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Abstract. The [;-norm regularized minimization problem is a non-differentiable problem
and has a wide range of applications in the field of compressive sensing. Many approaches
have been proposed in the literature. Among them, smoothing /;-norm is one of the effec-
tive approaches. This paper follows this path, in which we adopt six smoothing functions
to approximate the [;-norm. Then, we recast the signal recovery problem as a smoothing
penalized least squares optimization problem, and apply the nonlinear conjugate gradient
method to solve the smoothing model. The algorithm is shown globally convergent. In
addition, the simulation results not only suggest some nice smoothing functions, but also
show that the proposed algorithm is competitive in view of relative error.

Keywords. [;-norm regularization, compressive sensing, conjugate gradient algorithm,
smoothing function.
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1 Introduction

In this paper, we focus on the topic of reconstructing signals, which is one of the most
important applications in compressive sensing [8, 9, 16]. There exist numerous textbooks
and articles related to this topic and there is no need to repeat its importance and
applications here. Therefore, we get into its mathematical model directly and convey our
new idea for tackling this problem. Mathematically, the noise-free signal reconstruction
problem model is described as follows:

min ||z||o

s.t. b= Az, (1)

where x € IR" is the original sparse signal that needs to be recovered, A € R™*" (m < n)
is the measurement matrix, b € IR™ is the observation vector, and ||z||o represents the
lo-norm of x, which is defined as the number of nonzero components of x. Without loss
of generality, we assume that there exists a positive constant K < n such that ||z||o = K.
Besides this condition, if the measurement matrix A satisfies Restricted Isometry Prop-
erty (RIP) of order K, then we can recover the signal # more accurately through the
model (1), see [6, 7, 8, 9, 10] for more details.

Unfortunately, the lp-norm minimization problem (1) is an NP-hard combinatorial
optimization problem. In order to avoid this difficulty, researchers attempt to replace
lo-norm by [;-norm in model (1) and obtain the following /; minimization problem

min ],

s.t. b= Az, )
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where ||z||; denotes the l; norm of x and ||z|; = >, |;]. Under the RIP condition,
the model (2) has the same solution as (1). In practice, the probed signal b is usually
impacted by noise, therefore there arises investigation on the noise signal reconstruction
problem:

min ||z

st. b=Ax+e,

(3)

where e € IR™ denotes the noise. In order to deal with (3), researchers prefer to consider
the associated penalized least squares optimization problem

, 1
min Az ]y + 5 b — Az (4)

where A > 0 is the penalty factor. In the sequel, we call (4) the [;-norm regularized
problem.

Until now, there are plenty of numerical algorithms for solving the model (4) and
some first-order algorithms have drawn much attention during the past decades. Due
the huge amount of literature, we only outline and recall some approaches as below. The
gradient projection algorithm [18] is one of the earliest gradient-based algorithms for
solving (4), in which it was reformulated as a box constrained quadratic program and
solved by the gradient projection algorithm. Recently, the most extensively investigated
first order algorithm for the solution of (4) was the iterative shrinkage/thresholding (IST)
algorithm [15, 21]. Their results triggered off many contributions based on this method
(17, 24, 25]. In light of the IST algorithm, many variants are proposed under different
optimization reformulations and techniques. For instances, Hale, Yin and Zhang [19, 20]
presented an IST fixed point continuation (FPC) method by an operator splitting skill.
Wright, Nowak and Figueiredo [29] studied the spaRSA for sparse reconstruction from
solving nonsmooth convex problem. Experimental results show that the accelerated IST
methods (two IST [4] and fast IST [1]) have better convergence properties. In addition,
the famous NESTA [2] first proposed the smoothing function of the /;-norm and then
used Nesterov’s gradient method to get the solution of (3). Besides these methods, the
gradient projection technique and alternating direction ideas are also considered, see
3, 5, 30] for more details.

Because the simplicity and lower storage requirements, conjugate gradient algorithms
are suitable for large scale problems. In this paper, like [28, 31, 33|, we are interested
in applying the conjugate gradient method for signal recovery. We use six smoothing
functions, which are studied in [23, 27] for absolute value function, to approximate the ;-
norm. Accordingly, we reformulate the signal recovery problem as a smoothing penalized
least squares optimization problem, and apply the nonlinear conjugate gradient method
[32] to solve the smoothing model. The proposed algorithm is shown globally convergent.
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Moreover, we report some numerical experiments to demonstrate the effectiveness of our
method. Numerical comparisons with “NESTA”, “FPCBB”, and “FISTA”, which are
well-known open softwares, are presented as well.

2 Preliminary

This section recalls some ideas about smoothing technique which can be found in [11, 12,
23] and references therein.

It is well known that the absolute value function |¢| (¢ € IR) is not smooth at zero.
In order to overcome this difficulty, we introduce some smoothing functions of [¢| used in
the sequel.

Definition 2.1. The function ¢ : Ry, x R — IR is a smoothing function of |t|, if the
following two conditions hold:

(a) v is continuously differentiable at (u,t) € Ry x R;

(b) limy o (p,t) = [t| for any t € R.

How to construct smoothing functions for |¢|7 First, we observe that |t| can be divided
into two parts:
1= 1)+ = ()= (O)+ + (=),
where (¢); denotes the plus function, i.e., (t); = max{0,¢}, and () = min{0,¢}. As
mentioned in [11, 12, 23], one can follow the below procedure to construct a smoothing
function for (¢),. More specifically, through importing a density (kernel) function d(t)
with finite number of pieces satisfying

400
d(t) >0 and / d(t)dt = 1,

[e.9]

n =)

where p is a positive parameter. If the following condition holds

one can define

“+o00
/ ] d(t) dt < +o0,

o0

then the function p(t, u) defined as

/+°° L= 5)48(s, s = /t (t = 5)5(s, p)ds = (t)+

[e.e] —00
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is a smoothing approximation for (¢),. There are existing well-known smoothing func-

tions for the plus function [11, 22, 23], for example,

pi(p,t) =t + pln (1+e*5> ,

t if >4
n 2 .
ol t) =4 5, (E+5) if —5<t<§,
0 if <-4

. AR+t +t
w?)(uvt) = f?

t—5 if t>up,
da(t) =9 & it 0<i<p,
0 if t<0.
where the corresponding kernel functions are respectively given by

—X

(&
h = e

1 if —i<e<i
do(t) = 2 =T =%
2(t) 0 otherwise,

2
dy(t) = ——
5(t) e

1 ifo<x<1
dy(t) = —
(1) {0 otherwise.

Likewise, we can achieve the smoothing function of |¢| via convolution as follows:

“+o0
Pt 1) = Pt 1) + P(—t,p) = / 1t — 5| 5(s, p)ds.

—00

Analogous to (5)-(8), we construct four smoothing functions for |¢| as [23]:

U (p,t) = 1 [ln (1 +e*5) +In (1 +eﬁ>} ,
itoe>

t
Ua(pt) =4 S if —t<t<t
—t if t<—%,

(10)

(11)

(12)



In particular, if we take a Epanechnikov kernel function

31—12) if |t/ <1
d(t) =< 2 -
Q { 0 if otherwise,

then the associated smoothing function for |¢| is expressed by

t it t>p,
4 2 .
Us(pat) = —gm T4+ i —p<t<yp, (13)
—t if t<—pu.

2
Moreover, taking a Gaussian kernel function d(t) = \/szﬂe_t? for all t € R yields

St 1) 1d<t) 1 -4
S\t @) 2= — — | = € =,
AN \/ 2w p?

which leads to another type of smoothing function [27] for |¢|:

b, t) = terf (\/_L?x) + \/gue‘;i?, (14)

where the error function is defined as follows:

2 [t
erf(t):ﬁ/o e “du VtelR.

In summary, we have obtained six smoothing functions and will employ them to approx-
imate the [;-norm for signal recovery problem.

3 Algorithm and Convergence Properties

This section is devoted to the detailed description and implementation of our algorithmic
idea and its global convergence results. Basically, it is a type of conjugate gradient
algorithm. To proceed, we briefly review the conjugate gradient method. Suppose that
f:IR"™ — R is a continuously differentiable function and the target problem is

min f(z).

Let d* denote the search direction and ay, be a step length. Then, the general framework
of conjugate gradient method is as below.
M = b ¢ agd”,

p_ [ ~VIEY if k=0,
T { —V (k) + Brd"t if k>0, (15)



where Vf is the gradient of f and [ is a parameter. In general, various choices of
parameters [, represent (correspond to) different conjugate gradient algorithms. Among
them, the three-term PRP (Polak-Ribiere-Polyak) conjugate gradient method is the most
efficient, where

| =V (k) if k=0,
d* = { —Vf(ZL‘k) + Bkdkfl — Qkykfl if £>0, (16)

y' = V(b - V"),

(Vf (=) v

R e
5 _ (VI@Eh)
VR

The utmost feature of this conjugate gradient method is to ensure the sufficient descent
property of direction at each iteration, which plays a prominent role in the global con-
vergence analysis. For more details, please refer to [32] and references therein.

For convenience, we denote
1
Ju(@) == A, x) + §||b — Az|3, x€IR", (17)

where ¢;(u1, ) is a smoothing function of /; norm ||z||;. In other words, it corresponds
to the format as below:

(bl(N?a:) :Z¢Z(H>wj>7 L= 17273747576 (18)
j=1
Thus, the problem (4) is equivalent to the smoothing penalized least squares optimization
problem:
xnelIlF{}L fulz) (19)

which is our new target problem. To deal with the unconstrained minimization (19), the
following iterative scheme is employed, see [32].

The Algorithm

Step 0. Given starting point 2° € IR™ and uy > 0. Choose parameters p, J, ~, and

7 € (0,1). Let d° = =V f,,(2°). Set k = 0.
Step 1. If termination criterion is reached, then stop.
Step 2. Determine o, = max{p’,j = 0,1,2,...} satisfying
Fun(a® + and) < f, (%) = 26(1 = ) fy ().
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Step 3. Let 2" = 2% 4+ ayd* and pis1 = k. Replace f with f,, ., in formula (16)
and compute d**1 by (16).

Step 4. Set k =k + 1 and return to step 1.

We also say a few words about how to update p in Step 3. For Experiment 1, uy
is updated at each iteration by prr1 = Jux, 7 € (0,1) and we select ¥ = 0.4. For
Experiment 2 and Experiment 3, an inner loop is used to solve our relaxed problem for
1k, and then reduces py. This is indeed a technique appeared in NESTA. When p; is
small enough, our algorithm no longer updates the parameter py.

Lemma 3.1. Suppose that the function f,(z) is defined by (17). Then, there exists a
constant L > 0 such that ||V f,(z) — V f,(y)|| < L||lz =yl for all z,y € R™.

Proof. For any fixed p¢ > 0, in order to prove the Lipschitz property of V f,(x), we need
to verify the Lipschitz condition of ;" (i = 1,2,3,4,5,6). To this end, we discuss two
cases.

Case (i): i = 1,3,5,6. For any t1,t, € IR, without losing of generality, let ¢; < t9, by
Lagrange Mean Value Theorem, we have

w’:(u? tl) - w;(:uu t2)

(0|1 =t €€ (0, 1)

For subsequent analysis, we need to estimate ‘w;'(,u, £)| for each i =1, 3,5, 6.

For i = 1, we know that

¢ —¢
1 1 en enr 2
H (1—|-@u)2 (1—|—eu)z H
. oy . " 2
For i = 3, it is clear that |¢5(u, &)| = (4751% < ﬁ
For ¢ = 5, we have
1 if t > p, 0 if t > p,
w;(ﬂvt): 2u3+ﬁ if —p<t<up, 1/1::,/(,&,75): 2M3+_ if —p<t<up,
-1 ift < —p. 0 ift < —p.

which yields

" 3/112 3
%(M,f)‘ < Q—M;J,Jrﬂ =

=lw

For 7 = 6, we compute

fu " \/§ =2
P t) = / e du, g (t) = e
6 6 ) \/—
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which imply Wg(u, 5)‘ < %

All the aforementioned results indicate that

! ! 3 .
77Z}z(:uat1> - ¢1(M7t2) S ;|t1 - t2|7 v = ]-a 37576' (20)

for any t1,t € IR.

Case (ii): 7 = 2,4. Indeed, we will provide a version like (20) for ¢, and 1,.
For i = 2, we know that

1 ift>4
Yol t) =4 2 if—h <t <,
~1 ift< -4
If 11 2 g,tg Z %, tl S —%,tg S —% or tl,tg c (—g, g), then
! / 2
‘¢2(Mat1) - ¢2(Mat2)‘ < E’tl — tof.
If tl Z g,tg S —%, then
/ / 2 2
‘w2<:u7t1) - %(M,h) =2= w—= < _’tl - tQ‘-
o
Ift, > 8.ty € (—5,%), then

2, 2y 2wy 2
—1- 222 Dy ).

If tl S —%,tg S (—%, %), then

2t 2%, 2, 2
1+ 2« 22 Dy — ).
u TR

Uyt tr) — Yalpa, ta)

Thus, it is clear to conclude that

Uy(p 1) — Valpa, ta)

2
< Sty —to, V ti,t, € R.
W

For ¢ = 4, using the similar arguments for case of ¢ = 2, it can be verified that

Uy tr) — ¥y, ta)

1

< |ty —to|, Vit € R.
1

In summary, we also achieve

?/1;(/% tl) - ¢; (M? t2)

2
<l —to], i=24 (21)
7
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for any t1,t; € IR.
Now, applying (20) and (21), for any z,y € IR™, we have
IV fu(@) =V ()l
= [[M Vei(n, ) — Vi(p, y)] + AT (Az — ) — AT(Ay - b)|
< alle =yl + A =]
= Lllz —yll,

where L = 2An + [|A[|*. Thus, the proof is complete. O

Lemma 3.2. For p > 0, the level set L(z°) = {x € R"| f,(x) < f.(2°)} is bounded.

Proof. We prove it by contradiction. Suppose that the set L(z°) is unbounded. Then,
there exists an index set K, such that ||2%|] — oo, k — o0, k € K. Recalling the
definition of f,(x), we have f,(2*) — oo, k — oo, k € K;. This contradicts f,(z*) <
fu(2%). Thus, the level set L(2°) is bounded. O

In fact, since the continuity of f,(z), we find the level set L(z°) is compact. We point
out that Lemma 3.1 and Lemma 3.2 play key roles in our theoretical part. They were
assumed as two assumptions in [32] and other literature like [14]. Here we assert them
by showing that function (17) based on the proposed smoothing functions satisfies these
assumptions. With these properties, we are ready to present the global convergence of
our algorithm.

Theorem 3.1. For any p > 0, consider the aforementioned algorithm with any starting
point 9. Let {x*} be the sequence generated by the algorithm. Then

lim inf |V fu(z®)]| = 0. (22)

Proof. Suppose that the conclusion (22) is not true. Then, there exists a constant
g0 > 0, such that

IV fu(z®)]| > €0, VE. (23)
Since (V f,(zF))Td" = — ||V f.(2%)]|?, there exists a; > 0, such that
fula® + apd") < fu(@®) = 20(1 = y)an fu(a"). (24)

This means {f,(z*)} is decreasing and bounded, which implies that z* € L(2°) and
{f.(z*)} is convergent. We denote that limj e fu(2*) = f.. From (24), it can be
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verified that limg o ayf,(z%) = 0. By the definition of f,(z), we know f. > 0, and

akfu(xk) < akfu(xk)

e S TR To sum up, we obtain

therefore 0 < ay, =

lim oy = 0. (25)

k—o00

Now, applying lemma 3.2, there is a constant 7 > 0, such that
IVfuaM) <7, V. (26)

Next, we prove {||d*||} is bounded by a contradiction argument. If {||d*||} is un-
bounded, then there exists an index K>, such that ||d*|| — oo, k — 00, k € K. Let 6y,
be the angle between —V f,,(z*) and d*. Then, we see that

— (V@) Td" [V hu(=")]
IV Fu(z® )] la]|

cos Oy, = (27)

This relation enables us to apply g < ||V f.(2¥)|| < T to conclude cosfy — 0, k € Ko,
k — oo, which means 0y — 3, k € Ky, k — oo. Considering this geometric relationship,
we have (Vf,(a*))Td* — 0, k € Ky, k — oo, from which we find

— IV £ ()P = (Vfu(a®)Td" =0, k € Ky, k — o0,

which contradicts (23). Thus, {||d*||} is bounded, i.e., there exists a constant M* > &,
such that
[d"|| < M*, V. (28)

Then, combining (25) together with (28) gives
lim oy||d"|| = 0. (29)
k—ro0

€0

ViR which further yields

In addition, from (27), we have cos 0y >

2
€
—(Vful@®)"d" = IV fu (@)l cos b, > 2= 1]l (30)
Applying the mean value theorem, we obtain

fu(xk + O‘kdk) = fu(mk) + ak(vfu(gk))Tdk
= fu(@®) + ar(V (@) d* + an(V fu(€F) = V fu(a*))Td*

< e + ) (TEEVE 1946 - TN, 6D

where &% is between 2% and 2% + ad*. Using Lemma 3.1 and the compact property
of level set L(z°) imply that Vf,(x) is uniformly continuous on L(z"). This together

11



and (29) implies that there exists a constant @ > 0, for sufficiently large k, such that
ai||d¥|| < @ and
1 &l

IV £ul€) ~ Vi) < 52 (32)
Then, when k is sufficiently large, from (31), we have
N g2 1 é&2
fula® + pd®) < fula®) +a( - =2+ §MO*)
52
ae
- ) - (33)

which contradicts f,(z¥1) — f,(2*) — 0, k — oco. Therefore, there must hold

lim inf ||V, ()] = 0.

4 Numerical Experiments

In this section, we conduct numerical experiments to show the performance of our algo-
rithm for signal recovery. All tests are run in MATLAB R20116 on a 64-bit PC with
an Intel (R) Core(TM) i7-6500U of 2.50 GHz CPU and 8.00GB of RAM equipped with

Windows 7 operating system.

Experiment 1
In what follows, we divide our tests into two groups: noise-free case and noise case. we

report the numerical results of our algorithm for signal recovery. In all of our simulations,
20
whose nonzero component satisfies normal distribution N (0, 1).

A € IR™*™ is assumed to be Gaussian matrix and m = x* € IR" is a K-sparse orig-

n
40°
Moreover, we set b = Az + e in the noisy case, where e is the Gaussian noise with zero

mean and variance 0'2.

inal signal with K =

The parameters of our algorithm are summarized as follows:
2% = zeros(n, 1), A = 0.001  [|ATD||s, p=0.5, § =0.002, v = 0.2, 0> = 0.0001.

In Tables 1 and 2, we set pg = 0.1, g1 = 0.4 and the algorithm terminates when the
relative error

12



where T is the reconstruction signal. In Tables 3 and 4, F' denotes the smoothing func-
tions, CPU denotes cpu time, Re denotes the relative error and It denotes the iterations,
we set 1= 1.0e72,1.0e73,1.0e7%,1.0e7® and the algorithm terminates when

L)~ R
G e

Note that the result from each test is obtained by running our algorithm 10 times and

taking its average result.

In our experiments, we found that 1, is very unstable, sometimes it is not applicable
to solve the test problems. Similar concern had also been addressed in [13, page 135].
Accordingly, we try to adopt the equivalent expression suggested in [13, formula (3.1)]
and rewrite 1 (t) as below:

M (A®) Mo (A®) M (B®) Ao (B(1)
@bl(t):u[ln(e S 4e >+ln<e S o4e )}

A2 (A()—A1 (A®) >\2(B(t))*h(3(t>>>

— M(AW) + (XY M BE) 4 (T
( ) (

where
0 0

an=g %] so=]5 7]
MA) =0, M(A®D) = =, M(B{) =0, M(B(t) = t.

Nonetheless, 1), still does not work well along with the algorithm. We therefore omit it

in our numerical reports.

CPU time Iterations
n m | 3 hy s Ve | Yo | Y3 | Y4 | Y5 | e
n/2 | 1.21 0.94 1.32 1.27 | 0.92 72 74 | 75 73 | 69
n/4 1.37 | 0.90 1.45 1.59 1.00 | 129 | 135 | 142 | 148 | 147
n/2| 4.16 | 3.83 | 5.01 | 450 | 3.80 | 70 | 70 | 78 | 72 | 68
n/4 468 | 4.12 | 5.19 | 5.58 | 4.50 | 131 | 143 | 143 | 148 | 146
n/2| 9.54 | 849 | 9.80 | 9.22 | 861 | 70 | 70 | 70 | 69 | 68
n/4 9.69 | 10.35 | 10.71 | 12.91 | 10.54 | 134 | 163 | 145 | 159 | 164
n/2 | 16.93 | 16.25 | 18.76 | 18.91 | 15.55 | 67 | 71 | 74 | 78 | 69
n/4 15.76 | 15.65 | 18.65 | 19.49 | 15.75 | 126 | 137 | 145 | 144 | 138
n/2 | 25.88 | 24.06 | 30.07 | 25.83 | 24.21 | 67 | 67 | 76 | 68 | 68
n/4 | 27.94 | 28.28 | 29.96 | 34.48 | 27.60 | 139 | 138 | 151 | 160 | 149

2000

4000

6000

8000

10000

Table 1: Comparisons of five smoothing functions for noise-free case
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CPU time Tterations

n m () 3 Py s e | Y2 | Y3 | Yu | s | s

n/2| 1.27 | 1.00 | 1.30 | 1.33 | 1.00 | 73 | 78 | 75 | 75 | 72

2
000 n/4| 1.54 | 0.92 | 1.64 | 1.55 | 0.91 | 145 | 151 | 154 | 150 | 144

n/2 | 4.48 | 447 | 4.89 | 462 | 436 | 72 | 80 | 75 | 72 | 76

4
000 n/4| 494 | 516 | 577 | 5.09 | 4.65 | 137 | 159 | 154 | 143 | 158

n/2| 881 | 9.07 | 9.80 | 991 | 897 | 65 | 72 | 72 | 67 | 69

6000 n/4 | 11.65 | 11.61 | 12.10 | 12.38 | 10.12 | 160 | 167 | 152 | 165 | 154

n/2 | 16.27 | 17.05 | 18.28 | 18.53 | 16.69 | 69 | 75 | 76 | 74 | 71

5000 n/4 | 15.76 | 18.04 | 19.27 | 17.99 | 16.91 | 132 | 155 | 145 | 145 | 143

n/2 | 25.59 | 25.58 | 26.04 | 25.82 | 25.38 | 68 | 71 | 67 | 67 | 68

10000 n/4 | 25.82 | 27.23 | 37.00 | 29.52 | 27.73 | 136 | 150 | 175 | 150 | 155

Table 2: Comparisons of five smoothing functions for noisy case

m=n/2 noise-free case m=n/2 noisy case

0
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
signal size signal size
m=n/4 noise-free case m=n/4 noisy case
40 40
—
30 30—
2 2 " yz
= = Z
= 20 = 20 5 ///
& B ¥s
=
) ) /
0 = * * 0 =
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
signal size signal size

Figure 1: The convergence behavior: cpu time vs. signal size (n)when g1 = 0.4
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200

150

m=n/2 noise-free case

—u,

200

150

m=n/2 noisy case

Lu?
¥y

‘% ¥ fgu 7“’:
.*§ Vg .é Ys
100 100
50 . il i 50 i
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
signal size signal size
200 m=n/4 noise-free case - m=n/4 noisy case
—
250 W3 250
c '4-'4 c
%200 vs "%200
£ s 3
150 F—rxo—== ”‘; ;“"‘“":- — _‘_ 180 — ==
100 100
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
signal size signal size
Figure 2: The convergence behavior: iterations vs. signal size (n) when g1 = 0.4p
p=1.0e"2 p=1.0e3 p=1.0e"* pu=1.0e"5
F m | CPU Re It | CPU Re It | CPU Re It | CPU Re It
” n/2 | 8.80 | 0.0158 | 92 | 9.34 | 0.0040 | 89 | 11.03 | 0.0033 | 100 | 16.78 | 0.0025 | 141
2 n/4 | 10.98 | 0.0365 | 172 | 11.49 | 0.0064 | 178 | 11.83 | 0.0029 | 184 | 17.06 | 0.0028 | 237
y n/2 | 9.44 | 0.0567 | 104 | 8.14 | 0.0090 | 86 | 7.98 | 0.0032 | 86 | 10.93 | 0.0025 | 111
s n/4 | 7.44 | 0.1532 | 167 | 9.10 | 0.0195 | 179 | 8.36 | 0.0045 | 166 | 10.34 | 0.0030 | 188
y n/2 | 822 | 0.0538 | 71 | 7.92 | 0.0059 | 73 | 10.58 | 0.0027 | 93 | 12.01 | 0.0025 | 104
! n/4 | 9.13 | 0.0157 | 139 | 11.11 | 0.0154 | 155 | 10.69 | 0.0035 | 179 | 13.43 | 0.0032 | 194
y n/2 | 7.88 | 0.0419 | 68 | 7.59 | 0.0055 | 72 | 10.14 | 0.0025 | 91 | 12.77 | 0.0025 | 109
> n/4 | 10.26 | 0.1895 | 132 | 11.09 | 0.0117 | 156 | 10.51 | 0.0041 | 169 | 12.83 | 0.0034 | 193
y n/2 | 895 | 0.0360 | 96 | 7.94 | 0.0063 | 84 | 9.69 | 0.0027 | 99 | 12.57 | 0.0023 | 121
0 n/4 | 9.17 | 0.0926 | 166 | 9.16 | 0.0128 | 173 | 8.98 | 0.0038 | 174 | 11.75 | 0.0030 | 203

Table 3: Comparisons of five functions for different ;1 when n = 5000 and noise-free case

15




From the experiments, we have the following observations:

(1)

(2)

The sparse original signal can be recovered by our algorithm effectively. Tables
1-4 and Figures 1-5 illustrate that the five smoothing functions (except ;) in our
algorithm work quite well whether the given problem is noise-free or noisy.

The convergence behavior with respect to CPU time, iterations, signal size, and
the relative error are depicted in Figures 1-5, respectively. From Tables 1-2 and
Figures 1-2, we see that our algorithm costs more cpu time when increasing the
dimension n, while the changes of their iterations are very marginal. On the whole,
the performance order can be summarized as below:

o > Py R s = ahg > Y3

7

where “>” means performs better than and “~” means there is no difference in

numerical performance.

p=1.0e"2 p=1.0e"3 p=1.0e* pu=1.0e"5
F | m | CPU Re It | CPU Re It | CPU Re It | CPU Re It
n/2 | 8.62 |0.0159 | 89 | 8.77 | 0.0072 | 88 | 11.82 | 0.0026 | 100 | 15.80 | 0.0025 | 143
V2 n/4 | 11.67 | 0.0379 | 174 | 10.40 | 0.0063 | 180 | 10.26 | 0.0033 | 188 | 15.03 | 0.0033 | 242
n/2 | 854 | 0.0548 | 100 | 7.86 | 0.0085 | 88 | 8.75 | 0.0033 | 92 | 10.38 | 0.0025 | 109
¥s n/4 | 7.43 | 0.1506 | 169 | 8.43 | 0.0185 | 169 | 7.78 | 0.0045 | 177 | 9.82 | 0.0030 | 203
n/2| 6.76 | 0.0491 | 64 | 811 | 0.0058 | 76 | 11.40 | 0.0028 | 95 | 11.93 | 0.0026 | 105
Vs n/4 | 11.10 | 0.1439 | 154 | 8.84 | 0.0137 | 152 | 9.67 | 0.0035 | 175 | 11.52 | 0.0035 | 184
n/2 | 7.36 | 0.0542 | 65 | 7.82 | 0.0059 | 75 | 9.57 |0.0031 | 87 | 11.33 | 0.0025 | 104
vs n/4 | 10.19 | 0.1492 | 143 | 10.00 | 0.0123 | 154 | 10.48 | 0.0039 | 177 | 11.37 | 0.0034 | 191
n/2 | 854 |0.0355 | 94 | 878 | 0.0061 | 92 | 9.05 | 0.0029 | 96 | 11.57 | 0.0026 | 119
Ve n/4 | 7.77 | 0.0908 | 160 | 9.15 | 0.0122 | 180 | 8.11 | 0.0040 | 167 | 10.50 | 0.0030 | 207

Table 4: Comparisons of five smoothing functions for different ;1 when n = 5000 and

noisy case
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Figure 3: The convergence behavior: cpu time vs. —log p with n = 5000
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Figure 5: The convergence behavior: relative error vs. —log o with n = 5000

(3) According to Tables 3-4 and Figures 3-5, the smaller the parameter p, the better the
signal to recover; and the more cpu time and iterations have to spend accordingly.
For any fixed p, although the function 1), sometimes takes a bit more cpu time
and iterations, it has a lower relative error. In view of this, we could conclude that
the function 15 works best along with the proposed algorithm. From Figure 5, the
function g also has a lower relative error, which means 4 is a possible good choice
as well. To sum up, in view of relative error, we have

o > 1y = s =g > 1P3.

Experiment 2

Next, we try to do comparison with “NESTA”, which is a well-known, fast, open software
proposed in [2]. In the noisy case, b = Ax + e, where e is the Gaussian noise with zero
mean and variance o2. In all of our simulations, A € IR™*" is assumed to be Gaussian

matrix, where n = 2!3 and m = 7. We select K-sparse original signal z* € IR" with
K = {5, its nonzero component satisfies normal distribution N(0,1). In our test, we set

2% = ATb, A =0.0048 * | ATb||o, p= 0.5, § =0.002, v = 0.2, ¢* = 0.0001.

We also accelerate our algorithm by using

ﬂ)l/t
Ho ’

He+1 — WHE, 1 S k S t? W = ( Mt = 10_87/'60 = 10_27 and t = 4.
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The algorithm terminates when

) — = o - min{5,k}
|fﬂ( j?u(x;f)u( >| < tol, f“(xk) _ mln{5 k} Z fu k= l ]

In our experiments, the accuracy tol € {107, 107°,107%,1077,107%}. We test the con-
tinuation version NESTA for comparison. In testing NESTA, other parameters are taken
as default expect for the above parameters.

From the comparison experiments, we have the following observations:

(1) In the view of CPU time, the NESTA is really fast. However, from Tables 5-6 and
Figure 8, as the “accuracy tol” gets smaller, the CPU time of our algorithm is not
affected too much. To the contrast, when the “accuracy tol” gets smaller, the CPU
time of NESTA goes up dramatically.

(2) From Tables 5-6 and Figure 7, we see that our algorithm has a small relative
error when the “accuracy tol” is relatively large. Especially, when tol = 10~* and
tol = 1075, the relative error of NESTA gets large, which indicates that the signal
has not been recovered well. To the contrast, we see that the function v, keeps a
small error, which means it has better performance.

(3) From Tables 5-6 and Figure 6, NESTA needs more iterations. In view of this and
relative error, our proposed algorithm is competitive.

m=n/4 noise-free case = i
SO00 ¢ S - m=n/4 noisy case
——NESTA — NESTA
w2 T qJZ
1500 L 1500 | ML
[= LP4 Lp4
2 ——= WS .E — LPE,
T 1000 ¢ @ 1000 |
g L o W
500 f 500 -
0 1 1 1 1 1 0 L 1 1 L
2 B 6 8 10 2 4 6 8 10
accuracy x107° accuracy %1073

Figure 6: The convergence behavior: iterations vs. accuracy
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Experiment 3

In order to observe the efficiency on sparse recovery. We compare our algorithm with three
other algorithms: the NESTA, the FPCBB and the FISTA, in which Bernoulli matrix,
Partial Hadamard matrix and Gaussian matrix are chosen. In our implementations, we
select n = 21, m = 5 and sparsity is K = j5. The parameters py,, 0 and 7 are the same
as the Experiment 2. See Figures 9-11.

The result from each test is obtained by running our algorithm 30 times and taking its
average result. Figures 9-11 show the frequency of successful reconstruction at different
relative error. We can see that our algorithm gives relatively better behavior when relative
error is small enough. This means that our algorithm has slightly higher efficiency on

sparse recovery. To sum up, we obtain

oy >y ~ s = g > 3.

Bernoulli matrix in noise-free case
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Figure 9: Comparisons among algorithms with Bernoulli matrix
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Gaussian matrix in noise-free case
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Partial Hadamard matrix in noise-free case
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5 Conclusions

In this paper, the sparse signal recovery problem is investigated, in which we concentrate
on the l;-norm model. In light of convolution techniques in [23, 27] and the framework
of nonlinear conjugate gradient method [32], we propose an unified smoothing approach
to solve the given sparse signal reconstruction problem. As a byproduct, the classical [y
norm is approximated by six smoothing functions. Numerical results show that 5 and
g are the better choices of smoothing function to work with the algorithm. Although
the theoretical part is not very notable, the contribution of this paper lies in numerical
comparisons among new smoothing functions. In particular, we suggest two nice smooth-
ing functions to work along with nonlinear conjugate gradient method. In addition, we
compare our algorithm with three other algorithms (well-known open softwares): the
NESTA, the FPCBB and the FISTA, in which Bernoulli matrix, Partial Hadamard ma-
trix and Gaussian matrix are chosen. It can be seen that our algorithm gives relatively
better behavior when relative error is small enough. Under this sense, we provide a new
choice of simple and effective approach to deal with the recovery of the original sparse
signal problem.

Our attention was drawn to [14] by one reviewer. In [14], the authors proposed a
smoothing conjugate gradient method, and then used this algorithm to solve the image
restoration problem. More specifically, it used a smoothing function as below:

t if |t £
Sm:{u it i) > 5,

2 .
Shif i <4

This smoothing function is exactly the 15(u, t) function in our paper. Our contribution
lies in showing that this smoothing function is also a good choice for signal reconstruction
problem comparing to other smoothing functions, which are not investigated in reference
[14].

Acknowledgements. The authors would like to thank the anonymous referee and the
editor for their valuable comments, viewpoints, and suggestions, which help improve the
manuscript a lot.
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