by conjugate gradient algorithm… Page 19 of 26    42 

Ta
bl
e
5

C
om

pa
ri
so
ns

of
fiv

e
sm

oo
th
in
g
fu
nc
tio

ns
an
d
N
E
ST

A
fo
r
di
ff
er
en
tt
ol

w
he
n
no

is
e-
fr
ee

to
l=

1.
0e

−4
to
l=

1.
0e

−5
to
l=

1.
0e

−6
to
l=

1.
0e

−7
to
l=

1.
0e

−8

F
C
PU

R
e

It
C
PU

R
e

It
C
PU

R
e

It
C
PU

R
e

It
C
PU

R
e

It

ψ
2

23
.7
7

9.
62

E
−0

4
15

0
28

.3
0

1.
98

E
−0

5
17

7
35

.6
5

2.
11

E
−0

5
21

3
46

.6
2

1.
91

E
−0

5
25

6
59

.9
7

1.
58

E
−0

5
34

2

ψ
3

21
.8
2

6.
37

E
−0

3
14

2
24

.5
5

3.
03

E
−0

5
17

1
30

.8
8

2.
29

E
−0

5
20

6
36

.5
4

2.
01

E
−0

5
24

1
40

.3
9

1.
76

E
−0

5
28

6

ψ
4

26
.6
4

7.
00

E
−0

3
14

6
27

.0
3

4.
32

E
−0

5
16

9
36

.7
9

2.
21

E
−0

5
21

5
45

.1
2

2.
04

E
−0

5
25

8
59

.3
4

1.
76

E
−0

5
33

8

ψ
5

26
.3
2

2.
21

E
−0

3
15

7
28

.0
4

2.
77

E
−0

5
17

4
34

.7
3

2.
12

E
−0

5
20

9
45

.3
8

2.
14

E
−0

5
25

6
49

.8
9

1.
88

E
−0

5
29

6

ψ
6

19
.5
3

4.
82

E
−0

3
13

8
24

.8
3

3.
01

E
−0

5
17

2
32

.4
1

2.
34

E
−0

5
21

4
38

.8
0

2.
06

E
−0

5
24

5
50

.0
9

1.
68

E
−0

5
30

1

N
E
ST

A
7.
96

2.
28

E
−0

2
55

5
8.
30

2.
95

E
−0

2
56

8
17

.1
2

3.
26

E
−0

4
11

34
15

.9
8

1.
82

E
−0

5
10

60
44

.5
0

1.
74

E
−0

5
29

99

123



   42 Page 20 of 26 Caiying Wu et al.

Ta
bl
e
6

C
om

pa
ri
so
ns

of
fiv

e
sm

oo
th
in
g
fu
nc
tio

ns
an
d
N
E
ST

A
fo
r
di
ff
er
en
tt
ol

w
he
n
no

is
y
ca
se

to
l=

1.
0e

−4
to
l=

1.
0e

−5
to
l=

1.
0e

−6
to
l=

1.
0e

−7
to
l=

1.
0e

−8

F
C
P
U

R
e

It
C
PU

R
e

It
C
PU

R
e

It
C
PU

R
e

It
C
P
U

R
e

It

ψ
2

23
.2
5

2.
49

E
−0

3
14

6
26

.1
0

7.
37

E
−0

4
16

5
36

.6
7

5.
91

E
−0

4
22

2
62

.2
7

5.
80

E
−0

4
33

2
10

4.
44

5.
95

E
−0

4
54

2

ψ
3

19
.5
3

5.
57

E
−0

3
13

8
19

.0
2

4.
24

E
−0

3
13

6
31

.6
2

5.
83

E
−0

4
21

5
53

.0
4

5.
99

E
−0

4
33

2
80

.0
3

5.
83

E
−0

4
45

9

ψ
4

25
.1
1

3.
52

E
−0

3
16

2
23

.8
4

8.
90

E
−0

3
15

3
37

.3
7

5.
39

E
−0

4
22

4
56

.3
8

5.
65

E
−0

4
31

4
10

4.
55

5.
68

E
−0

4
52

0

ψ
5

24
.7
2

5.
91

E
−0

3
16

1
26

.4
0

7.
22

E
−0

4
16

4
35

.5
2

6.
31

E
−0

4
21

4
57

.0
1

5.
75

E
−0

4
31

7
83

.1
3

5.
83

E
−0

4
42

9

ψ
6

20
.4
5

1.
23

E
−0

2
14

8
22

.1
6

6.
80

E
−0

4
15

6
33

.5
0

5.
63

E
−0

4
22

2
56

.7
7

5.
85

E
−0

4
30

8
94

.4
3

5.
75

E
−0

4
50

7

N
E
ST

A
7.
67

2.
13

E
−0

2
52

5
8.
28

1.
10

E
−0

2
54

9
15

.8
1

7.
85

E
−0

4
10

86
16

.4
5

7.
47

E
−0

4
10

73
85

.8
9

6.
16

E
−0

4
58

86

123



Signal reconstruction by conjugate gradient algorithm… Page 21 of 26    42 

Fig. 6 The convergence behavior: CPU time versus accuracy

We also accelerate our algorithm by using

μk+1 = ωμk, 1 ≤ k ≤ t, ω = (
μt

μ0
)1/t , μt = 10−8, μ0 = 10−2, and t = 4.

The algorithm terminates when

| fμ(xk) − f̄μ(xk)|
f̄μ(xk)

< tol, f̄μ(xk) = 1

min{5, k}
min{5,k}∑

l=1

fμ(xk−l).

In our experiments, the accuracy tol ∈ {10−4, 10−5, 10−6, 10−7, 10−8}. We test the
continuation version NESTA for comparison. In testing NESTA, other parameters are
taken as default expect for the above parameters.

From the comparison experiments, we have the following observations:

(1) In the view of CPU time, the NESTA is really fast. However, from Tables 5, 6
and Fig. 6, as the “accuracy tol” gets smaller, the CPU time of our algorithm is
not affected too much. To the contrast, when the “accuracy tol” gets smaller, the
CPU time of NESTA goes up dramatically.

(2) From Tables 5, 6 and Fig. 7, we see that our algorithm has a small relative error
when the “accuracy tol” is relatively large. Especially, when tol = 10−4 and
tol = 10−5, the relative error of NESTA gets large, which indicates that the
signal has not been recovered well. To the contrast, we see that the function ψ2
keeps a small error, which means it has better performance.

(3) From Tables 5, 6 and Fig. 8, NESTA needs more iterations. In view of this and
relative error, our proposed algorithm is competitive.

Experiment 3
In order to observe the efficiency on sparse recovery. We compare our algorithm with
three other algorithms: the NESTA, the FPCBB and the FISTA, in which Bernoulli
matrix, Partial Hadamard matrix and Gaussian matrix are chosen. In our implemen-
tations, we select n = 214, m = n

2 and sparsity is K = n
40 . The parameters μk , δ and

γ are the same as the Experiment 2. See Figs. 9, 10, 11.
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Fig. 7 The convergence behavior: relative error versus accuracy

Fig. 8 The convergence behavior: iterations versus accuracy

Fig. 9 Comparisons among algorithms with Bernoulli matrix
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Fig. 10 Comparisons among algorithms with Gaussian matrix

Fig. 11 Comparisons among algorithms with Partial Hadamard matrix

The result from each test is obtained by running our algorithm 30 times and taking
its average result. Figures 9, 10, 11 show the frequency of successful reconstruction at
different relative error. We can see that our algorithm gives relatively better behavior
when relative error is small enough. This means that our algorithm has slightly higher
efficiency on sparse recovery. To sum up, we obtain

ψ2 ≥ ψ4 ≈ ψ5 ≈ ψ6 > ψ3.
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5 Conclusions

In this paper, the sparse signal recovery problem is investigated, in which we con-
centrate on the l1-norm model. In light of convolution techniques in [23,27] and
the framework of nonlinear conjugate gradient method [32], we propose an unified
smoothing approach to solve the given sparse signal reconstruction problem. As a
byproduct, the classical l1 norm is approximated by six smoothing functions. Numer-
ical results show that ψ2 and ψ6 are the better choices of smoothing function to work
with the algorithm. Although the theoretical part is not very notable, the contribu-
tion of this paper lies in numerical comparisons among new smoothing functions. In
particular, we suggest two nice smoothing functions to work along with nonlinear
conjugate gradient method. In addition, we compare our algorithm with three other
algorithms (well-known open softwares): the NESTA, the FPCBB and the FISTA, in
which Bernoulli matrix, Partial Hadamard matrix and Gaussian matrix are chosen.
It can be seen that our algorithm gives relatively better behavior when relative error
is small enough. Under this sense, we provide a new choice of simple and effective
approach to deal with the recovery of the original sparse signal problem.

Our attention was drawn to [14] by one reviewer. In [14], the authors proposed a
smoothing conjugate gradient method, and then used this algorithm to solve the image
restoration problem. More specifically, it used a smoothing function as below:

sμ(t) =
{ |t | if |t | >

μ
2 ,

t2
μ

+ μ
4 if |t | ≤ μ

2 .

This smoothing function is exactly theψ2(μ, t) function in our paper. Our contribution
lies in showing that this smoothing function is also a good choice for signal recon-
struction problem comparing to other smoothing functions, which are not investigated
in reference [14].

Acknowledgements The authorswould like to thank the anonymous referee and the editor for their valuable
comments, viewpoints, and suggestions, which help improve the manuscript a lot.
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