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Abstract. Circular cone includes second-order cone as a special case when the rotation

angle is 45 degree. This paper gives an insight on circular cone, in which we describe

the tangent cone, normal cone, second order tangent cone, and second order regularity of

circular cone. Moreover, we establish the spectral factorization associated with circular

cone. These results are crucial to subsequent study regarding various analysis towards

optimizations associated with circular cone.
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1 Introduction

The circular cone [9] is a pointed closed convex cone having hyperspherical sections

orthogonal to its axis of revolution about which the cone is invariant to rotation. Let its
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half-aperture angle be θ where θ ∈ (0, π
2
). Then, we denote the n-dimensional circular

cone by Lθ which is expressed as

Lθ :=
{
x = (x1, x2)T ∈ IR× IRn−1 | cos θ‖x‖ ≤ x1

}
. (1)

Circular cone includes second-order cone (SOC), given by

Kn := {x = (x1, x2)T ∈ IR× IRn−1 | ‖x2‖ ≤ x1}, (2)

as a special case when the rotation angle is 45 degree. This can be verified by

Kn =
{

(x1, x2)T ∈ IR× IRn−1 | ‖x2‖ ≤ x1

}
=

{
(x1, x2)T ∈ IR× IRn−1 | x1 ≥ 0, 2‖x2‖2 ≤ 2x2

1

}
=

{
(x1, x2)T ∈ IR× IRn−1 | x1 ≥ 0, 2x2

1 + 2‖x2‖2 ≤ 4x2
1

}
=

{
(x1, x2)T ∈ IR× IRn−1

∣∣ √2x2
1 + 2‖x2‖2 ≤ 2x1

}
=

{
(x1, x2)T ∈ IR× IRn−1

∣∣∣∣ √2

2

√
x2

1 + ‖x2‖2 ≤ x1

}

=

{
(x1, x2)T ∈ IR× IRn−1

∣∣∣∣ √2

2
‖x‖ ≤ x1

}
=

{
(x1, x2)T ∈ IR× IRn−1

∣∣ cos
π

4
‖x‖ ≤ x1

}
.

Considerable attentions have been devoted to the second-order cone Kn [5, 6, 7], a

special case of self-dual cone. However, the study on the circular cone Lθ, a non-self-dual

(or non-symmetric cone) is rather limited. In this paper, we show that there exists a close

relationship between Kn and Lθ by establishing an inequality regrading distance between

Kn and Lθ. This nice property plays an essential role in our subsequence analysis and

give us more information and insight on Lθ. In particular, we develop the formulae of

tangent cone, normal cone, and second-order tangent cone of Lθ in terms of Kn (the

formula of the latter has been given by different scholars). Furthermore, we show that

Lθ, as a non-self-dual and non-polytechnic cone, is also second-order regular. Note that

we know the second-order cone and positive semi-definitive cone are both second order

regular, but there are all symmetric. Thus this is an interesting case which indicates

the second order regularity of a non-symmetric cone. Finally, we develop the spectral

factorization of z in terms of Lθ by studying the projection on Lθ which will be useful in

dealing with optimization associated circular cone.
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In fact, it is not hard to see that

Lθ =
{

(x1, x2)T ∈ IR× IRn−1 | x1 ≥ 0, ‖x‖2 cos2 θ ≤ x2
1

}
=

{
(x1, x2)T ∈ IR× IRn−1 | x1 ≥ 0, (x2

1 + ‖x2‖2) cos2 θ ≤ x2
1

}
=

{
(x1, x2)T ∈ IR× IRn−1 | x1 ≥ 0, ‖x2‖2 ≤ x2

1 tan2 θ
}

=
{

(x1, x2)T ∈ IR× IRn−1 | ‖x2‖ ≤ x1 tan θ
}
,

which yields[
x1

x2

]
∈ Lθ ⇐⇒

[
tan θx1

x2

]
∈ Kn ⇐⇒

[
tan θ 0

0 1

] [
x1

x2

]
∈ Kn. (3)

For simplicity, let us denote

A :=

[
tan θ 0

0 1

]
.

Then, the above expression (3) is equivalent to[
x1

x2

]
∈ Lθ ⇐⇒ A

[
x1

x2

]
∈ Kn. (4)

We point out that the matrix A is positive definite whose inverse matrix is

A−1 =

[
ctanθ 0

0 1

]
where ctanθ :=

1

tan θ
.

To close this section, we say a few words about the notations. For a convex cone K,

its dual cone is defined by

(K)∗ = {v | 〈v, x〉 ≥ 0, ∀x ∈ K} ,

while its polar cone is given by

(K)◦ = {v | 〈v, x〉 ≤ 0, ∀x ∈ K} .

2 Insight on circular cone

In this section, we give an insight on circular cone in which we shall study some properties

of Lθ, including characterizing its tangle cone, normal cone, second-order tangent cone,

etc.. To this end, we first describe the relationship between Kn and Lθ.

Theorem 2.1. Let Lθ and Kn be defined as in (1) and (2), respectively. Then, we have
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(a) Lθ = A−1Kn and Kn = ALθ.

(b) AKn = Lπ
2
−θ and Lπ

2
−θ = A2Lθ.

(c) L∗θ = Lπ
2
−θ and (L∗θ)

∗ = Lθ.

Proof. (a) This follows from equivalence (4) because

Lθ = {x | x ∈ Lθ}
= {x | Ax ∈ Kn}
=

{
x | x ∈ A−1Kn

}
= A−1Kn.

(b) According to part(a), we have

Lπ
2
−θ =

[
ctan(

π

2
− θ) 0

0 1

]
Kn =

[
tan θ 0

0 1

]
Kn = AKn = A(ALθ) = A2Lθ

which is the desired result.

(c) It is known that Kn is self-dual. Hence, we have

Kn = (Kn)∗ = {v | 〈v, k〉 ≥ 0, ∀k ∈ Kn}
= {v | 〈v,Az〉 ≥ 0, ∀z ∈ Lθ}
= {v | 〈Av, z〉 ≥ 0, ∀z ∈ Lθ}
= {v | Av ∈ L∗θ}
= A−1L∗θ

which implies L∗θ = AKn = Lπ
2
−θ by part(b). The remaining part is true for all closed

convex cone. 2

Theorem 2.2. For any x, z ∈ IRn, we have

‖A‖−1 dist(Az,Kn) ≤ dist(z,Lθ) ≤ ‖A−1‖ dist(Az,Kn) (5)

and

‖A−1‖−1 dist(A−1x,Lθ) ≤ dist(x,Kn) ≤ ‖A‖ dist(A−1x,Lθ). (6)

Proof. First, we observe the following:

dist(x,Kn)

= min
k∈Kn
‖x− k‖ = min

k∈ALθ
‖x− k‖ = min

z∈Lθ
‖x− Az‖ = min

z∈Lθ
‖A(A−1x)− Az‖

= min
z∈Lθ
‖A(A−1x− z)‖ ≤ ‖A‖min

z∈Lθ
‖A−1x− z‖ = ‖A‖ dist

(
A−1x,Lθ

)
, (7)

4



dist(z,Lθ)
= min

u∈Lθ
‖z − u‖ = min

u∈A−1Kn
‖z − u‖ = min

k∈Kn
‖z − A−1k‖ = min

k∈Kn
‖A−1(Az)− A−1k‖

= min
k∈Kn
‖A−1(Az − k)‖ ≤ ‖A−1‖ min

k∈Kn
‖Az − k‖ = ‖A−1‖ dist(Az,Kn). (8)

These prove the second inequality in (5) and (6), respectively. Next, plugging z =

A−1x and x = Az in (7) and (8), respectively, yields the first inequality in (5) and (6),

respectively. Thus, the proof is complete. 2

Theorem 2.2 indicates that the distances of arbitrary points to Kn and Lθ are equiv-

alent. This is an essential property for analyzing the tangent cone and normal cone of

Lθ. Before we move on, we recall the definitions of tangent cone and normal cone. Given

a subset S ⊂ IRn and x ∈ S, the contingent cone TS(x) and inner tangent cone T iS(x) of

S at x are defined respectively as

TS(x) := {d ∈ IRn| ∃tn ↓ 0, dist (x+ tnd, S) = o(tn)}

and

T iS(x) := {d ∈ IRn| dist(x+ th, S) = o(t), t ≥ 0)}.

In general, these two cones can be different. However, when S is convex, they are equal

to each other and to the closure of the radial cone, see [4, page 45]. Hence for convex

sets, we simply speak of tangent cone rather than contingent or inner tangent cones.

Moreover, the Fréchet/regular normal cone (also known as the prenormal cone), written

as N̂S(x), is defined as

N̂S(x) := {v ∈ IRn| 〈v, z − x〉 ≤ o(‖z − x‖), for z ∈ S},

and the Mordukhovich/limiting normal cone (or simply normal cone) is defined as

NS(x) := lim sup
z−→
S
x

N̂S(z).

When S is convex, NS(x) = N̂S(x) and is the polar cone of TS(x), i.e.,

NS(x) := {v ∈ IRn | 〈v, d〉 ≤ 0, ∀d ∈ TS(x)} .

Theorem 2.3. For any z ∈ Lθ, we have

(a) TLθ(z) = A−1TKn(Az),

(b) NLθ(z) = ANKn(Az).
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Proof. (a) Let us first show that TLθ(z) ⊆ A−1TKn(Az). Choose d ∈ TLθ(z). Then, by

definition of tangent cone, we have

dist(z + td,Lθ) = o(t). (9)

Plugging x = A(z + td) into (6) yields

‖A−1‖−1 dist(z + td,Lθ) ≤ dist (A(z + td),Kn) ≤ ‖A‖ dist(z + td,Lθ).

This together with (9) implies dist(Az + tAd,Kn) = o(t). Thus, Ad ∈ TKn(Az), which

says d ∈ A−1TKn(Az).

Conversely, let d ∈ A−1TKn(Az). Since Ad ∈ TKn(Az), from definition of tangent cone,

we know

dist(Az + tAd,Kn) = o(t). (10)

Replacing z in (5) by z + td gives

‖A‖−1 dist(Az + tAd,Kn) ≤ dist(z + td,Lθ) ≤ ‖A−1‖ dist(Az + tAd,Kn).

This together with (10) implies dist(z + td,Lθ) = o(t), which says d ∈ TLθ(z).

(b) The desired result follows from

NLθ(z) = {v ∈ IRn | 〈v, d〉 ≤ 0, ∀d ∈ TLθ(z)}
=

{
v ∈ IRn | 〈v, A−1w〉 ≤ 0, ∀w ∈ TKn(Az)

}
=

{
v ∈ IRn | 〈A−1v, w〉 ≤ 0, ∀w ∈ TKn(Az)

}
=

{
v ∈ IRn | A−1v ∈ NKn(Az)

}
= ANKn(Az).

2

Theorem 2.3 tells us that the explicit formula of tangent cone TLθ(z) can be estab-

lished by TKn(Az), which has been given in [3].

It is well known that in the study of second order analysis for optimization problems,

we need the following inner and outer second order tangent sets to describe the possible

curvature of the feasible region. Below, we state their official definitions.

Definition 2.1. [4, Definition 3.28] The set limits

T i,2S (x, d) :=

{
w ∈ IRn

∣∣∣∣ dist

(
x+ td+

1

2
t2w, S

)
= o(t2), t ≥ 0

}
6



and

T 2
S(x, d) =

{
w ∈ IRn

∣∣∣∣ ∃ tn ↓ 0 such that dist

(
x+ tnd+

1

2
t2nw, S

)
= o(t2n)

}
are called the inner and outer second order tangent sets, respectively, to the set S at x

in the direction d.

Definition 2.2. [4, Definition 3.32] We say that the set S is second order directionally

differentiable at a point x ∈ S in a direction d ∈ TS(x), if T iS(x) = TS(x) and T i,2S (x, d) =

T 2
S(x, d). We simply say that S is second order directionally differentiable at a point

x ∈ S if it is second order directionally differentiable in all directions d ∈ TS(x).

Theorem 2.4. Let z ∈ Lθ and d ∈ TLθ(z). Then,

T i,2Lθ (z, d) = T 2
Lθ(z, d) = A−1T 2

Kn(Az,Ad).

Proof. The first equality is due to the second order directionally differentiable of Kn
as shown in [10, Proposition 3.1] and the second equality can be proved by the same

arguments as in Theorem 2.3. 2

Definition 2.3. [4, Definition 3.85] We say that a subset S ⊂ IRn is second order regular

at x if it satisfies

(i) T 2
S(x, d) = T i,2S (x, d) for all d ∈ TS(x);

(ii) for any d ∈ TS(x) and for any sequence x+ tnd+ 1
2
t2nrn ∈ S such that tnrn → 0, the

following condition holds:

lim
n→∞

dist
(
rn, T

2
S(x, d)

)
= 0.

Theorem 2.5. The circular cone Lθ is second order regular.

Proof. Let z ∈ Lθ and d ∈ TLθ(z). According to Theorem 2.4, it suffices to show that

for any sequence z + tnd+ 1
2
t2nrn ∈ Lθ with tnrn → 0, there holds

lim
n→∞

dist
(
rn, T

2
Lθ(z, d)

)
= 0. (11)

We will complete the proof by using the relationship between Lθ and Kn. Since z+ tnd+
1
2
t2nrn ∈ Lθ, we know Az+ tnAd+ 1

2
t2nArn ∈ K by Theorem 2.1(a). Note that tnArn → 0
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because ‖tnArn‖ ≤ ‖A‖ · ‖tnrn‖. In addition, Kn is second order regular (see [10] for

detailed proof), from Definition 2.3, we have

lim
n→∞

dist
(
Arn, T

2
Kn(Az,Ad)

)
= 0. (12)

On the other hand, we observe that

dist
(
rn, T

2
Lθ(z, d)

)
= dist

(
rn, A

−1T 2
Kn(Az,Ad)

)
= dist

(
A−1(Arn), A−1T 2

Kn(Az,Ad)
)

≤ ‖A−1‖ dist
(
Arn, T

2
Kn(Az,Ad)

)
.

This together with (12) implies the validity of (11). 2

3 Spectral factorization associated with circular cone

In this section, we will develop the spectral factorization associated with circular cone

which is the basis of further investigations for optimization associated with circular cone.

To this end, we start with studying the projection on Lθ, i.e.,

ΠLθ(z) := arg min
x∈Lθ
‖z − x‖ = {x ∈ Lθ | ‖z − x‖ ≤ ‖z − u‖, ∀u ∈ Lθ} .

It should be mentioned that the projection cannot be obtained by using the relation-

ship between Lθ and Kn because

‖A−1x‖ ≤ ‖A−1y‖ ; ‖x‖ ≤ ‖y‖ whenever θ 6= π/4.

For example, let x = (8, 1), y = (4, 2), and θ = cot−1(1/8). Then,

‖A−1x‖ =
√

2 <
√

17/2 = ‖A−1y‖, but ‖x‖ =
√

65 >
√

20 = ‖y‖.

Therefore, we seek another way to characterize the projection. First, we note that for

any closed convex cone Ω

Π−Ω(x) = −ΠΩ(−x).

In fact, letting a = Π−Ω(x) yields

‖(−x)− (−a)‖ = ‖x− a‖ ≤ ‖x− (−y)‖ = ‖(−x)− y‖ ∀y ∈ Ω,

where the inequality comes from the fact that a = Π−Ω(x) by definition of projection.

This means that −a = ΠΩ(−x). Besides, it is well known that any vector z ∈ IRn can be

written as

z = ΠΩ(z) + ΠΩ◦(z).
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Hence,

z = ΠLθ(z) + ΠL◦θ(z) = ΠLθ(z) + Π−L∗θ(z)

= ΠLθ(z)− ΠL∗θ(−z) = ΠLθ(z)− ΠLπ
2−θ

(−z). (13)

Due to the special structure of Lθ, the explicit formula of projection is given below.

ΠLθ(z) =


z, if z ∈ Lθ
0, if z ∈ −L∗θ
u, otherwise,

(14)

where

u =


z1 + ‖z2‖ tan θ

1 + tan2 θ(
z1 + ‖z2‖ tan θ

1 + tan2 θ
tan θ

)
z2

‖z2‖

 .
In fact, formula (14) can be found in several places, for example, [8], [1, page 508] or [2,

Theorem 3.3.6]. For completeness we provide the detailed argument on (14), nonetheless,

by a different approach from that in [2, Theorem 3.3.6], which leads us to establish the

spectral factorization associated with Lθ.

The first two cases in (14) follow from (13) directly. Now, consider the third case.

Note that it corresponds to z1 tan θ < ‖z2‖ and −z1ctanθ < ‖z2‖. Hence we must have

z2 6= 0, because otherwise, we would have z1 < 0 and z1 > 0, which is impossible. Let us

calculate the projection in the third case by solving the Karush-Kuhn-Tucker conditions

for the following convex programming problems

min
1

2
‖x− z‖2

s.t. x ∈ Lθ

which is equivalent to

min
1

2
‖x− z‖2

s.t. ‖x2‖ − x1 tan θ ≤ 0.

The KKT point of the above convex programming is to find x ∈ Lθ and λ ≥ 0 such that[
x1 − z1

x2 − z2

]
+ λ

{[
0
x2

‖x2‖

]
− tan θ

[
1

0

]}
= 0,

which is equivalent to solving  x1 = z1 + λ tan θ,

x2 =
1

1 + (λ/‖x2‖)
z2.

(15)
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Thus,

‖z2‖ = (1 + (λ/‖x2‖)) ‖x2‖ = ‖x2‖+ λ = ‖x2‖+
x1 − z1

tan θ
= x1 tan θ +

x1 − z1

tan θ
,

where the third equality is due to (15) and the last equality comes from the fact that

‖x2‖ = x1 tan θ since the projection point of z /∈ Lθ must lie in the boundary of Lθ.

Then, we have

x1 =
z1 + ‖z2‖ tan θ

1 + tan2 θ
.

Substituting this into the first equation in (15) yields

λ =
‖z2‖ − z1 tan θ

1 + tan2 θ
.

Therefore, according to the second equation in (15), we obtain

x2 =

(
z1 + ‖z2‖ tan θ

1 + tan2 θ
tan θ

)
z2

‖z2‖

which says

ΠLθ(z) =


z1 + ‖z2‖ tan θ

1 + tan2 θ(
z1 + ‖z2‖ tan θ

1 + tan2 θ
tan θ

)
z2

‖z2‖

 (16)

under this subcase.

From (13), we see that ΠL◦θ(z) = −ΠLπ
2−θ

(−z) which implies

ΠL◦θ(z) = −


−z1 + ‖z2‖ctanθ

1 + ctan2θ(
−z1 + ‖z2‖ctanθ

1 + ctan2θ
ctanθ

)
−z2

‖z2‖



=


z1 − ‖z2‖ctanθ

1 + ctan2θ(
z1 − ‖z2‖ctanθ

1 + ctan2θ
ctanθ

)
−z2

‖z2‖

 . (17)

According to the above arguments, we obtain the following result, which is called the

spectral factorization for z associated with circular cone.

Theorem 3.1. For any z ∈ IRn, one has

z = λ1(z) · u(1)
z + λ2(z) · u(2)

z (18)
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where

λ1(z) = z1 − ‖z2‖ctanθ

λ2(z) = z1 + ‖z2‖ tan θ

and

u(1)
z =

1

1 + ctan2θ

[
1 0

0 ctanθ

] [
1

−w

]
u(2)
z =

1

1 + tan2 θ

[
1 0

0 tan θ

] [
1

w

]
with w =

z2

‖z2‖
if z2 6= 0, and any vector in IRn−1 satisfying ‖w‖ = 1 if z2 = 0.

Proof. The case of z2 = 0 is clear by simply calculating (18). The case of z2 6= 0 follows

from (13), (16), and (17) because

z = ΠLθ(z) + ΠL◦θ(z)

=


z1 + ‖z2‖ tan θ

1 + tan2 θ(
z1 + ‖z2‖ tan θ

1 + tan2 θ
tan θ

)
z2

‖z2‖

+


z1 − ‖z2‖ctanθ

1 + ctan2θ(
z1 − ‖z2‖ctanθ

1 + ctan2θ
ctanθ

)
−z2

‖z2‖


=

z1 + ‖z2‖ tan θ

1 + tan2 θ

[
1 0

0 tan θ

][ 1
z2

‖z2‖

]
+
z1 − ‖z2‖ctanθ

1 + ctan2θ

[
1 0

0 ctanθ

][ 1

− z2

‖z2‖

]
.

2

With Theorem 3.1, we could derive another expression for the projection shown as

below.

Theorem 3.2. For any z ∈ IRn, we have

ΠLθ(z) =
(
λ1(z)

)
+
· u(1)

z +
(
λ2(z)

)
+
· u(2)

z , (19)

where (a)+ := max{0, a}, λi(z) and uiz for i = 1, 2 are given as in Theorem 3.1.

Proof. The proof is divided into two cases, according to whether z2 = 0 or z2 6= 0.

Case 1: z2 = 0. If z1 ≥ 0, then z1 tan θ ≥ 0 = ‖z2‖ and λi(z) = z1 ≥ 0. Hence z ∈ Lθ
and both sides of (19) are z by (14) and (18). If z1 < 0, then −z1ctanθ ≥ 0 = ‖z2‖ and

λi(z) = z1 < 0 for i = 1, 2. Hence, z ∈ −Lπ
2
−θ = −L∗θ and both sides of (19) are 0 by

(14).

Case 2: z2 6= 0. If z ∈ Lθ, then z1 tan θ ≥ ‖z2‖ which implies z1 ≥ 0. Therefore, λi(z) ≥ 0

for i = 1, 2 which gives ΠLθ(z) = z = λ1(z)u1
z+λ2(z)u2

z by (14) and (18). If z ∈ −L∗θ, then

11



−z ∈ Lπ
2
−θ, i.e., −z1ctanθ ≥ ‖z2‖, which says z1 ≤ 0. Hence, λ1(z) = z1−‖z2‖ctanθ ≤ 0

and λ2(z) = z1+‖z2‖ tan θ ≤ 0. This indicates that the right-hand side of (19) is zero and

it coincides ΠLθ(z) = 0 by (14) under this case. Other cases correspond to z1 tan θ < ‖z2‖
and −z1ctanθ < ‖z2‖, i.e., λ1(z) = z1 − ‖z2‖ctanθ < 0 and λ2(z) = z1 + ‖z2‖ tan θ > 0.

Simplifying the right-hand side of (19) with this, we see that (14) is also satisfied under

this case. Thus, all the above shows the validity of (19). 2

In particular, when θ = π/4, expressions (18) and (19) takes, respectively, the form

of

z = (z1 − ‖z2‖)
1

2

[
1

−w

]
+ (z1 + ‖z2‖)

1

2

[
1

w

]
and

ΠLθ(z) = (z1 − ‖z2‖)+
1

2

[
1

−w

]
+ (z1 + ‖z2‖)+

1

2

[
1

w

]
where w =

z2

‖z2‖
if z2 6= 0, and any vector in IRn−1 satisfying ‖w‖ = 1 if z2 = 0. These

are exactly the well-known spectral factorization and projection associated with Kn.

We believe that the spectral factorization given in Theorem 3.1 is very important for

developing theory and algorithm for optimization associated with Lθ like the role played

by the spectral factorization associated with Kn in second-order cone optimization. We

leave it for our future research topic.
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