
Calcolo, vol. 56, no. 4, Article 42, 26 pages, December, 2019

Signal reconstruction by conjugate gradient algorithm based on
smoothing l1-norm

Caiying Wu 1

College of Mathematics Science

Inner Mongolia University

Hohhot 010021, China

Jiaming Zhan 2

College of Mathematics Science

Inner Mongolia University

Hohhot 010021, China

Yue Lu 3

School of Mathematical Sciences

Tianjin Normal University

Tianjin 300387, China

Jein-Shan Chen 4

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

January 12, 2019

(1st revision on May 21, 2019)

(2nd revision on July 29, 2019)

(3rd revision on August 18, 2019)

1E-mail: wucaiyingyun@163.com. The research is supported by the Natural Science Foundation of

Inner Mongolia Autonomous Region (2018MS01016)
2E-mail: zhanjiaming1220@qq.com. The research is supported by the Natural Science Foundation of

Inner Mongolia Autonomous Region (2018MS01016)
3E-mail: jinjin403@sina.com. The research is supported by National Natural Science Foundation of

China (Grant Number: 11601389), Doctoral Foundation of Tianjin Normal University (Grant Number:

52XB1513), 2017-Outstanding Young Innovation Team Cultivation Program of Tianjin Normal Uni-

versity (Grant Number: 135202TD1703) and Program for Innovative Research Team in Universities of

Tianjin (Grant Number: TD13-5078).
4Corresponding author. E-mail: jschen@math.ntnu.edu.tw. The research is supported by Ministry

of Science and Technology, Taiwan.

1

Abstract. The l1-norm regularized minimization problem is a non-differentiable problem

and has a wide range of applications in the field of compressive sensing. Many approaches

have been proposed in the literature. Among them, smoothing l1-norm is one of the effec-

tive approaches. This paper follows this path, in which we adopt six smoothing functions

to approximate the l1-norm. Then, we recast the signal recovery problem as a smoothing

penalized least squares optimization problem, and apply the nonlinear conjugate gradient

method to solve the smoothing model. The algorithm is shown globally convergent. In

addition, the simulation results not only suggest some nice smoothing functions, but also

show that the proposed algorithm is competitive in view of relative error.

Keywords. l1-norm regularization, compressive sensing, conjugate gradient algorithm,

smoothing function.

Mathematics Subject Classification (2000) 90C33

1 Introduction

In this paper, we focus on the topic of reconstructing signals, which is one of the most

important applications in compressive sensing [8, 9, 16]. There exist numerous textbooks

and articles related to this topic and there is no need to repeat its importance and

applications here. Therefore, we get into its mathematical model directly and convey our

new idea for tackling this problem. Mathematically, the noise-free signal reconstruction

problem model is described as follows:

min ‖x‖0
s.t. b = Ax,

(1)

where x ∈ IRn is the original sparse signal that needs to be recovered, A ∈ IRm×n (m� n)

is the measurement matrix, b ∈ IRm is the observation vector, and ‖x‖0 represents the

l0-norm of x, which is defined as the number of nonzero components of x. Without loss

of generality, we assume that there exists a positive constant K ≤ n such that ‖x‖0 = K.

Besides this condition, if the measurement matrix A satisfies Restricted Isometry Prop-

erty (RIP) of order K, then we can recover the signal x more accurately through the

model (1), see [6, 7, 8, 9, 10] for more details.

Unfortunately, the l0-norm minimization problem (1) is an NP-hard combinatorial

optimization problem. In order to avoid this difficulty, researchers attempt to replace

l0-norm by l1-norm in model (1) and obtain the following l1 minimization problem

min ‖x‖1
s.t. b = Ax,

(2)

2

where ‖x‖1 denotes the l1 norm of x and ‖x‖1 =
∑n

i=1 |xi|. Under the RIP condition,

the model (2) has the same solution as (1). In practice, the probed signal b is usually

impacted by noise, therefore there arises investigation on the noise signal reconstruction

problem:
min ‖x‖1
s.t. b = Ax+ e,

(3)

where e ∈ IRm denotes the noise. In order to deal with (3), researchers prefer to consider

the associated penalized least squares optimization problem

minλ‖x‖1 +
1

2
‖b− Ax‖22 (4)

where λ > 0 is the penalty factor. In the sequel, we call (4) the l1-norm regularized

problem.

Until now, there are plenty of numerical algorithms for solving the model (4) and

some first-order algorithms have drawn much attention during the past decades. Due

the huge amount of literature, we only outline and recall some approaches as below. The

gradient projection algorithm [18] is one of the earliest gradient-based algorithms for

solving (4), in which it was reformulated as a box constrained quadratic program and

solved by the gradient projection algorithm. Recently, the most extensively investigated

first order algorithm for the solution of (4) was the iterative shrinkage/thresholding (IST)

algorithm [15, 21]. Their results triggered off many contributions based on this method

[17, 24, 25]. In light of the IST algorithm, many variants are proposed under different

optimization reformulations and techniques. For instances, Hale, Yin and Zhang [19, 20]

presented an IST fixed point continuation (FPC) method by an operator splitting skill.

Wright, Nowak and Figueiredo [29] studied the spaRSA for sparse reconstruction from

solving nonsmooth convex problem. Experimental results show that the accelerated IST

methods (two IST [4] and fast IST [1]) have better convergence properties. In addition,

the famous NESTA [2] first proposed the smoothing function of the l1-norm and then

used Nesterov’s gradient method to get the solution of (3). Besides these methods, the

gradient projection technique and alternating direction ideas are also considered, see

[3, 5, 30] for more details.

Because the simplicity and lower storage requirements, conjugate gradient algorithms

are suitable for large scale problems. In this paper, like [28, 31, 33], we are interested

in applying the conjugate gradient method for signal recovery. We use six smoothing

functions, which are studied in [23, 27] for absolute value function, to approximate the l1-

norm. Accordingly, we reformulate the signal recovery problem as a smoothing penalized

least squares optimization problem, and apply the nonlinear conjugate gradient method

[32] to solve the smoothing model. The proposed algorithm is shown globally convergent.

3

Moreover, we report some numerical experiments to demonstrate the effectiveness of our

method. Numerical comparisons with “NESTA”, “FPCBB”, and “FISTA”, which are

well-known open softwares, are presented as well.

2 Preliminary

This section recalls some ideas about smoothing technique which can be found in [11, 12,

23] and references therein.

It is well known that the absolute value function |t| (t ∈ IR) is not smooth at zero.

In order to overcome this difficulty, we introduce some smoothing functions of |t| used in

the sequel.

Definition 2.1. The function ψ : IR++ × IR → IR is a smoothing function of |t|, if the

following two conditions hold:

(a) ψ is continuously differentiable at (µ, t) ∈ IR++ × IR;

(b) limµ↓0 ψ(µ, t) = |t| for any t ∈ IR.

How to construct smoothing functions for |t|? First, we observe that |t| can be divided

into two parts:

|t| = (t)+ − (t)− = (t)+ + (−t)+,

where (t)+ denotes the plus function, i.e., (t)+ = max{0, t}, and (t)− = min{0, t}. As

mentioned in [11, 12, 23], one can follow the below procedure to construct a smoothing

function for (t)+. More specifically, through importing a density (kernel) function d(t)

with finite number of pieces satisfying

d(t) ≥ 0 and

∫ +∞

−∞
d(t)dt = 1,

one can define

ŝ(t, µ) :=
1

µ
d

(
t

µ

)
,

where µ is a positive parameter. If the following condition holds∫ +∞

−∞
|t| d(t) dt < +∞,

then the function p̂(t, µ) defined as

p̂(t, µ) =

∫ +∞

−∞
(t− s)+ŝ(s, µ)ds =

∫ t

−∞
(t− s)ŝ(s, µ)ds ≈ (t)+

4

is a smoothing approximation for (t)+. There are existing well-known smoothing func-

tions for the plus function [11, 22, 23], for example,

ψ̂1(µ, t) = t+ µ ln
(

1 + e−
t
µ

)
, (5)

ψ̂2(µ, t) =


t if t ≥ µ

2
,

1
2µ

(
t+ µ

2

)2
if − µ

2
< t < µ

2
,

0 if t ≤ −µ
2
,

(6)

ψ̂3(µ, t) =

√
4µ2 + t2 + t

2
, (7)

ψ̂4(µ, t) =


t− µ

2
if t > µ,

t2

2µ
if 0 ≤ t ≤ µ,

0 if t < 0.

(8)

where the corresponding kernel functions are respectively given by

d1(t) =
e−x

(1 + e−x)2
,

d2(t) =

{
1 if − 1

2
≤ x ≤ 1

2
,

0 otherwise,

d3(t) =
2

(x2 + 4)
3
2

,

d4(t) =

{
1 if 0 ≤ x ≤ 1,

0 otherwise.

Likewise, we can achieve the smoothing function of |t| via convolution as follows:

p̂(|t| , µ) = p̂(t, µ) + p̂(−t, µ) =

∫ +∞

−∞
|t− s| ŝ(s, µ)ds.

Analogous to (5)-(8), we construct four smoothing functions for |t| as [23]:

ψ1(µ, t) = µ
[
ln
(

1 + e−
t
µ

)
+ ln

(
1 + e

t
µ

)]
, (9)

ψ2(µ, t) =


t if t ≥ µ

2
,

t2

µ
+ µ

4
if − µ

2
< t < µ

2
,

−t if t ≤ −µ
2
,

(10)

ψ3(µ, t) =
√

4µ2 + t2, (11)

ψ4(µ, t) =

{
t2

2µ
if |t| ≤ µ,

|t| − µ
2

if |t| > µ.
(12)

5

In particular, if we take a Epanechnikov kernel function

d(t) =

{
3
4
(1− t2) if |t| ≤ 1,

0 if otherwise,

then the associated smoothing function for |t| is expressed by

ψ5(µ, t) =


t if t > µ,

− t4

8µ3
+ 3t2

4µ
+ 3µ

8
if − µ ≤ t ≤ µ,

−t if t < −µ.
(13)

Moreover, taking a Gaussian kernel function d(t) = 1√
2π
e−

t2

2 for all t ∈ IR yields

ŝ(t, µ) :=
1

µ
d

(
t

µ

)
=

1√
2πµ2

e
− t2

2µ2 ,

which leads to another type of smoothing function [27] for |t|:

ψ6(µ, t) = terf

(
t√
2µ

)
+

√
2

π
µe
− t2

2µ2 , (14)

where the error function is defined as follows:

erf(t) =
2√
π

∫ t

0

e−u
2

du ∀t ∈ IR.

In summary, we have obtained six smoothing functions and will employ them to approx-

imate the l1-norm for signal recovery problem.

3 Algorithm and Convergence Properties

This section is devoted to the detailed description and implementation of our algorithmic

idea and its global convergence results. Basically, it is a type of conjugate gradient

algorithm. To proceed, we briefly review the conjugate gradient method. Suppose that

f : IRn → IR is a continuously differentiable function and the target problem is

min
x∈IRn

f(x).

Let dk denote the search direction and αk be a step length. Then, the general framework

of conjugate gradient method is as below.

xk+1 = xk + αkd
k,

dk =

{
−∇f(xk) if k = 0,

−∇f(xk) + βkd
k−1 if k > 0,

(15)

6

where ∇f is the gradient of f and βk is a parameter. In general, various choices of

parameters βk represent (correspond to) different conjugate gradient algorithms. Among

them, the three-term PRP (Polak-Ribiere-Polyak) conjugate gradient method is the most

efficient, where

dk =

{
−∇f(xk) if k = 0,

−∇f(xk) + βkd
k−1 − θkyk−1 if k > 0,

(16)

yk−1 = ∇f(xk)−∇f(xk−1),

βk =
(∇f(xk))Tyk−1

‖∇f(xk−1)‖2
,

θk =
(∇f(xk))Tdk−1

‖∇f(xk−1)‖2
.

The utmost feature of this conjugate gradient method is to ensure the sufficient descent

property of direction at each iteration, which plays a prominent role in the global con-

vergence analysis. For more details, please refer to [32] and references therein.

For convenience, we denote

fµ(x) := λφi(µ, x) +
1

2
‖b− Ax‖22, x ∈ IRn, (17)

where φi(µ, x) is a smoothing function of l1 norm ‖x‖1. In other words, it corresponds

to the format as below:

φi(µ, x) :=
n∑
j=1

ψi(µ, xj), i = 1, 2, 3, 4, 5, 6. (18)

Thus, the problem (4) is equivalent to the smoothing penalized least squares optimization

problem:

min
x∈IRn

fµ(x) (19)

which is our new target problem. To deal with the unconstrained minimization (19), the

following iterative scheme is employed, see [32].

The Algorithm

Step 0. Given starting point x0 ∈ IRn and µ0 > 0. Choose parameters ρ, δ, γ, and

γ̄ ∈ (0, 1). Let d0 = −∇fµ0(x0). Set k = 0.

Step 1. If termination criterion is reached, then stop.

Step 2. Determine αk = max{ρj, j = 0, 1, 2, . . .} satisfying

fµk(x
k + αkd

k) ≤ fµk(x
k)− 2δ(1− γ)αkfµk(x

k).

7

Step 3. Let xk+1 = xk + αkd
k and µk+1 = γ̄µk. Replace f with fµk+1

in formula (16)

and compute dk+1 by (16).

Step 4. Set k = k + 1 and return to step 1.

We also say a few words about how to update µk in Step 3. For Experiment 1, µk
is updated at each iteration by µk+1 = γ̄µk, γ̄ ∈ (0, 1) and we select γ̄ = 0.4. For

Experiment 2 and Experiment 3, an inner loop is used to solve our relaxed problem for

µk, and then reduces µk. This is indeed a technique appeared in NESTA. When µk is

small enough, our algorithm no longer updates the parameter µk.

Lemma 3.1. Suppose that the function fµ(x) is defined by (17). Then, there exists a

constant L > 0 such that ‖∇fµ(x)−∇fµ(y)‖ ≤ L‖x− y‖ for all x, y ∈ IRn.

Proof. For any fixed µ > 0, in order to prove the Lipschitz property of ∇fµ(x), we need

to verify the Lipschitz condition of ψi
′ (i = 1, 2, 3, 4, 5, 6). To this end, we discuss two

cases.

Case (i): i = 1, 3, 5, 6. For any t1, t2 ∈ IR, without losing of generality, let t1 < t2, by

Lagrange Mean Value Theorem, we have∣∣∣ψ′i(µ, t1)− ψ′i(µ, t2)∣∣∣ =
∣∣∣ψ′′i (µ, ξ)

∣∣∣ |t1 − t2| , ξ ∈ (t1, t2).

For subsequent analysis, we need to estimate
∣∣ψ′′i (µ, ξ)

∣∣ for each i = 1, 3, 5, 6.

For i = 1, we know that

|ψ′′1 (µ, ξ)| = 1

µ

[
e
ξ
µ

(1 + e
ξ
µ)2

+
e
−ξ
µ

(1 + e
−ξ
µ)2

]
<

2

µ
.

For i = 3, it is clear that
∣∣ψ′′3 (µ, ξ)

∣∣ = 4µ2

(4µ2+ξ2)3/2
< 1

2µ
.

For i = 5, we have

ψ
′

5(µ, t) =


1 if t > µ,

− t3

2µ3
+ 3t

2µ
if −µ ≤ t ≤ µ,

−1 if t < −µ.

ψ
′′

5 (µ, t) =


0 if t > µ,

− 3t2

2µ3
+ 3

2µ
if −µ ≤ t ≤ µ,

0 if t < −µ.

which yields ∣∣∣ψ′′5 (µ, ξ)
∣∣∣ < 3µ2

2µ3
+

3

2µ
=

3

µ
.

For i = 6, we compute

ψ
′

6(µ, t) =
2√
π

∫ t√
2µ

0

e−u
2

du, ψ
′′

6 (µ, t) =

√
2√
πµ

e
−t2
2µ2 ,

8

which imply
∣∣ψ′′6 (µ, ξ)

∣∣ < √
2√
πµ

.

All the aforementioned results indicate that∣∣∣ψ′i(µ, t1)− ψ′i(µ, t2)∣∣∣ ≤ 3

µ
|t1 − t2|, i = 1, 3, 5, 6. (20)

for any t1, t2 ∈ IR.

Case (ii): i = 2, 4. Indeed, we will provide a version like (20) for ψ
′
2 and ψ

′
4.

For i = 2, we know that

ψ
′

2(µ, t) =


1 if t ≥ µ

2
,

2t
µ

if −µ
2
< t < µ

2
,

−1 if t ≤ −µ
2
.

If t1 ≥ µ
2
, t2 ≥ µ

2
, t1 ≤ −µ

2
, t2 ≤ −µ

2
or t1, t2 ∈ (−µ

2
, µ
2
), then∣∣∣ψ′2(µ, t1)− ψ′2(µ, t2)∣∣∣ ≤ 2

µ
|t1 − t2|.

If t1 ≥ µ
2
, t2 ≤ −µ

2
, then∣∣∣ψ′2(µ, t1)− ψ′2(µ, t2)∣∣∣ = 2 = µ

2

µ
≤ 2

µ
|t1 − t2|.

If t1 ≥ µ
2
, t2 ∈ (−µ

2
, µ
2
), then∣∣∣ψ′2(µ, t1)− ψ′2(µ, t2)∣∣∣ = 1− 2t2

µ
<

2t1
µ
− 2t2

µ
=

2

µ
|t1 − t2|.

If t1 ≤ −µ
2
, t2 ∈ (−µ

2
, µ
2
), then∣∣∣ψ′2(µ, t1)− ψ′2(µ, t2)∣∣∣ = 1 +

2t2
µ

< −2t1
µ

+
2t2
µ

=
2

µ
|t1 − t2|.

Thus, it is clear to conclude that∣∣∣ψ′2(µ, t1)− ψ′2(µ, t2)∣∣∣ ≤ 2

µ
|t1 − t2|, ∀ t1, t2 ∈ IR.

For i = 4, using the similar arguments for case of i = 2, it can be verified that∣∣∣ψ′4(µ, t1)− ψ′4(µ, t2)∣∣∣ ≤ 1

µ
|t1 − t2|, ∀t1, t2 ∈ IR.

In summary, we also achieve∣∣∣ψ′i(µ, t1)− ψ′i(µ, t2)∣∣∣ ≤ 2

µ
|t1 − t2|, i = 2, 4. (21)

9

for any t1, t2 ∈ IR.

Now, applying (20) and (21), for any x, y ∈ IRn, we have

‖∇fµ(x)−∇fµ(y)‖
=
∥∥λ [∇φi(µ, x)−∇φi(µ, y)] + AT (Ax− b)− AT (Ay − b)

∥∥
≤ 3

µ
λn‖x− y‖+ ‖A‖2‖x− y‖

= L‖x− y‖,

where L = 3
µ
λn+ ‖A‖2. Thus, the proof is complete. 2

Lemma 3.2. For µ > 0, the level set L(x0) = {x ∈ IRn | fµ(x) ≤ fµ(x0)} is bounded.

Proof. We prove it by contradiction. Suppose that the set L(x0) is unbounded. Then,

there exists an index set K1, such that ‖xk‖ → ∞, k → ∞, k ∈ K1. Recalling the

definition of fµ(x), we have fµ(xk) → ∞, k → ∞, k ∈ K1. This contradicts fµ(xk) ≤
fµ(x0). Thus, the level set L(x0) is bounded. 2

In fact, since the continuity of fµ(x), we find the level set L(x0) is compact. We point

out that Lemma 3.1 and Lemma 3.2 play key roles in our theoretical part. They were

assumed as two assumptions in [32] and other literature like [14]. Here we assert them

by showing that function (17) based on the proposed smoothing functions satisfies these

assumptions. With these properties, we are ready to present the global convergence of

our algorithm.

Theorem 3.1. For any µ > 0, consider the aforementioned algorithm with any starting

point x0. Let {xk} be the sequence generated by the algorithm. Then

lim inf
k→∞

‖∇fµ(xk)‖ = 0. (22)

Proof. Suppose that the conclusion (22) is not true. Then, there exists a constant

ε0 > 0, such that

‖∇fµ(xk)‖ ≥ ε0, ∀k. (23)

Since (∇fµ(xk))Tdk = −‖∇fµ(xk)‖2, there exists αk > 0, such that

fµ(xk + αkd
k) ≤ fµ(xk)− 2δ(1− γ)αkfµ(xk). (24)

This means {fµ(xk)} is decreasing and bounded, which implies that xk ∈ L(x0) and

{fµ(xk)} is convergent. We denote that limk→∞ fµ(xk) = f∗. From (24), it can be

10

verified that limk→∞ αkfµ(xk) = 0. By the definition of fµ(x), we know f∗ > 0, and

therefore 0 < αk = αkfµ(x
k)

fµ(xk)
≤ αkfµ(x

k)

f∗
. To sum up, we obtain

lim
k→∞

αk = 0. (25)

Now, applying lemma 3.2, there is a constant r > 0, such that

‖∇fµ(xk)‖ ≤ r, ∀ k. (26)

Next, we prove {‖dk‖} is bounded by a contradiction argument. If {‖dk‖} is un-

bounded, then there exists an index K2, such that ‖dk‖ → ∞, k → ∞, k ∈ K2. Let θk
be the angle between −∇fµ(xk) and dk. Then, we see that

cos θk =
−(∇fµ(xk))Tdk

‖∇fµ(xk)‖‖dk‖
=
‖∇fµ(xk)‖
‖dk‖

. (27)

This relation enables us to apply ε0 ≤ ‖∇fµ(xk)‖ ≤ r to conclude cos θk → 0, k ∈ K2,

k →∞, which means θk → π
2
, k ∈ K2, k →∞. Considering this geometric relationship,

we have (∇fµ(xk))Tdk → 0, k ∈ K2, k →∞, from which we find

−‖∇fµ(xk)‖2 = (∇fµ(xk))Tdk → 0, k ∈ K2, k →∞,

which contradicts (23). Thus, {‖dk‖} is bounded, i.e., there exists a constant M∗ > ε0,

such that

‖dk‖ ≤M∗, ∀k. (28)

Then, combining (25) together with (28) gives

lim
k→∞

αk‖dk‖ = 0. (29)

In addition, from (27), we have cos θk ≥ ε0
M∗

, which further yields

−(∇fµ(xk))Tdk = ‖∇fµ(xk)‖‖dk‖ cos θk ≥
ε20
M∗‖d

k‖. (30)

Applying the mean value theorem, we obtain

fµ(xk + αkd
k) = fµ(xk) + αk(∇fµ(ξk))Tdk

= fµ(xk) + αk(∇fµ(xk))Tdk + αk(∇fµ(ξk)−∇fµ(xk))Tdk

≤ fµ(xk) + αk‖dk‖
((∇fµ(xk))Tdk

‖dk‖
+ ‖∇fµ(ξk)−∇fµ(xk)‖

)
, (31)

where ξk is between xk and xk + αkd
k. Using Lemma 3.1 and the compact property

of level set L(x0) imply that ∇fµ(x) is uniformly continuous on L(x0). This together

11

and (29) implies that there exists a constant α̂ > 0, for sufficiently large k, such that

αk‖dk‖ < α̂ and

‖∇fµ(ξk)−∇fµ(xk)‖ < 1

2

ε20
M∗ . (32)

Then, when k is sufficiently large, from (31), we have

fµ(xk + αkd
k) ≤ fµ(xk) + α̂

(
− ε20
M∗ +

1

2

ε20
M∗

)
= fµ(xk)− α̂ε20

2M∗ , (33)

which contradicts fµ(xk+1)− fµ(xk)→ 0, k →∞. Therefore, there must hold

lim inf
k→∞

‖∇fµ(xk)‖ = 0.

2

4 Numerical Experiments

In this section, we conduct numerical experiments to show the performance of our algo-

rithm for signal recovery. All tests are run in MATLAB R20116 on a 64-bit PC with

an Intel (R) Core(TM) i7-6500U of 2.50 GHz CPU and 8.00GB of RAM equipped with

Windows 7 operating system.

Experiment 1

In what follows, we divide our tests into two groups: noise-free case and noise case. we

report the numerical results of our algorithm for signal recovery. In all of our simulations,

A ∈ IRm×n is assumed to be Gaussian matrix and m = n
2
, n

4
, x∗ ∈ IRn is a K-sparse orig-

inal signal with K = n
40

, whose nonzero component satisfies normal distribution N(0, 1).

Moreover, we set b = Ax + e in the noisy case, where e is the Gaussian noise with zero

mean and variance σ2.

The parameters of our algorithm are summarized as follows:

x0 = zeros(n, 1), λ = 0.001 ∗ ‖AT b‖∞, ρ = 0.5, δ = 0.002, γ = 0.2, σ2 = 0.0001.

In Tables 1 and 2, we set µ0 = 0.1, µk+1 = 0.4µk and the algorithm terminates when the

relative error
‖x− x∗‖
‖x∗‖

< 4× 10−3,

12

where x is the reconstruction signal. In Tables 3 and 4, F denotes the smoothing func-

tions, CPU denotes cpu time, Re denotes the relative error and It denotes the iterations,

we set µ = 1.0 e−2, 1.0 e−3, 1.0 e−4, 1.0 e−5 and the algorithm terminates when

|fµ(xk+1)− fµ(xk)|
|fµ(xk+1)|

< 1.0 e−12.

Note that the result from each test is obtained by running our algorithm 10 times and

taking its average result.

In our experiments, we found that ψ1 is very unstable, sometimes it is not applicable

to solve the test problems. Similar concern had also been addressed in [13, page 135].

Accordingly, we try to adopt the equivalent expression suggested in [13, formula (3.1)]

and rewrite ψ1(t) as below:

ψ1(t) = µ
[
ln
(
e
λ1(A(t))

µ + e
λ2(A(t))

µ

)
+ ln

(
e
λ1(B(t))

µ + e
λ2(B(t))

µ

)]
= λ1(A(t)) + µ

(
e
λ2(A(t))−λ1(A(t))

µ

)
+ λ1(B(t)) + µ

(
e
λ2(B(t))−λ1(B(t))

µ

)
where

A(t) =

[
0 0

0 −t

]
, B(t) =

[
0 0

0 t

]
,

λ1(A(t)) = 0, λ2(A(t)) = −t, λ1(B(t)) = 0, λ2(B(t)) = t.

Nonetheless, ψ1 still does not work well along with the algorithm. We therefore omit it

in our numerical reports.

CPU time Iterations

n m ψ2 ψ3 ψ4 ψ5 ψ6 ψ2 ψ3 ψ4 ψ5 ψ6

2000
n/2 1.21 0.94 1.32 1.27 0.92 72 74 75 73 69

n/4 1.37 0.90 1.45 1.59 1.00 129 135 142 148 147

4000
n/2 4.16 3.83 5.01 4.50 3.80 70 70 78 72 68

n/4 4.68 4.12 5.19 5.58 4.50 131 143 143 148 146

6000
n/2 9.54 8.49 9.80 9.22 8.61 70 70 70 69 68

n/4 9.69 10.35 10.71 12.91 10.54 134 163 145 159 164

8000
n/2 16.93 16.25 18.76 18.91 15.55 67 71 74 78 69

n/4 15.76 15.65 18.65 19.49 15.75 126 137 145 144 138

10000
n/2 25.88 24.06 30.07 25.83 24.21 67 67 76 68 68

n/4 27.94 28.28 29.96 34.48 27.60 139 138 151 160 149

Table 1: Comparisons of five smoothing functions for noise-free case

13

CPU time Iterations

n m ψ2 ψ3 ψ4 ψ5 ψ6 ψ2 ψ3 ψ4 ψ5 ψ6

2000
n/2 1.27 1.00 1.30 1.33 1.00 73 78 75 75 72

n/4 1.54 0.92 1.64 1.55 0.91 145 151 154 150 144

4000
n/2 4.48 4.47 4.89 4.62 4.36 72 80 75 72 76

n/4 4.94 5.16 5.77 5.09 4.65 137 159 154 143 158

6000
n/2 8.81 9.07 9.80 9.91 8.97 65 72 72 67 69

n/4 11.65 11.61 12.10 12.38 10.12 160 167 152 165 154

8000
n/2 16.27 17.05 18.28 18.53 16.69 69 75 76 74 71

n/4 15.76 18.04 19.27 17.99 16.91 132 155 145 145 143

10000
n/2 25.59 25.58 26.04 25.82 25.38 68 71 67 67 68

n/4 25.82 27.23 37.00 29.52 27.73 136 150 175 150 155

Table 2: Comparisons of five smoothing functions for noisy case

Figure 1: The convergence behavior: cpu time vs. signal size (n)when µk+1 = 0.4µk

14

Figure 2: The convergence behavior: iterations vs. signal size (n) when µk+1 = 0.4µk

µ = 1.0e−2 µ = 1.0e−3 µ = 1.0e−4 µ = 1.0e−5

F m CPU Re It CPU Re It CPU Re It CPU Re It

ψ2
n/2 8.80 0.0158 92 9.34 0.0040 89 11.03 0.0033 100 16.78 0.0025 141

n/4 10.98 0.0365 172 11.49 0.0064 178 11.83 0.0029 184 17.06 0.0028 237

ψ3
n/2 9.44 0.0567 104 8.14 0.0090 86 7.98 0.0032 86 10.93 0.0025 111

n/4 7.44 0.1532 167 9.10 0.0195 179 8.36 0.0045 166 10.34 0.0030 188

ψ4
n/2 8.22 0.0538 71 7.92 0.0059 73 10.58 0.0027 93 12.01 0.0025 104

n/4 9.13 0.0157 139 11.11 0.0154 155 10.69 0.0035 179 13.43 0.0032 194

ψ5
n/2 7.88 0.0419 68 7.59 0.0055 72 10.14 0.0025 91 12.77 0.0025 109

n/4 10.26 0.1895 132 11.09 0.0117 156 10.51 0.0041 169 12.83 0.0034 193

ψ6
n/2 8.95 0.0360 96 7.94 0.0063 84 9.69 0.0027 99 12.57 0.0023 121

n/4 9.17 0.0926 166 9.16 0.0128 173 8.98 0.0038 174 11.75 0.0030 203

Table 3: Comparisons of five functions for different µ when n = 5000 and noise-free case

15

From the experiments, we have the following observations:

(1) The sparse original signal can be recovered by our algorithm effectively. Tables

1-4 and Figures 1-5 illustrate that the five smoothing functions (except ψ1) in our

algorithm work quite well whether the given problem is noise-free or noisy.

(2) The convergence behavior with respect to CPU time, iterations, signal size, and

the relative error are depicted in Figures 1-5, respectively. From Tables 1-2 and

Figures 1-2, we see that our algorithm costs more cpu time when increasing the

dimension n, while the changes of their iterations are very marginal. On the whole,

the performance order can be summarized as below:

ψ2 ≥ ψ4 ≈ ψ5 ≈ ψ6 > ψ3

where “≥” means performs better than and “≈” means there is no difference in

numerical performance.

µ = 1.0e−2 µ = 1.0e−3 µ = 1.0e−4 µ = 1.0e−5

F m CPU Re It CPU Re It CPU Re It CPU Re It

ψ2
n/2 8.62 0.0159 89 8.77 0.0072 88 11.82 0.0026 100 15.80 0.0025 143

n/4 11.67 0.0379 174 10.40 0.0063 180 10.26 0.0033 188 15.03 0.0033 242

ψ3
n/2 8.54 0.0548 100 7.86 0.0085 88 8.75 0.0033 92 10.38 0.0025 109

n/4 7.43 0.1506 169 8.43 0.0185 169 7.78 0.0045 177 9.82 0.0030 203

ψ4
n/2 6.76 0.0491 64 8.11 0.0058 76 11.40 0.0028 95 11.93 0.0026 105

n/4 11.10 0.1439 154 8.84 0.0137 152 9.67 0.0035 175 11.52 0.0035 184

ψ5
n/2 7.36 0.0542 65 7.82 0.0059 75 9.57 0.0031 87 11.33 0.0025 104

n/4 10.19 0.1492 143 10.00 0.0123 154 10.48 0.0039 177 11.37 0.0034 191

ψ6
n/2 8.54 0.0355 94 8.78 0.0061 92 9.05 0.0029 96 11.57 0.0026 119

n/4 7.77 0.0908 160 9.15 0.0122 180 8.11 0.0040 167 10.50 0.0030 207

Table 4: Comparisons of five smoothing functions for different µ when n = 5000 and

noisy case

16

Figure 3: The convergence behavior: cpu time vs. − log µ with n = 5000

Figure 4: The convergence behavior: iterations vs. − log µ with n = 5000

17

Figure 5: The convergence behavior: relative error vs. − log µ with n = 5000

(3) According to Tables 3-4 and Figures 3-5, the smaller the parameter µ, the better the

signal to recover; and the more cpu time and iterations have to spend accordingly.

For any fixed µ, although the function ψ2 sometimes takes a bit more cpu time

and iterations, it has a lower relative error. In view of this, we could conclude that

the function ψ2 works best along with the proposed algorithm. From Figure 5, the

function ψ6 also has a lower relative error, which means ψ6 is a possible good choice

as well. To sum up, in view of relative error, we have

ψ2 ≥ ψ4 ≈ ψ5 ≈ ψ6 > ψ3.

Experiment 2

Next, we try to do comparison with “NESTA”, which is a well-known, fast, open software

proposed in [2]. In the noisy case, b = Ax + e, where e is the Gaussian noise with zero

mean and variance σ2. In all of our simulations, A ∈ IRm×n is assumed to be Gaussian

matrix, where n = 213 and m = n
4
. We select K-sparse original signal x∗ ∈ IRn with

K = n
40

, its nonzero component satisfies normal distribution N(0, 1). In our test, we set

x0 = AT b, λ = 0.0048 ∗ ‖AT b‖∞, ρ = 0.5, δ = 0.002, γ = 0.2, σ2 = 0.0001.

We also accelerate our algorithm by using

µk+1 = ωµk, 1 ≤ k ≤ t, ω = (
µt
µ0

)1/t, µt = 10−8, µ0 = 10−2, and t = 4.

18

The algorithm terminates when

|fµ(xk)− f̄µ(xk)|
f̄µ(xk)

< tol, f̄µ(xk) =
1

min{5, k}

min{5,k}∑
l=1

fµ(xk−l).

In our experiments, the accuracy tol ∈ {10−4, 10−5, 10−6, 10−7, 10−8}. We test the con-

tinuation version NESTA for comparison. In testing NESTA, other parameters are taken

as default expect for the above parameters.

From the comparison experiments, we have the following observations:

(1) In the view of CPU time, the NESTA is really fast. However, from Tables 5-6 and

Figure 8, as the “accuracy tol” gets smaller, the CPU time of our algorithm is not

affected too much. To the contrast, when the “accuracy tol” gets smaller, the CPU

time of NESTA goes up dramatically.

(2) From Tables 5-6 and Figure 7, we see that our algorithm has a small relative

error when the “accuracy tol” is relatively large. Especially, when tol = 10−4 and

tol = 10−5, the relative error of NESTA gets large, which indicates that the signal

has not been recovered well. To the contrast, we see that the function ψ2 keeps a

small error, which means it has better performance.

(3) From Tables 5-6 and Figure 6, NESTA needs more iterations. In view of this and

relative error, our proposed algorithm is competitive.

Figure 6: The convergence behavior: iterations vs. accuracy

19

Figure 7: The convergence behavior: relative error vs. accuracy

Figure 8: The convergence behavior: CPU time vs. accuracy

20

Experiment 3

In order to observe the efficiency on sparse recovery. We compare our algorithm with three

other algorithms: the NESTA, the FPCBB and the FISTA, in which Bernoulli matrix,

Partial Hadamard matrix and Gaussian matrix are chosen. In our implementations, we

select n = 214, m = n
2

and sparsity is K = n
40

. The parameters µk, δ and γ are the same

as the Experiment 2. See Figures 9-11.

The result from each test is obtained by running our algorithm 30 times and taking its

average result. Figures 9-11 show the frequency of successful reconstruction at different

relative error. We can see that our algorithm gives relatively better behavior when relative

error is small enough. This means that our algorithm has slightly higher efficiency on

sparse recovery. To sum up, we obtain

ψ2 ≥ ψ4 ≈ ψ5 ≈ ψ6 > ψ3.

Figure 9: Comparisons among algorithms with Bernoulli matrix

21

Figure 10: Comparisons among algorithms with Gaussian matrix

Figure 11: Comparisons among algorithms with Partial Hadamard matrix

22

5 Conclusions

In this paper, the sparse signal recovery problem is investigated, in which we concentrate

on the l1-norm model. In light of convolution techniques in [23, 27] and the framework

of nonlinear conjugate gradient method [32], we propose an unified smoothing approach

to solve the given sparse signal reconstruction problem. As a byproduct, the classical l1
norm is approximated by six smoothing functions. Numerical results show that ψ2 and

ψ6 are the better choices of smoothing function to work with the algorithm. Although

the theoretical part is not very notable, the contribution of this paper lies in numerical

comparisons among new smoothing functions. In particular, we suggest two nice smooth-

ing functions to work along with nonlinear conjugate gradient method. In addition, we

compare our algorithm with three other algorithms (well-known open softwares): the

NESTA, the FPCBB and the FISTA, in which Bernoulli matrix, Partial Hadamard ma-

trix and Gaussian matrix are chosen. It can be seen that our algorithm gives relatively

better behavior when relative error is small enough. Under this sense, we provide a new

choice of simple and effective approach to deal with the recovery of the original sparse

signal problem.

Our attention was drawn to [14] by one reviewer. In [14], the authors proposed a

smoothing conjugate gradient method, and then used this algorithm to solve the image

restoration problem. More specifically, it used a smoothing function as below:

sµ(t) =

{
|t| if |t| > µ

2
,

t2

µ
+ µ

4
if |t| ≤ µ

2
.

This smoothing function is exactly the ψ2(µ, t) function in our paper. Our contribution

lies in showing that this smoothing function is also a good choice for signal reconstruction

problem comparing to other smoothing functions, which are not investigated in reference

[14].

Acknowledgements. The authors would like to thank the anonymous referee and the

editor for their valuable comments, viewpoints, and suggestions, which help improve the

manuscript a lot.

References

[1] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for

linear inverse problems, SIAM Journal on Imaging Sciences, vol. 2, pp. 183-202, 2009.

[2] S. Becker, J. Bobin, and E. Candes, NESTA: a fast and accurate first-order

method for sparse recovery, SIAM Journal on Imaging Sciences, vol. 4, pp. 1-39, 2011.

23

[3] E. Berg and M.P. Friedlander, Probing the Pareto frontier for basis pursuit

solutions, SIAM Journal on Scientific Computing, vol. 31, pp. 890-912, 2008.

[4] J.M. Bioucas-Dias and M. Figueiredo, A new TwIST: two-step iterative shrink-

age/thresholding algorithms for image restoration, IEEE Trans. Image Process, vol.

16, pp. 2992-3004, 2007.

[5] R.L. Broughton, I.D. Coope, P.F. Renaud, and R.E.H. Tappenden, A box

constrained gradient projection algorithm for compressed sensing, Signal Process, vol.

91, pp. 1985-1992, 2011.

[6] E.J. Candes, The Restricted Isometry Property and its Implications for Compressed

Sensing, Comptes Rendus Mathematique, vol. 346, no. 9-10, pp.589-592, 2008.

[7] E.J. Candes and T. Tao, Decoding by Linear Programming, IEEE Transactions

on Information Theory, vol. 51, no. 12, pp.4203-4215, 2005.

[8] E.J. Candes and T. Tao, Near optimal signal recovery from random projections:

universal encoding strategies? IEEE Transactions on Information Theory, vol. 52, no.

12, pp. 5406-5425, 2006.

[9] E.J. Candes, J.K. Romberg, and T. Tao, Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information, IEEE Transac-

tions on Information Theory, vol. 52, no.2, pp. 489-509, 2006.

[10] E.J. Candes, J.K. Romberg, and T. Tao, Stable signal recovery from incom-

plete and inaccurate measurements, Communications on Pure and Applied Mathe-

matics, vol. 59, no. 8, pp. 1207-1223, 2006.

[11] C. Chen and O.L. Mangasarian, A class of smoothing functions for nonlinear

and mixed complementarity problems, Computational Optimization and Applications,

vol. 5, pp. 97-138, 1996.

[12] X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathemat-

ical Programming, vol. 134, pp. 71-99, 2012.

[13] X. Chen, R.S. Womersley, and J. Ye, Minimizing the condition number of

Gram matrix, SIAM Journal on Optimization, vol 21, no. 1, 127-148, 2011.

[14] X. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for im-

age restoration using nonsmooth nonconvex minimization, SIAM Journal on Imaging

Sciences, vol. 3, no. 4, pp. 765-790, 2010.

[15] C. De Mol and M. Defrise, A note on wavelet-based inversion algorithms, Con-

temporary Mathematics, vol. 313, pp. 85-96, 2002.

24

[16] D.L. Donoho, Compressed sensing, IEEE Transactions on Information Theory,

vol. 52, no. 4, pp. 1289-1306, 2006.

[17] M. Elad, Why simple shrinkage is still relevant for redundant representations?

IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5559-5569, 2006.

[18] M. Figueiredo, R. Nowak, and S.J. Wright, Gradient projection for sparse

reconstruction: application to compressed sensing and other inverse problems, IEEE

Journal of Selected Topics in Signal Processing, vol. 1, pp. 586-597, 2007.

[19] E.T. Hale, W. Yin, and Y. Zhang Fixed-point continuation for l1-minimization:

methodology and convergence, SIAM Journal on Optimization, vol. 19, pp. 1107-1130,

2008.

[20] E.T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation applied to com-

pressed sensing: implementation and numerical experiments, Journal of Computa-

tional Mathematics, vol. 28, pp. 170-194, 2010.

[21] R. Nowak and M. Figueiredo, Fast wavelet-based image deconvolution using the

EM algorithm, in Proceedings of the 35th Asilomar Conference on Signals, Systems

and Computers, vol. 1, pp. 371-375, 2001.

[22] L. Qi and D. Sun, Smoothing functions and smoothing Newton method for comple-

mentarity and variational inequality problems, Journal of Optimization Theory and

Applications, vol. 113, pp. 121–147, 2001.

[23] B. Saheya, C.H. Yu, and J.-S. Chen, Numerical comparisons based on four

smoothing functions for absolute value equation, Journal of Applied Mathematics and

Computing, vol. 56, no. 1-2, pp. 131-149, 2018.

[24] J.L. Starck, E. Candes, and D. Donoho, Astronomical image representation

by the curvelet transform, Astronomy and Astrophysics, vol. 398, pp. 785-800, 2003.

[25] J.L. Starck, M. Nguyen, and F. Murtagh, Wavelets and curvelets for image

deconvolution: a combined approach, Signal Process., vol. 83, pp. 2279-2283, 2003.

[26] R. Tibshirani Regression shrinkage and selection via the lasso, Journal of the Royal

Statistical Society, vol. 58, pp. 267-268, 1996.

[27] S. Voronin, G. Ozkaya, and D. Yoshida Convolution based smooth approxi-

mations to the absolute value function with application to non-smooth regularization,

arXiv:1408.6795v2 [math.NA] 1, July, 2015.

25

[28] X. Wang, F. Liu, L.C. Jiao, J. Wu, and J. Chen, Incomplete variables trun-

cated conjugate gradient method for signal reconstruction in compressed sensing, In-

formation Sciences, vol. 288, pp. 387-411, 2014.

[29] S. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable

approximation, in Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, October 2008.

[30] J. Yang and Y. Zhang, Alternating direction algorithms for l1-problems in com-

pressive sensing, SIAM Journal on Scientific Computing, vol. 33, pp. 250-278, 2011.

[31] K. Yin, Y.H. Xiao, and M.L. Zhang, Nonlinear conjugate gradient method for

l1-norm regularization problems in compressive sensing, Journal of Computational

Information Systems, vol. 7, pp. 880-885, 2011.

[32] L. Zhang, W. Zhou, and D. Li, A descent modified Polak-Ribiere-Polyak conju-

gate gradient method and its global convergence, IMA Journal of Numerical Analysis,

vol. 26, pp. 629-640, 2006.

[33] H. Zhu, Y.H. Xiao, and S.Y. Wu, Large sparse signal recovery by conjugate

gradient algorithm based on smoothing technique, Computers and Mathematics with

Applications, vol. 66, pp. 24-32, 2013.

26

to
l=

1.
0e

−
4

to
l=

1.
0e

−
5

to
l=

1
.0
e−

6
to
l=

1
.0
e−

7
to
l=

1
.0
e−

8

F
C
P
U

R
e

It
C
P
U

R
e

It
C
P
U

R
e

It
C
P
U

R
e

It
C
P
U

R
e

It

ψ
2

23
.7
7

9.
62
E
-0
4

15
0

28
.3
0

1.
98
E
-0
5

1
7
7

3
5
.6
5

2
.1
1
E
-0
5

2
1
3

4
6
.6
2

1
.9
1
E
-0
5

2
5
6

5
9
.9
7

1
.5
8
E
-0
5

3
4
2

ψ
3

21
.8
2

6.
37
E
-0
3

14
2

24
.5
5

3.
03
E
-0
5

1
7
1

3
0
.8
8

2
.2
9
E
-0
5

2
0
6

3
6
.5
4

2
.0
1
E
-0
5

2
4
1

4
0
.3
9

1
.7
6
E
-0
5

2
8
6

ψ
4

26
.6
4

7.
00
E
-0
3

14
6

27
.0
3

4.
32
E
-0
5

1
6
9

3
6
.7
9

2
.2
1
E
-0
5

2
1
5

4
5
.1
2

2
.0
4
E
-0
5

2
5
8

5
9
.3
4

1
.7
6
E
-0
5

3
3
8

ψ
5

26
.3
2

2.
21
E
-0
3

15
7

28
.0
4

2.
77
E
-0
5

1
7
4

3
4
.7
3

2
.1
2
E
-0
5

2
0
9

4
5
.3
8

2
.1
4
E
-0
5

2
5
6

4
9
.8
9

1
.8
8
E
-0
5

2
9
6

ψ
6

19
.5
3

4.
82
E
-0
3

13
8

24
.8
3

3.
01
E
-0
5

1
7
2

3
2
.4
1

2
.3
4
E
-0
5

2
1
4

3
8
.8
0

2
.0
6
E
-0
5

2
4
5

5
0
.0
9

1
.6
8
E
-0
5

3
0
1

N
E
S
T
A

7.
96

2.
28
E
-0
2

55
5

8.
30

2.
95
E
-0
2

5
6
8

1
7
.1
2

3
.2
6
E
-0
4

1
1
3
4

1
5
.9
8

1
.8
2
E
-0
5

1
0
6
0

4
4
.5
0

1
.7
4
E
-0
5

2
9
9
9

T
ab

le
5:

C
om

p
ar

is
on

s
of

fi
ve

sm
o
ot

h
in

g
fu

n
ct

io
n
s

an
d

N
E

S
T

A
fo

r
d
iff

er
en

t
to

l
w

h
en

n
oi

se
-f

re
e

27

to
l=

1.
0e

−
4

to
l=

1
.0
e−

5
to
l=

1
.0
e−

6
to
l=

1
.0
e−

7
to
l=

1
.0
e−

8

F
C
P
U

R
e

It
C
P
U

R
e

It
C
P
U

R
e

It
C
P
U

R
e

It
C
P
U

R
e

It

ψ
2

23
.2
5

2.
49
E
-0
3

14
6

26
.1
0

7.
3
7E

-0
4

1
6
5

3
6
.6
7

5
.9
1
E
-0
4

2
2
2

6
2
.2
7

5
.8
0
E
-0
4

3
3
2

1
0
4
.4
4

5
.9
5
E
-0
4

5
4
2

ψ
3

19
.5
3

5.
57
E
-0
3

13
8

19
.0
2

4.
2
4E

-0
3

1
3
6

3
1
.6
2

5
.8
3
E
-0
4

2
1
5

5
3
.0
4

5
.9
9
E
-0
4

3
3
2

8
0
.0
3

5
.8
3
E
-0
4

4
5
9

ψ
4

25
.1
1

3.
52
E
-0
3

16
2

23
.8
4

8.
9
0E

-0
3

1
5
3

3
7
.3
7

5
.3
9
E
-0
4

2
2
4

5
6
.3
8

5
.6
5
E
-0
4

3
1
4

1
0
4
.5
5

5
.6
8
E
-0
4

5
2
0

ψ
5

24
.7
2

5.
91
E
-0
3

16
1

26
.4
0

7.
2
2E

-0
4

1
6
4

3
5
.5
2

6
.3
1
E
-0
4

2
1
4

5
7
.0
1

5
.7
5
E
-0
4

3
1
7

8
3
.1
3

5
.8
3
E
-0
4

4
2
9

ψ
6

20
.4
5

1.
23
E
-0
2

14
8

22
.1
6

6.
8
0E

-0
4

1
5
6

3
3
.5
0

5
.6
3
E
-0
4

2
2
2

5
6
.7
7

5
.8
5
E
-0
4

3
0
8

9
4
.4
3

5
.7
5
E
-0
4

5
0
7

N
E
S
T
A

7.
67

2.
13
E
-0
2

52
5

8.
28

1.
1
0E

-0
2

5
4
9

1
5
.8
1

7
.8
5
E
-0
4

1
0
8
6

1
6
.4
5

7
.4
7
E
-0
4

1
0
7
3

8
5
.8
9

6
.1
6
E
-0
4

5
8
8
6

T
ab

le
6:

C
om

p
ar

is
on

s
of

fi
ve

sm
o
ot

h
in

g
fu

n
ct

io
n
s

an
d

N
E

S
T

A
fo

r
d
iff

er
en

t
to

l
w

h
en

n
oi

sy
ca

se

28

